WO2021100132A1 - Lamellar grid and analysis system - Google Patents

Lamellar grid and analysis system Download PDF

Info

Publication number
WO2021100132A1
WO2021100132A1 PCT/JP2019/045375 JP2019045375W WO2021100132A1 WO 2021100132 A1 WO2021100132 A1 WO 2021100132A1 JP 2019045375 W JP2019045375 W JP 2019045375W WO 2021100132 A1 WO2021100132 A1 WO 2021100132A1
Authority
WO
WIPO (PCT)
Prior art keywords
strut
lamella
width
support column
region
Prior art date
Application number
PCT/JP2019/045375
Other languages
French (fr)
Japanese (ja)
Inventor
淳 澤田
恒典 野間口
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2019/045375 priority Critical patent/WO2021100132A1/en
Publication of WO2021100132A1 publication Critical patent/WO2021100132A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support

Definitions

  • the present invention relates to a lamella grid and an analysis system, and in particular, can be suitably used for a lamella grid for mounting a lamella to be analyzed using a charged particle beam device, and an analysis system to which the lamella grid is applied.
  • a lamella (thin sample) is prepared from a part of the wafer by a focused ion beam (FIB) device, and the lamella is transported to the lamella grid by the lamella transfer device or the above FIB device to obtain high-resolution electrons.
  • a method of analyzing the lamella on the lamella grid is performed by a microscope.
  • High-resolution electron microscopes include, for example, SEMs, transmission electron microscopes (TEMs) or scanning transmission electron microscopes (STEMs).
  • Patent Document 1 discloses a technique for mounting a plurality of lamellas on one lamella grid by deposition.
  • Patent Document 2 discloses a method using a fitting shape as a method for fixing a lamella without using deposition.
  • Patent Document 1 it is possible to transport a large number of lamellas, and a plurality of lamellas are fixed to the lamella grid by using deposition.
  • deposition has a problem that it takes time and a problem of sample contamination, a lamella fixing method that does not use deposition is desired in the quality evaluation of wafers.
  • Patent Document 2 does not use deposition, so it can be transported in a short time and there is little sample contamination.
  • it is necessary to increase the number of support portions by the number of lamellas to be transported.
  • a generally used lamella grid having a diameter of about 3 mm only about 10 to 20 support portions can be provided. Therefore, it is difficult to transport a large number of lamellas by one lamella grid.
  • FIG. 1 is a front view showing an outline of the lamella 10 and the lamella grid 20 examined by the inventors of the present application.
  • 2 and 3 are perspective views of the main parts showing the lamella 10 and the lamella grid 20 of Study Example 1 and Study Example 2, and show the structure in the vicinity of the support portion 22, which is a region surrounded by a circle in FIG. There is.
  • the lamella grid 20 includes a half-moon-shaped substrate 21 and a plurality of support portions 22 protruding from the surface of the substrate 21 in the Z direction, and each of the plurality of support portions 22 has a lamella. 10 is installed.
  • one lamella 10 is mounted on one support portion 22.
  • the support portion 22 is composed of columns 22a to 22d, and the columns 22a to 22d project from the upper surface of the substrate 21 in the Z direction.
  • the lamella 10 is sandwiched between the support column 22a and the support column 22b, and between the support column 22c and the support column 22d. Further, an analysis unit 11 to be analyzed later in the charged particle beam apparatus is provided on the upper portion of the lamella 10.
  • a plurality of lamellas 10 (10a, 10b) can be conveyed by increasing the height of the support portion 22.
  • the analysis unit 11 since the bottom portion of the upper lamella 10b is close to the analysis unit 11 of the lower lamella 10a, the analysis unit 11 may be damaged.
  • the substance constituting the bottom of the upper lamella 10b may interfere with the analysis of the analysis section 11 of the lower lamella 10a. For these reasons, it may be difficult to obtain an accurate observation image.
  • the lamella grid in one embodiment has a substrate and a first strut, a second strut, a third strut, and a fourth strut projecting from the surface of the substrate in the first direction, respectively.
  • the first strut is separated from the second strut in the second direction orthogonal to the first direction
  • the third strut is separated from the second strut in the third direction orthogonal to the first direction and the second direction.
  • the second column is separated from the fourth column in the third direction
  • the third column is separated from the fourth column in the second direction.
  • the width of each of the first strut, the second strut, the third strut, and the fourth strut in the third direction becomes smaller as the distance from the substrate increases in the first direction.
  • the lamella grid in one embodiment has a substrate and a first strut, a second strut, a third strut, and a fourth strut projecting from the surface of the substrate in the first direction, respectively.
  • the first strut is separated from the second strut in the second direction orthogonal to the first direction
  • the third strut is separated from the second strut in the third direction orthogonal to the first direction and the second direction.
  • the second column is separated from the fourth column in the third direction
  • the third column is separated from the fourth column in the second direction.
  • the second strut is provided with a plurality of first convex portions so as to project toward the first strut and not come into contact with the first strut
  • the fourth strut is provided with the third strut.
  • a plurality of second convex portions are provided so as to project to the side and not to come into contact with the third support column.
  • the analysis system in one embodiment includes a lamella manufacturing mechanism and a lamella transport mechanism, and (a) in the lamella manufacturing mechanism, by etching a part of the wafer, at least a first analysis unit is provided. It has a step of producing a lamella and a second lamella having a second analysis unit, and (b) a step of sequentially transporting the first lamella and the second lamella from the wafer to the lamella grid in the lamella transport mechanism. .
  • the lamella grid includes a substrate and a first strut, a second strut, a third strut, and a fourth strut projecting from the surface of the substrate in the first direction, respectively.
  • first strut is separated from the second strut in the second direction orthogonal to the first direction, and is separated from the third strut in the first direction and the third direction orthogonal to the second direction.
  • the second column is separated from the fourth column in the third direction
  • the third column is separated from the fourth column in the second direction.
  • the width of each of the first strut, the second strut, the third strut, and the fourth strut in the third direction becomes smaller as the distance from the substrate increases in the first direction.
  • the first lamella includes a first narrow width region and a first thick width region, and the width of the first narrow width region in the second direction is between the first strut and the second strut.
  • the width of the first thickness region in the second direction which is smaller than the first distance and the second distance between the third strut and the fourth strut, is the first distance and the second distance. Greater than.
  • the second lamella includes a second narrow region and a second thick region, and the width of the second narrow region in the second direction is smaller than the first distance and the second distance.
  • the width of the second thickness region in the second direction is larger than the first distance and the second distance.
  • the width of the first narrow width region in the third direction is different from the width of the second narrow width region in the third direction, and the width of the first thick width region in the third direction is the first.
  • the width of each of the first analysis unit and the second analysis unit in the second direction is the width of the first narrow width region and the second narrow width region. It is smaller than the width in the second direction.
  • the first narrow width region (b1) is inserted between the first strut and the second strut, and between the third strut and the fourth strut.
  • Step, (b2) After the step (b1), the first strut and the second strut are formed in the second narrow region so that the second lamella is separated from the first lamella in the first direction. It has a step of inserting between and between the third strut and the fourth strut.
  • a plurality of lamellas can be conveyed by one lamella grid, and the throughput of wafer quality evaluation can be improved. Further, at that time, it is possible to provide a lamella and a lamella grid that suppress damage to the analysis unit. Further, it is possible to provide an analysis system capable of producing and transporting such a lamella.
  • FIG. 1 It is a front view which shows the lamella and the lamella grid in Embodiment 1, Study Example 1 and Study Example 2. It is a main part perspective view which shows the lamella and the lamella grid in Study Example 1.
  • FIG. 2 It is a main part perspective view which shows the lamella and the lamella grid in Study Example 2.
  • FIG. It is a main part perspective view which shows the lamella in Embodiment 1.
  • FIG. 1 It is a front view which shows the lamella and the lamella grid in Embodiment 1, Study Example 1 and Study Example 2.
  • FIG. It is a main part perspective view which shows the lamella and the lamella grid in Study Example 1.
  • FIG. It is a
  • FIG. It is a schematic diagram which shows the lamella production mechanism in Embodiment 1.
  • FIG. It is a schematic diagram which shows the lamella transport mechanism in Embodiment 1.
  • FIG. It is a schematic diagram which shows the lamella analysis mechanism in Embodiment 1.
  • FIG. It is a schematic diagram which shows the network configuration in Embodiment 1.
  • FIG. It is a processing flow diagram of the analysis system in Embodiment 1.
  • FIG. It is a main part perspective view which shows the manufacturing method of the lamella in Embodiment 1.
  • FIG. It is a main part perspective view which shows the transport method of the lamella in Embodiment 1.
  • FIG. It is a main part perspective view which shows the transport method of the lamella following FIG.
  • FIG. 2 It is a main part perspective view which shows the lamella grid in Embodiment 2.
  • FIG. 2 It is a main part perspective view which shows the lamella in Embodiment 2.
  • FIG. 2 It is a main part perspective view which shows the lamella grid in Embodiment 3.
  • FIG. 2 It is a main part perspective view which shows the lamella and the lamella grid in Embodiment 3.
  • FIG. It is a main part perspective view which shows the lamella grid in Embodiment 4.
  • FIG. It is a main part perspective view which shows the lamella and the lamella grid in Embodiment 4.
  • FIG. 4 It is a main part perspective view which shows the lamella and the lamella grid in Embodiment 4.
  • FIG. 6 is a perspective view of a main part showing a method of transporting lamella following FIG. 26. It is a side view which shows the transport method of the lamella following FIG.
  • FIG. 8 is a perspective view of a main part showing a method of transporting lamella following FIG. 28. It is a side view which shows the transport method of the lamella following FIG.
  • the X direction, the Y direction, and the Z direction described in the present application are orthogonal to each other.
  • the Z direction may be described as an upward direction or a height direction of a certain structure.
  • the planes formed by the X direction and the Y direction form a plane, which is a plane perpendicular to the Z direction.
  • the plane consisting of the Y direction and the Z direction forms a plane, which is a plane perpendicular to the X direction.
  • the plane consisting of the X direction and the Z direction forms a plane, and is a plane perpendicular to the Y direction.
  • plane view viewed from the Y direction it means that the plane consisting of the X direction and the Z direction is viewed from the Y direction.
  • FIG. 4 and 5 are perspective views of the main parts showing the lamella grid 20 and the lamella 10 in the first embodiment, respectively, and FIG. 6 is a main part showing how the three lamella 10s are mounted on the lamella grid 20. It is a perspective view.
  • three lamellas 10 are illustrated, but by changing the shape (height) of the lamella grid 20, the number of lamellas 10 mounted on the lamella grid 20 can be increased to two. It may be four or more. That is, the lamella grid 20 can mount a plurality of lamellas 10.
  • the lamella grid (TEM grid, lamella carrier) 20 includes a half moon type substrate 21 and a plurality of support portions (gap portions) 22 protruding from the surface of the substrate 21 in the Z direction.
  • a plurality of lamellas 10 are mounted on each of the plurality of support portions 22.
  • the substrate 21 including the plurality of support portions 22 may be made of one material such as silicon, but the portion of the substrate 21 where the plurality of support portions 22 are provided and the periphery thereof are the substrate 21. It may be composed of a material different from the material constituting the above. For example, most of the substrate 21 may be made of copper, and the plurality of support parts 22 and their surroundings may be made of silicon.
  • the support portion 22 is composed of columns 22a to 22d, and the columns 22a to 22d project from the surface of the substrate 21 in the Z direction and extend in the Z direction. ..
  • One lamella grid 20 is provided with, for example, 4 to 20 support portions 22 including such columns 22a to 22d.
  • the lamella 10 is supported by a support portion 22 forming a gap portion. Specifically, the lamella 10 is sandwiched between the support column 22a and the support column 22b, and between the support column 22c and the support column 22d.
  • the support portion 22 can support a plurality of lamellas 10, and here, three lamellas 10 are adjacent to each other in the Z direction and are supported by the support portion 22.
  • the support column 22a is separated from the support column 22b in the Y direction, and the support column 22c is separated from the support column 22d in the Y direction. Further, the support column 22a and the support column 22b are separated from the support column 22c and the support column 22d in the X direction. The distance between the support column 22a and the support column 22b and the distance between the support column 22c and the support column 22d are indicated by the distance L1.
  • a plurality of stairs 23 are provided on each of the columns 22a to 22d.
  • Each of the stairs 23a to 23c is composed of a side surface which is a surface viewed from the X direction and an upper surface which is a surface viewed from the Z direction.
  • the angle of the stairs 23a to 23c is a right angle is illustrated, but the angle of the stairs 23a to 23c is not limited to a right angle, but is an obtuse angle and an acute angle. The case is also acceptable.
  • the stairs 23a to 23c of the support column 22a are formed on the opposite side of the support column 22c
  • the stairs 23a to 23c of the support column 22b are formed on the side opposite to the support column 22d
  • the stairs 23a to 23c of the support column 22c are opposite to the support column 22a.
  • the stairs 23a to 23c of the support column 22d are formed on the side opposite to the support column 22b.
  • each of the columns 22a to 22d in the X direction changes as the distance from the substrate 21 in the Z direction increases, and the width gradually decreases.
  • each of the columns 22a-22d has a width W1 and each of the columns 22a-22d has a width W2 or a width W3 as it moves away from the substrate 21 in the Z direction.
  • the width W1 is larger than the width W2
  • the width W2 is larger than the width W3.
  • the lamella 10 is a flaky sample whose width in the Y direction is thinner than the width in the X direction and the width in the Z direction, and as will be described later, a part of the wafer 1 is etched. It is made by.
  • An analysis unit 11 is provided above the lamella 10 in the Z direction. The analysis unit 11 is a region to be analyzed later in the lamella analysis mechanism, and the width of the analysis unit 11 is smaller than the width of the lamella 10 around it in the Y direction.
  • the lamella 10 has a thin region A1 having a relatively small width in the Y direction and a thick region A2 having a relatively large width in the Y direction.
  • the analysis unit 11 is provided in the narrow region A1.
  • the narrow region A1 has a width W4 in the X direction and a width W6 in the Y direction
  • the thick region A2 has a width W5 in the X direction and a width W7 in the Y direction
  • the width W7 is larger than the width W6. large.
  • the width of the analysis unit 11 in the Y direction is smaller than the width W6 of the thin width region A1 and the width W7 of the thick width region A2.
  • the width W6 of the thin width region A1 is smaller than the distance L1 between the support column 22a and the support column 22b and the distance L1 between the support column 22c and the support column 22d.
  • the width W7 of the thick region A2 is larger than the distance L1 between the columns 22a and the columns 22b and the distance L1 between the columns 22c and the columns 22d. Due to such a relationship, the lamella 10 is firmly held by the lamella grid 20.
  • a plurality of lamellas 10 (10a to 10c) are mounted on the lamella grid 20 so as to be separated from each other in the Z direction. Further, when the analysis is performed by the lamella analysis mechanism, the analysis is performed in a state where a plurality of lamellas 10 are mounted on the lamella grid 20. Therefore, the analysis unit 11 does not overlap the support unit 22 (supports 22a to 22d) and is exposed from the support unit 22 in a plan view viewed from the Y direction so that the analysis unit 11 is not obstructed by the support unit 22. doing.
  • the width W4 of the thin width region A1 and the width W5 of the thick width region A2 are adjusted so that the lamellas 10a to 10c fit the widths W1 to W3 of the columns 22a to 22d, respectively.
  • the width W4 of the lamella 10b is smaller than the width W4 of the lamella 10a and larger than the width W4 of the lamella 10c.
  • the width W5 of the lamella 10b is larger than the width W5 of the lamella 10a and smaller than the width W5 of the lamella 10c.
  • Each narrow region A1 of the lamellas 10a to 10c is fitted between the support column 22a and the support column 22b, and between the support column 22c and the support column 22d.
  • the thick region A2 of the lamella 10a is mounted on the substrate 21
  • the thick region A2 of the lamella 10b is mounted on the stairs 23a
  • the thick region A2 of the lamella 10c is mounted on the stairs 23b.
  • the lamellas 10a to 10c are mounted on the support portions 22 at locations having different widths such as widths W1 to W3.
  • the lamella 10 is firmly held by the lamella grid 20 not only in the Y direction but also in the X direction. Therefore, it is possible to suppress the possibility that the position of the lamella 10 is displaced when the lamella grid 20 is conveyed while the lamella 10 is mounted on the lamella grid 20.
  • a plurality of lamellas 10 (10a to 10c) can be mounted on the lamella grid 20.
  • the height of each of the stairs 23a to 23c that is, the width H1 of each of the stairs 23a to 23c in the Z direction is set longer than the width H2 of the lamellas 10a to 10c in the Z direction. Therefore, the lamellas 10a to 10c are separated from each other in the Z direction, and each analysis unit 11 is not in contact with the other lamellas 10. Therefore, it is possible to suppress the problem that the analysis unit 11 is damaged. Further, in the first embodiment, since the deposition is not used at the time of transportation to the lamella grid 20, the transportation can be performed in a short time and the sample contamination is small.
  • FIG. 7 is a schematic diagram showing the analysis system 30 according to the first embodiment.
  • the analysis system 30 has a lamella production mechanism, a lamella transport mechanism, and a lamella analysis mechanism.
  • a lamella production device 40 is used as the lamella production mechanism
  • a lamella production device 40 or a lamella transfer device 60 is used as the lamella transfer mechanism
  • a lamella analysis device is used as the lamella analysis mechanism. 70 is used.
  • the analysis system 30 receives the wafer 1 from the semiconductor production line 2, and returns the wafer 1 after the production and transfer of the lamella 10 to the semiconductor production line 2.
  • the production of the lamella 10 is performed by the lamella production device 40, and the transfer of the lamella 10 to the lamella grid 20 is performed by the lamella production device 40 or the lamella transfer device 60.
  • the analysis of the lamella 10 is performed by the lamella analyzer 70, and the analysis result of the lamella 10 is provided as the analysis data D4.
  • the wafer 1, the lamella 10, and the lamella grid 20 are filled with an inert gas such as nitrogen. It is stored inside a container (FOUP) and taken out of the container inside each device after the transfer is completed.
  • FOUP container
  • the wafer 1 in the first embodiment is formed on a semiconductor substrate on which a p-type or n-type impurity region is formed, a semiconductor element such as a transistor formed on the semiconductor substrate, and the semiconductor element. It is composed of a wiring layer and the like. Further, the state of the wafer 1 includes the case where the semiconductor substrate, the semiconductor element, the wiring layer, and the like are completed, and also includes the case where these are in the process of being manufactured. Since the lamella 10 is a thin piece obtained from a part of the wafer 1, the structure of the lamella 10 includes all or a part of the semiconductor substrate, the semiconductor element, and the wiring layer. Further, although the first embodiment describes the wafer 1 mainly manufactured on the semiconductor manufacturing line 2, the wafer 1 may be a structure used other than the semiconductor technology.
  • FIG. 8 is a schematic view showing the lamella manufacturing apparatus 40 according to the first embodiment.
  • the lamella production device 40 includes at least a lamella production mechanism, and is composed of a charged particle beam device such as a FIB-SEM device.
  • the lamella manufacturing apparatus 40 includes an ion beam column 41, an electron beam column 42, a sample chamber 43, a wafer stage 44, a wafer retainer 45, a charged particle detector 46, a detacher 47, a lamella grid stage 48, a lamella grid retainer 49, and various controls. Parts C1 to C7 are provided. Further, an input device 50 and a display 51 are provided inside or outside the lamella manufacturing apparatus 40.
  • the ion beam column 41 includes an ion source for generating an ion beam (charged particle beam) IB, a lens for focusing the ion beam IB, a deflection system for scanning and shifting the ion beam IB, and the like. , Includes all components required as a FIB device.
  • Gallium ions are generally used as the ion beam IB, but the ion species may be appropriately changed depending on the purpose of processing and observation. Further, the ion beam IB is not limited to the focused ion beam, and may be a broad ion beam.
  • the ion beam column control unit C1 controls the ion beam column 41. For example, the generation of the ion beam IB from the ion source and the driving of the deflection system are controlled by the ion beam column control unit C1.
  • the electron beam column 42 includes an electron source for generating an electron beam (charged particle beam) EB1, a lens for focusing the electron beam EB1, and a deflection system for scanning and shifting the electron beam EB1. , Includes all components required as an SEM device.
  • the electron beam column control unit C2 controls the electron beam column 42. For example, the generation of the electron beam EB1 from the electron source and the driving of the deflection system are controlled by the electron beam column control unit C2.
  • the ion beam IB that has passed through the ion beam column 41 and the electron beam EB1 that has passed through the electron beam column 42 are mainly crosspoint CP1 that is an intersection of the optical axis OA1 of the ion beam column and the optical axis OA2 of the electron beam column. Is focused on.
  • the ion beam column 41 is arranged vertically and the electron beam column 42 is arranged in an inclined manner, but the present invention is not limited to this, and the ion beam column 41 is arranged in an inclined manner and the electron beam column 42 is arranged vertically. It may be arranged. Further, both the ion beam column 41 and the electron beam column 42 may be inclined.
  • the ion beam column 41 and the electron beam column 42 may be composed of a triple column provided with a gallium focused ion beam column, an argon focused ion beam column and an electron beam column instead of these.
  • the lamella manufacturing apparatus 40 which is a charged particle beam apparatus, may include only the ion beam column 41 or may include only the electron beam column 42.
  • the lamella manufacturing apparatus 40 may be provided with either or both of the ion beam column 41 and the electron beam column 42, provided that the wafer 1 can be processed and observed. That is, the lamella manufacturing apparatus 40 may be provided with a charged particle beam column.
  • the electron beam column 42 is not limited to the SEM device, and may be a TEM device or a STEM device for observing using electrons that have passed through the sample.
  • the wafer stage 44 is provided in the sample chamber 43 at a position where the wafer 1 is irradiated with the ion beam IB and the electron beam EB1.
  • the drive of the wafer stage 44 is controlled by the wafer stage control unit C3. Therefore, the wafer stage 44 can perform planar movement, vertical movement, rotational movement, and tilt movement.
  • the wafer stage 44 is provided with a wafer retainer 45 for fixing the wafer 1, and the wafer 1 is fixed to the wafer stage 44 via the wafer retainer 45.
  • the wafer stage 44 is moved so that, for example, a desired portion on the wafer 1 is located at the irradiation position of the ion beam IB or the irradiation position of the electron beam EB1.
  • the charged particle detector 46 detects charged particles generated when the wafer 1 or the lamella 10 is irradiated with the ion beam IB and the electron beam EB1. Further, the lamella manufacturing apparatus 40 may be provided with a composite charged particle detector capable of detecting not only electrons but also ions as the charged particle detector 46.
  • the detector control unit C4 controls the charged particle detector 46.
  • the detector control unit C4 includes a circuit or an arithmetic processing unit that arithmetically processes and images the detection signal from the charged particle detector 46.
  • the detachable device 47 is provided in the sample chamber 43 so that the detachable device 47 can reach the position where the ion beam IB and the electron beam EB1 are irradiated.
  • the drive of the detachable device 47 is controlled by the detachable device control unit C5.
  • the detachable device 47 can perform planar movement, vertical movement, and rotational movement.
  • the attachment / detachment device 47 may be a microprobe. In that case, the microprobe is also controlled by the attachment / detachment control unit C5.
  • the lamella grid stage 48 is provided with a lamella grid retainer 49 for fixing the lamella grid 20, and the lamella grid 20 is fixed to the lamella grid stage 48 via the lamella grid retainer 49.
  • the drive of the lamella grid stage 48 is controlled by the lamella grid stage control unit C6. Therefore, the lamella grid stage 48 can perform planar movement, vertical movement, rotational movement, and tilt movement.
  • the lamella 10 is taken out from the wafer 1 by the detachable device 47 and conveyed to the lamella grid 20.
  • the integrated control unit C7 can communicate with each other of the ion beam column control unit C1, the electron beam column control unit C2, the wafer stage control unit C3, the detector control unit C4, the attachment / detachment control unit C5, and the lamella grid stage control unit C6. It controls the operation of the entire lamella manufacturing apparatus 40.
  • the integrated control unit C7 controls each of the control units C1 to C6 according to an instruction from the user by the input device 50 or a preset condition, and the pattern is written or analyzed on the wafer 1 on each of the control units C1 to C6. Have them observe.
  • the integrated control unit C7 includes a storage unit (not shown) for storing information and the like received from the control units C1 to C6 of the lamella manufacturing apparatus 40.
  • control units C1 to C6 are individually shown near the control targets related to each, but the control units C1 to C6 and the integrated control unit C7 are one. It may be grouped as a control unit. Therefore, in the present application, the control unit having all or a part of the control units C1 to C7 may be simply referred to as a "control unit". It should be noted that such a mode is the same for the control units C2 to C6 and C8, which will be described later, and the control units C9 to C14.
  • the user inputs instructions such as inputting information to be analyzed, changing the irradiation conditions of the ion beam IB and the electron beam EB1, and changing the positions of the wafer stage 44 and the lamella grid stage 48.
  • the input device 50 is, for example, a keyboard or a mouse.
  • the GUI screen 52 and the like are displayed on the display 51.
  • the GUI screen 52 is a screen for controlling each configuration of the lamella manufacturing apparatus 40.
  • the display 51 displays, for example, a screen for inputting information to be analyzed, a screen showing the state of each configuration of the lamella manufacturing apparatus 40, and information (including an image) to be analyzed acquired by observation.
  • a screen, an instruction screen for changing the irradiation conditions of the ion beam IB and the electron beam EB1, an instruction screen for changing the positions of the wafer stage 44 and the lamella grid stage 48, and the like can be displayed.
  • One display 51 may be provided, or a plurality of displays 51 may be provided.
  • the display 51 may have the function of the input device 50 such as a touch panel.
  • the sample chamber 43 may be equipped with a gas deposition unit (not shown). Each gas deposition unit has a control unit that controls its drive. The gas deposition unit is used to prepare or mark a protective film on a wafer 1 and stores depot gas that forms a deposit film by irradiation with charged particle beams. Depot gas can be supplied from the tip of the nozzle as needed.
  • the sample chamber 43 may be equipped with a decompression device for vacuum exhaust, a cold trap, an optical microscope, or the like. Further, the sample chamber 43 may be equipped with other detectors such as a tertiary electron detector, a STEM detector, a backscattered electron detector or a low energy loss electron detector.
  • the lamella manufacturing apparatus 40 has a lamella manufacturing mechanism for manufacturing a plurality of lamellas 10 from the wafer 1 and a lamella transport mechanism for transporting (mounting) the plurality of lamellas 10 to the lamella grid 20. ..
  • the lamella grid 20 on which the lamella 10 is mounted is transferred to the lamella analysis device 70 without going through the lamella transfer device 60 described later.
  • the lamella manufacturing apparatus 40 does not have to include the lamella transport mechanism. That is, the lamella manufacturing apparatus 40 may not include the attachment / detachment device 47, the attachment / detachment control unit C5, the lamella grid stage 48, the lamella grid retainer 49, and the lamella grid stage control unit C6 as constituent elements.
  • the lamella transport mechanism is included in the lamella transport device 60. Since a large amount of time is required to prepare the lamella 10 as compared with the transportation of the lamella 10, it is more efficient to transport the lamella 10 in the lamella transport device 60.
  • a plurality of lamella manufacturing devices 40 are prepared as a plurality of lamella manufacturing mechanisms in the analysis system 30, and a large number of lamellas 10 are manufactured from the plurality of wafers 1 in the plurality of lamella manufacturing devices 40.
  • a plurality of lamellas 10 are sequentially transported from the wafer 1 processed by a certain lamella manufacturing device 40 to the lamella grid 20.
  • FIG. 9 is a schematic view showing the lamella transport device 60 according to the first embodiment.
  • the lamella transport device 60 includes at least a lamella transport mechanism, and is composed of a charged particle beam device such as an SEM device including, for example, two electron beam columns. Since many components of the lamella transport device 60 are the same as those of the lamella manufacturing device 40, detailed description thereof will be omitted here.
  • the lamella transport device 60 is configured by replacing the ion beam column 41 and the ion beam column control unit C1 of the lamella production device 40 with another electron beam column 61 and another electron beam column control unit C8.
  • the electron beam column 61 scans the electron source for generating the electron beam (charged particle beam) EB2, the lens for focusing the electron beam EB2, and the electron beam EB2. , Includes all the components required for an SEM device, such as a deflection system for shifting.
  • the electron beam column control unit C8 controls the electron beam column 61. For example, the generation of the electron beam EB2 from the electron source and the driving of the deflection system are controlled by the electron beam column control unit C8.
  • the electron beam EB1 that has passed through the electron beam column 42 and the electron beam EB2 that has passed through the electron beam column 61 are mainly crosses that are intersections of the optical axis OA2 of the electron beam column 42 and the optical axis OA3 of the electron beam column 61. Focus is on point CP2. Since the lamella transport device 60 includes the electron beam column 42 and the electron beam column 61, the wafer 1 and the lamella grid 20 can be confirmed from two directions.
  • two electron beam columns are used, but if the images of the wafer 1 and the lamella grid 20 can be observed from two directions, an ion beam column can be used instead of the two electron beam columns.
  • Optical microscope or laser microscope may be used.
  • the lamella transport device 60 has a lamella transport mechanism for transporting (mounting) the lamella 10 on the lamella grid 20.
  • the wafer 1 on which the lamella 10 is manufactured is transferred from the lamella manufacturing apparatus 40 to the lamella transport device 60, and the lamella grid 20 on which the lamella 10 is mounted is transferred from the lamella transport device 60. It is transferred to the lamella analyzer 70.
  • the lamella grid stage 48 in the lamella transport device 60 is also provided with a lamella grid retainer 49 for fixing the lamella grid 20, and the lamella grid 20 is fixed to the lamella grid stage 48 via the lamella grid retainer 49.
  • the drive of the lamella grid stage 48 is controlled by the lamella grid stage control unit C6. Therefore, the lamella grid stage 48 can perform planar movement, vertical movement, rotational movement, and tilt movement.
  • a plurality of lamellas 10 are taken out from the wafer 1 by the attachment / detachment device 47, and at the lamella grid stage 48, the plurality of lamellas 10 are sequentially conveyed to the lamella grid 20 by the attachment / detachment device 47.
  • the lamella producing device 40 can include the lamella transport mechanism, but by dedicating the lamella transport device 60 as the lamella transport mechanism, the throughput of wafer quality evaluation can be improved.
  • FIG. 10 is a schematic view showing the lamella analyzer 70 according to the first embodiment.
  • the lamella analysis device 70 includes at least a lamella analysis mechanism, and is composed of a charged particle beam device such as a TEM device or a STEM device.
  • the lamella analyzer 70 includes an electron beam column 71, a sample stage 72, a sample exchange chamber 73, a charged particle detector 74, a charged particle detector 75, an X-ray detector 76, a sample chamber 77, and control units C9 to C14. .. Further, an input device 78 and a display 79 are provided inside or outside the lamella analysis device 70.
  • the sample SAM can be installed on the sample stage 72.
  • the sample SAM includes a plurality of lamellas 10 and a lamella grid 20 as shown in FIG. 6, and the substance and structure of the analysis unit 11 of the lamella 10 are analyzed by the lamella analyzer 70.
  • the sample SAM is installed sideways so that the front surface of the analysis unit 11 in FIG. 6 faces the electron beam column 71.
  • the electron beam column 71 is required as a TEM device or a STEM device, such as an electron source for generating an electron beam, a lens for focusing the electron beam, and a deflection system for scanning and shifting the electron beam. Includes all components.
  • the electron beam that has passed through the electron beam column 71 irradiates the sample SAM.
  • the electron beam column control unit C9 controls the electron beam column 71. Specifically, the generation of the electron beam by the electron source of the electron beam column 71 and the driving of the deflection system are controlled by the electron beam column control unit C9.
  • the electron beam column 71 is arranged perpendicular to the sample SAM, but the present invention is not limited to this, and the electron beam column 71 is arranged with respect to the sample SAM. It may be arranged at an angle.
  • the sample stage 72 is provided in the sample chamber 77 so that the sample SAM can be irradiated with an electron beam.
  • the sample exchange chamber 73 is a place for exchanging the sample SAM inserted into the sample chamber 77.
  • the drive of the sample stage 72 is controlled by the sample stage control unit C10, and the sample stage 72 can be moved in a plane, vertically, or rotated. By driving the sample stage 72, the position and orientation of the sample SAM can be changed. For example, the sample stage 72 is moved so that the sample SAM is positioned at the irradiation position of the electron beam.
  • the charged particle detector 74 and the charged particle detector 75 detect the charged particles generated when the sample SAM is irradiated with the electron beam.
  • a composite charged particle detector capable of detecting not only electrons but also ions may be used.
  • the detector control unit C11 controls the charged particle detector 74, and the detector control unit C12 controls the charged particle detector 75.
  • the detector control unit C11 and the detector control unit C12 include a circuit or an arithmetic processing unit (not shown) that arithmetically processes and images the detection signal.
  • the X-ray detector 76 detects the X-rays emitted by the sample SAM.
  • a mass spectrometer may be mounted instead of the X-ray detector 76.
  • the X-ray detector control unit C13 controls the X-ray detector 76.
  • the X-ray detector control unit C13 includes a circuit or an arithmetic processing unit (not shown) that arithmetically processes and images the detection signal from the X-ray detector 76.
  • the sample chamber 77 may be equipped with a decompression device for vacuum exhaust, a cold trap, an optical microscope, or the like. Further, the sample chamber 77 may be equipped with other detectors such as a tertiary electron detector, a STEM detector, a backscattered electron detector or a low energy loss electron detector.
  • the integrated control unit C14 can communicate with each of the electron beam column control unit C9, the sample stage control unit C10, the detector control units C11 and C12, and the X-ray detector control unit C13, and operates the entire lamella analysis device 70. To control.
  • the integrated control unit C14 controls each of the above control units according to an instruction from the user by the input device 78 or according to preset conditions, and causes the sample SAM to be analyzed and the like. Further, the integrated control unit C14 includes a storage unit (not shown) for storing information and the like received from each control unit of the lamella analysis device 70.
  • the input device 78 is a device for the user to input instructions such as changing the irradiation conditions of the electron beam or changing the position of the sample stage 72.
  • the input device 78 is, for example, a keyboard or a mouse.
  • the GUI screen 80 and the like are displayed on the display 79.
  • the GUI screen 80 is a screen for controlling the lamella analysis device 70.
  • the display 79 is a GUI screen 80, for example, a screen showing the state of each configuration of the lamella analysis device 70, a screen displaying sample information (including an image) acquired by the analysis, and information on the sample SAM obtained by the analysis.
  • a screen for inputting an image, an instruction screen for changing the irradiation conditions of the electron beam, an instruction screen for changing the position of the sample stage 72, and the like can be displayed.
  • One display 79 may be provided, or a plurality of displays 79 may be provided.
  • the display 79 may have the function of an input device 78 such as a touch panel.
  • FIG. 11 is a schematic diagram showing the network configuration 31 of the analysis system 30.
  • the semiconductor manufacturing line 2, the lamella manufacturing apparatus 40, the lamella transport apparatus 60, the lamella analysis apparatus 70, and the server SV that manages data are electrically connected by a network 32. Therefore, various data can be exchanged between them.
  • the server SV can hold the analysis position data D1, the lamella production position data D2, the lamella transport position data D3, and the analysis data D4.
  • the analysis position data D1 is data indicating a position on the wafer 1 where the cross-section analysis is scheduled to be performed.
  • the lamella production position data D2 is data indicating a position on the wafer 1 where the lamella 10 has been successfully produced.
  • the lamella transport position data D3 is data indicating the position of the lamella 10 transported on the lamella grid 20.
  • the analysis data D4 is data including the analysis result, and is data including a detection signal of charged particles or X-rays from the sample SAM irradiated with the electron beam, an observation image obtained from the detection signal, and the like.
  • analysis position data D1, the lamella production position data D2, the lamella transport position data D3, and the analysis data D4 are associated with their respective information. That is, it is possible to know at which position on the lamella grid 20 the lamella 10 produced at a predetermined position on the wafer 1 is mounted, and what the analysis result of the lamella 10 is.
  • the lamella 10a to 10c As the shape of the lamella 10, there are lamellas 10a to 10c in which the shape of the thin width region A1 and the shape of the thick width region A2 are different from each other. Not only that, shape data indicating which shape of the lamellas 10a to 10c is included is also included. Thereby, for example, when transporting a plurality of lamellas 10, the lamellas 10a, 10b and 10c can be transported to the lamella grid 20 in order from the side closer to the substrate 21.
  • FIG. 12 is a processing flow diagram of the analysis system 30 according to the first embodiment. Further, FIG. 13 is a perspective view of a main part showing a method of manufacturing a lamella by the lamella manufacturing mechanism, and FIGS. 14 and 15 are perspective views of a main part showing a method of transporting the lamella by the lamella transport mechanism.
  • step S1 the wafer 1 whose cross-section analysis is to be performed is transferred from the semiconductor manufacturing line 2 to the lamella manufacturing apparatus 40, and the wafer 1 is installed on the wafer stage 44 of the lamella manufacturing apparatus 40.
  • step S2 the lamella manufacturing apparatus 40 acquires the analysis position data D1 corresponding to the received wafer 1 from the server SV.
  • the analysis position data D1 also includes data on which shape of the lamellas 10a to 10c.
  • step S3 the wafer stage 44 is moved to the analysis position based on the analysis position data D1. Then, as shown in FIG. 13, the lamella 10 is made from a part of the wafer 1.
  • the periphery of the region to be analyzed in cross section on the wafer 1 is etched by a charged particle beam such as an ion beam IB to prepare the outer shape of the lamella 10.
  • a charged particle beam such as an ion beam IB
  • the shapes of the thin width region A1 and the thick width region A2 of the lamella 10 are also created.
  • the analysis unit 11 is produced on the upper part of the lamella 10 by etching a part of the lamella 10.
  • the analysis unit 11 is subjected to a finished surface treatment or the like for later analysis.
  • the lamella 10 is connected to the wafer 1 by the connection point 1a.
  • the lamella 10 the connection point 1a and the wafer 1 are integrated, and the lamella 10 is separated from the connection point 1a when the lamella 10 is conveyed.
  • the structure of the lamella 10 in this state is the same as the structure described with reference to FIG. 5 above, except for the connection portion 1a. Therefore, for the detailed structure of the lamella 10, refer to the above description of FIG.
  • step S3 is repeated until the production of all the lamellas 10 corresponding to the analysis position data D1 is completed.
  • step S4 among all the lamellas 10 produced in step S3, the positions of the plurality of lamellas 10 that have been successfully produced are transmitted to the server SV and stored in the server SV as lamella production position data D2.
  • the lamella production position data D2 also includes data on which shape of the lamellas 10a to 10c.
  • step S5 the wafer 1 on which a plurality of lamellas 10 are manufactured is transferred from the lamella manufacturing apparatus 40 to the lamella transporting apparatus 60. That is, the wafer 1 is transferred from the lamella manufacturing mechanism to the lamella transport mechanism.
  • the lamella production apparatus 40 has a lamella production mechanism and a lamella transport mechanism, the steps related to step S5 and the following steps S6 to S9 are performed by the lamella production apparatus 40.
  • step S6 the lamella transport device 60 acquires the lamella production position data D2 corresponding to the received wafer 1 from the server SV.
  • step S7 the wafer stage 44 is moved to the lamella manufacturing position based on the lamella manufacturing position data D2. Then, as shown in FIGS. 14 and 15, a plurality of lamellas 10 are conveyed to the lamella grid 20.
  • the lamella transport device 60 the image formed by the electron beam column 42 or the electron beam column 61 is confirmed.
  • the lamella 10 produced on the wafer 1 is held by using the attachment / detachment device 47.
  • the attachment / detachment device 47 is nano tweezers, and the lamella 10 is gripped by the nano tweezers. At this time, it is desirable to operate the nano tweezers so that the analysis unit 11 is not grasped.
  • the lamella 10 is separated from the connection point 1a and lifted off from the wafer 1. In this way, the lamella 10 is obtained from a part of the wafer 1.
  • the lamella grid stage 48 is moved to a position where an image can be acquired by the electron beam column 42 and the electron beam column 61, and the positions of the detachable device 47 and the lamella grid stage 48 are adjusted. Then, as shown in FIG. 15, the lamella 10 held by the detachable device 47 is moved directly above the support portions 22 (supports 22a to 22d) on the lamella grid 20.
  • the lamella 10 is inserted into the support portion 22 as shown in FIG. Specifically, the narrow region A1 of the lamella 10 is inserted between the support column 22a and the support column 22b, and between the support column 22c and the support column 22d.
  • the attachment / detachment device 47 is released from the grip and the attachment / detachment device 47 is retracted. As described above, the first lamella 10 is conveyed from the wafer 1 to the lamella grid 20.
  • the lamella 10 of the second and subsequent wafers is acquired from the wafer 1 by the same method as that of the first wafer, and the lamella 10 of the second and subsequent wafers is conveyed from the wafer 1 to the lamella grid 20. That is, as shown in FIG. 6, the first lamella 10a, the second lamella 10b, and the third lamella 10c are sequentially conveyed to the lamella grid 20.
  • step S7 is repeated until the transfer of all the lamellas 10 corresponding to the lamella production position data D2 is completed. Further, when the permissible range of one support portion 22 is exceeded, the subsequent lamella 10 is conveyed to the other support portion 22 on the lamella grid 20. Then, when the permissible range of one lamella grid 20 is exceeded, the subsequent lamella 10 is further conveyed to the support portion 22 of the other lamella grid 20.
  • a plurality of lamellas 10 (10a to 10c) can be conveyed to the lamella grid 20. Further, the lamellas 10a to 10c are separated from each other in the Z direction, and each analysis unit 11 is not in contact with the other lamellas 10. Therefore, it is possible to suppress the problem that the analysis unit 11 is damaged. Further, in the first embodiment, since the deposition is not used at the time of transportation to the lamella grid 20, the transportation can be performed in a short time and the sample contamination is small.
  • each narrow region A1 of the lamellas 10a to 10c is fitted between the support column 22a and the support column 22b, and between the support column 22c and the support column 22d.
  • the thick region A2 of the lamella 10a is mounted on the substrate 21
  • the thick region A2 of the lamella 10b is mounted on the stairs 23a
  • the thick region A2 of the lamella 10c is mounted on the stairs 23b. Therefore, the lamella 10 is firmly held by the lamella grid 20 not only in the Y direction but also in the X direction. Therefore, it is possible to suppress the possibility that the position of the lamella 10 is displaced when the lamella grid 20 is conveyed while the lamella 10 is mounted on the lamella grid 20.
  • step S8 among the lamellas 10 transported to the lamella grid 20, the positions of the lamellas 10 successfully transported on the lamella grid 20 are transmitted to the server SV and used as the lamella transport position data D3. It is saved in the server SV.
  • the lamella transport position data D3 also includes data on which shape of the lamellas 10a to 10c.
  • step S9 the wafer 1 in which the transfer of the plurality of lamellas 10 is completed is discharged from the lamella transfer device 60. After that, if necessary, the discharged wafer 1 may be returned to the semiconductor production line 2.
  • step S10 the lamella grid 20 on which the plurality of lamellas 10 are mounted is transferred from the lamella transport device 60 to the lamella analysis device 70 as a sample SAM.
  • step S11 the lamella analysis device 70, which is a lamella analysis mechanism, acquires the lamella transport position data D3 corresponding to the received lamella grid 20 from the server SV.
  • the lamella analyzer 70 analyzes the lamella 10 (analysis unit 11) prepared as described above.
  • the analysis method of the lamella 10 performed by using the lamella analyzer 70 in the following steps S12 and S13 will be described.
  • the lamella analysis apparatus 70 is a TEM apparatus is illustrated.
  • step S12 the sample stage 72 is moved so as to reach the transport position of the sample SAM to be analyzed based on the lamella transport position data D3.
  • the sample SAM is installed sideways so that the front surface of the sample SAM (analysis unit 11 of the lamella 10) corresponding to the plane seen from the Y direction in FIG. 4 faces the electron beam column 71.
  • each analysis unit 11 of the plurality of lamellas 10 is the analysis target unit, and the lamella grid 20 is a holder that supports the plurality of lamellas 10, but these are collectively referred to here. Described as sample SAM. Further, the analysis unit 11 does not overlap the support unit 22 and is exposed from the support unit 22 in a plan view viewed from the Y direction so that the analysis unit 11 is not obstructed by the support unit 22.
  • the image of the sample SAM is acquired at a low magnification, and the position information (coordinates) of the sample stage 72 such that the analysis unit 11 of the lamella 10 is at the center of the field of view is acquired.
  • the sample stage 72 is moved to the coordinates, and then the cross-section analysis of the analysis unit 11 is performed at a high magnification.
  • the analysis method of the analysis unit 11 a general method can be used. For example, by irradiating the analysis unit 11 with an electron beam from the electron beam column 71, the charged particle detector 74 and the charged particle detector 75 can analyze the charged particles emitted from the analysis unit 11. Further, the X-ray detector 76 can analyze the X-rays emitted from the analysis unit 11.
  • the position information of the sample stage 72 of each analysis unit 11 of the lamellas 10a to 10c is obtained when acquiring a low-magnification image. It is possible to get it. Therefore, it is not necessary to alternately perform low magnification and high magnification, and the time for cross-sectional analysis can be shortened.
  • the lamella 10b is not reduced in magnification again.
  • the sample stage 72 is moved to the coordinates of the analysis unit 11, and the analysis unit 11 of the lamella 10b performs high-magnification cross-sectional analysis.
  • the sample stage 72 is moved to the coordinates of the analysis unit 11 of the lamella 10c, and the analysis unit 11 of the lamella 10c performs a high-magnification cross-sectional analysis.
  • the analysis method of the lamella 10 in the first embodiment since the plurality of lamella 10s are separated from each other in the Z direction, there is no other lamella 10 near the analysis unit 11 to be observed.
  • Cross-section analysis can be performed with. Therefore, at the time of cross-section analysis, the possibility of being affected by other components of the lamella 10 is reduced, so that the accuracy of the observation image obtained by the charged particle detector 74 and the charged particle detector 75 can be further improved.
  • the accuracy of elemental analysis obtained by the X-ray detector 76 can be improved.
  • step S13 the analysis result of the analysis unit 11 of the lamella 10 obtained by the cross-section analysis is transmitted to the server SV and stored in the server SV as analysis data D4.
  • the analysis data D4 also includes data on which shape of the lamellas 10a to 10c.
  • the stairs 23 of the columns 22a and the stairs 23 of the columns 22c are formed so as not to face each other in the X direction, and the stairs 23 of the columns 22b and the stairs 23 of the columns 22d do not face each other in the X direction.
  • the stairs 23 of the columns 22a and the stairs 23 of the columns 22c are formed so as not to face each other in the X direction, and the stairs 23 of the columns 22b and the stairs 23 of the columns 22d do not face each other in the X direction.
  • the stairs 23 of the columns 22a and the stairs 23 of the columns 22c are formed so as to face each other in the X direction, and the stairs 23 of the columns 22b and the stairs 23 of the columns 22d are formed. They are formed so as to face each other in the X direction.
  • the stairs 23 of the columns 22a are formed on the columns 22c side
  • the stairs 23 of the columns 22b are formed on the columns 22d side
  • the stairs 23 of the columns 22c are formed on the columns 22a side
  • the stairs of the columns 22d. 23 is formed on the support column 22b side.
  • each of the columns 22a to 22d in the X direction changes as the distance from the substrate 21 in the Z direction increases, and the width gradually decreases.
  • each of the columns 22a-22d has a width W8, and each of the columns 22a-22d has a width W9 or a width W10 as it moves away from the substrate 21 in the Z direction.
  • the width W8 is larger than the width W9, and the width W9 is larger than the width W10.
  • the lamella 10 in the second embodiment also has the thin width region A1 and the thick width region A2, but in the second embodiment, the analysis unit 11 is provided in the thick width region A2.
  • the thick region A2 has a width W11 in the X direction and a width W13 in the Y direction
  • the thin region A1 has a width W12 in the X direction and a width W14 in the Y direction
  • the width W13 is larger than the width W14. large.
  • the width of the analysis unit 11 in the Y direction is smaller than the width W14 of the thin width region A1 and the width W13 of the thick width region A2.
  • a plurality of lamellas 10 (10a to 10c) are mounted on the lamella grid 20 so as to be separated from each other in the Z direction. Further, the width W12 of the thin width region A1 and the width W11 of the thick width region A2 are adjusted so that the lamellas 10a to 10c fit the widths W8 to W10 of the columns 22a to 22d, respectively.
  • the width W12 of the lamella 10a is larger than the width W12 of the lamella 10b, and the width W12 of the lamella 10b is larger than the width W12 of the lamella 10c.
  • the lamellas 10a to 10c are mounted on the support portions 22 having different widths such as widths W8 to W10.
  • Each narrow region A1 of the lamellas 10a to 10c is fitted between the columns 22a and 22b and between the columns 22c and 22d.
  • the thick region A2 of the lamella 10a is mounted on the substrate 21, the thick region A2 of the lamella 10b is mounted on the stairs 23a, and the thick region A2 of the lamella 10c is mounted on the stairs 23b.
  • a plurality of lamellas 10 (10a to 10c) can be mounted on the lamella grid 20.
  • the width H1 of the stairs 23a to 23c in each Z direction is set longer than the width H2 of the lamellas 10a to 10c in the Z direction. Therefore, since the lamellas 10a to 10c are separated from each other in the Z direction, it is possible to suppress a problem that the analysis unit 11 is damaged. Also, no deposition is used during transport to the lamella grid 20. Further, the lamella 10 is firmly held by the lamella grid 20 in the Y direction and the X direction.
  • the widths of the columns 22a to 22d in the X direction are gradually reduced as the stairs 23a to 23c move away from the substrate 21 in the Z direction.
  • the columns 22a to 22d in the third embodiment have a tapered shape, and the surface on which the stairs 23a to 23c are formed in the first embodiment is inclined instead of the stairs 23a to 23c. It is composed of faces. Therefore, in the third embodiment, the width of each of the columns 22a to 22d in the X direction changes and continuously decreases as the distance from the substrate 21 in the Z direction increases. For example, at a location relatively close to the substrate 21, each of the columns 22a to 22d has a width W15, and as the distance from the substrate 21 increases, each of the columns 22a to 22d has a width W16 smaller than the width W15, or It has a width W17 that is smaller than the width W16.
  • lamellas 10a to 10c having the same structure as those in FIGS. 5 and 6 of the first embodiment are used.
  • the lamellas 10a to 10c are mounted on the support portions 22 at locations having different widths such as widths W15 to W17. Therefore, also in the third embodiment, it is possible to firmly hold the plurality of lamellas 10 on the lamella grid 20 while separating the plurality of lamellas 10 from each other in the Z direction.
  • the columns 22a to 22d in the fourth embodiment have a tapered shape, and the surface on which the stairs 23a to 23c are formed in the second embodiment is inclined instead of the stairs 23a to 23c. It is composed of faces. Therefore, in the fourth embodiment, the width of each of the columns 22a to 22d in the X direction changes and continuously decreases as the distance from the substrate 21 in the Z direction increases. For example, at a location relatively close to the substrate 21, each of the columns 22a to 22d has a width W18, and as the distance from the substrate 21 increases, each of the columns 22a to 22d has a width W19 smaller than the width W18, or It has a width W20 smaller than the width W19.
  • the lamellas 10a to 10c having the same structure as those of FIGS. 17 and 18 of the second embodiment are used.
  • the lamellas 10a to 10c are mounted on the support portions 22 at locations having different widths such as widths W15 to W17. Therefore, also in the fourth embodiment, it is possible to firmly hold the plurality of lamellas 10 on the lamella grid 20 while separating the plurality of lamellas 10 from each other in the Z direction.
  • the columns 22a to 22d in the fifth embodiment are formed with the inclined surfaces shown in the third and fourth embodiments. That is, in the X direction, the support column 22a has an inclined surface on the support column 22c side and the side opposite to the support column 22c, the support column 22b has an inclined surface on the support column 22d side and the side opposite to the support column 22d, and the support column 22c has an inclined surface.
  • the strut 22a side and the side opposite to the strut 22a have an inclined surface, and the strut 22d has an inclined surface on the strut 22b side and the side opposite to the strut 22b.
  • the width of each of the columns 22a to 22d in the X direction changes and continuously decreases as the distance from the substrate 21 in the Z direction increases.
  • each of the columns 22a to 22d has a width W21
  • each of the columns 22a to 22d has a width W22 smaller than the width W21, or It has a width W23 smaller than the width W22.
  • the lamella grid 20 in the fifth embodiment may be equipped with lamellas 10a to 10c having the same structure as those in FIGS. 5 and 6, and lamellas 10a to 10c having the same structure as those in FIGS. 17 and 18. Can also be installed.
  • the lamellas 10a to 10c are mounted on the support portions 22 having different widths such as widths W21 to W23. Therefore, it is possible to firmly hold the plurality of lamellas 10 on the lamella grid 20 while separating the plurality of lamellas 10 from each other in the Z direction.
  • both side surfaces of the columns 22a to 22d are inclined surfaces, the columns 22a to 22d tend to be higher than those of the third and fourth embodiments, and the plurality of support portions 22 The pitch in the X direction tends to be wide.
  • the thick region A2 is provided at the central portion of the lamella 10, and the thick region A2 is provided at both ends of the lamella 10.
  • the techniques of the third and fourth embodiments are excellent, but when there is a margin in the pitch of the plurality of support portions 22, the lamella 10
  • the technique of the fifth embodiment which has a high degree of freedom for the shape of the above, is excellent.
  • the columns 22a to 22d are provided with a plurality of stairs 23 or inclined surfaces, but the columns 22a to 22d in the sixth embodiment have a convex portion 24 for holding the lamella 10. It is provided.
  • the convex portion 24 is provided on either one of the support columns 22a or 22b and one of the support columns 22c or 22d.
  • FIG. 24 illustrates a case where the convex portions 24 are provided on the support columns 22b and the support columns 22d, and a plurality of convex portions 24 are provided in the Z direction.
  • the convex portion 24 of the support column 22b is provided so as to project toward the support column 22a and not come into contact with the support column 22a.
  • the convex portion 24 of the support column 22d is provided so as to project toward the support column 22c side and not in contact with the support column 22c.
  • the shape of the convex portion 24 is preferably a hemisphere so that damage to the lamella 10 can be suppressed as much as possible and the lamella 10 can be easily attached and detached.
  • the hemisphere includes not only a hemisphere based on a true arc but also a hemisphere based on an elliptical arc.
  • the convex portion 24 may be made of the same material as the material constituting the support portion 22, or may be made of a material different from the material constituting the support portion 22.
  • the lamellas 10a and 10b having the same structure as those of the study example 1 and the study example 2 are mounted, but in these lamellas 10a and 10b, the width in the Y direction is the distance L1. Because it is smaller than, these lamellas 10a and 10b can be mounted between the columns 22a and the columns 22b and between the columns 22c and the columns 22d. It is also possible to mount the lamellas 10a to 10c having the thin width region A1 and the thick width region A2 as in the first and second embodiments on the lamella grid 20 in the sixth embodiment.
  • the lower lamella 10a is mounted on the substrate 21, while the upper lamella 10b is mounted on the convex portion 24. Further, the width H3, which is the distance between the lower convex portion 24 and the substrate 21 and the distance between the two convex portions 24, is set longer than the width H2 of the lamella 10a in the Z direction. Therefore, since the lamella 10a and the lamella 10b are separated from each other in the Z direction, the analysis unit 11 of the lamella 10a does not come into contact with the lamella 10b.
  • the method of transporting the lamella 10 in the sixth embodiment will be described with reference to FIGS. 26 to 31.
  • 26 and 27, 28 and 29, and 30 and 31, respectively, are transport steps at the same timing, and are shown as perspective views and side views, respectively.
  • the following transport method is performed in step S7 described above, and is performed by a lamella transport mechanism (for example, a lamella transport device 60).
  • the lamella 10a acquired from the wafer 1 using the detachable device 47 is moved directly above the support portions 22 (supports 22a to 22d) on the lamella grid 20.
  • the lamella 10a that has scraped the convex portion 24 by further moving the detachable device 47 is conveyed between the lower convex portion 24 and the upper convex portion 24. Will be done.
  • the lamella 10a scrapes the lower convex portion 24 and is conveyed onto the substrate 21. In this way, the lamella 10a is inserted between the support column 22a and the support column 22b and between the support column 22c and the support column 22d while scraping the plurality of convex portions 24.
  • the second and subsequent lamellas 10 are transported to the lamella grid 20 by the same method as above. As described above, the plurality of lamellas 10 are conveyed to the lamella grid 20. Since the plurality of lamellas 10 are separated from each other in the Z direction via the convex portion 24 of the support column 22b and the convex portion 24 of the support column 22d, the analysis unit 11 does not come into contact with the other lamellas 10.
  • the lamella grid 20 is provided with a plurality of support portions 22, some of the support portions 22 have the structure of the first embodiment, and the other support portions 22 have the structure of the second embodiment. It is also possible to mount the support portions 22 of the first to sixth embodiments having different structures on the lamella grid 20 in a mixed manner.
  • An analysis system including a lamella manufacturing mechanism and a lamella transport mechanism.
  • A In the lamella manufacturing mechanism, a step of manufacturing at least a first lamella having a first analysis unit and a second lamella having a second analysis unit by etching a part of the wafer.
  • B In the lamella transport mechanism, a step of sequentially transporting the first lamella and the second lamella from the wafer to the lamella grid.
  • the lamella grid includes a substrate and first, second, third and fourth struts projecting from the surface of the substrate in the first direction, respectively.
  • the first strut is separated from the second strut in the second direction orthogonal to the first direction, and separated from the third strut in the first direction and the third direction orthogonal to the second direction.
  • the second strut is separated from the fourth strut in the third direction.
  • the third strut is separated from the fourth strut in the second direction.
  • the second support column is provided with a plurality of first convex portions so as to project toward the first support column and not come into contact with the first support column.
  • the fourth strut is provided with a plurality of second convex portions so as to project toward the third strut and not come into contact with the third strut.
  • the width of each of the first analysis unit and the second analysis unit in the second direction is smaller than the width of the lamella around the analysis unit in the second direction.
  • the step (b) is (B1) While scraping the plurality of first convex portions and the plurality of second convex portions, the first lamella is placed between the first strut and the second strut, and the third strut and the first strut. The process of inserting between 4 columns, (B2) After the step (b1), the second lamella is removed from the first lamella in the first direction via a part of the plurality of first convex portions and a part of the plurality of second convex portions.
  • the second lamella While scraping the plurality of first convex portions and the plurality of second convex portions so as to be separated from each other, the second lamella is placed between the first support column and the second support column, and the third support column. And the process of inserting between the fourth support column, Has an analysis system.
  • Appendix 2 In the analysis system described in Appendix 1, An analysis system in which the shapes of the plurality of first convex portions and the plurality of second convex portions are hemispherical bodies.
  • Appendix 3 In the analysis system described in Appendix 1, Further equipped with a lamella analysis mechanism having an electron beam column and a sample stage, (C) In the lamella analysis mechanism, the first lamella and the second lamella are mounted so that the first analysis unit and the second analysis unit face the electron beam column, respectively, in the first direction. A step of analyzing the first analysis unit and the second analysis unit while the lamella grid is installed on the sample stage. An analysis system that further has.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The present invention prevents an analysis unit 11 of a lower lamellar body 10 from being damaged by an upper lamellar body 10 when a plurality of lamellar bodies 10 are transported to a lamellar grid 20. The lamellar grid 20 has: a substrate 21; and a supporting part 22 (pillars 22a-22d) that protrudes from the substrate 21 in a Z direction. For example, by providing a plurality of stages 23 to the pillars 22a-22d, the width of each of the pillars 22a-22d in the X direction becomes smaller as the distance increases from the substrate 21 in the Z direction.

Description

ラメラグリッドおよび解析システムLamella grid and analysis system
 本発明は、ラメラグリッドおよび解析システムに関し、特に、荷電粒子線装置を用いて解析されるラメラを搭載するためのラメラグリッド、および、そのラメラグリッドが適用される解析システムに好適に使用できる。 The present invention relates to a lamella grid and an analysis system, and in particular, can be suitably used for a lamella grid for mounting a lamella to be analyzed using a charged particle beam device, and an analysis system to which the lamella grid is applied.
 半導体デバイスの分野では、ムーアの法則に従って、微細化による性能の向上が果たされてきた。しかし、近年、微細化の限界が近づいており、化合物半導体またはグラフェンなどのようなシリコンに代わる新規材料の利用、三次元構造の促進、および、微細化以外の方法によるデバイス性能の向上技術などが注目されている。 In the field of semiconductor devices, performance has been improved by miniaturization according to Moore's Law. However, in recent years, the limit of miniaturization is approaching, and the use of new materials to replace silicon such as compound semiconductors or graphene, the promotion of three-dimensional structure, and technologies for improving device performance by methods other than miniaturization have been introduced. Attention has been paid.
 これらのような新たな取り組みによって、異種材料間の界面状態および積層構造を解析するための技術の重要性が増している。例えば、従来の解析技術には、光学顕微鏡または走査型電子顕微鏡(SEM: Scanning Electron Microscope)を用いた表面観察があるが、これらの表面観察では、正確な界面状態および積層構造を解析することが困難となってきている。 With these new efforts, the importance of technology for analyzing the interface state and laminated structure between dissimilar materials is increasing. For example, conventional analysis techniques include surface observation using an optical microscope or a scanning electron microscope (SEM), but these surface observations can analyze accurate interface states and laminated structures. It's getting harder.
 そこで、集束イオンビーム(FIB:Focused Ion Beam)装置によって、ウェハの一部からラメラ(薄片試料)を作製し、ラメラ搬送装置または上記FIB装置によって、ラメラをラメラグリッドへ搬送し、高分解能な電子顕微鏡によって、ラメラグリッド上のラメラを解析する手法が行われている。高分解能な電子顕微鏡(荷電粒子線装置)は、例えばSEM、透過電子顕微鏡(TEM: Transmission Electron Microscope)または走査型透過電子顕微鏡(STEM: Scanning Transmission Electron Microscope)などである。 Therefore, a lamella (thin sample) is prepared from a part of the wafer by a focused ion beam (FIB) device, and the lamella is transported to the lamella grid by the lamella transfer device or the above FIB device to obtain high-resolution electrons. A method of analyzing the lamella on the lamella grid is performed by a microscope. High-resolution electron microscopes (charged particle beam devices) include, for example, SEMs, transmission electron microscopes (TEMs) or scanning transmission electron microscopes (STEMs).
 一方で、一般的にラメラグリッドを用いてラメラを搬送する際には、デポジションを利用してラメラがラメラグリッドに固定される。例えば、特許文献1には、デポジションによって、一つのラメラグリッドに複数のラメラを搭載する技術が開示されている。また、特許文献2には、デポジションを利用しないラメラの固定方法として、嵌合形状を利用した方法などが開示されている。 On the other hand, generally when transporting lamella using a lamella grid, the lamella is fixed to the lamella grid using deposition. For example, Patent Document 1 discloses a technique for mounting a plurality of lamellas on one lamella grid by deposition. Further, Patent Document 2 discloses a method using a fitting shape as a method for fixing a lamella without using deposition.
特開2015-204296号公報Japanese Unexamined Patent Publication No. 2015-204296 特開2009-115582号公報JP-A-2009-115582
 ウェハ内の界面情報および積層構造を取得する一連の流れを自動で行うことで、ウェハの品質評価を行うことが望まれている。例えば、一つのウェハから複数のラメラを作製し、複数のラメラを一つのラメラグリッドに纏めて搭載し、複数のラメラを荷電粒子線装置で纏めて解析するような解析システムを構築することができれば、ウェハの品質評価のスループットの向上が果たせる。 It is desired to evaluate the quality of the wafer by automatically performing a series of steps to acquire the interface information and the laminated structure in the wafer. For example, if it is possible to construct an analysis system in which a plurality of lamellas are manufactured from one wafer, a plurality of lamellas are collectively mounted on one lamella grid, and a plurality of lamellas are collectively analyzed by a charged particle beam device. , The throughput of wafer quality evaluation can be improved.
 特許文献1では、多数のラメラを搬送することが可能であり、デポジションを用いて複数のラメラがラメラグリッドに固定されている。しかし、デポジションは、時間が掛かるという問題および試料汚染の問題を有するので、ウェハの品質評価においては、デポジションを用いないラメラの固定方法が望まれる。 In Patent Document 1, it is possible to transport a large number of lamellas, and a plurality of lamellas are fixed to the lamella grid by using deposition. However, since deposition has a problem that it takes time and a problem of sample contamination, a lamella fixing method that does not use deposition is desired in the quality evaluation of wafers.
 特許文献2では、デポジションが用いられていないので、短時間での搬送が可能であり、試料汚染も少ない。しかし、多数のラメラを搬送するためには、搬送するラメラの数の分、支持部を増やす必要がある。一般的に利用される直径3mm程度のラメラグリッドにおいては、10~20箇所程度の支持部を設けることしかできない。そのため、一つのラメラグリッドによって多数のラメラを搬送することは困難である。 Patent Document 2 does not use deposition, so it can be transported in a short time and there is little sample contamination. However, in order to transport a large number of lamellas, it is necessary to increase the number of support portions by the number of lamellas to be transported. In a generally used lamella grid having a diameter of about 3 mm, only about 10 to 20 support portions can be provided. Therefore, it is difficult to transport a large number of lamellas by one lamella grid.
 以上の理由から、デポジションを利用せずに、一つのラメラグリッドによって複数のラメラを搬送する技術が望まれ、ウェハの品質評価のスループットを向上させる技術が望まれる。 For the above reasons, a technique for transporting a plurality of lamellas by one lamella grid without using deposition is desired, and a technique for improving the throughput of wafer quality evaluation is desired.
 図1は、本願発明者らが検討を行ったラメラ10およびラメラグリッド20の概要を示す正面図である。図2および図3は、検討例1および検討例2のラメラ10およびラメラグリッド20を示す要部斜視図であり、図1の円で囲まれた領域である支持部22付近の構造を示している。 FIG. 1 is a front view showing an outline of the lamella 10 and the lamella grid 20 examined by the inventors of the present application. 2 and 3 are perspective views of the main parts showing the lamella 10 and the lamella grid 20 of Study Example 1 and Study Example 2, and show the structure in the vicinity of the support portion 22, which is a region surrounded by a circle in FIG. There is.
 図1に示されるように、ラメラグリッド20は、ハーフムーン型の基体21と、Z方向において基体21の表面から突出した複数の支持部22とを含み、複数の支持部22の各々に、ラメラ10が搭載されている。 As shown in FIG. 1, the lamella grid 20 includes a half-moon-shaped substrate 21 and a plurality of support portions 22 protruding from the surface of the substrate 21 in the Z direction, and each of the plurality of support portions 22 has a lamella. 10 is installed.
 図2に示される検討例1では、一つの支持部22に一つのラメラ10が搭載されている。支持部22は、支柱22a~22dによって構成され、支柱22a~22dは、Z方向において基体21の上面から突出している。ラメラ10は、支柱22aと支柱22bとの間、および、支柱22cと支柱22dとの間に挟まれている。また、ラメラ10の上部には、後に荷電粒子線装置において解析対象となる解析部11が設けられている。 In Study Example 1 shown in FIG. 2, one lamella 10 is mounted on one support portion 22. The support portion 22 is composed of columns 22a to 22d, and the columns 22a to 22d project from the upper surface of the substrate 21 in the Z direction. The lamella 10 is sandwiched between the support column 22a and the support column 22b, and between the support column 22c and the support column 22d. Further, an analysis unit 11 to be analyzed later in the charged particle beam apparatus is provided on the upper portion of the lamella 10.
 検討例1では、図2に示されるように、一つの支持部22で一つのラメラ10しか搬送できない。そのため、ウェハの品質評価のスループットを向上させることが困難である。 In Study Example 1, as shown in FIG. 2, only one lamella 10 can be conveyed by one support portion 22. Therefore, it is difficult to improve the throughput of wafer quality evaluation.
 図3に示される検討例2では、支持部22の高さを高くすることで、複数のラメラ10(10a、10b)を搬送することが可能となっている。しかし、検討例2の構造では、上方のラメラ10bの底部が、下方のラメラ10aの解析部11に近接しているので、解析部11が破損する恐れがある。また、TEM装置などの荷電粒子線装置を用いて行われる解析時に、上方のラメラ10bの底部を構成する物質が、下方のラメラ10aの解析部11の分析に干渉する恐れもある。これらの理由から、正確な観察像の取得が困難となる場合もある。 In Study Example 2 shown in FIG. 3, a plurality of lamellas 10 (10a, 10b) can be conveyed by increasing the height of the support portion 22. However, in the structure of Study Example 2, since the bottom portion of the upper lamella 10b is close to the analysis unit 11 of the lower lamella 10a, the analysis unit 11 may be damaged. Further, during analysis performed using a charged particle beam device such as a TEM device, the substance constituting the bottom of the upper lamella 10b may interfere with the analysis of the analysis section 11 of the lower lamella 10a. For these reasons, it may be difficult to obtain an accurate observation image.
 以上を纏めると、ラメラグリッドに複数のラメラを搭載する際に、解析部の損傷が抑制されるようなラメラおよびラメラグリッドの開発が望まれる。また、このようなラメラの作製および搬送が可能となる解析システムの構築が望まれる。 Summarizing the above, it is desirable to develop lamellas and lamella grids that suppress damage to the analysis unit when multiple lamellas are mounted on the lamella grid. Further, it is desired to construct an analysis system capable of producing and transporting such lamellae.
 その他の課題および新規な特徴は、本明細書の記述および添付図面から明らかになる。 Other issues and new features will become apparent from the description and accompanying drawings of this specification.
 本願において開示される実施の形態のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Among the embodiments disclosed in the present application, a brief outline of typical ones is as follows.
 一実施の形態におけるラメラグリッドは、基体と、第1方向において前記基体の表面からそれぞれ突出した第1支柱、第2支柱、第3支柱および第4支柱とを有する。ここで、前記第1支柱は、前記第1方向と直交する第2方向において前記第2支柱から離間され、且つ、前記第1方向および前記第2方向と直交する第3方向において前記第3支柱から離間され、前記第2支柱は、前記第3方向において前記第4支柱から離間され、前記第3支柱は、前記第2方向において前記第4支柱から離間されている。また、前記第1支柱、前記第2支柱、前記第3支柱および前記第4支柱の各々の前記第3方向における幅が、前記第1方向において前記基体から離れるに連れて小さくなっている。 The lamella grid in one embodiment has a substrate and a first strut, a second strut, a third strut, and a fourth strut projecting from the surface of the substrate in the first direction, respectively. Here, the first strut is separated from the second strut in the second direction orthogonal to the first direction, and the third strut is separated from the second strut in the third direction orthogonal to the first direction and the second direction. The second column is separated from the fourth column in the third direction, and the third column is separated from the fourth column in the second direction. Further, the width of each of the first strut, the second strut, the third strut, and the fourth strut in the third direction becomes smaller as the distance from the substrate increases in the first direction.
 一実施の形態におけるラメラグリッドは、基体と、第1方向において前記基体の表面からそれぞれ突出した第1支柱、第2支柱、第3支柱および第4支柱とを有する。ここで、前記第1支柱は、前記第1方向と直交する第2方向において前記第2支柱から離間され、且つ、前記第1方向および前記第2方向と直交する第3方向において前記第3支柱から離間され、前記第2支柱は、前記第3方向において前記第4支柱から離間され、前記第3支柱は、前記第2方向において前記第4支柱から離間されている。また、前記第2支柱には、前記第1支柱側へ突出し、且つ、前記第1支柱に接しないように、複数の第1凸部が設けられ、前記第4支柱には、前記第3支柱側へ突出し、且つ、前記第3支柱に接しないように、複数の第2凸部が設けられている。 The lamella grid in one embodiment has a substrate and a first strut, a second strut, a third strut, and a fourth strut projecting from the surface of the substrate in the first direction, respectively. Here, the first strut is separated from the second strut in the second direction orthogonal to the first direction, and the third strut is separated from the second strut in the third direction orthogonal to the first direction and the second direction. The second column is separated from the fourth column in the third direction, and the third column is separated from the fourth column in the second direction. Further, the second strut is provided with a plurality of first convex portions so as to project toward the first strut and not come into contact with the first strut, and the fourth strut is provided with the third strut. A plurality of second convex portions are provided so as to project to the side and not to come into contact with the third support column.
 一実施の形態における解析システムは、ラメラ作製機構と、ラメラ搬送機構とを備え、(a)前記ラメラ作製機構において、ウェハの一部をエッチングすることで、少なくとも、第1解析部を有する第1ラメラと、第2解析部を有する第2ラメラとを作製する工程、(b)前記ラメラ搬送機構において、前記第1ラメラおよび前記第2ラメラを前記ウェハからラメラグリッドへ順次搬送する工程、を有する。ここで、前記ラメラグリッドは、基体と、第1方向において前記基体の表面からそれぞれ突出した第1支柱、第2支柱、第3支柱および第4支柱とを含む。また、前記第1支柱は、前記第1方向と直交する第2方向において前記第2支柱から離間され、且つ、前記第1方向および前記第2方向と直交する第3方向において前記第3支柱から離間され、前記第2支柱は、前記第3方向において前記第4支柱から離間され、前記第3支柱は、前記第2方向において前記第4支柱から離間されている。また、前記第1支柱、前記第2支柱、前記第3支柱および前記第4支柱の各々の前記第3方向における幅は、前記第1方向において前記基体から離れるに連れて小さくなっている。また、前記第1ラメラは、第1薄幅領域および第1厚幅領域を含み、前記第1薄幅領域の前記第2方向における幅は、前記第1支柱と前記第2支柱との間の第1距離、および、前記第3支柱と前記第4支柱との間の第2距離よりも小さく、前記第1厚幅領域の前記第2方向における幅は、前記第1距離および前記第2距離よりも大きい。また、前記第2ラメラは、第2薄幅領域および第2厚幅領域を含み、前記第2薄幅領域の前記第2方向における幅は、前記第1距離および前記第2距離よりも小さく、前記第2厚幅領域の前記第2方向における幅は、前記第1距離および前記第2距離よりも大きい。また、前記第1薄幅領域の前記第3方向における幅は、前記第2薄幅領域の前記第3方向における幅と異なり、前記第1厚幅領域の前記第3方向における幅は、前記第2厚幅領域の前記第3方向における幅と異なり、前記第1解析部および前記第2解析部の各々の前記第2方向における幅は、前記第1薄幅領域および前記第2薄幅領域の前記第2方向における幅よりも小さい。また、前記(b)工程は、(b1)前記第1薄幅領域を、前記第1支柱と前記第2支柱との間、および、前記第3支柱と前記第4支柱との間に挿入する工程、(b2)前記(b1)工程後、前記第2ラメラが前記第1方向において前記第1ラメラから離間されるように、前記第2薄幅領域を、前記第1支柱と前記第2支柱との間、および、前記第3支柱と前記第4支柱との間に挿入する工程、を有する。 The analysis system in one embodiment includes a lamella manufacturing mechanism and a lamella transport mechanism, and (a) in the lamella manufacturing mechanism, by etching a part of the wafer, at least a first analysis unit is provided. It has a step of producing a lamella and a second lamella having a second analysis unit, and (b) a step of sequentially transporting the first lamella and the second lamella from the wafer to the lamella grid in the lamella transport mechanism. .. Here, the lamella grid includes a substrate and a first strut, a second strut, a third strut, and a fourth strut projecting from the surface of the substrate in the first direction, respectively. Further, the first strut is separated from the second strut in the second direction orthogonal to the first direction, and is separated from the third strut in the first direction and the third direction orthogonal to the second direction. Separated, the second column is separated from the fourth column in the third direction, and the third column is separated from the fourth column in the second direction. Further, the width of each of the first strut, the second strut, the third strut, and the fourth strut in the third direction becomes smaller as the distance from the substrate increases in the first direction. Further, the first lamella includes a first narrow width region and a first thick width region, and the width of the first narrow width region in the second direction is between the first strut and the second strut. The width of the first thickness region in the second direction, which is smaller than the first distance and the second distance between the third strut and the fourth strut, is the first distance and the second distance. Greater than. Further, the second lamella includes a second narrow region and a second thick region, and the width of the second narrow region in the second direction is smaller than the first distance and the second distance. The width of the second thickness region in the second direction is larger than the first distance and the second distance. Further, the width of the first narrow width region in the third direction is different from the width of the second narrow width region in the third direction, and the width of the first thick width region in the third direction is the first. Unlike the width of the two-thickness region in the third direction, the width of each of the first analysis unit and the second analysis unit in the second direction is the width of the first narrow width region and the second narrow width region. It is smaller than the width in the second direction. Further, in the step (b), the first narrow width region (b1) is inserted between the first strut and the second strut, and between the third strut and the fourth strut. Step, (b2) After the step (b1), the first strut and the second strut are formed in the second narrow region so that the second lamella is separated from the first lamella in the first direction. It has a step of inserting between and between the third strut and the fourth strut.
 一実施の形態によれば、一つのラメラグリッドによって複数のラメラを搬送することができ、ウェハの品質評価のスループットを向上させることができる。また、その際に、解析部の損傷が抑制されるようなラメラおよびラメラグリッドを提供できる。また、このようなラメラの作製および搬送が可能となる解析システムを提供できる。 According to one embodiment, a plurality of lamellas can be conveyed by one lamella grid, and the throughput of wafer quality evaluation can be improved. Further, at that time, it is possible to provide a lamella and a lamella grid that suppress damage to the analysis unit. Further, it is possible to provide an analysis system capable of producing and transporting such a lamella.
実施の形態1、検討例1および検討例2におけるラメラおよびラメラグリッドを示す正面図である。It is a front view which shows the lamella and the lamella grid in Embodiment 1, Study Example 1 and Study Example 2. 検討例1におけるラメラおよびラメラグリッドを示す要部斜視図である。It is a main part perspective view which shows the lamella and the lamella grid in Study Example 1. FIG. 検討例2におけるラメラおよびラメラグリッドを示す要部斜視図である。It is a main part perspective view which shows the lamella and the lamella grid in Study Example 2. 実施の形態1におけるラメラグリッドを示す要部斜視図である。It is a main part perspective view which shows the lamella grid in Embodiment 1. FIG. 実施の形態1におけるラメラを示す要部斜視図である。It is a main part perspective view which shows the lamella in Embodiment 1. FIG. 実施の形態1におけるラメラおよびラメラグリッドを示す要部斜視図である。It is a main part perspective view which shows the lamella and the lamella grid in Embodiment 1. FIG. 実施の形態1における解析システムを示す模式図である。It is a schematic diagram which shows the analysis system in Embodiment 1. FIG. 実施の形態1におけるラメラ作製機構を示す模式図である。It is a schematic diagram which shows the lamella production mechanism in Embodiment 1. FIG. 実施の形態1におけるラメラ搬送機構を示す模式図である。It is a schematic diagram which shows the lamella transport mechanism in Embodiment 1. FIG. 実施の形態1におけるラメラ解析機構を示す模式図である。It is a schematic diagram which shows the lamella analysis mechanism in Embodiment 1. FIG. 実施の形態1におけるネットワーク構成を示す模式図である。It is a schematic diagram which shows the network configuration in Embodiment 1. FIG. 実施の形態1における解析システムの処理フロー図である。It is a processing flow diagram of the analysis system in Embodiment 1. FIG. 実施の形態1におけるラメラの作製方法を示す要部斜視図である。It is a main part perspective view which shows the manufacturing method of the lamella in Embodiment 1. FIG. 実施の形態1におけるラメラの搬送方法を示す要部斜視図である。It is a main part perspective view which shows the transport method of the lamella in Embodiment 1. FIG. 図14に続くラメラの搬送方法を示す要部斜視図である。It is a main part perspective view which shows the transport method of the lamella following FIG. 実施の形態2におけるラメラグリッドを示す要部斜視図である。It is a main part perspective view which shows the lamella grid in Embodiment 2. FIG. 実施の形態2におけるラメラを示す要部斜視図である。It is a main part perspective view which shows the lamella in Embodiment 2. 実施の形態2におけるラメラおよびラメラグリッドを示す要部斜視図である。It is a main part perspective view which shows the lamella and the lamella grid in Embodiment 2. FIG. 実施の形態3におけるラメラグリッドを示す要部斜視図である。It is a main part perspective view which shows the lamella grid in Embodiment 3. FIG. 実施の形態3におけるラメラおよびラメラグリッドを示す要部斜視図である。It is a main part perspective view which shows the lamella and the lamella grid in Embodiment 3. FIG. 実施の形態4におけるラメラグリッドを示す要部斜視図である。It is a main part perspective view which shows the lamella grid in Embodiment 4. FIG. 実施の形態4におけるラメラおよびラメラグリッドを示す要部斜視図である。It is a main part perspective view which shows the lamella and the lamella grid in Embodiment 4. FIG. 実施の形態5におけるラメラグリッドを示す要部斜視図である。It is a main part perspective view which shows the lamella grid in Embodiment 5. 実施の形態6におけるラメラグリッドを示す要部斜視図である。It is a main part perspective view which shows the lamella grid in Embodiment 6. 実施の形態6におけるラメラおよびラメラグリッドを示す要部斜視図である。It is a main part perspective view which shows the lamella and the lamella grid in Embodiment 6. 実施の形態6におけるラメラの搬送方法を示す要部斜視図である。It is a main part perspective view which shows the transport method of the lamella in Embodiment 6. 実施の形態6におけるラメラの搬送方法を示す側面図である。It is a side view which shows the transport method of the lamella in Embodiment 6. 図26に続くラメラの搬送方法を示す要部斜視図である。FIG. 6 is a perspective view of a main part showing a method of transporting lamella following FIG. 26. 図27に続くラメラの搬送方法を示す側面図である。It is a side view which shows the transport method of the lamella following FIG. 図28に続くラメラの搬送方法を示す要部斜視図である。FIG. 8 is a perspective view of a main part showing a method of transporting lamella following FIG. 28. 図29に続くラメラの搬送方法を示す側面図である。It is a side view which shows the transport method of the lamella following FIG.
 以下、実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。 Hereinafter, the embodiment will be described in detail based on the drawings. In all the drawings for explaining the embodiment, the members having the same function are designated by the same reference numerals, and the repeated description thereof will be omitted. Further, in the following embodiments, the description of the same or similar parts is not repeated in principle except when it is particularly necessary.
 また、本願において説明されるX方向、Y方向およびZ方向は互いに直交している。本願では、Z方向をある構造体の上方向または高さ方向として説明する場合もある。また、X方向およびY方向からなる面は平面を成し、Z方向に垂直な平面である。Y方向およびZ方向からなる面は平面を成し、X方向に垂直な平面である。X方向およびZ方向からなる面は平面を成し、Y方向に垂直な平面である。例えば、本願において、「Y方向から見た平面視」と表現した場合、それは、X方向およびZ方向からなる面を、Y方向から見ることを意味する。 Further, the X direction, the Y direction, and the Z direction described in the present application are orthogonal to each other. In the present application, the Z direction may be described as an upward direction or a height direction of a certain structure. Further, the planes formed by the X direction and the Y direction form a plane, which is a plane perpendicular to the Z direction. The plane consisting of the Y direction and the Z direction forms a plane, which is a plane perpendicular to the X direction. The plane consisting of the X direction and the Z direction forms a plane, and is a plane perpendicular to the Y direction. For example, in the present application, when the term "planar view viewed from the Y direction" is used, it means that the plane consisting of the X direction and the Z direction is viewed from the Y direction.
 (実施の形態1)
 <ラメラ10およびラメラグリッド20の構造>
(Embodiment 1)
<Structure of lamella 10 and lamella grid 20>
 実施の形態1におけるラメラ10およびラメラグリッド20の大まかな構造は、図1に示される通りである。図4および図5は、それぞれ実施の形態1におけるラメラグリッド20およびラメラ10を示す要部斜視図であり、図6は、三つのラメラ10がラメラグリッド20に搭載されている様子を示す要部斜視図である。なお、実施の形態1では三つのラメラ10が例示されているが、ラメラグリッド20の形状(高さ)を変更することで、ラメラグリッド20に搭載されるラメラ10の数を、二つとしてもよいし、四つ以上としてもよい。すなわち、ラメラグリッド20は、複数のラメラ10を搭載可能である。 The rough structure of the lamella 10 and the lamella grid 20 in the first embodiment is as shown in FIG. 4 and 5 are perspective views of the main parts showing the lamella grid 20 and the lamella 10 in the first embodiment, respectively, and FIG. 6 is a main part showing how the three lamella 10s are mounted on the lamella grid 20. It is a perspective view. In the first embodiment, three lamellas 10 are illustrated, but by changing the shape (height) of the lamella grid 20, the number of lamellas 10 mounted on the lamella grid 20 can be increased to two. It may be four or more. That is, the lamella grid 20 can mount a plurality of lamellas 10.
 図1に示されるように、ラメラグリッド(TEMグリッド、ラメラキャリア)20は、ハーフムーン型の基体21と、Z方向において基体21の表面から突出した複数の支持部(間隙部)22とを含み、複数の支持部22の各々に、複数のラメラ10が搭載されている。なお、複数の支持部22を含む基体21は、例えばシリコンのような一つの材料から構成されていてよいが、基体21のうち、複数の支持部22が設けられる箇所およびその周囲は、基体21を構成する材料とは異なる材料で構成されていてもよい。例えば、基体21の大部分が銅によって構成され、複数の支持部22およびその周囲はシリコンによって構成されていてもよい。 As shown in FIG. 1, the lamella grid (TEM grid, lamella carrier) 20 includes a half moon type substrate 21 and a plurality of support portions (gap portions) 22 protruding from the surface of the substrate 21 in the Z direction. , A plurality of lamellas 10 are mounted on each of the plurality of support portions 22. The substrate 21 including the plurality of support portions 22 may be made of one material such as silicon, but the portion of the substrate 21 where the plurality of support portions 22 are provided and the periphery thereof are the substrate 21. It may be composed of a material different from the material constituting the above. For example, most of the substrate 21 may be made of copper, and the plurality of support parts 22 and their surroundings may be made of silicon.
 図4および図6に示されるように、支持部22は、支柱22a~22dによって構成され、支柱22a~22dは、Z方向において基体21の表面から突出し、Z方向へ向かって延在している。一つのラメラグリッド20には、このような支柱22a~22dからなる支持部22が、例えば4~20個設けられている。 As shown in FIGS. 4 and 6, the support portion 22 is composed of columns 22a to 22d, and the columns 22a to 22d project from the surface of the substrate 21 in the Z direction and extend in the Z direction. .. One lamella grid 20 is provided with, for example, 4 to 20 support portions 22 including such columns 22a to 22d.
 ラメラ10は、間隙部を成す支持部22において支持される。具体的には、ラメラ10は、支柱22aと支柱22bとの間、および、支柱22cと支柱22dとの間に挟まれている。支持部22は複数のラメラ10を支持可能であり、ここでは三つのラメラ10が、Z方向において隣接し、支持部22によって支持されている。 The lamella 10 is supported by a support portion 22 forming a gap portion. Specifically, the lamella 10 is sandwiched between the support column 22a and the support column 22b, and between the support column 22c and the support column 22d. The support portion 22 can support a plurality of lamellas 10, and here, three lamellas 10 are adjacent to each other in the Z direction and are supported by the support portion 22.
 図4に示されるように、支柱22aは、Y方向において支柱22bから離間され、支柱22cは、Y方向において支柱22dから離間されている。また、支柱22aおよび支柱22bは、X方向において支柱22cおよび支柱22dから離間されている。支柱22aと支柱22bとの間の距離、および、支柱22cと支柱22dとの間の距離は、距離L1で示されている。 As shown in FIG. 4, the support column 22a is separated from the support column 22b in the Y direction, and the support column 22c is separated from the support column 22d in the Y direction. Further, the support column 22a and the support column 22b are separated from the support column 22c and the support column 22d in the X direction. The distance between the support column 22a and the support column 22b and the distance between the support column 22c and the support column 22d are indicated by the distance L1.
 支柱22a~22dの各々には、複数の階段23(23a~23c)が設けられている。階段23a~23cの各々は、X方向から見た面である側面と、Z方向から見た面である上面とによって構成される。なお、本願では、階段23a~23cの角度(上記側面と上記上面とが成す角度)が直角である場合を例示するが、階段23a~23cの角度は、直角に限られず、鈍角および鋭角である場合も許容できる。 A plurality of stairs 23 (23a to 23c) are provided on each of the columns 22a to 22d. Each of the stairs 23a to 23c is composed of a side surface which is a surface viewed from the X direction and an upper surface which is a surface viewed from the Z direction. In the present application, the case where the angle of the stairs 23a to 23c (the angle formed by the side surface and the upper surface) is a right angle is illustrated, but the angle of the stairs 23a to 23c is not limited to a right angle, but is an obtuse angle and an acute angle. The case is also acceptable.
 X方向において、支柱22aの階段23a~23cは支柱22cと反対側に形成され、支柱22bの階段23a~23cは支柱22dと反対側に形成され、支柱22cの階段23a~23cは支柱22aと反対側に形成され、支柱22dの階段23a~23cは支柱22bと反対側に形成されている。 In the X direction, the stairs 23a to 23c of the support column 22a are formed on the opposite side of the support column 22c, the stairs 23a to 23c of the support column 22b are formed on the side opposite to the support column 22d, and the stairs 23a to 23c of the support column 22c are opposite to the support column 22a. The stairs 23a to 23c of the support column 22d are formed on the side opposite to the support column 22b.
 このような階段23a~23cによって、Z方向において基体21から離れるに連れて、支柱22a~22dの各々のX方向における幅は、変化しており、段階的に小さくなっている。例えば、基体21に最も近い箇所では、支柱22a~22dの各々は幅W1を有し、Z方向において基体21から離れるに連れて、支柱22a~22dの各々は幅W2または幅W3を有している。幅W1は幅W2よりも大きく、幅W2は幅W3よりも大きい。 Due to such stairs 23a to 23c, the width of each of the columns 22a to 22d in the X direction changes as the distance from the substrate 21 in the Z direction increases, and the width gradually decreases. For example, at the location closest to the substrate 21, each of the columns 22a-22d has a width W1 and each of the columns 22a-22d has a width W2 or a width W3 as it moves away from the substrate 21 in the Z direction. There is. The width W1 is larger than the width W2, and the width W2 is larger than the width W3.
 図5に示されるように、ラメラ10は、Y方向における幅が、X方向における幅およびZ方向における幅よりも薄い薄片試料であり、後で説明するように、ウェハ1の一部をエッチングすることで作製される。Z方向においてラメラ10の上部には、解析部11が設けられている。解析部11は、後にラメラ解析機構において解析対象となる領域であり、Y方向において、解析部11の幅はその周囲のラメラ10の幅よりも小さい。 As shown in FIG. 5, the lamella 10 is a flaky sample whose width in the Y direction is thinner than the width in the X direction and the width in the Z direction, and as will be described later, a part of the wafer 1 is etched. It is made by. An analysis unit 11 is provided above the lamella 10 in the Z direction. The analysis unit 11 is a region to be analyzed later in the lamella analysis mechanism, and the width of the analysis unit 11 is smaller than the width of the lamella 10 around it in the Y direction.
 ラメラ10は、Y方向における幅が相対的に小さい薄幅領域A1、および、Y方向における幅が相対的に大きい厚幅領域A2を有する。実施の形態1では、解析部11は、薄幅領域A1に設けられている。薄幅領域A1は、X方向における幅W4およびY方向における幅W6を有し、厚幅領域A2は、X方向における幅W5およびY方向における幅W7を有し、幅W7は、幅W6よりも大きい。また、幅W4および幅W5の値を適宜設計することで、厚幅領域A2の形状の異なる複数のラメラ10を形成することができる。なお、Y方向における解析部11の幅は、薄幅領域A1の幅W6および厚幅領域A2の幅W7よりも小さい。 The lamella 10 has a thin region A1 having a relatively small width in the Y direction and a thick region A2 having a relatively large width in the Y direction. In the first embodiment, the analysis unit 11 is provided in the narrow region A1. The narrow region A1 has a width W4 in the X direction and a width W6 in the Y direction, the thick region A2 has a width W5 in the X direction and a width W7 in the Y direction, and the width W7 is larger than the width W6. large. Further, by appropriately designing the values of the width W4 and the width W5, it is possible to form a plurality of lamellas 10 having different shapes in the thick width region A2. The width of the analysis unit 11 in the Y direction is smaller than the width W6 of the thin width region A1 and the width W7 of the thick width region A2.
 また、薄幅領域A1の幅W6は、支柱22aと支柱22bとの間の距離L1、および、支柱22cと支柱22dとの間の距離L1よりも小さい。そして、厚幅領域A2の幅W7は、支柱22aと支柱22bとの間の距離L1、および、支柱22cと支柱22dとの間の距離L1よりも大きい。このような関係によって、ラメラ10がラメラグリッド20によって強固に保持される。 Further, the width W6 of the thin width region A1 is smaller than the distance L1 between the support column 22a and the support column 22b and the distance L1 between the support column 22c and the support column 22d. The width W7 of the thick region A2 is larger than the distance L1 between the columns 22a and the columns 22b and the distance L1 between the columns 22c and the columns 22d. Due to such a relationship, the lamella 10 is firmly held by the lamella grid 20.
 図6に示されるように、複数のラメラ10(10a~10c)は、Z方向において互いに離間するようにラメラグリッド20に搭載される。また、ラメラ解析機構において解析を行う際、解析は、複数のラメラ10がラメラグリッド20に搭載された状態で行われる。従って、解析部11が支持部22に遮られないように、Y方向から見た平面視おいて、解析部11は、支持部22(支柱22a~22d)に重ならず、支持部22から露出している。 As shown in FIG. 6, a plurality of lamellas 10 (10a to 10c) are mounted on the lamella grid 20 so as to be separated from each other in the Z direction. Further, when the analysis is performed by the lamella analysis mechanism, the analysis is performed in a state where a plurality of lamellas 10 are mounted on the lamella grid 20. Therefore, the analysis unit 11 does not overlap the support unit 22 (supports 22a to 22d) and is exposed from the support unit 22 in a plan view viewed from the Y direction so that the analysis unit 11 is not obstructed by the support unit 22. doing.
 ラメラ10a~10cが、それぞれ支柱22a~22dの各々の幅W1~W3に適合するように、薄幅領域A1の幅W4および厚幅領域A2の幅W5が調整されている。ここでは、ラメラ10bの幅W4は、ラメラ10aの幅W4よりも小さく、ラメラ10cの幅W4よりも大きい。また、ラメラ10bの幅W5は、ラメラ10aの幅W5よりも大きく、ラメラ10cの幅W5よりも小さい。 The width W4 of the thin width region A1 and the width W5 of the thick width region A2 are adjusted so that the lamellas 10a to 10c fit the widths W1 to W3 of the columns 22a to 22d, respectively. Here, the width W4 of the lamella 10b is smaller than the width W4 of the lamella 10a and larger than the width W4 of the lamella 10c. Further, the width W5 of the lamella 10b is larger than the width W5 of the lamella 10a and smaller than the width W5 of the lamella 10c.
 ラメラ10a~10cの各々の薄幅領域A1は、支柱22aと支柱22bとの間、および、支柱22cと支柱22dとの間に嵌め合わされる。そして、ラメラ10aの厚幅領域A2は基体21上に搭載され、ラメラ10bの厚幅領域A2は階段23a上に搭載され、ラメラ10cの厚幅領域A2は階段23b上に搭載される。このように、ラメラ10a~10cは、支持部22のうち幅W1~W3のように異なる幅を有する箇所に搭載されている。 Each narrow region A1 of the lamellas 10a to 10c is fitted between the support column 22a and the support column 22b, and between the support column 22c and the support column 22d. The thick region A2 of the lamella 10a is mounted on the substrate 21, the thick region A2 of the lamella 10b is mounted on the stairs 23a, and the thick region A2 of the lamella 10c is mounted on the stairs 23b. As described above, the lamellas 10a to 10c are mounted on the support portions 22 at locations having different widths such as widths W1 to W3.
 このため、Y方向だけでなくX方向においてもラメラ10がラメラグリッド20に強固に保持される。従って、ラメラ10がラメラグリッド20に搭載された状態で、ラメラグリッド20を搬送する際に、ラメラ10の位置がずれる恐れを抑制できる。 Therefore, the lamella 10 is firmly held by the lamella grid 20 not only in the Y direction but also in the X direction. Therefore, it is possible to suppress the possibility that the position of the lamella 10 is displaced when the lamella grid 20 is conveyed while the lamella 10 is mounted on the lamella grid 20.
 以上のように、実施の形態1によれば、ラメラグリッド20に複数のラメラ10(10a~10c)を搭載できる。また、階段23a~23cの各々の高さ、すなわち階段23a~23cの各々のZ方向における幅H1は、ラメラ10a~10cのZ方向における幅H2よりも長く設定されている。このため、ラメラ10a~10cは、Z方向において互いに離間し、各々の解析部11が他のラメラ10に接触していない。従って、解析部11が損傷するという不具合を抑制することができる。また、実施の形態1では、ラメラグリッド20への搬送時にデポジションが用いられていないので、短時間での搬送が可能であり、試料汚染も少ない。 As described above, according to the first embodiment, a plurality of lamellas 10 (10a to 10c) can be mounted on the lamella grid 20. Further, the height of each of the stairs 23a to 23c, that is, the width H1 of each of the stairs 23a to 23c in the Z direction is set longer than the width H2 of the lamellas 10a to 10c in the Z direction. Therefore, the lamellas 10a to 10c are separated from each other in the Z direction, and each analysis unit 11 is not in contact with the other lamellas 10. Therefore, it is possible to suppress the problem that the analysis unit 11 is damaged. Further, in the first embodiment, since the deposition is not used at the time of transportation to the lamella grid 20, the transportation can be performed in a short time and the sample contamination is small.
 <解析システムの構成>
 以下に図7~図10を用いて、ラメラ10の作製、搬送および解析を行うことが可能な解析システム30の構成について説明する。図7は、実施の形態1における解析システム30を示す模式図である。解析システム30は、ラメラ作製機構、ラメラ搬送機構およびラメラ解析機構を有する。図7に示されるように、ラメラ作製機構としては、ラメラ作製装置40が使用され、ラメラ搬送機構としては、ラメラ作製装置40またはラメラ搬送装置60が使用され、ラメラ解析機構としては、ラメラ解析装置70が使用される。
<Analysis system configuration>
Hereinafter, the configuration of the analysis system 30 capable of producing, transporting, and analyzing the lamella 10 will be described with reference to FIGS. 7 to 10. FIG. 7 is a schematic diagram showing the analysis system 30 according to the first embodiment. The analysis system 30 has a lamella production mechanism, a lamella transport mechanism, and a lamella analysis mechanism. As shown in FIG. 7, a lamella production device 40 is used as the lamella production mechanism, a lamella production device 40 or a lamella transfer device 60 is used as the lamella transfer mechanism, and a lamella analysis device is used as the lamella analysis mechanism. 70 is used.
 解析システム30は、半導体製造ライン2からウェハ1を受け取り、ラメラ10の作製および搬送を終えたウェハ1を半導体製造ライン2に返す。後で詳細に説明するが、ラメラ10の作製はラメラ作製装置40において行われ、ラメラグリッド20へのラメラ10の搬送は、ラメラ作製装置40またはラメラ搬送装置60において行われる。その後、ラメラ10の解析がラメラ解析装置70において行われ、ラメラ10の解析結果が解析データD4として提供される。 The analysis system 30 receives the wafer 1 from the semiconductor production line 2, and returns the wafer 1 after the production and transfer of the lamella 10 to the semiconductor production line 2. As will be described in detail later, the production of the lamella 10 is performed by the lamella production device 40, and the transfer of the lamella 10 to the lamella grid 20 is performed by the lamella production device 40 or the lamella transfer device 60. After that, the analysis of the lamella 10 is performed by the lamella analyzer 70, and the analysis result of the lamella 10 is provided as the analysis data D4.
 また、半導体製造ライン2、ラメラ作製装置40、ラメラ搬送装置60およびラメラ解析装置70の間で行われる移送作業時には、ウェハ1、ラメラ10およびラメラグリッド20は、窒素などの不活性ガスが充満された容器(FOUP)の内部に保管され、移送完了後に各装置の内部で容器から取り出される。 Further, during the transfer work performed between the semiconductor manufacturing line 2, the lamella manufacturing apparatus 40, the lamella transport apparatus 60, and the lamella analyzer 70, the wafer 1, the lamella 10, and the lamella grid 20 are filled with an inert gas such as nitrogen. It is stored inside a container (FOUP) and taken out of the container inside each device after the transfer is completed.
 なお、実施の形態1におけるウェハ1は、p型またはn型の不純物領域が形成された半導体基板、上記半導体基板上に形成されたトランジスタなどの半導体素子、および、上記半導体素子上に形成された配線層などで構成されている。また、ウェハ1の状態は、半導体基板、上記半導体素子および上記配線層などが完成されている場合も含むし、これらが製造途中である場合も含む。ラメラ10はウェハ1の一部から取得された薄片であるので、ラメラ10の構造は、上記半導体基板、上記半導体素子および上記配線層のうち全部または一部を含んでいる。また、実施の形態1では、主に半導体製造ライン2で製造されるウェハ1を説明しているが、ウェハ1は、半導体技術以外で用いられる構造体でもよい。 The wafer 1 in the first embodiment is formed on a semiconductor substrate on which a p-type or n-type impurity region is formed, a semiconductor element such as a transistor formed on the semiconductor substrate, and the semiconductor element. It is composed of a wiring layer and the like. Further, the state of the wafer 1 includes the case where the semiconductor substrate, the semiconductor element, the wiring layer, and the like are completed, and also includes the case where these are in the process of being manufactured. Since the lamella 10 is a thin piece obtained from a part of the wafer 1, the structure of the lamella 10 includes all or a part of the semiconductor substrate, the semiconductor element, and the wiring layer. Further, although the first embodiment describes the wafer 1 mainly manufactured on the semiconductor manufacturing line 2, the wafer 1 may be a structure used other than the semiconductor technology.
 以下に、解析システム30の主な構成要素である、ラメラ作製装置40、ラメラ搬送装置60およびラメラ解析装置70の各々の詳細な構造について説明する。
 <ラメラ作製装置>
The detailed structures of the lamella manufacturing apparatus 40, the lamella transport apparatus 60, and the lamella analysis apparatus 70, which are the main components of the analysis system 30, will be described below.
<Lamera making device>
 図8は、実施の形態1におけるラメラ作製装置40を示す模式図である。ラメラ作製装置40は、少なくともラメラ作製機構を備え、例えばFIB-SEM装置のような荷電粒子線装置によって構成される。 FIG. 8 is a schematic view showing the lamella manufacturing apparatus 40 according to the first embodiment. The lamella production device 40 includes at least a lamella production mechanism, and is composed of a charged particle beam device such as a FIB-SEM device.
 ラメラ作製装置40は、イオンビームカラム41、電子ビームカラム42、試料室43、ウェハステージ44、ウェハ押さえ45、荷電粒子検出器46、着脱器47、ラメラグリッドステージ48、ラメラグリッド押さえ49および各制御部C1~C7を備える。また、ラメラ作製装置40の内部または外部には、入力デバイス50およびディスプレイ51が設けられている。 The lamella manufacturing apparatus 40 includes an ion beam column 41, an electron beam column 42, a sample chamber 43, a wafer stage 44, a wafer retainer 45, a charged particle detector 46, a detacher 47, a lamella grid stage 48, a lamella grid retainer 49, and various controls. Parts C1 to C7 are provided. Further, an input device 50 and a display 51 are provided inside or outside the lamella manufacturing apparatus 40.
 イオンビームカラム41は、イオンビーム(荷電粒子ビーム)IBを発生するためのイオン源、イオンビームIBを集束するためのレンズ、および、イオンビームIBを走査し、且つ、シフトするための偏向系など、FIB装置として必要な構成要素を全て含む。イオンビームIBとして、一般にガリウムイオンが使用されるが、加工および観察の目的に応じてイオン種は適宜変更してもよい。また、イオンビームIBは、集束イオンビームに限られず、ブロードなイオンビームでもよい。 The ion beam column 41 includes an ion source for generating an ion beam (charged particle beam) IB, a lens for focusing the ion beam IB, a deflection system for scanning and shifting the ion beam IB, and the like. , Includes all components required as a FIB device. Gallium ions are generally used as the ion beam IB, but the ion species may be appropriately changed depending on the purpose of processing and observation. Further, the ion beam IB is not limited to the focused ion beam, and may be a broad ion beam.
 イオンビームカラム制御部C1は、イオンビームカラム41を制御する。例えば、イオン源からのイオンビームIBの発生および偏向系の駆動などが、イオンビームカラム制御部C1によって制御される。 The ion beam column control unit C1 controls the ion beam column 41. For example, the generation of the ion beam IB from the ion source and the driving of the deflection system are controlled by the ion beam column control unit C1.
 電子ビームカラム42は、電子ビーム(荷電粒子ビーム)EB1を発生するための電子源、電子ビームEB1を集束するためのレンズ、および、電子ビームEB1を走査し、且つ、シフトするための偏向系など、SEM装置として必要な構成要素を全て含む。 The electron beam column 42 includes an electron source for generating an electron beam (charged particle beam) EB1, a lens for focusing the electron beam EB1, and a deflection system for scanning and shifting the electron beam EB1. , Includes all components required as an SEM device.
 電子ビームカラム制御部C2は、電子ビームカラム42を制御する。例えば、電子源からの電子ビームEB1の発生および偏向系の駆動などが、電子ビームカラム制御部C2によって制御される。 The electron beam column control unit C2 controls the electron beam column 42. For example, the generation of the electron beam EB1 from the electron source and the driving of the deflection system are controlled by the electron beam column control unit C2.
 イオンビームカラム41を通過したイオンビームIB、および、電子ビームカラム42を通過した電子ビームEB1は、主にイオンビームカラムの光軸OA1と電子ビームカラムの光軸OA2との交点であるクロスポイントCP1にフォーカスされる。 The ion beam IB that has passed through the ion beam column 41 and the electron beam EB1 that has passed through the electron beam column 42 are mainly crosspoint CP1 that is an intersection of the optical axis OA1 of the ion beam column and the optical axis OA2 of the electron beam column. Is focused on.
 また、実施の形態1においては、イオンビームカラム41を垂直配置し、電子ビームカラム42を傾斜配置しているが、これに限られず、イオンビームカラム41を傾斜配置し、電子ビームカラム42を垂直配置してもよい。また、イオンビームカラム41および電子ビームカラム42の双方を傾斜配置してもよい。 Further, in the first embodiment, the ion beam column 41 is arranged vertically and the electron beam column 42 is arranged in an inclined manner, but the present invention is not limited to this, and the ion beam column 41 is arranged in an inclined manner and the electron beam column 42 is arranged vertically. It may be arranged. Further, both the ion beam column 41 and the electron beam column 42 may be inclined.
 また、イオンビームカラム41および電子ビームカラム42は、これらの代わりに、ガリウム集束イオンビームカラム、アルゴン集束イオンビームカラムおよび電子ビームカラムを備えたトリプルカラムによって構成されていてもよい。 Further, the ion beam column 41 and the electron beam column 42 may be composed of a triple column provided with a gallium focused ion beam column, an argon focused ion beam column and an electron beam column instead of these.
 また、荷電粒子線装置であるラメラ作製装置40は、イオンビームカラム41のみを備えていてもよいし、電子ビームカラム42のみを備えていてもよい。言い換えれば、ウェハ1の加工および観察を行うことができるならば、ラメラ作製装置40には、イオンビームカラム41または電子ビームカラム42の何れかまたは両方が備えられていてもよい。すなわち、ラメラ作製装置40には、荷電粒子ビームカラムが備えられていればよい。また、電子ビームカラム42は、SEM装置に限られず、試料を透過した電子を用いて観察を行うTEM装置またはSTEM装置としてもよい。 Further, the lamella manufacturing apparatus 40, which is a charged particle beam apparatus, may include only the ion beam column 41 or may include only the electron beam column 42. In other words, the lamella manufacturing apparatus 40 may be provided with either or both of the ion beam column 41 and the electron beam column 42, provided that the wafer 1 can be processed and observed. That is, the lamella manufacturing apparatus 40 may be provided with a charged particle beam column. Further, the electron beam column 42 is not limited to the SEM device, and may be a TEM device or a STEM device for observing using electrons that have passed through the sample.
 ウェハステージ44は、試料室43内において、ウェハ1にイオンビームIBおよび電子ビームEB1が照射される位置に設けられている。ウェハステージ44の駆動は、ウェハステージ制御部C3によって制御される。このため、ウェハステージ44は、平面移動、垂直移動、回転移動および傾斜移動を行うことができる。 The wafer stage 44 is provided in the sample chamber 43 at a position where the wafer 1 is irradiated with the ion beam IB and the electron beam EB1. The drive of the wafer stage 44 is controlled by the wafer stage control unit C3. Therefore, the wafer stage 44 can perform planar movement, vertical movement, rotational movement, and tilt movement.
 ウェハステージ44には、ウェハ1を固定するためのウェハ押さえ45が設けられ、ウェハ1は、ウェハ押さえ45を介してウェハステージ44に固定される。ウェハステージ44を駆動することによって、ウェハ1の位置および向きを自由に変更することができる。ウェハステージ44は、例えば、ウェハ1上の所望の箇所がイオンビームIBの照射位置または電子ビームEB1の照射位置に位置するように、移動される。 The wafer stage 44 is provided with a wafer retainer 45 for fixing the wafer 1, and the wafer 1 is fixed to the wafer stage 44 via the wafer retainer 45. By driving the wafer stage 44, the position and orientation of the wafer 1 can be freely changed. The wafer stage 44 is moved so that, for example, a desired portion on the wafer 1 is located at the irradiation position of the ion beam IB or the irradiation position of the electron beam EB1.
 荷電粒子検出器46は、イオンビームIBおよび電子ビームEB1をウェハ1またはラメラ10に照射した際に発生する荷電粒子を検出する。また、ラメラ作製装置40には、荷電粒子検出器46として、電子だけでなくイオンの検出も可能な複合荷電粒子検出器が設けられていてもよい。 The charged particle detector 46 detects charged particles generated when the wafer 1 or the lamella 10 is irradiated with the ion beam IB and the electron beam EB1. Further, the lamella manufacturing apparatus 40 may be provided with a composite charged particle detector capable of detecting not only electrons but also ions as the charged particle detector 46.
 検出器制御部C4は、荷電粒子検出器46を制御する。検出器制御部C4は、荷電粒子検出器46からの検出信号を演算処理し、画像化する回路または演算処理部を備える。 The detector control unit C4 controls the charged particle detector 46. The detector control unit C4 includes a circuit or an arithmetic processing unit that arithmetically processes and images the detection signal from the charged particle detector 46.
 着脱器47は、着脱器47にイオンビームIBおよび電子ビームEB1が照射される位置に到達できるように、試料室43内に設けられる。着脱器47の駆動は、着脱器制御部C5によって制御される。これにより、着脱器47は、平面移動、垂直移動および回転移動を行うことができる。着脱器47を駆動することによって、ラメラ10をウェハ1から取り出すこと、および、ラメラ10をラメラグリッド20に搬送することが可能になる。 The detachable device 47 is provided in the sample chamber 43 so that the detachable device 47 can reach the position where the ion beam IB and the electron beam EB1 are irradiated. The drive of the detachable device 47 is controlled by the detachable device control unit C5. As a result, the detachable device 47 can perform planar movement, vertical movement, and rotational movement. By driving the detachable device 47, the lamella 10 can be taken out from the wafer 1 and the lamella 10 can be conveyed to the lamella grid 20.
 なお、実施の形態1における着脱器47として、ナノピンセットが例示されているが、着脱器47はマイクロプローブであってもよい。その場合、マイクロプローブも着脱器制御部C5によって制御される。 Although nanotweezers are exemplified as the attachment / detachment device 47 in the first embodiment, the attachment / detachment device 47 may be a microprobe. In that case, the microprobe is also controlled by the attachment / detachment control unit C5.
 ラメラグリッドステージ48には、ラメラグリッド20を固定するためのラメラグリッド押さえ49が設けられ、ラメラグリッド20は、ラメラグリッド押さえ49を介してラメラグリッドステージ48に固定される。ラメラグリッドステージ48の駆動は、ラメラグリッドステージ制御部C6によって制御される。このため、ラメラグリッドステージ48は、平面移動、垂直移動、回転移動および傾斜移動を行うことができる。着脱器47によって、ラメラ10は、ウェハ1から取り出され、ラメラグリッド20へ搬送される。 The lamella grid stage 48 is provided with a lamella grid retainer 49 for fixing the lamella grid 20, and the lamella grid 20 is fixed to the lamella grid stage 48 via the lamella grid retainer 49. The drive of the lamella grid stage 48 is controlled by the lamella grid stage control unit C6. Therefore, the lamella grid stage 48 can perform planar movement, vertical movement, rotational movement, and tilt movement. The lamella 10 is taken out from the wafer 1 by the detachable device 47 and conveyed to the lamella grid 20.
 統合制御部C7は、イオンビームカラム制御部C1、電子ビームカラム制御部C2、ウェハステージ制御部C3、検出器制御部C4、着脱器制御部C5およびラメラグリッドステージ制御部C6のそれぞれと互いに通信可能であり、ラメラ作製装置40全体の動作を制御する。統合制御部C7は、入力デバイス50によるユーザーからの指示または予め設定された条件に従って、各制御部C1~C6を制御し、各制御部C1~C6にウェハ1へのパターンの書き込みまたは解析対象の観察などを行わせる。また、統合制御部C7は、ラメラ作製装置40の各制御部C1~C6から受信した情報等を記憶するための記憶部(図示せず)を備える。 The integrated control unit C7 can communicate with each other of the ion beam column control unit C1, the electron beam column control unit C2, the wafer stage control unit C3, the detector control unit C4, the attachment / detachment control unit C5, and the lamella grid stage control unit C6. It controls the operation of the entire lamella manufacturing apparatus 40. The integrated control unit C7 controls each of the control units C1 to C6 according to an instruction from the user by the input device 50 or a preset condition, and the pattern is written or analyzed on the wafer 1 on each of the control units C1 to C6. Have them observe. Further, the integrated control unit C7 includes a storage unit (not shown) for storing information and the like received from the control units C1 to C6 of the lamella manufacturing apparatus 40.
 なお、本願では説明を判り易くするため、各制御部C1~C6は、各々に関連する制御対象の近くに個別に図示されているが、各制御部C1~C6および統合制御部C7が一つの制御ユニットとして纏められていてもよい。そのため、本願においては、制御部C1~C7の全部または一部を有する制御ユニットを、単に「制御部」と称する場合もある。なお、このような様態は、後述の制御部C2~C6およびC8、並びに、制御部C9~C14についても同様である。 In the present application, for the sake of clarity, the control units C1 to C6 are individually shown near the control targets related to each, but the control units C1 to C6 and the integrated control unit C7 are one. It may be grouped as a control unit. Therefore, in the present application, the control unit having all or a part of the control units C1 to C7 may be simply referred to as a "control unit". It should be noted that such a mode is the same for the control units C2 to C6 and C8, which will be described later, and the control units C9 to C14.
 入力デバイス50は、例えば、解析対象の情報の入力、イオンビームIBおよび電子ビームEB1の照射条件の変更、並びに、ウェハステージ44およびラメラグリッドステージ48の位置の変更などの指示を、ユーザーが入力するためのデバイスである。入力デバイス50は、例えばキーボードまたはマウスなどである。 In the input device 50, for example, the user inputs instructions such as inputting information to be analyzed, changing the irradiation conditions of the ion beam IB and the electron beam EB1, and changing the positions of the wafer stage 44 and the lamella grid stage 48. Device for. The input device 50 is, for example, a keyboard or a mouse.
 ディスプレイ51には、GUI画面52などが表示される。GUI画面52は、ラメラ作製装置40の各構成を制御するための画面である。入力デバイス50によってGUI画面52に各種指示が入力された場合、上記指示が統合制御部C7に送信される。ディスプレイ51は、GUI画面52として、例えば、解析対象の情報を入力する画面、ラメラ作製装置40の各構成の状態を示す画面、観察により取得された解析対象の情報(画像を含む)を表示する画面、イオンビームIBおよび電子ビームEB1の照射条件を変更するための指示画面、並びに、ウェハステージ44およびラメラグリッドステージ48の位置を変更するための指示画面などを表示することができる。ディスプレイ51は、一つ設けられていてもよいし、複数設けられていてもよい。なお、ディスプレイ51が、タッチパネルのような入力デバイス50の機能を備えていてもよい。 The GUI screen 52 and the like are displayed on the display 51. The GUI screen 52 is a screen for controlling each configuration of the lamella manufacturing apparatus 40. When various instructions are input to the GUI screen 52 by the input device 50, the above instructions are transmitted to the integrated control unit C7. As the GUI screen 52, the display 51 displays, for example, a screen for inputting information to be analyzed, a screen showing the state of each configuration of the lamella manufacturing apparatus 40, and information (including an image) to be analyzed acquired by observation. A screen, an instruction screen for changing the irradiation conditions of the ion beam IB and the electron beam EB1, an instruction screen for changing the positions of the wafer stage 44 and the lamella grid stage 48, and the like can be displayed. One display 51 may be provided, or a plurality of displays 51 may be provided. The display 51 may have the function of the input device 50 such as a touch panel.
 試料室43には、上記以外にも、ガスデポジションユニット(図示せず)が搭載されていてもよい。ガスデポジションユニットは、それぞれその駆動を制御する制御部を有する。ガスデポジションユニットは、ウェハ1への保護膜の作製またはマーキングに使用され、荷電粒子線の照射によって堆積膜を形成するデポガスを貯蔵する。デポガスは、必要に応じてノズル先端から供給することができる。また、試料室43には、真空排気するための減圧装置、コールドトラップまたは光学顕微鏡などが搭載されていてもよい。また、試料室43には、三次電子検出器、STEM検出器、後方散乱電子検出器または低エネルギー損失電子検出器などの他の検出器が搭載されていてもよい。 In addition to the above, the sample chamber 43 may be equipped with a gas deposition unit (not shown). Each gas deposition unit has a control unit that controls its drive. The gas deposition unit is used to prepare or mark a protective film on a wafer 1 and stores depot gas that forms a deposit film by irradiation with charged particle beams. Depot gas can be supplied from the tip of the nozzle as needed. Further, the sample chamber 43 may be equipped with a decompression device for vacuum exhaust, a cold trap, an optical microscope, or the like. Further, the sample chamber 43 may be equipped with other detectors such as a tertiary electron detector, a STEM detector, a backscattered electron detector or a low energy loss electron detector.
 以上のように、ラメラ作製装置40は、ウェハ1から複数のラメラ10を作製するためのラメラ作製機構と、複数のラメラ10をラメラグリッド20へ搬送(搭載)するためのラメラ搬送機構とを有する。この場合、図7に示されるように、ラメラ10が搭載されたラメラグリッド20は、後述のラメラ搬送装置60を介することなくラメラ解析装置70へ移送される。 As described above, the lamella manufacturing apparatus 40 has a lamella manufacturing mechanism for manufacturing a plurality of lamellas 10 from the wafer 1 and a lamella transport mechanism for transporting (mounting) the plurality of lamellas 10 to the lamella grid 20. .. In this case, as shown in FIG. 7, the lamella grid 20 on which the lamella 10 is mounted is transferred to the lamella analysis device 70 without going through the lamella transfer device 60 described later.
 しかしながら、ラメラ作製装置40には、ラメラ搬送機構が含まれていなくてもよい。すなわち、ラメラ作製装置40には、着脱器47、着脱器制御部C5、ラメラグリッドステージ48、ラメラグリッド押さえ49およびラメラグリッドステージ制御部C6が、構成要素として含まれていなくてもよい。 However, the lamella manufacturing apparatus 40 does not have to include the lamella transport mechanism. That is, the lamella manufacturing apparatus 40 may not include the attachment / detachment device 47, the attachment / detachment control unit C5, the lamella grid stage 48, the lamella grid retainer 49, and the lamella grid stage control unit C6 as constituent elements.
 その場合、ラメラ搬送機構は、ラメラ搬送装置60に含まれる。ラメラ10の搬送と比較して、ラメラ10の作製には多くの時間が必要とされるので、ラメラ搬送装置60においてラメラ10の搬送を行った方が効率的である。例えば、解析システム30に複数のラメラ作製機構として複数のラメラ作製装置40を用意し、複数のラメラ作製装置40において複数のウェハ1から多量のラメラ10を作製する。その間、ラメラ搬送装置60において、あるラメラ作製装置40で加工が終了したウェハ1から複数のラメラ10をラメラグリッド20へ順次搬送する。ラメラ搬送装置60をラメラ搬送機構として専従させることで、ウェハの品質評価のスループットを向上させることができる。 In that case, the lamella transport mechanism is included in the lamella transport device 60. Since a large amount of time is required to prepare the lamella 10 as compared with the transportation of the lamella 10, it is more efficient to transport the lamella 10 in the lamella transport device 60. For example, a plurality of lamella manufacturing devices 40 are prepared as a plurality of lamella manufacturing mechanisms in the analysis system 30, and a large number of lamellas 10 are manufactured from the plurality of wafers 1 in the plurality of lamella manufacturing devices 40. Meanwhile, in the lamella transport device 60, a plurality of lamellas 10 are sequentially transported from the wafer 1 processed by a certain lamella manufacturing device 40 to the lamella grid 20. By dedicating the lamella transfer device 60 as the lamella transfer mechanism, the throughput of wafer quality evaluation can be improved.
 <ラメラ搬送装置>
 図9は、実施の形態1におけるラメラ搬送装置60を示す模式図である。ラメラ搬送装置60は、少なくともラメラ搬送機構を備え、例えば二本の電子ビームカラムを備えるSEM装置のような荷電粒子線装置によって構成される。なお、ラメラ搬送装置60の多くの構成要素は、ラメラ作製装置40と同様であるため、ここではそれらの詳細な説明を省略する。
<Lamera transfer device>
FIG. 9 is a schematic view showing the lamella transport device 60 according to the first embodiment. The lamella transport device 60 includes at least a lamella transport mechanism, and is composed of a charged particle beam device such as an SEM device including, for example, two electron beam columns. Since many components of the lamella transport device 60 are the same as those of the lamella manufacturing device 40, detailed description thereof will be omitted here.
 ラメラ搬送装置60は、ラメラ作製装置40のイオンビームカラム41およびイオンビームカラム制御部C1が、他の電子ビームカラム61および他の電子ビームカラム制御部C8に置き換えられることで構成されている。 The lamella transport device 60 is configured by replacing the ion beam column 41 and the ion beam column control unit C1 of the lamella production device 40 with another electron beam column 61 and another electron beam column control unit C8.
 電子ビームカラム61は、電子ビームカラム42と同様に、電子ビーム(荷電粒子ビーム)EB2を発生するための電子源、電子ビームEB2を集束するためのレンズ、および、電子ビームEB2を走査し、且つ、シフトするための偏向系など、SEM装置として必要な構成要素を全て含む。 Similar to the electron beam column 42, the electron beam column 61 scans the electron source for generating the electron beam (charged particle beam) EB2, the lens for focusing the electron beam EB2, and the electron beam EB2. , Includes all the components required for an SEM device, such as a deflection system for shifting.
 電子ビームカラム制御部C8は、電子ビームカラム61を制御する。例えば、電子源からの電子ビームEB2の発生および偏向系の駆動などが、電子ビームカラム制御部C8によって制御される。 The electron beam column control unit C8 controls the electron beam column 61. For example, the generation of the electron beam EB2 from the electron source and the driving of the deflection system are controlled by the electron beam column control unit C8.
 また、電子ビームカラム42を通過した電子ビームEB1および電子ビームカラム61を通過した電子ビームEB2は、主に電子ビームカラム42の光軸OA2と電子ビームカラム61の光軸OA3との交点であるクロスポイントCP2にフォーカスされる。ラメラ搬送装置60が、電子ビームカラム42および電子ビームカラム61を有するので、ウェハ1およびラメラグリッド20を二方向から確認することが可能になる。 Further, the electron beam EB1 that has passed through the electron beam column 42 and the electron beam EB2 that has passed through the electron beam column 61 are mainly crosses that are intersections of the optical axis OA2 of the electron beam column 42 and the optical axis OA3 of the electron beam column 61. Focus is on point CP2. Since the lamella transport device 60 includes the electron beam column 42 and the electron beam column 61, the wafer 1 and the lamella grid 20 can be confirmed from two directions.
 なお、実施の形態1では、二本の電子ビームカラムが用いられるが、二方向からウェハ1およびラメラグリッド20の像観察が可能であれば、二本の電子ビームカラムの代わりに、イオンビームカラム、光学顕微鏡またはレーザー顕微鏡などが用いられてもよい。 In the first embodiment, two electron beam columns are used, but if the images of the wafer 1 and the lamella grid 20 can be observed from two directions, an ion beam column can be used instead of the two electron beam columns. , Optical microscope or laser microscope may be used.
 ラメラ搬送装置60は、ラメラ10をラメラグリッド20に搬送(搭載)するためのラメラ搬送機構を有する。この場合、図7に示されるように、ラメラ10が作製されたウェハ1は、ラメラ作製装置40からラメラ搬送装置60へ移送され、ラメラ10が搭載されたラメラグリッド20は、ラメラ搬送装置60からラメラ解析装置70へ移送される。 The lamella transport device 60 has a lamella transport mechanism for transporting (mounting) the lamella 10 on the lamella grid 20. In this case, as shown in FIG. 7, the wafer 1 on which the lamella 10 is manufactured is transferred from the lamella manufacturing apparatus 40 to the lamella transport device 60, and the lamella grid 20 on which the lamella 10 is mounted is transferred from the lamella transport device 60. It is transferred to the lamella analyzer 70.
 ラメラ搬送装置60におけるラメラグリッドステージ48にも、ラメラグリッド20を固定するためのラメラグリッド押さえ49が設けられ、ラメラグリッド20は、ラメラグリッド押さえ49を介してラメラグリッドステージ48に固定される。ラメラグリッドステージ48の駆動は、ラメラグリッドステージ制御部C6によって制御される。このため、ラメラグリッドステージ48は、平面移動、垂直移動、回転移動および傾斜移動を行うことができる。 The lamella grid stage 48 in the lamella transport device 60 is also provided with a lamella grid retainer 49 for fixing the lamella grid 20, and the lamella grid 20 is fixed to the lamella grid stage 48 via the lamella grid retainer 49. The drive of the lamella grid stage 48 is controlled by the lamella grid stage control unit C6. Therefore, the lamella grid stage 48 can perform planar movement, vertical movement, rotational movement, and tilt movement.
 ウェハステージ44において、着脱器47によって複数のラメラ10がウェハ1から取り出され、ラメラグリッドステージ48において、着脱器47によって複数のラメラ10がラメラグリッド20へ順次搬送される。 At the wafer stage 44, a plurality of lamellas 10 are taken out from the wafer 1 by the attachment / detachment device 47, and at the lamella grid stage 48, the plurality of lamellas 10 are sequentially conveyed to the lamella grid 20 by the attachment / detachment device 47.
 なお、上述のように、ラメラ作製装置40にラメラ搬送機構を含ませることもできるが、ラメラ搬送装置60をラメラ搬送機構として専従させることで、ウェハの品質評価のスループットを向上させることができる。 As described above, the lamella producing device 40 can include the lamella transport mechanism, but by dedicating the lamella transport device 60 as the lamella transport mechanism, the throughput of wafer quality evaluation can be improved.
 <ラメラ解析装置>
 図10は、実施の形態1におけるラメラ解析装置70を示す模式図である。ラメラ解析装置70は、少なくともラメラ解析機構を備え、例えばTEM装置またはSTEM装置のような荷電粒子線装置によって構成される。
<Lamera analyzer>
FIG. 10 is a schematic view showing the lamella analyzer 70 according to the first embodiment. The lamella analysis device 70 includes at least a lamella analysis mechanism, and is composed of a charged particle beam device such as a TEM device or a STEM device.
 ラメラ解析装置70は、電子ビームカラム71、試料ステージ72、試料交換室73、荷電粒子検出器74、荷電粒子検出器75、X線検出器76、試料室77および各制御部C9~C14を備える。また、ラメラ解析装置70の内部または外部には、入力デバイス78およびディスプレイ79が設けられている。 The lamella analyzer 70 includes an electron beam column 71, a sample stage 72, a sample exchange chamber 73, a charged particle detector 74, a charged particle detector 75, an X-ray detector 76, a sample chamber 77, and control units C9 to C14. .. Further, an input device 78 and a display 79 are provided inside or outside the lamella analysis device 70.
 また、試料室77の内部において、試料ステージ72に試料SAMを設置させることができる。試料SAMは、図6に示されるような複数のラメラ10およびラメラグリッド20を含み、ラメラ解析装置70によってラメラ10の解析部11の物質および構造などが解析される。なお、図6における解析部11の正面が、電子ビームカラム71と向き合うように、試料SAMは横向きに設置される。 Further, inside the sample chamber 77, the sample SAM can be installed on the sample stage 72. The sample SAM includes a plurality of lamellas 10 and a lamella grid 20 as shown in FIG. 6, and the substance and structure of the analysis unit 11 of the lamella 10 are analyzed by the lamella analyzer 70. The sample SAM is installed sideways so that the front surface of the analysis unit 11 in FIG. 6 faces the electron beam column 71.
 電子ビームカラム71は、電子ビームを発生するための電子源、電子ビームを集束するためのレンズ、および、電子ビームを走査し、且つ、シフトするための偏向系など、TEM装置またはSTEM装置として必要な構成要素を全て含む。電子ビームカラム71を通過した電子ビームは、試料SAMに照射される。 The electron beam column 71 is required as a TEM device or a STEM device, such as an electron source for generating an electron beam, a lens for focusing the electron beam, and a deflection system for scanning and shifting the electron beam. Includes all components. The electron beam that has passed through the electron beam column 71 irradiates the sample SAM.
 電子ビームカラム制御部C9は、電子ビームカラム71を制御する。具体的には、電子ビームカラム71の電子源による電子ビームの発生および偏向系の駆動が、電子ビームカラム制御部C9によって制御される。なお、実施の形態1においては、図10に示されるように、試料SAMに対して電子ビームカラム71が垂直に配置されているが、これに限られず、電子ビームカラム71が試料SAMに対して傾斜させて配置されていてもよい。 The electron beam column control unit C9 controls the electron beam column 71. Specifically, the generation of the electron beam by the electron source of the electron beam column 71 and the driving of the deflection system are controlled by the electron beam column control unit C9. In the first embodiment, as shown in FIG. 10, the electron beam column 71 is arranged perpendicular to the sample SAM, but the present invention is not limited to this, and the electron beam column 71 is arranged with respect to the sample SAM. It may be arranged at an angle.
 試料ステージ72は、試料室77内において、試料SAMに電子ビームを照射できるように設けられる。試料交換室73は、試料室77に挿入される試料SAMを交換する場所である。試料ステージ72は、試料ステージ制御部C10によってその駆動が制御され、平面移動、垂直移動または回転移動を行うことができる。試料ステージ72を駆動することにより、試料SAMの位置および向きを変更することができ、例えば、試料ステージ72は、電子ビームの照射位置に試料SAMが位置するように移動される。 The sample stage 72 is provided in the sample chamber 77 so that the sample SAM can be irradiated with an electron beam. The sample exchange chamber 73 is a place for exchanging the sample SAM inserted into the sample chamber 77. The drive of the sample stage 72 is controlled by the sample stage control unit C10, and the sample stage 72 can be moved in a plane, vertically, or rotated. By driving the sample stage 72, the position and orientation of the sample SAM can be changed. For example, the sample stage 72 is moved so that the sample SAM is positioned at the irradiation position of the electron beam.
 荷電粒子検出器74および荷電粒子検出器75は、電子ビームを試料SAMに照射した際に発生する荷電粒子を検出する。荷電粒子検出器74および荷電粒子検出器75には、電子だけでなくイオンの検出も可能な複合荷電粒子検出器が用いられてもよい。 The charged particle detector 74 and the charged particle detector 75 detect the charged particles generated when the sample SAM is irradiated with the electron beam. As the charged particle detector 74 and the charged particle detector 75, a composite charged particle detector capable of detecting not only electrons but also ions may be used.
 検出器制御部C11は荷電粒子検出器74を制御し、検出器制御部C12は荷電粒子検出器75を制御する。検出器制御部C11および検出器制御部C12は、検出信号を演算処理し、画像化する回路または演算処理部(図示せず)を備える。 The detector control unit C11 controls the charged particle detector 74, and the detector control unit C12 controls the charged particle detector 75. The detector control unit C11 and the detector control unit C12 include a circuit or an arithmetic processing unit (not shown) that arithmetically processes and images the detection signal.
 X線検出器76は、試料SAMが発するX線を検出する。X線検出器76の代わりに、質量分析器が搭載されていてもよい。 The X-ray detector 76 detects the X-rays emitted by the sample SAM. A mass spectrometer may be mounted instead of the X-ray detector 76.
 X線検出器制御部C13は、X線検出器76を制御する。X線検出器制御部C13は、X線検出器76からの検出信号を演算処理し、画像化する回路または演算処理部(図示せず)を備える。 The X-ray detector control unit C13 controls the X-ray detector 76. The X-ray detector control unit C13 includes a circuit or an arithmetic processing unit (not shown) that arithmetically processes and images the detection signal from the X-ray detector 76.
 試料室77には、真空排気するための減圧装置、コールドトラップまたは光学顕微鏡などが搭載されていてもよい。また、試料室77には、三次電子検出器、STEM検出器、後方散乱電子検出器または低エネルギー損失電子検出器などのような他の検出器が搭載されていてもよい。 The sample chamber 77 may be equipped with a decompression device for vacuum exhaust, a cold trap, an optical microscope, or the like. Further, the sample chamber 77 may be equipped with other detectors such as a tertiary electron detector, a STEM detector, a backscattered electron detector or a low energy loss electron detector.
 統合制御部C14は、電子ビームカラム制御部C9、試料ステージ制御部C10、検出器制御部C11及びC12、X線検出器制御部C13のそれぞれと互いに通信可能であり、ラメラ解析装置70全体の動作を制御する。統合制御部C14は、入力デバイス78によるユーザーからの指示により、あるいは予め設定された条件に従い、上記の各制御部を制御し、試料SAMの解析等を行わせる。また、統合制御部C14は、ラメラ解析装置70の各制御部から受信した情報等を記憶するための記憶部(図示せず)を備える。 The integrated control unit C14 can communicate with each of the electron beam column control unit C9, the sample stage control unit C10, the detector control units C11 and C12, and the X-ray detector control unit C13, and operates the entire lamella analysis device 70. To control. The integrated control unit C14 controls each of the above control units according to an instruction from the user by the input device 78 or according to preset conditions, and causes the sample SAM to be analyzed and the like. Further, the integrated control unit C14 includes a storage unit (not shown) for storing information and the like received from each control unit of the lamella analysis device 70.
 入力デバイス78は、電子ビームの照射条件の変更または試料ステージ72の位置の変更などの指示を、ユーザーが入力するためのデバイスである。入力デバイス78は、例えばキーボードまたはマウスなどである。 The input device 78 is a device for the user to input instructions such as changing the irradiation conditions of the electron beam or changing the position of the sample stage 72. The input device 78 is, for example, a keyboard or a mouse.
 ディスプレイ79には、GUI画面80などが表示される。GUI画面80は、ラメラ解析装置70を制御するための画面である。入力デバイス78によってGUI画面80に各種指示が入力された場合、上記指示は統合制御部C14に送信される。ディスプレイ79は、GUI画面80として、例えば、ラメラ解析装置70の各構成の状態を示す画面、解析により取得された試料情報(画像を含む)を表示する画面、解析により得られた試料SAMの情報を入力する画面、電子ビームの照射条件を変更するための指示画面、および、試料ステージ72の位置を変更するための指示画面などを表示することができる。ディスプレイ79は、一つ設けられていてもよいし、複数設けられていてもよい。なお、ディスプレイ79が、タッチパネルのような入力デバイス78の機能を備えていてもよい。 The GUI screen 80 and the like are displayed on the display 79. The GUI screen 80 is a screen for controlling the lamella analysis device 70. When various instructions are input to the GUI screen 80 by the input device 78, the above instructions are transmitted to the integrated control unit C14. The display 79 is a GUI screen 80, for example, a screen showing the state of each configuration of the lamella analysis device 70, a screen displaying sample information (including an image) acquired by the analysis, and information on the sample SAM obtained by the analysis. A screen for inputting an image, an instruction screen for changing the irradiation conditions of the electron beam, an instruction screen for changing the position of the sample stage 72, and the like can be displayed. One display 79 may be provided, or a plurality of displays 79 may be provided. The display 79 may have the function of an input device 78 such as a touch panel.
 <解析システムのネットワーク構成>
 図11は、解析システム30のネットワーク構成31を示す模式図である。半導体製造ライン2、ラメラ作製装置40、ラメラ搬送装置60、ラメラ解析装置70、および、データ管理を行うサーバSVは、ネットワーク32によって電気的に接続されている。このため、これらの間で各種データのやり取りが可能となる。サーバSVは、解析位置データD1、ラメラ作製位置データD2、ラメラ搬送位置データD3および解析データD4を保持することができる。
<Network configuration of analysis system>
FIG. 11 is a schematic diagram showing the network configuration 31 of the analysis system 30. The semiconductor manufacturing line 2, the lamella manufacturing apparatus 40, the lamella transport apparatus 60, the lamella analysis apparatus 70, and the server SV that manages data are electrically connected by a network 32. Therefore, various data can be exchanged between them. The server SV can hold the analysis position data D1, the lamella production position data D2, the lamella transport position data D3, and the analysis data D4.
 解析位置データD1は、ウェハ1上において断面解析を行う予定の位置を示すデータである。ラメラ作製位置データD2は、ウェハ1上においてラメラ10の作製に成功した位置を示すデータである。ラメラ搬送位置データD3は、ラメラグリッド20上において搬送されているラメラ10の位置を示すデータである。解析データD4は、解析結果を含むデータであり、電子ビームに照射された試料SAMからの荷電粒子またはX線の検出信号、および、上記検出信号から得られた観察像などを含むデータである。 The analysis position data D1 is data indicating a position on the wafer 1 where the cross-section analysis is scheduled to be performed. The lamella production position data D2 is data indicating a position on the wafer 1 where the lamella 10 has been successfully produced. The lamella transport position data D3 is data indicating the position of the lamella 10 transported on the lamella grid 20. The analysis data D4 is data including the analysis result, and is data including a detection signal of charged particles or X-rays from the sample SAM irradiated with the electron beam, an observation image obtained from the detection signal, and the like.
 また、解析位置データD1、ラメラ作製位置データD2、ラメラ搬送位置データD3および解析データD4は、それぞれの情報が紐付けられている。つまり、ウェハ1上の所定位置に作製されたラメラ10が、ラメラグリッド20上のどの位置に搭載され、そのラメラ10の解析結果がどのようになったかを知ることができる。 Further, the analysis position data D1, the lamella production position data D2, the lamella transport position data D3, and the analysis data D4 are associated with their respective information. That is, it is possible to know at which position on the lamella grid 20 the lamella 10 produced at a predetermined position on the wafer 1 is mounted, and what the analysis result of the lamella 10 is.
 なお、ラメラ10の形状としては、ラメラ10a~10cのように薄幅領域A1の形状および厚幅領域A2の形状がそれぞれ異なるものが存在しているが、各データD1~D4には、位置データだけでなく、ラメラ10a~10cのうち何れの形状であるかを示す形状データも含まれる。これにより、例えば複数のラメラ10の搬送時には、基体21に近い側から順番に、ラメラ10a、ラメラ10bおよび10cをラメラグリッド20に搬送させることができる。 As the shape of the lamella 10, there are lamellas 10a to 10c in which the shape of the thin width region A1 and the shape of the thick width region A2 are different from each other. Not only that, shape data indicating which shape of the lamellas 10a to 10c is included is also included. Thereby, for example, when transporting a plurality of lamellas 10, the lamellas 10a, 10b and 10c can be transported to the lamella grid 20 in order from the side closer to the substrate 21.
 <解析システムの処理フロー>
 図12は、実施の形態1における解析システム30の処理フロー図である。また、図13は、ラメラ作製機構によるラメラの作製方法を示す要部斜視図であり、図14および図15は、ラメラ搬送機構によるラメラの搬送方法を示す要部斜視図である。
<Processing flow of analysis system>
FIG. 12 is a processing flow diagram of the analysis system 30 according to the first embodiment. Further, FIG. 13 is a perspective view of a main part showing a method of manufacturing a lamella by the lamella manufacturing mechanism, and FIGS. 14 and 15 are perspective views of a main part showing a method of transporting the lamella by the lamella transport mechanism.
 ステップS1において、断面解析を行いたいウェハ1が、半導体製造ライン2からラメラ作製装置40へ移送され、ウェハ1がラメラ作製装置40のウェハステージ44上に設置される。 In step S1, the wafer 1 whose cross-section analysis is to be performed is transferred from the semiconductor manufacturing line 2 to the lamella manufacturing apparatus 40, and the wafer 1 is installed on the wafer stage 44 of the lamella manufacturing apparatus 40.
 ステップS2において、ラメラ作製装置40は、受け取ったウェハ1に対応する解析位置データD1をサーバSVから取得する。この解析位置データD1には、ラメラ10a~10cの何れかの形状であるかのデータも含まれる。 In step S2, the lamella manufacturing apparatus 40 acquires the analysis position data D1 corresponding to the received wafer 1 from the server SV. The analysis position data D1 also includes data on which shape of the lamellas 10a to 10c.
 ステップS3において、解析位置データD1に基づいて、ウェハステージ44を解析位置に移動する。その後、図13に示されるように、ウェハ1の一部からラメラ10を作製する。 In step S3, the wafer stage 44 is moved to the analysis position based on the analysis position data D1. Then, as shown in FIG. 13, the lamella 10 is made from a part of the wafer 1.
 まず、図13に示されるように、ラメラ作製装置40において、イオンビームIBなどの荷電粒子ビームによって、ウェハ1上の断面解析を行いたい領域の周辺をエッチングし、ラメラ10の外形を作製する。この際、ラメラ10の薄幅領域A1および厚幅領域A2の形状も作成される。次に、ラメラ10の一部にエッチングを行うことで、ラメラ10の上部に解析部11を作製する。解析部11には、後に解析を行うための仕上げ面処理などが施される。 First, as shown in FIG. 13, in the lamella manufacturing apparatus 40, the periphery of the region to be analyzed in cross section on the wafer 1 is etched by a charged particle beam such as an ion beam IB to prepare the outer shape of the lamella 10. At this time, the shapes of the thin width region A1 and the thick width region A2 of the lamella 10 are also created. Next, the analysis unit 11 is produced on the upper part of the lamella 10 by etching a part of the lamella 10. The analysis unit 11 is subjected to a finished surface treatment or the like for later analysis.
 ここで、ラメラ10は、接続箇所1aによってウェハ1に接続されている。言い換えれば、この時点では、ラメラ10、接続箇所1aおよびウェハ1は一体化しており、ラメラ10の搬送時に、ラメラ10は接続箇所1aから分離する。この状態におけるラメラ10の構造は、接続箇所1aを除き、上述の図5で説明した構造と同じである。従って、ラメラ10の詳細な構造については、上述の図5の説明を参照されたい。 Here, the lamella 10 is connected to the wafer 1 by the connection point 1a. In other words, at this point, the lamella 10, the connection point 1a and the wafer 1 are integrated, and the lamella 10 is separated from the connection point 1a when the lamella 10 is conveyed. The structure of the lamella 10 in this state is the same as the structure described with reference to FIG. 5 above, except for the connection portion 1a. Therefore, for the detailed structure of the lamella 10, refer to the above description of FIG.
 このようなウェハステージ44の移動およびラメラ10の作製は、加工中のウェハ1において解析位置データD1に対応する全ての領域に対して実施される。すなわち、解析位置データD1に対応する全てのラメラ10の作製が終了するまで、ステップS3が繰り返される。 Such movement of the wafer stage 44 and fabrication of the lamella 10 are carried out for all regions of the wafer 1 being processed corresponding to the analysis position data D1. That is, step S3 is repeated until the production of all the lamellas 10 corresponding to the analysis position data D1 is completed.
 ステップS4において、ステップS3で作製された全てのラメラ10のうち、作製に成功した複数のラメラ10の位置が、サーバSVに送信され、ラメラ作製位置データD2としてサーバSVに保存される。なお、このラメラ作製位置データD2には、ラメラ10a~10cの何れかの形状であるかのデータも含まれる。 In step S4, among all the lamellas 10 produced in step S3, the positions of the plurality of lamellas 10 that have been successfully produced are transmitted to the server SV and stored in the server SV as lamella production position data D2. The lamella production position data D2 also includes data on which shape of the lamellas 10a to 10c.
 ステップS5において、複数のラメラ10が作製されたウェハ1が、ラメラ作製装置40からラメラ搬送装置60へ移送される。すなわち、上記ウェハ1は、ラメラ作製機構からラメラ搬送機構へ移送される。 In step S5, the wafer 1 on which a plurality of lamellas 10 are manufactured is transferred from the lamella manufacturing apparatus 40 to the lamella transporting apparatus 60. That is, the wafer 1 is transferred from the lamella manufacturing mechanism to the lamella transport mechanism.
 ここで、上述のように、ラメラ作製装置40がラメラ作製機構およびラメラ搬送機構を有する場合には、ステップS5と、以下のステップS6~S9とに係る工程は、ラメラ作製装置40で行われる。 Here, as described above, when the lamella production apparatus 40 has a lamella production mechanism and a lamella transport mechanism, the steps related to step S5 and the following steps S6 to S9 are performed by the lamella production apparatus 40.
 ステップS6において、ラメラ搬送装置60は、受け取ったウェハ1に対応するラメラ作製位置データD2をサーバSVから取得する。 In step S6, the lamella transport device 60 acquires the lamella production position data D2 corresponding to the received wafer 1 from the server SV.
 ステップS7において、ラメラ作製位置データD2に基づいて、ラメラ作製位置にウェハステージ44を移動させる。その後、図14および図15に示されるように、複数のラメラ10をラメラグリッド20へ搬送する。 In step S7, the wafer stage 44 is moved to the lamella manufacturing position based on the lamella manufacturing position data D2. Then, as shown in FIGS. 14 and 15, a plurality of lamellas 10 are conveyed to the lamella grid 20.
 まず、ラメラ搬送装置60において、電子ビームカラム42または電子ビームカラム61によって形成された画像を確認する。次に、図14に示されるように、着脱器47を用いてウェハ1に作製されたラメラ10を保持する。ここでは、着脱器47はナノピンセットであり、ナノピンセットによってラメラ10が掴まれている。この際、解析部11が掴まれないように、ナノピンセットを操作することが望ましい。 First, in the lamella transport device 60, the image formed by the electron beam column 42 or the electron beam column 61 is confirmed. Next, as shown in FIG. 14, the lamella 10 produced on the wafer 1 is held by using the attachment / detachment device 47. Here, the attachment / detachment device 47 is nano tweezers, and the lamella 10 is gripped by the nano tweezers. At this time, it is desirable to operate the nano tweezers so that the analysis unit 11 is not grasped.
 次に、ウェハステージ44を下げる、または、着脱器47を上げることで、ラメラ10が接続箇所1aから分離し、ウェハ1からリフトオフする。このようにして、ウェハ1の一部からラメラ10が取得される。 Next, by lowering the wafer stage 44 or raising the detachable device 47, the lamella 10 is separated from the connection point 1a and lifted off from the wafer 1. In this way, the lamella 10 is obtained from a part of the wafer 1.
 次に、ラメラグリッドステージ48を電子ビームカラム42および電子ビームカラム61によって画像が取得できる位置に移動し、着脱器47およびラメラグリッドステージ48の各々の位置を調整する。そして、図15に示されるように、着脱器47で保持されているラメラ10を、ラメラグリッド20上の支持部22(支柱22a~22d)の真上に移動させる。 Next, the lamella grid stage 48 is moved to a position where an image can be acquired by the electron beam column 42 and the electron beam column 61, and the positions of the detachable device 47 and the lamella grid stage 48 are adjusted. Then, as shown in FIG. 15, the lamella 10 held by the detachable device 47 is moved directly above the support portions 22 (supports 22a to 22d) on the lamella grid 20.
 次に、電子ビームカラム42によって形成される画像を確認しながら、図15に示されるように、支持部22にラメラ10を挿し込む。具体的には、ラメラ10の薄幅領域A1を、支柱22aと支柱22bとの間、および、支柱22cと支柱22dとの間に挿入する。所望の位置までラメラ10の挿入が完了した後、着脱器47の掴みを解除し、着脱器47を退避させる。以上により、一枚目のラメラ10がウェハ1からラメラグリッド20へ搬送される。 Next, while checking the image formed by the electron beam column 42, the lamella 10 is inserted into the support portion 22 as shown in FIG. Specifically, the narrow region A1 of the lamella 10 is inserted between the support column 22a and the support column 22b, and between the support column 22c and the support column 22d. After the insertion of the lamella 10 to a desired position is completed, the attachment / detachment device 47 is released from the grip and the attachment / detachment device 47 is retracted. As described above, the first lamella 10 is conveyed from the wafer 1 to the lamella grid 20.
 次に、一枚目と同様の手法によって、ウェハ1から二枚目以降のラメラ10を取得し、二枚目以降のラメラ10がウェハ1からラメラグリッド20へ搬送される。すなわち、図6に示されるように、一枚目のラメラ10a、二枚目のラメラ10bおよび三枚目のラメラ10cがラメラグリッド20へ順次搬送される。 Next, the lamella 10 of the second and subsequent wafers is acquired from the wafer 1 by the same method as that of the first wafer, and the lamella 10 of the second and subsequent wafers is conveyed from the wafer 1 to the lamella grid 20. That is, as shown in FIG. 6, the first lamella 10a, the second lamella 10b, and the third lamella 10c are sequentially conveyed to the lamella grid 20.
 このようなウェハステージ44の移動およびラメラ10の搬送は、ウェハ1においてラメラ作製位置データD2に対応する全ての領域に対して実施される。すなわち、ラメラ作製位置データD2に対応する全てのラメラ10の搬送が終了するまで、ステップS7が繰り返される。また、一つの支持部22の許容範囲を超えた場合には、後続のラメラ10は、ラメラグリッド20上の他の支持部22へ搬送される。そして、一つのラメラグリッド20の許容範囲を超えた場合には、更に後続のラメラ10は、他のラメラグリッド20の支持部22へ搬送される。 Such movement of the wafer stage 44 and transfer of the lamella 10 are carried out on the wafer 1 for all regions corresponding to the lamella production position data D2. That is, step S7 is repeated until the transfer of all the lamellas 10 corresponding to the lamella production position data D2 is completed. Further, when the permissible range of one support portion 22 is exceeded, the subsequent lamella 10 is conveyed to the other support portion 22 on the lamella grid 20. Then, when the permissible range of one lamella grid 20 is exceeded, the subsequent lamella 10 is further conveyed to the support portion 22 of the other lamella grid 20.
 以上のように、実施の形態1によれば、ラメラグリッド20に複数のラメラ10(10a~10c)を搬送できる。また、ラメラ10a~10cは、Z方向において互いに離間し、各々の解析部11が他のラメラ10に接触していない。従って、解析部11が損傷するという不具合を抑制することができる。また、実施の形態1では、ラメラグリッド20への搬送時にデポジションが用いられていないので、短時間での搬送が可能であり、試料汚染も少ない。 As described above, according to the first embodiment, a plurality of lamellas 10 (10a to 10c) can be conveyed to the lamella grid 20. Further, the lamellas 10a to 10c are separated from each other in the Z direction, and each analysis unit 11 is not in contact with the other lamellas 10. Therefore, it is possible to suppress the problem that the analysis unit 11 is damaged. Further, in the first embodiment, since the deposition is not used at the time of transportation to the lamella grid 20, the transportation can be performed in a short time and the sample contamination is small.
 図6でも説明したが、 ラメラ10a~10cの各々の薄幅領域A1は、支柱22aと支柱22bとの間、および、支柱22cと支柱22dとの間に嵌め合わされる。そして、ラメラ10aの厚幅領域A2は基体21上に搭載され、ラメラ10bの厚幅領域A2は階段23a上に搭載され、ラメラ10cの厚幅領域A2は階段23b上に搭載される。このため、Y方向だけでなくX方向においてもラメラ10がラメラグリッド20に強固に保持される。従って、ラメラ10がラメラグリッド20に搭載された状態で、ラメラグリッド20を搬送する際に、ラメラ10の位置がずれる恐れを抑制できる。 As described in FIG. 6, each narrow region A1 of the lamellas 10a to 10c is fitted between the support column 22a and the support column 22b, and between the support column 22c and the support column 22d. The thick region A2 of the lamella 10a is mounted on the substrate 21, the thick region A2 of the lamella 10b is mounted on the stairs 23a, and the thick region A2 of the lamella 10c is mounted on the stairs 23b. Therefore, the lamella 10 is firmly held by the lamella grid 20 not only in the Y direction but also in the X direction. Therefore, it is possible to suppress the possibility that the position of the lamella 10 is displaced when the lamella grid 20 is conveyed while the lamella 10 is mounted on the lamella grid 20.
 以上のステップS7の後、ステップS8において、ラメラグリッド20に搬送されたラメラ10のうち、搬送に成功したラメラ10のラメラグリッド20上の位置が、サーバSVに送信され、ラメラ搬送位置データD3としてサーバSVに保存される。なお、このラメラ搬送位置データD3には、ラメラ10a~10cの何れかの形状であるかのデータも含まれる。 After the above steps S7, in step S8, among the lamellas 10 transported to the lamella grid 20, the positions of the lamellas 10 successfully transported on the lamella grid 20 are transmitted to the server SV and used as the lamella transport position data D3. It is saved in the server SV. The lamella transport position data D3 also includes data on which shape of the lamellas 10a to 10c.
 ステップS9において、複数のラメラ10の搬送が完了したウェハ1は、ラメラ搬送装置60から排出される。その後、必要であれば、排出されたウェハ1を半導体製造ライン2に戻してもよい。 In step S9, the wafer 1 in which the transfer of the plurality of lamellas 10 is completed is discharged from the lamella transfer device 60. After that, if necessary, the discharged wafer 1 may be returned to the semiconductor production line 2.
 ステップS10において、複数のラメラ10が搭載されたラメラグリッド20は、試料SAMとして、ラメラ搬送装置60からラメラ解析装置70へ移送される。 In step S10, the lamella grid 20 on which the plurality of lamellas 10 are mounted is transferred from the lamella transport device 60 to the lamella analysis device 70 as a sample SAM.
 ステップS11において、ラメラ解析機構であるラメラ解析装置70は、受け取ったラメラグリッド20に対応するラメラ搬送位置データD3をサーバSVから取得する。ラメラ解析装置70では、以上のように用意されたラメラ10(解析部11)の解析が行われる。 In step S11, the lamella analysis device 70, which is a lamella analysis mechanism, acquires the lamella transport position data D3 corresponding to the received lamella grid 20 from the server SV. The lamella analyzer 70 analyzes the lamella 10 (analysis unit 11) prepared as described above.
 以下のステップS12およびステップS13において、ラメラ解析装置70を用いて行われるラメラ10の解析方法について説明する。ここでは、ラメラ解析装置70がTEM装置である場合を例示する。 The analysis method of the lamella 10 performed by using the lamella analyzer 70 in the following steps S12 and S13 will be described. Here, a case where the lamella analysis apparatus 70 is a TEM apparatus is illustrated.
 ステップS12において、ラメラ搬送位置データD3に基づいて、解析したい試料SAMの搬送位置になるように、試料ステージ72を移動させる。図4のY方向から見た平面に対応する試料SAM(ラメラ10の解析部11)の正面が、電子ビームカラム71と向き合うように、試料SAMは横向きに設置される。 In step S12, the sample stage 72 is moved so as to reach the transport position of the sample SAM to be analyzed based on the lamella transport position data D3. The sample SAM is installed sideways so that the front surface of the sample SAM (analysis unit 11 of the lamella 10) corresponding to the plane seen from the Y direction in FIG. 4 faces the electron beam column 71.
 試料SAMのうち、実質的には、複数のラメラ10の各々の解析部11が解析対象部であり、ラメラグリッド20は複数のラメラ10を支持するホルダであるが、ここでは、これらを纏めて試料SAMとして記述する。また、解析部11が支持部22に遮られないように、Y方向から見た平面視おいて、解析部11は、支持部22に重ならず、支持部22から露出している。 Of the sample SAM, substantially each analysis unit 11 of the plurality of lamellas 10 is the analysis target unit, and the lamella grid 20 is a holder that supports the plurality of lamellas 10, but these are collectively referred to here. Described as sample SAM. Further, the analysis unit 11 does not overlap the support unit 22 and is exposed from the support unit 22 in a plan view viewed from the Y direction so that the analysis unit 11 is not obstructed by the support unit 22.
 解析部11の解析時には、まず、低倍率で試料SAMの画像を取得し、ラメラ10の解析部11が視野中心になるような試料ステージ72の位置情報(座標)を取得する。次に、その座標に試料ステージ72を移動し、その後、高倍率で解析部11の断面解析を実施する。 At the time of analysis of the analysis unit 11, first, the image of the sample SAM is acquired at a low magnification, and the position information (coordinates) of the sample stage 72 such that the analysis unit 11 of the lamella 10 is at the center of the field of view is acquired. Next, the sample stage 72 is moved to the coordinates, and then the cross-section analysis of the analysis unit 11 is performed at a high magnification.
 解析部11の解析手法としては、一般的な手法を用いることができる。例えば、電子ビームカラム71からの電子ビームを解析部11に照射することで、荷電粒子検出器74および荷電粒子検出器75によって、解析部11から発する荷電粒子を解析できる。また、X線検出器76によって、解析部11から発するX線を解析できる。 As the analysis method of the analysis unit 11, a general method can be used. For example, by irradiating the analysis unit 11 with an electron beam from the electron beam column 71, the charged particle detector 74 and the charged particle detector 75 can analyze the charged particles emitted from the analysis unit 11. Further, the X-ray detector 76 can analyze the X-rays emitted from the analysis unit 11.
 ここで、一つの支持部22に三つのラメラ10a~10cが搭載されている場合、低倍率の画像を取得する際に、ラメラ10a~10cの各々の解析部11の試料ステージ72の位置情報を取得することが可能である。このため、低倍率および高倍率を交互に行う必要が無く、断面解析の時間短縮を図ることができる。 Here, when three lamellas 10a to 10c are mounted on one support portion 22, the position information of the sample stage 72 of each analysis unit 11 of the lamellas 10a to 10c is obtained when acquiring a low-magnification image. It is possible to get it. Therefore, it is not necessary to alternately perform low magnification and high magnification, and the time for cross-sectional analysis can be shortened.
 具体的には、ラメラ10aの解析部11の座標に試料ステージ72を移動し、ラメラ10aの解析部11において高倍率の断面解析を完了した後、再び低倍率にはせずに、ラメラ10bの解析部11の座標に試料ステージ72を移動し、ラメラ10bの解析部11において高倍率の断面解析を行う。その後、ラメラ10cの解析部11の座標に試料ステージ72を移動し、ラメラ10cの解析部11において高倍率の断面解析を行う。 Specifically, after moving the sample stage 72 to the coordinates of the analysis unit 11 of the lamella 10a and completing the high-magnification cross-sectional analysis in the analysis unit 11 of the lamella 10a, the lamella 10b is not reduced in magnification again. The sample stage 72 is moved to the coordinates of the analysis unit 11, and the analysis unit 11 of the lamella 10b performs high-magnification cross-sectional analysis. After that, the sample stage 72 is moved to the coordinates of the analysis unit 11 of the lamella 10c, and the analysis unit 11 of the lamella 10c performs a high-magnification cross-sectional analysis.
 実施の形態1におけるラメラ10の解析方法によれば、Z方向において複数のラメラ10が互いに離間しているので、観察対象となる解析部11の近くに、他のラメラ10が存在していない状態で断面解析を行うことができる。従って、断面解析時に、他のラメラ10の成分の影響を受ける可能性が低くなるので、荷電粒子検出器74および荷電粒子検出器75によって得られる観察像の精度を、より高めることができる。また、X線検出器76によって得られる元素分析の精度も高めることができる。 According to the analysis method of the lamella 10 in the first embodiment, since the plurality of lamella 10s are separated from each other in the Z direction, there is no other lamella 10 near the analysis unit 11 to be observed. Cross-section analysis can be performed with. Therefore, at the time of cross-section analysis, the possibility of being affected by other components of the lamella 10 is reduced, so that the accuracy of the observation image obtained by the charged particle detector 74 and the charged particle detector 75 can be further improved. In addition, the accuracy of elemental analysis obtained by the X-ray detector 76 can be improved.
 その後、ステップS13において、断面解析によって得られたラメラ10の解析部11の解析結果は、サーバSVへ送信され、解析データD4としてサーバSVに保存される。なお、この解析データD4には、ラメラ10a~10cの何れかの形状であるかのデータも含まれる。 After that, in step S13, the analysis result of the analysis unit 11 of the lamella 10 obtained by the cross-section analysis is transmitted to the server SV and stored in the server SV as analysis data D4. The analysis data D4 also includes data on which shape of the lamellas 10a to 10c.
 (実施の形態2)
 以下に図16~図18を用いて、実施の形態2におけるラメラ10およびラメラグリッド20を説明する。なお、以下の説明では、主に実施の形態1との相違点を説明する。
(Embodiment 2)
The lamella 10 and the lamella grid 20 in the second embodiment will be described below with reference to FIGS. 16 to 18. In the following description, the differences from the first embodiment will be mainly described.
 実施の形態1では、支柱22aの階段23および支柱22cの階段23は、X方向において互いに向き合わないように形成され、支柱22bの階段23および支柱22dの階段23は、X方向において互いに向き合わないように形成されていた。 In the first embodiment, the stairs 23 of the columns 22a and the stairs 23 of the columns 22c are formed so as not to face each other in the X direction, and the stairs 23 of the columns 22b and the stairs 23 of the columns 22d do not face each other in the X direction. Was formed in.
 図16に示されるように、実施の形態2では、支柱22aの階段23および支柱22cの階段23は、X方向において互いに向き合うように形成され、支柱22bの階段23および支柱22dの階段23は、X方向において互いに向き合うように形成されている。言い換えれば、X方向において、支柱22aの階段23は支柱22c側に形成され、支柱22bの階段23は支柱22d側に形成され、支柱22cの階段23は支柱22a側に形成され、支柱22dの階段23は支柱22b側に形成されている。 As shown in FIG. 16, in the second embodiment, the stairs 23 of the columns 22a and the stairs 23 of the columns 22c are formed so as to face each other in the X direction, and the stairs 23 of the columns 22b and the stairs 23 of the columns 22d are formed. They are formed so as to face each other in the X direction. In other words, in the X direction, the stairs 23 of the columns 22a are formed on the columns 22c side, the stairs 23 of the columns 22b are formed on the columns 22d side, the stairs 23 of the columns 22c are formed on the columns 22a side, and the stairs of the columns 22d. 23 is formed on the support column 22b side.
 実施の形態2でも、Z方向において基体21から離れるに連れて、支柱22a~22dの各々のX方向における幅は、変化しており、段階的に小さくなっている。例えば、基体21に最も近い箇所では、支柱22a~22dの各々は幅W8を有し、Z方向において基体21から離れるに連れて、支柱22a~22dの各々は幅W9または幅W10を有している。幅W8は幅W9よりも大きく、幅W9は幅W10よりも大きい。 Also in the second embodiment, the width of each of the columns 22a to 22d in the X direction changes as the distance from the substrate 21 in the Z direction increases, and the width gradually decreases. For example, at the location closest to the substrate 21, each of the columns 22a-22d has a width W8, and each of the columns 22a-22d has a width W9 or a width W10 as it moves away from the substrate 21 in the Z direction. There is. The width W8 is larger than the width W9, and the width W9 is larger than the width W10.
 図17に示されるように、実施の形態2におけるラメラ10も薄幅領域A1および厚幅領域A2を有するが、実施の形態2では、解析部11は、厚幅領域A2に設けられている。厚幅領域A2は、X方向における幅W11およびY方向における幅W13を有し、薄幅領域A1は、X方向における幅W12およびY方向における幅W14を有し、幅W13は、幅W14よりも大きい。また、幅W11および幅W12の値を適宜設計することで、薄幅領域A1の形状の異なる複数のラメラ10を形成することができる。なお、Y方向における解析部11の幅は、薄幅領域A1の幅W14および厚幅領域A2の幅W13よりも小さい。 As shown in FIG. 17, the lamella 10 in the second embodiment also has the thin width region A1 and the thick width region A2, but in the second embodiment, the analysis unit 11 is provided in the thick width region A2. The thick region A2 has a width W11 in the X direction and a width W13 in the Y direction, the thin region A1 has a width W12 in the X direction and a width W14 in the Y direction, and the width W13 is larger than the width W14. large. Further, by appropriately designing the values of the width W11 and the width W12, it is possible to form a plurality of lamellas 10 having different shapes in the thin width region A1. The width of the analysis unit 11 in the Y direction is smaller than the width W14 of the thin width region A1 and the width W13 of the thick width region A2.
 図18に示されるように、複数のラメラ10(10a~10c)は、Z方向において互いに離間するようにラメラグリッド20に搭載される。また、ラメラ10a~10cが、それぞれ支柱22a~22dの各々の幅W8~W10に適合するように、薄幅領域A1の幅W12および厚幅領域A2の幅W11が調整されている。ラメラ10aの幅W12はラメラ10bの幅W12よりも大きく、ラメラ10bの幅W12はラメラ10cの幅W12よりも大きい。 As shown in FIG. 18, a plurality of lamellas 10 (10a to 10c) are mounted on the lamella grid 20 so as to be separated from each other in the Z direction. Further, the width W12 of the thin width region A1 and the width W11 of the thick width region A2 are adjusted so that the lamellas 10a to 10c fit the widths W8 to W10 of the columns 22a to 22d, respectively. The width W12 of the lamella 10a is larger than the width W12 of the lamella 10b, and the width W12 of the lamella 10b is larger than the width W12 of the lamella 10c.
 実施の形態2においても、ラメラ10a~10cが、支持部22のうち幅W8~W10のように異なる幅を有する箇所に搭載されている。ラメラ10a~10cの各々の薄幅領域A1は、支柱22aと支柱22bとの間、および、支柱22cと支柱22dとの間に嵌め合わされる。そして、ラメラ10aの厚幅領域A2は基体21上に搭載され、ラメラ10bの厚幅領域A2は階段23a上に搭載され、ラメラ10cの厚幅領域A2は階段23b上に搭載される。 Also in the second embodiment, the lamellas 10a to 10c are mounted on the support portions 22 having different widths such as widths W8 to W10. Each narrow region A1 of the lamellas 10a to 10c is fitted between the columns 22a and 22b and between the columns 22c and 22d. The thick region A2 of the lamella 10a is mounted on the substrate 21, the thick region A2 of the lamella 10b is mounted on the stairs 23a, and the thick region A2 of the lamella 10c is mounted on the stairs 23b.
 以上のように、実施の形態2でも実施の形態1と同様に、ラメラグリッド20に複数のラメラ10(10a~10c)を搭載できる。また、階段23a~23cの各々のZ方向における幅H1は、ラメラ10a~10cのZ方向における幅H2よりも長く設定されている。このため、ラメラ10a~10cは、Z方向において互いに離間しているので、解析部11が損傷するという不具合を抑制することができる。また、ラメラグリッド20への搬送時にデポジションが用いられていない。また、Y方向およびX方向において、ラメラ10がラメラグリッド20に強固に保持される。 As described above, in the second embodiment as in the first embodiment, a plurality of lamellas 10 (10a to 10c) can be mounted on the lamella grid 20. Further, the width H1 of the stairs 23a to 23c in each Z direction is set longer than the width H2 of the lamellas 10a to 10c in the Z direction. Therefore, since the lamellas 10a to 10c are separated from each other in the Z direction, it is possible to suppress a problem that the analysis unit 11 is damaged. Also, no deposition is used during transport to the lamella grid 20. Further, the lamella 10 is firmly held by the lamella grid 20 in the Y direction and the X direction.
 (実施の形態3)
 以下に図19および図20を用いて、実施の形態3におけるラメラ10およびラメラグリッド20を説明する。なお、以下の説明では、主に実施の形態1との相違点を説明する。
(Embodiment 3)
The lamella 10 and the lamella grid 20 in the third embodiment will be described below with reference to FIGS. 19 and 20. In the following description, the differences from the first embodiment will be mainly described.
 実施の形態1では、階段23a~23cによって、Z方向において基体21から離れるに連れて、支柱22a~22dの各々のX方向における幅は、段階的に小さくなっていた。 In the first embodiment, the widths of the columns 22a to 22d in the X direction are gradually reduced as the stairs 23a to 23c move away from the substrate 21 in the Z direction.
 図19に示されるように、実施の形態3における支柱22a~22dは、テーパ形状を成し、実施の形態1において階段23a~23cが形成されていた面は、階段23a~23cの代わりに傾斜面で構成されている。従って、実施の形態3では、Z方向において基体21から離れるに連れて、支柱22a~22dの各々のX方向における幅は、変化し、連続的に小さくなっている。例えば、相対的に基体21に近い箇所では、支柱22a~22dの各々は幅W15を有し、基体21から離れるに連れて、支柱22a~22dの各々は幅W15よりも小さい幅W16、または、幅W16よりも小さい幅W17を有する。 As shown in FIG. 19, the columns 22a to 22d in the third embodiment have a tapered shape, and the surface on which the stairs 23a to 23c are formed in the first embodiment is inclined instead of the stairs 23a to 23c. It is composed of faces. Therefore, in the third embodiment, the width of each of the columns 22a to 22d in the X direction changes and continuously decreases as the distance from the substrate 21 in the Z direction increases. For example, at a location relatively close to the substrate 21, each of the columns 22a to 22d has a width W15, and as the distance from the substrate 21 increases, each of the columns 22a to 22d has a width W16 smaller than the width W15, or It has a width W17 that is smaller than the width W16.
 図20に示されるように、実施の形態3では、実施の形態1の図5および図6と同じ構造のラメラ10a~10cが用いられる。ラメラ10a~10cは、支持部22のうち幅W15~W17のように異なる幅を有する箇所に搭載されている。このため、実施の形態3においても、複数のラメラ10をZ方向において互いに離間させながら、複数のラメラ10をラメラグリッド20に強固に保持させることが可能である。 As shown in FIG. 20, in the third embodiment, lamellas 10a to 10c having the same structure as those in FIGS. 5 and 6 of the first embodiment are used. The lamellas 10a to 10c are mounted on the support portions 22 at locations having different widths such as widths W15 to W17. Therefore, also in the third embodiment, it is possible to firmly hold the plurality of lamellas 10 on the lamella grid 20 while separating the plurality of lamellas 10 from each other in the Z direction.
 (実施の形態4)
 以下に図21および図22を用いて、実施の形態4におけるラメラ10およびラメラグリッド20を説明する。なお、以下の説明では、主に実施の形態2との相違点を説明する。
(Embodiment 4)
The lamella 10 and the lamella grid 20 in the fourth embodiment will be described below with reference to FIGS. 21 and 22. In the following description, the differences from the second embodiment will be mainly described.
 図21に示されるように、実施の形態4における支柱22a~22dは、テーパ形状を成し、実施の形態2において階段23a~23cが形成されていた面は、階段23a~23cの代わりに傾斜面で構成されている。従って、実施の形態4では、Z方向において基体21から離れるに連れて、支柱22a~22dの各々のX方向における幅は、変化し、連続的に小さくなっている。例えば、相対的に基体21に近い箇所では、支柱22a~22dの各々は幅W18を有し、基体21から離れるに連れて、支柱22a~22dの各々は幅W18よりも小さい幅W19、または、幅W19よりも小さい幅W20を有する。 As shown in FIG. 21, the columns 22a to 22d in the fourth embodiment have a tapered shape, and the surface on which the stairs 23a to 23c are formed in the second embodiment is inclined instead of the stairs 23a to 23c. It is composed of faces. Therefore, in the fourth embodiment, the width of each of the columns 22a to 22d in the X direction changes and continuously decreases as the distance from the substrate 21 in the Z direction increases. For example, at a location relatively close to the substrate 21, each of the columns 22a to 22d has a width W18, and as the distance from the substrate 21 increases, each of the columns 22a to 22d has a width W19 smaller than the width W18, or It has a width W20 smaller than the width W19.
 図22に示されるように、実施の形態4では、実施の形態2の図17および図18と同じ構造のラメラ10a~10cが用いられる。ラメラ10a~10cは、支持部22のうち幅W15~W17のように異なる幅を有する箇所に搭載されている。このため、実施の形態4においても、複数のラメラ10をZ方向において互いに離間させながら、複数のラメラ10をラメラグリッド20に強固に保持させることが可能である。 As shown in FIG. 22, in the fourth embodiment, the lamellas 10a to 10c having the same structure as those of FIGS. 17 and 18 of the second embodiment are used. The lamellas 10a to 10c are mounted on the support portions 22 at locations having different widths such as widths W15 to W17. Therefore, also in the fourth embodiment, it is possible to firmly hold the plurality of lamellas 10 on the lamella grid 20 while separating the plurality of lamellas 10 from each other in the Z direction.
 (実施の形態5)
 以下に図23を用いて、実施の形態5におけるラメラ10およびラメラグリッド20を説明する。なお、以下の説明では、主に実施の形態3および実施の形態4との相違点を説明する。
(Embodiment 5)
The lamella 10 and the lamella grid 20 in the fifth embodiment will be described below with reference to FIG. 23. In the following description, the differences between the third embodiment and the fourth embodiment will be mainly described.
 図23に示されるように、実施の形態5における支柱22a~22dには、実施の形態3および実施の形態4で示される各々の傾斜面が形成されている。すなわち、X方向において、支柱22aは、支柱22c側および支柱22cと反対側に傾斜面を有し、支柱22bは、支柱22d側および支柱22dと反対側に傾斜面を有し、支柱22cは、支柱22a側および支柱22aと反対側に傾斜面を有し、支柱22dは、支柱22b側および支柱22bと反対側に傾斜面を有する。 As shown in FIG. 23, the columns 22a to 22d in the fifth embodiment are formed with the inclined surfaces shown in the third and fourth embodiments. That is, in the X direction, the support column 22a has an inclined surface on the support column 22c side and the side opposite to the support column 22c, the support column 22b has an inclined surface on the support column 22d side and the side opposite to the support column 22d, and the support column 22c has an inclined surface. The strut 22a side and the side opposite to the strut 22a have an inclined surface, and the strut 22d has an inclined surface on the strut 22b side and the side opposite to the strut 22b.
 従って、実施の形態5では、基体21からZ方向へ離れるに連れて、支柱22a~22dの各々のX方向における幅は、変化し、連続的に小さくなっている。例えば、相対的に基体21に近い箇所では、支柱22a~22dの各々は幅W21を有し、基体21から離れるに連れて、支柱22a~22dの各々は幅W21よりも小さい幅W22、または、幅W22よりも小さい幅W23を有する。 Therefore, in the fifth embodiment, the width of each of the columns 22a to 22d in the X direction changes and continuously decreases as the distance from the substrate 21 in the Z direction increases. For example, at a location relatively close to the substrate 21, each of the columns 22a to 22d has a width W21, and as the distance from the substrate 21 increases, each of the columns 22a to 22d has a width W22 smaller than the width W21, or It has a width W23 smaller than the width W22.
 図示はしないが、実施の形態5におけるラメラグリッド20には、図5および図6と同じ構造のラメラ10a~10cを搭載させることもできるし、図17および図18と同じ構造のラメラ10a~10cを搭載させることもできる。何れの場合であっても、ラメラ10a~10cは、支持部22のうち幅W21~W23のように異なる幅を有する箇所に搭載される。従って、複数のラメラ10をZ方向において互いに離間させながら、複数のラメラ10をラメラグリッド20に強固に保持させることが可能である。 Although not shown, the lamella grid 20 in the fifth embodiment may be equipped with lamellas 10a to 10c having the same structure as those in FIGS. 5 and 6, and lamellas 10a to 10c having the same structure as those in FIGS. 17 and 18. Can also be installed. In any case, the lamellas 10a to 10c are mounted on the support portions 22 having different widths such as widths W21 to W23. Therefore, it is possible to firmly hold the plurality of lamellas 10 on the lamella grid 20 while separating the plurality of lamellas 10 from each other in the Z direction.
 また、実施の形態5では、支柱22a~22dの両側面を傾斜面とするので、実施の形態3および実施の形態4と比較して、支柱22a~22dが高くなり易く、複数の支持部22のX方向におけるピッチが広くなり易い。しかしながら、実施の形態5におけるラメラグリッド20を用いることで、厚幅領域A2がラメラ10の中央部に設けられている場合、および、厚幅領域A2がラメラ10の両端部に設けられている場合でも、それらに対応するラメラグリッド20を用意する手間を省くことができる。 Further, in the fifth embodiment, since both side surfaces of the columns 22a to 22d are inclined surfaces, the columns 22a to 22d tend to be higher than those of the third and fourth embodiments, and the plurality of support portions 22 The pitch in the X direction tends to be wide. However, by using the lamella grid 20 in the fifth embodiment, the thick region A2 is provided at the central portion of the lamella 10, and the thick region A2 is provided at both ends of the lamella 10. However, it is possible to save the trouble of preparing the lamella grid 20 corresponding to them.
 すなわち、複数の支持部22のピッチを狭めたい場合には、実施の形態3および実施の形態4の技術が優れるが、複数の支持部22のピッチに余裕があるような場合には、ラメラ10の形状に対する自由度が高い実施の形態5の技術が優れている。 That is, when it is desired to narrow the pitch of the plurality of support portions 22, the techniques of the third and fourth embodiments are excellent, but when there is a margin in the pitch of the plurality of support portions 22, the lamella 10 The technique of the fifth embodiment, which has a high degree of freedom for the shape of the above, is excellent.
 (実施の形態6)
 以下に図24~図31を用いて、実施の形態6におけるラメラ10およびラメラグリッド20を説明する。なお、以下の説明では、主に実施の形態1~5との相違点を説明する。
(Embodiment 6)
The lamella 10 and the lamella grid 20 in the sixth embodiment will be described below with reference to FIGS. 24 to 31. In the following description, the differences from the first to fifth embodiments will be mainly described.
 実施の形態1~5では、支柱22a~22dに複数の階段23または傾斜面が設けられていたが、実施の形態6における支柱22a~22dには、ラメラ10を保持するために凸部24が設けられている。 In the first to fifth embodiments, the columns 22a to 22d are provided with a plurality of stairs 23 or inclined surfaces, but the columns 22a to 22d in the sixth embodiment have a convex portion 24 for holding the lamella 10. It is provided.
 凸部24は、支柱22aまたは支柱22bの何れか一方と、支柱22cまたは支柱22dの何れか一方とに設けられる。図24では、凸部24が、支柱22bと支柱22dとに設けられ、Z方向において複数個設けられている場合を例示している。支柱22bの凸部24は、支柱22a側へ突出し、且つ、支柱22aに接しないように設けられている。また、支柱22dの凸部24は、支柱22c側へ突出し、且つ、支柱22cに接しないように設けられている。 The convex portion 24 is provided on either one of the support columns 22a or 22b and one of the support columns 22c or 22d. FIG. 24 illustrates a case where the convex portions 24 are provided on the support columns 22b and the support columns 22d, and a plurality of convex portions 24 are provided in the Z direction. The convex portion 24 of the support column 22b is provided so as to project toward the support column 22a and not come into contact with the support column 22a. Further, the convex portion 24 of the support column 22d is provided so as to project toward the support column 22c side and not in contact with the support column 22c.
 また、ラメラ10への損傷を出来る限り抑制できるように、且つ、ラメラ10の着脱が容易になるように、凸部24の形状は半球体であることが好ましい。なお、上記半球体には、真円弧を基にした半球体だけでなく、楕円弧を基にした半球体も含まれる。 Further, the shape of the convex portion 24 is preferably a hemisphere so that damage to the lamella 10 can be suppressed as much as possible and the lamella 10 can be easily attached and detached. The hemisphere includes not only a hemisphere based on a true arc but also a hemisphere based on an elliptical arc.
 また、凸部24は、支持部22を構成する材料と同じ材料で構成されていてもよいし、支持部22を構成する材料と別の材料で構成されていてもよい。 Further, the convex portion 24 may be made of the same material as the material constituting the support portion 22, or may be made of a material different from the material constituting the support portion 22.
 図25に示されるように、実施の形態6では、検討例1および検討例2と同じ構造のラメラ10a、10bが搭載されるが、これらのラメラ10a、10bでは、Y方向における幅が距離L1よりも小さいので、これらのラメラ10a、10bを支柱22aと支柱22bとの間、および、支柱22cと支柱22dとの間に搭載させることができる。なお、実施の形態6におけるラメラグリッド20に、実施の形態1および実施の形態2のような薄幅領域A1および厚幅領域A2を有するラメラ10a~10cを搭載させることも可能である。 As shown in FIG. 25, in the sixth embodiment, the lamellas 10a and 10b having the same structure as those of the study example 1 and the study example 2 are mounted, but in these lamellas 10a and 10b, the width in the Y direction is the distance L1. Because it is smaller than, these lamellas 10a and 10b can be mounted between the columns 22a and the columns 22b and between the columns 22c and the columns 22d. It is also possible to mount the lamellas 10a to 10c having the thin width region A1 and the thick width region A2 as in the first and second embodiments on the lamella grid 20 in the sixth embodiment.
 また、ここでは二つのラメラ10a、10bを搭載させる場合を例示するが、支持部22の形状(高さ)を変更し、更に凸部24の数を増やすことで、ラメラグリッド20に三つ以上の複数のラメラ10を搭載させることも可能である。 Further, here, a case where two lamellas 10a and 10b are mounted is illustrated, but by changing the shape (height) of the support portion 22 and further increasing the number of convex portions 24, three or more lamella grids 20 are mounted. It is also possible to mount a plurality of lamellas 10 of the above.
 下方のラメラ10aは基体21上に搭載されるが、上方のラメラ10bは凸部24上に搭載される。また、下方の凸部24と基体21との間隔および二つの凸部24の間隔である幅H3は、ラメラ10aのZ方向における幅H2よりも長く設定されている。このため、ラメラ10aおよびラメラ10bは、Z方向において互いに離間されるので、ラメラ10aの解析部11は、ラメラ10bに接触しない。 The lower lamella 10a is mounted on the substrate 21, while the upper lamella 10b is mounted on the convex portion 24. Further, the width H3, which is the distance between the lower convex portion 24 and the substrate 21 and the distance between the two convex portions 24, is set longer than the width H2 of the lamella 10a in the Z direction. Therefore, since the lamella 10a and the lamella 10b are separated from each other in the Z direction, the analysis unit 11 of the lamella 10a does not come into contact with the lamella 10b.
 図26~図31を用いて、実施の形態6におけるラメラ10の搬送方法を説明する。図26および図27、図28および図29、並びに、図30および図31の各々は、それぞれ同じタイミングの搬送工程であり、それぞれ斜視図および側面図として示されている。また、以下の搬送方法は、上述のステップS7において行われ、ラメラ搬送機構(例えばラメラ搬送装置60)によって行われる。 The method of transporting the lamella 10 in the sixth embodiment will be described with reference to FIGS. 26 to 31. 26 and 27, 28 and 29, and 30 and 31, respectively, are transport steps at the same timing, and are shown as perspective views and side views, respectively. Further, the following transport method is performed in step S7 described above, and is performed by a lamella transport mechanism (for example, a lamella transport device 60).
 まず、図26および図27に示されるように、着脱器47を用いてウェハ1から取得したラメラ10aを、ラメラグリッド20上の支持部22(支柱22a~22d)の真上に移動させる。 First, as shown in FIGS. 26 and 27, the lamella 10a acquired from the wafer 1 using the detachable device 47 is moved directly above the support portions 22 (supports 22a to 22d) on the lamella grid 20.
 次に、図28および図29に示されるように、着脱器47にZ方向へ動かす駆動力を加えることで、支柱22bと支柱22aとの間隔(支柱22dと支柱22cとの間隔)が僅かに広がり、ラメラ10aは、上方の凸部24を掻き分ける。 Next, as shown in FIGS. 28 and 29, by applying a driving force for moving the attachment / detachment 47 in the Z direction, the distance between the support column 22b and the support column 22a (the distance between the support column 22d and the support column 22c) is slightly increased. Spread, the lamella 10a scrapes the upper convex portion 24.
 次に、図30および図31に示されるように、着脱器47を更に移動させることで、凸部24を掻き分けたラメラ10aは、下方の凸部24と上方の凸部24との間へ搬送される。その後、着脱器47を更に移動させることで、ラメラ10aは、下方の凸部24を掻き分け、基体21上に搬送される。このように、ラメラ10aは、複数の凸部24を掻き分けながら、支柱22aと支柱22bとの間および支柱22cと支柱22dとの間に挿入される。 Next, as shown in FIGS. 30 and 31, the lamella 10a that has scraped the convex portion 24 by further moving the detachable device 47 is conveyed between the lower convex portion 24 and the upper convex portion 24. Will be done. After that, by further moving the attachment / detachment device 47, the lamella 10a scrapes the lower convex portion 24 and is conveyed onto the substrate 21. In this way, the lamella 10a is inserted between the support column 22a and the support column 22b and between the support column 22c and the support column 22d while scraping the plurality of convex portions 24.
 その後、上記と同様の手法によって、二枚目以降のラメラ10をラメラグリッド20へ搬送する。以上のようにして、複数のラメラ10がラメラグリッド20へ搬送される。複数のラメラ10は、支柱22bの凸部24および支柱22dの凸部24を介して、Z方向において互いに離間されているので、解析部11は他のラメラ10に接触しない。 After that, the second and subsequent lamellas 10 are transported to the lamella grid 20 by the same method as above. As described above, the plurality of lamellas 10 are conveyed to the lamella grid 20. Since the plurality of lamellas 10 are separated from each other in the Z direction via the convex portion 24 of the support column 22b and the convex portion 24 of the support column 22d, the analysis unit 11 does not come into contact with the other lamellas 10.
 以上、上記実施の形態に基づいて本発明を具体的に説明したが、本発明は、上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 Although the present invention has been specifically described above based on the above-described embodiment, the present invention is not limited to the above-described embodiment and can be variously modified without departing from the gist thereof.
 例えば、ラメラグリッド20には複数の支持部22が設けられているが、一部の支持部22を実施の形態1の構造とし、他部の支持部22を実施の形態2の構造とする等、ラメラグリッド20に、それぞれ構造の異なる実施の形態1~6の支持部22を混載させることも可能である。 For example, although the lamella grid 20 is provided with a plurality of support portions 22, some of the support portions 22 have the structure of the first embodiment, and the other support portions 22 have the structure of the second embodiment. It is also possible to mount the support portions 22 of the first to sixth embodiments having different structures on the lamella grid 20 in a mixed manner.
 その他、上記実施の形態に記載された内容の一部を以下に記載する。 In addition, a part of the contents described in the above embodiment is described below.
[付記1]
 ラメラ作製機構と、ラメラ搬送機構とを備える解析システムであって、
(a)前記ラメラ作製機構において、ウェハの一部をエッチングすることで、少なくとも、第1解析部を有する第1ラメラと、第2解析部を有する第2ラメラとを作製する工程、
(b)前記ラメラ搬送機構において、前記第1ラメラおよび前記第2ラメラを前記ウェハからラメラグリッドへ順次搬送する工程、
 を有し、
 前記ラメラグリッドは、基体と、第1方向において前記基体の表面からそれぞれ突出した第1支柱、第2支柱、第3支柱および第4支柱とを含み、
 前記第1支柱は、前記第1方向と直交する第2方向において前記第2支柱から離間され、且つ、前記第1方向および前記第2方向と直交する第3方向において前記第3支柱から離間され、
 前記第2支柱は、前記第3方向において前記第4支柱から離間され、
 前記第3支柱は、前記第2方向において前記第4支柱から離間され、
 前記第2支柱には、前記第1支柱側へ突出し、且つ、前記第1支柱に接しないように、複数の第1凸部が設けられ、
 前記第4支柱には、前記第3支柱側へ突出し、且つ、前記第3支柱に接しないように、複数の第2凸部が設けられ、
 前記第1解析部および前記第2解析部の各々の前記第2方向における幅は、前記解析部の周囲の前記ラメラの前記第2方向における幅よりも小さく、
 前記(b)工程は、
 (b1)前記複数の第1凸部および前記複数の第2凸部を掻き分けながら、前記第1ラメラを、前記第1支柱と前記第2支柱との間、および、前記第3支柱と前記第4支柱との間に挿入する工程、
 (b2)前記(b1)工程後、前記第2ラメラが、前記複数の第1凸部の一部および前記複数の第2凸部の一部を介して前記第1方向において前記第1ラメラから離間されるように、前記複数の第1凸部および前記複数の第2凸部を掻き分けながら、前記第2ラメラを、前記第1支柱と前記第2支柱との間、および、前記第3支柱と前記第4支柱との間に挿入する工程、
 を有する、解析システム。
[Appendix 1]
An analysis system including a lamella manufacturing mechanism and a lamella transport mechanism.
(A) In the lamella manufacturing mechanism, a step of manufacturing at least a first lamella having a first analysis unit and a second lamella having a second analysis unit by etching a part of the wafer.
(B) In the lamella transport mechanism, a step of sequentially transporting the first lamella and the second lamella from the wafer to the lamella grid.
Have,
The lamella grid includes a substrate and first, second, third and fourth struts projecting from the surface of the substrate in the first direction, respectively.
The first strut is separated from the second strut in the second direction orthogonal to the first direction, and separated from the third strut in the first direction and the third direction orthogonal to the second direction. ,
The second strut is separated from the fourth strut in the third direction.
The third strut is separated from the fourth strut in the second direction.
The second support column is provided with a plurality of first convex portions so as to project toward the first support column and not come into contact with the first support column.
The fourth strut is provided with a plurality of second convex portions so as to project toward the third strut and not come into contact with the third strut.
The width of each of the first analysis unit and the second analysis unit in the second direction is smaller than the width of the lamella around the analysis unit in the second direction.
The step (b) is
(B1) While scraping the plurality of first convex portions and the plurality of second convex portions, the first lamella is placed between the first strut and the second strut, and the third strut and the first strut. The process of inserting between 4 columns,
(B2) After the step (b1), the second lamella is removed from the first lamella in the first direction via a part of the plurality of first convex portions and a part of the plurality of second convex portions. While scraping the plurality of first convex portions and the plurality of second convex portions so as to be separated from each other, the second lamella is placed between the first support column and the second support column, and the third support column. And the process of inserting between the fourth support column,
Has an analysis system.
[付記2]
 付記1に記載の解析システムにおいて、
 前記複数の第1凸部および前記複数の第2凸部の各々の形状は、半球体である、解析システム。
[Appendix 2]
In the analysis system described in Appendix 1,
An analysis system in which the shapes of the plurality of first convex portions and the plurality of second convex portions are hemispherical bodies.
[付記3]
 付記1に記載の解析システムにおいて、
 電子ビームカラムおよび試料ステージを有するラメラ解析機構を更に備え、
(c)前記ラメラ解析機構において、前記第1方向において前記第1解析部および前記第2解析部が、それぞれ前記電子ビームカラムと向き合うように、前記第1ラメラおよび前記第2ラメラを搭載した前記ラメラグリッドが、前記試料ステージ上に設置された状態で、前記第1解析部および前記第2解析部の解析を行う工程、
 を更に有する、解析システム。
[Appendix 3]
In the analysis system described in Appendix 1,
Further equipped with a lamella analysis mechanism having an electron beam column and a sample stage,
(C) In the lamella analysis mechanism, the first lamella and the second lamella are mounted so that the first analysis unit and the second analysis unit face the electron beam column, respectively, in the first direction. A step of analyzing the first analysis unit and the second analysis unit while the lamella grid is installed on the sample stage.
An analysis system that further has.
1  ウェハ
1a  接続箇所
2  半導体製造ライン
10、10a、10b、10c  ラメラ
11  解析部
20  ラメラグリッド
21  基体
22  支持部
22a~22d  支柱
23、23a、23b、23c  階段
24  凸部
30  解析システム
31  ネットワーク構成
32  ネットワーク
40  ラメラ作製装置
41  イオンビームカラム
42  電子ビームカラム
43  試料室
44  ウェハステージ
45  ウェハ押さえ
46  荷電粒子検出器
47  着脱器
48  ラメラグリッドステージ
49  ラメラグリッド押さえ
50  入力デバイス
51  ディスプレイ
52  GUI画面
60  ラメラ搬送装置
61  電子ビームカラム
70  ラメラ解析装置
71  電子ビームカラム
72  試料ステージ
73  試料交換室
74  荷電粒子検出器
75  荷電粒子検出器
76  X線検出器
77  試料室
78  入力デバイス
79  ディスプレイ
80  GUI画面
A1  薄幅領域
A2  厚幅領域
C1  イオンビームカラム制御部
C2  電子ビームカラム制御部
C3  ウェハステージ制御部
C4  検出器制御部
C5  着脱器制御部
C6  ラメラグリッドステージ制御部
C7  統合制御部
C8  電子ビームカラム制御部
C9  電子ビームカラム制御部
C10  試料ステージ制御部
C11  検出器制御部
C12  検出器制御部
C13  X線検出器制御部
C14  統合制御部
CP1、CP2  クロスポイント
D1  解析位置データ
D2  ラメラ作製位置データ
D3  ラメラ搬送位置データ
D4  解析データ
EB1、EB2  電子ビーム(荷電粒子ビーム)
H1~H3  幅
IB  イオンビーム(荷電粒子ビーム)
L1  距離
OA1~OA3  光軸
S1~S13  ステップ
SV  サーバ
W1~W23  幅
 
1 Wafer 1a Connection point 2 Semiconductor production line 10, 10a, 10b, 10c Lamella 11 Analysis unit 20 Lamella grid 21 Base 22 Support parts 22a to 22d Support columns 23, 23a, 23b, 23c Stairs 24 Convex 30 Analysis system 31 Network configuration 32 Network 40 Lamella fabrication device 41 Ion beam column 42 Electron beam column 43 Sample chamber 44 Wafer stage 45 Wafer holder 46 Charged particle detector 47 Detacher 48 Lamella grid stage 49 Lamella grid holder 50 Input device 51 Display 52 GUI screen 60 Lamella transfer device 61 Electron beam column 70 Lamella analyzer 71 Electron beam column 72 Sample stage 73 Sample exchange chamber 74 Charged particle detector 75 Charged particle detector 76 X-ray detector 77 Sample chamber 78 Input device 79 Display 80 GUI screen A1 Narrow width region A2 Thick region C1 Ion beam column control unit C2 Electron beam column control unit C3 Wafer stage control unit C4 Detector control unit C5 Detachable device control unit C6 Lamella grid stage control unit C7 Integrated control unit C8 Electron beam column control unit C9 Electron beam column Control unit C10 Sample stage control unit C11 Detector control unit C12 Detector control unit C13 X-ray detector control unit C14 Integrated control unit CP1, CP2 Cross point D1 Analysis position data D2 Lamella production position data D3 Lamella transfer position data D4 Analysis data EB1, EB2 electron beam (charged particle beam)
H1 to H3 width IB ion beam (charged particle beam)
L1 Distance OA1 to OA3 Optical axis S1 to S13 Step SV server W1 to W23 Width

Claims (15)

  1.  荷電粒子線装置を用いて解析されるラメラを搭載するためのラメラグリッドであって、
     基体と、
     第1方向において前記基体の表面からそれぞれ突出した第1支柱、第2支柱、第3支柱および第4支柱と、
     を有し、
     前記第1支柱は、前記第1方向と直交する第2方向において前記第2支柱から離間され、且つ、前記第1方向および前記第2方向と直交する第3方向において前記第3支柱から離間され、
     前記第2支柱は、前記第3方向において前記第4支柱から離間され、
     前記第3支柱は、前記第2方向において前記第4支柱から離間され、
     前記第1支柱、前記第2支柱、前記第3支柱および前記第4支柱の各々の前記第3方向における幅が、前記第1方向において前記基体から離れるに連れて小さくなっている、ラメラグリッド。
    A lamella grid for mounting lamellas analyzed using a charged particle beam device.
    With the base
    The first strut, the second strut, the third strut, and the fourth strut projecting from the surface of the substrate in the first direction, respectively.
    Have,
    The first strut is separated from the second strut in the second direction orthogonal to the first direction, and separated from the third strut in the first direction and the third direction orthogonal to the second direction. ,
    The second strut is separated from the fourth strut in the third direction.
    The third strut is separated from the fourth strut in the second direction.
    A lamella grid in which the width of each of the first strut, the second strut, the third strut, and the fourth strut in the third direction decreases as the distance from the substrate increases in the first direction.
  2.  請求項1に記載のラメラグリッドにおいて、
     前記第1支柱、前記第2支柱、前記第3支柱および前記第4支柱の各々の前記第3方向における幅が、前記第1方向において前記基体から離れるに連れて、段階的に小さくなっている、ラメラグリッド。
    In the lamella grid according to claim 1,
    The width of each of the first strut, the second strut, the third strut, and the fourth strut in the third direction gradually decreases as the distance from the substrate in the first direction increases. , Lamella grid.
  3.  請求項2に記載のラメラグリッドにおいて、
     前記第1支柱、前記第2支柱、前記第3支柱および前記第4支柱には、それぞれ複数の階段が設けられ、
     前記第1支柱に設けられた前記複数の階段は、前記第3支柱と反対側に設けられ、
     前記第2支柱に設けられた前記複数の階段は、前記第4支柱と反対側に設けられ、
     前記第3支柱に設けられた前記複数の階段は、前記第1支柱と反対側に設けられ、
     前記第4支柱に設けられた前記複数の階段は、前記第2支柱と反対側に設けられている、ラメラグリッド。
    In the lamella grid according to claim 2.
    A plurality of stairs are provided in each of the first strut, the second strut, the third strut, and the fourth strut.
    The plurality of stairs provided on the first support column are provided on the opposite side to the third support column.
    The plurality of stairs provided on the second support column are provided on the opposite side to the fourth support column.
    The plurality of stairs provided on the third support column are provided on the opposite side of the first support column.
    The plurality of stairs provided on the fourth support column are lamella grids provided on the opposite side to the second support column.
  4.  請求項2に記載のラメラグリッドにおいて、
     前記第1支柱、前記第2支柱、前記第3支柱および前記第4支柱には、それぞれ複数の階段が設けられ、
     前記第1支柱に設けられた前記複数の階段は、前記第3支柱側に設けられ、
     前記第2支柱に設けられた前記複数の階段は、前記第4支柱側に設けられ、
     前記第3支柱に設けられた前記複数の階段は、前記第1支柱側に設けられ、
     前記第4支柱に設けられた前記複数の階段は、前記第2支柱側に設けられている、ラメラグリッド。
    In the lamella grid according to claim 2.
    A plurality of stairs are provided in each of the first strut, the second strut, the third strut, and the fourth strut.
    The plurality of stairs provided on the first support column are provided on the third support column side.
    The plurality of stairs provided on the second support column are provided on the fourth support column side.
    The plurality of stairs provided on the third support column are provided on the first support column side.
    The plurality of stairs provided on the fourth support column are lamella grids provided on the second support column side.
  5.  請求項1に記載のラメラグリッドにおいて、
     前記第1支柱、前記第2支柱、前記第3支柱および前記第4支柱の各々の前記第3方向における幅が、前記第1方向において前記基体から離れるに連れて、連続的に小さくなっている、ラメラグリッド。
    In the lamella grid according to claim 1,
    The width of each of the first strut, the second strut, the third strut, and the fourth strut in the third direction is continuously reduced as the distance from the substrate in the first direction increases. , Lamella grid.
  6.  請求項5に記載のラメラグリッドにおいて、
     前記第1支柱は、前記第3支柱側または前記第3支柱と反対側に第1傾斜面を有し、
     前記第2支柱は、前記第4支柱側または前記第4支柱と反対側に第2傾斜面を有し、
     前記第3支柱は、前記第1支柱側または前記第1支柱と反対側に第3傾斜面を有し、
     前記第4支柱は、前記第2支柱側または前記第2支柱と反対側に第4傾斜面を有する、ラメラグリッド。
    In the lamella grid according to claim 5.
    The first strut has a first inclined surface on the side of the third strut or on the side opposite to the third strut.
    The second strut has a second inclined surface on the side of the fourth strut or on the side opposite to the fourth strut.
    The third strut has a third inclined surface on the side of the first strut or on the side opposite to the first strut.
    The fourth strut is a lamella grid having a fourth inclined surface on the side of the second strut or on the side opposite to the second strut.
  7.  請求項5に記載のラメラグリッドにおいて、
     前記第1支柱は、前記第3支柱側に第5傾斜面を有し、且つ、前記第3支柱と反対側に第1傾斜面を有し、
     前記第2支柱は、前記第4支柱側に第6傾斜面を有し、且つ、前記第4支柱と反対側に第2傾斜面を有し、
     前記第3支柱は、前記第1支柱側に第7傾斜面を有し、且つ、前記第1支柱と反対側に第3傾斜面を有し、
     前記第4支柱は、前記第2支柱側に第8傾斜面を有し、且つ、前記第2支柱と反対側に第4傾斜面を有する、ラメラグリッド。
    In the lamella grid according to claim 5.
    The first strut has a fifth inclined surface on the side of the third strut and has a first inclined surface on the side opposite to the third strut.
    The second strut has a sixth inclined surface on the side of the fourth strut, and has a second inclined surface on the side opposite to the fourth strut.
    The third strut has a seventh inclined surface on the side of the first strut, and has a third inclined surface on the side opposite to the first strut.
    The fourth strut is a lamella grid having an eighth inclined surface on the side of the second strut and a fourth inclined surface on the side opposite to the second strut.
  8.  荷電粒子線装置を用いて解析されるラメラを搭載するためのラメラグリッドであって、
     基体と、
     第1方向において前記基体の表面からそれぞれ突出した第1支柱、第2支柱、第3支柱および第4支柱と、
     を有し、
     前記第1支柱は、前記第1方向と直交する第2方向において前記第2支柱から離間され、且つ、前記第1方向および前記第2方向と直交する第3方向において前記第3支柱から離間され、
     前記第2支柱は、前記第3方向において前記第4支柱から離間され、
     前記第3支柱は、前記第2方向において前記第4支柱から離間され、
     前記第2支柱には、前記第1支柱側へ突出し、且つ、前記第1支柱に接しないように、複数の第1凸部が設けられ、
     前記第4支柱には、前記第3支柱側へ突出し、且つ、前記第3支柱に接しないように、複数の第2凸部が設けられている、ラメラグリッド。
    A lamella grid for mounting lamellas analyzed using a charged particle beam device.
    With the base
    The first strut, the second strut, the third strut, and the fourth strut projecting from the surface of the substrate in the first direction, respectively.
    Have,
    The first strut is separated from the second strut in the second direction orthogonal to the first direction, and separated from the third strut in the first direction and the third direction orthogonal to the second direction. ,
    The second strut is separated from the fourth strut in the third direction.
    The third strut is separated from the fourth strut in the second direction.
    The second support column is provided with a plurality of first convex portions so as to project toward the first support column and not come into contact with the first support column.
    A lamella grid provided with a plurality of second convex portions on the fourth strut so as to project toward the third strut and not come into contact with the third strut.
  9.  請求項8に記載のラメラグリッドにおいて、
     前記複数の第1凸部および前記複数の第2凸部の各々の形状は、半球体である、ラメラグリッド。
    In the lamella grid according to claim 8.
    A lamella grid in which the shape of each of the plurality of first convex portions and the plurality of second convex portions is a hemisphere.
  10.  ラメラ作製機構と、ラメラ搬送機構とを備える解析システムであって、
    (a)前記ラメラ作製機構において、ウェハの一部をエッチングすることで、少なくとも、第1解析部を有する第1ラメラと、第2解析部を有する第2ラメラとを作製する工程、
    (b)前記ラメラ搬送機構において、前記第1ラメラおよび前記第2ラメラを前記ウェハからラメラグリッドへ順次搬送する工程、
     を有し、
     前記ラメラグリッドは、基体と、第1方向において前記基体の表面からそれぞれ突出した第1支柱、第2支柱、第3支柱および第4支柱とを含み、
     前記第1支柱は、前記第1方向と直交する第2方向において前記第2支柱から離間され、且つ、前記第1方向および前記第2方向と直交する第3方向において前記第3支柱から離間され、
     前記第2支柱は、前記第3方向において前記第4支柱から離間され、
     前記第3支柱は、前記第2方向において前記第4支柱から離間され、
     前記第1支柱、前記第2支柱、前記第3支柱および前記第4支柱の各々の前記第3方向における幅は、前記第1方向において前記基体から離れるに連れて小さくなり、
     前記第1ラメラは、第1薄幅領域および第1厚幅領域を含み、
     前記第1薄幅領域の前記第2方向における幅は、前記第1支柱と前記第2支柱との間の第1距離、および、前記第3支柱と前記第4支柱との間の第2距離よりも小さく、
     前記第1厚幅領域の前記第2方向における幅は、前記第1距離および前記第2距離よりも大きく、
     前記第2ラメラは、第2薄幅領域および第2厚幅領域を含み、
     前記第2薄幅領域の前記第2方向における幅は、前記第1距離および前記第2距離よりも小さく、
     前記第2厚幅領域の前記第2方向における幅は、前記第1距離および前記第2距離よりも大きく、
     前記第1薄幅領域の前記第3方向における幅は、前記第2薄幅領域の前記第3方向における幅と異なり、
     前記第1厚幅領域の前記第3方向における幅は、前記第2厚幅領域の前記第3方向における幅と異なり、
     前記第1解析部および前記第2解析部の各々の前記第2方向における幅は、前記第1薄幅領域および前記第2薄幅領域の前記第2方向における幅よりも小さく、
     前記(b)工程は、
     (b1)前記第1薄幅領域を、前記第1支柱と前記第2支柱との間、および、前記第3支柱と前記第4支柱との間に挿入する工程、
     (b2)前記(b1)工程後、前記第1方向において前記第2ラメラが前記第1ラメラから離間されるように、前記第2薄幅領域を、前記第1支柱と前記第2支柱との間、および、前記第3支柱と前記第4支柱との間に挿入する工程、
     を有する、解析システム。
    An analysis system including a lamella manufacturing mechanism and a lamella transport mechanism.
    (A) In the lamella manufacturing mechanism, a step of manufacturing at least a first lamella having a first analysis unit and a second lamella having a second analysis unit by etching a part of the wafer.
    (B) In the lamella transport mechanism, a step of sequentially transporting the first lamella and the second lamella from the wafer to the lamella grid.
    Have,
    The lamella grid includes a substrate and first, second, third and fourth struts projecting from the surface of the substrate in the first direction, respectively.
    The first strut is separated from the second strut in the second direction orthogonal to the first direction, and separated from the third strut in the first direction and the third direction orthogonal to the second direction. ,
    The second strut is separated from the fourth strut in the third direction.
    The third strut is separated from the fourth strut in the second direction.
    The width of each of the first strut, the second strut, the third strut, and the fourth strut in the third direction decreases as the distance from the substrate increases in the first direction.
    The first lamella includes a first narrow region and a first thick region.
    The width of the first narrow width region in the second direction is the first distance between the first strut and the second strut, and the second distance between the third strut and the fourth strut. Smaller than
    The width of the first thickness region in the second direction is larger than the first distance and the second distance.
    The second lamella includes a second narrow region and a second thick region.
    The width of the second narrow region in the second direction is smaller than the first distance and the second distance.
    The width of the second thick region in the second direction is larger than the first distance and the second distance.
    The width of the first narrow region in the third direction is different from the width of the second narrow region in the third direction.
    The width of the first width region in the third direction is different from the width of the second width region in the third direction.
    The width of each of the first analysis unit and the second analysis unit in the second direction is smaller than the width of the first narrow width region and the second narrow width region in the second direction.
    The step (b) is
    (B1) A step of inserting the first narrow width region between the first strut and the second strut and between the third strut and the fourth strut.
    (B2) After the step (b1), the second narrow region is formed by the first strut and the second strut so that the second lamella is separated from the first lamella in the first direction. Between and the step of inserting between the third strut and the fourth strut,
    Has an analysis system.
  11.  請求項10に記載の解析システムにおいて、
     前記第1支柱、前記第2支柱、前記第3支柱および前記第4支柱には、それぞれ複数の階段が設けられ、
     前記第1支柱に設けられた前記複数の階段は、前記第3支柱と反対側に設けられ、
     前記第2支柱に設けられた前記複数の階段は、前記第4支柱と反対側に設けられ、
     前記第3支柱に設けられた前記複数の階段は、前記第1支柱と反対側に設けられ、
     前記第4支柱に設けられた前記複数の階段は、前記第2支柱と反対側に設けられ、
     前記第1薄幅領域の前記第3方向における幅は、前記第2薄幅領域の前記第3方向における幅よりも大きく、
     前記第1厚幅領域の前記第3方向における幅は、前記第2厚幅領域の前記第3方向における幅よりも小さい、解析システム。
    In the analysis system according to claim 10,
    A plurality of stairs are provided in each of the first strut, the second strut, the third strut, and the fourth strut.
    The plurality of stairs provided on the first support column are provided on the opposite side to the third support column.
    The plurality of stairs provided on the second support column are provided on the opposite side to the fourth support column.
    The plurality of stairs provided on the third support column are provided on the opposite side of the first support column.
    The plurality of stairs provided on the fourth support column are provided on the opposite side to the second support column.
    The width of the first narrow region in the third direction is larger than the width of the second narrow region in the third direction.
    An analysis system in which the width of the first width region in the third direction is smaller than the width of the second width region in the third direction.
  12.  請求項10に記載の解析システムにおいて、
     前記第1支柱、前記第2支柱、前記第3支柱および前記第4支柱には、それぞれ複数の階段が設けられ、
     前記第1支柱に設けられた前記複数の階段は、前記第3支柱側に設けられ、
     前記第2支柱に設けられた前記複数の階段は、前記第4支柱側に設けられ、
     前記第3支柱に設けられた前記複数の階段は、前記第1支柱側に設けられ、
     前記第4支柱に設けられた前記複数の階段は、前記第2支柱側に設けられている、
     前記第1薄幅領域の前記第3方向における幅は、前記第2薄幅領域の前記第3方向における幅よりも小さく、
     前記第1厚幅領域の前記第3方向における幅は、前記第2厚幅領域の前記第3方向における幅よりも大きい、解析システム。
    In the analysis system according to claim 10,
    A plurality of stairs are provided in each of the first strut, the second strut, the third strut, and the fourth strut.
    The plurality of stairs provided on the first support column are provided on the third support column side.
    The plurality of stairs provided on the second support column are provided on the fourth support column side.
    The plurality of stairs provided on the third support column are provided on the first support column side.
    The plurality of stairs provided on the fourth support column are provided on the second support column side.
    The width of the first narrow region in the third direction is smaller than the width of the second narrow region in the third direction.
    An analysis system in which the width of the first width region in the third direction is larger than the width of the second width region in the third direction.
  13.  請求項10に記載の解析システムにおいて、
     前記第1支柱は、前記第3支柱と反対側に第1傾斜面を有し、
     前記第2支柱は、前記第4支柱と反対側に第2傾斜面を有し、
     前記第3支柱は、前記第1支柱と反対側に第3傾斜面を有し、
     前記第4支柱は、前記第2支柱と反対側に第4傾斜面を有し、
     前記第1薄幅領域の前記第3方向における幅は、前記第2薄幅領域の前記第3方向における幅よりも大きく、
     前記第1厚幅領域の前記第3方向における幅は、前記第2厚幅領域の前記第3方向における幅よりも小さい、解析システム。
    In the analysis system according to claim 10,
    The first strut has a first inclined surface on the opposite side of the third strut.
    The second strut has a second inclined surface on the opposite side of the fourth strut.
    The third strut has a third inclined surface on the opposite side of the first strut.
    The fourth strut has a fourth inclined surface on the opposite side of the second strut.
    The width of the first narrow region in the third direction is larger than the width of the second narrow region in the third direction.
    An analysis system in which the width of the first width region in the third direction is smaller than the width of the second width region in the third direction.
  14.  請求項10に記載の解析システムにおいて、
     前記第1支柱は、前記第3支柱側に第5傾斜面を有し、
     前記第2支柱は、前記第4支柱側に第6傾斜面を有し、
     前記第3支柱は、前記第1支柱側に第7傾斜面を有し、
     前記第4支柱は、前記第2支柱側に第8傾斜面を有し、
     前記第1薄幅領域の前記第3方向における幅は、前記第2薄幅領域の前記第3方向における幅よりも小さく、
     前記第1厚幅領域の前記第3方向における幅は、前記第2厚幅領域の前記第3方向における幅よりも大きい、解析システム。
    In the analysis system according to claim 10,
    The first strut has a fifth inclined surface on the third strut side.
    The second strut has a sixth inclined surface on the side of the fourth strut.
    The third strut has a seventh inclined surface on the first strut side.
    The fourth strut has an eighth inclined surface on the second strut side.
    The width of the first narrow region in the third direction is smaller than the width of the second narrow region in the third direction.
    An analysis system in which the width of the first width region in the third direction is larger than the width of the second width region in the third direction.
  15.  請求項10に記載の解析システムにおいて、
     第2電子ビームカラムおよび試料ステージを有するラメラ解析機構を更に備え、
    (c)前記ラメラ解析機構において、前記第1方向において前記第1解析部および前記第2解析部が、それぞれ前記第2電子ビームカラムと向き合うように、前記第1ラメラおよび前記第2ラメラを搭載した前記ラメラグリッドが、前記試料ステージ上に設置された状態で、前記第1解析部および前記第2解析部の解析を行う工程、
     を更に有する、解析システム。
    In the analysis system according to claim 10,
    Further equipped with a lamella analysis mechanism having a second electron beam column and a sample stage,
    (C) In the lamella analysis mechanism, the first lamella and the second lamella are mounted so that the first analysis unit and the second analysis unit face the second electron beam column, respectively, in the first direction. A step of analyzing the first analysis unit and the second analysis unit while the lamella grid is installed on the sample stage.
    An analysis system that further has.
PCT/JP2019/045375 2019-11-20 2019-11-20 Lamellar grid and analysis system WO2021100132A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/045375 WO2021100132A1 (en) 2019-11-20 2019-11-20 Lamellar grid and analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/045375 WO2021100132A1 (en) 2019-11-20 2019-11-20 Lamellar grid and analysis system

Publications (1)

Publication Number Publication Date
WO2021100132A1 true WO2021100132A1 (en) 2021-05-27

Family

ID=75980466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045375 WO2021100132A1 (en) 2019-11-20 2019-11-20 Lamellar grid and analysis system

Country Status (1)

Country Link
WO (1) WO2021100132A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172958A (en) * 2004-12-17 2006-06-29 Hitachi High-Technologies Corp Focused ion beam processing device and sample base used for it
JP2007033376A (en) * 2005-07-29 2007-02-08 Aoi Electronics Co Ltd Micro sample block aggregate
US20130214468A1 (en) * 2012-02-22 2013-08-22 L.A. Giannuzzi & Associates Llc Method and apparatus for ex-situ lift-out specimen preparation
JP2015204296A (en) * 2014-04-14 2015-11-16 エフ・イ−・アイ・カンパニー High capacity tem grid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172958A (en) * 2004-12-17 2006-06-29 Hitachi High-Technologies Corp Focused ion beam processing device and sample base used for it
JP2007033376A (en) * 2005-07-29 2007-02-08 Aoi Electronics Co Ltd Micro sample block aggregate
US20130214468A1 (en) * 2012-02-22 2013-08-22 L.A. Giannuzzi & Associates Llc Method and apparatus for ex-situ lift-out specimen preparation
JP2015204296A (en) * 2014-04-14 2015-11-16 エフ・イ−・アイ・カンパニー High capacity tem grid

Similar Documents

Publication Publication Date Title
JP5090255B2 (en) STEM sample preparation method in situ
JP5033314B2 (en) Ion beam processing apparatus and processing method
CN107084869B (en) High throughput TEM fabrication process and hardware for backside thinning of cross-sectional view thin layers
KR100885940B1 (en) Charged particle beam inspection apparatus and method for fabricating device using that inspection apparatus
JP5127148B2 (en) Ion beam processing equipment
US9733164B2 (en) Lamella creation method and device using fixed-angle beam and rotating sample stage
JP2005249745A (en) Sample surface inspecting method and inspecting apparatus
US20150294834A1 (en) High Capacity TEM Grid
US8729469B1 (en) Multiple sample attachment to nano manipulator for high throughput sample preparation
TW202125561A (en) Analysis system, method for inspecting lamella, and charged particle beam device
WO2021100132A1 (en) Lamellar grid and analysis system
JP5166315B2 (en) Ion beam processing apparatus and sample observation method
WO2021100144A1 (en) Lamella fabrication method, analysis system, and sample analysis method
JP5302934B2 (en) Sample surface inspection method and inspection apparatus
JP5792767B2 (en) Ion beam processing apparatus and processing method
JP7526824B2 (en) Lamella mounting method and analysis system
JP7387880B2 (en) Tweezers, transport device, and method of transporting sample pieces
JPH08220007A (en) Method and apparatus for analyzing minute foreign matter, and manufacture of semiconductor element or liquid crystal display element using the method and apparatus
JP7214262B2 (en) Charged particle beam device, sample processing method
JP2004328003A (en) Substrate extracting method and manufacturing method for electronic component using the same
JP2014239060A (en) Sample observation method
JP5628862B2 (en) Ion beam processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP