WO2021100112A1 - Dc power supply system - Google Patents

Dc power supply system Download PDF

Info

Publication number
WO2021100112A1
WO2021100112A1 PCT/JP2019/045229 JP2019045229W WO2021100112A1 WO 2021100112 A1 WO2021100112 A1 WO 2021100112A1 JP 2019045229 W JP2019045229 W JP 2019045229W WO 2021100112 A1 WO2021100112 A1 WO 2021100112A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power system
power
charging
child
Prior art date
Application number
PCT/JP2019/045229
Other languages
French (fr)
Japanese (ja)
Inventor
堤 香津雄
Original Assignee
株式会社堤水素研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堤水素研究所 filed Critical 株式会社堤水素研究所
Priority to PCT/JP2019/045229 priority Critical patent/WO2021100112A1/en
Priority to JP2020559006A priority patent/JP7168243B2/en
Publication of WO2021100112A1 publication Critical patent/WO2021100112A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/54Fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a DC power system, and more particularly to a DC power system that enhances power flexibility by using a power storage facility capable of floating charging.
  • Secondary batteries are suitable for applications that require quick response of power supply to ensure the stability of the power supply system. It is desirable that the secondary battery used for such an application can be charged in a floating manner. This means that when a power shortage occurs, the secondary battery can be discharged and power can be supplied immediately, and when the power shortage is resolved, the secondary battery needs to be charged to maintain a fully charged state. Because there is sex.
  • Patent Document 2 describes a charging method that enables floating charging by measuring the internal pressure of an assembled battery in which a plurality of alkaline secondary batteries are connected to each other and controlling the charging of the assembled battery based on the measured internal pressure. Is disclosed.
  • Japanese Unexamined Patent Publication No. 2010-11711 Japanese Unexamined Patent Publication No. 2010-40297 Japanese Unexamined Patent Publication No. 2013-118768
  • the secondary battery is not used after being fully charged. This is because the cycle life is shortened when fully charged, and the life is significantly shortened when overcharged. If the secondary battery is charged to the full capacity, the load on the secondary battery will be heavy and the life of the secondary battery will be shortened. Therefore, the upper limit of charge and the lower limit of discharge of the secondary battery are set within this range. If charge control is performed, the life of the secondary battery can be extended while charging without imposing a burden on the secondary battery, as compared with the configuration of charging to the full capacity (for example, Patent Document 3).
  • a system has been proposed in which power from a power plant that uses natural energy is stored in a secondary battery to adjust the power, but power that exceeds the capacity of the secondary battery cannot be accepted and natural energy is used effectively. Can not do it. Furthermore, a control device such as a dedicated program or protocol is required to prevent demand response and instantaneous decrease and perform power regeneration by using a charged battery.
  • the problem to be solved by the present invention is to construct a DC power system using a secondary battery that does not require charge control. It also provides a method of using a secondary battery without sacrificing battery life due to floating charging. Further, a method for utilizing surplus electric power without waste is provided.
  • the DC power system includes a floating rechargeable parent battery connected to the DC power system without a device for adjusting the charge, and a device for adjusting the charge. Is equipped with a child battery connected to the parent battery.
  • the DC power system and the parent battery are directly connected without a device for adjusting charging. Further, the child battery is also connected to the parent battery without going through a device for adjusting charging.
  • Floating charging means that the charged battery supplements the electricity consumed by discharging by charging each time. That is, the secondary battery is connected to a device or equipment that becomes a load and a power source for charging, and the amount of electricity reduced by the use of the secondary battery is replenished by charging from the power source. As a result, the secondary battery can be maintained in a substantially fully charged state, and can immediately respond to the demand from the load. Therefore, the floating rechargeable parent battery directly connected to the DC power system maintains a fully charged state without requiring a special control device even when connected to the charger.
  • the child battery is connected to an intermediate tap provided on the parent battery. Further, the child battery is a secondary battery mounted on an electric vehicle. Here, it is possible to take out the connection point of the cells constituting the parent battery as an intermediate tap. Further, in the DC power system according to the present invention, the child battery can be floatingly charged.
  • the DC power system according to the present invention is a secondary battery in which the child battery is attached to any one of a mobile body, a consumer device, and an industrial device. Further, in the DC power system according to the present invention, the moving body is any one of an electric vehicle, a railroad vehicle, a forklift or a crane.
  • one or both of the water electrolyzer and the fuel cell and the parent battery are connected in parallel to the DC power system. Further, in the DC power system according to the present invention, a feeder system of an electric railway is connected to the DC power system.
  • the child battery is connected to the DC power system via a DCDC converter. Further, in the DC power system according to the present invention, the AC power system and the DC power system are connected by a bidirectional inverter.
  • the master battery is a secondary battery in which hydrogen is sealed and the negative electrode active material is hydrogen, and can be charged until the terminal voltage becomes equal to the charging voltage and the charging current stops flowing. Is.
  • the charging current of the secondary battery filled with hydrogen decreases as it approaches full charge, and finally the battery potential becomes equal to the charging voltage, so that the secondary battery is maintained in a fully charged state without being damaged. Can be done. It can be suitably used for applications that require maintaining a fully charged state.
  • the present invention provides a method of using a secondary battery without sacrificing the battery life due to floating charging. As a result, an inexpensive and versatile secondary battery utilization technology is provided.
  • a nickel-metal hydride battery will be described as an example of a secondary battery to which the present invention is applied.
  • the type of the secondary battery is not limited to the nickel hydrogen battery as long as the negative electrode active material is hydrogen.
  • the current collector is not particularly limited as long as it has high electrical conductivity and can energize the held electrode material.
  • the negative electrode current collector is preferably Ni from the viewpoint of stability in the electrolytic solution and reduction resistance.
  • iron coated with nickel or carbon may be used.
  • the positive electrode current collector is preferably Ni from the viewpoint of stability in the electrolytic solution and oxidation resistance.
  • the shape of the current collector includes a linear shape, a rod shape, a plate shape, a foil shape, a net shape, a woven fabric, a non-woven fabric, an expand, a porous body, an embossed body, or a foam, and among them, the filling density can be increased, and the output An embossed body or a foam is preferable because of its good properties.
  • the negative electrode material examples include hydrogen storage alloys, platinum, and palladium. Of these, from the viewpoint of hydrogen storage capacity, charge / discharge characteristics, self-discharge characteristics, and cycle life characteristics, it is preferable to use a quintuple alloy containing MmNiComnAl misch metal, which is an AB5 type rare earth-nickel alloy. Alternatively, it is preferably a LaMgNi-based alloy called a superlattice hydrogen storage alloy. In addition, you may use 1 type or 2 or more types of these alloys.
  • the positive electrode material is preferably a metal oxide. For example, silver oxide, manganese dioxide, nickel oxyhydroxide can be mentioned.
  • the conductive auxiliary agent is for imparting conductivity to the active material and increasing its utilization rate.
  • the conductive auxiliary agent is preferably a carbon material that does not elute into the electrolytic solution during discharge and is not easily reduced by hydrogen.
  • the conductive auxiliary agent used for the positive electrode is more preferably graphitized soft carbon.
  • the negative electrode material, binder, and conductive auxiliary agent are mixed and kneaded into a paste. This paste is applied or filled in the current collector and dried. Then, the current collector is rolled with a roller press to produce a negative electrode. Similarly, the positive electrode material, the binder, and the conductive auxiliary agent are mixed and kneaded into a paste. This paste is applied or filled in the current collector and dried. Then, a positive electrode is produced by rolling the current collector with a roller press.
  • binder examples include sodium polyacrylate, methyl cellulose, carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), ethylene-vinyl alcohol, ethylene vinyl acetate copolymer (EVA), polyethylene (). PE), polypropylene (PP), fluororesin, styrene-ethylene-butylene-styrene copolymer (SEBS) can be mentioned.
  • PTFE polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • the mass ratio of the binder to be blended in the negative electrode is preferably set to 20% by mass or less, preferably 10% by mass or less. It is more preferable to set it to 5% by mass or less.
  • the binder has poor electron conductivity and ionic conductivity, and if the proportion of the binder exceeds 20% by mass, it becomes difficult to increase the capacity.
  • the mass ratio of the binder to be blended in the positive electrode is preferably set to 20% by mass or less, and 10% by mass or less. It is more preferable to set it to 5% by mass or less.
  • the electrolytic solution is not particularly limited as long as it is used in a battery using hydrogen as an active material, but for example, salts such as potassium hydroxide (KOH), lithium hydroxide (LiOH), and sodium hydroxide (NaOH) are added to water.
  • KOH potassium hydroxide
  • LiOH lithium hydroxide
  • NaOH sodium hydroxide
  • the electrolytic solution is preferably an aqueous sodium hydroxide solution.
  • the separator a known one used for batteries using hydrogen as an active material can be used.
  • the shape of the separator include a microporous film, a woven fabric, a non-woven fabric, and a green compact, and among these, a non-woven fabric is preferable from the viewpoint of output characteristics and production cost.
  • the material of the separator is not particularly limited, but it is preferably having alkali resistance, oxidation resistance, and reduction resistance.
  • polyolefin fibers are preferable, and for example, polypropylene or polyethylene is preferable.
  • Other materials include polytetrafluoroethylene (PTFE), polyimide (PI), polyamide, polyamideimide, and aramid.
  • these separators may be coated with ceramics to improve heat resistance, liquid friendliness, and gas permeability.
  • polyolefin fibers are hydrophobic, they need to be treated with hydrophilicity.
  • a separator treated with fluorine gas is preferable.
  • a separator coated or coated with a metal oxide on the surface is preferable.
  • a separator that has been imparted with hydrophilicity by treatment with fluorine gas or coated with a metal oxide can be expected to have a long life because the hydrophilicity is not easily lost by hydrogen even when used in hydrogen gas.
  • the fiber surface of the non-woven fabric can be made hydrophilic by exposing the non-woven fabric to fluorine gas diluted with an inert gas in an airtight space.
  • the metal oxide include titanium oxide, zirconia, yttrium oxide, hafnium oxide, calcium oxide, magnesium oxide, and scandium oxide. Of these, zirconia (ZrO 2 ) or yttrium oxide (Y 2 O 3 ) is preferable. Since the metal oxide has hydrophilicity and is not easily deteriorated by hydrogen, it can maintain hydrophilicity for a long period of time and suppress the dryout of the electrolytic solution.
  • the negative electrode and the positive electrode are overlapped with each other via a separator impregnated with an electrolytic solution in advance and stored in the outer body of the battery, and then sealed to assemble the battery.
  • the air inside the battery is removed by evacuating from the electrolyte and hydrogen gas supply ports.
  • a 4 MPa hydrogen gas tank is connected to the hydrogen gas supply port, and hydrogen gas is sealed inside the battery.
  • the negative electrode is chemically charged by hydrogen gas and is in a fully charged state.
  • the battery is regulated to have a positive electrode.
  • the hydrogen gas supplied to the battery is held in the gap inside the battery, so it does not require a special space like a hydrogen storage chamber.
  • the size of the battery does not increase to hold the hydrogen gas.
  • the oxygen gas generated at the positive electrode immediately combines with the hydrogen gas held in the voids of the positive electrode to become water, so that the conductive auxiliary agent contained in the positive electrode is not oxidized. Further, since the oxygen gas leaked to the outside of the positive electrode is combined with the hydrogen gas sealed in the battery and the hydrogen gas held in the hydrogen storage alloy, the hydrogen storage alloy is not oxidized.
  • the charging reaction itself is an exothermic reaction, so if you try to keep the battery fully charged by continuously charging it under constant voltage control, the battery temperature will rise due to overcharging ⁇ the internal resistance of the battery will decrease ⁇ charging. It causes a vicious cycle of increasing current ⁇ further increasing battery temperature, leading to an increase in battery internal pressure and deterioration of battery performance. Therefore, when applying the secondary battery to applications that require it to be maintained in a fully charged state at all times, sufficient consideration should be given to prevent overcharging, or charge control should be performed to prevent overcharging. It is necessary to do.
  • the hydrogen-filled battery of the present invention when floating charging is performed, hydrogen gas is generated from the negative electrode, and as the charging progresses, the amount of hydrogen gas generated increases and the hydrogen gas concentration inside the battery rises. According to the Nernst equation, the potential of the negative electrode decreases as the hydrogen gas concentration inside the battery increases. As a result, the terminal voltage of the battery gradually rises and finally becomes equal to the charging voltage. That is, as charging progresses, the battery potential rises and when it becomes equal to the charging voltage, the charging current stops flowing, and charging is virtually stopped.
  • the hydrogen gas generated from the negative electrode is stored in the battery as chemical energy.
  • the secondary battery of the present invention can be charged in a floating manner without taking measures to limit the amount of charge. As a result, the secondary battery can always be maintained in a fully charged state without sacrificing battery life. This can be said to be the first feature of the battery filled with hydrogen.
  • the second feature of the hydrogen-filled battery is that the discharge starts from the voltage at which charging is completed. That is, the discharge starts from the voltage at the end of charging.
  • a voltage drop due to the switching of the redox reaction may be observed, but the degree of the voltage drop is slight.
  • the end of charging is not exactly the time when charging is simply stopped.
  • the end of charging is the time when as much charging as possible is completed without sacrificing the life, and in the secondary battery according to the present invention, the charging current does not flow and charging ends. Actually, it takes time for the charging current to become zero because a minute current continues to flow as it approaches full charge.
  • the discharge start voltage is the voltage at the start of discharge of the battery that has been charged as it is. Therefore, the battery is in a state before it is discharged due to use or spontaneously discharged.
  • FIG. 1 is a system diagram showing a schematic configuration of a DC power system.
  • the AC power system 11 is connected to the DC power system 21 via a bidirectional inverter 12.
  • a large number of consumers 13 are connected to the AC power system 11, and AC power can be supplied to each customer 13.
  • a power storage facility 22, a water electrolysis device 25, a fuel cell 26, and a BPS (Battery Power System) 27 are connected to the DC power system 21, and a large number of child batteries 23 are connected to the power storage facility 22 which is a master battery. ..
  • the bidirectional inverter 12 has, for example, the control characteristics shown in FIG. 5, and the direction and characteristics of the electric power can be changed.
  • the operating voltage is larger than the reference voltage V0, it is forward-converted and converted from AC power to DC power, and when it is smaller than the reference voltage V0, it is reverse-converted and converted from DC power to AC power.
  • the reference voltage V0 may be a changeable set value, or may be adjusted by using a control variable specified separately.
  • the control characteristics of the bidirectional inverter 12 can be changed by adjusting the parameters.
  • the AC power system 11 to the DC power system 21 are automatically adjusted according to the control characteristics of the bidirectional inverter 12. It is possible to transmit power to the power grid and adjust the power, and vice versa.
  • the DC power system 21 and the power storage equipment 22 capable of floating charging are directly connected. Directly connected here means that it is connected without going through a device that regulates charging. In general, when a secondary battery is overcharged, its life characteristic deteriorates remarkably, so control is performed to stop charging before it is fully charged. Since the power storage equipment 22 can be charged in a floating manner, such a control device is not required.
  • the power storage equipment 22 may be a secondary battery using a hydrogen storage alloy as a negative electrode material and hydrogen as a negative electrode active material.
  • a secondary battery is a nickel-metal hydride battery filled with hydrogen gas.
  • Such a secondary battery can be charged until the terminal voltage becomes equal to the charging voltage and the charging current stops flowing. At this time, the voltage at the end of charging and the voltage at the start of discharging are equal. It is possible to maintain a fully charged state at all times without sacrificing battery life.
  • the power storage equipment 22 is a so-called “parent battery”, and a “child battery” is connected to the parent battery 22.
  • the slave battery 23 may be directly connected to the DC power system 21.
  • the child battery 23 is a secondary battery capable of floating charging.
  • the child battery 23 may be directly connected to the DC power system 21 and the parent battery 22 without going through a device for adjusting charging. Further, if the child battery 23 is a nickel-metal hydride battery filled with hydrogen gas as described above, it is possible to always maintain a fully charged state without sacrificing the battery life.
  • the charging from the power storage equipment 22 to the child battery 23 is a connection between secondary batteries having a small internal resistance, it is possible to charge in a shorter time than charging by AC power in a conventional charging stand. Further, since the power storage equipment 22 is maintained in a fully charged state, the child battery 23 is also fully charged.
  • FIG. 3 shows an example of connection between the plurality of intermediate taps t1, t2, t3, tc provided in the power storage equipment 22 and the child batteries 23a, 23b, 23c. That is, DC power of various specifications can be taken out by the intermediate taps t1, t2, t3, and tc provided in the power storage equipment 22. Higher voltage power can be extracted from an intermediate tap in which a large number of cells are connected in series. A large amount of power can be extracted from an intermediate tap in which a large number of cells are connected in parallel. If these intermediate taps and the child battery 23 are connected in parallel, the child battery 23 can be charged.
  • a DC power supply having a desired voltage specification can be configured by taking out the cells connected in series as an intermediate tap.
  • a DC power supply having a desired capacity can be configured by taking out the cells connected in series and connected in parallel as an intermediate tap.
  • a battery mounted on an electric vehicle can be specifically considered, but a battery mounted on a moving body such as a railroad vehicle, a forklift or a gantry crane may be used. Further, the child battery 23 may be a secondary battery attached to any one of consumer equipment and industrial equipment. Examples of consumer equipment include personal computers, telephone equipment, vacuum cleaners, and the like. Examples of industrial equipment include industrial robots and cargo handling machines.
  • the load of the DC power system 21 increases and the voltage of the DC power system 21 drops below the voltage of the power storage facility 22, power is supplied from the power storage facility 22 to the DC power system 21.
  • This power flow is determined by the magnitude of the voltage and does not require a special control device. That is, the DC power system 21 and the power storage equipment 22 are directly connected to each other. Since the power storage equipment 22 is a floating rechargeable secondary battery, it maintains a fully charged state without sacrificing battery life.
  • the child battery 23 when the child battery 23 is a battery mounted on an electric vehicle, the total power capacity of the child battery 23 becomes enormous because the number of electric vehicles is large.
  • a part of the power of the child battery 23 can be promptly and effectively utilized to contribute to the stability of the DC power system 21. Since the parent battery 22 and the child battery 23 are connected without a device for adjusting the charge, it is possible to achieve power interchange without delay in control.
  • the power storage equipment 22 and the child battery 23 may be connected via a bidirectional DCDC converter 24. If the bidirectional DCDC converter 24 is used, the voltage specifications of the child battery 23 and the voltage of the DC power system 21 can be matched.
  • Surplus power from a power plant (not shown) using natural energy provided in the DC power system 21 can be stored in the power storage facility 22. Further, if the DC power system 21 has a power shortage and the voltage drops, the power storage facility 22 can supply power.
  • the fuel cell 26 makes it possible to make up for the power shortage by generating electricity using fuel gas of oxygen and hydrogen.
  • FIG. 6A is a graph showing an example of the characteristics of the power storage equipment 22 in which hydrogen gas is sealed when the voltage is taken on the horizontal axis and the amount of electricity is stored on the vertical axis.
  • FIG. 6B is a graph showing the characteristics of the water electrolyzer 25 when voltage is taken on the horizontal axis and electric power is taken on the vertical axis.
  • FIG. 6C is a graph showing the power generation characteristics of the fuel cell 26 when voltage is taken on the horizontal axis and electric power is taken on the vertical axis.
  • FIG. 7 is a graph showing the relationship between voltage and electric power when the power storage equipment 22, the water electrolyzer 25, and the fuel cell 26 are integrated.
  • the DC power system 21 having the power storage equipment 22, the water electrolysis device 25, and the fuel cell 26 operates in response to the voltage of the DC power system 21 to automatically adjust the supply and demand in the DC power system 21. ..
  • BPS27 is, for example, a feeder system for electric railways. It is possible to supply DC power to the train 28 and recover the regenerative power from the train 28.
  • a DC power system equipped with a floating chargeable power storage facility can suitably configure a DC power system.

Abstract

The present invention addresses the problem of constructing a DC power system by using a secondary battery that can be charged to full battery capacity by using an inexpensive and versatile means without using a dedicated charge control device. Further, provided is a method for using a secondary battery without sacrificing battery life due to floating charging. The DC power system according to the present invention comprises: a floating rechargeable parent battery that is directly connected to the DC power system; and a child battery that is connected to the parent battery without going through a device that regulates charging.

Description

[規則26に基づく補充 09.12.2019] 直流電源システム[Replenishment based on Rule 26 09.12.2019] DC power supply system
 本発明は、直流電力システムに関し、詳しくは、フローティング充電が可能な蓄電設備を用いて、電力の融通性を高める直流電力システムに関する。 The present invention relates to a DC power system, and more particularly to a DC power system that enhances power flexibility by using a power storage facility capable of floating charging.
 近年、電力系統における電力供給を補完するものとして、分散型電源、マイクログリッド、再生可能エネルギーへの関心が高まっている。このなかでも、地球温暖化防止に向けたCO削減など環境保全意識の高まりを背景に、太陽光発電や、風力発電等の自然エネルギーを利用した発電システムの普及が拡大しつつある。 In recent years, there has been increasing interest in distributed generation, microgrids, and renewable energies as a complement to power supply in power grids. Among these, the spread of power generation systems that use natural energy such as solar power generation and wind power generation is expanding against the background of increasing awareness of environmental conservation such as CO 2 reduction to prevent global warming.
 自然エネルギーを利用した発電システムは、発生電力が自然現象により左右されやすく、電力系統の需給調整の外乱要因となる。これを補完するものとして、風力発電等の発電システムに蓄電池を接続して、需給調整を行うことが提案されている。 In a power generation system that uses natural energy, the generated power is easily affected by natural phenomena, which is a disturbing factor in the supply and demand adjustment of the power system. As a complement to this, it has been proposed to connect a storage battery to a power generation system such as wind power generation to adjust supply and demand.
 自然エネルギーを利用した発電所の他、電気鉄道の給電所やNAS電池を電源とする直流電力系統が提案されている(例えば、特許文献1)。ここに、電気鉄道においては加速時に直流電力を消費するが減速時に回生電力として回収が可能であるという特徴を有する。NAS電池は需要の少ない夜間電力を用いて蓄電して需給調整を行うところに特徴を有する。 In addition to power plants that use natural energy, DC power systems that use electric railway power stations and NAS batteries as power sources have been proposed (for example, Patent Document 1). Here, the electric railway has a feature that it consumes DC power during acceleration but can be recovered as regenerative power during deceleration. NAS batteries are characterized in that they use nighttime electricity, which is in low demand, to store electricity and adjust supply and demand.
 電源系統の安定度の確保のため電力供給の即応性が要求される用途には、二次電池が適している。このような用途に用いられる二次電池はフローティング充電が可能であることが望ましい。これは、電力不足が生じたときに二次電池が放電して即時に電力を供給することが可能であり、電力不足が解消したときに二次電池を充電して満充電状態を維持する必要性があるからである。 Secondary batteries are suitable for applications that require quick response of power supply to ensure the stability of the power supply system. It is desirable that the secondary battery used for such an application can be charged in a floating manner. This means that when a power shortage occurs, the secondary battery can be discharged and power can be supplied immediately, and when the power shortage is resolved, the secondary battery needs to be charged to maintain a fully charged state. Because there is sex.
 特許文献2に、複数のアルカリ系二次電池を互いに接続した組電池の内部圧力を測定して、測定した内部圧力に基づき組電池の充電制御を行うことにより、フローティング充電を可能にする充電方法が開示されている。 Patent Document 2 describes a charging method that enables floating charging by measuring the internal pressure of an assembled battery in which a plurality of alkaline secondary batteries are connected to each other and controlling the charging of the assembled battery based on the measured internal pressure. Is disclosed.
特開2010-11711号公報Japanese Unexamined Patent Publication No. 2010-11711 特開2010-40297号公報Japanese Unexamined Patent Publication No. 2010-40297 特開2013-118768号公報Japanese Unexamined Patent Publication No. 2013-118768
 一般に、二次電池は満充電して使用されない。満充電するとサイクル寿命は短くなり、まして過充電すれば著しく寿命を短くするからである。二次電池の容量一杯まで充電すれば、二次電池への負担が大きく、二次電池の寿命を縮めることになってしまうので、二次電池の充電上限値と放電下限値を定めこの範囲で充電制御を行えば、容量一杯まで充電する構成に比べて、二次電池に負担をかけることなく充電を行いつつ二次電池の寿命を伸ばすことができる(例えば、特許文献3)。 Generally, the secondary battery is not used after being fully charged. This is because the cycle life is shortened when fully charged, and the life is significantly shortened when overcharged. If the secondary battery is charged to the full capacity, the load on the secondary battery will be heavy and the life of the secondary battery will be shortened. Therefore, the upper limit of charge and the lower limit of discharge of the secondary battery are set within this range. If charge control is performed, the life of the secondary battery can be extended while charging without imposing a burden on the secondary battery, as compared with the configuration of charging to the full capacity (for example, Patent Document 3).
 結局、二次電池の充電において、電池寿命を考慮して、満充電の手前で充電を停止することが一般的に広く行われる。したがって、フローティング充電して利用される二次電池においても、特許文献3に記載のような充電制御を行うことにより、電池寿命特性を犠牲にすることがなく満充電に近い状態を維持しながら二次電池の使用を可能にしている。しかし、このような充電方法は二次電池の有する充電容量を十分に利用しないという課題がある。 After all, when charging a secondary battery, it is generally widely practiced to stop charging before the battery is fully charged in consideration of battery life. Therefore, even in a secondary battery used for floating charging, by performing charge control as described in Patent Document 3, the battery life characteristics are not sacrificed and the state close to full charge is maintained. It enables the use of the next battery. However, such a charging method has a problem that the charging capacity of the secondary battery is not fully utilized.
 更に、二次電池の充電において満充電の手前で充電を停止するためには、電池の仕様および用途に合わせた制御装置を必要とし、そのような装置は汎用性がなく高価となる。 Furthermore, in order to stop charging before the secondary battery is fully charged, a control device according to the battery specifications and applications is required, and such a device is not versatile and expensive.
 自然エネルギーを利用した発電所からの電力を二次電池に保存して電力調整を行うシステムが提案されているが、二次電池の容量を超える電力は受け入れることができず自然エネルギーを有効に利用することができない。更に、充電状態にある電池を利用してデマンドレスポンスや瞬低を防ぎ電力回生を行うには専用のプログラムやプロトコル等の制御装置を必要としている。 A system has been proposed in which power from a power plant that uses natural energy is stored in a secondary battery to adjust the power, but power that exceeds the capacity of the secondary battery cannot be accepted and natural energy is used effectively. Can not do it. Furthermore, a control device such as a dedicated program or protocol is required to prevent demand response and instantaneous decrease and perform power regeneration by using a charged battery.
 本発明が解決しようとする課題は、充電制御の必要がない二次電池を用いて、直流電力システムを構築することにある。また、フローティング充電による電池寿命を犠牲にすることがない二次電池の利用方法を提供する。更に、余剰電力を無駄なく利用する方法を提供する。 The problem to be solved by the present invention is to construct a DC power system using a secondary battery that does not require charge control. It also provides a method of using a secondary battery without sacrificing battery life due to floating charging. Further, a method for utilizing surplus electric power without waste is provided.
 前記した目的を達成するために、本発明に係る直流電力システムは、直流電力系統に充電を調節する装置を介さずに接続されたフローティング充電可能な親電池と、充電を調節する装置を介さずに前記親電池に接続された子電池とを備えている。 In order to achieve the above object, the DC power system according to the present invention includes a floating rechargeable parent battery connected to the DC power system without a device for adjusting the charge, and a device for adjusting the charge. Is equipped with a child battery connected to the parent battery.
 この構成において、前記直流電力系統と前記親電池とが充電を調節する装置を介することなく直接接続されている。また、前記子電池も充電を調節する装置を介することなく前記親電池に接続されている。 In this configuration, the DC power system and the parent battery are directly connected without a device for adjusting charging. Further, the child battery is also connected to the parent battery without going through a device for adjusting charging.
 フローティング充電とは、充電状態にある電池が、放電により消費した電気をその都度充電により補うことをいう。すなわち、二次電池には負荷となる機器もしくは設備と、充電を行う電源が接続されていて、二次電池の使用により減少した電気量分を電源からの充電により補充する。これにより、二次電池は、ほぼ満充電状態を維持することができ、負荷からの要求に即応することができる。したがって、直流電力系統に直接接続されたフローティング充電可能な親電池は、充電器に接続されていても特別な制御装置を必要とせずに満充電状態を維持する。 Floating charging means that the charged battery supplements the electricity consumed by discharging by charging each time. That is, the secondary battery is connected to a device or equipment that becomes a load and a power source for charging, and the amount of electricity reduced by the use of the secondary battery is replenished by charging from the power source. As a result, the secondary battery can be maintained in a substantially fully charged state, and can immediately respond to the demand from the load. Therefore, the floating rechargeable parent battery directly connected to the DC power system maintains a fully charged state without requiring a special control device even when connected to the charger.
 本発明に係る直流電力システムは、前記親電池に設けた中間タップに前記子電池が接続されている。また、前記子電池が電気自動車に搭載された二次電池である。ここに、親電池を構成するセルの接続点を中間タップとして取り出すことが可能になっている。また、本発明に係る直流電力システムは、前記子電池がフローティング充電可能である。 In the DC power system according to the present invention, the child battery is connected to an intermediate tap provided on the parent battery. Further, the child battery is a secondary battery mounted on an electric vehicle. Here, it is possible to take out the connection point of the cells constituting the parent battery as an intermediate tap. Further, in the DC power system according to the present invention, the child battery can be floatingly charged.
 本発明に係る直流電力システムは、前記子電池が移動体、民生用機器または産業用機器のいずれか1に取り付けられた二次電池である。また、本発明に係る直流電力システムは、前記移動体が電気自動車、鉄道車両、フォークリフトまたはクレーンのいずれか1である。 The DC power system according to the present invention is a secondary battery in which the child battery is attached to any one of a mobile body, a consumer device, and an industrial device. Further, in the DC power system according to the present invention, the moving body is any one of an electric vehicle, a railroad vehicle, a forklift or a crane.
 本発明に係る直流電力システムは、水電解装置および燃料電池のいずれか一方もしくは双方と前記親電池とが前記直流電力系統に並列に接続されている。更に、本発明に係る直流電力システムは、前記直流電力系統に電気鉄道のき電系統が接続されている。 In the DC power system according to the present invention, one or both of the water electrolyzer and the fuel cell and the parent battery are connected in parallel to the DC power system. Further, in the DC power system according to the present invention, a feeder system of an electric railway is connected to the DC power system.
本発明に係る直流電力システムは、前記子電池がDCDCコンバータを介して前記直流電力系統に接続されている。また、本発明に係る直流電力システムは、交流電力系統と前記直流電力系統とが双方向インバータで接続されている。 In the DC power system according to the present invention, the child battery is connected to the DC power system via a DCDC converter. Further, in the DC power system according to the present invention, the AC power system and the DC power system are connected by a bidirectional inverter.
 本発明に係る直流電力システムは、前記親電池は水素が封入され負極活物質を水素とする二次電池であって、端子電圧が充電電圧と等しくなり充電電流が流れなくなるまで充電することが可能である。 In the DC power system according to the present invention, the master battery is a secondary battery in which hydrogen is sealed and the negative electrode active material is hydrogen, and can be charged until the terminal voltage becomes equal to the charging voltage and the charging current stops flowing. Is.
 この構成において、水素を封入した二次電池は、満充電に近づけば充電電流が減少し、ついには電池電位が充電電圧と等しくなるので二次電池が損傷することなく満充電状態を維持することができる。満充電状態を維持することが要求される用途に好適に用いることができる。 In this configuration, the charging current of the secondary battery filled with hydrogen decreases as it approaches full charge, and finally the battery potential becomes equal to the charging voltage, so that the secondary battery is maintained in a fully charged state without being damaged. Can be done. It can be suitably used for applications that require maintaining a fully charged state.
 上記の直流電力システムによれば、フローティング充電が可能な蓄電設備を用いて、直流電力システムを構成することにより、電力の融通性を高めると共に電気自動車に搭載の二次電池の有効利用を図る直流電力システムを提供する。また、充電制御する必要がない安価で汎用性のある二次電池の充電システムを構築することができる。更に、フローティング充電による電池寿命を犠牲にすることがない二次電池の利用方法を提供する。これらにより、安価で汎用性のある二次電池の利用技術を提供する。 According to the above-mentioned DC power system, by configuring a DC power system using a power storage facility capable of floating charging, the flexibility of electric power is improved and the secondary battery mounted on the electric vehicle is effectively used. Provides a power system. In addition, it is possible to construct an inexpensive and versatile secondary battery charging system that does not require charge control. Further, the present invention provides a method of using a secondary battery without sacrificing the battery life due to floating charging. As a result, an inexpensive and versatile secondary battery utilization technology is provided.
直流電力システムの構成を説明するための系統図である。It is a system diagram for demonstrating the structure of a DC power system. 図1の直流電力システムの変形例を説明するための系統図である。It is a system diagram for demonstrating the modification of the DC power system of FIG. 図2における親電池と子電池との接続を説明するための系統図である。It is a system diagram for demonstrating the connection between a parent battery and a child battery in FIG. 図1の直流電力システムの別の変形例を説明するための系統図である。It is a system diagram for demonstrating another modification of the DC power system of FIG. 双方向インバータの制御特性の例を示す図である。It is a figure which shows the example of the control characteristic of a bidirectional inverter. 水素ガスを封入した二次電池の電圧と蓄電量の関係を示すグラフである。It is a graph which shows the relationship between the voltage of a secondary battery filled with hydrogen gas, and the amount of electricity stored. 水電解装置の電圧と電力の関係を示すグラフである。It is a graph which shows the relationship between the voltage and electric power of a water electrolyzer. 燃料電池の電圧と電力の関係を示すグラフである。It is a graph which shows the relationship between the voltage and electric power of a fuel cell. 二次電池と水電解装置と燃料電池を統合したときの電圧と電力の関係を示すグラフである。It is a graph which shows the relationship between voltage and electric power when a secondary battery, a water electrolyzer and a fuel cell are integrated.
 以下、本発明に係る一実施形態を説明するが、本発明は下記実施形態に限定されるものではない。 Hereinafter, an embodiment according to the present invention will be described, but the present invention is not limited to the following embodiments.
 本発明の一実施形態について説明するのに先立ち、本発明が適用される二次電池としてニッケル水素電池を例に取り説明する。なお、二次電池のタイプは負極活物質が水素であればよくニッケル水素電池に限定されるものでない。 Prior to explaining one embodiment of the present invention, a nickel-metal hydride battery will be described as an example of a secondary battery to which the present invention is applied. The type of the secondary battery is not limited to the nickel hydrogen battery as long as the negative electrode active material is hydrogen.
 集電体は、電気伝導性が高く、保持した電極材料に通電し得る材料であれば特に限定されない。負極集電体は、電解液中の安定性と耐還元性の観点からNiが好ましい。なお、鉄にニッケルやカーボンを被覆したものを用いてもよい。正極集電体は、電解液中の安定性と耐酸化性の観点からNiが好ましい。 The current collector is not particularly limited as long as it has high electrical conductivity and can energize the held electrode material. The negative electrode current collector is preferably Ni from the viewpoint of stability in the electrolytic solution and reduction resistance. In addition, iron coated with nickel or carbon may be used. The positive electrode current collector is preferably Ni from the viewpoint of stability in the electrolytic solution and oxidation resistance.
 集電体の形状としては、線状、棒状、板状、箔状、網状、織布、不織布、エキスパンド、多孔体、エンボス体又は発泡体があり、このうち充填密度を高めることができること、出力特性が良好なことから、エンボス体又は発泡体が好ましい。 The shape of the current collector includes a linear shape, a rod shape, a plate shape, a foil shape, a net shape, a woven fabric, a non-woven fabric, an expand, a porous body, an embossed body, or a foam, and among them, the filling density can be increased, and the output An embossed body or a foam is preferable because of its good properties.
 負極材料としては、水素吸蔵合金、白金、パラジウムがあげられる。このうち、水素吸蔵容量、充放電特性、自己放電特性およびサイクル寿命特性の観点から、AB5型の希土類-ニッケル合金である、MmNiCoMnAlのミッシュメタルを含んだ5元系合金であることが好ましい。あるいは、超格子水素吸蔵合金といわれるLaMgNi系であることが好ましい。なお、これら合金は1種又は2種以上を用いてもよい。正極材料は、酸化金属が好ましい。例えば、酸化銀、二酸化マンガン、オキシ水酸化ニッケルがあげられる。 Examples of the negative electrode material include hydrogen storage alloys, platinum, and palladium. Of these, from the viewpoint of hydrogen storage capacity, charge / discharge characteristics, self-discharge characteristics, and cycle life characteristics, it is preferable to use a quintuple alloy containing MmNiComnAl misch metal, which is an AB5 type rare earth-nickel alloy. Alternatively, it is preferably a LaMgNi-based alloy called a superlattice hydrogen storage alloy. In addition, you may use 1 type or 2 or more types of these alloys. The positive electrode material is preferably a metal oxide. For example, silver oxide, manganese dioxide, nickel oxyhydroxide can be mentioned.
 導電助剤は、活物質に導電性を付与し、その利用率を高めるためのものである。導電助剤は、放電時に電解液に溶出することなく、かつ、水素で還元されにくい炭素材料であることが好ましい。正極に用いる導電助剤はグラファイト化したソフトカーボンがより好ましい。 The conductive auxiliary agent is for imparting conductivity to the active material and increasing its utilization rate. The conductive auxiliary agent is preferably a carbon material that does not elute into the electrolytic solution during discharge and is not easily reduced by hydrogen. The conductive auxiliary agent used for the positive electrode is more preferably graphitized soft carbon.
 負極材料、結着剤、および、導電助剤を混合してペースト状に混練する。このペーストを、集電体に塗布または充填し、乾燥させる。その後、ローラープレスで集電体を圧延することにより、負極を作製する。同様に、正極材料、結着剤、および、導電助剤を混合してペースト状に混練する。このペーストを、集電体に塗布または充填し、乾燥させる。その後、ローラープレスで集電体を圧延することにより、正極を作製する。 The negative electrode material, binder, and conductive auxiliary agent are mixed and kneaded into a paste. This paste is applied or filled in the current collector and dried. Then, the current collector is rolled with a roller press to produce a negative electrode. Similarly, the positive electrode material, the binder, and the conductive auxiliary agent are mixed and kneaded into a paste. This paste is applied or filled in the current collector and dried. Then, a positive electrode is produced by rolling the current collector with a roller press.
 結着剤としては、例えば、ポリアクリル酸ソーダ、メチルセルロース、カルボキシメチルセルロース(CMC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、エチレン-ビニルアルコール、エチレン酢酸ビニル共重合体(EVA)、ポリエチレン(PE)、ポリプロピレン(PP)、フッ素系樹脂、スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)が挙げられる。 Examples of the binder include sodium polyacrylate, methyl cellulose, carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), ethylene-vinyl alcohol, ethylene vinyl acetate copolymer (EVA), polyethylene (). PE), polypropylene (PP), fluororesin, styrene-ethylene-butylene-styrene copolymer (SEBS) can be mentioned.
 また、結着剤としてポリテトラフルオロエチレン(PTFE)を使用してもよい。PTFEは、水素により還元されにくく、水素雰囲気中で長期間使用しても劣化が進みにくく、長寿命が期待できる。 Alternatively, polytetrafluoroethylene (PTFE) may be used as a binder. PTFE is less likely to be reduced by hydrogen, is less likely to deteriorate even when used for a long period of time in a hydrogen atmosphere, and can be expected to have a long life.
 負極材料、結着剤、および、導電助剤の合計を100質量%とした場合、負極に配合される結着剤の質量比は、20質量%以下に設定するのが好ましく、10質量%以下に設定するのがより好ましく、5質量%以下に設定するのがさらに好ましい。結着剤は電子伝導性とイオン伝導性に乏しく、結着剤の割合が20質量%を超えると高容量化を図ることが困難になる。正極材料、結着剤、および、導電助剤の合計を100質量%とした場合、正極に配合される結着剤の質量比は、20質量%以下に設定するのが好ましく、10質量%以下に設定するのがより好ましく、5質量%以下に設定するのがさらに好ましい。 When the total of the negative electrode material, the binder, and the conductive auxiliary agent is 100% by mass, the mass ratio of the binder to be blended in the negative electrode is preferably set to 20% by mass or less, preferably 10% by mass or less. It is more preferable to set it to 5% by mass or less. The binder has poor electron conductivity and ionic conductivity, and if the proportion of the binder exceeds 20% by mass, it becomes difficult to increase the capacity. When the total of the positive electrode material, the binder, and the conductive auxiliary agent is 100% by mass, the mass ratio of the binder to be blended in the positive electrode is preferably set to 20% by mass or less, and 10% by mass or less. It is more preferable to set it to 5% by mass or less.
 電解液は、水素を活物質とする電池で用いられるものであれば特に限定されないが、例えば、水酸化カリウム(KOH)、水酸化リチウム(LiOH)、水酸化ナトリウム(NaOH)などの塩を水に溶かしたものが好適である。電池の出力特性の観点から、電解液は水酸化ナトリウム水溶液であることが好ましい。 The electrolytic solution is not particularly limited as long as it is used in a battery using hydrogen as an active material, but for example, salts such as potassium hydroxide (KOH), lithium hydroxide (LiOH), and sodium hydroxide (NaOH) are added to water. The one dissolved in is preferable. From the viewpoint of the output characteristics of the battery, the electrolytic solution is preferably an aqueous sodium hydroxide solution.
 セパレータとしては、水素を活物質とする電池に用いられる公知のものが使用できる。セパレータの形状としては、微多孔膜、織布、不織布、圧粉体が挙げられ、このうち、出力特性と作製コストの観点から不織布が好ましい。セパレータの材質としては、特に限定されないが、耐アルカリ性、耐酸化性、耐還元性を有することが好ましい。具体的にはポリオレフィン系繊維が好ましく、例えば、ポリプロピレンもしくはポリエチレンが好ましい。この他に、ポリテトラフルオロエチレン(PTFE)、ポリイミド(PI)、ポリアミド、ポリアミドイミド、アラミドの材料が挙げられる。また、これらのセパレータにセラミックスを被覆し、耐熱性、親液性、ガス透過性を向上させてもよい。 As the separator, a known one used for batteries using hydrogen as an active material can be used. Examples of the shape of the separator include a microporous film, a woven fabric, a non-woven fabric, and a green compact, and among these, a non-woven fabric is preferable from the viewpoint of output characteristics and production cost. The material of the separator is not particularly limited, but it is preferably having alkali resistance, oxidation resistance, and reduction resistance. Specifically, polyolefin fibers are preferable, and for example, polypropylene or polyethylene is preferable. Other materials include polytetrafluoroethylene (PTFE), polyimide (PI), polyamide, polyamideimide, and aramid. Further, these separators may be coated with ceramics to improve heat resistance, liquid friendliness, and gas permeability.
 ポリオレフィン系繊維は疎水性であるので、親水処理する必要がある。水素ガス雰囲気中で使用する場合は、フッ素ガス処理を施したセパレータが好ましい。また、金属酸化物を表面に塗布もしくは被覆したセパレータが好ましい。 Since polyolefin fibers are hydrophobic, they need to be treated with hydrophilicity. When used in a hydrogen gas atmosphere, a separator treated with fluorine gas is preferable. Further, a separator coated or coated with a metal oxide on the surface is preferable.
 フッ素ガス処理もしくは金属酸化物の塗布により、親水性を付与したセパレータは、水素ガス中で使用しても、水素により親水性が失われにくく、長寿命が期待できる。
 フッ素ガス処理は、例えば、不活性ガスで希釈したフッ素ガスに、気密空間の中で不織布をさらすことにより不織布の繊維表面を親水化することができる。また、金属酸化物としては例えば、チタン酸化物、ジルコニア、酸化イットリウム、ハフニウム酸化物、酸化カルシウム、酸化マグネシウム、酸化スカンジウムが挙げられる。このうち、ジルコニア(ZrO)もしくは酸化イットリウム(Y)が好ましい。金属酸化物は親水性を有しており、かつ、水素により劣化しにくいので長期にわたって親水性を保持し、電解液のドライアウトを抑制することが可能である。
A separator that has been imparted with hydrophilicity by treatment with fluorine gas or coated with a metal oxide can be expected to have a long life because the hydrophilicity is not easily lost by hydrogen even when used in hydrogen gas.
In the fluorine gas treatment, for example, the fiber surface of the non-woven fabric can be made hydrophilic by exposing the non-woven fabric to fluorine gas diluted with an inert gas in an airtight space. Examples of the metal oxide include titanium oxide, zirconia, yttrium oxide, hafnium oxide, calcium oxide, magnesium oxide, and scandium oxide. Of these, zirconia (ZrO 2 ) or yttrium oxide (Y 2 O 3 ) is preferable. Since the metal oxide has hydrophilicity and is not easily deteriorated by hydrogen, it can maintain hydrophilicity for a long period of time and suppress the dryout of the electrolytic solution.
 負極と正極を、予め電解液を含浸させたセパレータを介して重ね合わせて電池の外装体に収納した後に、密閉して電池を組立てる。電池の組立完了後に、電解液および水素ガスの供給口から真空引きして、電池内部の空気を排除する。次に、4MPaの水素ガスタンクを水素ガスの供給口に接続して、電池内部に水素ガスを封入する。この時点で、負極は水素ガスにより化学的に充電されて満充電の状態となる。好ましくは、電池としては正極規制とされている。 The negative electrode and the positive electrode are overlapped with each other via a separator impregnated with an electrolytic solution in advance and stored in the outer body of the battery, and then sealed to assemble the battery. After the battery assembly is completed, the air inside the battery is removed by evacuating from the electrolyte and hydrogen gas supply ports. Next, a 4 MPa hydrogen gas tank is connected to the hydrogen gas supply port, and hydrogen gas is sealed inside the battery. At this point, the negative electrode is chemically charged by hydrogen gas and is in a fully charged state. Preferably, the battery is regulated to have a positive electrode.
 電池に供給された水素ガスは、電池内部の隙間に保持されるので、水素貯蔵室のような特別な空間を必要としない。水素ガスを保持するために電池の寸法は大きくならない。そして、正極で発生する酸素ガスは、直ちに正極の空隙に保持されている水素ガスと結合して水となるので、正極に含まれる導電助剤が酸化されることはない。また、正極外に漏れだした酸素ガスは、電池に封入された水素ガスおよび水素吸蔵合金に保持された水素ガスと結合するので、水素吸蔵合金は酸化されることがない。 The hydrogen gas supplied to the battery is held in the gap inside the battery, so it does not require a special space like a hydrogen storage chamber. The size of the battery does not increase to hold the hydrogen gas. Then, the oxygen gas generated at the positive electrode immediately combines with the hydrogen gas held in the voids of the positive electrode to become water, so that the conductive auxiliary agent contained in the positive electrode is not oxidized. Further, since the oxygen gas leaked to the outside of the positive electrode is combined with the hydrogen gas sealed in the battery and the hydrogen gas held in the hydrogen storage alloy, the hydrogen storage alloy is not oxidized.
  二次電池において、充電反応自体が発熱反応であるので、定電圧制御下で継続的に充電して満充電の状態を保とうとすると、過充電による電池温度の上昇→電池内部抵抗の低下→充電電流の増加→電池温度のさらなる上昇、という悪循環を引き起こし、電池内部圧力の上昇や電池性能の劣化につながる。したがって、二次電池を、常に満充電状態に維持されることが要求される用途に適用するに際しては、過充電とならないよう十分な配慮をするか、もしくは、過充電とならないように充電制御を行うことが必要とされる。 In a secondary battery, the charging reaction itself is an exothermic reaction, so if you try to keep the battery fully charged by continuously charging it under constant voltage control, the battery temperature will rise due to overcharging → the internal resistance of the battery will decrease → charging. It causes a vicious cycle of increasing current → further increasing battery temperature, leading to an increase in battery internal pressure and deterioration of battery performance. Therefore, when applying the secondary battery to applications that require it to be maintained in a fully charged state at all times, sufficient consideration should be given to prevent overcharging, or charge control should be performed to prevent overcharging. It is necessary to do.
 本発明の水素を封入した電池によれば、フローティング充電を行えば、負極から水素ガスが発生し、充電が進むにつれて、発生水素ガス量が増えて電池内部の水素ガス濃度は上昇する。ネルンストの式によれば電池内部の水素ガス濃度の上昇につれて負極の電位は低下する。この結果電池の端子電圧が緩やかに上昇し、ついには充電電圧と等しくなる。すなわち充電が進めば電池電位が上昇して充電電圧と等しくなれば充電電流は流れなくなり、事実上、充電は停止する。ここに、負極から発生した水素ガスは化学エネルギーとして電池内に蓄えられる。 According to the hydrogen-filled battery of the present invention, when floating charging is performed, hydrogen gas is generated from the negative electrode, and as the charging progresses, the amount of hydrogen gas generated increases and the hydrogen gas concentration inside the battery rises. According to the Nernst equation, the potential of the negative electrode decreases as the hydrogen gas concentration inside the battery increases. As a result, the terminal voltage of the battery gradually rises and finally becomes equal to the charging voltage. That is, as charging progresses, the battery potential rises and when it becomes equal to the charging voltage, the charging current stops flowing, and charging is virtually stopped. Here, the hydrogen gas generated from the negative electrode is stored in the battery as chemical energy.
 以上より、本発明の二次電池は充電量を制限する手段を講ずることなく、フローティング充電を行うことができる。これにより、当該二次電池は電池寿命を犠牲にすることなく、常に満充電状態を維持することが可能となっている。これは、水素を封入した電池の第1の特徴といえる。 From the above, the secondary battery of the present invention can be charged in a floating manner without taking measures to limit the amount of charge. As a result, the secondary battery can always be maintained in a fully charged state without sacrificing battery life. This can be said to be the first feature of the battery filled with hydrogen.
 水素を封入した電池の第2の特徴は、充電を終了した電圧から放電が開始していることである。すなわち、充電終了時の電圧から放電が開始している。もっとも、充電から放電に切り替わる際に、酸化還元反応の切り替わりに起因する電圧の低下がみられることはあるがその程度はわずかである。 The second feature of the hydrogen-filled battery is that the discharge starts from the voltage at which charging is completed. That is, the discharge starts from the voltage at the end of charging. However, when switching from charging to discharging, a voltage drop due to the switching of the redox reaction may be observed, but the degree of the voltage drop is slight.
 ここに充電終了時とは正確には充電を単に停止した時のことでないことに留意しなければならない。充電終了時とは、寿命を犠牲にしない限度で出来るだけ多く充電をし終えた時であって、本発明に係る二次電池では、充電電流が流れなくなって充電が終了する。実際には満充電に近づくにつれ微小電流が流れ続けるので充電電流がゼロになるには時間を要す。また、放電開始電圧とは、充電を終了した電池のそのままの状態における放電開始時の電圧である。したがって、その電池は、使用による放電や自然放電する前の状態である。 It should be noted here that the end of charging is not exactly the time when charging is simply stopped. The end of charging is the time when as much charging as possible is completed without sacrificing the life, and in the secondary battery according to the present invention, the charging current does not flow and charging ends. Actually, it takes time for the charging current to become zero because a minute current continues to flow as it approaches full charge. The discharge start voltage is the voltage at the start of discharge of the battery that has been charged as it is. Therefore, the battery is in a state before it is discharged due to use or spontaneously discharged.
 図1を用いて本発明に係る直流電力システムについて説明する。図1は直流電力システムの概略構成を示す系統図である。交流電力系統11は双方向インバータ12を介して直流電力系統21に接続されている。交流電力系統11には多数の需要家13が接続されていて、各需要家13に交流電力が供給可能になっている。直流電力系統21には蓄電設備22、水電解装置25、燃料電池26およびBPS(Battery Power System)27が接続されていて、親電池である蓄電設備22には多数の子電池23が接続されている。 The DC power system according to the present invention will be described with reference to FIG. FIG. 1 is a system diagram showing a schematic configuration of a DC power system. The AC power system 11 is connected to the DC power system 21 via a bidirectional inverter 12. A large number of consumers 13 are connected to the AC power system 11, and AC power can be supplied to each customer 13. A power storage facility 22, a water electrolysis device 25, a fuel cell 26, and a BPS (Battery Power System) 27 are connected to the DC power system 21, and a large number of child batteries 23 are connected to the power storage facility 22 which is a master battery. ..
 双方向インバータ12は、例えば、図5に示すような制御特性を有していて、電力の向きと特性が変更可能になっている。動作電圧が基準電圧V0より大きいとき順変換して交流電力から直流電力に変換して、基準電圧V0より小さいとき逆変換して直流電力から交流電力に変換する。基準電圧V0は変更可能な設定値であってもよく、別途定める制御変数を用いて調節してもよい。双方向インバータ12の制御特性はパラメータを調節することにより変更することが可能である。 The bidirectional inverter 12 has, for example, the control characteristics shown in FIG. 5, and the direction and characteristics of the electric power can be changed. When the operating voltage is larger than the reference voltage V0, it is forward-converted and converted from AC power to DC power, and when it is smaller than the reference voltage V0, it is reverse-converted and converted from DC power to AC power. The reference voltage V0 may be a changeable set value, or may be adjusted by using a control variable specified separately. The control characteristics of the bidirectional inverter 12 can be changed by adjusting the parameters.
 例えば、交流電力系統11の電圧が所定の値より大きく、直流電力系統21の電圧が所定の値より小さいときに、双方向インバータ12の制御特性に従って自動的に交流電力系統11から直流電力系統21に送電して電力の融通、調節を行うことが可能であるし、この逆も可能である。 For example, when the voltage of the AC power system 11 is larger than the predetermined value and the voltage of the DC power system 21 is smaller than the predetermined value, the AC power system 11 to the DC power system 21 are automatically adjusted according to the control characteristics of the bidirectional inverter 12. It is possible to transmit power to the power grid and adjust the power, and vice versa.
 直流電力系統21とフローティング充電可能な蓄電設備22とは直接接続されている。ここに直接接続されているとは、充電を調節する装置を介さずに接続されていることである。一般に、二次電池は過充電すると著しく寿命特性が悪くなるので、満充電の手前で充電を停止する制御を行っている。蓄電設備22はフローティング充電が可能であるのでこのような制御装置を必要としない。 The DC power system 21 and the power storage equipment 22 capable of floating charging are directly connected. Directly connected here means that it is connected without going through a device that regulates charging. In general, when a secondary battery is overcharged, its life characteristic deteriorates remarkably, so control is performed to stop charging before it is fully charged. Since the power storage equipment 22 can be charged in a floating manner, such a control device is not required.
 蓄電設備22は、水素吸蔵合金を負極材料とし、水素を負極活物質とする二次電池であってもよい。このような二次電池の実施例として、水素ガスを封入したニッケル水素電池が挙げられる。かかる二次電池であれば、端子電圧が充電電圧と等しくなり充電電流が流れなくなるまで充電することが可能である。このとき、充電終了時の電圧と放電開始時の電圧が等しい。電池寿命を犠牲にすることなく常に満充電状態を維持することが可能である。 The power storage equipment 22 may be a secondary battery using a hydrogen storage alloy as a negative electrode material and hydrogen as a negative electrode active material. An example of such a secondary battery is a nickel-metal hydride battery filled with hydrogen gas. Such a secondary battery can be charged until the terminal voltage becomes equal to the charging voltage and the charging current stops flowing. At this time, the voltage at the end of charging and the voltage at the start of discharging are equal. It is possible to maintain a fully charged state at all times without sacrificing battery life.
 蓄電設備22はいわゆる「親電池」であり、親電池22に「子電池」が接続されている。子電池23は直接直流電力系統21に接続されていてもよい。ここに、子電池23はフローティング充電が可能な二次電池である。子電池23は充電を調節する装置を介さずに直接直流電力系統21および親電池22に接続されていてもよい。更に、子電池23が前述したような水素ガスを封入したニッケル水素電池であれば、電池寿命を犠牲にすることなく常に満充電状態を維持することが可能である。 The power storage equipment 22 is a so-called "parent battery", and a "child battery" is connected to the parent battery 22. The slave battery 23 may be directly connected to the DC power system 21. Here, the child battery 23 is a secondary battery capable of floating charging. The child battery 23 may be directly connected to the DC power system 21 and the parent battery 22 without going through a device for adjusting charging. Further, if the child battery 23 is a nickel-metal hydride battery filled with hydrogen gas as described above, it is possible to always maintain a fully charged state without sacrificing the battery life.
 蓄電設備22から子電池23への充電は内部抵抗の小さな二次電池同士の接続であるので、従来の充電スタンドにおける交流電力による充電よりも短い時間で充電することが可能である。また、蓄電設備22が満充電状態を維持しているので、子電池23も満充電されている。 Since the charging from the power storage equipment 22 to the child battery 23 is a connection between secondary batteries having a small internal resistance, it is possible to charge in a shorter time than charging by AC power in a conventional charging stand. Further, since the power storage equipment 22 is maintained in a fully charged state, the child battery 23 is also fully charged.
 図2に示すように蓄電設備22の一部と子電池23とが並列に接続されていてもよい。蓄電設備22に設けた複数の中間タップt1、t2、t3、tcと子電池23a、23b,23cとの接続例を図3に示す。すなわち、蓄電設備22に設けられた中間タップt1、t2、t3、tcにより、種々の仕様の直流電力が取り出し可能となっている。多数のセルを直列に接続した中間タップからはより高電圧の電力を取り出すことができる。多数のセルを並列に接続した中間タップからは高容量の電力を取り出すことができる。これらの中間タップと子電池23とを並列に接続すれば子電池23の充電が可能となる。 As shown in FIG. 2, a part of the power storage equipment 22 and the child battery 23 may be connected in parallel. FIG. 3 shows an example of connection between the plurality of intermediate taps t1, t2, t3, tc provided in the power storage equipment 22 and the child batteries 23a, 23b, 23c. That is, DC power of various specifications can be taken out by the intermediate taps t1, t2, t3, and tc provided in the power storage equipment 22. Higher voltage power can be extracted from an intermediate tap in which a large number of cells are connected in series. A large amount of power can be extracted from an intermediate tap in which a large number of cells are connected in parallel. If these intermediate taps and the child battery 23 are connected in parallel, the child battery 23 can be charged.
 多数のセルから構成される蓄電設備22において、直列に接続されたセル間を中間タップとして取り出せば、好みの電圧仕様の直流電源を構成することができる。直列に接続されかつ並列に接続されたセル間を中間タップとして取り出せば、好みの容量を持つ直流電源を構成することができる。中間タップを適宜選定することにより、子電池23の仕様および用途に応じた子電池23の充電が可能となる。 In the power storage equipment 22 composed of a large number of cells, a DC power supply having a desired voltage specification can be configured by taking out the cells connected in series as an intermediate tap. A DC power supply having a desired capacity can be configured by taking out the cells connected in series and connected in parallel as an intermediate tap. By appropriately selecting the intermediate tap, the child battery 23 can be charged according to the specifications and applications of the child battery 23.
 子電池23の例として、具体的には電気自動車に搭載の電池が考えられるが、鉄道車両、フォークリフトおよびガントリークレーン等の移動体に搭載された電池であってもよい。さらに、子電池23は民生用機器および産業用機器のいずれか1に取り付けられた二次電池であってもよい。民生用機器としてはパーソナルコンピュータ、電話設備、掃除機等が挙げられる。産業用機器として産業用ロボット、荷役機械等が挙げられる。 As an example of the child battery 23, a battery mounted on an electric vehicle can be specifically considered, but a battery mounted on a moving body such as a railroad vehicle, a forklift or a gantry crane may be used. Further, the child battery 23 may be a secondary battery attached to any one of consumer equipment and industrial equipment. Examples of consumer equipment include personal computers, telephone equipment, vacuum cleaners, and the like. Examples of industrial equipment include industrial robots and cargo handling machines.
 直流電力系統21の負荷が増加して直流電力系統21の電圧が低下して蓄電設備22の電圧より下がれば、蓄電設備22から直流電力系統21に電力が供給される。この電力の流れは電圧の大小により定まり特別な制御装置を必要としない。すなわち、直流電力系統21と蓄電設備22は直接接続されていることに特徴を有する。蓄電設備22はフローティング充電可能な二次電池であるので電池寿命を犠牲にすることなく満充電状態を維持する。 If the load of the DC power system 21 increases and the voltage of the DC power system 21 drops below the voltage of the power storage facility 22, power is supplied from the power storage facility 22 to the DC power system 21. This power flow is determined by the magnitude of the voltage and does not require a special control device. That is, the DC power system 21 and the power storage equipment 22 are directly connected to each other. Since the power storage equipment 22 is a floating rechargeable secondary battery, it maintains a fully charged state without sacrificing battery life.
 例えば、子電池23が電気自動車に搭載された電池である場合、電気自動車の台数は多大であるので子電池23の全体の電力容量は膨大なものとなる。直流電力系統21に電力の不足が生じたとき、速やかにこの子電池23の電力の一部が有効に活用されて直流電力系統21の安定に資することができる。親電池22と子電池23は充電を調節する装置なしに接続されるので、制御の遅れなしに電力の融通を図ることが可能である。 For example, when the child battery 23 is a battery mounted on an electric vehicle, the total power capacity of the child battery 23 becomes enormous because the number of electric vehicles is large. When a power shortage occurs in the DC power system 21, a part of the power of the child battery 23 can be promptly and effectively utilized to contribute to the stability of the DC power system 21. Since the parent battery 22 and the child battery 23 are connected without a device for adjusting the charge, it is possible to achieve power interchange without delay in control.
 蓄電設備22と子電池23とは、図4に示すように、双方向DCDCコンバータ24を介して接続されていてもよい。双方向DCDCコンバータ24を用いれば子電池23の電圧仕様と直流電力系統21の電圧の適合を図ることができる。 As shown in FIG. 4, the power storage equipment 22 and the child battery 23 may be connected via a bidirectional DCDC converter 24. If the bidirectional DCDC converter 24 is used, the voltage specifications of the child battery 23 and the voltage of the DC power system 21 can be matched.
 直流電力系統21に設けられた自然エネルギーを利用した発電所(図示せず)からの余剰電力を蓄電設備22に蓄えることができる。また、直流電力系統21に電力不足が生じて電圧が降下すれば、蓄電設備22から電力を補給することができる。 Surplus power from a power plant (not shown) using natural energy provided in the DC power system 21 can be stored in the power storage facility 22. Further, if the DC power system 21 has a power shortage and the voltage drops, the power storage facility 22 can supply power.
 直流電力系統21の電力に余剰が生じたとき、水電解装置25を用いて水電解を行うことにより燃料ガスとして蓄えることができるので、余剰電力を有効に活用することを可能にする。燃料電池26は、直流電力系統21の電力に不足が生じたとき、酸素および水素の燃料ガスを用いて発電して電力不足を補うことを可能にする。 When there is a surplus in the electric power of the DC power system 21, it can be stored as fuel gas by performing water electrolysis using the water electrolyzer 25, so that the surplus electric power can be effectively utilized. When the power of the DC power system 21 becomes insufficient, the fuel cell 26 makes it possible to make up for the power shortage by generating electricity using fuel gas of oxygen and hydrogen.
 図6Aは、横軸に電圧をとり縦軸に蓄電量をとったときの水素ガスを封入した蓄電設備22の特性の一例を示すグラフである。図6Bは、横軸に電圧をとり縦軸に電力をとったときの水電解装置25の特性を示すグラフである。図6Cは、横軸に電圧をとり縦軸に電力をとったときの燃料電池26の発電特性を示すグラフである。図7は、蓄電設備22と水電解装置25と燃料電池26を統合したときの電圧と電力の関係を示すグラフである。 FIG. 6A is a graph showing an example of the characteristics of the power storage equipment 22 in which hydrogen gas is sealed when the voltage is taken on the horizontal axis and the amount of electricity is stored on the vertical axis. FIG. 6B is a graph showing the characteristics of the water electrolyzer 25 when voltage is taken on the horizontal axis and electric power is taken on the vertical axis. FIG. 6C is a graph showing the power generation characteristics of the fuel cell 26 when voltage is taken on the horizontal axis and electric power is taken on the vertical axis. FIG. 7 is a graph showing the relationship between voltage and electric power when the power storage equipment 22, the water electrolyzer 25, and the fuel cell 26 are integrated.
 直流電力系統21の電圧が低下したときは、蓄電設備22と燃料電池26からの電力が直流電力系統21に供給される。逆に、直流電力系統21の規定の電圧より大きいとき蓄電設備22は充電され水電解装置25は燃料ガスを発生し余剰電力を貯蔵する。 When the voltage of the DC power system 21 drops, the power from the power storage facility 22 and the fuel cell 26 is supplied to the DC power system 21. On the contrary, when the voltage is larger than the specified voltage of the DC power system 21, the power storage equipment 22 is charged and the water electrolyzer 25 generates fuel gas and stores surplus power.
 蓄電設備22、水電解装置25および燃料電池26を有する直流電力系統21は図7に示すように直流電力系統21の電圧に応じて作動して、直流電力系統21における需給調整を自動的に行う。 As shown in FIG. 7, the DC power system 21 having the power storage equipment 22, the water electrolysis device 25, and the fuel cell 26 operates in response to the voltage of the DC power system 21 to automatically adjust the supply and demand in the DC power system 21. ..
 BPS27は例えば電気鉄道のき電システムが挙げられる。電車28に直流電力を供給すると共に、電車28からの回生電力の回収を行うことができる。 BPS27 is, for example, a feeder system for electric railways. It is possible to supply DC power to the train 28 and recover the regenerative power from the train 28.
 フローティング充電可能な蓄電設備を備えた直流電力システムは、直流電力系統を好適に構成することができる。 A DC power system equipped with a floating chargeable power storage facility can suitably configure a DC power system.
11 交流電力系統
12 双方向インバータ
13 需要家
21 直流電力系統
22 蓄電設備(親電池)
23 子電池
24 双方向DCDCコンバータ
25 水電解装置
26 燃料電池
27 BPS(Battery Power System)
28 電車
 
 
11 AC power system 12 Bidirectional inverter 13 Consumer 21 DC power system 22 Power storage equipment (parent battery)
23 Child battery 24 Bidirectional DCDC converter 25 Water electrolyzer 26 Fuel cell 27 BPS (Battery Power System)
28 train

Claims (10)

  1.  直流電力系統に充電を調節する装置を介さずに接続されたフローティング充電可能な親電池と、充電を調節する装置を介さずに前記親電池に接続された子電池と、を備えた直流電力システム。 A DC power system including a floating rechargeable master battery connected to the DC power system without a device for adjusting charge and a child battery connected to the master battery without a device for adjusting charge. ..
  2.  前記親電池に設けた中間タップに前記子電池が接続された請求項1に記載の直流電力システム。 The DC power system according to claim 1, wherein the child battery is connected to an intermediate tap provided on the parent battery.
  3.  前記子電池がフローティング充電可能である請求項2に記載の直流電力システム。 The DC power system according to claim 2, wherein the child battery can be floatingly charged.
  4.  前記子電池が移動体、民生用機器または産業用機器のいずれか1に取り付けられた二次電池である請求項2または3に記載に記載の直流電力システム。 The DC power system according to claim 2 or 3, wherein the child battery is a secondary battery attached to any one of a mobile body, a consumer device, and an industrial device.
  5.  前記移動体が電気自動車、鉄道車両、フォークリフトまたはクレーンのいずれか1である請求項4に記載の直流電力システム。 The DC power system according to claim 4, wherein the moving body is any one of an electric vehicle, a railroad vehicle, a forklift, and a crane.
  6.  水電解装置および燃料電池のいずれか一方もしくは双方と前記親電池とが前記直流電力系統に並列に接続された請求項1~5のいずれか一項に記載の直流電力システム。 The DC power system according to any one of claims 1 to 5, wherein either or both of the water electrolyzer and the fuel cell and the parent battery are connected in parallel to the DC power system.
  7.  前記直流電力系統に電気鉄道のき電系統が接続されている請求項1~6のいずれか一項に記載の直流電力システム。 The DC power system according to any one of claims 1 to 6, wherein the feeder system of an electric railway is connected to the DC power system.
  8.  前記子電池がDCDCコンバータを介して前記直流電力系統に接続された請求項1~7のいずれか一項に記載の直流電力システム。 The DC power system according to any one of claims 1 to 7, wherein the child battery is connected to the DC power system via a DCDC converter.
  9.  交流電力系統と前記直流電力系統とが双方向インバータで接続された請求項1~8のいずれか一項に記載の直流電力システム。 The DC power system according to any one of claims 1 to 8, wherein the AC power system and the DC power system are connected by a bidirectional inverter.
  10.  前記親電池は水素が封入され負極活物質を水素とする二次電池であって、端子電圧が充電電圧と等しくなり充電電流が流れなくなるまで充電することが可能である請求項1~8のいずれか一項に記載の直流電力システム。
     
    The parent battery is a secondary battery in which hydrogen is sealed and the negative electrode active material is hydrogen, and can be charged until the terminal voltage becomes equal to the charging voltage and the charging current stops flowing. The DC power system described in item 1.
PCT/JP2019/045229 2019-11-19 2019-11-19 Dc power supply system WO2021100112A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/045229 WO2021100112A1 (en) 2019-11-19 2019-11-19 Dc power supply system
JP2020559006A JP7168243B2 (en) 2019-11-19 2019-11-19 DC power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/045229 WO2021100112A1 (en) 2019-11-19 2019-11-19 Dc power supply system

Publications (1)

Publication Number Publication Date
WO2021100112A1 true WO2021100112A1 (en) 2021-05-27

Family

ID=75981546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045229 WO2021100112A1 (en) 2019-11-19 2019-11-19 Dc power supply system

Country Status (2)

Country Link
JP (1) JP7168243B2 (en)
WO (1) WO2021100112A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021125875A1 (en) 2021-10-05 2023-04-06 Sma Solar Technology Ag Method for operating an electrolyser and a fuel cell via a common converter, device and electrolysis system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018826A (en) * 2001-06-27 2003-01-17 Denso Corp Dc-dc converter device for battery charge
JP2009067205A (en) * 2007-09-12 2009-04-02 Toshiba Corp Sub station using storage element, and electric railroad feeding system
WO2009107715A1 (en) * 2008-02-29 2009-09-03 川崎重工業株式会社 Electric railway power-supply system
JP2011126370A (en) * 2009-12-16 2011-06-30 Kawasaki Heavy Ind Ltd Power supply system and power supply method
JP2019112036A (en) * 2017-12-26 2019-07-11 株式会社Gsユアサ Power storage device for railway

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208694A (en) 2005-01-27 2006-08-10 Nikon Corp Optical element, exposure apparatus, exposure method and method for manufacturing device having fine pattern
WO2012046527A1 (en) * 2010-10-04 2012-04-12 株式会社村田製作所 Power supply device
JP2017076579A (en) * 2015-10-16 2017-04-20 オートモーティブエナジーサプライ株式会社 Battery system and battery pack
JP6627026B2 (en) * 2017-10-20 2020-01-08 エクセルギー・パワー・システムズ株式会社 DC power interconnection system and secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018826A (en) * 2001-06-27 2003-01-17 Denso Corp Dc-dc converter device for battery charge
JP2009067205A (en) * 2007-09-12 2009-04-02 Toshiba Corp Sub station using storage element, and electric railroad feeding system
WO2009107715A1 (en) * 2008-02-29 2009-09-03 川崎重工業株式会社 Electric railway power-supply system
JP2011126370A (en) * 2009-12-16 2011-06-30 Kawasaki Heavy Ind Ltd Power supply system and power supply method
JP2019112036A (en) * 2017-12-26 2019-07-11 株式会社Gsユアサ Power storage device for railway

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021125875A1 (en) 2021-10-05 2023-04-06 Sma Solar Technology Ag Method for operating an electrolyser and a fuel cell via a common converter, device and electrolysis system
WO2023057141A1 (en) 2021-10-05 2023-04-13 Sma Solar Technology Ag Method for operating an electrolyser and a fuel cell by means of a common converter, apparatus and electrolysis system
DE102021125875B4 (en) 2021-10-05 2023-04-27 Sma Solar Technology Ag Method for operating an electrolyser and a fuel cell via a common converter, device and electrolysis system

Also Published As

Publication number Publication date
JP7168243B2 (en) 2022-11-09
JPWO2021100112A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
Hannan et al. Review of energy storage systems for electric vehicle applications: Issues and challenges
JP2016535408A (en) New flow battery and its use
AU2014343351A1 (en) Self healing liquid/solid state battery
JP6056936B2 (en) Hydrogen production apparatus and hydrogen production method
JP6627025B2 (en) DC power supply method
JP6288655B2 (en) Reversible fuel cell storage battery
JP6060335B2 (en) Reversible fuel cell with third electrode
EP2869383B1 (en) Large-capacity power storage device
JP5594744B2 (en) Reversible fuel cell
Solyali et al. A comprehensive state‐of‐the‐art review of electrochemical battery storage systems for power grids
KR20160059974A (en) Battery system and redox flow battery comprising same
JP6627026B2 (en) DC power interconnection system and secondary battery
JP6792116B1 (en) DC power interconnection system
WO2021100112A1 (en) Dc power supply system
JP6856293B1 (en) Reversible fuel cell
JP6903334B2 (en) Power trading system and storage battery
JP2019075874A (en) Charging system
JPS5928027B2 (en) Rechargeable chemical battery or storage battery
Mondal et al. Emerging nanomaterials in energy storage
JP2012248529A (en) Hybrid hydrogen fuel cell
Rosen et al. Battery Technology: From Fundamentals to Thermal Behavior and Management
Tomar et al. Materials for Ni‐Zn Batteries
CN216720003U (en) Hydrogen power battery system
US9343735B2 (en) Shared electrode hybrid battery-fuel cell system
Sarrias et al. Energy storage systems for wind power application

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020559006

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953211

Country of ref document: EP

Kind code of ref document: A1