WO2021097724A1 - Tof模组的精度测量方法、装置和设备 - Google Patents

Tof模组的精度测量方法、装置和设备 Download PDF

Info

Publication number
WO2021097724A1
WO2021097724A1 PCT/CN2019/119781 CN2019119781W WO2021097724A1 WO 2021097724 A1 WO2021097724 A1 WO 2021097724A1 CN 2019119781 W CN2019119781 W CN 2019119781W WO 2021097724 A1 WO2021097724 A1 WO 2021097724A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
branch
tof module
tof
light
Prior art date
Application number
PCT/CN2019/119781
Other languages
English (en)
French (fr)
Inventor
李阳
Original Assignee
南昌欧菲生物识别技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲生物识别技术有限公司 filed Critical 南昌欧菲生物识别技术有限公司
Priority to PCT/CN2019/119781 priority Critical patent/WO2021097724A1/zh
Publication of WO2021097724A1 publication Critical patent/WO2021097724A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration

Definitions

  • This application relates to the technical field of camera modules, and in particular to a method, device and equipment for measuring the accuracy of a TOF module.
  • the existing TOF (Time of Flight) module can obtain the 3D contour information of the object when shooting the object, which is specifically transmitted by the transmitting unit The light is emitted, and then the receiving unit receives the light reflected from the object, and obtains the flight time of the light during the flight. Due to the uneven contour of the object, the light reflected from each position on the object experienced The flight time is different, and the TOF module can obtain the contour information of the object according to the length of the flight time.
  • the traditional accuracy evaluation method of the TOF module is mainly to place the TOF module at a different distance from the white wall for testing to obtain the distance of the module at different distances.
  • Accuracy value curve which more comprehensively reflects the accuracy performance of a TOF module.
  • this evaluation method needs to test the accuracy values of more than a dozen points at different distances, and needs to adjust the position points of the TOF module frequently.
  • the accuracy evaluation efficiency is very high. Low, not suitable for mass evaluation.
  • a method, device and equipment for measuring the accuracy of a TOF module are provided.
  • a method for measuring the accuracy of a TOF module includes the steps of controlling the transmitting unit of the TOF module to emit light into an incident optical fiber. After the incident optical fiber is branched, two or more branch optical fibers are formed, and each path The optical path lengths of the branch fibers are not the same; acquire a sampled image, which is formed by shooting the light reflected by the receiving unit of the TOF module from each branch fiber, and obtain the depth distance value in the sampled image; change the depth distance value Compare with the optical path length of each branch fiber to obtain the comparison result; obtain the accuracy value of the TOF module according to the comparison result.
  • a precision measuring device for a TOF module comprising: a light emission control module for controlling the emission unit to emit light into an incident optical fiber. After the incident optical fiber is branched, two or more branch optical fibers are formed, and The optical path length of each branch fiber is different; the distance value acquisition module is used to obtain a sampled image, which is formed by the receiving unit of the TOF module photographing the light reflected by each branch fiber, and obtains all The depth distance value in the sampled image; the comparison module is used to compare the depth distance value with the optical path length of each branch fiber to obtain the comparison result; the accuracy acquisition module is used to obtain the accuracy value of the TOF module according to the comparison result.
  • a TOF module accuracy measurement equipment includes a controller, an incident optical fiber, a branch optical fiber, and an optical fiber coupler.
  • the incident optical fiber is branched by the optical fiber coupler to form two or more branch optical fibers.
  • the controller is used for connecting Enter the TOF module to be tested.
  • Figure 1 is a schematic diagram of the structure of the TOF module accuracy measurement equipment in an embodiment
  • FIG. 2 is a flowchart of a method for measuring the accuracy of a TOF module in an embodiment
  • FIG. 3 is a flowchart of a method for measuring the accuracy of a TOF module in an embodiment
  • FIG. 5 is a structural block diagram of the accuracy measuring device of the TOF module in an embodiment.
  • a TOF module accuracy measurement device includes a controller (not shown), an incident optical fiber 20, a branch optical fiber 30, and an optical fiber coupler 40.
  • the incident optical fiber 20 The incident optical fiber 20.
  • Two or more branch fibers 30 are formed by branching through the fiber coupler 40.
  • the controller (not shown) is used to connect the TOF module to be tested, that is, the controller needs to be connected with the TOF module to
  • the TOF module controls, the controller is used to control the TOF module’s transmitting unit to emit light into the incident fiber, obtain the sampled image, and obtain the depth distance value in the sampled image; compare the depth distance value with the optical path length of each branch fiber The comparison is performed to obtain a comparison result; and the accuracy value of the TOF module is obtained according to the comparison result; wherein the sampled image is formed by the receiving unit of the TOF module photographing the light reflected by each branch fiber.
  • the controller body and the TOF module body to be tested are not shown in FIG. 1, but the transmitting unit and the receiving unit of the TOF module to be tested are shown in FIG. 1.
  • the transmitting unit 10 in the TOF module to be tested needs to emit light into the incident optical fiber 20, that is, the transmitting unit 10 needs to be aligned with the light entrance of the incident optical fiber 20 to ensure emission
  • the emitted light can enter the incident optical fiber 20, and the corresponding manipulator can be controlled by the controller to realize the aiming of the transmitting unit 10 to the light entrance of the incident optical fiber 20.
  • the end of the incident optical fiber 20 is connected to the optical fiber coupler 40, and is branched by the optical fiber coupler 40 to form several branch optical fibers 30 (for example, 4 branch optical fibers 30 are shown in FIG. 1), and each branch optical fiber 30 is from
  • the optical fiber coupler 40 leads out, the light exit of each branch optical fiber 30 can be in the same vertical plane, and it is ensured that the length of each branch optical fiber 30 is different.
  • the transmitting unit 10 of the TOF module to be tested emits light (for example, infrared light), and the light enters the incident optical fiber 20 and propagates in it, and then is divided into several paths through the optical fiber coupler 40, and enters them respectively.
  • the branch fibers 30 of different lengths continue to propagate, and are finally emitted from the light exits of the branch fibers 30 of different lengths, and are received by the receiving unit 70 of the TOF module to be tested, so that the TOF module to be tested only needs to be tested once. You can get multiple reflected rays with different propagation distances.
  • the receiving unit 70 of the TOF module under test can receive the light reflected by the branch optical fibers 30 with different optical path lengths to form a sampled image, thereby making the to-be-tested
  • the measuring TOF module can quickly obtain the depth distance value corresponding to different optical path lengths, avoiding the cumbersome steps of constantly adjusting the position of the TOF module to be tested to obtain different depth distance values, and improving the overall TOF module to be tested. Accuracy measurement efficiency, suitable for large-scale accuracy testing.
  • the controller is also used to obtain the regional image formed in the sampled image formed by the light reflected by each branch fiber; and obtain the depth distance value of each branch fiber according to the regional image.
  • the device further includes an optical fiber fixed projection plate 50 and a dark box 60.
  • the optical fiber fixed projection plate 50 is arranged in the dark box 60, and the light outlet of each branch optical fiber 30 is fixedly arranged in the fixed optical fiber projection. Board 50.
  • the light entrance of the incident optical fiber 20 is arranged on one side of the dark box 60.
  • the transmitting unit 10 of the TOF module to be tested is aligned with the light entrance
  • the optical fiber fixing projection plate 50 is arranged in the dark box 60 and is aligned with the dark box 60.
  • the side of the optical fiber 20 is parallel, and the incident optical fiber 20 passes through the optical fiber fixed projection plate 50, and is connected to the optical fiber coupler 40 behind the optical fiber fixed projection plate 50 for branching.
  • the branching obtains a number of branch optical fibers 30, and the output of each branch optical fiber 30
  • the port is located on the optical fiber fixed projection board 50.
  • the light exit of each branch optical fiber 30 can be arranged vertically on the optical fiber fixing projection plate 50.
  • the optical fiber fixed projection plate 50 in the dark box 60 can be directly moved in parallel to adjust the optical path lengths of all the branch optical fibers 30, which facilitates the accuracy measurement of the TOF module under test.
  • the optical fiber fixing projection plate 50 can facilitate the fixing of each branch optical fiber 30, so that at least the length of each branch optical fiber 30 The light outlets are on the same vertical plane, so that the light emitted from each branch optical fiber 30 is prevented from being at different starting points, and the accuracy of the data in the accuracy measurement process is ensured.
  • the dark box 60 is a square dark box, and the left side of the dark box 60 is provided with a light inlet and a light outlet, and the light inlet is used as the light inlet of the incident optical fiber 20, which is to be tested
  • the transmitting unit 10 of the TOF module is docked with the light inlet, so that the light emitted by the transmitting unit 10 can enter the incident optical fiber 20, and the light outlet is docked with the receiving unit 70, so that the receiving unit 70 can receive the branched optical fiber through the light outlet. 30 shots of light.
  • the optical fiber fixing projection plate 50 is arranged in the dark box 60 and is parallel to the left side of the dark box 60.
  • the device also includes a sliding component (not shown in FIG. 1).
  • the sliding component can be a sliding rail and can be directly arranged on the side of the dark box 60.
  • the device may also include a test bench for placing the TOF module to be tested.
  • the test bench may be set on the left side of the dark box 60 in FIG.
  • Corresponding sensing devices can also be set on the controller to connect to the controller, such as a laser sensor.
  • the laser sensor is used to sense whether there is a TOF module under test currently placed on the test bench, so that the controller can be based on the sensing signal generated by the laser sensor To determine whether you need to start the test.
  • the device further includes a driving device, which is connected to the controller, receives control instructions from the controller to drive the transmitting unit of the TOF module under test to connect with the light inlet, and Receive the control instruction of the controller to drive the receiving unit of the TOF module under test to connect with the light outlet.
  • the driving device can be a mechanical arm
  • the controller can be a computer.
  • the device also includes a laser aligner.
  • the laser aligner is connected to the controller. Before starting the test, the controller uses the laser aligner to detect the TOF module to be tested. Whether the transmitting unit of the device is accurately docked with the light inlet, and the controller uses a laser aligner to detect whether the receiving unit of the TOF module under test is accurately docked with the light outlet.
  • the device further includes an interactive device, which is connected to the controller, and the controller performs human-computer interaction with the staff through the interactive device.
  • the interactive device includes a display screen and a keyboard.
  • the display screen can be a liquid crystal display.
  • the keyboard can be a key keyboard or a virtual touch keyboard.
  • the staff can understand the test data in the test process through the liquid crystal display. You can also directly understand the test results through the LCD screen, and the keyboard is for the staff to operate, input corresponding instructions and so on.
  • the transmitting unit 10 is aligned with the entrance of the incident optical fiber 20, and emits light into the incident optical fiber 20, and The end of the incident optical fiber 20 is connected to an optical fiber coupler 40.
  • the optical fiber coupler 40 can divide the light propagating in the incident light 20 into many parts, and each part of the light enters a branch optical fiber 30 to propagate, and finally all the light is transmitted. It emits from the light exit of each branch optical fiber 30, and the length of each branch optical fiber 30 can be adjusted.
  • the end of each branch optical fiber 30 is fixed on the optical fiber fixing projection plate 50, and the receiving unit 70 fixes the projection plate 50 to the optical fiber.
  • the branch fibers 30 of different lengths can be set to realize the closed loop of the optical path of different lengths. It is only necessary to calculate the relative distance (optical path length) between the receiving unit 70 and each branch optical fiber 30 to simulate the working conditions of the TOF module under test at different distances; after the TOF module under test captures the sampled image, Locate the position of each branch fiber 30 on the sampled image, calculate the depth distance value at the corresponding position, and compare it with the actual length of the optical path, so as to obtain the accuracy value of the TOF module at different distances.
  • a method for measuring the accuracy of a TOF module which includes the steps:
  • S300 Control the emission unit of the TOF module to emit light into the incident optical fiber.
  • the transmitter unit of the TOF module can be controlled by a controller such as a computer or a microprocessor to emit light into the incident optical fiber, for example, by writing a corresponding control program in the computer to control the emission of the TOF module
  • the unit emits infrared light into the incident optical fiber according to a preset frequency.
  • the incident optical fiber can be a total optical fiber (the number of incident optical fibers is not limited, in other embodiments, the number of incident optical fibers can be multiple), and can pass through a splitter (the splitter can be a fiber coupler Etc.)
  • the incident optical fiber is split to form a multi-branch optical fiber, and the length of each branch optical fiber (the length of the branch optical fiber, that is, the length of the optical path) is different. It is understandable that after the light emitted by the transmitting unit enters the incident fiber, the emitted light will enter each branch fiber through the splitter, and then continue to propagate in each branch fiber, and finally from each branch fiber At this time, the light emitted from the light outlet of the branch fiber represents the reflected light.
  • the TOF module can be a 3D-TOF camera module, which includes a transmitting unit and a receiving module.
  • the transmitting unit can emit light (for example, infrared light) into the optical fiber.
  • the infrared light is emitted After going out, it propagates in the optical fiber and completes a closed optical circuit to obtain the reflected infrared light.
  • the receiving unit shoots and obtains an image according to the reflected infrared light.
  • S400 Obtain a sampled image, and obtain a depth distance value in the sampled image.
  • the sampled image is formed by the receiving unit of the TOF module photographing the light reflected from each branch fiber.
  • the controller (such as a computer) can communicate with the receiving unit of the TOF module to obtain the sampled image and perform corresponding actions. The arithmetic operation of, get the depth distance value in the sampled image.
  • each branch fiber when the light is reflected from the light exit of each branch fiber, the receiving unit of the TOF module will shoot at this time, and the sampled image will be captured according to the reflected light. Because the optical path length of each branch fiber is different In the same way, the time that the light travels in the branch fiber is different, so that the light reflected from the light exit of each branch fiber forms a different depth and distance value in the sampled image. It should be noted that the depth distance value, that is, the light is emitted from the transmitting unit and received by the receiving unit, and the sampled image is obtained by shooting, and then the receiving unit is calculated according to the sampled image.
  • the depth distance value is equal to the length of the optical fiber optical path, but limited by the accuracy of the TOF module, the depth distance value and the length of the optical fiber optical path will not be equal.
  • a poorly accurate TOF module is used to photograph an object.
  • the depth distance value obtained from the captured object image will be different from the actual distance between the object and the TOF module.
  • Existing 3D cameras can obtain the distance between the camera and the object (ie the depth distance value) by taking an image and calculating the time from when the light is emitted to reflected back.
  • the contour model of the object can also be obtained by shooting with a 3D camera.
  • Obtaining the depth distance value from the sampled image is an existing conventional technology. For example, the depth distance value can be obtained by analyzing and calculating with a corresponding algorithm, which will not be repeated here.
  • the optical path lengths of the two branch fibers are different.
  • the depth distance value characterizes the sampled image taken by the receiving module of the TOF module through the light reflected by the branch fiber and obtained from the sampled image.
  • the distance value is after the TOF module takes the sampled image.
  • the controller calculates the depth distance value with the optical path length, and the comparison result can be obtained.
  • the comparison result can be a data difference, such as the difference between the depth distance value and the optical path length, and the comparison result can also be a data coefficient, such as dividing the depth distance value and the optical path length.
  • the data type of the comparison result is not unique. I will not give an example one by one here.
  • the controller (such as a computer) compares the comparison result with the preset accuracy table, that is, the accuracy value of the TOF module at different distances can be obtained.
  • the preset accuracy table contains the TOF module at 1m, 2m, and The accuracy range at a distance equal to 3m.
  • the comparison result is within the accuracy range, it means that the TOF module has a better accuracy at this distance.
  • the comparison result is outside the accuracy range, it means the TOF module is at this distance. The accuracy is poor.
  • the receiving unit of the TOF module can receive the light reflected by the branch fibers with different optical path lengths to form a sampled image, so that the TOF module can quickly Obtaining the depth distance values corresponding to different optical path lengths avoids the cumbersome steps of constantly adjusting the position of the TOF module to obtain different depth distance values, improves the accuracy measurement efficiency of the entire TOF module, and adapts to mass evaluation.
  • the method further includes the following steps:
  • the corresponding station can be set according to the process step.
  • Each station corresponds to a process step.
  • the preset station can be the initial station for the TOF module to start the accuracy measurement.
  • Corresponding infrared sensor devices can be installed at the preset station. When the infrared sensor device senses that there is a TOF module at the preset station, the sensor signal can be transmitted to the controller (such as a computer), and the controller (such as a computer) ) The corresponding control signal can be sent to the auxiliary manipulator or the mobile platform, etc., so that the TOF module on the preset station is docked with the incident optical fiber, and then step S300 is entered.
  • the accuracy measurement process of the TOF module can be automated, without the operator manually connecting the launch unit of the TOF module to be tested with the incident fiber. Improve the efficiency of high-volume TOF module accuracy measurement.
  • step S400 includes the steps of: acquiring the regional image formed in the sampled image by the light reflected by each branch fiber; and obtaining the depth distance value of each branch fiber according to the regional image.
  • the regional image is the image formed by the light reflected by each branch fiber.
  • the regional image formed by the reflected light of different branch fibers may be different.
  • the shape of the light outlet of the branch fiber can be adjusted to make The size and shape of the regional image formed by it can be changed. For example, the light exit of the branch fiber can be adjusted to a circle or a square, so that the shape and size of the regional image on the sampled image will be changed, which is convenient for each branch.
  • Optical fiber is distinguished and identified.
  • each branch fiber By locating the regional image formed by each branch fiber in the sample image, the depth and distance value of each branch fiber can be obtained from the regional image, so that only one sample image is needed to obtain the TOF module at different distances.
  • the accuracy value improves the efficiency of TOF module accuracy measurement.
  • step S500 includes the step of comparing the depth distance value of each branch fiber with the optical path length of the branch fiber to obtain a distance difference, and use the distance difference as the comparison result.
  • each branch fiber is compared with the optical path length of the branch, and the distance difference of each branch fiber can be obtained, so that the accuracy measurement results of the TOF module in different branch fibers can be obtained.
  • step S500 the method further includes the following steps:
  • S600 Output the optical path length of each branch fiber and the distance difference corresponding to each branch fiber to a display device for display.
  • the optical path length of each branch fiber can be preset. After the controller (such as a computer) obtains the distance difference corresponding to each branch fiber, it can communicate with the display device and compare the optical path length of each branch fiber and each branch fiber. The distance difference corresponding to one branch fiber is output to the display device. Further, in other embodiments, the display device may be a liquid crystal display screen.
  • step S400 the method further includes the following steps:
  • S800 Determine whether it is detected that the next set of TOF modules enters the preset station.
  • the controller (such as a computer) obtains the depth and distance value of the sampled image
  • the sampled image can be stored in In the memory, the controller (such as a computer) can then get the sampled images of the next set of TOF modules.
  • the next group of TOF modules can be automatically controlled to enter the preset station, and then the accuracy measurement of the next group of TOF modules will continue until the completion of all TOF modules Accuracy measurement, convenient for accuracy measurement of mass TOF modules.
  • a TOF module accuracy measurement device which includes:
  • the light emission control module 200 is used to control the emission unit to emit light into the incident optical fiber.
  • the distance value obtaining module 300 is used to obtain a sampled image and obtain a depth distance value in the sampled image, where the sampled image is formed by the receiving unit of the TOF module photographing the light reflected by each branch fiber.
  • the comparison module 400 is used for comparing the depth distance value with the optical path length of each branch fiber to obtain a comparison result; the accuracy obtaining module 600 is used for obtaining the accuracy value of the TOF module according to the comparison result. Among them, after the incident fiber is split, two or more branch fibers are formed, and the optical path length of each branch fiber is different.
  • the above device splits the incident optical fiber into multiple branch fibers, so that the receiving module of the TOF module can receive the light reflected by the branch fibers with different optical path lengths to form a sampled image, so that the TOF module can quickly Obtaining the depth distance values corresponding to different optical path lengths avoids the cumbersome steps of constantly adjusting the position of the TOF module to obtain different depth distance values, improves the accuracy measurement efficiency of the entire TOF module, and adapts to mass evaluation.
  • the device further includes a judging module 100 for judging whether there is a TOF module at the preset station before the light emission control module 200 controls the emission unit to emit light into the incident optical fiber If yes, use the TOF module as the TOF module to be tested, control the launch unit of the TOF module to be tested to be connected to the incident optical fiber, and transfer to the light emission control module 200.
  • a judging module 100 for judging whether there is a TOF module at the preset station before the light emission control module 200 controls the emission unit to emit light into the incident optical fiber If yes, use the TOF module as the TOF module to be tested, control the launch unit of the TOF module to be tested to be connected to the incident optical fiber, and transfer to the light emission control module 200.
  • the distance value obtaining module 300 further includes: an area image obtaining module, which is used to obtain an area image formed in the sampled image by the light reflected by each branch fiber.
  • the acquisition module is used to acquire the depth distance value of each branch fiber according to the regional image.
  • the comparison module 400 further includes: a difference calculation module for comparing the depth distance value of each branch fiber with the optical path length of the branch fiber to obtain the distance difference, and use the distance difference as the comparison result .
  • the device further includes a display module 500 for comparing the depth distance value with the optical path length of each branch fiber by the comparison module 400. After the comparison result is obtained, each branch fiber The optical path length and the distance difference corresponding to each branch fiber are output to the display device for display.
  • the device further includes a detection module 700, which is used for the distance value obtaining module 300 to obtain a sampled image formed by the light reflected by the receiving unit from each branch fiber, and obtain the sampled image
  • a detection module 700 which is used for the distance value obtaining module 300 to obtain a sampled image formed by the light reflected by the receiving unit from each branch fiber, and obtain the sampled image
  • the emission unit is controlled to emit light into the incident optical fiber.
  • each module in the accuracy measuring device of the TOF module can be implemented in whole or in part by software, hardware and a combination thereof.
  • the above-mentioned modules may be embedded in the form of hardware or independent of the processor in the computer equipment, or may be stored in the memory of the computer equipment in the form of software, so that the processor can call and execute the operations corresponding to the above-mentioned modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本申请涉及一种TOF模组的精度测量方法、装置和设备,该方法包括步骤:控制TOF模组的发射单元发射光线至入射光纤中;获取TOF模组的接收单元从各路分支光纤反射回的光线拍摄形成的采样图像,并获取采样图像中的深度距离值;将深度距离值与各路分支光纤的光路长度进行比较,得到比较结果;根据比较结果获取TOF模组的精度值。

Description

TOF模组的精度测量方法、装置和设备 技术领域
本申请涉及摄像头模组技术领域,特别是涉及一种TOF模组的精度测量方法、装置和设备。
背景技术
随着摄影技术的发展,出现了3D摄影技术,例如现有的TOF(Time of Flight,飞行时间)模组可以在对物体进行拍摄时,得到物体的3D轮廓信息,其具体是通过发射单元发射出光线,然后接收单元接收从物体反射回的光线,得到光线在飞行的过程中所经历的飞行时间,由于物体存在凹凸不平的轮廓,使得从物体上每一个位置点反射回的光线所经历的飞行时间是不同的,TOF模组从而可以根据飞行时间的长短,来得到物体的轮廓信息。
但TOF模组需要进行精度测评来保证拍摄精度,传统的TOF模组的精度测评方法主要是将TOF模组放置在与白墙不同距离位置点,来进行测试,得到不同距离下模组的距离精度值曲线,从而比较全面的反应一个TOF模组的精度性能,然而这种测评方式需要测试十几个不同距离位置点的精度值,需要频繁的调节TOF模组的位置点,精度测评效率非常低,不适应大批量测评。
发明内容
根据本申请的各种实施例,提供一种TOF模组的精度测量方法、装置和设备。
一种TOF模组的精度测量方法,该方法包括步骤:控制TOF模组的发射单元发射光线至入射光纤中,入射光纤在分路之后,形成两路或两路以上的 分支光纤,且各路分支光纤的光路长度不相同;获取采样图像,所述采样图像为TOF模组的接收单元从各路分支光纤反射回的光线拍摄形成的,并获取采样图像中的深度距离值;将深度距离值与各路分支光纤的光路长度进行比较,得到比较结果;根据比较结果获取TOF模组的精度值。
一种TOF模组的精度测量装置,该装置包括:光线发射控制模块、用于控制发射单元发射光线至入射光纤中,入射光纤在分路之后,形成两路或两路以上的分支光纤,且各路分支光纤的光路长度不相同;距离值获取模块、用于获取采样图像,所述采样图像为TOF模组的接收单元对各路所述分支光纤反射回的光线拍摄形成的,并获取所述采样图像中的深度距离值;比较模块、用于将深度距离值与各路分支光纤的光路长度进行比较,得到比较结果;精度获取模块、用于根据比较结果获取TOF模组的精度值。
一种TOF模组的精度测量设备,该设备包括:控制器、入射光纤、分支光纤以及光纤耦合器,入射光纤通过光纤耦合器分路形成两路或两路以上的分支光纤,控制器用于接入待测TOF模组。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为一实施例中TOF模组的精度测量设备的结构示意图
图2为一实施例中TOF模组的精度测量方法的流程图;
图3为一实施例中TOF模组的精度测量方法的流程图;
图4为一实施例中TOF模组的精度测量装置的结构框图;
图5为一实施例中TOF模组的精度测量装置的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在一个实施例中,如图1所示,提供了一种TOF模组的精度测量设备,该设备包括控制器(未图示)、入射光纤20、分支光纤30以及光纤耦合器40,入射光纤20通过光纤耦合器40分路形成两路或两路以上的分支光纤30,控制器(未图示)用于接入待测TOF模组,即控制器需要与TOF模组进行连接,来对TOF模组进行控制,控制器用于控制TOF模组的发射单元发射光线至入射光纤中,获取采样图像,并获取采样图像中的深度距离值;将深度距离值与各路分支光纤的光路长度进行比较,得到比较结果;以及根据比较结果获取TOF模组的精度值;其中,采样图像为TOF模组的接收单元对各路分支光纤反射回的光线拍摄形成的。
需要说明的是,控制器本体以及待测TOF模组本体未在图1中示出,但图1中示出了待测TOF模组的发射单元以及接收单元。在控制器接入待测TOF模组之后,待测TOF模组中的发射单元10需要发射光线进入至入射光纤20中,即发射单元10需要对准入射光纤20的入光口以保证发射出的光线能够进入至入射光纤20中,可以通过控制器控制相应的机械手等来实现发射单元10对准入射光纤20的入光口。入射光纤20的末端与光纤耦合器40连接,通过光纤耦合器40被分路,形成若干路分支光纤30(例如在图1中共示出了4根分支光纤30),每一根分支光纤30从光纤耦合器40中引出来,每一 根分支光纤30的出光口可以都处于同一个垂直平面,并保证每一根分支光纤30的长度不相同。
当开始启动测试之后,待测TOF模组的发射单元10会发射出光线(例如红外光),光线进入到入射光纤20并在其中传播,然后通过光纤耦合器40被分成若干路,分别进入到不同长度的分支光纤30中继续传播,最终从不同长度的分支光纤30的出光口射出,被待测TOF模组的接收单元70接收,这样可以使得待测TOF模组只需要进行一次测试,就可以得到多个传播距离不相同的反射光线了。
上述设备,通过将入射光纤20分路成多路分支光纤30,使得待测TOF模组的接收单元70能够接收到光路长度不相同的分支光纤30反射回的光线,形成采样图像,从而使得待测TOF模组能够快速的获取不同光路长度所对应的深度距离值,避免了需要不断调整待测TOF模组的位置来获得不同的深度距离值的繁琐步骤,提高了整个待测TOF模组的精度测量效率,适应大批量的精度测试。
在一个实施例中,控制器还用于获取每一路分支光纤反射回的光线在采样图像中形成的区域图像;根据区域图像,获取每一路分支光纤的深度距离值。
在一个实施例中,如图1所示,该设备还包括光纤固定投射板50以及暗箱60,光纤固定投射板50设置于暗箱60内,每一路分支光纤30的出光口固定设置于光纤固定投射板50上。入射光纤20的入光口设置于暗箱60的一侧面,在测试时,待测TOF模组的发射单元10与该入光口对准,光纤固定投射板50设置于暗箱60中,与暗箱60的侧面平行,入射光纤20穿过光纤固定投射板50,接入到光纤固定投射板50后方的光纤耦合器40中,进行分路,分路得到若干分支光纤30,各路分支光纤30的出光口位于光纤固定投射板50上。进一步的,在一实施例中,每一路分支光纤30的出光口可以竖直排列的设置于光纤固定投射板50上。当需要调整光路长度时,就可以直接平行移动暗箱60中的光纤固定投射板50即可对所有的分支光纤30的光路长度进 行调整,方便对待测TOF模组进行精度测量。
通过设置暗箱60能够保证待测TOF模组在进行精度测量时不被外界环境干扰,减少环境干扰因素,光纤固定投射板50能够方便每一路分支光纤30进行固定,至少使得每一路分支光纤30的出光口处于同一个垂直面上,避免从每一路分支光纤30射出的光线处于不同的出发点,保证精度测量过程中数据的准确性。
进一步的,在一个实施例中,如图1所示,暗箱60为方形暗箱,暗箱60的左侧面设置有进光口以及出光口,进光口作为入射光纤20的入光口,待测TOF模组的发射单元10与进光口对接,使得发射单元10发射出的光线能够进入到入射光纤20中,出光口与接收单元70对接,使得接收单元70能够通过出光口接收到从分支光纤30射出的光线。进一步的,在一个实施例中,如图1所示,光纤固定投射板50设置于暗箱60内,与暗箱60的左侧面平行。
进一步的,该设备还包括滑动组件(图1中未示出),滑动组件可以是滑动导轨,并且可以直接设置在暗箱60的侧面,通过将光纤固定投射板安装在滑动导轨上之后,就可以直接控制光纤固定投射板进行滑动,从而调节固定在光纤固定投射板上的分支光纤的出光口与待测TOF模组的接收单元之间的距离。
在一个实施例中,虽未图示,该设备还可包括测试台,测试台用于放置待测TOF模组,例如测试台可以设置在图1中的暗箱60的左侧面旁边,测试台上还可以设置相应的感应装置,与控制器连接,例如激光感应器,通过激光感应器来感应测试台上当前是否放置有待测TOF模组,使得控制器可以根据激光感应器产生的感应信号来判断是否需要开始进行测试。
在一个实施例中,虽未图示,该设备还包括有驱动装置,驱动装置与控制器连接,接收控制器的控制指令来驱动待测TOF模组的发射单元与进光口进行对接,以及接收控制器的控制指令来驱动待测TOF模组的接收单元与出光口进行对接。例如驱动装置可以是机械手臂,控制器可以是计算机电脑。
在一个实施例中,虽未图示,该设备还包括有激光对准仪,激光对准仪 与控制器连接,当开始进行测试之前,控制器通过激光对准仪来检测待测TOF模组的发射单元是否与进光口准确对接,以及控制器通过激光对准仪来检测待测TOF模组的接收单元是否与出光口准确对接。
在一个实施例中,虽未图示,该设备还包括交互装置,交互装置与控制器连接,控制器通过交互装置与工作人员进行人机交互。进一步的,交互装置包括显示屏以及键盘,显示屏可以是液晶显示屏,键盘可以是按键键盘也可以是虚拟触摸式键盘,工作人员可以通过液晶显示屏来了解测试过程中的各项测试数据,也可以通过液晶显示屏直接了解测试结果,键盘则供工作人员进行操作,输入相应的指令等等。
在一个实施例中,为了充分的公开本申请,结合图1对本申请进行解释说明,图1中,发射单元10对准入射光纤20的入光口,并发射光线到入射光纤20中,与入射光纤20末端连接的是一个光纤耦合器40,光纤耦合器40可以将入射光线20中传播的光线分成很多份,每一份光线分别进入到一根分支光纤30中传播,最终所有的光线都从每一根分支光纤30的出光口射出,每一根分支光纤30的长度都可以调整,每一根分支光纤30的末端固定在光纤固定投射板50上,接收单元70对光纤固定投射板50拍图,接收从每一根分支光纤30射出的光信号,从而完成了光路的闭环;由于分支光纤30的长度可以调整,因此可以设定不同长度的分支光纤30来实现不同长度的光路闭环,只需要通过计算接收单元70和每一根分支光纤30之间的相对距离(光路长度),从而模拟待测TOF模组在不同距离下的工作情况;待测TOF模组拍摄得到采样图像之后,定位每一根分支光纤30在采样图像上的位置,计算相应位置上的深度距离值,与光路的实际长度对比,从而得到不同距离下TOF模组的精度值。
在一个实施例中,如图2所示,提供了一种TOF模组的精度测量方法,包括步骤:
S300、控制TOF模组的发射单元发射光线至入射光纤中。
其中,入射光纤在分路之后,形成两路或两路以上的分支光纤,且各路 分支光纤的光路长度不相同。具体的,可以通过控制器例如计算机或者微处理器等设备来控制TOF模组的发射单元发射出光线至入射光纤中,例如通过在计算机写入相应的控制程序以此来控制TOF模组的发射单元依照预设的频率来发出红外光线至入射光纤中。入射光纤可以是一根总的光纤(入射光纤的数量也是不受限制的,在其它实施例中入射光纤的数量可以是多根的),可以通过分路器(分路器可以是光纤耦合器等)将入射光纤分路形成多路分支光纤,每一路分支光纤的长度(分支光纤的长度即光路长度)不相同。可以理解的是,当发射单元发射出光线进入到入射光纤之后,被发射的光线会通过分路器进入到每一路分支光纤中,然后在每一路分支光纤中继续传播,最终从每一路分支光纤的出光口射出,此时从分支光纤的出光口射出的光线即代表的是被反射回来的光线。
在此需要说明的是,TOF模组可以是3D-TOF摄像模组,其包括有发射单元和接收模块,发射单元可以发射出光线(例如可以发射出红外光线)至光纤中,当红外光发射出去之后,在光纤中传播,完成一个光路闭环,得到反射回来的红外光,此时接收单元则根据反射回来的红外光,拍摄得到图像。
S400、获取采样图像,并获取采样图像中的深度距离值。
采样图像为TOF模组的接收单元对各路分支光纤反射回的光线拍摄形成的具体的,可以通过控制器(例如计算机)与TOF模组的接收单元进行数据通信,获取采样图像,并进行相应的算法运算,得到采样图像中的深度距离值。
需要说明的是,当光线从各路分支光纤的出光口反射出来时,此时TOF模组的接收单元会进行拍摄,根据反射回的光线拍摄得到采样图像,由于每一路分支光纤的光路长度不相同,光线在分支光纤中传播的时间是不相同的,使得每一路分支光纤的出光口反射出的光线在采样图像中形成的深度距离值不同。需要说明的是,深度距离值即光线从发射单元发射出来,到被接收单元接收,拍摄得到采样图像,然后接收单元根据采样图像计算得到的。在理想状态下,深度距离值是与光纤光路长度相等的,但是受到TOF模组的精度 限制,会使得深度距离值与光纤光路长度不相等,例如通过精度较差的TOF模组拍摄某一个物体时,从拍摄得到的物体图像中得到的深度距离值就会与物体与TOF模组之间的实际距离存在差异。现有的3D摄像头(例如3D-TOF摄像头以及深度相机等)是可以通过拍摄图像,计算光线在发射出去到反射回来所经历的时间来得到摄像头与物体之间的距离的(即深度距离值),并且当物体具有不规则轮廓时,还可以通过3D摄像头拍摄得到物体的轮廓模型。从采样图像中得到深度距离值则是现有常规技术,例如可以通过相应的算法进行分析计算,得到深度距离值,在此不过赘述。
S500、将深度距离值与各路分支光纤的光路长度进行比较,得到比较结果。
具体的,以入射光纤被分路成两路分支光纤为例,两路分支光纤的光路长度各不相同。上述已经说明,深度距离值表征的是TOF模组的接收模块通过分支光纤反射回的光线拍摄得到的采样图像,并从采样图像中获取得到的,该距离值是TOF模组在拍摄采样图像之后,根据该采样图像,通过一些列的算法计算得到的。控制器(例如计算机)将该深度距离值与光路长度进行对比,就可以得到比较结果。比较结果可以是数据差值,例如将深度距离值与光路长度进行求差运算,比较结果也可以是数据系数,例如将深度距离值与光路长度进行除法运算,比较结果的数据类型并不唯一,在此不做一一举例说明。
S700、根据比较结果获取TOF模组的精度值。
控制器(例如计算机)将该比较结果与预设精度表格进行对比,即可以得到TOF模组在不同的距离下的精度值,例如,预设精度表格中包含有TOF模组在1m、2m以及3m等等距离下的精度范围,当比较结果处于该精度范围时,则表示TOF模组在该距离下精度较好,当比较结果在该精度范围之外,则表示TOF模组在该距离下精度较差。
上述方法,通过将入射光纤分路成多路分支光纤,使得TOF模组的接收单元能够接收多路光路长度不相同的分支光纤反射回的光线,形成采样图像, 从而使得TOF模组能够快速的获取不同光路长度所对应的深度距离值,避免了需要不断调整TOF模组的位置来获得不同的深度距离值的繁琐步骤,提高了整个TOF模组的精度测量效率,适应大批量测评。
在一个实施例中,如图3所示,步骤S300之前,还包括步骤:
S100、判断预设工位当前是否有TOF模组。
S200、当预设工位有TOF模组时,将TOF模组作为待测TOF模组,控制待测TOF模组的发射单元与入射光纤对接,并进入步骤S300。
在对TOF模组进行精度测量的过程中,可以根据流程步骤设置相应的工位,每一个工位对应一个流程步骤,预设工位可以是TOF模组开始进行精度测量的最初始工位,在预设工位处可以安装相应的红外感应装置等,当红外感应装置感应到预设工位处有TOF模组时,可以将感应信号传输至控制器(例如计算机),控制器(例如计算机)可以再发送相应的控制信号给辅助机械手或者移动平台等,使得预设工位上的TOF模组与入射光纤进行对接,之后再进入步骤S300。
通过设置预设工位并检测预设工位中是否有TOF模组,能够使得TOF模组的精度测量过程自动化,无需操作员来手动的将待测TOF模组的发射单元与入射光纤对接,提高大批量TOF模组精度测量的效率。
在一个实施例中,步骤S400包括步骤:获取每一路分支光纤反射回的光线在采样图像中形成的区域图像;根据区域图像,获取每一路分支光纤的深度距离值。具体的,由于每一路分支光纤的光路长度不相同,使得每一路分支光纤反射回的光线所形成的区域图像所表征的深度距离值也互不相同。需要说明的,区域图像是每一路分支光纤反射回的光线所形成的图像,不同的分支光纤在反射回的光线所形成的区域图像可以不相同,可以调整分支光纤的出光口的形状等来使得其所形成的区域图像的大小、形状等改变,例如可以将分支光纤的出光口调整为圆形或方形,从而使得最终在采样图像上的区域图像的形状、大小发生改变,方便对每一路分支光纤进行区分识别。
通过定位每一路分支光纤在采样图像中形成的区域图像,从该区域图像 得到每一路分支光纤的深度距离值,使得仅仅只需要拍摄一张采样图像即可以在后续得到不同距离下TOF模组的精度值,提高了TOF模组精度测量的效率。
在一个实施例中,步骤S500包括步骤:将每一路分支光纤的深度距离值与分支光纤的光路长度进行对比,得到距离差值,并将距离差值作为比较结果。
每一路分支光纤的深度距离值与该路分支的光路长度进行对比,可以得到每一路分支光纤的距离差值,从而能够使得能够得到在不同分支光纤中,TOF模组的精度测量结果。
在一个实施例中,如图3所示,在步骤S500之后,还包括步骤:
S600、将每一路分支光纤的光路长度以及每一路分支光纤对应的距离差值输出至显示装置以进行显示。
每一路分支光纤的光路长度是可以预设的,控制器(例如计算机)在获得每一路分支光纤对应的距离差值之后,可以与显示装置进行数据通信,将每一路分支光纤的光路长度以及每一路分支光纤对应的距离差值输出至显示装置。进一步的,在其它实施例中,显示装置可以是液晶显示屏。
在一个实施例中,如图3所示,在步骤S400之后,还包括步骤:
S800、判断是否检测到有下一组TOF模组进入到预设工位。
S900、当检测到有下一组TOF模组进入到预设工位时,控制下一组TOF模组的发射单元与入射光纤对接,并进入至步骤S300。
预设工位可参考上文的描述说明,当上一组TOF模组已经完成了采样图像的拍摄,控制器(例如计算机)得到采样图像的深度距离值之后,就可以将该采样图像存储在存储器中,然后控制器(例如计算机)就可以去获取下一组TOF模组的采样图像了。
在上一组TOF模组完成精度测量时,可以自动控制下一组TOF模组进入到预设工位,然后对下一组TOF模组继续进行精度测量,直到完成对所有的TOF模组的精度测量,方便对大批量TOF模组进行精度测量。
在一个实施例中,如图4所示,提供了一种TOF模组的精度测量装置,该装置包括:
光线发射控制模块200用于控制发射单元发射光线至入射光纤中。距离值获取模块300用于获取采样图像,并获取采样图像中的深度距离值,其中,采样图像为TOF模组的接收单元对各路分支光纤反射回的光线拍摄形成的。比较模块400用于将深度距离值与各路分支光纤的光路长度进行比较,得到比较结果;精度获取模块600用于根据比较结果获取TOF模组的精度值。其中,入射光纤在分路之后,形成两路或两路以上的分支光纤,且各路分支光纤的光路长度不相同。
上述装置,通过将入射光纤分路成多路分支光纤,使得TOF模组的接收模块能够接收多路光路长度不相同的分支光纤反射回的光线,形成采样图像,从而使得TOF模组能够快速的获取不同光路长度所对应的深度距离值,避免了需要不断调整TOF模组的位置来获得不同的深度距离值的繁琐步骤,提高了整个TOF模组的精度测量效率,适应大批量测评。
在一个实施例中,如图5所示,该装置还包括判断模块100,用于在光线发射控制模块200控制发射单元发射光线至入射光纤中之前,判断预设工位当前是否有TOF模组,若是,则将TOF模组作为待测TOF模组,控制待测TOF模组的发射单元与入射光纤对接,并转至光线发射控制模块200。
在一个实施例中,距离值获取模块300还包括:区域图像获取模块,用于获取每一路分支光纤反射回的光线在采样图像中形成的区域图像。获取模块,用于根据区域图像,获取每一路分支光纤的深度距离值。
在一个实施例中,比较模块400还包括:差值计算模块,用于将每一路分支光纤的深度距离值与分支光纤的光路长度进行对比,得到距离差值,并将距离差值作为比较结果。
在一个实施例中,如图5所示,该装置还包括显示模块500,用于比较模块400将深度距离值与各路分支光纤的光路长度进行比较,得到比较结果之后,将每一路分支光纤的光路长度以及每一路分支光纤对应的距离差值输 出至显示装置以进行显示。
在一个实施例中,如图5所示,该装置还包括检测模块700,用于距离值获取模块300获取接收单元从各路分支光纤反射回的光线形成的采样图像,并获取采样图像中的深度距离值之后,判断是否检测到有下一组TOF模组进入到预设工位,若是,则控制下一组TOF模组的发射单元与入射光纤对接,并转至光线发射控制模块200执行控制发射单元发射光线至入射光纤中。
关于TOF模组的精度测量装置的具体限定可以参见上文中对于TOF模组的精度测量方法的限定,在此不再赘述。上述TOF模组的精度测量装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种TOF模组的精度测量方法,其特征在于,所述方法包括步骤:
    控制TOF模组的发射单元发射光线至入射光纤中,所述入射光纤在分路之后,形成两路或两路以上的分支光纤,且各路所述分支光纤的光路长度不相同;
    获取采样图像,并获取所述采样图像中的深度距离值;所述采样图像为所述TOF模组的接收单元对各路所述分支光纤反射回的光线拍摄形成的;
    将所述深度距离值与各路所述分支光纤的光路长度进行比较,得到比较结果;
    根据所述比较结果获取TOF模组的精度值。
  2. 根据权利要求1所述的方法,其特征在于,所述控制发射单元发射光线至入射光纤中之前,包括步骤:
    判断预设工位当前是否有TOF模组;
    当预设工位有TOF模组时,将所述TOF模组作为待测TOF模组,控制所述待测TOF模组的发射单元与所述入射光纤对接,并进入控制发射单元发射光线至入射光纤中的步骤。
  3. 根据权利要求1所述的方法,其特征在于,所述获取采样图像,所述采样图像为TOF模组的接收单元对各路所述分支光纤反射回的光线拍摄形成的,并获取所述采样图像中的深度距离值,包括步骤:
    获取每一路所述分支光纤反射回的光线在所述采样图像中形成的区域图像;
    根据所述区域图像,获取每一路所述分支光纤的深度距离值。
  4. 根据权利要求3所述的方法,其特征在于,所述将所述深度距离值与各路所述分支光纤的光路长度进行比较,得到比较结果,包括步骤:
    将每一路所述分支光纤的深度距离值与所述分支光纤的光路长度进行对比,得到距离差值,并将所述距离差值作为所述比较结果。
  5. 根据权利要求4所述的方法,其特征在于,所述将所述深度距离值与 各路所述分支光纤的光路长度进行比较,得到比较结果之后,包括步骤:
    将每一路所述分支光纤的光路长度,以及每一路所述分支光纤对应的所述距离差值输出至显示装置以进行显示。
  6. 根据权利要求2所述的方法,其特征在于,所述获取接收单元从各路所述分支光纤反射回的光线形成的采样图像,并获取所述采样图像中的深度距离值之后,还包括步骤:
    判断是否检测到有下一组TOF模组进入到所述预设工位;
    当检测到有下一组TOF模组进入到所述预设工位时,控制所述下一组TOF模组的发射单元与所述入射光纤对接,并进入至控制发射单元发射光线至入射光纤中的步骤。
  7. 根据权利要求1所述的方法,其特征在于,所述入射光纤通过光线耦合器分路,形成两路或两路以上所述分支光纤。
  8. 一种TOF模组的精度测量装置,其特征在于,所述装置包括:
    光线发射控制模块、用于控制发射单元发射光线至入射光纤中,所述入射光纤在分路之后,形成两路或两路以上的分支光纤,且各路分支光纤的光路长度不相同;
    距离值获取模块、用于获取采样图像,所述采样图像为TOF模组的接收单元对各路所述分支光纤反射回的光线拍摄形成的,并获取所述采样图像中的深度距离值;
    比较模块、用于将所述深度距离值与各路所述分支光纤的光路长度进行比较,得到比较结果;
    精度获取模块、用于根据所述比较结果获取TOF模组的精度值。
  9. 一种TOF模组的精度测量设备,其特征在于,包括控制器、入射光纤、分支光纤以及光纤耦合器,所述入射光纤通过所述光纤耦合器分路,形成两路或两路以上的所述分支光纤,所述控制器用于接入待测TOF模组,所述控制器用于控制TOF模组的发射单元发射光线至入射光纤中,获取采样图像,并获取所述采样图像中的深度距离值;将所述深度距离值与各路所述分支光 纤的光路长度进行比较,得到比较结果;以及根据所述比较结果获取TOF模组的精度值;其中,所述采样图像为所述TOF模组的接收单元对各路所述分支光纤反射回的光线拍摄形成的。
  10. 根据权利要求9所述的设备,其特征在于,所述控制器还用于获取每一路所述分支光纤反射回的光线在所述采样图像中形成的区域图像;根据所述区域图像,获取每一路所述分支光纤的深度距离值。
  11. 根据权利要求9所述的设备,其特征在于,还包括光纤固定投射板以及暗箱,所述光纤固定投射板设置于所述暗箱内,每一路所述分支光纤的出光口固定设置于所述光纤固定投射板上。
  12. 根据权利要求11所述的设备,其特征在于,所述暗箱为方形暗箱。
  13. 根据权利要求12所述的设备,其特征在于,所述暗箱的一侧面设置有进光口以及出光口,所述进光口作为所述入射光纤的入光口,用于与待测TOF模组的发射单元对接,所述出光口用于与待测TOF模组的接收单元对接。
  14. 根据权利要求13所述的设备,其特征在于,所述光纤固定投射板与所述设置有进光口以及出光口的一侧面平行。
  15. 根据权利要求11所述的设备,其特征在于,所述的设备还包括滑动组件,所述光纤固定投射板通过所述滑动组件在所述暗箱内滑动。
  16. 根据权利要求9所述的设备,其特征在于,所述的设备还包括测试台,所述测试台用于放置所述待测TOF模组。
  17. 根据权利要求13所述的设备,其特征在于,所述的设备还包括与控制器连接的驱动装置,所述控制器通过所述驱动装置驱动待测TOF模组的发射单元与进光口对接,所述控制器通过所述驱动装置驱动待测TOF模组与出光口对接。
  18. 根据权利要求9所述的设备,其特征在于,所述的设备包括与所述 控制器连接的激光对准仪。
  19. 根据权利要求9所述的设备,其特征在于,所述的设备还包括交互装置,所述交互装置与所述控制器连接。
  20. 根据权利要求19所述的设备,其特征在于,所述交互装置包括与所述控制器连接的显示屏以及键盘。
PCT/CN2019/119781 2019-11-20 2019-11-20 Tof模组的精度测量方法、装置和设备 WO2021097724A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119781 WO2021097724A1 (zh) 2019-11-20 2019-11-20 Tof模组的精度测量方法、装置和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119781 WO2021097724A1 (zh) 2019-11-20 2019-11-20 Tof模组的精度测量方法、装置和设备

Publications (1)

Publication Number Publication Date
WO2021097724A1 true WO2021097724A1 (zh) 2021-05-27

Family

ID=75980348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119781 WO2021097724A1 (zh) 2019-11-20 2019-11-20 Tof模组的精度测量方法、装置和设备

Country Status (1)

Country Link
WO (1) WO2021097724A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007093044A1 (en) * 2006-02-15 2007-08-23 Oti Ophtalmic Technologies Inc. Method and apparatus for determining the shape, distance and orientation of an object
CN106952309A (zh) * 2016-01-07 2017-07-14 宁波舜宇光电信息有限公司 快速标定tof深度相机多种参数的设备及方法
CN109143252A (zh) * 2018-08-08 2019-01-04 合肥泰禾光电科技股份有限公司 Tof深度相机距离校准的方法及装置
CN109754425A (zh) * 2017-11-01 2019-05-14 浙江舜宇智能光学技术有限公司 Tof摄像模组的标定设备及其标定方法
CN109901137A (zh) * 2017-12-08 2019-06-18 浙江舜宇智能光学技术有限公司 广角tof模组的标定方法及其标定设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007093044A1 (en) * 2006-02-15 2007-08-23 Oti Ophtalmic Technologies Inc. Method and apparatus for determining the shape, distance and orientation of an object
CN106952309A (zh) * 2016-01-07 2017-07-14 宁波舜宇光电信息有限公司 快速标定tof深度相机多种参数的设备及方法
CN109754425A (zh) * 2017-11-01 2019-05-14 浙江舜宇智能光学技术有限公司 Tof摄像模组的标定设备及其标定方法
CN109901137A (zh) * 2017-12-08 2019-06-18 浙江舜宇智能光学技术有限公司 广角tof模组的标定方法及其标定设备
CN109143252A (zh) * 2018-08-08 2019-01-04 合肥泰禾光电科技股份有限公司 Tof深度相机距离校准的方法及装置

Similar Documents

Publication Publication Date Title
TWI420081B (zh) 測距系統及測距方法
TWI446250B (zh) 可攜式光學觸控系統及其操作方法
CN109862345B (zh) 视场角测试方法和系统
CN102853918B (zh) 气动光学波前超高频测量系统及方法
CN202403666U (zh) 一种激光、摄像一体测量仪
CN105547198B (zh) 一种镜头分光束光电测角装置及其检测方法
CN105157584A (zh) 一种非接触式物体厚度的在线测量装置及方法
CN104296607B (zh) 激光引信闭馈测试装置及测试系统及测试方法
WO2021097724A1 (zh) Tof模组的精度测量方法、装置和设备
CN114270813A (zh) 具有反射性后屏幕的视频伸长计系统
CN107588730A (zh) 利用ar设备测量高度的方法及装置
CN107153050B (zh) 一种折射率匹配的装置以及方法
CN112824929A (zh) Tof模组的精度测量方法、装置和设备
CN210720179U (zh) 复检相机对焦测距装置和玻璃复检设备
CN105910627A (zh) 用于空间视觉导航敏感器的动态模拟器
KR101590552B1 (ko) 곡선형 스프링 형상 검사 방법
US20120057023A1 (en) Distance measurement system and method
CN207180995U (zh) 一种大口径激光光斑均匀性的检测装置
CN112233183A (zh) 3d结构光模组支架标定方法、装置和设备
US9652081B2 (en) Optical touch system, method of touch detection, and computer program product
CN203011670U (zh) 一种目标模拟装置
US9818021B2 (en) Method for determining a local refractive power and device therefor
CN110567686B (zh) 大口径光学反射望远镜的镜面品质检测装置及检测方法
CN207894588U (zh) 基于角锥棱镜的光学镜头多视场像质检测装置
US8508719B2 (en) Method for measuring the heights of components based on laser ranging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953695

Country of ref document: EP

Kind code of ref document: A1