WO2021098135A1 - 一种远距离大视场虹膜光学成像的装置及方法 - Google Patents

一种远距离大视场虹膜光学成像的装置及方法 Download PDF

Info

Publication number
WO2021098135A1
WO2021098135A1 PCT/CN2020/085479 CN2020085479W WO2021098135A1 WO 2021098135 A1 WO2021098135 A1 WO 2021098135A1 CN 2020085479 W CN2020085479 W CN 2020085479W WO 2021098135 A1 WO2021098135 A1 WO 2021098135A1
Authority
WO
WIPO (PCT)
Prior art keywords
iris
optical imaging
light source
focusing optical
zoom focusing
Prior art date
Application number
PCT/CN2020/085479
Other languages
English (en)
French (fr)
Inventor
倪蔚民
Original Assignee
苏州思源科安信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州思源科安信息技术有限公司 filed Critical 苏州思源科安信息技术有限公司
Publication of WO2021098135A1 publication Critical patent/WO2021098135A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition

Definitions

  • the invention relates to the technical field of optical imaging, in particular to a device and method for long-distance large-field-of-view iris optical imaging.
  • Known iris imaging devices have the following shortcomings.
  • the imaging time to obtain images in a long working distance and large working field of view scene exceeds 1-3s, and the user cannot remain consistent and relatively still for such a long time, due to the image iris diameter Requires a large magnification requirement of >200pixel, resulting in a very slight movement that can cause the field of view of the iris imaging system to be re-adjusted, zoom focus, and illumination.
  • traditional distance measurement includes software mapping iris diameter or binocular distance, because the error is too large due to the variation in the population that is greater than 20%, and the accurate working distance information cannot be provided, which directly affects the overall performance.
  • physical measurements such as infrared, ultrasound, and tof.
  • the distance is too large to provide accurate working distance information under the scenes of long working distance and large working field of view.
  • the known technology has image quality such as depth of field, image brightness, image relative illuminance, illuminating light source radiation intensity, and iris irradiance of the eye. In the scene of long working distance and large working field of view, the consistency cannot be guaranteed, and even the difference is several times.
  • the traditional lighting source is adjusted with the inverse square of the working distance, and the radiation intensity of the non-constant light source (such as the range of 2 to 3 times the working distance, The angle of view changes by 2 to 3 times, and the radiation intensity changes by 4 to 9 times), resulting in the inability to meet the requirements of constant field of view and radiation illuminance in a large range at the same time.
  • One aspect of the present invention is to provide a device for long-distance large-field-of-view iris optical imaging, the device comprising:
  • Iris optical tracking system iris zoom focusing optical imaging system, LED illumination light source radiation system, image display feedback system, image processing and drive control system;
  • the iris optical tracking system includes a 3D depth imaging unit for performing 3D physical space point coordinate acquisition,
  • And direction axis rotation unit used to perform the object-side imaging area adjustment of the iris zoom focusing optical imaging system according to the 3D physical space point coordinates;
  • the iris zoom focusing optical imaging system includes an optical zoom focusing lens group, which is used to adjust the focal length and focus position of iris imaging according to 3D physical space point coordinates;
  • the LED illuminating light source radiation system includes a solid angle of radiation intensity and/or a direction angle of radiation intensity, which is used to perform response to different working radii/distances corresponding to the iris zoom focusing optical imaging system between the field of view angles according to the 3D physical space point coordinates. Combination control of matching relationships;
  • the image display feedback system includes a display screen for real-time display of current images and/or status information
  • the image processing and drive control system is connected to the iris optical tracking system, the iris zoom focusing optical imaging system, the LED illumination light source radiation system, and the image display feedback system, and realizes the drive and feedback control between the system units.
  • the 3D depth imaging unit includes 3D TOF depth imaging or structured light depth imaging, or binocular stereo vision imaging.
  • the direction axis rotation unit includes a rotation angle of a rotation axis that performs a vertical and/or horizontal direction.
  • D is the optical center of the LED illumination light source radiation system and the optical center of the iris zoom focusing optical imaging system Distance
  • R is the working radius of the iris zoom focusing optical imaging system.
  • PXiris is the pixel resolution in the X horizontal direction of the iris zoom focusing optical imaging system
  • PYiris is the Y vertical pixel resolution of the iris zoom focusing optical imaging system
  • EFLiris is the focal length position
  • PR*PSiris
  • PR is the image-side resolution of the physical diameter of the iris
  • PSiris is the pixel unit resolution of the image imaging sensor of the iris zoom focusing optical imaging system
  • R is the working radius of the iris zoom focusing optical imaging system.
  • the LED illumination light source radiation system and the iris zoom focusing optical imaging system are configured as:
  • the combined imaging mode of global pixel exposure (integration) and illumination radiation in the synchronization pulse external trigger or the synchronization pulse internal trigger mode in the combination of the filter in which:
  • PR is the image resolution of the physical diameter of the iris
  • m is the pixel scale of the motion blur image that is predetermined to be controlled, the unit is pixel;
  • the synchronization pulse exposure (integration) frequency and the synchronization pulse illumination radiation frequency Fpulse of the combined imaging mode, the synchronization pulse illumination radiation frequency Fpulse [10, 30] Hz,
  • the LED illuminating light source radiation system generates synchronous pulsed illuminating radiation on the surface of the iris.
  • Eiris ( ⁇ ) is the irradiance on the surface of the iris.
  • Another aspect of the present invention is to provide a method for optical imaging of a long-distance large field of view iris, the method comprising:
  • the image processing and drive control system implements the drive and feedback control process between the iris optical tracking system, the iris zoom focusing optical imaging system, the LED illumination light source radiation system, and the image display feedback system:
  • the 3D depth imaging unit of the iris optical tracking system obtains the 3D coordinates of the key points of the iris, converts the relative coordinates to 3D physical space points, and controls the direction axis rotation unit to adjust the angle to achieve real-time synchronization of the iris optical imaging track;
  • the image display feedback system displays the current image and/or status information in real time
  • the image display feedback system realizes real-time synchronous display that the current image is an infrared image imaged by a 3D depth imaging unit, an RGB visible light unit imaging image or an iris zoom focusing optical imaging image.
  • the feedback control iris imaging tracking system includes:
  • EFLface [(PXface 2 +PYface 2 ) 1/2 *PSface/2]/tan(FOVface/2)
  • PXface is the X horizontal pixel resolution of the 3D depth imaging unit
  • PYface is the Y vertical pixel resolution of the 3D depth imaging unit
  • PSface is the pixel unit resolution of the 3D depth imaging unit
  • EFLface is the effective imaging focal length of the 3D depth imaging unit.
  • KPface(Xe,Ye,Ze) KPface(xe*z/EFLface,ye*z/EFLface,z).
  • Xoffset, Yoffset, Zoffset is the 3D physical position coordinate offset of the 3D depth imaging unit relative to the iris zoom focusing optical imaging system.
  • Perform synchronous control of the direction axis rotation unit including:
  • the feedback control of the iris zoom focusing optical imaging system includes:
  • PR*PSiris
  • PR is the image-side resolution of the physical diameter of the iris
  • R is the working radius of the iris zoom focusing optical imaging system
  • SOC is the minimum physical spot resolution parameter of the iris zoom focusing optical imaging system.
  • the feedback control LED illumination light source radiation system includes:
  • the radiation direction angle of the LED illumination light source ⁇ arctan (D/R),
  • D is the optical center of the LED illumination light source radiation system and the optical center of the iris zoom focusing optical imaging system Distance
  • R is the working radius of the iris zoom focusing optical imaging system
  • PXiris is the pixel resolution in the X horizontal direction of the iris zoom focusing optical imaging system
  • PYiris is the Y vertical pixel resolution of the iris zoom focusing optical imaging system
  • EFLiris is the focal length position
  • PR*PSiris
  • PR is the image-side resolution of the physical diameter of the iris
  • PSiris is the pixel unit resolution of the image imaging sensor of the iris zoom focusing optical imaging system
  • R is the working radius of the iris zoom focusing optical imaging system.
  • the device and method for long-distance and large-field-of-view iris optical imaging provided by the present invention simultaneously realize constant field of view and radiation illuminance in a large range, and has the following advantages:
  • Constant magnification is the same iris diameter of the imaged image.
  • the moving speed up to 1m/s is not affected by motion blur, and resists the interference of various ambient light>10,000lux noise conditions.
  • the working distance is greater than 1m, and the field of view is greater than 60 degrees.
  • Fig. 1 schematically shows a schematic diagram of a device for optical imaging of a long-distance large field of view iris in an embodiment of the present invention.
  • Fig. 2 schematically shows a schematic diagram of a device for optical imaging of a long-distance large-field iris in another embodiment of the present invention.
  • the field of view of the 3D depth imaging unit is the predetermined working field of view FOVface
  • the zoom focus imaging lens group of the 120 iris zoom focus optical imaging system
  • Image imaging sensor of 122 iris zoom focusing optical imaging system
  • the LED illuminating light source radiates the left and right side of the LED illuminating light source of the system
  • the LED illuminating light source radiates the left and right side LED illuminating light source of the system
  • the solid angle of the radiation intensity of the left/right illuminating light source of the LED illumination light source radiation system is matched with the far end working radius/distance Rfar/Zfar of the iris zoom focusing optical imaging system Field of view FOViris-far,
  • the solid angle of the left/right illuminating light source radiation intensity of the LED illumination light source radiation system is matched with the near-end working radius/distance of the iris zoom focusing optical imaging system.
  • the left/right illuminating light source radiation intensity direction angle of the LED illumination light source radiation system is matched with the near-end working radius/distance Rnear/Znear of the iris zoom focusing optical imaging system
  • the left/right illuminating light source radiation intensity direction angle of the LED illumination light source radiation system matches the far end working radius/distance Rfar/Zfar of the iris zoom focusing optical imaging system
  • the field of view of the 3D depth imaging unit is the predetermined working field of view FOVface
  • the image imaging sensor of the 222 iris zoom focusing optical imaging system
  • the solid angle of the left/right illuminating light source radiation intensity of the LED illumination light source radiation system is matched with the far end working radius/distance Rfar/Zfar of the iris zoom focusing optical imaging system Field of view FOViris-far,
  • the solid angle of the left/right illuminating light source radiation intensity of the LED illumination light source radiation system is matched with the near-end working radius/distance of the iris zoom focusing optical imaging system.
  • the left/right illuminating light source radiation intensity direction angle of the LED illumination light source radiation system is matched with the near-end working radius/distance Rnear/Znear of the iris zoom focusing optical imaging system
  • the left/right illuminating light source radiation intensity direction angle of the LED illumination light source radiation system is matched with the far end working radius/distance Rfar/Zfar of the iris zoom focusing optical imaging system
  • a long-distance large-field iris optical imaging device 100 includes: iris optics Tracking system, iris zoom focusing optical imaging system, LED illumination light source radiation system, image display feedback system 160, image processing and drive control system 150.
  • the iris optical tracking system includes a 3D depth imaging unit and a 2-direction axis rotation unit: a vertical rotation axis 112 of the iris optical tracking system and a horizontal rotation axis 113 of the iris optical tracking system.
  • the 3D depth imaging unit can adopt 3D TOF depth imaging or structured light depth imaging (for example, 940nm infrared VCSEL light source 110, imaging lens and image imaging sensor 111), or binocular stereo vision imaging (LED illumination light source, 2 groups installed at a fixed distance)
  • the parameter symmetrical imaging lens and image imaging sensor provide depth image information.
  • the iris zoom focusing optical imaging system includes an optical zoom focusing lens group 120, an optical filter 121, and an image imaging sensor 122.
  • the LED illumination light source radiation system includes the combined control of the solid angle of the radiation intensity of the LED illumination light source and/or the direction and angle of the radiation intensity.
  • the image display feedback system 160 includes a display screen for real-time display of current images and/or status information.
  • the image processing and drive control system 150 is connected to the iris optical tracking system, the iris zoom focusing optical imaging system, the LED illumination light source radiation system, and the image display feedback system, and realizes the drive and feedback control between each system unit.
  • a method for long-distance large-field-of-view iris optical imaging includes: the image processing and drive control system executes the drive and feedback control process between each system unit as follows:
  • the 3D depth imaging unit obtains the 3D coordinates of the key points of the iris, converts the relative coordinates to 3D physical space points, and feedback controls the 2-axis rotation unit to adjust the angle to achieve real-time synchronous iris optical imaging tracking.
  • the image display feedback system displays the current image and/or status information in real time.
  • the image display feedback system realizes real-time synchronous display of the current image as the infrared brightness image imaged by the 3D depth imaging unit, the RGB visible light unit image or the iris zoom focus optical image.
  • the specific steps include:
  • EFLface [(PXface 2 +PYface 2 ) 1/2 *PSface/2]/tan(FOVface/2),
  • PXface is the X horizontal pixel resolution of the 3D depth imaging unit, pixel
  • PYface is the Y vertical pixel resolution of the 3D depth imaging unit, pixel
  • PSface is the pixel unit resolution of the 3D depth imaging unit, um/pixel;
  • EFLface is the effective imaging focal length of the 3D depth imaging unit, mm.
  • PXface 640pixels
  • PYface 480pixels
  • PSface 5.6um/pixel
  • EFLface 2.8mm.
  • a2 Define the 3D depth imaging unit to control and acquire the key points of the iris.
  • the well-known deep learning-based convolutional neural network CNN cascade model can reliably and accurately realize the functions of face region detection and eye positioning.
  • an independent or combined visible light RGB image imaging unit 114 is adopted, and the 3D depth imaging unit and the visible light RGB image imaging unit 114 are pre-calibrated and registered, and then the face area in the RGB image is further detected. And human eye positioning improves accuracy and reliability.
  • the RGB imaging unit can be used to detect the face when the device is in the standby state and trigger the system to enter the normal working state, thereby reducing the standby power consumption of the system.
  • the image formed by the visible light RGB image imaging unit is used in the image display feedback system to display the current image in real time.
  • this embodiment uses effective pixels in the local area of the center coordinates of the left and right eyes to filter interfering pixels, such as median filtering, or filtering of excessively high or low brightness in grayscale brightness images. Brightness pixels, or pixels whose depth is too far or too close in the image, etc.
  • KPface(xe,ye,z) KPface((xl+xr-PXface)/2*PSface,(yl+yr-PYface) )/2*PSface,z).
  • KPface (Xe, Ye, Ze) KPface (xe*z/EFLface, ye*z/EFLface, z).
  • Piris(X, Y, Z) (Xe-Xoffset, Xe-Yoffset, Ze-Zoffset),
  • (Xoffset, Yoffset, Zoffset) is the 3D physical position coordinate offset of the 3D depth imaging unit relative to the iris zoom focusing optical imaging system.
  • Perform synchronous control of the direction axis rotation unit including:
  • the asynchronous control of the direction axis rotation unit in the specific implementation column of the present invention can be realized by adopting the angle rotation sequence of the vertical/horizontal rotation axis, such as the rotation angle ⁇ v of the vertical rotation axis first, and then the rotation angle of the horizontal rotation axis. ⁇ h; or equivalently, first the rotation angle ⁇ h of the rotation axis in the horizontal direction and then the rotation angle ⁇ v of the rotation axis in the vertical direction.
  • the 3D depth imaging unit and the iris optical tracking system are integrated to maintain synchronous rotation control.
  • the iris optical tracking system adjusts the 2-axis rotation angle, it provides an ideal accuracy feedback measurement.
  • the key reference for the expected object after the rotation is compared.
  • Point KP (Xp, Yp, Zp):
  • KP(Xp, Yp, Zp) KP((Ze*tan( ⁇ v)-Xe)*cos( ⁇ v), (Ze*tan( ⁇ h)-Ye)*cos( ⁇ h), (Xe 2 +Ye 2 + Ze 2 ) 1/2 ),
  • the actual object key reference point KPface (Xe, Ye, Ze) output by the 3D depth imaging unit is judged whether it is within the predetermined error range of the system. If it exceeds the predetermined error range, press the actual object again
  • the key reference point KPface (Xe, Ye, Ze) repeats step a3 to establish a 3D physical space point Piris (X, Y, Z) coordinate transformation, and feedback control step a4, readjust the rotation angle.
  • the 3D depth imaging unit and the iris tracking system are integrated to maintain synchronous rotation control, providing an extended 360-degree working field of view.
  • Perform synchronous control of the zoom and focus parameters of the iris zoom and focus optical imaging system including:
  • R is a predetermined working radius, including a predetermined proximal working radius Rnear116, a predetermined distal working radius Rfar118,
  • the predetermined working distance Z includes a predetermined near-end working distance Znear117 and a predetermined far-end working distance Zfar119.
  • the optical zoom operation can be performed after the R interval is changed by a certain predetermined range. If you keep the same focal length relative to the range of 5-10cm, this design is reasonable, and the iris diameter itself also varies from person to person.
  • the iris zoom focusing optical imaging system Due to the error of the depth information, the iris zoom focusing optical imaging system has a precision mechanical error in the actual manufacturing process, individual deviations, etc., resulting in a 2k+1 times step length control position, the step length is ⁇ *DOF, generally 3-5 steps
  • the range is completely at the predetermined image-side focus position, ensuring that the focus position is within the object depth of field range of +-DOF/2 (equivalent, within the image-side depth of field range of +- ⁇ *DOF/2), and at the same time such a small number of control steps The number can be guaranteed to be completed in 0.1s.
  • the above-mentioned design of the present invention guarantees a constant depth of field range, and at the same time realizes that the focus position is within the depth of field range of the image plane.
  • Ideal aspherical optical glass/plastic hybrid 2 liquid lens liquid lenses independently control the focal length EFLiris and focus FOCUS respectively.
  • the above design requires both focal length and focus position to be converted to the correspondingly designed imaging optical system.
  • the diopter of the 2 liquid lenses is the unit specification Compared with the complex cam curve control driven by traditional stepping motors, the liquid lens has a diopter and voltage/current corresponding linear response optical property relationship, which can greatly simplify the drive control process, and this design can greatly reduce the overall imaging The number of system components (12-16 pieces in 3-4 groups).
  • the current liquid lens has a limited clear aperture, typically 6-10mm, and a limited diopter range -10 to +20 diopters.
  • the wavefront error increases to ⁇ /10 at large diopters, but It is suitable for iris zoom focusing optical imaging system due to the requirement of depth of field on FNO value and long focal length application.
  • Optical designers can use the liquid lens characteristics and techniques to optimize the optical path design. For example, select the appropriate exit entrance pupil in the optical path and design FNO to solve the clear aperture.
  • the initial design of the zoom part of the optical system is to set the zoom liquid lens to work at 0 diopter optical power.
  • the far end working radius/distance corresponds to the maximum focal length.
  • the initial design of the focusing part of the optical system is to set the focusing liquid lens to work at the image plane position corresponding to the far end working radius/distance when the focusing liquid lens is at 0 diopter optical power.
  • D is the optical center of the LED illumination light source radiation system and the optical center of the iris zoom focusing optical imaging system Distance
  • R is the working radius of the iris zoom focusing optical imaging system.
  • arctan((PXiris 2 +PYiris 2 ) 1/2 /2*PSiris/((1+ ⁇ )*EFLiris))
  • is the half field angle of the iris zoom focusing optical imaging system.
  • PXiris is the pixel resolution in the X horizontal direction of the iris zoom focusing optical imaging system, pixel.
  • PYiris is the Y vertical pixel resolution of the iris zoom focusing optical imaging system, pixel.
  • I ( ⁇ ) is the radiant intensity of the radiation system of the LED lighting source, in mw/sr
  • is the solid angle of the radiation system of the LED illumination light source, in sr steradian.
  • Ipeak is the peak value of the radiant intensity of the LED illuminating light source radiation system, in mw/sr.
  • f( ⁇ ) is the normalized distribution function of the radiation intensity of the LED illumination light source radiation system.
  • OP is the constant total optical power of the LED illumination light source radiation system, in mw.
  • is the relative contrast of the imaging image surface of the predetermined custom iris focal length focusing optical imaging system receiving light radiation, such as 0.5 Or 0.707, higher means the relative illuminance is more evenly distributed.
  • the solid angle of the radiant intensity of the LED lighting source produces the radiant illuminance Eiris on the surface of the iris
  • the iris zoom focus optical imaging system 's near-end working radius/distance Rnear/Znear's field of view FOViris-near124.
  • the LED illumination light source radiates the left and right sides of the LED illumination light source 130L/130R of the system.
  • the left and right side LED illumination light sources 131L/131R of the LED illumination light source radiation system When the near-end working radius/distance is Rnear/Znear, the left and right side LED illumination light sources 131L/131R of the LED illumination light source radiation system.
  • the solid angle of the radiation intensity of the left/right illuminating light source of the LED illumination light source radiation system is matched to the far end working radius/distance Rfar/Zfar field of view angle of the iris zoom focusing optical imaging system FOViris-far132L/132R.
  • the solid angle of the radiation intensity of the left/right illuminating light source of the LED illumination light source radiation system is matched with the near-end working radius/distance Rnear/Znear field of view angle of the iris zoom focusing optical imaging system FOViris-near133L/133R.
  • the left/right illuminating light source radiation intensity direction angle of the LED illumination light source radiation system matches the near-end working radius/distance Rnear/Znear134L/134R of the iris zoom focusing optical imaging system.
  • the left/right illuminating light source radiation intensity direction angle of the LED illumination light source radiation system matches the distal working radius/distance Rfar/Zfar135L/135R of the iris zoom focusing optical imaging system.
  • the present invention can realize the LED illumination light source radiation system with constant total light power, by dynamically changing the radiation intensity of the LED illumination light source, the light radiation intensity of the solid angle distribution is changed by the same amount, regardless of the iris zoom focusing optical imaging.
  • How the system changes in the far/near-end working radius [Rfar, Rnear]/distance [Zfar, Znear] and the corresponding field of view [FOViris-far, FOViris-near] according to the formula Eiris( ⁇ , ⁇ ) is kept close to constant , And can fully match the working radius/distance and the corresponding iris optical zoom focusing optical imaging system's field of view angle.
  • is the optical constant coefficient of iris biological tissue reflectance, 0.12-0.15,
  • t is the transmittance constant coefficient of the iris zoom focusing optical imaging system.
  • Eimage is constant, that is, the imaged image brightness Iimage is constant.
  • QE is the photon-electronic quantum conversion efficiency unit e-/(mw*um 2 )/s
  • G is the unit conversion gain unit mv/e-
  • ADC is the analog voltage/digital brightness conversion unit LSB/mv
  • S is the unit pixel
  • the unit of area is um 2 .
  • CMOS SENSOR technology performs photon-electronic quantum conversion using PD silicon-based photodiodes, which are not efficient.
  • Cutting-edge QF quantum film or OPF organic photosensitive film technologies have natural high quantum conversion efficiency for infrared photons, and global shutter. The properties are ideally preferred.
  • the LED illumination light source radiation system is controlled by an array combination with different radiation direction angles and radiation intensity solid angles, so as to match the corresponding iris zoom focusing optical imaging system's field of view range [FOViris-far, FOViris-near], Working radius range [Rfar, Rnear], or working distance range [Zfar, Znear].
  • the present invention realizes the redistribution of the weight value of the radiation system of the LED illumination light source with a constant total light power in essence to realize the field of view angle range [FOViris-far, FOViris-near] and the working radius of the corresponding iris zoom focusing optical imaging system [FOViris-far, FOViris-near]
  • the range [Rfar, Rnear], or the working distance range [Zfar, Znear] is equivalently fitted in response to the corresponding solid angle of the radiant intensity of the LED lighting source.
  • OPi is the optical power of the LED illuminating light source radiation system with different radiation direction angles and solid angles of radiation intensity
  • Wi is the weight value corresponding to OPi.
  • i is the number of LED illumination light source radiation systems with different radiation direction angles and radiation intensity solid angles.
  • OP is the constant total optical power of the radiation system of the LED lighting source.
  • the invention realizes that after the combined control of the optical power of the LED illumination light source radiation system with different radiation direction angles and solid angles of radiation intensity, a constant total irradiated illuminance Eiris is generated on the iris surface.
  • Ei is the irradiated illuminance generated on the surface of the iris by the optical power OPi of the LED illumination light source radiation system with different radiation direction angles and solid angles of radiation intensity.
  • i is the number of LED illumination light source radiation systems with different radiation direction angles and radiation intensity solid angles.
  • the optical power OPfar of the LED illumination light source radiation system at the different radiation direction angles and radiation intensity solid angles of the distal working radius Rfar and the proximal working radius Rnear and OPnear is an example for realizing the combination control of the corresponding solid angle of the radiant intensity of the LED illumination light source and the constant total optical power OP at any given working radius R.
  • OP the constant total optical power of the LED illumination light source radiation system corresponding to the working radius R.
  • OPfar the optical power of the LED illumination light source radiation system corresponding to the remote working radius Rfar.
  • Wfar is the weight value corresponding to OPfar.
  • OPnear as the optical power of the near-end LED illumination light source radiation system corresponding to the near-end working radius Rnear.
  • Wnear is the weight value corresponding to OPnear.
  • Wfar [cos 3 ( ⁇ R)*R 2 -cos 3 ( ⁇ near)*Rnear 2 ]/[cos 3 ( ⁇ far)*Rfar 2 -cos 3 ( ⁇ near)*Rnear 2 ].
  • Wnear] [cos 3 ( ⁇ far)*Rfar 2 -cos 3 ( ⁇ R)*R 2 ]/[cos 3 ( ⁇ far)*Rfar 2 -cos 3 ( ⁇ near)*Rnear 2 ].
  • ⁇ R is the radiation direction angle of the radiation system of the LED illumination light source with R working radius.
  • ⁇ far is the radiation direction angle of the radiation system of the remote LED illumination light source.
  • ⁇ near is the radiation direction angle of the radiation system of the near-end LED illumination light source.
  • Wnear [Rfar 2 -R 2 ]/[Rfar 2 -Rnear 2 ].
  • OP the constant total optical power of the LED illumination light source radiation system corresponding to the working radius R
  • f( ⁇ )R the normalized distribution function of the radiation intensity corresponding to OP
  • OPfar the optical power of the LED illumination light source radiation system corresponding to the remote working radius Rfar.
  • Wfar is the weight value corresponding to OPfar
  • f( ⁇ )far is the normalized distribution function of the radiation intensity corresponding to OPfar.
  • OPnear as the optical power of the near-end LED illumination light source radiation system corresponding to the near-end working radius Rnear.
  • Wnear is the weight value corresponding to OPnear
  • f( ⁇ )near is the normalized distribution function of the corresponding OPnear radiation intensity.
  • Wfar [cos 3 ( ⁇ R)*f( ⁇ )R*R 2 -cos 3 ( ⁇ near)*f( ⁇ )near*Rnear 2 ]/[cos 3 ( ⁇ far)*f( ⁇ )far*Rfar 2- cos 3 ( ⁇ near)*f( ⁇ )near*Rnear 2 ].
  • Wnear [cos 3 ( ⁇ far)*f( ⁇ )far*Rfar 2 -cos 3 ( ⁇ R)*f( ⁇ )R*R 2 ]/[cos 3 ( ⁇ far)*f( ⁇ )far*Rfar 2- cos 3 ( ⁇ near)*f( ⁇ )near*Rnear 2 ].
  • Wfar [cos 3 ( ⁇ R)*f( ⁇ ( ⁇ ))R*R 2 -cos 3 ( ⁇ near)*f( ⁇ ( ⁇ ))near*Rnear 2 ]/[cos 3 ( ⁇ far)*f( ⁇ ( ⁇ ))far*Rfar 2 -cos 3 ( ⁇ near)*f( ⁇ ( ⁇ ))near*Rnear 2 ].
  • Wnear [cos 3 ( ⁇ far)*f( ⁇ ( ⁇ ))far*Rfar 2 -cos 3 ( ⁇ R)*f( ⁇ ( ⁇ ))R*R 2 ]/[cos 3 ( ⁇ far)*f( ⁇ ( ⁇ ))far*Rfar 2 -cos 3 ( ⁇ near)*f( ⁇ ( ⁇ ))near*Rnear 2 ].
  • ⁇ R is the radiation direction angle of the radiation system of the LED illumination light source with R working radius.
  • ⁇ far is the radiation direction angle of the radiation system of the remote LED illumination light source.
  • ⁇ near is the radiation direction angle of the radiation system of the near-end LED illumination light source.
  • f( ⁇ ( ⁇ ))R is the normalized distribution function value of the radiation intensity corresponding to the radiation system of the R working radius LED illumination light source at the solid angle of the radiation intensity of ⁇ ( ⁇ ).
  • f( ⁇ ( ⁇ ))far is the normalized distribution function value of the radiation intensity corresponding to the radiation system of the remote working radius LED illumination light source at the solid angle of the radiation intensity of ⁇ ( ⁇ ).
  • f( ⁇ ( ⁇ ))near is the normalized distribution function value of the radiation intensity corresponding to the radiation system of the near-end working radius LED illumination light source at the solid angle of the ⁇ ( ⁇ ) radiation intensity.
  • Wfar [f( ⁇ ( ⁇ ))R*R 2 -f( ⁇ ( ⁇ ))near*Rnear 2 ]/[f( ⁇ ( ⁇ ))far*Rfar 2 -f( ⁇ ( ⁇ ))near* Rnear 2 ].
  • Wnear [f( ⁇ ( ⁇ ))far*Rfar 2 -f( ⁇ ( ⁇ ))R*R 2 ]/[f( ⁇ ( ⁇ ))far*Rfar 2 -f( ⁇ ( ⁇ ))near* Rnear 2 ].
  • the LED illumination light source radiation intensity solid angle combination controls the weight value to redistribute the optical radiation power and the equivalent change
  • the irradiance on the surface of the iris is kept close to constant according to the formula, and can completely match the field of view of the corresponding iris optical zoom focusing optical imaging system.
  • the LED illumination light source radiation system and the iris zoom focusing optical imaging system are combined and configured to have combined control in response to the synchrotron radiation intensity direction angle and the radiation intensity solid angle, so as to realize the response of the LED illumination light source radiation system in different 3D physical space points.
  • the corresponding matching relationship between the field of view angles of the iris zoom focusing optical imaging system corresponding to different working radii/distances meets the constant imaging image brightness within the predetermined working field of view and working distance, constant imaging image contrast, constant The radiant power of the LED lighting source system and the constant irradiance of the iris of the eye.
  • the LED illumination light source radiation system and the iris zoom focusing optical imaging system are configured as a global pixel exposure (integration) and illumination radiation combined imaging mode of synchronous pulse external triggering or synchronous pulse internal triggering.
  • the synchronization pulse exposure (integration) time and the synchronization pulse illumination radiation time Tpulse ⁇ m/(PR*speed), speed is the predetermined controlled movement speed such as 1m/s
  • m is the predetermined controlled motion blur image pixel scale, m ⁇ 10pxiels.
  • LED illumination light source radiation system generates synchronous pulse illumination radiation on the iris surface irradiance Tpulse*Fpulse*Eiris( ⁇ ) ⁇ 10mw/cm2, to ensure that the eye radiation biological safety.
  • the iris zoom focusing optical imaging system realizes the global pixel exposure (integration) and the combined imaging mode of the illumination radiation in the synchronization pulse external trigger or the synchronization pulse internal trigger mode under the combination of the filter.
  • Anti-interference performance under various light interference conditions Such as outdoor solar environment up to 10,000 lux or more.
  • the protective window 123 can be made of full-transmission tempered optical glass, or more preferably, a filter that reflects visible light below 700nm and transmits infrared light from 700-900nm, which can protect the internal optical components while the user cannot observe the internal structure by reflecting visible light Provide users with visual feedback in their natural state. Furthermore, filtering visible light can improve the iris zoom focusing optical imaging system to eliminate the interference of external non-imaging wavelength stray light, and further improve the image quality SNR.
  • Fig. 2 shows a schematic diagram of the principle of a long-distance large-field iris optical imaging device in an embodiment of the present invention.
  • a long-distance large-field iris optical imaging device 200 includes: iris optics Tracking system, iris zoom focusing optical imaging system, LED illumination light source radiation system, image display feedback system 260, image processing and drive control system 250.
  • the iris optical tracking system includes a 3D depth imaging unit and a 2-axis MEMS rotating mirror unit 228.
  • the 3D depth imaging unit can use 3D TOF depth imaging or structured light depth imaging (for example, 940nm infrared VCSEL light source 210, imaging lens and image imaging sensor 211), or binocular stereo vision imaging (LED illumination light source, 2 groups installed at a fixed distance)
  • 3D TOF depth imaging or structured light depth imaging for example, 940nm infrared VCSEL light source 210, imaging lens and image imaging sensor 211
  • binocular stereo vision imaging LED illumination light source, 2 groups installed at a fixed distance
  • the parameter symmetrical imaging lens and image imaging sensor provide depth image information.
  • the iris zoom focusing optical imaging system includes an optical zoom focusing lens group 220, an optical filter 221, and an image imaging sensor 222.
  • the LED illumination light source radiation system includes the combined control of the solid angle of the radiation intensity of the LED illumination light source and/or the direction and angle of the radiation intensity.
  • the image display feedback system 260 includes a display screen for real-time display of current images and status information.
  • the image processing and drive control system 250 is connected to the iris optical tracking system, the iris zoom focusing optical imaging system, the LED illumination light source radiation system, and the image display feedback system, and realizes the drive and feedback control between each system unit.
  • a method for long-distance large-field-of-view iris optical imaging includes: the image processing and drive control system executes the drive and feedback control process between each system unit as follows:
  • the 3D depth imaging unit obtains the 3D coordinates of the key points of the iris, converts the relative coordinates to 3D physical space points, and feedback controls the 2-axis rotation unit to adjust the angle to achieve real-time synchronous iris optical imaging tracking.
  • the image display feedback system displays the current image and/or status information in real time.
  • the image display feedback system realizes real-time synchronous display of the current image as the infrared brightness image imaged by the 3D depth imaging unit, the RGB visible light unit image or the iris zoom focus optical image.
  • the specific steps include:
  • EFLface [(PXface 2 +PYface 2 ) 1/2 *PSface/2]/tan(FOVface/2),
  • PXface is the X horizontal pixel resolution of the 3D depth imaging unit, pixel
  • PYface is the Y vertical pixel resolution of the 3D depth imaging unit, pixel
  • PSface is the pixel unit resolution of the 3D depth imaging unit, um/pixel;
  • EFLface is the effective imaging focal length of the 3D depth imaging unit, mm.
  • PXface 640pixels
  • PYface 480pixels
  • PSface 5.6um/pixel
  • EFLface 2.8mm.
  • a2 Define the 3D depth imaging unit to control and acquire the key points of the iris.
  • the well-known deep learning-based convolutional neural network CNN cascade model can reliably and accurately realize the functions of face region detection and eye positioning.
  • an independent or combined visible light RGB image imaging unit 114 is adopted, and the 3D depth imaging unit and the visible light RGB image imaging unit 114 are pre-calibrated and registered, and then the face area in the RGB image is further detected. And human eye positioning improves accuracy and reliability.
  • the RGB imaging unit can be used to detect the face when the device is in the standby state and trigger the system to enter the normal working state, thereby reducing the standby power consumption of the system.
  • the image formed by the visible light RGB image imaging unit is used in the image display feedback system to display the current image in real time.
  • this embodiment uses effective pixels in the local area of the center coordinates of the left and right eyes to filter interfering pixels, such as median filtering, or filtering of excessively high or low brightness in grayscale brightness images. Brightness pixels, or pixels whose depth is too far or too close in the image, etc.
  • KPface(xe,ye,z) KPface((xl+xr-PXface)/2*PSface,(yl+yr-PYface) )/2*PSface,z).
  • KPface (Xe, Ye, Ze) KPface (xe*z/EFLface, ye*z/EFLface, z).
  • Piris(X, Y, Z) (Xe-Xoffset, Xe-Yoffset, Ze-Zoffset),
  • (Xoffset, Yoffset, Zoffset) is the 3D physical position coordinate offset of the 3D depth imaging unit relative to the iris zoom focusing optical imaging system.
  • Perform asynchronous control of the direction axis rotation unit including:
  • this embodiment adopts a 2-axis MEMS rotating mirror unit to adjust the rotation angle in the vertical/horizontal direction.
  • the MEMS-based rotating mirror has high reliability and stability, fast response, small size, high accuracy, good repeatability, etc.
  • the preferred embodiment 2 of the present invention is realized by piezoelectric, electromagnetic, electrostatic, ultrasonic, pyroelectric and other MEMS actuators.
  • this embodiment uses a 2-axis MEMS rotating mirror unit with typical parameters:
  • Mirror coating metal medium, gold/aluminum film or enhanced gold/aluminum film, 700-900nm wavelength reflectivity>92%,
  • Optical window no or anti-reflection coating protection window
  • Working temperature -20 degrees to +60 degrees.
  • Perform synchronous control of the zoom and focus parameters of the iris zoom and focus optical imaging system including:
  • R is a predetermined working radius, including a predetermined proximal working radius Rnear216, a predetermined distal working radius Rfar218,
  • the predetermined working distance Z includes a predetermined near-end working distance Znear217 and a predetermined far-end working distance Zfar219.
  • the optical zoom operation can be performed after the R interval is changed by a certain predetermined range. If you keep the same focal length relative to the range of 5-10cm, this design is reasonable, and the iris diameter itself also varies from person to person.
  • the iris zoom focusing optical imaging system Due to the error of the depth information, the iris zoom focusing optical imaging system has a precision mechanical error in the actual manufacturing process, individual deviations, etc., resulting in a 2k+1 times step length control position, the step length is ⁇ *DOF, generally 3-5 steps
  • the range is completely at the predetermined image-side focus position, ensuring that the focus position is within the object depth of field range of +-DOF/2 (equivalent, within the image-side depth of field range of +- ⁇ *DOF/2), and at the same time such a small number of control steps The number can be guaranteed to be completed in 0.1s.
  • the above-mentioned design of the present invention guarantees a constant depth of field range, and at the same time realizes that the focus position is within the depth of field range of the image plane.
  • Ideal aspheric optical glass/plastic hybrid 2 liquid lens liquid lenses independently control the focal length EFLiris and focus FOCUS respectively.
  • the above design requires both focal length and focus position to be converted to the correspondingly designed imaging optical system.
  • the diopter of the 2 liquid lenses is the unit specification Compared with the complex cam curve control driven by traditional stepping motors, the liquid lens has a diopter and voltage/current corresponding linear response optical property relationship, which can greatly simplify the drive control process, and this design can greatly reduce the overall imaging The number of system components (12-16 pieces in 3-4 groups).
  • the current liquid lens has a limited clear aperture, typically 6-10mm, and a limited diopter range -10 to +20 diopters.
  • the wavefront error increases to ⁇ /10 at large diopters, but It is suitable for iris zoom focusing optical imaging system due to the requirement of depth of field on FNO value and long focal length application.
  • Optical designers can use the liquid lens characteristics and techniques to optimize the optical path design. For example, select the appropriate exit entrance pupil in the optical path and design FNO to solve the clear aperture.
  • the initial design of the zoom part of the optical system is to set the zoom liquid lens to work at 0 diopter optical power.
  • the far end working radius/distance corresponds to the maximum focal length.
  • the initial design of the focusing part of the optical system is to set the focusing liquid lens to work at the image plane position corresponding to the far end working radius/distance when the focusing liquid lens is at 0 diopter optical power.
  • D is the optical center of the LED illumination light source radiation system and the optical center of the iris zoom focusing optical imaging system Distance
  • R is the working radius of the iris zoom focusing optical imaging system.
  • arctan((PXiris 2 +PYiris 2 ) 1/2 /2*PSiris/((1+ ⁇ )*EFLiris))
  • is the half field angle of the iris zoom focusing optical imaging system.
  • PXiris is the pixel resolution in the X horizontal direction of the iris zoom focusing optical imaging system, pixel.
  • PYiris is the Y vertical pixel resolution of the iris zoom focusing optical imaging system, pixel.
  • I ( ⁇ ) is the radiant intensity of the radiation system of the LED lighting source, in mw/sr
  • is the solid angle of the radiation system of the LED illumination light source, in sr steradian.
  • Ipeak is the peak value of the radiant intensity of the LED illuminating light source radiation system, in mw/sr.
  • f( ⁇ ) is the normalized distribution function of the radiation intensity of the LED illumination light source radiation system.
  • OP is the constant total optical power of the LED illumination light source radiation system, in mw.
  • is the relative contrast of the imaging image surface of the predetermined custom iris focal length focusing optical imaging system receiving light radiation, such as 0.5 Or 0.707, higher means the relative illuminance is more evenly distributed.
  • the solid angle of the radiant intensity of the LED lighting source is generated on the surface of the iris.
  • the near-end working radius/distance Rnear/Znear field of view FOViris-near224 of the iris zoom focusing optical imaging system As shown in Figure 2, the near-end working radius/distance Rnear/Znear field of view FOViris-near224 of the iris zoom focusing optical imaging system.
  • the LED illuminating light source radiation system is the left and right side LED illuminating light sources 230L/230R.
  • the solid angle of the radiation intensity of the left/right illuminating light source of the LED illumination light source radiation system is matched to the far end working radius/distance Rfar/Zfar field of view angle of the iris zoom focusing optical imaging system FOViris-far232L/232R.
  • the solid angle of the radiation intensity of the left/right illuminating light source of the LED illumination light source radiation system is matched with the near end working radius/distance Rnear/Znear field of view angle of the iris zoom focusing optical imaging system FOViris-near233L/233R.
  • the left/right illuminating light source radiation intensity direction angle of the LED illumination light source radiation system matches the near-end working radius/distance Rnear/Znear234L/234R of the iris zoom focusing optical imaging system.
  • the left/right illuminating light source radiation intensity direction angle of the LED illumination light source radiation system matches the distal working radius/distance Rfar/Zfar235L/235R of the iris zoom focusing optical imaging system.
  • the liquid lens 236L/236R on the left/right side of the LED illumination light source radiation system.
  • the left/right 2-axis MEMS rotating mirror 237L/237R of the LED illumination light source radiation system is the liquid lens 236L/236R on the left/right side of the LED illumination light source radiation system.
  • the present invention can realize the LED illumination light source radiation system with constant total light power, by dynamically changing the radiation intensity of the LED illumination light source, the light radiation intensity of the solid angle distribution is changed by the same amount, regardless of the iris zoom focusing optical imaging.
  • How the system changes in the far/near-end working radius [Rfar, Rnear]/distance [Zfar, Znear] and the corresponding field of view [FOViris-far, FOViris-near] according to the formula Eiris( ⁇ , ⁇ ) is kept close to constant , And can fully match the working radius/distance and the corresponding iris optical zoom focusing optical imaging system's field of view angle.
  • is the optical constant coefficient of iris biological tissue reflectance, 0.12-0.15,
  • t is the transmittance constant coefficient of the iris zoom focusing optical imaging system.
  • Eimage is constant, that is, the imaged image brightness Iimage is constant.
  • QE is the photon-electronic quantum conversion efficiency unit e-/(mw*um 2 )/s
  • G is the unit conversion gain unit mv/e-
  • ADC is the analog voltage/digital brightness conversion unit LSB/mv
  • S is the unit pixel area The unit is um 2 .
  • CMOS SENSOR technology performs photon-electronic quantum conversion using PD silicon-based photodiodes, which are not efficient.
  • Cutting-edge QF quantum film or OPF organic photosensitive film technologies have natural high quantum conversion efficiency for infrared photons, and global shutter. The properties are ideally preferred.
  • the LED illuminating light source radiation system is controlled by the combination of a liquid lens and a 2-axis MEMS rotating mirror to achieve matching the corresponding iris zoom focusing optical imaging system's field of view range [FOViris-far, FOViris-near], working radius Range [Rfar, Rnear], or working distance range [Zfar, Znear].
  • the solid angle of the radiant intensity of the LED illumination light source in this embodiment is achieved by placing a liquid lens at the position of the light exiting light path of the LED illuminating light source to control the diopter or refraction angle.
  • the liquid lens controls the diopter angle of the emitted light to change the radiant intensity of the illumination light source.
  • the angle responds to the field angle of the iris zoom focusing optical imaging system corresponding to different working radius/distance. It is this design that can realize the matching relationship between the solid angle of the radiation intensity of the LED illumination light source and the field of view angle of the iris zoom focusing optical imaging system corresponding to different working radius/distance.
  • the direction angle of the radiation intensity of the LED illumination light source of this embodiment is realized by placing a 2-axis MEMS rotating mirror at the position of the exit light path of the LED illumination light source to control the vertical/horizontal rotation angle synchronization control, which is essentially achieved by the 2-axis MEMS rotating reflection
  • the mirror controls the vertical/horizontal rotation angle to change the direction angle of the radiation intensity of the LED illumination light source, so that the radiation intensity direction angle of the LED illumination light source responds to the field angle of the iris zoom focusing optical imaging system corresponding to different working radius/distance. It is this design that can realize the matching relationship between the direction angle of the radiation intensity of the LED illumination light source in response to the field of view angle of the iris zoom focusing optical imaging system corresponding to different working radius/distance.
  • the vertical/horizontal rotation angle method of the 2-axis MEMS rotating mirror used for the direction angle control of the radiation intensity of the LED illumination light source:
  • Piris(X', Y', Z') (Xe-X'offset, Xe-Y'offset, Ze-Z'offset)
  • X'offset, Y'offset, Z'offset is the 3D physical position coordinate offset of the 3D depth imaging unit relative to the LED illumination light source radiation system.
  • the 2-axis MEMS rotating mirror unit that performs the direction angle control of the radiation intensity of the LED lighting source adjusts the vertical/horizontal rotation angle synchronization control, including:
  • Perform asynchronous control of the direction axis rotation unit including:
  • the LED illumination light source radiation system of this embodiment is realized by the combined control of a liquid lens and a 2-axis MEMS rotating mirror.
  • the LED illumination light source light path sequence, the output light path passes through the liquid lens to control the diopter in turn, and then passes through the 2-axis MEMS rotating reflector.
  • the mirror unit adjusts the rotation angle of the vertical/horizontal direction and realizes synchronous control.
  • the LED illumination light source radiation system and the iris zoom focusing optical imaging system are combined and configured to have combined control in response to the synchrotron radiation intensity direction angle and the radiation intensity solid angle, so as to realize the response of the LED illumination light source radiation system in different 3D physical space points.
  • the corresponding matching relationship between the field of view angles of the iris zoom focusing optical imaging system corresponding to different working radii/distances meets the constant imaging image brightness within the predetermined working field of view and working distance, constant imaging image contrast, constant The radiant power of the LED lighting source system and the constant irradiance of the iris of the eye.
  • the LED illumination light source radiation system and the iris zoom focusing optical imaging system are configured as a global pixel exposure (integration) and illumination radiation combined imaging mode of synchronous pulse external triggering or synchronous pulse internal triggering.
  • the synchronization pulse exposure (integration) time and the synchronization pulse illumination radiation time Tpulse ⁇ m/(PR*speed), speed is the predetermined controlled movement speed such as 1m/s
  • m is the predetermined controlled motion blur image pixel scale, m ⁇ 10pxiels.
  • LED illumination light source radiation system generates synchronous pulse illumination radiation on the iris surface irradiance Tpulse*Fpulse*Eiris( ⁇ ) ⁇ 10mw/cm2, to ensure that the eye radiation biological safety.
  • the iris zoom focusing optical imaging system realizes the global pixel exposure (integration) and the combined imaging mode of the illumination radiation in the synchronization pulse external trigger or the synchronization pulse internal trigger mode under the combination of the filter.
  • Anti-interference performance under various light interference conditions Such as outdoor solar environment up to 10,000 lux or more.
  • the protective window 223 can be made of full-transmission tempered optical glass, or more preferably, a filter that reflects visible light below 700nm and transmits infrared light from 700-900nm. It can protect the internal optical components while the user cannot observe the internal structure by reflecting visible light. Provide users with visual feedback in their natural state. Furthermore, filtering visible light can improve the iris zoom focusing optical imaging system to eliminate the interference of external non-imaging wavelength stray light, and further improve the image quality SNR.
  • the invention provides a long-distance large-field-of-view iris optical imaging device and method, which simultaneously realizes the constant field of view angle and radiation illuminance in a large range.
  • the present invention is not limited to the exemplary embodiments disclosed below.
  • the equivalent 2-axis direction axis rotation and the use of a universal ball as the direction axis rotation should be equivalently understood.
  • simplifying the 2-axis direction axis rotation to the single-axis direction axis rotation should also be equivalently understood, and other functions such as the replacement of optical/mechanical/electronic components should also be equivalent.

Abstract

一种远距离大视场虹膜光学成像的装置(100),包括:虹膜光学跟踪系统,包括3D深度成像单元和方向轴旋转单元;虹膜变焦聚焦光学成像系统,包括光学变焦聚焦透镜组(120),用于根据3D物理空间点坐标执行虹膜成像的焦距和聚焦位置调整;LED照明光源辐射系统,包括辐射强度立体角和/或辐射强度方向角,用于根据3D物理空间点坐标执行响应于不同工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角之间匹配关系的组合控制;图像处理和驱动控制系统(150),实现各系统单元间的驱动和反馈控制。还公开了一种远距离大视场虹膜光学成像的方法,实现大范围时视场角和辐射照度恒定。

Description

一种远距离大视场虹膜光学成像的装置及方法 技术领域
本发明涉及光学成像技术领域,特别涉及一种远距离大视场虹膜光学成像的装置及方法。
背景技术
已知用于虹膜成像装置存在以下缺陷,在远工作距离和大工作视场场景下获得图像的成像时间超过1‐3s,用户无法在如此长时间内保持一致相对静止,归因于图像虹膜直径要求>200pixel的大放大倍率要求,导致即使非常轻微移动都能造成超过虹膜成像系统视场需要重新调整视场,变焦聚焦,照明。
此外,传统测距包括软件映射虹膜直径或双眼距离,因为归因于人群中变化差异大于20%导致误差过大而无法提供精确工作距离信息直接影响整体性能,同样红外,超声,tof等物理测距在远工作距离和大工作视场场景下也误差过大无法提供精确工作距离信息,同时已知技术存在景深,图像亮度,图像相对照度,照明光源辐射强度,眼睛虹膜受辐射照度等图像质量在远工作距离和大工作视场场景下也无法保证一致性,甚至相差数倍,传统的照明光源采用随工作距离平方反比变化调节,非恒定光源辐射强度(比如工作距离2‐3倍范围,视场角变化2‐3倍,辐射强度变化4‐9倍),导致无法同时满足大范围时视场角和辐射照度恒定的要求。
因此,针对现有技术中的在远工作距离和大工作视场场景下上述技术问题,需要一种远距离大视场虹膜光学成像的装置及方法。
发明内容
本发明的一个方面在于提供一种远距离大视场虹膜光学成像的装置, 所述装置包括:
虹膜光学跟踪系统,虹膜变焦聚焦光学成像系统,LED照明光源辐射系统,图像显示反馈系统,图像处理和驱动控制系统;
所述虹膜光学跟踪系统包括3D深度成像单元,用于执行3D物理空间点坐标获取,
和方向轴旋转单元,用于根据3D物理空间点坐标执行虹膜变焦聚焦光学成像系统的物方成像区域调整;
所述的虹膜变焦聚焦光学成像系统包括光学变焦聚焦透镜组,用于根据3D物理空间点坐标执行虹膜成像的焦距和聚焦位置调整;
所述LED照明光源辐射系统包括辐射强度立体角和/或辐射强度方向角,用于根据3D物理空间点坐标执行响应于不同工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角之间匹配关系的组合控制;
所述的图像显示反馈系统包括显示屏用于实时显示当前图像和/或状态信息;
所述的图像处理和驱动控制系统连接虹膜光学跟踪系统,虹膜变焦聚焦光学成像系统,LED照明光源辐射系统,图像显示反馈系统,并实现各系统单元间的驱动和反馈控制。
优选地,所述3D深度成像单元包括采用3D TOF深度成像或结构光深度成像,或双目立体视觉成像。
优选地,所述方向轴旋转单元包括执行垂直和/或水平方向旋转轴的旋转角度。
优选地,所述LED照明光源辐射系统的辐射强度方向角度,满足关系:ψ=arctan(D/R),其中,
定义在LED照明光源辐射系统的辐射强度峰值方向对应的中心线和虹膜变焦聚焦光学成像系统的光轴间夹角,D为LED照明光源辐射系统的光学中心和虹膜变焦聚焦光学成像系统光学中心的距离,R为虹膜变焦聚焦光学成像系统的工作半径。
优选地,所述LED照明光源辐射系统的辐射强度立体角,满足关系:Ω(ω)=4π*sin 2(ω)单位球面度sr,其中,
ω=arctan((PXiris 2+PYiris 2) 1/2/2*PSiris/((1+β)*EFLiris))=arctan((PXiris 2+PYiris 2) 1/2/2*PSiris/(β*R)),ω为虹膜变焦聚焦光学成像系统的半视场角,
PXiris为虹膜变焦聚焦光学成像系统的X水平方向像素分辨率,
PYiris为虹膜变焦聚焦光学成像系统的Y垂直方向像素分辨率,
EFLiris为焦距位置,
β=PR*PSiris,PR为虹膜物理直径像方分辨率,
PSiris为虹膜变焦聚焦光学成像系统的图像成像传感器的像素单位分辨率,
R为为虹膜变焦聚焦光学成像系统的工作半径。
优选地,所述LED照明光源辐射系统和虹膜变焦聚焦光学成像系统被配置为:
在滤光片的结合下同步脉冲外触发或同步脉冲内触发方式的全局像素曝光(积分)和照明辐射的组合成像模式,其中:
所述的组合成像模式的同步脉冲曝光(积分)时间和同步脉冲照明辐射时间Tpulse<m/(PR*speed),
speed为预定控制的运动速度,单位m/s,
PR为虹膜物理直径像方分辨率,
m为预定控制的运动模糊图像像素尺度,单位pixel;
所述的组合成像模式的同步脉冲曝光(积分)频率和同步脉冲照明辐射频率Fpulse,所述同步脉冲照明辐射频率Fpulse=[10,30]Hz,
所述LED照明光源辐射系统产生同步脉冲照明辐射在虹膜表面的受辐射照度Tpulse*Fpulse*Eiris(ω)<10mw/cm 2
Eiris(ω)为虹膜表面上受辐射照度。
本发明的另一个方面在于提供一种远距离大视场虹膜光学成像的方法,所述方法包括:
图像处理和驱动控制系统执行虹膜光学跟踪系统,虹膜变焦聚焦光学成像系统,LED照明光源辐射系统,图像显示反馈系统之间的驱动和反馈控制过程:
a、反馈控制虹膜光学跟踪系统,通过虹膜光学跟踪系统的3D深度成像单元获取虹膜关键点3D坐标,转换相对坐标为3D物理空间点,反馈控制方向轴旋转单元调整角度,实现实时同步虹膜光学成像跟踪;
b、反馈控制虹膜变焦聚焦光学成像系统,根据3D物理空间点坐标,实现实时同步光学变焦聚焦透镜组的焦距和聚焦位置的反馈控制;
c、反馈控制LED照明光源辐射系统,根据3D物理空间点坐标,实现实时同步响应于不同工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角之间匹配关系的LED照明光源辐射强度方向角度和/或LED照明光源辐射强度立体角的反馈控制;
d、反馈控制图像显示反馈系统实时显示当前图像和/或状态信息;
所述图像显示反馈系统实现实时同步显示当前图像为3D深度成像单元成像的红外图像,RGB可见光单元成像图像或虹膜变焦聚焦光学成像图像。
优选地,反馈控制虹膜成像跟踪系统,包括:
a1、根据预定的工作视场范围FOV,定义3D深度成像单元的视场角FOVface和有效成像焦距EFLface:
EFLface=[(PXface 2+PYface 2) 1/2*PSface/2]/tan(FOVface/2)
PXface为3D深度成像单元的X水平方向像素分辨率;
PYface为3D深度成像单元的Y垂直方向像素分辨率;
PSface为3D深度成像单元的像素单位分辨率;
FOVface为3D深度成像单元的视场角度,FOVface=FOV;
EFLface为3D深度成像单元的有效成像焦距。
a2、定义3D深度成像单元控制获取虹膜关键点:
a21、获取3D深度成像单元的亮度(红外灰度阶)图像Ii(x,y)和深度距离图像Iz(x,y);
a22、在亮度图像Ii(x,y)中检测人脸区域,在人脸区域进一步定位左右眼中心坐标(xl,yl)和(xr,yr);
a23、获取在深度距离图像Iz(x,y)中左右眼中心对应坐标的位置的深度距离信息,
z=[Iz(xl,yl)+lz(xr,yr)]/2
z=Iz((xl+xr)/2,(yl+yr)/2);
a24、产生3D深度成像单元像方关键参考点,
KPface(xe,ye,z):KPface(xe,ye,z)=KPface((xl+xr-PXface)/2*PSface,(yl+yr-PYface)/2*PSface,z);
a25、产生3D深度成像单元物方关键参考点KPface(Xe,Ye,Ze):KPface(Xe,Ye,Ze)=KPface(xe*z/EFLface,ye*z/EFLface,z)。
a3、建立3D深度成像单元的物方关键参考点坐标KPface(Xe,Xe,Ze)相对虹膜变焦聚焦光学成像系统的3D物理空间点Piris(X,Y,Z)坐标变换,Piris(X,Y,Z)=(Xe-Xoffset,Xe-Yoffset,Ze-Zoffset),
(Xoffset,Yoffset,Zoffset)为3D深度成像单元相对虹膜变焦聚焦光学成像系统的3D物理位置坐标偏移。
a4、执行方向轴旋转单元同步控制,包括:
执行垂直方向旋转轴的旋转角度θv=arcsin(X/R),
执行水平方向旋转轴的旋转角度θh=arcsin(Y/R);
R=(X 2+Y 2+Z 2) 1/2
或者,执行方向轴旋转单元异步控制,包括:
执行垂直方向旋转轴的旋转角度θv=arctan(X/Z),
执行水平方向旋转轴的旋转角度θh=arcsin(Y/R);
等价的,
执行水平方向旋转轴的旋转角度θh=arctan(Y/Z)
执行垂直方向旋转轴的旋转角度θv=arcsin(X/R)。
优选地,反馈控制虹膜变焦聚焦光学成像系统,包括:
b1、执行虹膜变焦聚焦光学成像系统的变焦聚焦参数同步控制;
b11、执行对虹膜变焦聚焦光学成像系统的焦距参数控制,实现焦距位置保持恒定的预定放大倍率即相同成像虹膜直径,
焦距位置EFLiris=R*β/(1+β)R=(X 2+Y 2+Z 2) 1/2
其中,β=PR*PSiris,PR为虹膜物理直径像方分辨率,
PSiris虹膜变焦聚焦光学成像系统的图像成像传感器的像素单位分 辨率,
R为为虹膜变焦聚焦光学成像系统的工作半径;
b2、执行对虹膜变焦聚焦光学成像系统的聚焦参数控制,实现聚焦位置在像方景深范围内,
聚焦位置FOCUS=β*[R-kDOF,R+kDOF],
其中,k步数控制范围,DOF=2*FNO*SOC*(1+β)/β 2,其中,FNO为虹膜变焦聚焦光学成像系统的光圈参数,
SOC为为虹膜变焦聚焦光学成像系统的最小物理光斑分辨率参数。
优选地,所述反馈控制LED照明光源辐射系统,包括:
c1、执行LED照明光源辐射系统的照明光源辐射强度方向角度参数控制,
LED照明光源辐射方向角度ψ=arctan(D/R),
定义在LED照明光源辐射系统的辐射强度峰值方向对应的中心线和虹膜变焦聚焦光学成像系统的光轴间夹角,D为LED照明光源辐射系统的光学中心和虹膜变焦聚焦光学成像系统光学中心的距离,R为虹膜变焦聚焦光学成像系统的工作半径;
c2、执行对LED照明光源辐射系统的LED照明光源辐射强度立体角的参数控制,
LED照明光源辐射强度立体角Ω(ω)=4π*sin 2(ω)单位球面度sr,其中,
ω=arctan((PXiris 2+PYiris 2) 1/2/2*PSiris/((1+β)*EFLiris))=arctan((PXiris 2+PYiris 2) 1/2/2*PSiris/(β*R)),ω为虹膜变焦聚焦光学成像系统的半视场角,
PXiris为虹膜变焦聚焦光学成像系统的X水平方向像素分辨率,
PYiris为虹膜变焦聚焦光学成像系统的Y垂直方向像素分辨率,
EFLiris为焦距位置,
β=PR*PSiris,PR为虹膜物理直径像方分辨率,
PSiris为虹膜变焦聚焦光学成像系统的图像成像传感器的像素单位分辨率,
R为为虹膜变焦聚焦光学成像系统的工作半径。
本发明提供的一种远距离大视场虹膜光学成像的装置及方法,同时实现大范围时视场角和辐射照度恒定,具有以下优势:
1.恒定放大倍率即相同的成像图像虹膜直径。
2.响应于视场和工作距离及景深范围内成像速度0.1s以内。
3.恒定的成像景深。
4.恒定的成像图像亮度。
5.恒定的成像图像相对照度。
6.恒定的LED照明光源系统辐射总光功率。
7.恒定的眼睛虹膜受辐射照度,并满足眼睛生物安全辐射上限。
8.移动速度到1m/s不受运动模糊影响,对抗各种环境光>10,000lux噪声条件干扰。
9.工作距离大于1m,视场范围大于60度。
应当理解,前述大体的描述和后续详尽的描述均为示例性说明和解释,并不应当用作对本发明所要求保护内容的限制。
附图说明
参考随附的附图,本发明更多的目的、功能和优点将通过本发明实施方式的如下描述得以阐明,其中:
图1示意性示出了本发明一个实施例中远距离大视场虹膜光学成像的装置的原理示意图。
图2示意性示出了本发明另一个实施例中远距离大视场虹膜光学成像的装置的原理示意图。
附图标记:
100远距离大视场虹膜光学成像的装置,
110 3D深度成像单元红外VCSEL光源,
111深度成像单元红外的成像透镜和图像成像传感器,
112虹膜光学跟踪系统的垂直方向旋转轴,
113虹膜光学跟踪系统的水平方向旋转轴,
114可见光RGB图像成像单元,
115 3D深度成像单元的视场角即预定的工作视场角FOVface,
116预定的近端工作半径Rnear,
117预定的近端工作距离Znear,
118预定的远端工作半径Rfar,
119预定的远端工作距离Zfar,
120虹膜变焦聚焦光学成像系统的变焦聚焦成像透镜组,
121虹膜变焦聚焦光学成像系统的滤光片,
122虹膜变焦聚焦光学成像系统的图像成像传感器,
123保护窗口,
124虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear的视场角FOViris‐near,
125虹膜变焦聚焦光学成像系统的远端工作半径/距离Rfar/Zfar的视场角FOViris‐far,
126虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear的物方平面成像区域,
127虹膜变焦聚焦光学成像系统的远端工作半径/距离Rfar/Zfar的物方平面成像区域,
130L/130R在远端工作半径/距离Rfar/Zfar时LED照明光源辐射系统的左右侧LED照明光源,
131L/131R在近端工作半径/距离Rnear/Znear时LED照明光源辐射系统的左右侧LED照明光源,
132L/132R在远端工作半径/距离Rfar/Zfar时LED照明光源辐射系统的左/右侧照明光源的辐射强度立体角,匹配虹膜变焦聚焦光学成像系统的远端工作半径/距离Rfar/Zfar的视场角FOViris‐far,
133L/133R在近端工作半径/距离Rnear/Znear时LED照明光源辐射系统的左/右侧照明光源的辐射强度立体角,匹配虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear的视场角FOViris‐near,
134L/134R在近端工作半径/距离Rnear/Znear时LED照明光源辐射系 统的左/右侧照明光源辐射强度方向角度,匹配虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear,
135L/135R在远端工作半径/距离Rfar/Zfar时LED照明光源辐射系统的左/右侧照明光源辐射强度方向角度,匹配虹膜变焦聚焦光学成像系统的远端工作半径/距离Rfar/Zfar,
150图像处理和驱动控制系统,
160图像显示反馈系统。
200远距离大视场虹膜光学成像的装置,
210 3D深度成像单元红外VCSEL光源,
211深度成像单元红外的成像透镜和图像成像传感器,
214可见光RGB图像成像单元,
215 3D深度成像单元的视场角即预定的工作视场角FOVface,
216预定的近端工作半径Rnear,
217预定的近端工作距离Znear,
218预定的远端工作半径Rfar,
219预定的远端工作距离Zfar,
228虹膜光学跟踪系统的2轴MEMS旋转反射镜单元,
220虹膜变焦聚焦光学成像系统的变焦聚焦成像透镜组,
221虹膜变焦聚焦光学成像系统的滤光片,
222虹膜变焦聚焦光学成像系统的图像成像传感器,
223保护窗口,
224虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear的视场角FOViris‐near,
225虹膜变焦聚焦光学成像系统的远端工作半径/距离Rfar/Zfar的视场角FOViris‐far,
226虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear的物方平面成像区域,
227虹膜变焦聚焦光学成像系统的远端工作半径/距离Rfar/Zfar的物方平面成像区域,
230L/230R LED照明光源辐射系统的左右侧LED照明光源,
232L/232R在远端工作半径/距离Rfar/Zfar时LED照明光源辐射系统的左/右侧照明光源的辐射强度立体角,匹配虹膜变焦聚焦光学成像系统的远端工作半径/距离Rfar/Zfar的视场角FOViris‐far,
233L/233R在近端工作半径/距离Rnear/Znear时LED照明光源辐射系统的左/右侧照明光源的辐射强度立体角,匹配虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear的视场角FOViris‐near,
234L/234R在近端工作半径/距离Rnear/Znear时LED照明光源辐射系统的左/右侧照明光源辐射强度方向角度,匹配虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear,
235L/235R在远端工作半径/距离Rfar/Zfar时LED照明光源辐射系统的左/右侧照明光源辐射强度方向角度,匹配虹膜变焦聚焦光学成像系统的远端工作半径/距离Rfar/Zfar,
236L/236R LED照明光源辐射系统的左/右侧的液体透镜,
237L/237R LED照明光源辐射系统的左/右侧2轴MEMS旋转反射镜,
250图像处理和驱动控制系统,
260图像显示反馈系统。
具体实施方式
通过参考示范性实施例,本发明的目的和功能以及用于实现这些目的和功能的方法将得以阐明。然而,本发明并不受限于以下所公开的示范性实施例;可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。
在下文中,将参考附图描述本发明的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤。
实施例一:
如图1所示本发明一个实施例中远距离大视场虹膜光学成像的装置的原理示意图,根据本发明本实施例中,一种远距离大视场虹膜光学成像的装置100,包括:虹膜光学跟踪系统,虹膜变焦聚焦光学成像系统,LED照明光源辐射系统,图像显示反馈系统160,图像处理和驱动控制系 统150。
虹膜光学跟踪系统包括3D深度成像单元,2方向轴旋转单元:虹膜光学跟踪系统的垂直方向旋转轴112和虹膜光学跟踪系统的水平方向旋转轴113。
3D深度成像单元可采用3D TOF深度成像或结构光深度成像(例如940nm红外VCSEL光源110,成像透镜和图像成像传感器111),或双目立体视觉成像(LED照明光源,固定间隔距离安装的2组参数对称的成像透镜和图像成像传感器)提供深度图像信息。
虹膜变焦聚焦光学成像系统包括光学变焦聚焦透镜组120,光学滤光片121,图像成像传感器122。
LED照明光源辐射系统包括LED照明光源辐射强度立体角和/或辐射强度方向角度组合控制。
图像显示反馈系统160包括显示屏,用于实时显示当前图像和/或状态信息。
图像处理和驱动控制系统150连接虹膜光学跟踪系统,虹膜变焦聚焦光学成像系统,LED照明光源辐射系统,图像显示反馈系统,并实现各系统单元间的驱动和反馈控制。
根据本发明本实施例一种远距离大视场虹膜光学成像的方法,包括:图像处理和驱动控制系统执行各系统单元间的驱动和反馈控制过程如下:
a、反馈控制虹膜成像跟踪系统,通过3D深度成像单元获取虹膜关键点3D坐标,转换相对坐标为3D物理空间点,反馈控制2轴旋转单元调整角度,实现实时同步虹膜光学成像跟踪。
b、反馈控制虹膜变焦聚焦光学成像系统,根据3D物理空间点坐标,实现实时同步光学变焦聚焦透镜组的焦距和聚焦位置的反馈控制。
c、反馈控制LED照明光源辐射系统,根据3D物理空间点坐标,实现实时同步响应于不同工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角之间匹配关系的LED照明光源辐射强度方向角度和/或LED照明光源辐射强度立体角的反馈控制。
d、反馈控制图像显示反馈系统实时显示当前图像和/或状态信息。
图像显示反馈系统实现实时同步显示当前图像为3D深度成像单元成像的红外亮度图像,RGB可见光单元成像图像或虹膜变焦聚焦光学成像图像。
根据本发明的实施例,具体的步骤包括:
a1、根据预定的工作视场范围FOV,定义3D深度成像单元的视场角FOVface115和有效成像焦距EFLface。
EFLface=[(PXface 2+PYface 2) 1/2*PSface/2]/tan(FOVface/2),
PXface为3D深度成像单元的X水平方向像素分辨率,pixel;
PYface为3D深度成像单元的Y垂直方向像素分辨率,pixel;
PSface为3D深度成像单元的像素单位分辨率,um/pixel;
FOVface为3D深度成像单元的视场角,FOVface=FOV;
EFLface为3D深度成像单元的有效成像焦距,mm。
典型参数计算如下:
PXface=640pixels,PYface=480pixels,PSface=5.6um/pixel,FOVface=FOV=77度,EFLface=2.8mm。
a2、定义3D深度成像单元控制获取虹膜关键点。
a21、获取3D深度成像单元的亮度(红外灰度阶)图像Ii(x,y)和深度距离图像Iz(x,y)。
a22、在亮度图像Ii(x,y)中检测人脸区域,在人脸区域进一步定位左右眼中心坐标(xl,yl)和(xr,yr)。
目前应用公知的基于深度学习的卷积神经网络CNN级联模型可以可靠准确的实现人脸区域检测和人眼定位功能。
具体本实施例为了提高检测定位眼睛性能,采用独立或联合可见光RGB图像成像单元114,预先进行3D深度成像单元和可见光RGB图像成像单元114的的标定配准,然后进一步检测RGB图像中人脸区域和人眼定位提高精度和可靠性。另外RGB成像单元可以用于装置在待机状态时检测人脸触发系统进入正常工作状态,降低系统待机功耗。更进一步可见光RGB图像成像单元成像图像被用于图像显示反馈系统实时显示当前图像。
a23、获取在深度距离图像Iz(x,y)中左右眼中心对应坐标的位置的深度距离信息,
z=[Iz(xl,yl)+lz(xr,yr)]/2,
z=Iz((xl+xr)/2,(yl+yr)/2)。
具体本实施例为了提高距离信息测量精度和可靠性性能,采用提取左右眼中心坐标位置的局部区域内有效像素过滤干扰像素,如中值滤波,或过滤灰度亮度图像中过高亮度或过低亮度的像素,或深度距离图像中距离过远或距离过近的像素等。
a24、产生3D深度成像单元像方关键参考点KPface(xe,ye,z):KPface(xe,ye,z)=KPface((xl+xr‐PXface)/2*PSface,(yl+yr‐PYface)/2*PSface,z)。
a25、产生3D深度成像单元物方关键参考点KPface(Xe,Ye,Ze):KPface(Xe,Ye,Ze)=KPface(xe*z/EFLface,ye*z/EFLface,z)。
a3、建立3D深度成像单元的物方关键参考点坐标KPface(Xe,Xe,Ze)相对虹膜变焦聚焦光学成像系统的3D物理空间点Piris(X,Y,Z)坐标变换,
Piris(X,Y,Z)=(Xe‐Xoffset,Xe‐Yoffset,Ze‐Zoffset),
其中,(Xoffset,Yoffset,Zoffset)为3D深度成像单元相对虹膜变焦聚焦光学成像系统的3D物理位置坐标偏移。
a4、执行方向轴旋转单元同步控制,包括:
执行垂直方向旋转轴的旋转角度θv=arcsin(X/R),
执行水平方向旋转轴的旋转角度θh=arcsin(Y/R);
R=(X 2+Y 2+Z 2) 1/2
或者,执行方向轴旋转单元异步控制,包括:
执行垂直方向旋转轴的旋转角度θv=arctan(X/Z),
执行水平方向旋转轴的旋转角度θh=arcsin(Y/R);
等价的,
执行水平方向旋转轴的旋转角度θh=arctan(Y/Z)
执行垂直方向旋转轴的旋转角度θv=arcsin(X/R)。
本发明具体实施列中执行方向轴旋转单元同步控制,可通过采用垂 直/水平方向旋转轴的角度旋转速度比K来实现同步,K=θv/θh。
本发明具体实施列中执行方向轴旋转单元异步控制,可通过采用垂直/水平方向旋转轴的角度旋转先后时序来实现异步,如先垂直方向旋转轴的旋转角度θv然后水平方向旋转轴的旋转角度θh;或等价的,先水平方向旋转轴的旋转角度θh然后垂直方向旋转轴的旋转角度θv。
特别的,作为一个简化,当Xoffset<<X,Yoffset<<Y,Zoffset<<Z时,即3D深度成像单元相对虹膜变焦聚焦光学成像系统的3D物理位置坐标偏移忽略不计时,垂直/水平方向旋转轴的旋转角度和Z近似无关。
更进一步优选的,3D深度成像单元和虹膜光学跟踪系统集成保持同步旋转控制,当虹膜光学跟踪系统调整2轴旋转角度后,提供了理想的准确性反馈测量,通过比较旋转后预期物方关键参考点KP(Xp,Yp,Zp):
KP(Xp,Yp,Zp)=KP((Ze*tan(θv)‐Xe)*cos(θv),(Ze*tan(θh)‐Ye)*cos(θh),(Xe 2+Ye 2+Ze 2) 1/2),
或等价的,
KP((Xe 2+Ze 2) 1/2*sin(θv‐arctan(Xe/Ze)),(Ye 2+Ze 2) 1/2*sin(θh‐arctan(Ye/Ze)),(Xe 2+Ye 2+Ze 2) 1/2),
θv=X/Z,θh=Y/Z。
重复迭代步骤a1‐a2后的3D深度成像单元输出的实际物方关键参考点KPface(Xe,Ye,Ze),判断是否在系统预定的误差范围内,如果超过预定误差范围,再次按实际物方关键参考点KPface(Xe,Ye,Ze)重复步骤a3建立3D物理空间点Piris(X,Y,Z)坐标变换,并反馈控制步骤a4,重新调整旋转角度。更近一步,3D深度成像单元和虹膜跟踪系统集成保持同步旋转控制,提供了扩展更大360度工作视场角。
执行虹膜变焦聚焦光学成像系统的变焦聚焦参数同步控制,包括:
b1、执行对虹膜变焦聚焦光学成像系统的焦距参数控制,实现焦距位置保持恒定的预定放大倍率即相同成像虹膜直径。
焦距位置EFLiris=R*β/(1+β)R=(X 2+Y 2+Z 2) 1/2
其中,β=PR*PSiris PR为虹膜物理直径像方分辨率pixel/mm如典型 的20pixels/mm,PSiris虹膜变焦聚焦光学成像系统的图像成像传感器的像素单位分辨率um/pixel,如典型的3um/pixel,β=0.06。
如图1所示R为预定的工作半径,包括预定的近端工作半径Rnear116,预定的远端工作半径Rfar118,
预定的工作距离Z,包括预定的近端工作距离Znear117,预定的远端工作距离Zfar119。
如典型参数近端工作半径Rnear=1m,远端工作半径Rfar=2m,分别EFLiris=56.6mm和113.2mm。
考虑到实际使用者不自主移动同时保证速度和调整频率,可以R间隔变化一定预定范围后执行光学变焦操作。如保持相对5‐10cm范围相同的焦距,这种设计是合理的,虹膜直径本身也是因人而异存在一定差异。
b2、执行对虹膜变焦聚焦光学成像系统的聚焦参数控制,实现聚焦位置在像方景深范围内,
聚焦位置FOCUS=β*[R‐kDOF,R+kDOF]
其中,k步数控制范围,k=[1,2],步长为STEP=β*DOF,如k=2,包括‐2STEP,‐STEP,0,+STEP,2STEP共5个范围,DOF=2*FNO*SOC*(1+β)/β 2,其中,FNO为虹膜变焦聚焦光学成像系统的光圈参数,参数范围[PF,2PF],PF=PSiris/(1um/pixel);SOC为为虹膜变焦聚焦光学成像系统的最小物理光斑分辨率参数,参数典型值为SOC=2*PSiris*1pixel,最大值DOF=21.2mm。
归因于深度信息的误差,虹膜变焦聚焦光学成像系统在实际生产制造过程精度机械误差,个体偏差等,产生2k+1倍步长控制位置,步长为β*DOF,一般3‐5步长范围完全在预定的像方聚焦位置,保证聚焦位置在+‐DOF/2的物方景深范围内(等价的,+‐β*DOF/2的像方景深范围内),同时如此少量控制步数能保证在0.1s完成。
本发明上述设计保证具有恒定景深范围,并同时实现聚焦位置在像面景深范围内。
理想的非球面光学玻璃/塑料混合2片液体透镜liquid lens分别独立控制焦距EFLiris和聚焦FOCUS,上述设计需要焦距和和聚焦位置都转换 为对应设计的成像光学系统2片液体镜头的屈光度为单位规格的数值,相比传统步进电机驱动的复杂凸轮曲线控制,归因于液体透镜具有屈光度和电压/电流对应的线性响应光学属性关系,可大大简化驱动控制过程,同时如此设计可大量减少整体成像系统组件数量(3‐4组群12‐16片)。
同时没有任何传统螺杆或齿轮连接驱动的机械传动部件,无使用寿命限制,控制精度和重复性也有本质性的提高。
本发明在实践中,目前液体透镜存在受限的通光孔径典型如6‐10mm,和受限的屈光范围‐10到+20屈光度,在大屈光度时波前误差增加到λ/10,但归因于景深对FNO值,长焦距应用要求,适合虹膜变焦聚焦光学成像系统。光学设计者利用液体透镜特性技巧可通过优化光路设计解决,如光路中选择合适的出入射光瞳设计FNO解决通光孔径,变焦部分光学系统初始设计采用设置变焦液体镜头在0屈光度光学功率时工作在远端工作半径/距离时对应最大焦距,聚焦部分光学系统初始设计采用设置聚焦液体镜头在0屈光度光学功率时工作在远端工作半径/距离时对应的像面位置。
执行对LED照明光源辐射系统的LED照明光源辐射强度方向角度和/或LED照明光源辐射强度立体角的参数控制,实现在不同3D物理空间点坐标响应于不同工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角范围之间关系的匹配,如图1所示。
c1、执行LED照明光源辐射系统的照明光源辐射强度方向角度参数控制。
LED照明光源辐射方向角度ψ=arctan(D/R)
定义在LED照明光源辐射系统的辐射强度峰值方向对应的中心线和虹膜变焦聚焦光学成像系统的光轴间夹角,D为LED照明光源辐射系统的光学中心和虹膜变焦聚焦光学成像系统光学中心的距离,R为为虹膜变焦聚焦光学成像系统的工作半径。
等价的定义,在LED照明光源辐射系统的辐射强度峰值方向对应的中心线和虹膜变焦聚焦光学成像系统的物方平面夹角ψ',ψ=90‐ψ'。
C2、执行对LED照明光源辐射系统的LED照明光源辐射强度立体角 的参数控制。
LED照明光源辐射强度立体角Ω(ω)=4π*sin 2(ω)单位球面度sr
ω=arctan((PXiris 2+PYiris 2) 1/2/2*PSiris/((1+β)*EFLiris))
=arctan((PXiris 2+PYiris 2) 1/2/2*PSiris/(β*R))
ω为虹膜变焦聚焦光学成像系统的半视场角。
PXiris为虹膜变焦聚焦光学成像系统的X水平方向像素分辨率,pixel。
PYiris为虹膜变焦聚焦光学成像系统的Y垂直方向像素分辨率,pixel。
由于真实物理光学如凸透镜和或凹面反射镜等无法制造出在给定LED照明光源辐射强度立体角Ω(ω)下等密度均匀光场分别光能量(光功率)分布,既单位阶跃函数分布,而是具有特定函数分布。
Figure PCTCN2020085479-appb-000001
其中:
I(Ω)为LED照明光源辐射系统的辐射强度,单位mw/sr
I(Ω)=Ipeak*f(Ω)。
Ω为LED照明光源辐射系统的立体角,单位sr球面度。
Ipeak为LED照明光源辐射系统的辐射强度峰值,单位mw/sr。
f(Ω)为LED照明光源辐射系统的辐射强度归一化分布函数。
OP为LED照明光源辐射系统的恒定总光学功率,单位mw。
根据推论f(Ω(ω))=I(Ω(ω))/Ipeak,
因此,在LED照明光源辐射系统的辐射强度立体角Ω(ω)时,LED照明光源辐射系统具有辐射强度I(Ω(ω))=Ipeak*f(Ω(ω)),当f(Ω(ω))越接近1,越呈现单位阶跃函数分布特性。
定义ρ=Iρ/Ipeak=I(Ω(ω))/Ipeak=f(Ω(ω)),ρ为预定的自定义虹膜焦距聚焦光学成像系统的成像像面接受光辐射的相对照度,如0.5或0.707,更高意味相对照度分布更均匀。
本质上LED照明光源辐射强度立体角产生在虹膜表面上受辐射照度Eiris,
Eiris(ω,ψ)=OP/(Ω(ω)*R 2)*cos 3(ψ)=Ipeak/R 2*cos 3(ψ)。
当ω足够小时满足sin 2(ω)=tan 2(ω)。
如图1所示,虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear的视场角FOViris‐near124。虹膜变焦聚焦光学成像系统的远 端工作半径/距离Rfar/Zfar的视场角FOViris‐far125。虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear的物方平面成像区域126。虹膜变焦聚焦光学成像系统的远端工作半径/距离Rfar/Zfar的物方平面成像区域127。在远端工作半径/距离Rfar/Zfar时LED照明光源辐射系统的左右侧LED照明光源130L/130R。在近端工作半径/距离Rnear/Znear时LED照明光源辐射系统的左右侧LED照明光源131L/131R。在远端工作半径/距离Rfar/Zfar时LED照明光源辐射系统的左/右侧照明光源的辐射强度立体角,匹配虹膜变焦聚焦光学成像系统的远端工作半径/距离Rfar/Zfar的视场角FOViris‐far132L/132R。在近端工作半径/距离Rnear/Znear时LED照明光源辐射系统的左/右侧照明光源的辐射强度立体角,匹配虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear的视场角FOViris‐near133L/133R。在近端工作半径/距离Rnear/Znear时LED照明光源辐射系统的左/右侧照明光源辐射强度方向角度,匹配虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear134L/134R。在远端工作半径/距离Rfar/Zfar时LED照明光源辐射系统的左/右侧照明光源辐射强度方向角度,匹配虹膜变焦聚焦光学成像系统的远端工作半径/距离Rfar/Zfar135L/135R。
本发明可以实现在本质上对于恒定总光功率的LED照明光源辐射系统,通过动态改变LED照明光源辐射强度立体角分配的光辐射强度等量的改变虹膜表面受辐射照度,无论虹膜变焦聚焦光学成像系统在远端/近端工作半径[Rfar,Rnear]/距离[Zfar,Znear]及对应的视场角[FOViris‐far,FOViris‐near]如何变化,根据公式Eiris(ω,ψ)保持接近恒定,而且能完全匹配工作半径/距离及对应的虹膜光学变焦聚焦光学成像系统的视场角。
可以证明对于一个具有虹膜变焦聚焦光学成像系统的成像像面接受光辐射照度Eimage。
根据公式Eimage(ω,ψ)=t*1/8/(1+β) 2*cos 4(Φ)*μ*Eiris(ω,ψ)/FNO 2
当ω足够小时满足cos 4(Φ)=1,Φ为虹膜变焦聚焦光学成像系统的成像入射角,Φ=[0,ω],
μ为虹膜生物组织反射率光学常数系数,0.12‐0.15,
t为为虹膜变焦聚焦光学成像系统的透过率常数系数。
Eimage是恒定的,即成像图像亮度Iimage是恒定的。
Iimage=QE*Tpulse*Eimage*ADC*G*S
QE为光子‐电子量子转换效率单位e‐/(mw*um 2)/s,G为单位转换增益单位mv/e‐,ADC为模拟电压/数字亮度转换单位LSB/mv,,S为单位像素面积单位um 2
目前传统CMOS SENSOR技术执行光子‐电子量子转换的是PD硅基光电二极管其效率不理想,前沿的QF量子薄膜或OPF有机感光薄膜等技术,具有天然对红外光子高量子转换效率,global shutter全局快门的性质是理想的优选。
同时可以证明对于虹膜变焦聚焦光学成像系统的成像像面接受光辐射的相对照度ρ是恒定的,ρ=Eedge/Ecenter=Iρ/Ipeak,Eedge为成像像面边缘(视场边缘)的受辐射照度Eedge=Eimage(ω,ψ)*ρ,Ecenter为成像像面中心(视场中心)的受辐射照度,Ecenter=Eimage(ω,ψ)既成像图像亮度具有恒定的相对照度。
本发明通过LED照明光源辐射系统通过具有不同的辐射方向角和辐射强度立体角的阵列组合控制,实现匹配对应的虹膜变焦聚焦光学成像系统的视场角范围[FOViris‐far,FOViris‐near],工作半径范围[Rfar,Rnear],或工作距离范围[Zfar,Znear]。
本发明通过实现在本质上对于恒定总光功率的LED照明光源辐射系统的权重值再分配实现在对应的虹膜变焦聚焦光学成像系统的视场角范围[FOViris‐far,FOViris‐near],工作半径范围[Rfar,Rnear],或工作距离范围[Zfar,Znear]内等效拟合的响应于对应的LED照明光源辐射强度立体角。
∑OPi=OP
OPi=Wi*OP,∑Wi=1
OPi为具有不同的辐射方向角和辐射强度立体角的LED照明光源辐射 系统的光学功率,Wi为对应OPi的权重值。
i为具有不同的辐射方向角和辐射强度立体角的LED照明光源辐射系统的数量。
OP为LED照明光源辐射系统的恒定总光学功率。
本发明实现在具有不同的辐射方向角和辐射强度立体角的LED照明光源辐射系统的光学功率组合控制后,在虹膜表面上产生恒定的总受辐射照度Eiris。
∑Ei=Eiris
Ei=Wi*Eiris,∑Wi=1
Ei为具有不同的辐射方向角和辐射强度立体角的LED照明光源辐射系统的光学功率OPi在虹膜表面上产生的受辐射照度。
i为具有不同的辐射方向角和辐射强度立体角的LED照明光源辐射系统的数量。
根据本发明的具体实施例,在i=2的实列,即在远端工作半径Rfar和近端工作半径Rnear的不同辐射方向角和辐射强度立体角的LED照明光源辐射系统的光学功率OPfar和OPnear分配实现任意给定工作半径R时对应的LED照明光源辐射强度立体角和恒定的总光功率OP的组合控制举例。
OP1+OP2=OP或OPfar+OPnear=OP,OPfar=Wfar*OP,OPnear=Wnear*OP。
定义OP为工作半径R对应的LED照明光源辐射系统的恒定总光学功率。
定义OPfar为远端工作半径Rfar对应的LED照明光源辐射系统的光学功率。
Wfar为对应OPfar的权重值。
定义OPnear为近端工作半径Rnear对应的近端LED照明光源辐射系 统的光学功率。
Wnear为对应OPnear的权重值。
在Wfar+Wnear=1条件下,根据上述公式有以下推论:
Wfar=[cos 3(ψR)*R 2-cos 3(ψnear)*Rnear 2]/[cos 3(ψfar)*Rfar 2-cos 3(ψnear)*Rnear 2]。
Wnear]=[cos 3(ψfar)*Rfar 2-cos 3(ψR)*R 2]/[cos 3(ψfar)*Rfar 2-cos 3(ψnear)*Rnear 2]。
其中ψR为R工作半径LED照明光源辐射系统的辐射方向角。
其中ψfar为远端LED照明光源辐射系统的辐射方向角。
其中ψnear为近端LED照明光源辐射系统的辐射方向角。
特别的,在cos 3(ψfar)/cos 3(ψR)=1和cos 3(ψnear)/cos 3(ψR)=1的简化条件下,上述公式简化为
Wfar=[R 2-Rnear 2]/[Rfar 2-Rnear 2]
Wnear=[Rfar 2-R 2]/[Rfar 2-Rnear 2]。
通过组合控制分配权重值比例Wfar和Wnear在远端工作半径Rfar和近端工作半径Rnear的不同辐射方向角和辐射强度立体角的LED照明光源辐射系统的光学功率OPfar和OPnear分配实现任意给定工作半径R时对应的LED照明光源辐射强度立体角和恒定的总光功率。
根据本发明具体实施例,同样对i=2的实施例,即在远端工作半径Rfar和近端工作半径Rnear的不同辐射方向角和辐射强度立体角的LED照明光源辐射系统的光学功率OPfar和OPnear分配实现任意给定工作半径R时对应的LED照明光源辐射强度立体角和恒定的总光功率OP的组合控制举例。
同时加入LED照明光源辐射系统的辐射强度归一化分布函数的边界条件:
f(Ω)far*OPfar+f(Ω)near*OPnear=f(Ω)R*OP
OPfar+OPnear=OP,
OPfar=Wfar*OP,OPnear=Wnear**OP
定义OP为工作半径R对应的LED照明光源辐射系统的恒定总光学功率,f(Ω)R为对应OP的辐射强度归一化分布函数。
定义OPfar为远端工作半径Rfar对应的LED照明光源辐射系统的光 学功率。
Wfar为对应OPfar的权重值,f(Ω)far为对应OPfar的辐射强度归一化分布函数。
定义OPnear为近端工作半径Rnear对应的近端LED照明光源辐射系统的光学功率。
Wnear为对应OPnear的权重值,f(Ω)near为对应的OPnear辐射强度归一化分布函数。
在Wfar+Wnear=1条件下,根据上述公式有以下推论:
Wfar=[cos 3(ψR)*f(Ω)R*R 2-cos 3(ψnear)*f(Ω)near*Rnear 2]/[cos 3(ψfar)*f(Ω)far*Rfar 2-cos 3(ψnear)*f(Ω)near*Rnear 2]。
Wnear=[cos 3(ψfar)*f(Ω)far*Rfar 2-cos 3(ψR)*f(Ω)R*R 2]/[cos 3(ψfar)*f(Ω)far*Rfar 2-cos 3(ψnear)*f(Ω)near*Rnear 2]。
特别的在Ω=Ω(ω),Wfar+Wnear=1条件下,根据上述公式有以下推论:
Wfar=[cos 3(ψR)*f(Ω(ω))R*R 2-cos 3(ψnear)*f(Ω(ω))near*Rnear 2]/[cos 3(ψfar)*f(Ω(ω))far*Rfar 2-cos 3(ψnear)*f(Ω(ω))near*Rnear 2]。
Wnear=[cos 3(ψfar)*f(Ω(ω))far*Rfar 2-cos 3(ψR)*f(Ω(ω))R*R 2]/[cos 3(ψfar)*f(Ω(ω))far*Rfar 2-cos 3(ψnear)*f(Ω(ω))near*Rnear 2]。
其中,ψR为R工作半径LED照明光源辐射系统的辐射方向角。
其中,ψfar为远端LED照明光源辐射系统的辐射方向角。
其中,ψnear为近端LED照明光源辐射系统的辐射方向角。
其中,f(Ω(ω))R为R工作半径LED照明光源辐射系统在Ω(ω)辐射强度立体角时对应的辐射强度归一化分布函数值。
其中,f(Ω(ω))far为远端工作半径LED照明光源辐射系统在Ω(ω)辐射强度立体角时对应的辐射强度归一化分布函数值。
其中,f(Ω(ω))near为近端工作半径LED照明光源辐射系统在Ω(ω)辐射强度立体角时对应的辐射强度归一化分布函数值。
特别的,在cos 3(ψfar)/cos 3(ψR)=1和cos 3(ψnear)/cos 3(ψR)=1的简化条件下,上述公式简化为:
Wfar=[f(Ω(ω))R*R 2-f(Ω(ω))near*Rnear 2]/[f(Ω(ω))far*Rfar 2-f(Ω(ω))near*Rnear 2]。
Wnear=[f(Ω(ω))far*Rfar 2-f(Ω(ω))R*R 2]/[f(Ω(ω))far*Rfar 2-f(Ω(ω))near*Rnear 2]。
通过组合控制分配权重值比例Wfar和Wnear在远端工作半径Rfar和近端工作半径Rnear的不同辐射方向角和辐射强度立体角的LED照明光源辐射系统的光学功率OPfar和OPnear分配实现任意给定工作半径R时对应的LED照明光源辐射强度立体角和恒定的总光功率。
通过合成远端工作半径/距离和近端工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角范围内LED照明光源辐射强度立体角组合控制权重值再分配的光辐射功率等量的改变虹膜表面受辐射照度,根据公式保持接近恒定,而且能完全匹配对应的虹膜光学变焦聚焦光学成像系统的视场角。
作为本发明的等同扩展,采用更多具有不同的辐射方向角和辐射强度立体角的LED照明光源辐射系统的光学功率组合控制应该被等同理解和等价。
本发明通过LED照明光源辐射系统和虹膜变焦聚焦光学成像系统被组合配置为具有响应于同步辐射强度方向角和辐射强度立体角的组合控制,实现LED照明光源辐射系统在不同3D物理空间点坐标响应于不同工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角之间对应匹配关系,在预定的工作视场和工作距离内满足恒定的成像图像亮度,恒定的成像图像相对照度,恒定的LED照明光源系统辐射光功率和恒定的眼睛虹膜受辐射照度。
为消除实际使用时使用者运动导致的运动模糊,归因于如此大的光学放大倍率,即使10cm/s以下的移动速度也能造成非常明显图像运动模糊干扰,导致影响影响识别性能。
本发明通过LED照明光源辐射系统和虹膜变焦聚焦光学成像系统被配置为同步脉冲外触发或同步脉冲内触发方式的全局像素曝光(积分)和照明辐射组合成像模式。
其中,同步脉冲曝光(积分)时间和同步脉冲照明辐射时间Tpulse<m/(PR*speed),speed为预定控制的运动速度如1m/s,m为预定控制的运动模糊图像像素尺度,m<10pxiels。
同步脉冲曝光(积分)频率和同步脉冲照明辐射频率Fpulse,Fpulse=[10, 30]Hz,LED照明光源辐射系统产生同步脉冲照明辐射在虹膜表面的受辐射照度Tpulse*Fpulse*Eiris(ω)<10mw/cm2,以保证满足眼睛辐射生物安全。
更进一步,虹膜变焦聚焦光学成像系统在滤光片的结合下实现同步脉冲外触发或同步脉冲内触发方式的全局像素曝光(积分)和照明辐射组合成像模式可具有对外界不受控环境下对各种光干扰条件抗干扰性能。如高达10,000lux以上的户外太阳环境。
保护窗口123可采用全透射钢化光学玻璃,或更优选的采用反射700nm以下可见光,透射700‐900nm红外光的滤光片,具有即能保护内部光学组件同时使用者无法观察到内部结构通过反射可见光提供使用者自然状态的使用视觉反馈效果,更进一步,过滤可见光可以提高虹膜变焦聚焦光学成像系统消除对外界非成像波长杂散光的干扰,进一步提高成像质量信噪比SNR。
实施例二:
如图2所示本发明一个实施例中远距离大视场虹膜光学成像的装置的原理示意图,根据本发明本实施例中,一种远距离大视场虹膜光学成像的装置200,包括:虹膜光学跟踪系统,虹膜变焦聚焦光学成像系统,LED照明光源辐射系统,图像显示反馈系统260,图像处理和驱动控制系统250。
虹膜光学跟踪系统包括3D深度成像单元,2轴MEMS旋转反射镜单元228。
3D深度成像单元可采用3D TOF深度成像或结构光深度成像(例如940nm红外VCSEL光源210,成像透镜和图像成像传感器211),或双目立体视觉成像(LED照明光源,固定间隔距离安装的2组参数对称的成像透镜和图像成像传感器)提供深度图像信息。
虹膜变焦聚焦光学成像系统包括光学变焦聚焦透镜组220,光学滤光片221,图像成像传感器222。
LED照明光源辐射系统包括LED照明光源辐射强度立体角和/或辐射强度方向角度组合控制。
图像显示反馈系统260包括显示屏,用于实时显示当前图像和状态 信息。
图像处理和驱动控制系统250连接虹膜光学跟踪系统,虹膜变焦聚焦光学成像系统,LED照明光源辐射系统,图像显示反馈系统,并实现各系统单元间的驱动和反馈控制。
根据本发明本实施例一种远距离大视场虹膜光学成像的方法,包括:图像处理和驱动控制系统执行各系统单元间的驱动和反馈控制过程如下:
a、反馈控制虹膜成像跟踪系统,通过3D深度成像单元获取虹膜关键点3D坐标,转换相对坐标为3D物理空间点,反馈控制2轴旋转单元调整角度,实现实时同步虹膜光学成像跟踪。
b、反馈控制虹膜变焦聚焦光学成像系统,根据3D物理空间点坐标,实现实时同步光学变焦聚焦透镜组的焦距和聚焦位置的反馈控制。
c、反馈控制LED照明光源辐射系统,根据3D物理空间点坐标,实现实时同步响应于不同工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角之间匹配关系的LED照明光源辐射强度方向角度和/或LED照明光源辐射强度立体角的反馈控制。
d、反馈控制图像显示反馈系统实时显示当前图像和/或状态信息。
图像显示反馈系统实现实时同步显示当前图像为3D深度成像单元成像的红外亮度图像,RGB可见光单元成像图像或虹膜变焦聚焦光学成像图像。
根据本发明的实施例,具体的步骤包括:
a1、根据预定的工作视场范围FOV,定义3D深度成像单元的视场角FOVface215和有效成像焦距EFLface。
EFLface=[(PXface 2+PYface 2) 1/2*PSface/2]/tan(FOVface/2),
PXface为3D深度成像单元的X水平方向像素分辨率,pixel;
PYface为3D深度成像单元的Y垂直方向像素分辨率,pixel;
PSface为3D深度成像单元的像素单位分辨率,um/pixel;
FOVface为3D深度成像单元的视场角,FOVface=FOV;
EFLface为3D深度成像单元的有效成像焦距,mm。
典型参数计算如下:
PXface=640pixels,PYface=480pixels,PSface=5.6um/pixel,FOVface=FOV=77度,EFLface=2.8mm。
a2、定义3D深度成像单元控制获取虹膜关键点。
a21、获取3D深度成像单元的亮度(红外灰度阶)图像Ii(x,y)和深度距离图像Iz(x,y)。
a22、在亮度图像Ii(x,y)中检测人脸区域,在人脸区域进一步定位左右眼中心坐标(xl,yl)和(xr,yr)。
目前应用公知的基于深度学习的卷积神经网络CNN级联模型可以可靠准确的实现人脸区域检测和人眼定位功能。
具体本实施例为了提高检测定位眼睛性能,采用独立或联合可见光RGB图像成像单元114,预先进行3D深度成像单元和可见光RGB图像成像单元114的的标定配准,然后进一步检测RGB图像中人脸区域和人眼定位提高精度和可靠性。另外RGB成像单元可以用于装置在待机状态时检测人脸触发系统进入正常工作状态,降低系统待机功耗。更进一步可见光RGB图像成像单元成像图像被用于图像显示反馈系统实时显示当前图像。
a23、获取在深度距离图像Iz(x,y)中左右眼中心对应坐标的位置的深度距离信息,
z=[Iz(xl,yl)+lz(xr,yr)]/2,
z=Iz((xl+xr)/2,(yl+yr)/2)。
具体本实施例为了提高距离信息测量精度和可靠性性能,采用提取左右眼中心坐标位置的局部区域内有效像素过滤干扰像素,如中值滤波,或过滤灰度亮度图像中过高亮度或过低亮度的像素,或深度距离图像中距离过远或距离过近的像素等。
a24、产生3D深度成像单元像方关键参考点KPface(xe,ye,z):KPface(xe,ye,z)=KPface((xl+xr‐PXface)/2*PSface,(yl+yr‐PYface)/2*PSface,z)。
a25、产生3D深度成像单元物方关键参考点KPface(Xe,Ye,Ze):KPface(Xe,Ye,Ze)=KPface(xe*z/EFLface,ye*z/EFLface,z)。
a3、建立3D深度成像单元的物方关键参考点坐标KPface(Xe,Xe,Ze)相对虹膜变焦聚焦光学成像系统的3D物理空间点Piris(X,Y,Z)坐标变换,
Piris(X,Y,Z)=(Xe‐Xoffset,Xe‐Yoffset,Ze‐Zoffset),
其中,(Xoffset,Yoffset,Zoffset)为3D深度成像单元相对虹膜变焦聚焦光学成像系统的3D物理位置坐标偏移。
a4、执行2轴MEMS旋转反射镜单元228调整垂直/水平方向的旋转角度同步控制,包括:
执行垂直方向旋转轴的旋转角度θv=arcsin(X/R)/2,
执行水平方向旋转轴的旋转角度θh=arcsin(Y/R)/2;
R=(X 2+Y 2+Z 2) 1/2
或者,
执行方向轴旋转单元异步控制,包括:
执行垂直方向旋转轴的旋转角度θv=arctan(X/Z)/2,
执行水平方向旋转轴的旋转角度θh=arcsin(Y/R)/2;
等价的,
执行水平方向旋转轴的旋转角度θh=arctan(Y/Z)/2
执行垂直方向旋转轴的旋转角度θv=arcsin(X/R)/2。
根据本发明,本实施例采用2轴MEMS旋转反射镜单元调整垂直/水平方向的旋转角度,基于MEMS旋转反射镜具有高可靠稳定性,响应快速,体积小,精确度高,可重复性好等优点,优选的本发明具体实施例2通过压电,电磁,静电,超声波,热电方式等MEMS制动器实现。
更近一步,本实施例采用2轴MEMS旋转反射镜单元具有典型参数:
1.机械旋转角度>35度,光学旋转角度>70度,
2.工作频率>10Hz满量程旋转,
3.角度精度<0.1度,
4.工作模式:point to point 2轴静态矢量,
5.响应时间<50ms,
6.工作电压5vDC,
7.镜面镀膜:金属介质,金/铝膜或增强金/铝膜,700‐900nm波长反射 率>92%,
8.镜面质量:波前误差WFErms<20nm RMS(lamda/50),
9.光学窗口:无或增透膜保护窗,
11.使用寿命:>100,000,000次满量程旋转,
12.工作温度:‐20度到+60度。
执行虹膜变焦聚焦光学成像系统的变焦聚焦参数同步控制,包括:
b1、执行对虹膜变焦聚焦光学成像系统的焦距参数控制,实现焦距位置保持恒定的预定放大倍率即相同成像虹膜直径。
焦距位置EFLiris=R*β/(1+β)R=(X 2+Y 2+Z 2) 1/2
其中,β=PR*PSiris PR为虹膜物理直径像方分辨率pixel/mm如典型的20pixels/mm,PSiris虹膜变焦聚焦光学成像系统的图像成像传感器的像素单位分辨率um/pixel,如典型的3um/pixel,β=0.06。
如图2所示R为预定的工作半径,包括预定的近端工作半径Rnear216,预定的远端工作半径Rfar218,
预定的工作距离Z,包括预定的近端工作距离Znear217,预定的远端工作距离Zfar219。
如典型参数近端工作半径Rnear=1m,远端工作半径Rfar=2m,分别EFLiris=56.6mm和113.2mm。
考虑到实际使用者不自主移动同时保证速度和调整频率,可以R间隔变化一定预定范围后执行光学变焦操作。如保持相对5‐10cm范围相同的焦距,这种设计是合理的,虹膜直径本身也是因人而异存在一定差异。
b2、执行对虹膜变焦聚焦光学成像系统的聚焦参数控制,实现聚焦位置在像方景深范围内,
聚焦位置FOCUS=β*[R‐kDOF,R+kDOF]
其中,k步数控制范围,k=[1,2],步长为STEP=β*DOF,如k=2,包括‐2STEP,‐STEP,0,+STEP,2STEP共5个范围,DOF=2*FNO*SOC*(1+β)/β 2,其中,FNO为虹膜变焦聚焦光学成像系统的光圈参数,参数范围[PF,2PF],PF=PSiris/(1um/pixel);SOC为为虹膜变焦聚焦光学成像系统的最小物理光斑分辨率参数,参数典型值为SOC=2*PSiris*1pixel,最大值 DOF=21.2mm。
归因于深度信息的误差,虹膜变焦聚焦光学成像系统在实际生产制造过程精度机械误差,个体偏差等,产生2k+1倍步长控制位置,步长为β*DOF,一般3‐5步长范围完全在预定的像方聚焦位置,保证聚焦位置在+‐DOF/2的物方景深范围内(等价的,+‐β*DOF/2的像方景深范围内),同时如此少量控制步数能保证在0.1s完成。
本发明上述设计保证具有恒定景深范围,并同时实现聚焦位置在像面景深范围内。
理想的非球面光学玻璃/塑料混合2片液体透镜liquid lens分别独立控制焦距EFLiris和聚焦FOCUS,上述设计需要焦距和和聚焦位置都转换为对应设计的成像光学系统2片液体镜头的屈光度为单位规格的数值,相比传统步进电机驱动的复杂凸轮曲线控制,归因于液体透镜具有屈光度和电压/电流对应的线性响应光学属性关系,可大大简化驱动控制过程,同时如此设计可大量减少整体成像系统组件数量(3‐4组群12‐16片)。
同时没有任何传统螺杆或齿轮连接驱动的机械传动部件,无使用寿命限制,控制精度和重复性也有本质性的提高。
本发明在实践中,目前液体透镜存在受限的通光孔径典型如6‐10mm,和受限的屈光范围‐10到+20屈光度,在大屈光度时波前误差增加到λ/10,但归因于景深对FNO值,长焦距应用要求,适合虹膜变焦聚焦光学成像系统。光学设计者利用液体透镜特性技巧可通过优化光路设计解决,如光路中选择合适的出入射光瞳设计FNO解决通光孔径,变焦部分光学系统初始设计采用设置变焦液体镜头在0屈光度光学功率时工作在远端工作半径/距离时对应最大焦距,聚焦部分光学系统初始设计采用设置聚焦液体镜头在0屈光度光学功率时工作在远端工作半径/距离时对应的像面位置。
执行对LED照明光源辐射系统的LED照明光源辐射强度方向角度和/或LED照明光源辐射强度立体角的参数控制,实现在不同3D物理空间点坐标响应于不同工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角范围之间关系的匹配,如图2所示。
c1、执行LED照明光源辐射系统的照明光源辐射强度方向角度参数控制。
LED照明光源辐射方向角度ψ=arctan(D/R)
定义在LED照明光源辐射系统的辐射强度峰值方向对应的中心线和虹膜变焦聚焦光学成像系统的光轴间夹角,D为LED照明光源辐射系统的光学中心和虹膜变焦聚焦光学成像系统光学中心的距离,R为为虹膜变焦聚焦光学成像系统的工作半径。
c2、执行对LED照明光源辐射系统的LED照明光源辐射强度立体角的参数控制。
LED照明光源辐射强度立体角Ω(ω)=4π*sin 2(ω)单位球面度sr
ω=arctan((PXiris 2+PYiris 2) 1/2/2*PSiris/((1+β)*EFLiris))
=arctan((PXiris 2+PYiris 2) 1/2/2*PSiris/(β*R))
ω为虹膜变焦聚焦光学成像系统的半视场角。
PXiris为虹膜变焦聚焦光学成像系统的X水平方向像素分辨率,pixel。
PYiris为虹膜变焦聚焦光学成像系统的Y垂直方向像素分辨率,pixel。
由于真实物理光学如凸透镜和或凹面反射镜等无法制造出在给定LED照明光源辐射强度立体角Ω(ω)下等密度均匀光场分别光能量(光功率)分布,既单位阶跃函数分布,而是具有特定函数分布。
Figure PCTCN2020085479-appb-000002
其中:
I(Ω)为LED照明光源辐射系统的辐射强度,单位mw/sr
I(Ω)=Ipeak*f(Ω)。
Ω为LED照明光源辐射系统的立体角,单位sr球面度。
Ipeak为LED照明光源辐射系统的辐射强度峰值,单位mw/sr。
f(Ω)为LED照明光源辐射系统的辐射强度归一化分布函数。
OP为LED照明光源辐射系统的恒定总光学功率,单位mw。
根据推论f(Ω(ω))=I(Ω(ω))/Ipeak,
因此,在LED照明光源辐射系统的辐射强度立体角Ω(ω)时,LED照明光源辐射系统具有辐射强度I(Ω(ω))=Ipeak*f(Ω(ω))。
定义ρ=Iρ/Ipeak=I(Ω(ω))/Ipeak=f(Ω(ω)),ρ为预定的自定义虹膜焦距聚焦光学成像系统的成像像面接受光辐射的相对照度,如0.5或 0.707,更高意味相对照度分布更均匀。
本质上LED照明光源辐射强度立体角产生在虹膜表面上受辐射照度Eiris,Eiris(ω,ψ)=OP/(Ω(ω)*R 2)*cos 3(ψ)=Ipeak/R 2*cos 3(ψ)。
当ω足够小时满足sin 2(ω)=tan 2(ω)。
如图2所示,虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear的视场角FOViris‐near224。虹膜变焦聚焦光学成像系统的远端工作半径/距离Rfar/Zfar的视场角FOViris‐far225。虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear的物方平面成像区域226。虹膜变焦聚焦光学成像系统的远端工作半径/距离Rfar/Zfar的物方平面成像区域227。LED照明光源辐射系统的左右侧LED照明光源230L/230R。在远端工作半径/距离Rfar/Zfar时LED照明光源辐射系统的左/右侧照明光源的辐射强度立体角,匹配虹膜变焦聚焦光学成像系统的远端工作半径/距离Rfar/Zfar的视场角FOViris‐far232L/232R。在近端工作半径/距离Rnear/Znear时LED照明光源辐射系统的左/右侧照明光源的辐射强度立体角,匹配虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear的视场角FOViris‐near233L/233R。在近端工作半径/距离Rnear/Znear时LED照明光源辐射系统的左/右侧照明光源辐射强度方向角度,匹配虹膜变焦聚焦光学成像系统的近端工作半径/距离Rnear/Znear234L/234R。在远端工作半径/距离Rfar/Zfar时LED照明光源辐射系统的左/右侧照明光源辐射强度方向角度,匹配虹膜变焦聚焦光学成像系统的远端工作半径/距离Rfar/Zfar235L/235R。LED照明光源辐射系统的左/右侧的液体透镜236L/236R。LED照明光源辐射系统的左/右侧2轴MEMS旋转反射镜237L/237R。
本发明可以实现在本质上对于恒定总光功率的LED照明光源辐射系统,通过动态改变LED照明光源辐射强度立体角分配的光辐射强度等量的改变虹膜表面受辐射照度,无论虹膜变焦聚焦光学成像系统在远端/近端工作半径[Rfar,Rnear]/距离[Zfar,Znear]及对应的视场角[FOViris‐far,FOViris‐near]如何变化,根据公式Eiris(ω,ψ)保持接近恒定,而且能完全匹配工作半径/距离及对应的虹膜光学变焦聚焦光学成像系统的视场角。
可以证明对于一个具有虹膜变焦聚焦光学成像系统的成像像面接受光辐射照度Eimage。
根据公式Eimage(ω,ψ)=t*1/8/(1+β) 2*cos 4(Φ)*μ*Eiris(ω,ψ)/FNO 2
当ω足够小时满足cos 4(Φ)=1,Φ为虹膜变焦聚焦光学成像系统的成像入射角,Φ=[0,ω],
μ为虹膜生物组织反射率光学常数系数,0.12‐0.15,
t为为虹膜变焦聚焦光学成像系统的透过率常数系数。
Eimage是恒定的,即成像图像亮度Iimage是恒定的。
Iimage=QE*Tpulse*Eimage*ADC*G*S
QE为光子‐电子量子转换效率单位e‐/(mw*um 2)/s,G为单位转换增益单位mv/e‐,ADC为模拟电压/数字亮度转换单位LSB/mv,S为单位像素面积单位um 2
目前传统CMOS SENSOR技术执行光子‐电子量子转换的是PD硅基光电二极管其效率不理想,前沿的QF量子薄膜或OPF有机感光薄膜等技术,具有天然对红外光子高量子转换效率,global shutter全局快门的性质是理想的优选。
同时可以证明对于虹膜变焦聚焦光学成像系统的成像像面接受光辐射的相对照度ρ是恒定的,ρ=Eedge/Ecenter=Iρ/Ipeak,Eedge为成像像面边缘(视场边缘)的受辐射照度Eedge=Eimage(ω,ψ)*ρ,Ecenter为成像像面中心(视场中心)的受辐射照度,Ecenter=Eimage(ω,ψ)既成像图像亮度具有恒定的相对照度。
本实施例通过LED照明光源辐射系统通过液体透镜和2轴MEMS旋转反射镜组合控制实现,实现匹配对应的虹膜变焦聚焦光学成像系统的视场角范围[FOViris‐far,FOViris‐near],工作半径范围[Rfar,Rnear],或工作距离范围[Zfar,Znear]。
优选的本实施例的LED照明光源辐射强度立体角通过在LED照明光源光出射光路位置放置液体透镜控制屈光度即折射角度实现,本质上通过液体透镜控制出射光屈光角度改变照明光源辐射强度立体角响应于不 同工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角。正是如此设计才能实现LED照明光源辐射强度立体角响应于不同工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角之间的匹配关系。
优选的本实施例的LED照明光源辐射强度方向角通过在LED照明光源的出射光路位置放置2轴MEMS旋转反射镜控制垂直/水平方向的旋转角度同步控制实现,本质上通过2轴MEMS旋转反射镜控制垂直/水平方向的旋转角度改变LED照明光源辐射强度方向角,使LED照明光源辐射强度方向角响应于不同工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角。正是如此设计才能实现LED照明光源辐射强度方向角响应于不同工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角之间的匹配关系。
特别说明一下,用于LED照明光源辐射强度方向角控制的2轴MEMS旋转反射镜的垂直/水平方向的旋转角度方法:
a3、基于相同的步骤a1和和a2获取3D深度成像单元的物方关键参考点坐标KPface(Xe,Xe,Ze)。
a32、建立3D深度成像单元的物方关键参考点坐标KPface(Xe,Xe,Ze)相对LED照明光源辐射系统的3D物理空间点Piris(X',Y',Z')坐标变换,
Piris(X',Y',Z')=(Xe‐X'offset,Xe‐Y'offset,Ze‐Z'offset)
(X'offset,Y'offset,Z'offset)为3D深度成像单元相对LED照明光源辐射系统的3D物理位置坐标偏移。
a33、执行LED照明光源辐射强度方向角控制的2轴MEMS旋转反射镜单元调整垂直/水平方向的旋转角度同步控制,包括:
执行垂直方向旋转轴的旋转角度θv=arcsin(X'/R')/2,
执行水平方向旋转轴的旋转角度θh=arcsin(Y'/R')/2;
R'=(X' 2+Y' 2+Z' 2) 1/2
或者,
执行方向轴旋转单元异步控制,包括:
执行垂直方向旋转轴的旋转角度θv=arctan(X'/Z')/2,
执行水平方向旋转轴的旋转角度θh=arcsin(Y'/R')/2;
等价的,
执行水平方向旋转轴的旋转角度θh=arctan(Y'/Z')/2
执行垂直方向旋转轴的旋转角度θv=arcsin(X'/R')/2。
特别说明一下,本实施例LED照明光源辐射系统通过液体透镜和2轴MEMS旋转反射镜组合控制实现,LED照明光源光路顺序,出射光路依次经过液体透镜控制屈光度,然后再经过2轴MEMS旋转反射镜单元调整垂直/水平方向的旋转角度同步控制实现。
本发明通过LED照明光源辐射系统和虹膜变焦聚焦光学成像系统被组合配置为具有响应于同步辐射强度方向角和辐射强度立体角的组合控制,实现LED照明光源辐射系统在不同3D物理空间点坐标响应于不同工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角之间对应匹配关系,在预定的工作视场和工作距离内满足恒定的成像图像亮度,恒定的成像图像相对照度,恒定的LED照明光源系统辐射光功率和恒定的眼睛虹膜受辐射照度。
为消除实际使用时使用者运动导致的运动模糊,归因于如此大的光学放大倍率,即使10cm/s以下的移动速度也能造成非常明显图像运动模糊干扰,导致影响影响识别性能。
本发明通过LED照明光源辐射系统和虹膜变焦聚焦光学成像系统被配置为同步脉冲外触发或同步脉冲内触发方式的全局像素曝光(积分)和照明辐射组合成像模式。
其中,同步脉冲曝光(积分)时间和同步脉冲照明辐射时间Tpulse<m/(PR*speed),speed为预定控制的运动速度如1m/s,m为预定控制的运动模糊图像像素尺度,m<10pxiels。
同步脉冲曝光(积分)频率和同步脉冲照明辐射频率Fpulse,Fpulse=[10,30]Hz,LED照明光源辐射系统产生同步脉冲照明辐射在虹膜表面的受辐射照度Tpulse*Fpulse*Eiris(ω)<10mw/cm2,以保证满足眼睛辐射生物安全。
更进一步,虹膜变焦聚焦光学成像系统在滤光片的结合下实现同步脉冲外触发或同步脉冲内触发方式的全局像素曝光(积分)和照明辐射组合成像模式可具有对外界不受控环境下对各种光干扰条件抗干扰性能。 如高达10,000lux以上的户外太阳环境。
保护窗口223可采用全透射钢化光学玻璃,或更优选的采用反射700nm以下可见光,透射700‐900nm红外光的滤光片,具有即能保护内部光学组件同时使用者无法观察到内部结构通过反射可见光提供使用者自然状态的使用视觉反馈效果,更进一步,过滤可见光可以提高虹膜变焦聚焦光学成像系统消除对外界非成像波长杂散光的干扰,进一步提高成像质量信噪比SNR。
本发明提供的一种远距离大视场虹膜光学成像的装置及方法,同时实现大范围时视场角和辐射照度恒定。
本发明并不受限于以下所公开的示范性实施例,作为本发明实施例的等价变换或简化,如等价的2轴方向轴旋转采用万向球作为方向轴旋转应该被等同理解,如简化2轴方向轴旋转为单轴方向轴旋转也应该被等同理解,其他如包括光学/机械/电子元件的功能替换等也应该被等同。
结合这里披露的本发明的说明和实践,本发明的其他实施例对于本领域技术人员都是易于想到和理解的。说明和实施例仅被认为是示例性的,本发明的真正范围和主旨均由权利要求所限定。

Claims (10)

  1. 一种远距离大视场虹膜光学成像的装置,其特征在于,所述装置包括:
    虹膜光学跟踪系统,虹膜变焦聚焦光学成像系统,LED照明光源辐射系统,图像显示反馈系统,图像处理和驱动控制系统;
    所述虹膜光学跟踪系统包括3D深度成像单元,用于执行3D物理空间点坐标获取,
    和方向轴旋转单元,用于根据3D物理空间点坐标执行虹膜变焦聚焦光学成像系统的物方成像区域调整;
    所述的虹膜变焦聚焦光学成像系统包括光学变焦聚焦透镜组,用于根据3D物理空间点坐标执行虹膜成像的焦距和聚焦位置调整;
    所述LED照明光源辐射系统包括辐射强度立体角和/或辐射强度方向角,用于根据3D物理空间点坐标执行响应于不同工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角之间匹配关系的组合控制;
    所述的图像显示反馈系统包括显示屏用于实时显示当前图像和/或状态信息;
    所述的图像处理和驱动控制系统连接虹膜光学跟踪系统,虹膜变焦聚焦光学成像系统,LED照明光源辐射系统,图像显示反馈系统,并实现各系统单元间的驱动和反馈控制。
  2. 根据权利要求1所述的装置,其特征在于,所述3D深度成像单元包括采用3D TOF深度成像或结构光深度成像,或双目立体视觉成像。
  3. 根据权利要求1所述的装置,其特征在于,所述方向轴旋转单元包括执行垂直和/或水平方向旋转轴的旋转角度。
  4. 根据权利要求1所述的装置,其特征在于,所述LED照明光源辐射系统的辐射强度方向角度,满足关系:ψ=arctan(D/R),其中,
    定义在LED照明光源辐射系统的辐射强度峰值方向对应的中心线和虹膜变焦聚焦光学成像系统的光轴间夹角,D为LED照明光源辐射系统的光学中心和虹膜变焦聚焦光学成像系统光学中心的距离,R为虹膜变焦聚 焦光学成像系统的工作半径。
  5. 根据权利要求1所述的装置,其特征在于,所述LED照明光源辐射系统的辐射强度立体角,满足关系:Ω(ω)=4π*sin 2(ω)单位球面度sr,其中,
    ω=arctan((PXiris 2+PYiris 2) 1/2/2*PSiris/((1+β)*EFLiris))=arctan((PXiris 2+PYiris 2) 1/2/2*PSiris/(β*R)),ω为虹膜变焦聚焦光学成像系统的半视场角,
    PXiris为虹膜变焦聚焦光学成像系统的X水平方向像素分辨率,
    PYiris为虹膜变焦聚焦光学成像系统的Y垂直方向像素分辨率,
    EFLiris为焦距位置,
    β=PR*PSiris,PR为虹膜物理直径像方分辨率,
    PSiris为虹膜变焦聚焦光学成像系统的图像成像传感器的像素单位分辨率,
    R为为虹膜变焦聚焦光学成像系统的工作半径。
  6. 根据权利要求1所述的装置,其特征在于,所述LED照明光源辐射系统和虹膜变焦聚焦光学成像系统被配置为:
    在滤光片的结合下同步脉冲外触发或同步脉冲内触发方式的全局像素曝光(积分)和照明辐射的组合成像模式,其中:
    所述的组合成像模式的同步脉冲曝光(积分)时间和同步脉冲照明辐射时间Tpulse<m/(PR*speed),
    speed为预定控制的运动速度,单位m/s,
    PR为虹膜物理直径像方分辨率,
    m为预定控制的运动模糊图像像素尺度,单位pixel;
    所述的组合成像模式的同步脉冲曝光(积分)频率和同步脉冲照明辐射频率Fpulse,所述同步脉冲照明辐射频率Fpulse=[10,30]Hz,
    所述LED照明光源辐射系统产生同步脉冲照明辐射在虹膜表面的受辐射照度Tpulse*Fpulse*Eiris(ω)<10mw/cm 2
    Eiris(ω)为虹膜表面上受辐射照度。
  7. 一种远距离大视场虹膜光学成像的方法,其特征在于,所述方法 包括:
    图像处理和驱动控制系统执行虹膜光学跟踪系统,虹膜变焦聚焦光学成像系统,LED照明光源辐射系统,图像显示反馈系统之间的驱动和反馈控制过程:
    a、反馈控制虹膜光学跟踪系统,通过虹膜光学跟踪系统的3D深度成像单元获取虹膜关键点3D坐标,转换相对坐标为3D物理空间点,反馈控制方向轴旋转单元调整角度,实现实时同步虹膜光学成像跟踪;
    b、反馈控制虹膜变焦聚焦光学成像系统,根据3D物理空间点坐标,实现实时同步光学变焦聚焦透镜组的焦距和聚焦位置的反馈控制;
    c、反馈控制LED照明光源辐射系统,根据3D物理空间点坐标,实现实时同步响应于不同工作半径/距离对应的虹膜变焦聚焦光学成像系统的视场角之间匹配关系的LED照明光源辐射强度方向角度和/或LED照明光源辐射强度立体角的反馈控制;
    d、反馈控制图像显示反馈系统实时显示当前图像和/或状态信息;
    所述图像显示反馈系统实现实时同步显示当前图像为3D深度成像单元成像的红外图像,RGB可见光单元成像图像或虹膜变焦聚焦光学成像图像。
  8. 根据权利要求7所述的方法,其特征在于,反馈控制虹膜成像跟踪系统,包括:
    a1、根据预定的工作视场范围FOV,定义3D深度成像单元的视场角FOVface和有效成像焦距EFLface:
    EFLface=[(PXface 2+PYface 2) 1/2*PSface/2]/tan(FOVface/2)
    PXface为3D深度成像单元的X水平方向像素分辨率;
    PYface为3D深度成像单元的Y垂直方向像素分辨率;
    PSface为3D深度成像单元的像素单位分辨率;
    FOVface为3D深度成像单元的视场角度,FOVface=FOV;
    EFLface为3D深度成像单元的有效成像焦距。
    a2、定义3D深度成像单元控制获取虹膜关键点:
    a21、获取3D深度成像单元的亮度(红外灰度阶)图像Ii(x,y)和深度 距离图像Iz(x,y);
    a22、在亮度图像Ii(x,y)中检测人脸区域,在人脸区域进一步定位左右眼中心坐标(xl,yl)和(xr,yr);
    a23、获取在深度距离图像Iz(x,y)中左右眼中心对应坐标的位置的深度距离信息,
    z=[Iz(xl,yl)+lz(xr,yr)]/2
    z=Iz((xl+xr)/2,(yl+yr)/2);
    a24、产生3D深度成像单元像方关键参考点,
    KPface(xe,ye,z):KPface(xe,ye,z)=KPface((xl+xr-PXface)/2*PSface,(yl+yr-PYface)/2*PSface,z);
    a25、产生3D深度成像单元物方关键参考点KPface(Xe,Ye,Ze):KPface(Xe,Ye,Ze)=KPface(xe*z/EFLface,ye*z/EFLface,z)。
    a3、建立3D深度成像单元的物方关键参考点坐标KPface(Xe,Xe,Ze)相对虹膜变焦聚焦光学成像系统的3D物理空间点Piris(X,Y,Z)坐标变换,Piris(X,Y,Z)=(Xe-Xoffset,Xe-Yoffset,Ze-Zoffset),
    (Xoffset,Yoffset,Zoffset)为3D深度成像单元相对虹膜变焦聚焦光学成像系统的3D物理位置坐标偏移。
    a4、执行方向轴旋转单元同步控制,包括:
    执行垂直方向旋转轴的旋转角度θv=arcsin(X/R),
    执行水平方向旋转轴的旋转角度θh=arcsin(Y/R);
    R=(X 2+Y 2+Z 2) 1/2
    或者,执行方向轴旋转单元异步控制,包括:
    执行垂直方向旋转轴的旋转角度θv=arctan(X/Z),
    执行水平方向旋转轴的旋转角度θh=arcsin(Y/R);
    等价的,
    执行水平方向旋转轴的旋转角度θh=arctan(Y/Z)
    执行垂直方向旋转轴的旋转角度θv=arcsin(X/R)。
  9. 根据权利要求7所述的方法,其特征在于,反馈控制虹膜变焦聚焦光学成像系统,包括:
    b1、执行虹膜变焦聚焦光学成像系统的变焦聚焦参数同步控制;
    b11、执行对虹膜变焦聚焦光学成像系统的焦距参数控制,实现焦距位置保持恒定的预定放大倍率即相同成像虹膜直径,
    焦距位置EFLiris=R*β/(1+β)R=(X 2+Y 2+Z 2) 1/2
    其中,β=PR*PSiris,PR为虹膜物理直径像方分辨率,
    PSiris虹膜变焦聚焦光学成像系统的图像成像传感器的像素单位分辨率,
    R为为虹膜变焦聚焦光学成像系统的工作半径;
    b2、执行对虹膜变焦聚焦光学成像系统的聚焦参数控制,实现聚焦位置在像方景深范围内,
    聚焦位置FOCUS=β*[R-kDOF,R+kDOF],
    其中,k步数控制范围,DOF=2*FNO*SOC*(1+β)/β 2,其中,FNO为虹膜变焦聚焦光学成像系统的光圈参数,
    SOC为为虹膜变焦聚焦光学成像系统的最小物理光斑分辨率参数。
  10. 根据权利要求7所述方法,其特征在于,所述反馈控制LED照明光源辐射系统,包括:
    c1、执行LED照明光源辐射系统的照明光源辐射强度方向角度参数控制,
    LED照明光源辐射方向角度ψ=arctan(D/R),
    定义在LED照明光源辐射系统的辐射强度峰值方向对应的中心线和虹膜变焦聚焦光学成像系统的光轴间夹角,D为LED照明光源辐射系统的光学中心和虹膜变焦聚焦光学成像系统光学中心的距离,R为虹膜变焦聚焦光学成像系统的工作半径;
    c2、执行对LED照明光源辐射系统的LED照明光源辐射强度立体角的参数控制,
    LED照明光源辐射强度立体角Ω(ω)=4π*sin 2(ω)单位球面度sr,其中,
    ω=arctan((PXiris 2+PYiris 2) 1/2/2*PSiris/((1+β)*EFLiris))=arctan((PXiris 2+PYiris 2) 1/2/2*PSiris/(β*R)),ω为虹膜变焦聚焦 光学成像系统的半视场角,
    PXiris为虹膜变焦聚焦光学成像系统的X水平方向像素分辨率,
    PYiris为虹膜变焦聚焦光学成像系统的Y垂直方向像素分辨率,
    EFLiris为焦距位置,
    β=PR*PSiris,PR为虹膜物理直径像方分辨率,
    PSiris为虹膜变焦聚焦光学成像系统的图像成像传感器的像素单位分辨率,
    R为为虹膜变焦聚焦光学成像系统的工作半径。
PCT/CN2020/085479 2019-11-21 2020-04-18 一种远距离大视场虹膜光学成像的装置及方法 WO2021098135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019119885 2019-11-21
CNPCT/CN2019/119885 2019-11-21

Publications (1)

Publication Number Publication Date
WO2021098135A1 true WO2021098135A1 (zh) 2021-05-27

Family

ID=75980984

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/084772 WO2021098132A1 (zh) 2019-11-21 2020-04-14 一种远距离大视场虹膜光学成像的装置及方法
PCT/CN2020/085479 WO2021098135A1 (zh) 2019-11-21 2020-04-18 一种远距离大视场虹膜光学成像的装置及方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084772 WO2021098132A1 (zh) 2019-11-21 2020-04-14 一种远距离大视场虹膜光学成像的装置及方法

Country Status (1)

Country Link
WO (2) WO2021098132A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241614A2 (en) * 2001-03-15 2002-09-18 Lg Electronics Inc. Apparatus and method for adjusting focus position in iris recognition system
CN105554385A (zh) * 2015-12-18 2016-05-04 天津中科智能识别产业技术研究院有限公司 一种远距离多模态生物特征识别方法及其系统
CN106295471A (zh) * 2015-05-24 2017-01-04 江西恒盛晶微技术有限公司 一种基于dsp的嵌入式生物特征信息采集系统
KR20180011639A (ko) * 2016-07-25 2018-02-02 엘지이노텍 주식회사 홍채 인식용 적외선 발광 장치
CN109690553A (zh) * 2016-06-29 2019-04-26 醒眸行有限公司 执行眼睛注视跟踪的系统和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714665B1 (en) * 1994-09-02 2004-03-30 Sarnoff Corporation Fully automated iris recognition system utilizing wide and narrow fields of view
CN101770573B (zh) * 2010-01-14 2012-02-01 沈洪泉 用于虹膜识别的自动聚焦虹膜图像成像装置及其控制方法
CN102831392B (zh) * 2012-07-09 2015-06-24 哈尔滨工业大学 一种远距离虹膜跟踪与采集装置及其方法
CN102855471B (zh) * 2012-08-01 2014-11-26 中国科学院自动化研究所 远距离虹膜智能成像装置及方法
CN106022299B (zh) * 2016-06-01 2019-10-25 北京眼神智能科技有限公司 一种具有补光功能的虹膜识别装置、识别方法和补光方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241614A2 (en) * 2001-03-15 2002-09-18 Lg Electronics Inc. Apparatus and method for adjusting focus position in iris recognition system
CN106295471A (zh) * 2015-05-24 2017-01-04 江西恒盛晶微技术有限公司 一种基于dsp的嵌入式生物特征信息采集系统
CN105554385A (zh) * 2015-12-18 2016-05-04 天津中科智能识别产业技术研究院有限公司 一种远距离多模态生物特征识别方法及其系统
CN109690553A (zh) * 2016-06-29 2019-04-26 醒眸行有限公司 执行眼睛注视跟踪的系统和方法
KR20180011639A (ko) * 2016-07-25 2018-02-02 엘지이노텍 주식회사 홍채 인식용 적외선 발광 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICHAEL J. REALE ; SHAUN CANAVAN ; LIJUN YIN ; KAONING HU ; TERRY HUNG: "A Multi-Gesture Interaction System Using a 3-D Iris Disk Model for Gaze Estimation and an Active Appearance Model for 3-D Hand Pointing", IEEE TRANSACTIONS ON MULTIMEDIA, vol. 13, no. 3, 30 June 2011 (2011-06-30), pages 474 - 486, XP011322965, ISSN: 1520-9210, DOI: 10.1109/TMM.2011.2120600 *
ZHANG BIAN: "Optical Design and Manufacture Technique of Iris Recognition Lens", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 1 April 2017 (2017-04-01), pages 1 - 77, XP055813364 *

Also Published As

Publication number Publication date
WO2021098132A1 (zh) 2021-05-27

Similar Documents

Publication Publication Date Title
US11914160B2 (en) Augmented reality head-mounted display with a focus-supporting projector for pupil steering
CN111447430B (zh) 一种远距离大视场虹膜光学成像的装置及方法
CN106662755B (zh) 特别借助于光学反馈为设备的透镜调焦距的光学设备
US10213105B2 (en) Eye-tracking system and method therefor
EP3721286B1 (en) Compact multi-color beam combiner using a geometric phase lens
US20180074320A1 (en) Dynamic Draft for Fresnel Lenses
US10551500B2 (en) Infrared optical element for proximity sensor system
CN111091067A (zh) 一种远距离大视场虹膜光学成像的装置及方法
WO2021098135A1 (zh) 一种远距离大视场虹膜光学成像的装置及方法
WO2021102619A1 (zh) 一种远距离大视场虹膜光学成像的装置及方法
US20230358920A1 (en) Electronic Devices with Lenses
WO2021102620A1 (zh) 一种远距离大视场虹膜光学成像的装置及方法
CN111079552A (zh) 一种远距离大视场虹膜光学成像的装置及方法
CN108900748A (zh) 一种潜望式全景图像成像装置及系统
WO2014197066A2 (en) Single element radiometric lens
CN209783873U (zh) Tof相机杂散光检测装置
CN112882199A (zh) 一种高性能机载头戴微光夜视光学系统
CN108227204B (zh) 一种具有夜视功能的vr眼镜
CN115236830B (zh) 光学镜片系统及飞时测距感测模组
WO2023246816A1 (zh) 一种眼球追踪光学系统及头戴式设备
US20230252671A1 (en) Gaze Tracking
WO2023246814A1 (zh) 一种眼球追踪光学系统及头戴式设备
CN112859335A (zh) 基于空间光调制器的变焦光学系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889833

Country of ref document: EP

Kind code of ref document: A1