WO2021098650A1 - 一种应用单相牵引变压器的牵引供电系统构造 - Google Patents

一种应用单相牵引变压器的牵引供电系统构造 Download PDF

Info

Publication number
WO2021098650A1
WO2021098650A1 PCT/CN2020/129119 CN2020129119W WO2021098650A1 WO 2021098650 A1 WO2021098650 A1 WO 2021098650A1 CN 2020129119 W CN2020129119 W CN 2020129119W WO 2021098650 A1 WO2021098650 A1 WO 2021098650A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
traction
phase
feeder
section
Prior art date
Application number
PCT/CN2020/129119
Other languages
English (en)
French (fr)
Inventor
邓云川
林宗良
李剑
杨佳
刘涛
智慧
刘孟恺
Original Assignee
中铁二院工程集团有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁二院工程集团有限责任公司 filed Critical 中铁二院工程集团有限责任公司
Publication of WO2021098650A1 publication Critical patent/WO2021098650A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/12Trolley lines; Accessories therefor
    • B60M1/13Trolley wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/04Arrangements for cutting in and out of individual track sections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • Traction transformers operating in electrified railways have many connection types.
  • Single-phase traction transformers have the highest capacity utilization rate, up to 100%.
  • the connection type is the simplest.
  • the high-voltage incoming line only needs to introduce two-phase incoming lines.
  • the terminal section of the traction substation can be operated in the electric section mode, which can effectively reduce the short-term power loss of the locomotive through the neutral section of the electric separation. Speed and power loss improve passenger comfort.
  • the power supply arms on the left and right sides of the traction substation using single-phase traction transformers are the same bus, and the loads on both sides of the power supply arms can complement each other, which is conducive to the absorption of regenerative power. It saves the power consumption of the traction power supply system. Therefore, it is preferred to be adopted when the negative sequence tolerance of the power grid allows.
  • the electrical phase separation of the contact network is used as the electrical insulation for the separation of different phase power sources.
  • the anchor section joint method is adopted.
  • the anchor section joint electrical phase is divided by the adjacent insulating anchor section joints and the joints.
  • the middle uncharged overhead catenary section is composed of the uncharged overhead catenary section called the neutral section.
  • the neutral section When the train pantograph enters the uncharged neutral section, it will lose power for a short time, resulting in power loss and speed loss. If the electrical phase is installed in a long ramp section, the power loss and speed loss will be more serious, which may lead to accidents such as slope stop and slope gentleness. Therefore, in the long and large slope electrified railway, the electrical phase separation often becomes a problem. An important technical problem.
  • a single-phase traction transformer is used, and both sides of the power supply arm are in-phase power supplies.
  • the traction substation terminal can operate in the electric segment mode, which can overcome and solve the long ramp electric phase separation setting
  • the power supply arm on both sides of the traction substation is withdrawn from operation to come from different adjacent traction substations.
  • the electrical section must Reverting to the electric split-phase operation, the reverse connection process is relatively cumbersome, and the contact network switch is usually considered for operation, and the reliability is poor.
  • a single-phase traction transformer is used. In the traction substation, the terminal's electrical phase separation is still operating in accordance with the electrical phase separation mode under normal conditions. Therefore, in actual operation, the use of single-phase traction transformers does not effectively solve the problem of large-slope electrical phase separation.
  • the technical problem to be solved by the present invention is to propose a traction power supply system structure using a single-phase traction transformer, which can realize the operation of the traction substation terminal in the normal power supply according to the electric segment mode, and the reverse connection process is relatively simple in the case of a fault. , Prevent misoperation, ensure the safe and reliable operation of the system, and effectively solve the technical problems of large ramp electrical phase separation.
  • the structure of a traction power supply system using a single-phase traction transformer of the present invention includes a traction substation and four feedback lines for the left power supply arm and the right power supply arm.
  • the feature is that the traction substation adopts a single phase
  • a new feeder line is added on its 27.5kV side.
  • the new feeder and the feeders of the left power supply arm and the right power supply arm are in-phase power supplies.
  • the electrical split-phase uncharged neutral section provides power supply, and is connected to the four feedback lines of the left power supply arm and the right power supply arm through an auxiliary bus bar, which serves as a backup feeder for the four feedback lines.
  • the beneficial effect of the present invention is that a single-phase traction transformer is used in the traction substation, and a feedback line is added to the 27.5kV feeder side.
  • the neutral section provides power supply, so that the terminal's electrical phase separation becomes an electrical section mode. When the train pantograph enters the neutral section, it will not lose power, nor will it cause power loss and speed loss.
  • the neutral section is naturally in a state of no electricity, and the fault traction substation
  • the electrical phase separation of the terminal is restored from electrical phase separation to electrical phase separation operation, and the inversion process is completed naturally, which can prevent misoperation, ensure the safe and reliable operation of the system, and effectively solve the technical problems of large ramp electrical phase separation;
  • the neutral section Electric isolation switches, lightning arresters and power supply lines are respectively installed on the upstream and downstream power supply lines of the power supply, which increases the flexibility of system operation and facilitates operation management and maintenance.
  • Figure 1 is a schematic diagram of the articulated electrical phase splitting of the 7-span anchor section
  • Fig. 4 is a schematic diagram of a traction power supply system structure using a single-phase traction transformer according to the present invention.
  • the neighboring traction substation is cross-supplied.
  • the figure shows the parts, part names and corresponding marks: anchor column 1, lower anchor support catenary 2, conversion column 3, center column 4, neutral section catenary 5, conversion column 6, conversion column 7, center Column 8, conversion column 9, working support catenary 10, anchor column 11, single-phase traction transformer 12, 27.5kV bus 13, 27.5kV auxiliary bus 14, 27.5kV current transformer 15, 27.5kV circuit breaker 16, 27.5kV electric Isolating switch 17, zinc oxide arrester 18, online power supply line 19, from the traction substation to the upstream neutral section power source 20, from the traction substation to the downstream neutral section power source 21, and the multi-line upstream neutral section catenary 22 , Catenary 23, No. 1 traction substation 24, No. 1 substation 25, No. 2 traction substation 26, No. 2 substation 27, No.
  • the present invention uses a single-phase traction transformer traction power supply system structure, including a traction substation and four feedbacks for the left power supply arm and the right power supply arm
  • the traction substation adopts a single-phase traction transformer, and a new feeder line is added on its 27.5kV side.
  • This new feeder and the feeders of the left power supply arm and the right power supply arm are in-phase power sources.
  • Supply power to the articulated and uncharged neutral section of the anchor section at the end of the traction substation and connect it to the four feedback lines of the left power supply arm and the right power supply arm through the auxiliary bus, as the backup feeder for the four feedback lines .
  • the up anchor section of the articulated electrical phase separation neutral section and the downward anchor section of the articulated electrical phase separation neutral section respectively come from different electric isolation switches, zinc oxide arresters, and zinc oxide arresters from the traction substation.
  • the power supply is formed by the Internet power supply line.
  • the traction substation when the traction substation is out of operation due to a fault, and the traction substations on both sides of the adjacent traction substations pass through the districts, the power is supplied to the articulated neutral section of the anchor section of the traction substation.
  • the feeder and the traction substation are out of operation together, and the neutral section is naturally restored to a no-power zone.
  • the articulated neutral section of the anchor section of the traction substation will be powered by the newly added feeder of the traction substation.
  • the pantograph Contact with the neutral section of the catenary will not lose power, and will not cause power loss and speed loss.
  • the new feeder is also used as a backup feeder for the other four feedback feeders, which can maximize the use of equipment and save investment , Improve system operation efficiency.
  • the upper and lower neutral section of the catenary adopts a separate power supply mode, which increases the flexibility of system operation and facilitates operation management and maintenance.
  • the neutral section of the faulty traction substation will be restored from the charged state to the non-powered state, and from the electric section operation mode to the electric section operation mode.
  • the switching process is completed naturally to prevent misoperation. Ensure the safe and reliable operation of the system.
  • the anchor column 1 is responsible for the suspension of the lower anchor support catenary 2 and the neutral section catenary 5, and the train pantograph is only in contact with the lower anchor support catenary 2, neutral The segment starts from this position.
  • the conversion column 3 is responsible for the suspension of the lower anchor support catenary 2 and the neutral section catenary 5, and the train pantograph is only in contact with the lower anchor support catenary 2.
  • the central column 4 is responsible for the suspension of the lower anchorage catenary 2 and the neutral section catenary 5, and the train pantograph is in contact with the lower anchorage catenary 2 and the neutral section catenary 5 at the same time.
  • the conversion column 6 is responsible for the suspension of the lower anchor support catenary 2, the neutral section catenary 5 and the working support catenary 10, and the train pantograph is only in contact with the neutral section catenary 5, and the working support starts from this position; the conversion column 7 assumes The lower anchor support catenary 2, the neutral section catenary 5 and the working support catenary 10 are suspended, the pantograph of the train is only in contact with the neutral section catenary 5, and the lower anchor support stops at this position.
  • the central column 8 is responsible for the suspension of the working support catenary 10 and the neutral section catenary 5, and the train pantograph is in contact with the working support catenary 10 and the neutral section catenary 5 at the same time.
  • the conversion column 9 is responsible for the suspension of the working support catenary 10 and the neutral section catenary 5, and the train pantograph is only in contact with the working support catenary 10.
  • the anchor column 11 is responsible for the suspension of the working support catenary 10 and the neutral section catenary 5, the train pantograph only contacts the working support catenary 10, and the neutral section stops at this position.
  • the anchor section articulated electrical phase separation can realize the replacement of the lower anchor support catenary and the working support contact network.
  • the uncharged neutral section provided in the anchor section articulated electrical phase separation is used to achieve electrical insulation of the power supply arms on both sides. .
  • the traction substation adopts a single-phase traction transformer 12, which outputs in-phase power for the segmented bus 13.
  • a backup auxiliary bus 14 is set as the neutral segment of the traction substation.
  • the power supply current transformer 15 and circuit breaker 16 also serve as feeder backup current transformers and backup circuit breakers.
  • the electric isolating switch 17, the zinc oxide arrester 18, the grid power supply line 19, the current transformer 15 and the circuit breaker 16 together constitute the traction transformer A complete feeder for power supply from the neutral section of the power station.
  • a complete feeder consisting of electric isolating switch 17, zinc oxide arrester 18, on-grid power supply line 19, current transformer 15 and circuit breaker 16 in the traction substation passes through two electric isolating switches 17, two zinc oxide arresters 18 ,
  • the two power supply lines 19 form the power supply 20 and the power supply 21, which respectively supply the catenary 22 of the upper neutral section of the double line and the catenary 23 of the lower neutral section of the double line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种应用单相牵引变压器的牵引供电系统,包括牵引变电所和供左侧供电臂、右侧供电臂的四回馈线,所述牵引变电所采用单相牵引变压器,在其27.5kV侧新增一回馈线,该新增馈线与左侧供电臂、右侧供电臂的馈线为同相电源,通过该新增馈线对牵引变电所所端锚段关节式电分相不带电中性段进行供电,且通过辅助母线与左侧供电臂、右侧供电臂的四回馈线连接,作为该四回馈线的备用馈线。该系统能够实现正常供电时牵引变电所端电分相按照电分段方式运行,故障情况下倒接过程较为简便、防止误操作,保证系统安全可靠运行,有效解决大坡道电分相技术难题。

Description

一种应用单相牵引变压器的牵引供电系统构造 技术领域
本发明涉及电气化铁路牵引供电系统,特别涉及一种应用单相牵引变压器的牵引供电系统构造。
背景技术
电气化铁路中运行的牵引变压器,结线型式较多,单相牵引变压器具有容量利用率最高、可达100%,结线型式最简单,高压进线侧仅需引入两相进线,与其它结线型式的牵引变压器相比,理论上,正常运行时,牵引变电所所端段电分相可按电分段方式运行,能够有效减少机车通过电分相中性段短时失电产生的速度和功率损失,提高旅客乘坐舒适度等特点,此外,采用单相牵引变压器的牵引变电所左右两侧供电臂为同一母线,两侧供电臂负荷可以互为补充,利于再生电能的吸收,节约牵引供电系统电能消耗,因此,在电网负序承受能力允许的条件下,得到优先采用。
接触网上电分相,作为不同相电源分割的电气绝缘,在高速铁路甚至大部分普速电气化铁路中,均采用锚段关节方式,锚段关节式电分相由相邻的绝缘锚段关节和中间不带电架空接触网区段构成,该不带电架空接触网区段称为中性段,列车受电弓在进入不带电中性段时、将短时失电,导致功率损失和速度损失,如电分相设置于长大坡道区段,功率损失和速度损失将更为严重,可能导致坡停、坡缓等事故,因此,长大坡道电气化铁路中,电分相的设置往往成为一项重要的技术难题。
理论上,采用单相牵引变压器,供电臂两侧为同相电源,正常情况下,牵引变电所所端电分相可按电分段方式运行,可以克服并解决长大坡道电分相设置难题,但是,牵引变电所故障、退出运行、由相邻牵引变电所越区供电时,退出运行牵引变电所两侧供电臂电源来至相邻不同牵引变电所,电分段必须恢复为电分相方式运行,倒接过程较为繁琐,且通常考虑 采用接触网上开关进行作业、可靠性较差,为防止误操作,保证系统安全可靠运行,实际运行中,采用单相牵引变压器的牵引变电所,其所端电分相正常情况仍按照电分相方式运行。因此,实际运行中,采用单相牵引变压器并未有效解决大坡道电分相问题。
发明内容
本发明所要解决的技术问题是提出一种应用单相牵引变压器的牵引供电系统构造,能够实现正常供电时牵引变电所端电分相按照电分段方式运行,故障情况下倒接过程较为简便、防止误操作,保证系统安全可靠运行,有效解决大坡道电分相技术难题。
本发明解决其技术问题所采用的技术方案如下:
本发明的一种应用单相牵引变压器的牵引供电系统构造,包括牵引变电所和供左侧供电臂、右侧供电臂的四回馈线,其特征是:所述牵引变电所采用单相牵引变压器,在其27.5kV侧新增一回馈线,该新增馈线与左侧供电臂、右侧供电臂的馈线为同相电源,通过该新增馈线对牵引变电所所端锚段关节式电分相不带电中性段进行供电,且通过辅助母线与左侧供电臂、右侧供电臂的四回馈线连接,作为该四回馈线的备用馈线。
本发明的有益效果是,牵引变电所采用单相牵引变压器,在27.5kV馈线侧新增一回馈线,该新增馈线对牵引变电所所端锚段关节式电分相传统不带电中性段进行供电,使该所端电分相成为电分段方式运行,列车受电弓在进入该中性段时、不会失电,也不会产生功率损失和速度损失,当牵引变电所故障、退出运行、由相邻牵引变电所越区供电时,由于对中性段供电的馈线随故障牵引变电所一起退出运行,中性段自然处于无电状态,故障牵引变电所所端电分相由电分段恢复为电分相方式运行,倒接过程自然完成,能够防止误操作,保证系统安全可靠运行,有效解决大坡道电分相技术难题;此外,中性段供电的上下行供电线上网分别设置电动隔离开关、避雷器和供电线,增加了系统运行的灵活性,方便了运营管理和维护。
附图说明
本说明书包括如下四幅附图:
图1是7跨锚段关节式电分相示意图;
图2是本发明一种应用单相牵引变压器的牵引供电系统构造中牵引变电所主接线图;
图3是本发明一种应用单相牵引变压器的牵引供电系统构造中锚段关节式电分相供电示意图;
图4是本发明一种应用单相牵引变压器的牵引供电系统构造当牵引变电所故障退出运行时由相邻牵引变电所越区供电示意图。
图中示出零部件、部位名称及所对应的标记:锚柱1,下锚支接触网2,转换柱3,中心柱4,中性段接触网5,转换柱6,转换柱7,中心柱8,转换柱9,工作支接触网10,锚柱11、单相牵引变压器12、27.5kV母线13、27.5kV辅助母线14、27.5kV电流互感器15、27.5kV断路器16、27.5kV电动隔离开关17、氧化锌避雷器18、上网供电线19、来至牵引变电所供上行中性段电源20、来至牵引变电所供下行中性段电源21、复线上行中性段接触网22、复线下行中性段接触网23、1号牵引变电所24、1号分区所25、2号牵引变电所26、2号分区所27、3号牵引变电所28、2号牵引变电所供中性段馈线29、2号牵引变电所所端电分相30、1号分区所越区电动隔离开关31、2号分区所越区电动隔离开关32。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
参照图1,列车在通过锚段关节式电分相时,受电弓从中心柱4到中心柱8过程中仅与无电中性段接触网接触,列车将短时失电,导致功率损失和速度损失,当电分相设置于长大坡道区段,严重时可能导致坡停、坡缓等事故,因此,长大坡道电气化铁路中,电分相的设置往往成为一项重要的技术难题。
参照图2,为了解决长大坡道电分相技术难题,本发明一种应用单相牵引变压器的牵引供电系统构造,包括牵引变电所和供左侧供电臂、右侧 供电臂的四回馈线,所述牵引变电所采用单相牵引变压器,在其27.5kV侧新增一回馈线,该新增馈线与左侧供电臂、右侧供电臂的馈线为同相电源,通过该新增馈线对牵引变电所所端锚段关节式电分相不带电中性段进行供电,且通过辅助母线与左侧供电臂、右侧供电臂的四回馈线连接,作为该四回馈线的备用馈线。
参照图3,对于复线电气化铁路,上行锚段关节式电分相中性段和下行锚段关节式电分相中性段分别由来至牵引变电所的由不同电动隔离开关、氧化锌避雷器、上网供电线构成的电源供电。参照图4,牵引变电所故障退出运行,由相邻两侧牵引变电所通过分区所越区供电时,由于为故障牵引变电所所端锚段关节式电分相中性段供电的馈线与牵引变电所一同退出运行,中性段自然恢复为无电区。
综合图2、图3、图4,正常运行情况下,牵引变电所所端锚段关节式电分相中性段将通过牵引变电所新增馈线供电,列车在通过时、受电弓与中性段接触网接触,将不会失电,也就不会产生功率损失和速度损失,同时,该新增馈线兼顾作为其他四回馈线的备用馈线,可最大限度的利用设备、节约投资、提高系统运行效率,此外,上下行中性段接触网采用分开供电模式,增加了系统运行的灵活性,方便了运营管理和维护。故障情况下,故障牵引变电所所端电分相中性段将由带电状态恢复为无电状态,由电分段运行模式恢复为电分相运行模式,倒接过程自然完成,防止误操作,保证了系统安全可靠运行。
参照图1,七跨锚段关节式电分相中,锚柱1承担下锚支接触网2和中性段接触网5悬挂、列车受电弓仅与下锚支接触网2接触,中性段从该位置起。转换柱3承担下锚支接触网2和中性段接触网5悬挂,列车受电弓仅与下锚支接触网2接触。中心柱4承担下锚支接触网2和中性段接触网5悬挂,列车受电弓同时与下锚支接触网2和中性段接触网5接触。转换柱6承担下锚支接触网2、中性段接触网5和工作支接触网10悬挂,列车受电弓仅与中性段接触网5接触,工作支从该位置起;转换柱7承担下锚支接触网2、中性段接触网5和工作支接触网10悬挂,列车受电弓仅与中性段接触网5接触,下锚支从该位置止。中心柱8承担工作支接触 网10和中性段接触网5悬挂,列车受电弓同时与工作支接触网10和中性段接触网5接触。转换柱9承担工作支接触网10和中性段接触网5悬挂,列车受电弓仅与工作支接触网10接触。锚柱11承担工作支接触网10和中性段接触网5悬挂、列车受电弓仅与工作支接触网10接触,中性段从该位置止。通过锚段关节式电分相,能够实现下锚支接触网和工作支接触网的接替,利用锚段关节式电分相中设置的不带电的中性段,实现两侧供电臂的电气绝缘。
参照图2,牵引变电所采用单相牵引变压器12,输出同相电源供分段母线13,为给各馈线提供备用,设置了备用辅助母线14,作为牵引变电所端电分相中性段供电的电流互感器15和断路器16兼作馈线备用电流互感器和备用断路器,电动隔离开关17、氧化锌避雷器18、上网供电线19与电流互感器15和断路器16一起构成了给牵引变电所端电分相中性段供电的完整馈线。
参照图3,牵引变电所电动隔离开关17、氧化锌避雷器18、上网供电线19与电流互感器15和断路器16构成的完整馈线,通过两个电动隔离开关17、两个氧化锌避雷器18、两条上网供电线19构成电源20和电源21,分别供复线上行中性段接触网22、复线下行中性段接触网23。
参照图4,当2号牵引变电所26故障、退出运行,由相邻1号牵引变电所24通过闭合1号分区所25越区电动隔离开关31、3号牵引变电所28通过闭合2号分区所27越区电动隔离开关32,实现越区供电。由于2号牵引变电所26故障、退出运行,因此该牵引变电所供中性段馈线29也将失电退出,该牵引变电所所端电分相30中性段将自然处于无电状态。
以上所述只是用图解说明本发明一种应用单相牵引变压器的牵引供电系统构造的一些原理,并非是要将本发明局限在所示和所述的具体结构和适用范围内,故凡是所有可能被利用的相应修改以及等同物,均属于本发明所申请的专利范围。

Claims (2)

  1. 一种应用单相牵引变压器的牵引供电系统构造,包括牵引变电所和供左侧供电臂、右侧供电臂的四回馈线,其特征是:所述牵引变电所采用单相牵引变压器,在其27.5kV侧新增一回馈线,该新增馈线与左侧供电臂、右侧供电臂的馈线为同相电源,通过该新增馈线对牵引变电所所端锚段关节式电分相不带电中性段进行供电,且通过辅助母线与左侧供电臂、右侧供电臂的四回馈线连接,作为该四回馈线的备用馈线。
  2. 如权利要求1所述的一种应用单相牵引变压器的牵引供电系统构造,其特征是:对于复线电气化铁路上行锚段关节式电分相中性段和下行锚段关节式电分相中性段采用同一新增馈线、不同供电线供电,即采用同一流互和断路器,不同电动隔离开关、氧化锌避雷器、上网供电线构成的电源供电。
PCT/CN2020/129119 2019-11-19 2020-11-16 一种应用单相牵引变压器的牵引供电系统构造 WO2021098650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911138487.9A CN110843610A (zh) 2019-11-19 2019-11-19 一种应用单相牵引变压器的牵引供电系统构造
CN201911138487.9 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021098650A1 true WO2021098650A1 (zh) 2021-05-27

Family

ID=69602575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129119 WO2021098650A1 (zh) 2019-11-19 2020-11-16 一种应用单相牵引变压器的牵引供电系统构造

Country Status (2)

Country Link
CN (1) CN110843610A (zh)
WO (1) WO2021098650A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110843610A (zh) * 2019-11-19 2020-02-28 中铁二院工程集团有限责任公司 一种应用单相牵引变压器的牵引供电系统构造

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2474056A (en) * 2009-10-05 2011-04-06 Davor Vujatovic Parallel single phase AC power supply arrangements
CN102729841A (zh) * 2012-07-03 2012-10-17 南车株洲电力机车研究所有限公司 供电臂布线系统和锚段关节式分相系统
CN105922894A (zh) * 2016-04-22 2016-09-07 中国船舶重工集团公司第七〇二研究所 一种基于大功率变流装置的过分相系统及其控制方法
CN205686215U (zh) * 2016-06-30 2016-11-16 成都交大许继电气有限责任公司 一种动车组不分闸过分相系统
CN108202644A (zh) * 2016-12-16 2018-06-26 中车株洲电力机车研究所有限公司 一种交流牵引变电所同相供电系统
CN108859872A (zh) * 2017-05-15 2018-11-23 中车株洲电力机车研究所有限公司 一种虚拟贯通交流牵引供电系统
CN110843610A (zh) * 2019-11-19 2020-02-28 中铁二院工程集团有限责任公司 一种应用单相牵引变压器的牵引供电系统构造
CN211641916U (zh) * 2019-11-19 2020-10-09 中铁二院工程集团有限责任公司 一种应用单相牵引变压器的牵引供电系统构造

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2474056A (en) * 2009-10-05 2011-04-06 Davor Vujatovic Parallel single phase AC power supply arrangements
CN102729841A (zh) * 2012-07-03 2012-10-17 南车株洲电力机车研究所有限公司 供电臂布线系统和锚段关节式分相系统
CN105922894A (zh) * 2016-04-22 2016-09-07 中国船舶重工集团公司第七〇二研究所 一种基于大功率变流装置的过分相系统及其控制方法
CN205686215U (zh) * 2016-06-30 2016-11-16 成都交大许继电气有限责任公司 一种动车组不分闸过分相系统
CN108202644A (zh) * 2016-12-16 2018-06-26 中车株洲电力机车研究所有限公司 一种交流牵引变电所同相供电系统
CN108859872A (zh) * 2017-05-15 2018-11-23 中车株洲电力机车研究所有限公司 一种虚拟贯通交流牵引供电系统
CN110843610A (zh) * 2019-11-19 2020-02-28 中铁二院工程集团有限责任公司 一种应用单相牵引变压器的牵引供电系统构造
CN211641916U (zh) * 2019-11-19 2020-10-09 中铁二院工程集团有限责任公司 一种应用单相牵引变压器的牵引供电系统构造

Also Published As

Publication number Publication date
CN110843610A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
CN110239398B (zh) 一种同相供电牵引变电所馈线保护跳闸方法
CN105790274A (zh) 一种贯通供电系统变流器型牵引变电所潮流调控装置及其调控方法
CN111422104A (zh) 应用于交流复线电气化铁路双边供电方式的分区所构造
WO2021098650A1 (zh) 一种应用单相牵引变压器的牵引供电系统构造
RU2596046C1 (ru) Тяговая подстанция переменного тока для питания тяговых нагрузок 25 кв
CN211641916U (zh) 一种应用单相牵引变压器的牵引供电系统构造
RU2552572C1 (ru) Система электроснабжения электрифицированных железных дорог переменного тока 25 кв
CN101767540A (zh) 一种电气化铁道无开关切换自动过分相装置
CN204184214U (zh) 一种接触网上网组合开关柜装置
CN112510706B (zh) 一种用于10kV配电网的同母合环电路
CN111907356B (zh) 一种有轨电车线路供电系统
CN113212253A (zh) 一种贯通式牵引供电系统
CN103414242A (zh) 一种电气化铁路同相供电方法及备机构造
CN213354231U (zh) 应用于交流复线电气化铁路双边供电方式的分区所构造
CN113437795A (zh) 一种具有输入电压自动切换功能的移动箱变车
CN108859868B (zh) 一种同相供电方式下的车载自动过分相的方法和系统
CN202264649U (zh) 一种动车组网侧电路
CN114825586B (zh) 一种双边牵引供电双树形外部电源备投构造及控制方法
CN114604141B (zh) 一种双边贯通同相供电系统及控制方法
CN114825587B (zh) 一种双边牵引供电单树形外部电源备投构造及控制方法
CN211606101U (zh) 电源快速切换装置系统
CN220042610U (zh) 一种双电源配电装置
CN217227346U (zh) 轨道交通牵引供电装置和轨道交通牵引供电系统
CN220985312U (zh) 一种地面带电自动过分相过电压降低系统
CN106882084B (zh) 基于三台单相牵引变压器的高铁变电站主接线构造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890104

Country of ref document: EP

Kind code of ref document: A1