WO2021096298A1 - Penicillin g acylase mutant having increased cefazoline productivity and use thereof - Google Patents
Penicillin g acylase mutant having increased cefazoline productivity and use thereof Download PDFInfo
- Publication number
- WO2021096298A1 WO2021096298A1 PCT/KR2020/016010 KR2020016010W WO2021096298A1 WO 2021096298 A1 WO2021096298 A1 WO 2021096298A1 KR 2020016010 W KR2020016010 W KR 2020016010W WO 2021096298 A1 WO2021096298 A1 WO 2021096298A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acylase
- mutant
- seq
- penicillin
- spp
- Prior art date
Links
- 229960001139 cefazolin Drugs 0.000 title claims abstract description 110
- MLYYVTUWGNIJIB-BXKDBHETSA-N cefazolin Chemical compound S1C(C)=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CN3N=NN=C3)[C@H]2SC1 MLYYVTUWGNIJIB-BXKDBHETSA-N 0.000 title claims abstract description 110
- 108010073038 Penicillin Amidase Proteins 0.000 title claims abstract description 74
- 230000001965 increasing effect Effects 0.000 title abstract description 32
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 67
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 56
- 230000035772 mutation Effects 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims description 49
- 108091033319 polynucleotide Proteins 0.000 claims description 25
- 239000002157 polynucleotide Substances 0.000 claims description 25
- 102000040430 polynucleotide Human genes 0.000 claims description 25
- 238000004519 manufacturing process Methods 0.000 claims description 21
- 239000013604 expression vector Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 19
- 230000002194 synthesizing effect Effects 0.000 claims description 16
- 241001288713 Escherichia coli MC1061 Species 0.000 claims description 15
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 12
- 244000005700 microbiome Species 0.000 claims description 11
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical class N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 9
- 230000002255 enzymatic effect Effects 0.000 claims description 8
- 238000003259 recombinant expression Methods 0.000 claims description 8
- 150000002148 esters Chemical class 0.000 claims description 7
- 241000588722 Escherichia Species 0.000 claims description 5
- 241000588986 Alcaligenes Species 0.000 claims description 3
- 241000193830 Bacillus <bacterium> Species 0.000 claims description 3
- 241001112696 Clostridia Species 0.000 claims description 3
- 241000589516 Pseudomonas Species 0.000 claims description 3
- 241000589220 Acetobacter Species 0.000 claims description 2
- 241000590020 Achromobacter Species 0.000 claims description 2
- 241000607534 Aeromonas Species 0.000 claims description 2
- 241000726092 Aphanocladium Species 0.000 claims description 2
- 241001619326 Cephalosporium Species 0.000 claims description 2
- 241000589565 Flavobacterium Species 0.000 claims description 2
- 241000721603 Mycoplana Species 0.000 claims description 2
- 241000586779 Protaminobacter Species 0.000 claims description 2
- 241000589634 Xanthomonas Species 0.000 claims description 2
- 239000003513 alkali Substances 0.000 claims 1
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 63
- 239000000758 substrate Substances 0.000 abstract description 40
- 102000004190 Enzymes Human genes 0.000 abstract description 33
- 108090000790 Enzymes Proteins 0.000 abstract description 33
- 241000932047 Achromobacter sp. Species 0.000 abstract description 11
- 230000015556 catabolic process Effects 0.000 abstract description 6
- 238000006731 degradation reaction Methods 0.000 abstract description 6
- 101150080488 apa gene Proteins 0.000 description 97
- 125000002737 ampicillanyl group Chemical group N[C@@H](C(=O)N[C@H]1[C@@H]2N([C@H](C(S2)(C)C)C(=O)*)C1=O)C1=CC=CC=C1 0.000 description 89
- 108090000765 processed proteins & peptides Proteins 0.000 description 46
- 238000006243 chemical reaction Methods 0.000 description 44
- 229920001184 polypeptide Polymers 0.000 description 41
- 102000004196 processed proteins & peptides Human genes 0.000 description 41
- 108090000623 proteins and genes Proteins 0.000 description 35
- 108020004414 DNA Proteins 0.000 description 34
- 229940088598 enzyme Drugs 0.000 description 32
- 239000000047 product Substances 0.000 description 32
- 210000004027 cell Anatomy 0.000 description 31
- 239000000243 solution Substances 0.000 description 31
- 150000001413 amino acids Chemical class 0.000 description 28
- 235000001014 amino acid Nutrition 0.000 description 25
- 238000006467 substitution reaction Methods 0.000 description 25
- 102000004169 proteins and genes Human genes 0.000 description 23
- 235000018102 proteins Nutrition 0.000 description 21
- 229940024606 amino acid Drugs 0.000 description 19
- 239000013598 vector Substances 0.000 description 19
- 230000014509 gene expression Effects 0.000 description 17
- 150000007523 nucleic acids Chemical class 0.000 description 17
- -1 β-lactam compound Chemical class 0.000 description 14
- 102000039446 nucleic acids Human genes 0.000 description 13
- 108020004707 nucleic acids Proteins 0.000 description 13
- 238000000354 decomposition reaction Methods 0.000 description 12
- 108010076504 Protein Sorting Signals Proteins 0.000 description 11
- 239000013612 plasmid Substances 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 10
- 239000007853 buffer solution Substances 0.000 description 9
- 239000004254 Ammonium phosphate Substances 0.000 description 8
- 125000000539 amino acid group Chemical group 0.000 description 8
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 8
- 235000019289 ammonium phosphates Nutrition 0.000 description 8
- 239000003242 anti bacterial agent Substances 0.000 description 8
- 229940088710 antibiotic agent Drugs 0.000 description 8
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- 241000588724 Escherichia coli Species 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 241001665942 Achromobacter sp. CCM 4824 Species 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- 229960005091 chloramphenicol Drugs 0.000 description 6
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 6
- 238000006911 enzymatic reaction Methods 0.000 description 6
- 238000006460 hydrolysis reaction Methods 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 101800001707 Spacer peptide Proteins 0.000 description 5
- 125000002252 acyl group Chemical group 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 238000003752 polymerase chain reaction Methods 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 108091008146 restriction endonucleases Proteins 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Natural products CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- 108700023418 Amidases Proteins 0.000 description 4
- 102000005922 amidase Human genes 0.000 description 4
- 229960003022 amoxicillin Drugs 0.000 description 4
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000000593 degrading effect Effects 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 4
- 229940056360 penicillin g Drugs 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 3
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 3
- HSHGZXNAXBPPDL-HZGVNTEJSA-N 7beta-aminocephalosporanic acid Chemical compound S1CC(COC(=O)C)=C(C([O-])=O)N2C(=O)[C@@H]([NH3+])[C@@H]12 HSHGZXNAXBPPDL-HZGVNTEJSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Chemical compound CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 150000003952 β-lactams Chemical group 0.000 description 3
- WDLWHQDACQUCJR-ZAMMOSSLSA-N (6r,7r)-7-[[(2r)-2-azaniumyl-2-(4-hydroxyphenyl)acetyl]amino]-8-oxo-3-[(e)-prop-1-enyl]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)/C=C/C)C(O)=O)=CC=C(O)C=C1 WDLWHQDACQUCJR-ZAMMOSSLSA-N 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 2
- GRWAIJBHBCCLGS-UHFFFAOYSA-N 2-(tetrazol-1-yl)acetic acid Chemical compound OC(=O)CN1C=NN=N1 GRWAIJBHBCCLGS-UHFFFAOYSA-N 0.000 description 2
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 2
- 241000589212 Acetobacter pasteurianus Species 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 102000012410 DNA Ligases Human genes 0.000 description 2
- 108010061982 DNA Ligases Proteins 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 239000006142 Luria-Bertani Agar Substances 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000012181 QIAquick gel extraction kit Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 2
- 229960002580 cefprozil Drugs 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical group N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 239000002132 β-lactam antibiotic Substances 0.000 description 2
- 229940124586 β-lactam antibiotics Drugs 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- 241001673062 Achromobacter xylosoxidans Species 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000193401 Clostridium acetobutylicum Species 0.000 description 1
- 241000193454 Clostridium beijerinckii Species 0.000 description 1
- 241000429427 Clostridium saccharobutylicum Species 0.000 description 1
- 241001508458 Clostridium saccharoperbutylacetonicum Species 0.000 description 1
- 230000007018 DNA scission Effects 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 241000588752 Kluyvera Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 108010079246 OMPA outer membrane proteins Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- 101710123388 Penicillin G acylase Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 101150014136 SUC2 gene Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 206010041349 Somnolence Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 108090000787 Subtilisin Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 241000589655 Xanthomonas citri Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- 238000003277 amino acid sequence analysis Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000013602 bacteriophage vector Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000011942 biocatalyst Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229960005361 cefaclor Drugs 0.000 description 1
- QYIYFLOTGYLRGG-GPCCPHFNSA-N cefaclor Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 QYIYFLOTGYLRGG-GPCCPHFNSA-N 0.000 description 1
- 229960004841 cefadroxil Drugs 0.000 description 1
- NBFNMSULHIODTC-CYJZLJNKSA-N cefadroxil monohydrate Chemical compound O.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=C(O)C=C1 NBFNMSULHIODTC-CYJZLJNKSA-N 0.000 description 1
- 229960002588 cefradine Drugs 0.000 description 1
- 238000007444 cell Immobilization Methods 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 229940106164 cephalexin Drugs 0.000 description 1
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 description 1
- RDLPVSKMFDYCOR-UEKVPHQBSA-N cephradine Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CCC=CC1 RDLPVSKMFDYCOR-UEKVPHQBSA-N 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000013601 cosmid vector Substances 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 229960002086 dextran Drugs 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000008571 general function Effects 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- QJXJLWARDIMWNX-UHFFFAOYSA-N methyl 2-(2h-tetrazol-5-yl)acetate Chemical compound COC(=O)CC=1N=NNN=1 QJXJLWARDIMWNX-UHFFFAOYSA-N 0.000 description 1
- CGQJVEFCNZKVRS-UHFFFAOYSA-N methyl 2-(tetrazol-1-yl)acetate Chemical compound COC(=O)CN1C=NN=N1 CGQJVEFCNZKVRS-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical class [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000012089 stop solution Substances 0.000 description 1
- 238000003883 substance clean up Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 150000003536 tetrazoles Chemical group 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
- C12N9/80—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
- C12N9/84—Penicillin amidase (3.5.1.11)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P35/00—Preparation of compounds having a 5-thia-1-azabicyclo [4.2.0] octane ring system, e.g. cephalosporin
- C12P35/04—Preparation of compounds having a 5-thia-1-azabicyclo [4.2.0] octane ring system, e.g. cephalosporin by acylation of the substituent in the 7 position
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y305/00—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
- C12Y305/01—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
- C12Y305/01011—Penicillin amidase (3.5.1.11), i.e. penicillin-amidohydrolase
Definitions
- the present invention relates to a penicillin G acylase variant with increased cephazoline productivity and its use, and more particularly, to an alpha subunit represented by SEQ ID NO: 1; And in the wild-type penicillin G acylase protein (from Achromobacter sp.
- CCM 4824 sequence comprising the beta subunit represented by SEQ ID NO: 2, A116 ⁇ T, I156 ⁇ N, N169 ⁇ T, M3 ⁇ V, S54 ⁇ G, T64 ⁇ A, H173 ⁇ N, T251 ⁇ A, T388 ⁇ A, R478 ⁇ H, It relates to a mutant penicillin G acylase, characterized in that it comprises one or more mutations selected from the group consisting of E486 ⁇ A, D541 ⁇ E, and Y555 ⁇ C, and a method for synthesizing (manufacturing) cefazoline using the same.
- a compound having a nuclear structure of ⁇ -lactam and a compound bonded thereto to become a side chain are used as substrates.
- penicillin G acylase is added to the substrate mixture, an enzymatic coupling reaction between the activated side chain and the ⁇ -lactam nucleus occurs.
- Penicillin G acylase enzyme is ⁇ - from the activated side chain (i.e., the acyl donor). It promotes the transfer of acyl groups to the lactam nucleus (acylation).
- the enzyme also possesses the activity of hydrolyzing the synthesized ⁇ -lactam compound with the activated side chain used as an acyl donor, which causes a problem in the productivity of the semisynthetic ⁇ -lactam compound.
- the substrate decomposition reaction is lowered so that more substrates can be used in the synthesis reaction. Is an important challenge.
- FIG. 2 A specific example of this reaction is shown in FIG. 2.
- tetrazolyl acetic acid methyl ester abbreviated herein as "TzAAMe”
- 7 -Amino-3-(2-methyl-1,3,4-thiadiazol-5-yl)-thiomethyl-3-cefem-4-carboxyl acid 7-amino-3-(2-methyl-1 ,3,4-thiadiazol-5-yl)-thiomethyl-3-cephem-4-carboxylic acid, abbreviated herein as "TDA”
- TDA tetrazolyl acetic acid methyl ester
- Substrate TzAAMe is also hydrolyzed by enzymes and converted into tetrazolyl acetic acid (tetrazolyl acetic acid, abbreviated herein as "TzAA”) (H1), and the synthesized cefazoline is also hydrolyzed by enzymes (H2 ), so that TzAA is created. Therefore, in order to increase the productivity of cefazoline, it is important to increase the synthesis reaction (S) and lower the decomposition reactions (H1, H2).
- TzAA ester compound used by reducing the rate of hydrolysis it is known that it is desirable to proceed the enzymatic reaction at as low pH as possible, but this method is used to synthesize cefazoline. Since the reaction is limited due to the optimal conditions of the reaction and the solubility of MMTD-7-ACA, so far, when synthesizing cefazoline, TzAAMe was added at an equivalent ratio of MMTD-7-ACA more than twice to proceed with the reaction. .
- Patent Document 1 high-efficiency multi-synthesis capability for semi-synthetic ⁇ -lactam antibiotics of ceparexin, cefprozil, cepachlor, cepradin, cepadroxil, and amoxicillin It has been known to have excellent productivity, but cefazoline did not significantly increase productivity efficiency to the extent that it has utility at an industrial level. So far, no enzyme with high cefazoline productivity has been known enough for application at an industrial level.
- Patent Document 1 KR101985911B
- the inventors of the present invention were researching a method to increase cefazoline productivity, while the penicillin G acylase mutant having the unique mutation disclosed in the present invention was specifically compared to the wild type (from Achromobacter sp. CCM 4824 strain) compared to the wild type (from Achromobacter sp. CCM 4824 strain).
- the present invention was completed by confirming that the synthesizing ability for sleepy was significantly increased and the S/H ratio was improved to a remarkably high level, thereby having high-efficiency productivity for cefazoline.
- an object of the present invention is an alpha subunit represented by SEQ ID NO: 1; And among the wild-type penicillin G acylase protein sequence containing the beta subunit represented by SEQ ID NO: 2, the group consisting of A116 ⁇ T, I156 ⁇ N, N169 ⁇ T, M3 ⁇ V, S54 ⁇ G, T64 ⁇ A, H173 ⁇ N, T251 ⁇ A, T388 ⁇ A, R478 ⁇ H, E486 ⁇ A, D541 ⁇ E and Y555 ⁇ C It is to provide a mutant penicillin G acylase, characterized in that it comprises one or more mutations selected from.
- Another object of the present invention is to provide a polynucleotide encoding the mutant penicillin G acylase.
- Another object of the present invention is to provide a recombinant expression vector comprising the polynucleotide.
- Another object of the present invention is to provide a host cell transformed with the expression vector.
- Another object of the present invention is to provide a composition for preparing cefazolin comprising the mutant penicillin G acylase of the present invention.
- cefazolin consisting of the mutant penicillin G acylase of the present invention.
- cefazolin consisting essentially of the mutant penicillin G acylase of the present invention.
- Another object of the present invention is to enzymatic cefazolin from tetrazolyl acetic acid ester and 3-[5-methyl-1,3,4-thiodiazol-2-yl]-7-aminocephalosporic acid.
- it is to provide an enzymatic synthesis (manufacturing) method of cefazoline, characterized in that the mutant penicillin G acylase of the present invention is used.
- Another object of the present invention is to provide the use of the mutant penicillin G acylase of the present invention for producing cefazolin.
- the present invention provides a polynucleotide that darkens the mutant penicillin G acylase.
- the present invention provides a recombinant expression vector comprising the polynucleotide.
- the present invention provides a host cell transformed with the expression vector.
- the present invention provides a composition for preparing cefazolin comprising the mutant penicillin G acylase of the present invention.
- the present invention provides a composition for producing cefazolin consisting of the mutant penicillin G acylase of the present invention.
- the present invention provides a composition for producing cefazolin consisting essentially of the mutant penicillin G acylase of the present invention.
- the present invention is separated from tetrazolyl acetic acid ester and 3-[5-methyl-1,3,4-thiodiazol-2-yl]-7-aminocephalosporic acid.
- a method for enzymatic synthesis (manufacturing) of cefazoline characterized in that the mutant penicillin G acylase of the present invention is used.
- the present invention provides the use of the mutant penicillin G acylase of the present invention for producing cefazolin.
- protein is used interchangeably with “polypeptide” or “peptide”, and refers to a polymer of amino acid residues as commonly found in proteins in nature.
- nucleic acid or “polynucleotide” refers to deoxyribonucleotides or ribonucleotides in the form of single- or double-stranded. Unless otherwise limited, known analogues of natural nucleotides that hybridize to nucleic acids in a manner similar to those of naturally occurring nucleotides are also included.
- expression refers to the production of a protein or nucleic acid in a cell.
- One letter (three letters) of amino acids as used herein means the following amino acids according to the standard abbreviation regulations in the field of biochemistry: A(Ala): alanine; C(Cys): cysteine; D(Asp): aspartic acid; E(Glu): glutamic acid; F(Phe): phenylalanine; G(Gly): glycine; H(His): histidine; I(IIe): isoleucine; K(Lys): lysine; L(Leu): leucine; M(Met): methionine; N(Asn): asparagine; P(Pro): proline; Q(Gin): glutamine; R(Arg): arginine; S(Ser): serine; T(Thr): threonine; V(Val): valine; W(Trp): tryptophan; Y(Tyr): Tyrosine.
- (one amino acid position) (one amino acid position) (one amino acid position) means that the amino acid previously marked at the corresponding amino acid position of the natural (wild type) polypeptide is substituted with the amino acid marked later.
- I156 ⁇ N indicates that isoleucine corresponding to No. 156 of the natural polypeptide ⁇ -subunit (in the present invention, wild-type APA ⁇ -subunit of SEQ ID NO: 1) is substituted with asparagine, and M3 ⁇ V is a natural polypoly. It means that the third methionine of the peptide ⁇ -subunit (in the present invention, wild-type APA ⁇ -subunit of SEQ ID NO: 2) is substituted with valine.
- MMTD-7-ACA refers to a reaction product of MMTD (Mercepto-5-methyl-1,3,4- thiadiazole) and 7-ACA (7-amino cephalosporanic acid), and "3-[ It is also expressed as "5-methyl-1,3,4-thiodiazol-2-yl]-7-aminocephalosporic acid” and the like. It is used as a substrate in the synthesis of cefazoline antibiotics and is a compound having a ⁇ -lactam nuclear structure.
- the MMTD and 7-ACA reaction product are known in various expressions in the art, but in the present invention, it is meant to include all substances considered to be substantially equivalent in the art.
- TDA 7-amino-3-(2-methyl-1,3,4-thiadiazol-5-yl)-thiomethyl-3-cephem-4-carboxylic acid
- TzAA ester refers to "tetrazolyl acetic acid ester", and refers to an ester compound in which a group such as methyl, ethyl, propyl, etc. is bonded to TzAA, and in the present specification, "tetrazol-1-acetic acid It may also be expressed as “ester” or the like. It is used as a substrate in the synthesis of cefazoline and acts as an acyl donor.
- the "TzAA ester” compound is not limited thereto, but TzAAMe (tetrazole-1-acetic acid methyl ester) may be preferably used as an example in the present invention.
- the productivity for cefazoline is Increased Achromobacter sp .
- CCM Penicillin G from 4824 Acylase Variant to provide.
- Achromobacter sp The penicillin G acylase protein derived from CCM 4824 was referred to as "APA”, and the polynucleotide or gene sequence encoding it was referred to as "apa”.
- the penicillin G acylase (APA) wild type derived from CCM 4824 includes an ⁇ -subunit represented by SEQ ID NO: 1 and a ⁇ -subunit represented by SEQ ID NO: 2.
- wild-type APA is a precursor type, consisting of an alpha subunit represented by SEQ ID NO: 1 and a beta subunit represented by SEQ ID NO: 2 connected by a spacer peptide (e.g., SEQ ID NO: 3). It is expressed as a single-chain polypeptide (e.g., SEQ ID NO: 4), and then the spacer peptide is removed through autocatalytic processing in the cell to form a mature form consisting of the alpha subunit and the beta subunit.
- the precursor-type wild-type APA represented by SEQ ID NO: 4 may be encoded by, for example, a polynucleotide of a base sequence known as NCBI genbank AY919310.1, but is not limited thereto.
- Achromobacter sp It has been reported that penicillin G acylase (APA wild type) derived from CCM 4824 strain has superior advantages compared to the known homologous enzymes derived from other organisms. For example, it has been reported that it has excellent thermal stability compared to enzymes derived from Achromobacter xylosoxidans, and has better catalytic activity for the synthesis of ⁇ -lactam antibiotics compared to enzymes derived from E. coli at low substrate concentrations (Stanislav Becka et al. , Penicillin G acylase from Achromobacter sp.CCM 4824, Appl Microbiol Biotechnol DOI 10.1007/s00253-013-4945-3). However, Achromobacter sp.
- the penicillin G acylase (APA) wild-type protein derived from the CCM 4824 strain also has a problem in that, as described in the examples herein, substrate and product degradation activity occurs at a considerable level compared to the synthetic activity.
- substrate and product degradation activity occurs at a considerable level compared to the synthetic activity.
- the ZSH1-13 mutant not only significantly increased the sefazoline synthesis activity by 12.5 times compared to the wild type, but also showed a 6.1 times S/H ratio compared to the wild type.
- the ZSH2-5 mutant developed based on the ZSH1-13 mutant significantly increased the synthesis activity of cefazoline 43 times compared to the wild type, and in addition to this synthetic activity, the S/H ratio was wild type. Compared to 19.8 times.
- the cefazoline synthesis activity significantly increased 65 times compared to the wild type.
- the S/H ratio was 36.7 times that of the wild type. Accordingly, according to the mutant APA provided by the present invention, cefazoline can be produced with high efficiency. This is a remarkable improvement that can be used in the production process, and represents a significant level of technological advancement compared to the existing technology.
- the penicillin G acylase variants derived from CCM 4824 are characterized by having a high-efficiency synthesis ability against cefazoline.
- high efficiency means that the production amount and speed of the synthetic product is increased, as well as the S/H ratio is high.
- mutant penicillin G acylase of the present invention is a wild-type penicillin G acyl comprising an alpha subunit represented by SEQ ID NO: 1 and a beta subunit represented by SEQ ID NO: 2
- SEQ ID NO: 1 alpha subunit represented by SEQ ID NO: 1
- beta subunit represented by SEQ ID NO: 2 In the Rase protein sequence, A116 ⁇ , I156 ⁇ , N169 ⁇ , M3 ⁇ , S54 ⁇ , T64 ⁇ , H173 ⁇ , T251 ⁇ , T388 ⁇ , R478 ⁇ , E486 ⁇ , D541 ⁇ , and Y555 ⁇ . It is characterized by that.
- the mutation is in the wild-type penicillin G acylase protein sequence comprising the alpha subunit represented by SEQ ID NO: 1 and the beta subunit represented by SEQ ID NO: 2, A116 ⁇ T, I156 ⁇ N, N169 ⁇ T, M3 ⁇ V, S54 ⁇ G, T64 ⁇ A, H173 ⁇ N , T251 ⁇ A, T388 ⁇ A, R478 ⁇ H, E486 ⁇ A, D541 ⁇ E, and Y555 ⁇ C.
- a polypeptide comprising an A116 ⁇ T substitution for example, in the wild-type penicillin G acylase protein sequence comprising the alpha subunit represented by SEQ ID NO: 1 and the beta subunit represented by SEQ ID NO: 2, a polypeptide comprising an A116 ⁇ T substitution, a poly comprising an I156 ⁇ N substitution
- One mutation site such as a peptide, a polypeptide including an N169 ⁇ T substitution, a polypeptide including an H173 ⁇ N substitution, a polypeptide including a T251 ⁇ A substitution, a polypeptide including an E486 ⁇ A substitution, or a polypeptide including a Y555 ⁇ C substitution, etc. ), or
- the wild-type penicillin G acylase protein sequence comprising the alpha subunit represented by SEQ ID NO: 1 and the beta subunit represented by SEQ ID NO: 2, A116 ⁇ T, I156 ⁇ N, N169 ⁇ T, M3 ⁇ V, S54 ⁇ G, T64 ⁇ A, H173 ⁇ N, T251 ⁇ A , T388 ⁇ A, R478 ⁇ H, E486 ⁇ A, D541 ⁇ E and Y555 ⁇ C 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 randomly selected from the group consisting of It may have multiple mutation sites, such as a polypeptide including dog mutation sites, but is not limited thereto.
- the mutant penicillin G acylase (mutant APA) of the present invention may include six mutant sites of I156 ⁇ N, N169 ⁇ T, H173 ⁇ N, T251 ⁇ A, E486 ⁇ A and Y555 ⁇ C in the wild-type penicillin G acylase protein sequence (ZSH1- 13). More preferably, the mutant penicillin G acylase of the present invention may include an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 6.
- a single-chain polypeptide e.g., an alpha subunit represented by SEQ ID NO: 5
- a beta subunit represented by SEQ ID NO: 6 are linked by a spacer peptide (e.g., SEQ ID NO: 3).
- a spacer peptide e.g., SEQ ID NO: 3
- it may be provided as a precursor protein in the form of SEQ ID NO: 7
- a mature form consisting of an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 6 It may be provided as a protein, but is not limited thereto.
- the present invention may include modification of additional amino acid residues in the mutant APA.
- modification refers to deletion, substitution or addition of amino acid residues.
- the modification of the additional amino acid residue is carried out for the purpose of increasing the sefazoline synthesis activity of the mutant APA of the present invention and reducing the degrading activity of the substrate used for the synthesis, and a modified form of the amino acid residue that can achieve the above object (Type) and position are not particularly limited.
- a polypeptide including a G49 ⁇ F substitution, a polypeptide including a T201 ⁇ S substitution, and an M3 ⁇ V substitution A polypeptide including, a polypeptide including a T64 ⁇ A substitution, a polypeptide including a T225 ⁇ N substitution, or a polypeptide including a T388 ⁇ A substitution, may additionally include one mutation site, or
- the mutant APA of the present invention is in the mutant APA including the alpha subunit represented by SEQ ID NO: 5 and the beta subunit represented by SEQ ID NO: 6, three mutation (substitution) sites of M3 ⁇ V, T64 ⁇ A and T388 ⁇ A. It may further include (including a total of 9 substitution sites compared to the wild type, see ZSH2-5). More preferably, the variant APA of the present invention may include an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 8.
- a single-chain polypeptide e.g., an alpha subunit represented by SEQ ID NO: 5
- a beta subunit represented by SEQ ID NO: 8 are linked by a spacer peptide (e.g., SEQ ID NO: 3).
- a spacer peptide e.g., SEQ ID NO: 3
- it may be provided as a precursor protein in the form of SEQ ID NO: 9), or ii) may be provided as a mature protein consisting of an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 8, , Is not limited thereto.
- the present invention provides a polypeptide comprising a further mutation with respect to the variant APA.
- the mutant APA sequence including nine mutation sites of I156 ⁇ N, N169 ⁇ T, M3 ⁇ V, T64 ⁇ A, H173 ⁇ N, T251 ⁇ A, T388 ⁇ A, E486 ⁇ A and Y555 ⁇ C compared to the wild type, S54 ⁇ G, S150 ⁇ T, N226 ⁇ T, A310 ⁇ D, R478 ⁇ H and D541 ⁇ D It may be to further include one or more mutations selected from.
- mutant APA sequences including the alpha subunit represented by SEQ ID NO: 5 and the beta subunit represented by SEQ ID NO: 8 a polypeptide including S54 ⁇ G substitution, a polypeptide including S150 ⁇ T substitution, and N226 ⁇ T substitution It may be one that additionally includes one mutation site, such as a polypeptide including a polypeptide, a polypeptide including an A310 ⁇ D substitution, a polypeptide including a R478 ⁇ H substitution, or a polypeptide including a D541 ⁇ E substitution, or
- the mutant APA of the present invention is in the mutant APA comprising the alpha subunit represented by SEQ ID NO: 5 and the beta subunit represented by SEQ ID NO: 8, three mutation (substitution) sites of S54 ⁇ G, R478 ⁇ H and D541 ⁇ E. It may be to further include (including a total of 12 substitution sites compared to the wild type, see ZSH3-1). More preferably, the variant APA of the present invention may include an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 10.
- a single-chain polypeptide consisting of an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 10 are linked by a spacer peptide (eg, SEQ ID NO: 3).
- a spacer peptide eg, SEQ ID NO: 3
- it may be provided as a precursor protein in the form of SEQ ID NO: 11), or ii) may be provided as a mature protein consisting of an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 10. , Is not limited thereto.
- the present invention is the mutant penicillin G Acylase (mutant APA) Encoding polynucleotides are provided.
- the combination of bases constituting the polynucleotide is not particularly limited as long as the polynucleotide can encode the mutant APA polypeptide of the present invention.
- an amino acid sequence is identified, techniques for producing a polynucleotide encoding the amino acid sequence based on codon information known in the art are well known in the art.
- the polynucleotide may be provided as a single-stranded or double-stranded nucleic acid molecule including all DNA, cDNA and RNA sequences.
- the present invention provides a recombinant expression vector comprising the polynucleotide.
- the term "recombinant expression vector” is a vector capable of expressing a target protein or a target nucleic acid (RNA) in a suitable host cell, and a gene containing essential regulatory elements operably linked to express a polynucleotide (gene) insert It refers to the creation.
- operably linked refers to a functional linkage between a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein or RNA of interest to perform a general function.
- a nucleic acid sequence encoding a protein or RNA (for example, a polynucleotide sequence encoding a mutant APA of the present invention) is linked in a manner that allows gene expression by an expression control sequence, for example, a promoter and
- the nucleic acid sequence encoding a protein or RNA must be operably linked to affect the expression of the encoded nucleic acid sequence, and the operative linkage with a recombinant vector can be prepared using gene recombination techniques well known in the art.
- site-specific DNA cleavage and ligation are performed using enzymes generally known in the art.
- the recombinant expression vector of the present invention is characterized in that it contains a polynucleotide encoding the mutant APA.
- the polynucleotide sequence cloned into a vector according to the present invention may be operably linked to an appropriate expression control sequence, and the operably linked polynucleotide (gene) sequence and expression control sequence are used to select a host cell containing the vector. It may be included in an expression vector that includes a selection marker for and/or a replication origin.
- the expression vector includes an expression control sequence and, if necessary, a signal sequence or a leader sequence for membrane targeting or secretion, and may be prepared in various ways according to the purpose.
- the expression control sequence refers to a DNA sequence that controls the expression of a polynucleotide sequence operably linked in a specific host cell.
- regulatory sequences include promoters for carrying out transcription, any operator sequence for regulating transcription, sequences encoding suitable mRNA ribosome binding sites, sequences regulating the termination of transcription and translation, initiation codon, stop codon, polyadenylation. Includes signals and enhancers.
- the promoter of the vector may be constitutive or inducible.
- Signal sequences include PhoA signal sequence and OmpA signal sequence when the host is Escherichia bacteria, ⁇ -amylase signal sequence and subtilisin signal sequence when the host is Bacillus bacteria, and MF ⁇ when the host is yeast.
- Signal sequence, SUC2 signal sequence, etc., when the host is an animal cell, an insulin signal sequence, an ⁇ -interferon signal sequence, an antibody molecule signal sequence, and the like may be used, but are not limited thereto.
- the expression vector of the present invention is not particularly limited if it is a vector commonly used in the cloning field, and includes, for example, a plasmid vector, a cosmid vector, a bacteriophage vector, and a viral vector, but is not limited thereto.
- the plasmids include E. coli-derived plasmids (pBR322, pBR325, pUC118 and pUC119, pET-22b(+)), Bacillus subtilis-derived plasmids (pUB110 and pTP5), and yeast-derived plasmids (YEp13, YEp24, and YCp50).
- the virus may be a retrovirus, an animal virus such as an adenovirus or a vaccinia virus, an insect virus such as a baculovirus, and the like, but is not limited thereto.
- pBC-KS(+) was used.
- the present invention provides host cells and microorganisms transformed by the expression vector.
- the transformation includes any method of introducing a nucleic acid (polynucleotide encoding the mutant APA of the present invention) into an organism, cell, tissue, or organ, and as known in the art, a suitable standard technique is selected according to the host cell. You can do it. These methods include electroporation, protoplasm fusion, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, silicon carbide whiskers, sonication, and agrobacterial mediated traits. Conversion, precipitation by PEG (polyethylenglycol), dextran sulfate, lipofectamine, heat shock, particle gun bombardment, etc. are included, but are not limited thereto.
- the host cell is a prokaryotic or eukaryotic cell containing heterologous DNA introduced into the cell by any means (e.g., electric shock method, calcium phosphatase precipitation method, microinjection method, transformation method, virus infection, etc.) it means.
- any means e.g., electric shock method, calcium phosphatase precipitation method, microinjection method, transformation method, virus infection, etc.
- the host cells are all types of single-celled organisms commonly used in the field of cloning, such as prokaryotic microorganisms such as various bacteria (eg, Clostridia genus, E. coli, etc.), lower eukaryotic microorganisms such as yeast and insect cells, Cells derived from higher eukaryotes, including plant cells and mammals, can be used as host cells, but are not limited thereto. Since the expression level and modification of the protein differ depending on the host cell, a person skilled in the art can select and use the most suitable host cell for the purpose.
- prokaryotic microorganisms such as various bacteria (eg, Clostridia genus, E. coli, etc.)
- lower eukaryotic microorganisms such as yeast and insect cells
- Cells derived from higher eukaryotes, including plant cells and mammals can be used as host cells, but are not limited thereto. Since the expression level and modification of the protein differ depending on the host cell, a
- the host cells are Clostridia spp., such as Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium saccharoperbutylacetonicum, or Clostridium saccharobutylicum, etc.), Escherichia spp., Acetobacter spp. , Such as Acetobacter turbidans, Acetobacter pasteurianus, etc.), Aeromonas spp., Alcaligenes spp., Aphanocladium spp., Bacillus spp., three.
- Cephalosporium spp. Flavobacterium spp., Kluyvera spp., Mycoplana spp., Protaminobacter spp., Pseudomonas spp. It may be any one genus microorganism selected from the group consisting of the genus Pseudomonas spp., Achromobacter spp., and the genus Xanthomonas (such as Xanthomonas citri), but is not limited thereto Does not.
- the microorganism of the genus Escherichia may preferably be Escherichia coli (Escherichia coli), and in an embodiment of the present invention, Escherichia coli MC1061/pBC-ZSH3 as a transformed microorganism to express the mutant APA
- Escherichia coli MC1061/pBC-ZSH3-1 accession number KCTC 13991BP
- the Escherichia coli MC1061/pBC-ZSH3-1 expresses a polypeptide comprising an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 10, or a polypeptide consisting of the units. .
- the Escherichia coli MC1061/pBC-ZSH3-1 is transformed by a recombinant expression vector containing a polynucleotide encoding the amino acid sequence of SEQ ID NO: 5 and SEQ ID NO: 10.
- the invention is the above-described mutant penicillin G of the present invention Acylase It provides a composition for producing (synthetic) cefazoline comprising.
- the mutant APA of the present invention provides remarkable advantages in synthesizing cefazoline. Accordingly, the present invention provides a use of the mutant APAs of the present invention for the synthesis of cefazoline.
- the mutant APA according to the present invention may be prepared by a protein production method known in the art with reference to the above-described sequence information, but is not limited thereto, but may be prepared by a genetic engineering method.
- a nucleic acid encoding the mutant APA polypeptide is constructed according to a conventional method.
- the nucleic acid can be constructed by PCR amplification using appropriate primers.
- the DNA sequence may be synthesized by standard methods known in the art, for example, using an automatic DNA synthesizer (available from Biosearch or Applied Biosystems).
- the constructed nucleic acid is operatively linked thereto and inserted into a vector containing one or more expression control sequences (e.g., promoters, enhancers, etc.) that control the expression of the nucleic acid, and recombination formed therefrom.
- the host cell is transformed with the expression vector.
- the resulting transformant is cultured under a medium and conditions suitable for expression of the nucleic acid to recover the substantially pure polypeptide expressed by the nucleic acid from the culture.
- the recovery may be performed using a method known in the art (eg, chromatography). And it is possible to use the mutant APA of the present invention prepared as described above as it is for the production of the target product or to use it after purification.
- the protein separation method by various chromatographic methods can be used as it is or slightly modified to suit the purpose of the experiment using the properties of APA that have been previously discovered.
- the mutant APA is purified by affinity chromatography using specific avidity properties such as binding strength between histidine peptide and nickel column components, cellulose binding domain (CBD), and binding strength with fibrin. It is also possible.
- polypeptide as used herein means that the polypeptide according to the present invention does not contain substantially any other protein derived from a host cell. Genetic engineering methods for synthesizing the polypeptide of the present invention are known in the art.
- mutant APA of the present invention can be easily prepared by chemical synthesis known in the art. Representative methods include, but are not limited to, liquid or solid phase synthesis, fragment condensation, F-MOC or T-BOC chemistry.
- the mutant APA of the present invention can be used not only in a free state but also in an immobilized state. Immobilization of the mutant APA is possible by a conventional protein immobilization method known in the art.
- the carrier include natural polymers such as cellulose, starch, dextran, and agarose; Synthetic polymers such as polyacrylamide, polyacrylate, polymethacylate, and Eupergit C; Alternatively, minerals such as silica, bentonite, and metal may be used.
- mutant APA it is also possible to immobilize mutant APA by forming a covalent bond by the action of these carrier-enzyme conjugates such as glutaraldehyde or cyanogen bromide.
- carrier-enzyme conjugates such as glutaraldehyde or cyanogen bromide.
- immobilizing microbial cells containing mutant APA it is also possible to use by immobilizing microbial cells containing mutant APA as it is without the need to separately purify mutant APA.
- techniques such as drilling a hole or surface expression may be applied.
- the term "including mutant APA” refers to a polynucleotide encoding (coding) the mutant APA as well as a direct method including the mutant APA polypeptide itself from the beginning in the composition, the poly It means including all indirect methods of inducing the production of mutant APA by including in the composition any one or more selected from the group consisting of an expression vector containing a nucleotide and a host cell (microorganism) transformed with the expression vector. .
- the mutant penicillin G of the present invention Acylase Of cefazoline, characterized in that it is used Enzymatic synthesis (manufacturing) Provides a way.
- the mutant APA enzyme of the present invention provided during the process of synthesizing (manufacturing) cefazoline may be provided in the form of a composition containing the mutant APA polypeptide or a culture of the mutant APA producing strain, and the mutant APA is free ( It may be provided in a free) state or in a fixed state, but is now not limited and is understood with reference to the foregoing.
- the reaction conditions of each of the substrates in the above-described synthesis process are not particularly limited, but may be preferably made in an aqueous solution (water or buffer solution), and a preferred reaction mixture
- the pH of may be selected within the range of pH5 to pH9, the preferred reaction time within the range of 0.1 to 24 hours, and the preferred reaction temperature within the range of 3 to 30°C.
- the above conditions can be appropriately selected and adjusted by a person skilled in the art depending on the amount of reactive substances and enzymes used in one reaction, and the desired process speed and efficiency.
- MMTD-7-ACA (3-[5-methyl-1,3,4-thiodiazol-2-yl]-7-aminocephalosporic acid) and TzAA, which are provided as substrates during the synthesis (manufacturing) process of cefazoline
- concentration and ratio at which the ester (tetrazolyl acetic acid ester) is added in the reaction mixture are not particularly limited, but for example, the MMTD-7-ACA: TzAA ester ratio may be 1:1 to 1:1.5, preferably industrial and economical. Considering the advantages of the present invention in terms of, it can be used in a ratio of 1:1.
- the addition amount of the mutant APA of the present invention in the reaction mixture is not particularly limited, but may be, for example, in the range of 0.1 to 100 U/ml, and preferably 2 to 10% ( w/w).
- the cefazoline finally produced in the reaction process can be separated and purified from the reaction solution by a conventional compound purification method known in the art (eg, chromatography, etc.).
- the present invention provides the use of the above-described mutant penicillin G acylase of the present invention for producing cefazolin.
- the term “comprising” is used in the same meaning as “including” or “characterized by”, and in the composition or method according to the present invention, specifically mentioned It does not exclude additional components or steps of the method that have not been made.
- the term “consisting of” means excluding additional elements, steps, or ingredients that are not separately described.
- the term “essentially consisting of” means that, in the scope of a composition or method, it is possible to include a substance or step that does not substantially affect its basic properties in addition to the described substance or step.
- the penicillin G acylase variants derived from CCM 4824 are characterized by a marked increase in productivity specifically for cefazoline (Cefazolin).
- the mutant APAs of the present invention are synthesized compared to their wild-type enzymes and other previously known mutant forms, while having very high synthetic activity specifically for cefazolin, compared to their degradation activity for substrates used for sefazoline synthesis
- the ratio (S/H ratio) is remarkably high, and the productivity of cefazoline is remarkably increased to a significant level in industrial applications.
- FIG 1 shows the amino acid substitution sites of the ZSH1-13 variant, the ZSH2-5 variant, and the ZSH3-1 variant representatively among the variants of the present invention.
- Figure 2 is a reaction (S) for synthesizing cefazoline from precursors (substrates) TzAAMe and TDA through an enzymatic reaction (S), a hydrolysis reaction of TzAAMe to TzAA in the precursor as a decomposition reaction (H1), and TzAAMe of the cefazoline and Hydrolysis reaction to TDA (H2) is shown.
- S enzymatic reaction
- H1 decomposition reaction
- H2 TzAAMe of the cefazoline and Hydrolysis reaction to TDA
- FIG. 3 is data showing the conversion rate of cefazoline, the amount of remaining TzAAMe, and the amount of TzAA produced over time in the synthesis of cefazoline by the ZSH3-1 variant.
- Example 1 Preparation of penicillin G acylase (APA) wild type derived from Achromobacter sp.CCM 4824
- Achromobacter sp Synthesis of a gene expressing the penicillin G acylase (APA) wild type derived from CCM 4824
- Wild-type APA penicillin G acylase derived from Achromobacter sp.
- a mature active dimer consisting of the alpha subunit and the beta subunit It has a body shape.
- a gene expressing the wild-type APA precursor of SEQ ID NO: 4 (abbreviated as “apa gene”) was synthesized by requesting a company Bioneer (Daejeon, Korea).
- Example 1-1 The apa gene obtained in Example 1-1 was inserted into the XbaI and NotI restriction enzyme recognition sites of a pBC-KS(+) vector (Stratagene, USA) to prepare a pBC-APA plasmid for expressing wild-type APA.
- the specific manufacturing method is as follows.
- the apa gene DNA product (about 2.6 kb in size) was digested with restriction enzymes XbaI and NotI, and then purified with a purification kit (QIAquick Gel Extraction Kit; QIAGEN, Germany), and used as insertion DNA.
- pBC KS(+) vector (Stratagene, USA) DNA was digested with restriction enzymes XbaI and NotI, and a DNA fragment dephosphorylated with CIP was used as vector DNA.
- the inserted DNA and the vector DNA were ligated at 16° C. for 12 to 16 hours using T4 DNA ligase (New England Biolabs, Sweden), and then E. coli MC1061 strain was transformed.
- Transformants were selected by spreading the strain on LB agar medium containing chloramphenicol antibiotics at a concentration of 20 ⁇ g/mL and incubating at 30° C. overnight. By separating the plasmid from this transformant and determining the nucleotide sequence of the inserted DNA, a pBC-APA plasmid containing the apa gene was finally obtained.
- the pBC-APA plasmid expresses a wild type APA protein.
- Example 2 Preparation and selection of a mutant having high cefazolin synthesis activity
- mutant APA with increased cefazolin synthesis activity random mutation was artificially induced in the nucleotide sequence of the apa gene synthesized in Example 1, and for this purpose, error prone PCR was performed.
- a mutant library was prepared. The manufacturing process of the specific mutation library is as described below.
- the error-prone polymerase chain reaction was performed using the Diversity PCR Random Mutagenesis kit (Clontech, USA) to cause 1-2 mutations per 1,000 bp.
- the composition of the PCR reaction solution was 1 ng/ ⁇ L of pBC-APA plasmid as template DNA, and 10 pmol of each T3 primer (SEQ ID NO: 12) and T7 primer (SEQ ID NO: 13), 2 mM dGTP, 50X Diversity dNTP mix , 10X TITANIUM Taq buffer, TITANIUM Taq polymerase, the final volume was carried out in 50 ⁇ L.
- PCR reaction conditions are: The reaction mixture is pre-denatured at 96°C for 2 minutes, denaturation is performed at 96°C for 30 seconds, annealing is performed at 52°C for 30 seconds, and polymerization is performed 18 times at 68°C. Post-polymerization was performed at 68° C. for 5 minutes. The error-prone polymerase chain reaction under the above conditions was performed to amplify a mutant DNA fragment having a size of about 2.7 kb.
- the mutant gene obtained through the above PCR was digested with restriction enzymes XbaI and NotI, purified using a purification kit (QIAquick Gel Extraction Kit; QIAGEN, Germany), and used as the insertion DNA
- pBC -KS(+) vector DNA was digested with restriction enzymes XbaI and NotI, and a DNA fragment dephosphorylated with CIP was used as vector DNA.
- the inserted DNA and the vector DNA were conjugated using T4 DNA ligase (New England Biolabs, Sweden) at 16° C. for 16 hours, and then the E. coli MC1061 strain was transformed by electroporation using a conjugation solution. Was performed.
- the strain was plated on LB agar medium containing chloramphenicol antibiotics at a concentration of 20 ⁇ g/mL and cultured overnight at 30° C. to prepare a random mutant library.
- the mutant APA having increased reactivity to Cefazolin synthesis from the mutant library was searched for in the following manner.
- the reaction quality and specific chemical reaction process for the synthesis of Cefazolin are shown in FIG. 2.
- the E. coli MC1061 transformant containing the mutant apa gene in which the mutation was induced was inoculated into a 96-well plate dispensed with 160 ⁇ l of LB liquid medium containing chloramphenicol antibiotics, and then 60-70 at 23°C and 165 rpm. It was incubated with shaking for hours.
- cefazolin synthesis activity was increased in 7 mutants by the same method as described above. Seven variants were determined by gene sequence determination, respectively, compared to wild-type A116 ⁇ T(ZEP1-9), I156 ⁇ N(ZEP1-10), H173 ⁇ N(ZEP1-12), Y555 ⁇ C(ZEP1-13), E486 ⁇ A(ZEP1-18), It was confirmed that it was mutated to N169 ⁇ T (ZEP1-26), or T251 ⁇ A (ZEP1-33).
- PCR was performed using wild-type APA as a template and using M13R primer (SEQ ID NO: 15) and SH116a-R primer (SEQ ID NO: 17) to perform PCR with a size of about 510 bp.
- the product was recovered, and wild-type APA and ZEP1-10 were used as templates to prepare a library with mutated A116 ⁇ , I156 ⁇ , and N169 ⁇ amino acids, and SH116a-F primer (SEQ ID NO: 16) and SH169a-R primer (SEQ ID NO: 19) were used.
- PCR was performed to recover a PCR product of about 160 bp in size, and to prepare a library in which N169 ⁇ , H173 ⁇ , and T251 ⁇ amino acids were mutated, wild-type APA and ZEP1-12 were used as templates, and SH169a-F primer (SEQ ID NO: 18) and SH251b PCR was performed using the -R primer (SEQ ID NO: 21) to recover a PCR having a size of about 1,100 bp.
- PCR was performed using wild-type APA, ZEP1-18 as a template, and SH251b-F primer (SEQ ID NO: 20) and SH555b-R primer (SEQ ID NO: 23), and a size of about 910 bp.
- PCR was recovered, and a PCR product having a size of about 100 bp was recovered by performing PCR using wild-type APA as a template and using SH555b-F primer (SEQ ID NO: 22) and M13F primer (SEQ ID NO: 14) to mutate Y555 ⁇ amino acid. I did.
- the composition of the PCR reaction solution was performed by adjusting the final volume to 100 ⁇ L with each template DNA, primer, pfu-x buffer, dNTPs mix, and pfu-x polymerase.
- the PCR reaction conditions are: The reaction mixture was pre-denatured at 96°C for 3 minutes, denaturation was performed at 96°C for 30 seconds, annealing at 52°C for 30 seconds, and polymerization was repeated 18 times at 68°C for 2 minutes. Post-polymerization was performed at 68° C. for 5 minutes.
- T3 primer (SEQ ID NO: 12) and T7 primer PCR was performed using (SEQ ID NO: 13) to amplify a multi-variant DNA fragment having a size of about 2.7 kb.
- the PCR product of about 2.7 kb thus obtained was inserted into pBC KS(+) vector DNA in the same manner as in Example 2-1, and the E. coli MC1061 strain was transformed to prepare a site-directed mutant library.
- ZSH1-13 expresses the alpha subunit of SEQ ID NO: 5 and the beta subunit of SEQ ID NO: 6.
- Example 2-3 Based on the activity of the modified strains obtained in Example 2-3 above, in order to obtain a mutant with further enhanced Cefazolin synthesis activity, 6 amino acid residues (G49 ⁇ F, T201 ⁇ S, M3 ⁇ V, T64 ⁇ A) were used as template DNA using ZSH1-13 plasmid DNA. , T225 ⁇ N, T388 ⁇ A) was prepared for the location-directed mutation library. In this Example, PCR reaction conditions were performed in the same manner as in the above-described method in Example 2-2.
- PCR was performed using ZSH1-13 and ZEP2-9 as templates and M13R primer (SEQ ID NO: 15) and SH201a-R primer (SEQ ID NO: 25).
- a PCR product having a size of 770 bp was recovered, and in order to prepare a library with mutated T201 ⁇ , M3 ⁇ , and T64 ⁇ amino acids, using ZSH1-13 and ZEP2-21 as templates, SH201a-F primer (SEQ ID NO: 24), SH64b-R primer (PCR was performed using SEQ ID NO: 27) to recover a PCR product having a size of about 440 bp, and to prepare a library in which amino acids T64 ⁇ , T225 ⁇ , and T388 ⁇ were mutated, SH64b-F primers were prepared using ZSH1-13 and ZEP2-54 as templates.
- PCR was performed using (SEQ ID NO: 26) and SH388b-R primer (SEQ ID NO: 29) to recover a PCR product of about 970 bp in size, and to mutate the T388 ⁇ amino acid, ZSH1-13 as a template was used as a SH388b-F primer (PCR was performed using SEQ ID NO: 28) and M13F primer (SEQ ID NO: 14) to recover a PCR product having a size of about 600 bp.
- the PCR product of about 2.7 kb thus obtained was inserted into pBC KS(+) vector DNA in the same manner as in Example 2-1, and the E. coli MC1061 strain was transformed to prepare a site-directed mutant library.
- ZSH2-5 expresses the alpha subunit represented by SEQ ID NO: 5 and the beta subunit represented by SEQ ID NO: 8.
- Example 3 high Synthesis ability and At the same time Reduced , Of high efficiency cefazolin synthesis Variant Manufacturing and sorting
- Example 2-1 In order to increase the cefazolin synthesis activity and decrease the reaction substrate (typically, TzAAMe) degradation activity of the ZSH2-5 mutant prepared in Example 2-4, the method of Example 2-1 and the method of Example 2-1 using ZSH2-5 as a template DNA. In the same way, an error-prone mutation library was prepared. After that, the search for the ability to synthesize cefazolin was carried out in the same manner as in the method described in Example 2-3.
- TzAAMe reaction substrate
- the six variants were S54 ⁇ G(ZEP3-2), S150 ⁇ T(ZEP3-11), R478 ⁇ H(ZEP3-14), N226 ⁇ T (ZEP3-26), A310 ⁇ D(ZEP3-33) for the ZSH2-5, respectively. ), or D541 ⁇ E (ZEP3-48).
- Example 3-1 Based on the activity of the improved strains obtained in Example 3-1, the DNA of ZSH2-5 was used as a template DNA, and a site-directed mutation library for 6 amino acid residues (S54 ⁇ G, S150 ⁇ T, N226 ⁇ T, A310 ⁇ D, R478 ⁇ H, D541 ⁇ E) was prepared.
- PCR reaction conditions were performed in the same manner as in the above-described method in Example 2-2.
- a PCR product having a size of about 1,180 bp was recovered using the M13R primer (SEQ ID NO: 15) and the SH54b-R primer (SEQ ID NO: 31) using ZSH2-5 as a template
- M13R primer SEQ ID NO: 15
- SH54b-R primer SEQ ID NO: 31
- ZSH2-5 ZSH2-5
- SH54b-F primer SEQ ID NO: 30
- SH226b-R primer SEQ ID NO: 33
- a PCR product having a size of about 520 bp was recovered, and ZSH2-5 and ZEP3-33 were used as templates to prepare a library in which amino acids N226 ⁇ , A310 ⁇ , and R478 ⁇ were mutated, and SH226b-F primer (SEQ ID NO: 32) and SH478b-R primer PCR was performed using (SEQ ID NO: 35) to recover a PCR product having a size of about 760 bp, and to prepare a library with mutated R478 ⁇ and D541 ⁇ amino acids, ZSH2-5 and ZEP3-48 were used as templates and SH478b-F primer ( SEQ ID NO: 34), PCR was performed using M13F primer (SEQ ID NO: 14) to recover a PCR product having a size of about 340 bp.
- the 1,180 bp PCR product, 520 bp size PCR product, 760 bp size PCR product, and 340 bp size PCR product are mixed, and PCR using T3 primer (SEQ ID NO: 12) and T7 primer (SEQ ID NO: 13) was performed to amplify a multiple variant DNA fragment having a size of about 2.7 kb.
- the PCR product of about 2.7 kb thus obtained was inserted into pBC KS(+) vector DNA in the same manner as in Example 2-1, and the E. coli MC1061 strain was transformed to prepare a site-directed mutant library.
- ZSH3-1 expresses the alpha subunit represented by SEQ ID NO: 5 and the beta subunit represented by SEQ ID NO: 10.
- the E. coli MC1061 strain transformed with the pBC-ZSH3-1 plasmid containing the gene encoding the ZSH3-1 mutant showing the best activity was selected as “Escherichia coli MC1061/pBC-ZSH3-1. And deposited with the Korea Research Institute of Bioscience and Biotechnology Gene Bank on October 11, 2019 (Accession No.: KCTC 13991BP).
- each enzyme solution was prepared as follows. After inserting the genes encoding each of the APA variants prepared in Examples 2 to 3 into the pBC-KS(+) vector in the same manner as described in Example 1-2, each of the expression vectors was E. coli MC1061 was transformed into the E. coli strain. Each E. coli transformant was inoculated in 3 mL of LB medium (1% Bacto-tryptone, 0.5% Yeast Extract, 0.5% NaCl) containing 20 ⁇ g/mL chloramphenicol, and then shaken at 28° C. and 200 rpm for 16 hours. Cultured.
- LB medium 1% Bacto-tryptone, 0.5% Yeast Extract, 0.5% NaCl
- the culture solution was inoculated into 35 mL of fresh LB medium containing 20 ⁇ g/mL chloramphenicol, followed by shaking culture at 23° C. and 190 rpm for 48 hours.
- the culture solution was centrifuged (4° C., 8000 rpm, 10 minutes) to recover the cells, and then washed once with a 0.05 M ammonium phosphate (pH 7.5) buffer solution.
- the cells were suspended in 35 mL of the same buffer solution, crushed for 5 minutes with an ultrasonic disruptor (Vibra Cell VC750, Sonics & Materials Inc, USA) at 4°C, and centrifuged at 4°C and 13,500 rpm for 20 minutes to obtain the supernatant.
- Each APA variant enzyme solution was prepared by taking.
- a substrate solution was prepared by dissolving TDA and TzAAMe at a concentration of 10 mM each in a 0.05 M ammonium phosphate (pH 7.5) buffer solution.
- 500 ⁇ L of each APA variant enzyme solution of Example 4-1 was added to 500 ⁇ L of the substrate solution, and the enzyme reaction was carried out at 25°C for 10 minutes, and then 500 ⁇ L of the reaction solution was taken, and 500 ⁇ L of 0.2N HCl solution was added thereto. The reaction was stopped. After that, filtering was performed, HPLC analysis was performed under the same conditions as in Example 2-1, and quantification was performed by comparing with the quantification curve of the standard material.
- 1 unit (U) is defined as the amount of an enzyme capable of producing 1 ⁇ mole of cefazolin per minute.
- the specific activity to the substrate was expressed as an activity unit corresponding to 1 mg protein after measuring the amount of protein in the enzyme solution according to Bradford's method.
- Table 1 shows comparatively the Cefazolin synthesis activity between the ZSH1-13 mutant, the ZSH2-5 mutant, and the ZSH3-1 mutant and wild-type APA among the mutants of the present invention.
- the yield of cefazolin synthesis was increased by continuous improvement of the mutants of the present invention compared to wild-type APA.
- ZSH1-13 increased the synthesis yield by about 12.5 times compared to the wild type
- ZSH2-5 increased by about 43.0 times compared to the wild type APA
- the final variant ZSH3-1 increased by about 65.5 times compared to the wild type APA, significantly higher cefazolin.
- the production rate was shown.
- a substrate solution was prepared by dissolving 15 mM TzAAMe in 0.1 M Ammonium phosphate (pH 7.5) buffer solution. To 100 ⁇ l of this substrate solution, 100 ⁇ l of the enzyme solution of each of the mutants was added to perform the enzyme reaction at 25° C. for 10 minutes, and then 100 ⁇ l of 0.2 N HCl solution was added to 100 ⁇ l of the reaction solution to stop the reaction.
- Example 4-2 Thereafter, filtration and HPLC analysis were performed in the same manner as in Example 4-2, to calculate the amount of hydrolyzed TzAAMe (hydrolyzed TzAAMe, that is, TzAA), and quantified by comparing with the quantification curve of the standard.
- 1 unit (U) is defined as the amount of enzyme capable of producing 1 ⁇ mole of TzAA per minute.
- the S/H ratio was measured using the values of the TzAAMe decomposition activity derived by the above method and the Cefazolin synthesis activity obtained in Example 4-2.
- the synthesis yield of Cefazolin can be inferred by measuring the conversion rate of TDA, a precursor.
- TDA conversion was measured using the final variant, ZSH3-1.
- the strain was cultured in the same manner as in Example 4-1, except that the amount of the LB medium containing chloramphenicol was 1 L.
- the cultured cell suspension was centrifuged at 8,000 rpm for 10 minutes at 4° C. and the supernatant was removed to obtain a cell pellet. After suspending in 90 ml of 0.1 M ammonium phosphate buffer, cell disruption was performed for 20 minutes using an ultrasonic disruptor.
- the crushed cells were allowed to stand at 10° C. for 2 hours, and then centrifuged (4° C., 10,000 rpm, 30 minutes) to obtain a supernatant. This solution was used in the TDA conversion reaction experiment.
- the ZSH3-1 mutant enzyme of the present invention showed a high TDA conversion rate over time, and that TzAA was hardly produced to a degree similar to the initial stage of the cefazoline synthesis reaction.
- the ZSH3-1 mutant enzyme of the present invention not only synthesizes Cefazolin with high efficiency, but also significantly lowers the decomposition rate of TzAAMe to TzAA and the decomposition rate of cefazoline, so that the productivity of Cefazolin is excellent.
- Penicillin G acylase variants derived from CCM 4824 have very high synthesizing activity specifically for cefazolin, compared to their wild-type enzymes and other known mutant forms, while also degrading activity against substrates used for the synthesis of cefazoline. Compared to the synthesis ratio (S/H ratio) is remarkably high, the productivity of cefazoline has been remarkably increased to a significant level for industrial application, so industrial applicability is high.
- the present invention relates to a penicillin G acylase variant and its use with increased cefazoline productivity, and more particularly, to an alpha subunit represented by SEQ ID NO: 1; And in the wild-type penicillin G acylase protein (from Achromobacter sp.
- CCM 4824 sequence comprising the beta subunit represented by SEQ ID NO: 2, A116 ⁇ T, I156 ⁇ N, N169 ⁇ T, M3 ⁇ V, S54 ⁇ G, T64 ⁇ A, H173 ⁇ N, T251 ⁇ A, T388 ⁇ A, R478 ⁇ H, It relates to a mutant penicillin G acylase, characterized in that it comprises one or more mutations selected from the group consisting of E486 ⁇ A, D541 ⁇ E, and Y555 ⁇ C, and a method for synthesizing (manufacturing) cefazoline using the same.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Mycology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention relates to a penicillin G acylase mutant having increased cefazoline productivity and a use thereof, wherein Achromobacter sp. CCM 4824-derived penicillin G acylase mutants having unique mutation forms disclosed in the present invention have a very high synthesis activity specifically for cefazoline, compared to wild-type enzyme thereof and other known mutant forms, and have a remarkably high synthesis ratio (S/H ratio) compared to the degradation activity of a substrate used for synthesis of cefazoline, and thus the productivity of cefazoline is remarkably increased to a significant level in industrial applications.
Description
본 출원은 2019년 11월 15일에 출원된 대한민국 특허출원 제10-2019-0147086호를 우선권으로 주장하고, 상기 명세서 전체는 본 출원의 참고문헌이다.This application claims priority to Korean Patent Application No. 10-2019-0147086 filed on November 15, 2019, and the entire specification is a reference to this application.
본 발명은 세파졸린 생산성이 증가된 페니실린 G 아실라제 변이체 및 이의 이용에 관한 것으로, 보다 상세하게는 서열번호 1로 표시되는 알파 서브유닛; 및 서열번호 2로 표시되는 베타 서브유닛을 포함하는 야생형 페니실린 G 아실라제 단백질(Achromobacter sp. CCM 4824 유래) 서열 중에서, A116αT, I156αN, N169αT, M3βV, S54βG, T64βA, H173βN, T251βA, T388βA, R478βH, E486βA, D541βE 및 Y555βC로 이루어지는 군에서 선택되는 하나 이상의 변이를 포함하는 것을 특징으로 하는 변이 페니실린 G 아실라제, 및 이를 이용한 세파졸린의 합성(제조) 방법에 대한 것이다. The present invention relates to a penicillin G acylase variant with increased cephazoline productivity and its use, and more particularly, to an alpha subunit represented by SEQ ID NO: 1; And in the wild-type penicillin G acylase protein (from Achromobacter sp. CCM 4824) sequence comprising the beta subunit represented by SEQ ID NO: 2, A116αT, I156αN, N169αT, M3βV, S54βG, T64βA, H173βN, T251βA, T388βA, R478βH, It relates to a mutant penicillin G acylase, characterized in that it comprises one or more mutations selected from the group consisting of E486βA, D541βE, and Y555βC, and a method for synthesizing (manufacturing) cefazoline using the same.
반합성 β-락탐 화합물의 합성 과정에는 β-락탐 핵 구조를 보유하는 화합물과 여기에 결합되어 측쇄가 될 화합물(아실 공여체)이 기질로 사용된다. 상기 기질 혼합물에 페니실린 G 아실라제를 넣어줌에 따라 활성화된 측쇄와 β-락탐 핵의 효소적 커플링(coupling) 반응이 일어나는데, 페니실린 G 아실라제 효소는 활성화된 측쇄(즉 아실 공여체)로부터 β-락탐 핵으로의 아실기의 전이(아실화)를 촉진한다. 한편 상기 효소는 아실 공여체로 사용되는 활성화된 측쇄와 합성된 β-락탐 화합물을 가수분해하는 활성 또한 보유하고 있어, 반합성 β-락탐 화합물의 생산성에 문제가 된다. 특히 산업적 및 경제적 측면에서 기질들을 1:1의 비율로 하여 합성반응을 시키는 것이 생산공정 및 생산 효율에 있어서 유리한 것임을 고려하였을 때, 특히 기질 분해 반응을 낮추어 더 많은 기질이 합성 반응에 사용될 수 있도록 하는 것이 중요한 해결 과제이다.In the process of synthesizing a semisynthetic β-lactam compound, a compound having a nuclear structure of β-lactam and a compound bonded thereto to become a side chain (acyl donor) are used as substrates. When penicillin G acylase is added to the substrate mixture, an enzymatic coupling reaction between the activated side chain and the β-lactam nucleus occurs. Penicillin G acylase enzyme is β- from the activated side chain (i.e., the acyl donor). It promotes the transfer of acyl groups to the lactam nucleus (acylation). On the other hand, the enzyme also possesses the activity of hydrolyzing the synthesized β-lactam compound with the activated side chain used as an acyl donor, which causes a problem in the productivity of the semisynthetic β-lactam compound. Particularly, considering that it is advantageous in the production process and production efficiency to perform the synthesis reaction in a ratio of 1:1 in terms of industrial and economic terms, in particular, the substrate decomposition reaction is lowered so that more substrates can be used in the synthesis reaction. Is an important challenge.
특히, 기존 세파졸린의 효소적 합성법에서는 통상적으로 반응 물질로서 TzAA에 메틸, 에틸, 프로필 등의 그룹을 결합시킨 에스테르 화합물을 사용하여 오고 있다. 통상적인 기존의 방법 및 수단에 따라 TzAA의 에스테르 화합물 및 MMTD-7-ACA로 부터 세파졸린을 합성하는 경우에는, 페니실린 지 아미다제(페니실린 G 아실라제)의 효소 활성에 의해 합성이 진행됨과 동시에 TzAA의 에스테르 화합물이 자연적으로 가수분해되며, 즉 생촉매로서 사용되는 페니실린 지 아미다제(페니실린 G 아실라제)가 한편으로는 가수분해 작용을 하여 테트라졸-1-아세트산과 상응하는 알콜로 분해하는 반응이 경쟁적으로 일어나게 된다. 이러한 반응의 구체적 일례를 도 2에 나타내었다. 도 2에서 보는 바와 같이 효소반응으로 세파졸린을 합성(S)하기 위한 기질로는, 일례로 테트라졸릴 아세틱 애시드 메틸 에스터 (tetrazolyl acetic acid methyl ester, 본 명세서에서 "TzAAMe"라 약칭함)와 7-아미노-3-(2-메틸-1,3,4-티아디아졸-5-일)-티오메틸-3-세펨-4-카르복실 애시드 (7-amino-3-(2-methyl- 1,3,4-thiadiazol-5-yl)-thiomethyl-3-cephem-4-carboxylic acid, 본 명세서에서 "TDA"라 약칭함)가 사용될 수 있다. 기질인 TzAAMe는 효소에 의해 가수분해되어 테트라졸릴 아세틱 애시드(tetrazolyl acetic acid, 본 명세서에서 "TzAA"라 약칭함)으로 전환되기도 하며(H1), 합성된 세파졸린도 효소에 의해 가수분해(H2)되어 TzAA가 만들어지기도 한다. 따라서 세파졸린의 생산성을 높이기 위해서는 합성반응(S)은 높이고, 분해반응(H1, H2)를 낮추는 것이 중요하다. In particular, in the conventional enzymatic synthesis method of cefazoline, an ester compound in which a group such as methyl, ethyl, or propyl is bonded to TzAA as a reaction substance has been used. In the case of synthesizing cefazoline from the ester compound of TzAA and MMTD-7-ACA according to conventional methods and means, the synthesis proceeds by the enzymatic activity of penicillin zamidase (penicillin G acylase) and at the same time TzAA The ester compound of is naturally hydrolyzed, that is, the reaction of penicillin g amidase (penicillin G acylase) used as a biocatalyst to hydrolyze on the one hand to decompose it into tetrazol-1-acetic acid and the corresponding alcohol. It happens competitively. A specific example of this reaction is shown in FIG. 2. As shown in FIG. 2, as a substrate for synthesizing (S) cefazoline through an enzymatic reaction, for example, tetrazolyl acetic acid methyl ester (abbreviated herein as "TzAAMe") and 7 -Amino-3-(2-methyl-1,3,4-thiadiazol-5-yl)-thiomethyl-3-cefem-4-carboxyl acid (7-amino-3-(2-methyl-1 ,3,4-thiadiazol-5-yl)-thiomethyl-3-cephem-4-carboxylic acid, abbreviated herein as "TDA") may be used. Substrate TzAAMe is also hydrolyzed by enzymes and converted into tetrazolyl acetic acid (tetrazolyl acetic acid, abbreviated herein as "TzAA") (H1), and the synthesized cefazoline is also hydrolyzed by enzymes (H2 ), so that TzAA is created. Therefore, in order to increase the productivity of cefazoline, it is important to increase the synthesis reaction (S) and lower the decomposition reactions (H1, H2).
따라서, 가급적 가수분해되는 비율을 줄여줌으로써 TzAA 에스테르 화합물의 사용량을 절감할 수 있는데, 이와 같이 가수분해 비율을 줄이기 위해서는 효소 반응을 가능한 한 낮은 pH 에서 진행시키는 것이 바람직한 것으로 알려졌으나 이 방법은 세파졸린 합성 반응의 최적 조건과 MMTD-7-ACA의 용해도 문제때문에 제약을 받으므로, 지금까지는 세파졸린 합성시 TzAAMe를 MMTD-7-ACA 에 대해서 당량비로 2 배 이상 가하여 반응을 진행시키는 방법을 사용하여 오기도 하였다. Therefore, it is possible to reduce the amount of TzAA ester compound used by reducing the rate of hydrolysis as much as possible.In order to reduce the rate of hydrolysis, it is known that it is desirable to proceed the enzymatic reaction at as low pH as possible, but this method is used to synthesize cefazoline. Since the reaction is limited due to the optimal conditions of the reaction and the solubility of MMTD-7-ACA, so far, when synthesizing cefazoline, TzAAMe was added at an equivalent ratio of MMTD-7-ACA more than twice to proceed with the reaction. .
또한 같은 효소를 사용한다고 하여도, 구체적 항생제 종류에 따라서는 그 합성 수율에 현격한 차이가 발생할 수 있다. cephalexin, cefaclor 및 cephradine과 같이 benzyl ring을 보유하는 구조의 항생제와 amoxicillin, cefadroxil 및 cefprozil과 같이 phenolic ring을 보유하는 구조의 항생제들은 구조적으로 유사성이 높으나, 세파졸린의 경우 tetrazole ring을 보유하는 구조로서, 전술한 항생제들과는 구조적으로 차이가 상당하기 때문에, 같은 효소를 사용하더라도 세파졸린의 수득 효율이 상대적으로 현격히 낮은 상황이 발생된다. 일례로 KR101985911 문헌(특허문헌 1)에 개시된 효소의 경우, 세파렉신, 세프프로질, 세파클로르, 세프라딘, 세파드록실 및 아목시실린의 반합성 β-락탐계 항생물질들에 대하여 고효율의 다중 합성능을 가져 우수한 생산성을 가지는 것으로 알려졌지만, 세파졸린에 대해서는 산업적인 수준으로 효용성이 있을 정도로 현격히 생산성 효율을 높이지는 못하였다. 아직까지 산업적 수준이 적용에 충분할 정도로 세파졸린 생산성이 높은 효소는 알려지지 않았다. In addition, even if the same enzyme is used, a significant difference may occur in the synthetic yield depending on the specific type of antibiotic. Antibiotics having a benzyl ring such as cephalexin, cefaclor and cephradine and antibiotics having a phenolic ring such as amoxicillin, cefadroxil and cefprozil have high structural similarities, but cefazoline has a tetrazole ring. Since there is a significant structural difference from the above-described antibiotics, a situation arises in which the efficiency of obtaining cefazoline is relatively remarkably low even when the same enzyme is used. For example, in the case of the enzyme disclosed in KR101985911 (Patent Document 1), high-efficiency multi-synthesis capability for semi-synthetic β-lactam antibiotics of ceparexin, cefprozil, cepachlor, cepradin, cepadroxil, and amoxicillin It has been known to have excellent productivity, but cefazoline did not significantly increase productivity efficiency to the extent that it has utility at an industrial level. So far, no enzyme with high cefazoline productivity has been known enough for application at an industrial level.
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
(특허문헌 1) KR101985911B (Patent Document 1) KR101985911B
이에 본 발명자들은 세파졸린 생산성을 높일 수 있는 방법을 연구하던 중, 본원 발명에서 개시하는 특유의 변이를 보유하는 페니실린 G 아실라제 변이체가 야생형(Achromobacter sp. CCM 4824 균주로부터 유래) 대비 특이적으로 세파졸린에 대한 합성능이 현저히 증가되었을 뿐만 아니라 S/H 비가 현저히 높은 수준으로 개선되어, 세파졸린에 대한 고효율의 생산성을 가지는 것을 확인하여 본원 발명을 완성하였다. Accordingly, the inventors of the present invention were researching a method to increase cefazoline productivity, while the penicillin G acylase mutant having the unique mutation disclosed in the present invention was specifically compared to the wild type (from Achromobacter sp. CCM 4824 strain) compared to the wild type (from Achromobacter sp. CCM 4824 strain). The present invention was completed by confirming that the synthesizing ability for sleepy was significantly increased and the S/H ratio was improved to a remarkably high level, thereby having high-efficiency productivity for cefazoline.
따라서 본 발명의 목적은, 서열번호 1로 표시되는 알파 서브유닛; 및 서열번호 2로 표시되는 베타 서브유닛을 포함하는 야생형 페니실린 G 아실라제 단백질 서열 중에서, A116αT, I156αN, N169αT, M3βV, S54βG, T64βA, H173βN, T251βA, T388βA, R478βH, E486βA, D541βE 및 Y555βC로 이루어지는 군에서 선택되는 하나 이상의 변이를 포함하는 것을 특징으로 하는 변이 페니실린 G 아실라제를 제공하는 것이다. Accordingly, an object of the present invention is an alpha subunit represented by SEQ ID NO: 1; And among the wild-type penicillin G acylase protein sequence containing the beta subunit represented by SEQ ID NO: 2, the group consisting of A116αT, I156αN, N169αT, M3βV, S54βG, T64βA, H173βN, T251βA, T388βA, R478βH, E486βA, D541βE and Y555βC It is to provide a mutant penicillin G acylase, characterized in that it comprises one or more mutations selected from.
본 발명의 다른 목적은, 상기 변이 페니실린 G 아실라제를 암호화하는 폴리뉴클레오티드를 제공하는 것이다.Another object of the present invention is to provide a polynucleotide encoding the mutant penicillin G acylase.
본 발명의 또 다른 목적은, 상기 폴리뉴클레오티드를 포함하는 재조합 발현벡터를 제공하는 것이다.Another object of the present invention is to provide a recombinant expression vector comprising the polynucleotide.
본 발명의 또 다른 목적은, 상기 발현벡터에 의해 형질전환된 숙주세포를 제공하는 것이다.Another object of the present invention is to provide a host cell transformed with the expression vector.
본 발명의 또 다른 목적은, 상기 본원 발명의 변이 페니실린 G 아실라제를 포함하는 세파졸린(cefazolin) 제조용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for preparing cefazolin comprising the mutant penicillin G acylase of the present invention.
또한, 상기 본원 발명의 변이 페니실린 G 아실라제로 이루어지는 세파졸린(cefazolin) 제조용 조성물을 제공하는 것이다.In addition, to provide a composition for producing cefazolin (cefazolin) consisting of the mutant penicillin G acylase of the present invention.
또한, 상기 본원 발명의 변이 페니실린 G 아실라제로 필수적으로 이루어지는 세파졸린(cefazolin) 제조용 조성물을 제공하는 것이다.In addition, to provide a composition for producing cefazolin (cefazolin) consisting essentially of the mutant penicillin G acylase of the present invention.
본 발명의 또 다른 목적은, 테트라졸릴아세트산 에스테르와 3-[5-메틸-1,3,4-티오디아졸-2-일]-7-아미노세팔로스포린산으로부터 세파졸린(cefazolin)을 효소적으로 합성하는 방법에 있어서, 상기 본원 발명의 변이 페니실린 G 아실라제를 사용하는 것을 특징으로 하는 세파졸린의 효소적 합성(제조) 방법을 제공하는 것이다.Another object of the present invention is to enzymatic cefazolin from tetrazolyl acetic acid ester and 3-[5-methyl-1,3,4-thiodiazol-2-yl]-7-aminocephalosporic acid. In the method for synthesizing by way, it is to provide an enzymatic synthesis (manufacturing) method of cefazoline, characterized in that the mutant penicillin G acylase of the present invention is used.
본 발명의 또 다른 목적은, 세파졸린(cefazolin)을 제조하기 위한 상기 본원 발명의 변이 페니실린 G 아실라제의 용도를 제공하는 것이다.Another object of the present invention is to provide the use of the mutant penicillin G acylase of the present invention for producing cefazolin.
상기와 같은 목적을 달성하기 위하여, 본 발명은 In order to achieve the above object, the present invention
서열번호 1로 표시되는 알파 서브유닛; 및 서열번호 2로 표시되는 베타 서브유닛을 포함하는 야생형 페니실린 G 아실라제 단백질 서열 중에서, A116αT, I156αN, N169αT, M3βV, S54βG, T64βA, H173βN, T251βA, T388βA, R478βH, E486βA, D541βE 및 Y555βC로 이루어지는 군에서 선택되는 하나 이상의 변이를 포함하는 것을 특징으로 하는 변이 페니실린 G 아실라제를 제공한다. An alpha subunit represented by SEQ ID NO: 1; And among the wild-type penicillin G acylase protein sequence containing the beta subunit represented by SEQ ID NO: 2, the group consisting of A116αT, I156αN, N169αT, M3βV, S54βG, T64βA, H173βN, T251βA, T388βA, R478βH, E486βA, D541βE and Y555βC It provides a mutant penicillin G acylase, characterized in that it comprises one or more mutations selected from.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 상기 변이 페니실린 G 아실라제를 암화화하는 폴리뉴클레오티드를 제공한다.In order to achieve another object of the present invention, the present invention provides a polynucleotide that darkens the mutant penicillin G acylase.
본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 폴리뉴클레오티드를 포함하는 재조합 발현벡터를 제공한다.In order to achieve another object of the present invention, the present invention provides a recombinant expression vector comprising the polynucleotide.
본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 발현벡터에 의해 형질전환 된 숙주세포를 제공한다.In order to achieve another object of the present invention, the present invention provides a host cell transformed with the expression vector.
본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 본원 발명의 변이 페니실린 G 아실라제를 포함하는 세파졸린(cefazolin) 제조용 조성물을 제공한다.In order to achieve another object of the present invention, the present invention provides a composition for preparing cefazolin comprising the mutant penicillin G acylase of the present invention.
또한, 본 발명은 상기 본원 발명의 변이 페니실린 G 아실라제로 이루어지는 세파졸린(cefazolin) 제조용 조성물을 제공한다.In addition, the present invention provides a composition for producing cefazolin consisting of the mutant penicillin G acylase of the present invention.
또한, 본 발명은 상기 본원 발명의 변이 페니실린 G 아실라제로 필수적으로 이루어지는 세파졸린(cefazolin) 제조용 조성물을 제공한다.In addition, the present invention provides a composition for producing cefazolin consisting essentially of the mutant penicillin G acylase of the present invention.
본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 테트라졸릴 아세트산 에스테르와 3-[5-메틸-1,3,4-티오디아졸-2-일]-7-아미노세팔로스포린산으로부터 세파졸린(cefazolin)을 효소적으로 합성하는 방법에 있어서, 상기 본원 발명의 변이 페니실린 G 아실라제를 사용하는 것을 특징으로 하는 세파졸린의 효소적 합성(제조) 방법을 제공한다.In order to achieve another object of the present invention, the present invention is separated from tetrazolyl acetic acid ester and 3-[5-methyl-1,3,4-thiodiazol-2-yl]-7-aminocephalosporic acid. In the method of enzymatically synthesizing cefazolin, there is provided a method for enzymatic synthesis (manufacturing) of cefazoline, characterized in that the mutant penicillin G acylase of the present invention is used.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 세파졸린(cefazolin)을 제조하기 위한 상기 본원 발명의 변이 페니실린 G 아실라제의 용도를 제공한다.In order to achieve another object of the present invention, the present invention provides the use of the mutant penicillin G acylase of the present invention for producing cefazolin.
이하 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.
본 명세서에서 용어 "단백질"은 "폴리펩타이드(polypeptide)" 또는 "펩타이드(peptide)"와 호환성 있게 사용되며, 예컨대, 자연상태의 단백질에서 일반적으로 발견되는 바와 같이 아미노산 잔기의 중합체를 말한다.As used herein, the term "protein" is used interchangeably with "polypeptide" or "peptide", and refers to a polymer of amino acid residues as commonly found in proteins in nature.
본 발명에서 "핵산" 또는 "폴리뉴클레오티드" 는 단일-또는 이중-가닥의 형태로 된 데옥시리보뉴클레오티드 또는 리보뉴클레오티드를 말한다. 다른 제한이 없는 한, 자연적으로 생성되는 뉴클레오티드와 비슷한 방법으로 핵산에 혼성화되는 자연적 뉴클레오티드의 공지된 아날로그도 포함된다.In the present invention, "nucleic acid" or "polynucleotide" refers to deoxyribonucleotides or ribonucleotides in the form of single- or double-stranded. Unless otherwise limited, known analogues of natural nucleotides that hybridize to nucleic acids in a manner similar to those of naturally occurring nucleotides are also included.
본 명세서에서 용어 "발현(expression)"이라 함은 세포에서 단백질 또는 핵산의 생성을 의미한다.In the present specification, the term "expression" refers to the production of a protein or nucleic acid in a cell.
본 명세서에 사용된 아미노산의 일문자(삼문자)는 생화학 분야에서의 표준 약어 규정에 따라 다음의 아미노산을 의미한다: A(Ala): 알라닌; C(Cys): 시스테인; D(Asp): 아스파르트산; E(Glu): 글루탐산; F(Phe): 페닐알라닌; G(Gly): 글라이신; H(His): 히스티딘; I(IIe): 이소류신; K(Lys): 라이신; L(Leu): 류신; M(Met): 메티오닌; N(Asn): 아스파라긴; P(Pro): 프롤린; Q(Gln): 글루타민; R(Arg): 아르기닌; S(Ser): 세린; T(Thr): 트레오닌; V(Val): 발린; W(Trp): 트립토판; Y(Tyr): 티로신.One letter (three letters) of amino acids as used herein means the following amino acids according to the standard abbreviation regulations in the field of biochemistry: A(Ala): alanine; C(Cys): cysteine; D(Asp): aspartic acid; E(Glu): glutamic acid; F(Phe): phenylalanine; G(Gly): glycine; H(His): histidine; I(IIe): isoleucine; K(Lys): lysine; L(Leu): leucine; M(Met): methionine; N(Asn): asparagine; P(Pro): proline; Q(Gin): glutamine; R(Arg): arginine; S(Ser): serine; T(Thr): threonine; V(Val): valine; W(Trp): tryptophan; Y(Tyr): Tyrosine.
본 명세서에 표기되는 "(아미노산일문자)(아미노산위치)(아미노산일문자)"는 천연형(야생형) 폴리펩타이드의 해당 아미노산 위치에서 선행 표기된 아미노산이 후행 표기된 아미노산으로 치환된다는 것을 의미한다. 예를 들면, I156αN는 천연형 폴리펩타이드 α-서브유닛(본 발명에서, 서열번호 1의 야생형 APA α-서브유닛)의 156번에 해당하는 이소류신이 아스파라긴으로 치환된다는 것을 가리키며, M3βV는 천연형 폴리펩타이드 α-서브유닛(본 발명에서, 서열번호 2의 야생형 APA β-서브유닛)의 3번째 메티오닌이 발린으로 치환되는 것을 의미한다. As used herein, "(one amino acid position) (one amino acid position) (one amino acid position)" means that the amino acid previously marked at the corresponding amino acid position of the natural (wild type) polypeptide is substituted with the amino acid marked later. For example, I156αN indicates that isoleucine corresponding to No. 156 of the natural polypeptide α-subunit (in the present invention, wild-type APA α-subunit of SEQ ID NO: 1) is substituted with asparagine, and M3βV is a natural polypoly. It means that the third methionine of the peptide α-subunit (in the present invention, wild-type APA β-subunit of SEQ ID NO: 2) is substituted with valine.
본 명세서에서 용어 MMTD-7-ACA는, MMTD(Mercepto-5-methyl-1,3,4- thiadiazole)과 7-ACA(7- amino cephalosporanic acid)의 반응 산물을 의미하는 것으로서, "3-[5-메틸-1,3,4-티오디아졸-2-일]-7-아미노세팔로스포린산" 등으로도 표기된다. 이는 세파졸린 항생제 합성 반응에 있어서 기질로 사용되며 β-락탐 핵구조를 보유하는 화합물이다. 상기 MMTD와 7-ACA 반응 산물은 당업계에 여러 가지 표현으로 알려져 있으나, 본 발명에서는 당업계에 실질적으로 동등한 것으로 간주되는 물질들을 모두 포함하는 의미이다. 이에 제한되지 않으나, 본 발명에서 일례로 바람직하게 TDA(7-amino-3-(2-methyl-1,3,4-thiadiazol-5-yl)-thiomethyl-3-cephem-4-carboxylic acid)가 사용될 수 있다.In the present specification, the term MMTD-7-ACA refers to a reaction product of MMTD (Mercepto-5-methyl-1,3,4- thiadiazole) and 7-ACA (7-amino cephalosporanic acid), and "3-[ It is also expressed as "5-methyl-1,3,4-thiodiazol-2-yl]-7-aminocephalosporic acid" and the like. It is used as a substrate in the synthesis of cefazoline antibiotics and is a compound having a β-lactam nuclear structure. The MMTD and 7-ACA reaction product are known in various expressions in the art, but in the present invention, it is meant to include all substances considered to be substantially equivalent in the art. Although not limited thereto, as an example in the present invention, TDA (7-amino-3-(2-methyl-1,3,4-thiadiazol-5-yl)-thiomethyl-3-cephem-4-carboxylic acid) is preferably Can be used.
본 명세서에서 용어 "TzAA 에스테르" 화합물은 "테트라졸릴 아세트산 에스테르"를 의미하는 것으로, TzAA에 메틸, 에틸, 프로필 등의 그룹을 결합시킨 에스테르 화합물을 의미하며, 본 명세서에서 "테트라졸-1-아세트산 에스테르" 등으로도 표기될 수 있다. 이는 세파졸린 합성 반응에서 기질로 사용되며 아실 공여체 역할을 한다. 상기 "TzAA 에스테르" 화합물은 이에 제한되지 않으나, 본 발명에서 일례로 바람직하게 TzAAMe(테트라졸-1-아세트산 메틸에스테르)가 사용될 수 있다.In the present specification, the term "TzAA ester" compound refers to "tetrazolyl acetic acid ester", and refers to an ester compound in which a group such as methyl, ethyl, propyl, etc. is bonded to TzAA, and in the present specification, "tetrazol-1-acetic acid It may also be expressed as "ester" or the like. It is used as a substrate in the synthesis of cefazoline and acts as an acyl donor. The "TzAA ester" compound is not limited thereto, but TzAAMe (tetrazole-1-acetic acid methyl ester) may be preferably used as an example in the present invention.
본 발명은, 세파졸린에 대한 생산성이 In the present invention, the productivity for cefazoline is
증가된Increased
AchromobacterAchromobacter
spsp
. .
CCMCCM
4824 유래 페니실린 G Penicillin G from 4824
아실라제Acylase
변이체를Variant
제공한다. to provide.
본 명세서에서
Achromobacter sp. CCM 4824 유래 페니실린 G 아실라제 단백질을"APA"로 칭하였으며, 이를 코딩하는 폴리뉴클레오타이드 또는 유전자 서열을 "apa"로 표기하였다. In the present specification, Achromobacter sp. The penicillin G acylase protein derived from CCM 4824 was referred to as "APA", and the polynucleotide or gene sequence encoding it was referred to as "apa".
Achromobacter sp. CCM 4824 유래 페니실린 G 아실라제(APA) 야생형은 서열번호 1로 표시되는 α-서브유닛과 서열번호 2로 표시되는 β-서브유닛을 포함한다. 구체적으로 야생형 APA는, 전구체(precursor)형으로서 서열번호 1로 표시되는 알파 서브유닛과 서열번호 2로 표시되는 베타 서브유닛이 스페이서 펩타이드(spacer peptide, 예를들어 서열번호 3)에 의하여 연결되어 구성된 단일 사슬 폴리펩티드(예를들어, 서열번호 4)로서 발현되며, 그 후 세포 내에서 자기 촉매적 프로세싱(autocatalytic processing)을 통해 스페이서 펩타이드가 제거되어 상기 알파 서브유닛과 베타 서브유닛으로 구성된 성숙형(mature)의 활성 이량체 형태를 갖게 된다. 일례로, 서열번호 4로 표시되는 전구체형의 야생형 APA는 예를들어 NCBI genbank AY919310.1로 알려진 염기서열의 폴리뉴클레오타이드에 의해서 암호화 될 수 있으나, 이에 제한되지 않는다. Achromobacter sp. The penicillin G acylase (APA) wild type derived from CCM 4824 includes an α-subunit represented by SEQ ID NO: 1 and a β-subunit represented by SEQ ID NO: 2. Specifically, wild-type APA is a precursor type, consisting of an alpha subunit represented by SEQ ID NO: 1 and a beta subunit represented by SEQ ID NO: 2 connected by a spacer peptide (e.g., SEQ ID NO: 3). It is expressed as a single-chain polypeptide (e.g., SEQ ID NO: 4), and then the spacer peptide is removed through autocatalytic processing in the cell to form a mature form consisting of the alpha subunit and the beta subunit. ) To have an active dimer form. For example, the precursor-type wild-type APA represented by SEQ ID NO: 4 may be encoded by, for example, a polynucleotide of a base sequence known as NCBI genbank AY919310.1, but is not limited thereto.
Achromobacter sp. CCM 4824 균주 유래 페니실린 G 아실라제(APA 야생형)는 기존에 공지된 다른 생물 유래의 동종 효소에 비해 우수한 이점이 있는 것으로 보고되고 있다. 예를들어
Achromobacter xylosoxidans 유래 효소와 비교하여 열안정성이 우수하며, 또한 낮은 기질농도에서
E.
coli 유래 효소와 비교하여 β-락탐 항생제합성에 대한 촉매 활성이 더 우수한 것으로 보고되었다(Stanislav Becka et al., Penicillin G acylase from Achromobacter sp. CCM 4824, Appl Microbiol Biotechnol DOI 10.1007/s00253-013-4945-3). 그러나,
Achromobacter sp. CCM 4824 균주 유래 페니실린 G 아실라제(APA) 야생형 단백질 역시, 본 명세서 실시예들에 기재된 바와 같이, 합성활성 대비 기질 및 생성물 분해활성이 상당 수준으로 일어난다는 문제를 가지고 있다. 한편, 기존에 여러가지 미생물로부터 유래된 페니실린 G 아실라아제에 대해서 변이체를 제작하여 산업적으로 이용하고자 하는 시도들이 있었으나, 이들은 분해반응 및 S/H가 고려되지 않은 채 전환율만 보고되거나 합성반응에만 초점이 맞추어져 개발이 되는 등 각각의 특정 반응에만 초점이 맞추어져 개발이 되었다는 한계점 등이 있었다. 이에 실제 이들은 산업적 수준에 적용하는데 있어서 여전히 불충분한 효과를 가졌으며, 예를 들면 CN105483105A 특허에서 개시하는 일부 아미노산 변이체가 아목시실린 등의 소수 항생제에 대한 기질 전환율이 90~120분 후에 99%인 것으로 개시하고 있지만, 실질적으로 상기 변이체는 야생형에 비해서 합성능력은 단지 약 2배로 개선되었을 뿐이고 이러한 합성 능력에 대하여 S/H 값이 단지 약 3.9배 정도로 되는데 그쳤다(아목시실린 기준). 이러한 개량 정도로는 실제 산업단위에 적용하는데 있어서 공정 효율면에서 한계가 있다. 즉, 효소 개량에 있어서, 이의 비교우위를 판단하기 위해서는 합성활성증가 뿐만아니라, 분해활성 감소 및 S/H 값의 증가를 평가하는 것이 선행되어야 한다. Achromobacter sp. It has been reported that penicillin G acylase (APA wild type) derived from CCM 4824 strain has superior advantages compared to the known homologous enzymes derived from other organisms. For example, it has been reported that it has excellent thermal stability compared to enzymes derived from Achromobacter xylosoxidans, and has better catalytic activity for the synthesis of β-lactam antibiotics compared to enzymes derived from E. coli at low substrate concentrations (Stanislav Becka et al. , Penicillin G acylase from Achromobacter sp.CCM 4824, Appl Microbiol Biotechnol DOI 10.1007/s00253-013-4945-3). However, Achromobacter sp. The penicillin G acylase (APA) wild-type protein derived from the CCM 4824 strain also has a problem in that, as described in the examples herein, substrate and product degradation activity occurs at a considerable level compared to the synthetic activity. On the other hand, there have been attempts to manufacture and use variants for penicillin G acylase derived from various microorganisms in the past, but these are only reported conversion rates without taking into account decomposition reactions and S/H, or focusing only on synthetic reactions. There were limitations in that it was developed by focusing only on each specific reaction, such as being tailored and developed. Therefore, in fact, they still had insufficient effect in application to the industrial level, for example, some amino acid variants disclosed in the CN105483105A patent disclosed that the substrate conversion rate for a small number of antibiotics such as amoxicillin was 99% after 90 to 120 minutes. However, in reality, the mutant was only about 2 times improved in the synthesis ability compared to the wild type, and the S/H value for this synthetic ability was only about 3.9 times (based on amoxicillin). The degree of such improvement is limited in terms of process efficiency when applied to an actual industrial unit. In other words, in order to determine the comparative advantage of the enzyme improvement, it is necessary to evaluate not only the increase in synthetic activity, but also the decrease in the decomposition activity and the increase in the S/H value.
이에 반해, 본 발명의 변이체 중 대표적 일례로 ZSH1-13 변이체는 세파졸린 합성활성이 야생형 대비 12.5 배로 현저히 증가하였을 뿐만 아니라, 이러한 합성 활성에 더하여 S/H ratio는 야생형 대비 6.1 배를 나타내었다. 뿐만아니라 또 다른 일례로서 ZSH2-5 변이체(ZSH1-13 변이체를 기반으로 개발됨)는 변이체는 세파졸린 합성활성이 야생형 대비 43 배로 현저히 증가하였을 뿐만 아니라, 이러한 합성 활성에 더하여 S/H ratio는 야생형 대비 19.8 배를 나타내었다. 특히, 무수한 단계를 거쳐 생성된 다양한 변이체들 중, 최종적으로 선발된 ZSH3-1 변이체(ZSH2-5 변이체를 기반으로 개발됨)의 경우 세파졸린 합성활성이 야생형 대비 65 배로 현저히 증가하였을 뿐만 아니라, 이러한 합성 활성에 더하여 S/H ratio는 야생형 대비 36.7 배를 나타내었다. 이에 본 발명에서 제공하는 변이 APA에 의하면 세파졸린을 고효율로 생산할 수 있다. 이는 생산 공정에 사용할 수 있는 월등한 개량으로서, 기존 기술 대비 상당한 수준의 기술적인 진보를 의미 한다. On the other hand, as a representative example of the mutants of the present invention, the ZSH1-13 mutant not only significantly increased the sefazoline synthesis activity by 12.5 times compared to the wild type, but also showed a 6.1 times S/H ratio compared to the wild type. In addition, as another example, the ZSH2-5 mutant (developed based on the ZSH1-13 mutant) significantly increased the synthesis activity of cefazoline 43 times compared to the wild type, and in addition to this synthetic activity, the S/H ratio was wild type. Compared to 19.8 times. In particular, in the case of the finally selected ZSH3-1 variant (developed based on the ZSH2-5 variant) among the various variants generated through countless steps, the cefazoline synthesis activity significantly increased 65 times compared to the wild type. In addition to the synthetic activity, the S/H ratio was 36.7 times that of the wild type. Accordingly, according to the mutant APA provided by the present invention, cefazoline can be produced with high efficiency. This is a remarkable improvement that can be used in the production process, and represents a significant level of technological advancement compared to the existing technology.
이처럼 본 발명에서 개시하는 특유의 변이(특히 치환) 형태를 지니는
Achromobacter sp. CCM 4824 유래 페니실린 G 아실라제 변이체 들은 세파졸린에 대하여 고효율의 합성능을 가지는 것이 특징이다. 본원 발명에서 용어“고효율”이란 합성 생성물의 생산량 및 속도가 증가되었을 뿐만아니라 S/H 비율(ratio)이 높은 것을 의미하는 것이다. As described above, Achromobacter sp. The penicillin G acylase variants derived from CCM 4824 are characterized by having a high-efficiency synthesis ability against cefazoline. In the present invention, the term "high efficiency" means that the production amount and speed of the synthetic product is increased, as well as the S/H ratio is high.
이에 본 발명에서 최초로 개시하는 APA 변이 형태는 다음과 같다. 본원 발명의 변이 페니실린 G 아실라제(이하, 본 명세서에서 변이 APA로 혼용하여 표기)는, 상기 서열번호 1로 표시되는 알파 서브유닛 및 서열번호 2로 표시되는 베타 서브유닛을 포함하는 야생형 페니실린 G 아실라제 단백질 서열 중에서, A116α, I156α, N169α, M3β, S54β, T64β, H173β, T251β, T388β, R478β, E486β, D541β 및 Y555β로 이루어지는 군에서 선택되는 하나 이상의 아미노산 잔기가 다른 아미노산으로 치환된 돌연변이를 포함하는 것을 특징으로 한다. Accordingly, the APA mutation form first disclosed in the present invention is as follows. The mutant penicillin G acylase of the present invention (hereinafter, referred to as mutant APA in the present specification) is a wild-type penicillin G acyl comprising an alpha subunit represented by SEQ ID NO: 1 and a beta subunit represented by SEQ ID NO: 2 In the Rase protein sequence, A116α, I156α, N169α, M3β, S54β, T64β, H173β, T251β, T388β, R478β, E486β, D541β, and Y555β. It is characterized by that.
구체적으로 상기 돌연변이는 상기 서열번호 1로 표시되는 알파 서브유닛 및 서열번호 2로 표시되는 베타 서브유닛을 포함하는 야생형 페니실린 G 아실라제 단백질 서열 중에서, A116αT, I156αN, N169αT, M3βV, S54βG, T64βA, H173βN, T251βA, T388βA, R478βH, E486βA, D541βE 및 Y555βC로 이루어지는 군에서 선택되는 하나 이상의 변이를 포함하는 것을 특징으로 한다.Specifically, the mutation is in the wild-type penicillin G acylase protein sequence comprising the alpha subunit represented by SEQ ID NO: 1 and the beta subunit represented by SEQ ID NO: 2, A116αT, I156αN, N169αT, M3βV, S54βG, T64βA, H173βN , T251βA, T388βA, R478βH, E486βA, D541βE, and Y555βC.
예를 들어, 상기 서열번호 1로 표시되는 알파 서브유닛 및 서열번호 2로 표시되는 베타 서브유닛을 포함하는 야생형 페니실린 G 아실라제 단백질 서열 중에서, A116αT 치환을 포함하는 폴리펩타이드, I156αN 치환을 포함하는 폴리펩타이드, N169αT 치환을 포함하는 폴리펩타이드, H173βN 치환을 포함하는 폴리펩타이드, T251βA 치환을 포함하는 폴리펩타이드, E486βA 치환을 포함하는 폴리펩타이드, 또는 Y555βC 치환을 포함하는 폴리펩타이드 등과 같이 하나의 변이 부위(site)를 가지는 것일 수 있으며, 또는For example, in the wild-type penicillin G acylase protein sequence comprising the alpha subunit represented by SEQ ID NO: 1 and the beta subunit represented by SEQ ID NO: 2, a polypeptide comprising an A116αT substitution, a poly comprising an I156αN substitution One mutation site such as a peptide, a polypeptide including an N169αT substitution, a polypeptide including an H173βN substitution, a polypeptide including a T251βA substitution, a polypeptide including an E486βA substitution, or a polypeptide including a Y555βC substitution, etc. ), or
예를들어 상기 서열번호 1로 표시되는 알파 서브유닛 및 서열번호 2로 표시되는 베타 서브유닛을 포함하는 야생형 페니실린 G 아실라제 단백질 서열 중에서, A116αT, I156αN, N169αT, M3βV, S54βG, T64βA, H173βN, T251βA, T388βA, R478βH, E486βA, D541βE 및 Y555βC로 이루어지는 군에서 임의로 선택된 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개 또는 13개의 변이 부위를 포함하는 폴리펩타이드와 같이 다중 변이 부위를 가지는 것일 수 있으며, 이에 제한되지 않는다. For example, in the wild-type penicillin G acylase protein sequence comprising the alpha subunit represented by SEQ ID NO: 1 and the beta subunit represented by SEQ ID NO: 2, A116αT, I156αN, N169αT, M3βV, S54βG, T64βA, H173βN, T251βA , T388βA, R478βH, E486βA, D541βE and Y555βC 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 randomly selected from the group consisting of It may have multiple mutation sites, such as a polypeptide including dog mutation sites, but is not limited thereto.
바람직하게 본원 발명의 변이 페니실린 G 아실라제(변이 APA)는, 상기 야생형 페니실린 G 아실라제 단백질 서열 중에서 I156αN, N169αT, H173βN, T251βA, E486βA 및 Y555βC의 6개 변이 부위를 포함하는 것일 수 있다(ZSH1-13 참조). 더욱 바람직하게, 본원 발명의 변이 페니실린 G 아실라제는 서열번호 5로 표시되는 알파 서브유닛 및 서열번호 6으로 표시되는 베타 서브유닛을 포함하는 것일 수 있다. 이의 바람직한 제공 형태로서, i) 서열번호 5로 표시되는 알파 서브유닛과 서열번호 6으로 표시되는 베타 서브유닛이 스페이서 펩타이드(예를들어, 서열번호 3)에 의하여 연결되어 구성된 단일 사슬 폴리펩타이드(예를들어, 서열번호 7) 형태인 전구체(precursor)형 단백질로서 제공될 수 있고, 또는 ii) 서열번호 5로 표시되는 알파 서브유닛 및 서열번호 6으로 표시되는 베타 서브유닛으로 구성된 성숙형(mature) 단백질로 제공될 수 있으나, 이에 제한되지 않는다. Preferably, the mutant penicillin G acylase (mutant APA) of the present invention may include six mutant sites of I156αN, N169αT, H173βN, T251βA, E486βA and Y555βC in the wild-type penicillin G acylase protein sequence (ZSH1- 13). More preferably, the mutant penicillin G acylase of the present invention may include an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 6. As a preferred form thereof, i) a single-chain polypeptide (e.g., an alpha subunit represented by SEQ ID NO: 5) and a beta subunit represented by SEQ ID NO: 6 are linked by a spacer peptide (e.g., SEQ ID NO: 3). For example, it may be provided as a precursor protein in the form of SEQ ID NO: 7), or ii) a mature form consisting of an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 6 It may be provided as a protein, but is not limited thereto.
또한 본 발명은 상기 변이 APA에 추가적인 아미노산 잔기의 변형을 포함할 수 있다. 상기 용어“변형”은 아미노산 잔기의 결실, 치환 또는 부가를 의미한다. 상기 추가적인 아미노산 잔기의 변형은 본 발명 변이 APA의 세파졸린 합성활성 증가 및 상기 합성에 이용되는 기질에 대한 분해 활성의 감소를 목적으로 수행되는 것으로서, 상기 목적을 달성할 수 있는 한 아미노산 잔기의 변형 형태(종류) 및 위치는 특별히 제한되지 않는다. In addition, the present invention may include modification of additional amino acid residues in the mutant APA. The term “modification” refers to deletion, substitution or addition of amino acid residues. The modification of the additional amino acid residue is carried out for the purpose of increasing the sefazoline synthesis activity of the mutant APA of the present invention and reducing the degrading activity of the substrate used for the synthesis, and a modified form of the amino acid residue that can achieve the above object (Type) and position are not particularly limited.
바람직하게, 상기 야생형 대비 I156αN, N169αT, H173βN, T251βA, E486βA 및 Y555βC의 6개 변이 부위를 포함하는 변이 APA 서열 중에서, G49αF, T201αS, M3βV, T64βA, T225βN 및 T388βA로 이루어지는 군에서 선택되는 하나 이상의 변이를 추가로 포함하는 것일 수 있다. 더욱 바람직하게 상기 서열번호 5로 표시되는 알파 서브유닛 및 서열번호 6으로 표시되는 베타 서브유닛을 포함하는 변이 APA 서열 중에서, G49αF, T201αS, M3βV, T64βA, T225βN 및 T388βA로 이루어지는 군에서 선택되는 하나 이상의 변이를 추가로 포함하는 것일 수 있다.Preferably, one or more mutations selected from the group consisting of G49αF, T201αS, M3βV, T64βA, T225βN and T388βA among the mutant APA sequences comprising six mutation sites of I156αN, N169αT, H173βN, T251βA, E486βA and Y555βC compared to the wild type It may be to further include. More preferably, one or more selected from the group consisting of G49αF, T201αS, M3βV, T64βA, T225βN and T388βA among the mutant APA sequences including the alpha subunit represented by SEQ ID NO: 5 and the beta subunit represented by SEQ ID NO: 6 It may be to further include a mutation.
예를 들어, 상기 서열번호 5로 표시되는 알파 서브유닛 및 서열번호 6으로 표시되는 베타 서브유닛을 포함하는 변이 APA 서열 중에서, G49αF 치환을 포함하는 폴리펩타이드, T201αS 치환을 포함하는 폴리펩타이드, M3βV 치환을 포함하는 폴리펩타이드, T64βA 치환을 포함하는 폴리펩타이드, T225βN 치환을 포함하는 폴리펩타이드 또는 T388βA 치환을 포함하는 폴리펩타이드와 같이 하나의 변이부위를 추가적으로 포함하는 것일 수 있으며, 또는For example, in the mutant APA sequence including the alpha subunit represented by SEQ ID NO: 5 and the beta subunit represented by SEQ ID NO: 6, a polypeptide including a G49αF substitution, a polypeptide including a T201αS substitution, and an M3βV substitution A polypeptide including, a polypeptide including a T64βA substitution, a polypeptide including a T225βN substitution, or a polypeptide including a T388βA substitution, may additionally include one mutation site, or
예를 들어, 상기 서열번호 5로 표시되는 알파 서브유닛 및 서열번호 6으로 표시되는 베타 서브유닛을 포함하는 변이 APA 서열 중에서, G49αF, T201αS, M3βV, T64βA, T225βN 및 T388βA로 이루어지는 군에서 임의로 선택된 2개의 변이, 3개의 변이, 4개의 변이, 5개의 변이 또는 6개의 변이를 포함하는 폴리펩타이드와 같이 다중 변이 부위를 추가적으로 포함하는 것일 수 있으며, 이에 제한되지 않는다.For example, among the mutant APA sequences including the alpha subunit represented by SEQ ID NO: 5 and the beta subunit represented by SEQ ID NO: 6, 2 randomly selected from the group consisting of G49αF, T201αS, M3βV, T64βA, T225βN and T388βA It may be one that additionally includes multiple mutation sites, such as a polypeptide including dog mutations, three mutations, four mutations, five mutations, or six mutations, but is not limited thereto.
가장 바람직하게, 본 발명의 변이 APA는 상기 서열번호 5로 표시되는 알파 서브유닛 및 서열번호 6으로 표시되는 베타 서브유닛을 포함하는 변이 APA에서, M3βV, T64βA 및 T388βA의 3개 변이(치환) 부위를 추가로 포함하는 것일 수 있다(야생형 대비 총 9개의 치환부위 포함, ZSH2-5 참조). 더욱 바람직하게, 본원 발명의 변이 APA는 서열번호 5로 표시되는 알파 서브유닛 및 서열번호 8로 표시되는 베타 서브유닛을 포함하는 것일 수 있다. 이의 바람직한 제공 형태로서, i) 서열번호 5로 표시되는 알파 서브유닛과 서열번호 8로 표시되는 베타 서브유닛이 스페이서 펩타이드(예를들어, 서열번호 3)에 의하여 연결되어 구성된 단일 사슬 폴리펩타이드(예를들어, 서열번호 9)형태인 전구체형 단백질로서 제공될 수 있고, 또는 ii) 서열번호 5로 표시되는 알파 서브유닛 및 서열번호 8로 표시되는 베타 서브유닛으로 구성된 성숙형 단백질로 제공될 수 있으나, 이에 제한되지 않는다.Most preferably, the mutant APA of the present invention is in the mutant APA including the alpha subunit represented by SEQ ID NO: 5 and the beta subunit represented by SEQ ID NO: 6, three mutation (substitution) sites of M3βV, T64βA and T388βA. It may further include (including a total of 9 substitution sites compared to the wild type, see ZSH2-5). More preferably, the variant APA of the present invention may include an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 8. As a preferred form of provision thereof, i) a single-chain polypeptide (e.g., an alpha subunit represented by SEQ ID NO: 5) and a beta subunit represented by SEQ ID NO: 8 are linked by a spacer peptide (e.g., SEQ ID NO: 3). For example, it may be provided as a precursor protein in the form of SEQ ID NO: 9), or ii) may be provided as a mature protein consisting of an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 8, , Is not limited thereto.
또한 본원 발명은, 상기 변이 APA에 대하여 더욱 추가된 변이를 포함하는 폴리펩타이드를 제공한다. 바람직하게, 상기 야생형 대비 I156αN, N169αT, M3βV, T64βA, H173βN, T251βA, T388βA, E486βA 및 Y555βC의 9개 변이 부위를 포함하는 변이 APA 서열 중에서, S54βG, S150βT, N226βT, A310βD, R478βH 및 D541βE로 이루어지는 군에서 선택되는 하나 이상의 변이를 추가로 포함하는 것일 수 있다. 더욱 바람직하게 상기 서열번호 5로 표시되는 알파 서브유닛 및 서열번호 8로 표시되는 베타 서브유닛을 포함하는 변이 APA 서열 중에서, S54βG, S150βT, N226βT, A310βD, R478βH 및 D541βE로 이루어지는 군에서 선택되는 하나 이상의 변이를 추가로 포함하는 것일 수 있다. In addition, the present invention provides a polypeptide comprising a further mutation with respect to the variant APA. Preferably, in the mutant APA sequence including nine mutation sites of I156αN, N169αT, M3βV, T64βA, H173βN, T251βA, T388βA, E486βA and Y555βC compared to the wild type, S54βG, S150βT, N226βT, A310βD, R478βH and D541βD It may be to further include one or more mutations selected from. More preferably, one or more selected from the group consisting of S54βG, S150βT, N226βT, A310βD, R478βH and D541βE among the mutant APA sequences including the alpha subunit represented by SEQ ID NO: 5 and the beta subunit represented by SEQ ID NO: 8 It may be to further include a mutation.
예를들어, 상기 서열번호 5로 표시되는 알파 서브유닛 및 서열번호 8로 표시되는 베타 서브유닛을 포함하는 변이 APA 서열 중에서, S54βG 치환을 포함하는 폴리펩타이드, S150βT 치환을 포함하는 폴리펩타이드, N226βT 치환을 포함하는 폴리펩타이드, A310βD 치환을 포함하는 폴리펩타이드, R478βH 치환을 포함하는 폴리펩타이드 또는 D541βE 치환을 포함하는 폴리펩타이드와 같이 하나의 변이부위를 추가적으로 포함하는 것일 수 있으며, 또는For example, among the mutant APA sequences including the alpha subunit represented by SEQ ID NO: 5 and the beta subunit represented by SEQ ID NO: 8, a polypeptide including S54βG substitution, a polypeptide including S150βT substitution, and N226βT substitution It may be one that additionally includes one mutation site, such as a polypeptide including a polypeptide, a polypeptide including an A310βD substitution, a polypeptide including a R478βH substitution, or a polypeptide including a D541βE substitution, or
예를들어, 상기 서열번호 5로 표시되는 알파 서브유닛 및 서열번호 8로 표시되는 베타 서브유닛을 포함하는 변이 APA 서열 중에서, S54βG, S150βT, N226βT, A310βD, R478βH 및 D541βE로 이루어지는 군에서 임의로 선택된 2개의 변이, 3개의 변이, 4개의 변이, 5개의 변이, 또는 6개의 변이 부위를 포함하는 폴리펩타이드와 같이 다중 변이 부위를 가지는 것일 수 있으며, 이에 제한되지 않는다. For example, among the mutant APA sequences including the alpha subunit represented by SEQ ID NO: 5 and the beta subunit represented by SEQ ID NO: 8, 2 randomly selected from the group consisting of S54βG, S150βT, N226βT, A310βD, R478βH and D541βE It may have multiple mutation sites, such as a polypeptide including dog mutations, three mutations, four mutations, five mutations, or six mutation sites, but is not limited thereto.
가장 바람직하게 본원 발명의 변이 APA는, 상기 서열번호 5로 표시되는 알파 서브유닛 및 서열번호 8로 표시되는 베타 서브유닛을 포함하는 변이 APA에서, S54βG, R478βH 및 D541βE의 3개 변이(치환) 부위를 추가로 포함하는 것일 수 있다(야생형 대비 총 12개의 치환부위 포함, ZSH3-1 참조). 더욱 바람직하게, 본원 발명의 변이 APA는 서열번호 5로 표시되는 알파 서브유닛 및 서열번호 10으로 표시되는 베타 서브유닛을 포함하는 것일 수 있다. 이의 바람직한 제공형태로서, i) 서열번호 5로 표시되는 알파 서브유닛과 서열번호 10으로 표시되는 베타 서브유닛이 스페이서 펩타이드(예를들어, 서열번호 3)에 의하여 연결되어 구성된 단일 사슬 폴리펩타이드(예를들어, 서열번호 11)형태인 전구체형 단백질로서 제공될 수 있고, 또는 ii) 서열번호 5로 표시되는 알파 서브유닛 및 서열번호 10으로 표시되는 베타 서브유닛으로 구성된 성숙형 단백질로 제공될 수 있으나, 이에 제한되지 않는다.Most preferably, the mutant APA of the present invention is in the mutant APA comprising the alpha subunit represented by SEQ ID NO: 5 and the beta subunit represented by SEQ ID NO: 8, three mutation (substitution) sites of S54βG, R478βH and D541βE. It may be to further include (including a total of 12 substitution sites compared to the wild type, see ZSH3-1). More preferably, the variant APA of the present invention may include an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 10. As a preferred form of provision thereof, i) a single-chain polypeptide consisting of an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 10 are linked by a spacer peptide (eg, SEQ ID NO: 3). For example, it may be provided as a precursor protein in the form of SEQ ID NO: 11), or ii) may be provided as a mature protein consisting of an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 10. , Is not limited thereto.
한편, 본 발명은 상기 변이 페니실린 G On the other hand, the present invention is the mutant penicillin G
아실라제(변이 APA)를Acylase (mutant APA)
암호화하는 폴리뉴클레오티드를 제공한다. Encoding polynucleotides are provided.
상기 폴리뉴클레오티드는 본 발명의 변이 APA 폴리펩타이드를 암호화할 수 있는 한 폴리뉴클레오티드를 구성하는 염기 조합이 특별히 제한되지 않는다. 아미노산 서열이 밝혀진 경우, 당업계에 공지된 코돈 정보에 기초하여 상기 아미노산 서열을 암호화하는 폴리뉴클레오티드를 제조하는 기술은 당업계에 주지되어있다. 상기 폴리뉴클레오타이드는 DNA, cDNA 및 RNA 서열을 모두 포함하여 단쇄 또는 이중쇄의 형태의 핵산분자로서 제공될 수 있다.The combination of bases constituting the polynucleotide is not particularly limited as long as the polynucleotide can encode the mutant APA polypeptide of the present invention. When an amino acid sequence is identified, techniques for producing a polynucleotide encoding the amino acid sequence based on codon information known in the art are well known in the art. The polynucleotide may be provided as a single-stranded or double-stranded nucleic acid molecule including all DNA, cDNA and RNA sequences.
본 발명은 상기 폴리뉴클레오티드를 포함하는 재조합 발현 벡터를 제공한다. The present invention provides a recombinant expression vector comprising the polynucleotide.
본 발명에서 용어“재조합 발현벡터”란 적당한 숙주세포에서 목적 단백질 또는 목적 핵산(RNA)을 발현할 수 있는 벡터로서, 폴리뉴클레오티드(유전자) 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 말한다.In the present invention, the term "recombinant expression vector" is a vector capable of expressing a target protein or a target nucleic acid (RNA) in a suitable host cell, and a gene containing essential regulatory elements operably linked to express a polynucleotide (gene) insert It refers to the creation.
본 발명에서 용어, “작동가능하게 연결된(operably linked)"는 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질 또는 RNA를 코딩하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 것을 말한다. 즉, 단백질 또는 RNA를 코딩하는 핵산 서열(예를 들어 본 발명의 변이 APA를 암호화하는 폴리뉴클레오티드 서열)이 발현 조절 서열에 의해 유전자 발현이 가능하게 되는 방식으로 연결된 것을 의미하는 것으로, 예를들어 프로모터와 단백질 또는 RNA를 코딩하는 핵산 서열이 작동가능하게 연결되어야 코딩하는 핵산 서열의 발현에 영향을 미칠 수 있다. 재조합 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용한다.In the present invention, the term “operably linked” refers to a functional linkage between a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein or RNA of interest to perform a general function. , It means that a nucleic acid sequence encoding a protein or RNA (for example, a polynucleotide sequence encoding a mutant APA of the present invention) is linked in a manner that allows gene expression by an expression control sequence, for example, a promoter and The nucleic acid sequence encoding a protein or RNA must be operably linked to affect the expression of the encoded nucleic acid sequence, and the operative linkage with a recombinant vector can be prepared using gene recombination techniques well known in the art. In addition, site-specific DNA cleavage and ligation are performed using enzymes generally known in the art.
본 발명의 재조합 발현벡터는 상기 변이 APA를 암호화하는 폴리뉴클레오티드를 포함하는 것을 특징으로 한다. 본 발명에 따라 벡터 내에 클로닝된 상기 폴리뉴클레오티드 서열은 적절한 발현 조절 서열에 작동 가능하게 연결될 수 있으며, 상기 작동 가능하게 연결된 폴리뉴클레오타이드(유전자) 서열과 발현 조절서열은 벡터를 포함하는 숙주 세포를 선택하기 위한 선택 마커 및/또는 복제 기원(replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함 될 수 있다. 또한 상기 발현벡터는 발현조절 서열 및 필요에 따라 막표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 상기 발현 조절 서열(expression control sequence)이란 특정한 숙주 세포에서 작동 가능하게 연결된 폴리뉴클레오티드 서열의 발현을 조절하는 DNA 서열을 의미한다. 그러한 조절 서열은 전사를 실시하기 위한 프로모터, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 등을 포함한다. 상기 벡터의 프로모터는 구성적 또는 유도성일 수 있다.The recombinant expression vector of the present invention is characterized in that it contains a polynucleotide encoding the mutant APA. The polynucleotide sequence cloned into a vector according to the present invention may be operably linked to an appropriate expression control sequence, and the operably linked polynucleotide (gene) sequence and expression control sequence are used to select a host cell containing the vector. It may be included in an expression vector that includes a selection marker for and/or a replication origin. In addition, the expression vector includes an expression control sequence and, if necessary, a signal sequence or a leader sequence for membrane targeting or secretion, and may be prepared in various ways according to the purpose. The expression control sequence refers to a DNA sequence that controls the expression of a polynucleotide sequence operably linked in a specific host cell. Such regulatory sequences include promoters for carrying out transcription, any operator sequence for regulating transcription, sequences encoding suitable mRNA ribosome binding sites, sequences regulating the termination of transcription and translation, initiation codon, stop codon, polyadenylation. Includes signals and enhancers. The promoter of the vector may be constitutive or inducible.
시그널 서열에는 숙주가 에쉐리키아속균인 경우에는 PhoA 시그널 서열, OmpA 시그널 서열 등이, 숙주가 바실러스속균인 경우에는 α-아밀라아제 시그널 서열, 서브틸리신 시그널 서열 등이, 숙주가 효모인 경우에는 MFα 시그널 서열, SUC2 시그널 서열 등이, 숙주가 동물세포인 경우에는 인슐린 시그널서열, α-인터페론 시그널 서열, 항체 분자 시그널 서열 등을 이용할 수 있으나, 이에 제한되지 않는다.Signal sequences include PhoA signal sequence and OmpA signal sequence when the host is Escherichia bacteria, α-amylase signal sequence and subtilisin signal sequence when the host is Bacillus bacteria, and MFα when the host is yeast. Signal sequence, SUC2 signal sequence, etc., when the host is an animal cell, an insulin signal sequence, an α-interferon signal sequence, an antibody molecule signal sequence, and the like may be used, but are not limited thereto.
본 발명의 발현벡터는 클로닝분야에서 통상적으로 사용되는 벡터라면 그 종류가 특별히 제한되지 않으며, 예를들어 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 및 바이러스 벡터 등을 포함하나 이에 제한되지 않는다. 구체적으로 상기 플라스미드에는 대장균 유래 플라스미드(pBR322, pBR325, pUC118 및 pUC119, pET-22b(+)), 바실러스 서브틸리스 유래 플라스미드(pUB110 및 pTP5) 및 효모 유래 플라스미드(YEp13, YEp24 및 YCp50) 등이 있으며, 상기 바이러스는 레트로바이러스, 아데노바이러스 또는 백시니아 바이러스와 같은 동물바이러스, 배큘로바이러스와 같은 곤충 바이러스 등이 사용될 수 있으며, 이에 제한되지 않는다. 본 발명의 일실시예에서는 pBC-KS(+)를 사용한 바 있다. The expression vector of the present invention is not particularly limited if it is a vector commonly used in the cloning field, and includes, for example, a plasmid vector, a cosmid vector, a bacteriophage vector, and a viral vector, but is not limited thereto. Specifically, the plasmids include E. coli-derived plasmids (pBR322, pBR325, pUC118 and pUC119, pET-22b(+)), Bacillus subtilis-derived plasmids (pUB110 and pTP5), and yeast-derived plasmids (YEp13, YEp24, and YCp50). , The virus may be a retrovirus, an animal virus such as an adenovirus or a vaccinia virus, an insect virus such as a baculovirus, and the like, but is not limited thereto. In one embodiment of the present invention, pBC-KS(+) was used.
본 발명은 상기 발현벡터에 의해 형질전환된 숙주세포 및 미생물을 제공한다.The present invention provides host cells and microorganisms transformed by the expression vector.
상기 형질전환은 핵산(본 발명의 변이 APA를 암호화하는 폴리뉴클레오티드)을 유기체, 세포, 조직 또는 기관에 도입하는 어떤 방법도 포함되며, 당 분야에서 공지된 바와 같이 숙주 세포에 따라 적합한 표준 기술을 선택하여 수행할 수 있다. 이런 방법에는 전기천공법(electroporation), 원형질 융합, 인산 칼슘(CaPO
4)침전, 염화 칼슘(CaCl
2)침전, 실리콘 탄화물 위스터(Silicon carbide whiskers), 초음파 처리(sonication), 아그로 박테리아 매개된 형질전환, PEG(polyethylenglycol)에 의한 침전법, 덱스트란 설페이트, 리포펙타민, 열충격(heat shock)법, 입자 총 충격법(particle gun bombardment) 등이 포함되나 이로 제한되지 않는다. The transformation includes any method of introducing a nucleic acid (polynucleotide encoding the mutant APA of the present invention) into an organism, cell, tissue, or organ, and as known in the art, a suitable standard technique is selected according to the host cell. You can do it. These methods include electroporation, protoplasm fusion, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, silicon carbide whiskers, sonication, and agrobacterial mediated traits. Conversion, precipitation by PEG (polyethylenglycol), dextran sulfate, lipofectamine, heat shock, particle gun bombardment, etc. are included, but are not limited thereto.
상기 숙주세포(host cell)는 임의의 수단(예: 전기충격법, 칼슘 포스파타제 침전법, 미세주입법, 형질전환법, 바이러스 감염 등)에 의해 세포 내로 도입된 이종성 DNA를 포함하는 원핵 또는 진핵 세포를 의미한다.The host cell is a prokaryotic or eukaryotic cell containing heterologous DNA introduced into the cell by any means (e.g., electric shock method, calcium phosphatase precipitation method, microinjection method, transformation method, virus infection, etc.) it means.
본 발명에서 상기 숙주세포는 클로닝 분야에서 통상적으로 사용되는 모든 종류의 단세포 유기체, 예컨대 각종 박테리아(예컨대, Clostridia속, 대장균, 등) 등의 원핵세포 미생물, 효모 등의 하등 진핵세포 미생물과 곤충 세포, 식물 세포, 포유동물 등을 포함하는 고등 진핵생물 유래의 세포를 숙주세포로 사용할 수 있으며, 이에 제한되지 않는다. 숙주세포에 따라서 단백질의 발현량과 수식 등이 다르게 나타나므로, 당업자가 목적하는 바에 가장 적합한 숙주세포를 선택하여 사용할 수 있다.In the present invention, the host cells are all types of single-celled organisms commonly used in the field of cloning, such as prokaryotic microorganisms such as various bacteria (eg, Clostridia genus, E. coli, etc.), lower eukaryotic microorganisms such as yeast and insect cells, Cells derived from higher eukaryotes, including plant cells and mammals, can be used as host cells, but are not limited thereto. Since the expression level and modification of the protein differ depending on the host cell, a person skilled in the art can select and use the most suitable host cell for the purpose.
본 발명에서 상기 숙주세포는 클로스트리디아 속(
Clostridia spp., 예컨대, Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium saccharoperbutylacetonicum, 또는 Clostridium saccharobutylicum 등), 에세리치아 속(Escherichia spp.), 아세토박터 속(Acetobacter spp., 예컨대 Acetobacter turbidans, Acetobacter pasteurianus 등), 아에로모나스 속(Aeromonas spp.), 알칼리제네스 속(Alcaligenes spp.), 아파노클라디움 속(Aphanocladium spp.), 바실러스 속(Bacillus spp.), 세팔로스포리움 속(Cephalosporium spp.), 플라보박테리움 속(Flavobacterium spp.), 클루이베라 속(Kluyvera spp.), 미코플라나 속(Mycoplana spp.), 프로타미노박터 속(Protaminobacter spp.), 슈도모나스 속(Pseudomonas spp.), 아크로모박터 속(Achromobacter spp.) 및 잔토모나스 속(Xanthomonas spp., 예컨대 Xanthomonas citri 등)으로 이루어지는 군에서 선택된 어느 하나의 속(genus) 미생물일 수 있으며, 이에 제한되지 않는다. In the present invention, the host cells are Clostridia spp., such as Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium saccharoperbutylacetonicum, or Clostridium saccharobutylicum, etc.), Escherichia spp., Acetobacter spp. , Such as Acetobacter turbidans, Acetobacter pasteurianus, etc.), Aeromonas spp., Alcaligenes spp., Aphanocladium spp., Bacillus spp., three. Cephalosporium spp., Flavobacterium spp., Kluyvera spp., Mycoplana spp., Protaminobacter spp., Pseudomonas spp. It may be any one genus microorganism selected from the group consisting of the genus Pseudomonas spp., Achromobacter spp., and the genus Xanthomonas (such as Xanthomonas citri), but is not limited thereto Does not.
상기 에세리치아 속 미생물은 바람직하게 에세리치아 콜라이(대장균, Escherichia coli)일 수 있으며, 본 발명의 일 실시예에서는 상기 변이 APA를 발현하도록 형질전환된 미생물로서 에세리치아 콜라이 MC1061/pBC-ZSH3-1(
Escherichia
coli MC1061/pBC-ZSH3-1, 기탁번호 KCTC 13991BP)의 균주를 제공한다. 상기 에세리치아 콜라이 MC1061/pBC-ZSH3-1은 서열번호 5로 표시되는 알파 서브유닛 및 서열번호 10으로 표시되는 베타 서브유닛을 포함하는 폴리펩타이드, 또는 상기 유닛들로 구성되는 폴리펩타이드를 발현한다. 즉, 상기 에세리치아 콜라이 MC1061/pBC-ZSH3-1은 서열번호 5 및 서열번호 10의 아미노산 서열을 암호화하는 폴리뉴클레오티드를 포함하는 재조합 발현벡터에 의해 형질전환된 것이다.The microorganism of the genus Escherichia may preferably be Escherichia coli (Escherichia coli), and in an embodiment of the present invention, Escherichia coli MC1061/pBC-ZSH3 as a transformed microorganism to express the mutant APA A strain of -1 ( Escherichia coli MC1061/pBC-ZSH3-1, accession number KCTC 13991BP) is provided. The Escherichia coli MC1061/pBC-ZSH3-1 expresses a polypeptide comprising an alpha subunit represented by SEQ ID NO: 5 and a beta subunit represented by SEQ ID NO: 10, or a polypeptide consisting of the units. . That is, the Escherichia coli MC1061/pBC-ZSH3-1 is transformed by a recombinant expression vector containing a polynucleotide encoding the amino acid sequence of SEQ ID NO: 5 and SEQ ID NO: 10.
또한 본Also seen
발명은, 전술한 본원 발명의 변이 페니실린 G The invention is the above-described mutant penicillin G of the present invention
아실라제를Acylase
포함하는 세파졸린 제조용(합성용) 조성물을 제공한다. It provides a composition for producing (synthetic) cefazoline comprising.
전술한 바와 같이 본원 발명의 변이 APA는 세파졸린을 합성하는데 있어서 현저한 이점을 제공한다. 따라서 본원 발명은, 상기 본원 발명의 변이 APA들의 세파졸린 합성을 위한 용도를 제공한다. As described above, the mutant APA of the present invention provides remarkable advantages in synthesizing cefazoline. Accordingly, the present invention provides a use of the mutant APAs of the present invention for the synthesis of cefazoline.
본 발명에 따른 변이 APA는 전술한 서열 정보를 참조로 하여 당업계에 공지된 단백질 제조 방법에 의해 제조될 수 있으며, 이에 제한되지 않으나 일례로 유전공학적 방법에 의해 작제될 수 있다. 예를들면, 통상적인 방법에 따라 상기 변이 APA 폴리펩타이드를 암호화하는 핵산을 작제한다. 상기 핵산은 적절한 프라이머를 사용하여 PCR 증폭함으로써 작제할 수 있다. 다른 방법으로 당업계에 공지된 표준 방법에 의해, 예컨대, 자동 DNA 합성기(Biosearch 또는 Applied Biosystems 사에서 판매하는 것)을 사용하여 DNA 서열을 합성할 수도 있다. 작제된 핵산은 이에 작동가능하게 연결되어(operatively linked) 핵산의 발현을 조절하는 하나 이상의 발현 조절 서열(expression control sequence, 예를들어 프로모터, 인핸서 등)을 포함하는 벡터에 삽입시키고, 이로부터 형성된 재조합 발현 벡터로 숙주세포를 형질전환시킨다. 생성된 형질전환체를 상기 핵산이 발현되기에 적절한 배지 및 조건 하에서 배양하여, 배양물로부터 상기 핵산에 의해 발현된, 실질적으로 순수한 폴리펩티드를 회수한다. 상기 회수는 당업계에 공지된 방법(예컨대, 크로마토그래피)을 이용하여 수행할 수 있다. 그리고 상기와 같이 제조된 본 발명의 변이 APA를 목적산물 제조를 위해서 그대로 사용하거나 또는 정제하여 사용하는 것이 가능하다. 변이 APA 효소의 분리정제는 기존에 밝혀진 APA의 성질을 이용하여 다양한 크로마토그래피 방법에 의한 단백질 분리 방법을 그대로 사용하거나 실험 목적에 맞게 약간 변형하여 사용 가능하다. 또한, 히스티딘 펩티드와 니켈 컬럼 성분과의 결합력 또는 섬유소 결합부위 (cellulose binding domain, CBD), 섬유소와의 결합력 등과 같은 특정 결합력 성질을 이용한 친화성 크로마토그래피 (affinity chromatography) 방법에 의해 변이 APA를 정제하는 것도 가능하다.The mutant APA according to the present invention may be prepared by a protein production method known in the art with reference to the above-described sequence information, but is not limited thereto, but may be prepared by a genetic engineering method. For example, a nucleic acid encoding the mutant APA polypeptide is constructed according to a conventional method. The nucleic acid can be constructed by PCR amplification using appropriate primers. Alternatively, the DNA sequence may be synthesized by standard methods known in the art, for example, using an automatic DNA synthesizer (available from Biosearch or Applied Biosystems). The constructed nucleic acid is operatively linked thereto and inserted into a vector containing one or more expression control sequences (e.g., promoters, enhancers, etc.) that control the expression of the nucleic acid, and recombination formed therefrom. The host cell is transformed with the expression vector. The resulting transformant is cultured under a medium and conditions suitable for expression of the nucleic acid to recover the substantially pure polypeptide expressed by the nucleic acid from the culture. The recovery may be performed using a method known in the art (eg, chromatography). And it is possible to use the mutant APA of the present invention prepared as described above as it is for the production of the target product or to use it after purification. For the separation and purification of the mutant APA enzyme, the protein separation method by various chromatographic methods can be used as it is or slightly modified to suit the purpose of the experiment using the properties of APA that have been previously discovered. In addition, the mutant APA is purified by affinity chromatography using specific avidity properties such as binding strength between histidine peptide and nickel column components, cellulose binding domain (CBD), and binding strength with fibrin. It is also possible.
상기에서 "실질적으로 순수한 폴리펩티드(substally pure polypeptide)"라 함은 본 발명에 따른 폴리펩티드가 숙주세포로부터 유래된 어떠한 다른 단백질도 실질적으로 포함하지 않는 것을 의미한다. 본 발명의 폴리펩티드 합성을 위한 유전공학적 방법은 당업계에 공지되어 있다.The term "substally pure polypeptide" as used herein means that the polypeptide according to the present invention does not contain substantially any other protein derived from a host cell. Genetic engineering methods for synthesizing the polypeptide of the present invention are known in the art.
또한, 본 발명의 변이 APA는 당업계에 공지된 화학적 합성에 의해 쉽게 제조될 수 있다. 대표적인 방법으로서 이들로 한정되는 것은 아니지만 액체 또는 고체상 합성, 단편 응축, F-MOC 또는 T-BOC 화학법이 포함된다.In addition, the mutant APA of the present invention can be easily prepared by chemical synthesis known in the art. Representative methods include, but are not limited to, liquid or solid phase synthesis, fragment condensation, F-MOC or T-BOC chemistry.
본 발명의 변이 APA는 유리(free) 상태뿐만 아니라 고정화시킨 상태로 사용하는 것이 가능하다. 변이 APA의 고정화는, 당업계에 공지된 통상적인 단백질 고정 방법에 의해 가능한데, 담체로서는 섬유소, 전분, 덱스트란, 아가로즈(agarose) 등의 천연 폴리머; 폴리아크릴아마이드(polyacrylamide), 폴리아크릴레이트(polyacrylate), 폴리메타크릴레이트(polymethacylate), 유퍼짓 C(Eupergit C) 등의 합성 폴리머; 또는 실리카(silica), 벤토나이트(bentonite), 금속과 같은 미네랄 등이 사용 가능하다. 또한, 이들 담체에 공유결합, 이온결합, 소수성 결합, 물리적 흡착, 마이크로 인캡슐레이션(microencapsulation) 등에 의해 변이 APA를 결합시키는 것이 가능하다. 아울러, 이들 담체-효소 결합체가 글루타르알데히드 (glutaraldehyde), 시아노겐 브로마이드(cyanogen bromide) 등의 작용에 의해 공유결합을 형성함으로써 변이 APA를 고정화시키는 것도 가능하다. 또한, 더욱 바람직한 방법으로는 변이 APA를 따로 정제할 필요가 없이 변이 APA를 함유한 미생물 세포를 그대로 고정화하여 사용하는 것도 가능하다. 이와 같은 전세포 고정화 (whole cell immobilization)시 미생물에 함유된 변이 APA의 반응성을 높이기 위하여 세포에 구멍을 내거나 표면발현 등의 기술을 적용할 수도 있다.The mutant APA of the present invention can be used not only in a free state but also in an immobilized state. Immobilization of the mutant APA is possible by a conventional protein immobilization method known in the art. Examples of the carrier include natural polymers such as cellulose, starch, dextran, and agarose; Synthetic polymers such as polyacrylamide, polyacrylate, polymethacylate, and Eupergit C; Alternatively, minerals such as silica, bentonite, and metal may be used. In addition, it is possible to bind mutant APA to these carriers by covalent bonding, ionic bonding, hydrophobic bonding, physical adsorption, microencapsulation, or the like. In addition, it is also possible to immobilize mutant APA by forming a covalent bond by the action of these carrier-enzyme conjugates such as glutaraldehyde or cyanogen bromide. In addition, as a more preferable method, it is also possible to use by immobilizing microbial cells containing mutant APA as it is without the need to separately purify mutant APA. In order to increase the reactivity of mutant APA contained in microorganisms during such whole cell immobilization, techniques such as drilling a hole or surface expression may be applied.
본 발명의 상기 세파졸린 제조용 조성물에서, 상기 용어 “변이 APA를 포함”은 조성물에 처음부터 변이 APA 폴리펩타이드 자체를 포함하는 직접적 방식뿐만 아니라, 상기 변이 APA를 암호화(코딩)하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현벡터 및 상기 발현벡터로 형질전환된 숙주세포(미생물)로 이루어지는 군에서 선택된 어느 하나 이상의 것을 조성물 내에 포함하여 궁극적으로 변이 APA의 생성을 유도하는 간접적인 방식을 모두 포함하는 의미이다.In the composition for preparing cefazoline of the present invention, the term "including mutant APA" refers to a polynucleotide encoding (coding) the mutant APA as well as a direct method including the mutant APA polypeptide itself from the beginning in the composition, the poly It means including all indirect methods of inducing the production of mutant APA by including in the composition any one or more selected from the group consisting of an expression vector containing a nucleotide and a host cell (microorganism) transformed with the expression vector. .
구체적으로 본원 발명은, Specifically, the present invention,
테트라졸릴아세트산Tetrazolylacetic acid
에스테르와 3-[5- Esters and 3-[5-
메틸methyl
-1,3,4--1,3,4-
티오디아졸Thiodiazole
-2-일]-7--2-yl]-7-
아미노세팔로스포린산으로부터From aminocephalosporic acid
세파졸린( Cefazoline (
cefazolincefazolin
)을 )of
효소적으로Enzymatically
합성하는 Synthetic
방법에 있어서In a way
, 상기 본원 발명의 변이 페니실린 G , The mutant penicillin G of the present invention
아실라제를Acylase
사용하는 것을 특징으로 하는 세파졸린의 Of cefazoline, characterized in that it is used
효소적 합성(제조)Enzymatic synthesis (manufacturing)
방법을 제공한다. Provides a way.
상기 세파졸린 합성(제조) 과정 중 제공되는 본원 발명의 상기 변이 APA 효소는, 상기 변이 APA 폴리펩타이드를 함유하는 조성물 또는 상기 변이 APA 생산균주 배양물의 형태로 제공될 수 있고, 상기 변이 APA를 유리(free) 상태 또는 고정화 시킨 상태로 제공될 수 있으나, 이제 제한되지 않으며 전술한 바를 참고로 이해된다.The mutant APA enzyme of the present invention provided during the process of synthesizing (manufacturing) cefazoline may be provided in the form of a composition containing the mutant APA polypeptide or a culture of the mutant APA producing strain, and the mutant APA is free ( It may be provided in a free) state or in a fixed state, but is now not limited and is understood with reference to the foregoing.
본 발명의 변이 APA 효소의 활성이 손실되지 않는 조건이라면, 전술한 합성 과정들 중 각 기질들의 반응 조건이 특별히 제한되지 않으나, 바람직하게 수용액(물 또는 완충용액) 상에서 이루어지는 것일 수 있으며, 바람직한 반응 혼합액의 pH는 pH5 내지 pH9 범위 내에서, 바람직한 반응시간은 0.1 내지 24시간 범위 내에서, 바람직한 반응온도는 3 내지 30℃ 범위 내에서 선택될 수 있다. 상기 조건들은 1회 반응에 사용되는 반응기질 및 효소의 양과 원하는 공정 속도 및 효율 등에 따라 당업자가 적의선택하여 조절할 수 있다. As long as the activity of the mutant APA enzyme of the present invention is not lost, the reaction conditions of each of the substrates in the above-described synthesis process are not particularly limited, but may be preferably made in an aqueous solution (water or buffer solution), and a preferred reaction mixture The pH of may be selected within the range of pH5 to pH9, the preferred reaction time within the range of 0.1 to 24 hours, and the preferred reaction temperature within the range of 3 to 30°C. The above conditions can be appropriately selected and adjusted by a person skilled in the art depending on the amount of reactive substances and enzymes used in one reaction, and the desired process speed and efficiency.
세파졸린 합성(제조) 과정 중 기질로서 제공되는 MMTD-7-ACA(3-[5-메틸-1,3,4-티오디아졸-2-일]-7-아미노세팔로스포린산)와 TzAA 에스테르(테트라졸릴아세트산 에스테르)가 반응혼합물 내에 첨가되는 농도 및 비율은 특별히 제한되지 않으나, 예를들어 MMTD-7-ACA: TzAA 에스테르 비율은 1:1 내지 1:1.5 일 수 있고, 바람직하게 산업적 경제적 측면에서의 본 발명의 이점을 고려하였을 때 1:1의 비율로 사용될 수 있다.MMTD-7-ACA (3-[5-methyl-1,3,4-thiodiazol-2-yl]-7-aminocephalosporic acid) and TzAA, which are provided as substrates during the synthesis (manufacturing) process of cefazoline The concentration and ratio at which the ester (tetrazolyl acetic acid ester) is added in the reaction mixture are not particularly limited, but for example, the MMTD-7-ACA: TzAA ester ratio may be 1:1 to 1:1.5, preferably industrial and economical. Considering the advantages of the present invention in terms of, it can be used in a ratio of 1:1.
상기 반응 혼합물에서 본 발명의 변이 APA의 첨가량은 특별히 제한되지 않으나, 예를 들어 0.1~100 U/㎖ 범위 내일 수 있으며, 바람직하게는 반응 혼합물 내에 포함되는 기질 화합물들의 총량에 대하여 2~10%(w/w)의 비율로 포함될 수 있다.The addition amount of the mutant APA of the present invention in the reaction mixture is not particularly limited, but may be, for example, in the range of 0.1 to 100 U/ml, and preferably 2 to 10% ( w/w).
반응 과정에서 최종 생성된 세파졸린은 당업계에 공지된 통상의 화합물 정제방법(예를들어, 크로마토그래피 등)에 의해 반응액으로부터 분리 및 정제될 수 있다. The cefazoline finally produced in the reaction process can be separated and purified from the reaction solution by a conventional compound purification method known in the art (eg, chromatography, etc.).
또한 본 발명은, 세파졸린(cefazolin)을 제조하기 위한 전술한 본원 발명의 변이 페니실린 G 아실라제의 용도를 제공한다.In addition, the present invention provides the use of the above-described mutant penicillin G acylase of the present invention for producing cefazolin.
본 명세서에서 용어 “을 포함하는(comprising)”이란 “함유하는(including)” 또는 “특징으로 하는(characterized by)”과 동일한 의미로 사용되며, 본 발명에 따른 조성물 또는 방법에 있어서, 구체적으로 언급되지 않은 추가적인 구성 성분 또는 방법의 단계 등을 배제하지 않는다. 또한 용어 “로 이루어지는(consisting of)”이란 별도로 기재되지 않은 추가적인 요소, 단계 또는 성분 등을 제외하는 것을 의미한다. 용어 “필수적으로 이루어지는(essentially consisting of)”이란 조성물 또는 방법의 범위에 있어서, 기재된 물질 또는 단계와 더불어 이의 기본적인 특성에 실질적으로 영향을 미치지 않는 물질 또는 단계 등을 포함할 수 있는 것을 의미한다.In the present specification, the term “comprising” is used in the same meaning as “including” or “characterized by”, and in the composition or method according to the present invention, specifically mentioned It does not exclude additional components or steps of the method that have not been made. In addition, the term “consisting of” means excluding additional elements, steps, or ingredients that are not separately described. The term “essentially consisting of” means that, in the scope of a composition or method, it is possible to include a substance or step that does not substantially affect its basic properties in addition to the described substance or step.
본 발명에서 개시하는 특유의 변이 형태를 지니는 Achromobacter sp. CCM 4824 유래 페니실린 G 아실라제 변이체들은, 세파졸린(Cefazolin)에 대하여 특이적으로 생산성이 현저하게 증가된 것이 특징이다. 구체적으로 본 발명의 변이 APA들은 이의 야생형 효소 및 기존에 알려진 다른 변이형태 대비, 특이적으로 세파졸린(cefazolin)에 대한 합성활성이 매우 높으면서도, 세파졸린 합성에 사용되는 기질에 대한 분해활성 대비 합성비율(S/H ratio)이 현저히 높아, 산업적 적용에 있어서 유의한 수준으로 세파졸린 생산성이 현저하게 증가된 것이 특징이다.Achromobacter sp. The penicillin G acylase variants derived from CCM 4824 are characterized by a marked increase in productivity specifically for cefazoline (Cefazolin). Specifically, the mutant APAs of the present invention are synthesized compared to their wild-type enzymes and other previously known mutant forms, while having very high synthetic activity specifically for cefazolin, compared to their degradation activity for substrates used for sefazoline synthesis The ratio (S/H ratio) is remarkably high, and the productivity of cefazoline is remarkably increased to a significant level in industrial applications.
도 1은 본원 발명의 변이체들 중 대표적으로 ZSH1-13 변이체, ZSH2-5 변이체 및 ZSH3-1 변이체의 아미노산 치환 부위를 나타낸다. 1 shows the amino acid substitution sites of the ZSH1-13 variant, the ZSH2-5 variant, and the ZSH3-1 variant representatively among the variants of the present invention.
도 2는 전구체(기질)인 TzAAMe 및 TDA로부터 효소반응을 통하여 세파졸린을 합성하는 반응(S)과, 분해 반응으로서 상기 전구체 중 TzAAMe의 TzAA로의 가수분해반응(H1) 및 상기 세파졸린의 TzAAMe 및 TDA로의 가수분해반응(H2)을 나타낸다.Figure 2 is a reaction (S) for synthesizing cefazoline from precursors (substrates) TzAAMe and TDA through an enzymatic reaction (S), a hydrolysis reaction of TzAAMe to TzAA in the precursor as a decomposition reaction (H1), and TzAAMe of the cefazoline and Hydrolysis reaction to TDA (H2) is shown.
도 3은 ZSH3-1 변이체에 의한 세파졸린 합성 반응에 있어서, 시간에 따른 세파졸린 전환율, 잔존 TzAAMe양, TzAA의 생성량을 나타낸 데이터이다.FIG. 3 is data showing the conversion rate of cefazoline, the amount of remaining TzAAMe, and the amount of TzAA produced over time in the synthesis of cefazoline by the ZSH3-1 variant.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited to the following examples.
실시예 1: Achromobacter sp.CCM 4824 유래 페니실린 G 아실라제(Penicillin G acylase, APA) 야생형의 제조Example 1: Preparation of penicillin G acylase (APA) wild type derived from Achromobacter sp.CCM 4824
1-1. Achromobacter sp. CCM 4824 유래 페니실린 G 아실라제(Penicillin G acylase, APA) 야생형을 발현하는 유전자의 합성1-1. Achromobacter sp. Synthesis of a gene expressing the penicillin G acylase (APA) wild type derived from CCM 4824
야생형 APA(Achromobacter sp. CCM 4824 유래 페니실린 G 아실라제)는 전구체(precursor)형으로서 서열번호 1로 표시되는 알파 서브유닛과 서열번호 2로 표시되는 베타 서브유닛이 서열번호 3으로 표시되는 스페이서(spacer) 펩타이드에 의하여 연결된 단일 사슬 폴리펩티드(서열번호 4)로서 발현되며, 그 후 세포 내에서 자기 촉매적 프로세싱(autocatalytic processing)을 통해 상기 알파 서브유닛과 베타 서브유닛으로 구성된 성숙형(mature)의 활성 이량체 형태를 갖게 된다. 서열번호 4의 야생형 APA 전구체를 발현하는 유전자(“apa 유전자”로 약칭)를 바이오니아(대전, 한국) 회사에 의뢰하여 합성하였다. Wild-type APA (penicillin G acylase derived from Achromobacter sp. ) Expression as a single-chain polypeptide linked by a peptide (SEQ ID NO: 4), and then through autocatalytic processing in cells, a mature active dimer consisting of the alpha subunit and the beta subunit It has a body shape. A gene expressing the wild-type APA precursor of SEQ ID NO: 4 (abbreviated as “apa gene”) was synthesized by requesting a company Bioneer (Daejeon, Korea).
1-2. 야생형 APA를 발현하는 재조합 벡터(pBC-APA)의 제조1-2. Preparation of recombinant vector expressing wild-type APA (pBC-APA)
상기 실시예 1-1에서 수득된 apa 유전자를 pBC-KS(+) 벡터(Stratagene사, 미국)의 XbaI과 NotI 제한효소 인식부위에 삽입하여 야생형 APA를 발현하기 위한 pBC-APA 플라스미드를 제작하였다. 구체적인 제조방법은 다음과 같다.The apa gene obtained in Example 1-1 was inserted into the XbaI and NotI restriction enzyme recognition sites of a pBC-KS(+) vector (Stratagene, USA) to prepare a pBC-APA plasmid for expressing wild-type APA. The specific manufacturing method is as follows.
상기 apa 유전자 DNA 산물(약 2.6 kb 크기)을 제한효소 XbaI과 NotI로 절단한 후, 정제 키트 (QIAquick Gel Extraction Kit ; QIAGEN사, 독일)로 정제하여 이를 삽입 DNA로 사용하였다. 또한, pBC KS(+) 벡터(Stratagene사, 미국) DNA를 제한효소 XbaI과 NotI로 절단하고 CIP로 탈인산화 시킨 DNA 단편을 벡터 DNA로 사용하였다. 상기 삽입 DNA와 벡터 DNA를 T4 DNA 리가제 (New England Biolabs, 스웨덴)를 이용하여 16℃에서 12~16시간 동안 접합(ligation) 시킨 후, 접합액을 이용하여 전기천공법(electrophoration)으로 E. coli MC1061 균주에 형질전환을 수행하였다. 상기 균주를 20 μg/mL 농도의 클로람페니콜 항생제를 함유한 LB 한천배지에 도말하여 30℃에서 하룻밤 정치 배양함으로써 형질전환체들을 선별하였다. 이 형질전환체로부터 플라스미드를 분리하여 삽입 DNA의 염기서열을 결정함으로써, apa 유전자를 포함하는 pBC-APA 플라스미드를 최종 수득하였다. 상기 pBC-APA 플라스미드는 야생형 APA 단백질을 발현한다. The apa gene DNA product (about 2.6 kb in size) was digested with restriction enzymes XbaI and NotI, and then purified with a purification kit (QIAquick Gel Extraction Kit; QIAGEN, Germany), and used as insertion DNA. In addition, pBC KS(+) vector (Stratagene, USA) DNA was digested with restriction enzymes XbaI and NotI, and a DNA fragment dephosphorylated with CIP was used as vector DNA. The inserted DNA and the vector DNA were ligated at 16° C. for 12 to 16 hours using T4 DNA ligase (New England Biolabs, Sweden), and then E. coli MC1061 strain was transformed. Transformants were selected by spreading the strain on LB agar medium containing chloramphenicol antibiotics at a concentration of 20 μg/mL and incubating at 30° C. overnight. By separating the plasmid from this transformant and determining the nucleotide sequence of the inserted DNA, a pBC-APA plasmid containing the apa gene was finally obtained. The pBC-APA plasmid expresses a wild type APA protein.
Cefazolin에 대하여 높은 수준의 합성능을 나타냄과 동시에, 반응 기질을 가수분해하는 활성이 현저히 감소된 변이체를 제조하고자 하기 실시예 2 및 3과 같은 무수한 과정을 수행하였으며, 하기 실시예 2 및 실시예 3은 무수한 과정들 중의 일례를 대표적으로 보여준다. 이하에서 제조되는 변이체들은 알파 서브유닛과 베타 서브유닛 각각에 대한 아미노산 위치에 대해 구체적 변이 형태로 표시한다. In order to prepare a variant having a high level of synthesizing ability with respect to Cefazolin and significantly reduced activity of hydrolyzing a reaction substrate, numerous procedures as in Examples 2 and 3 were performed, and Examples 2 and 3 below. Represents an example of a myriad of processes. The variants produced below are indicated in specific mutant forms for amino acid positions for each of the alpha subunit and beta subunit.
실시예 2: cefazolin 합성활성이 높은 변이체의 제조 및 선별Example 2: Preparation and selection of a mutant having high cefazolin synthesis activity
2-1. 에러 유발성 중합효소연쇄반응(error prone PCR)에 의한 1차 변이체 라이브러리의 제조2-1. Preparation of primary variant library by error prone PCR
cefazolin 합성활성이 증가된 변이 APA를 제조하기 위해서 상기 실시예 1에서 합성한 apa 유전자의 염기서열에 인위적으로 무작위 돌연변이를 유발하였고, 이를 위해 에러 유발성 중합효소연쇄반응(error prone PCR)을 수행함으로써 돌연변이 라이브러리를 제조하였다. 구체적인 돌연변이 라이브러리의 제조과정은 하기에 설명한 바와 같다. To prepare mutant APA with increased cefazolin synthesis activity, random mutation was artificially induced in the nucleotide sequence of the apa gene synthesized in Example 1, and for this purpose, error prone PCR was performed. A mutant library was prepared. The manufacturing process of the specific mutation library is as described below.
구체적으로, 에러 유발성 중합효소 연쇄반응은 Diversity PCR Random Mutagenesis kit (Clontech사, 미국)를 사용하여 1,000 bp당 1-2개의 돌연변이가 일어나도록 하였다. PCR 반응액의 조성은 주형 DNA로서 1 ng/μL의 pBC-APA 플라스미드를 사용하고, 각 10 pmol의 T3 프라이머(서열번호 12)와 T7 프라이머(서열번호 13), 2 mM dGTP, 50X Diversity dNTP mix, 10X TITANIUM Taq buffer, TITANIUM Taq polymerase로 최종부피는 50 μL로 수행하였다. PCR 반응조건은 반응 혼합액을 96℃에서 2분 동안 전-변성시키고 변성을 96℃에서 30초, 어닐링을 52℃에서 30초 및 중합을 68℃에서 3분 동안 수행하는 반응을 18회 반복한 후 68℃에서 5분 동안 후-중합시켰다. 상기 조건의 에러 유발성 중합효소 연쇄반응을 수행하여 약 2.7 kb 크기의 변이체 DNA 단편을 증폭하였다.Specifically, the error-prone polymerase chain reaction was performed using the Diversity PCR Random Mutagenesis kit (Clontech, USA) to cause 1-2 mutations per 1,000 bp. The composition of the PCR reaction solution was 1 ng/μL of pBC-APA plasmid as template DNA, and 10 pmol of each T3 primer (SEQ ID NO: 12) and T7 primer (SEQ ID NO: 13), 2 mM dGTP, 50X Diversity dNTP mix , 10X TITANIUM Taq buffer, TITANIUM Taq polymerase, the final volume was carried out in 50 μL. PCR reaction conditions are: The reaction mixture is pre-denatured at 96°C for 2 minutes, denaturation is performed at 96°C for 30 seconds, annealing is performed at 52°C for 30 seconds, and polymerization is performed 18 times at 68°C. Post-polymerization was performed at 68° C. for 5 minutes. The error-prone polymerase chain reaction under the above conditions was performed to amplify a mutant DNA fragment having a size of about 2.7 kb.
상기 PCR을 통해 얻은 변이 유전자 즉, 2.7kb의 PCR 산물을 제한효소 XbaI과 NotI로 절단한 후 정제 키트 (QIAquick Gel Extraction Kit ; QIAGEN사, 독일)를 사용하여 정제한 후 삽입 DNA로 사용하였고, pBC-KS(+) 벡터 DNA를 제한효소 XbaI과 NotI로 절단하고 CIP로 탈인산화시킨 DNA 단편을 벡터 DNA로 사용하였다. 상기의 삽입 DNA와 벡터 DNA를 T4 DNA 리가제 (New England Biolabs, 스웨덴)를 이용하여 16℃에서 16시간 동안 접합시킨 후, 접합액을 이용하여 전기천공법에 의한 E. coli MC1061 균주의 형질전환을 수행하였다. 상기 균주를 20 μg/mL 농도의 클로람페니콜 항생제를 함유한 LB 한천배지에 도말하여 30℃에서 하룻밤 정치 배양함으로써 무작위 돌연변이 라이브러리를 제조하였다.The mutant gene obtained through the above PCR, that is, the PCR product of 2.7 kb, was digested with restriction enzymes XbaI and NotI, purified using a purification kit (QIAquick Gel Extraction Kit; QIAGEN, Germany), and used as the insertion DNA, pBC -KS(+) vector DNA was digested with restriction enzymes XbaI and NotI, and a DNA fragment dephosphorylated with CIP was used as vector DNA. The inserted DNA and the vector DNA were conjugated using T4 DNA ligase (New England Biolabs, Sweden) at 16° C. for 16 hours, and then the E. coli MC1061 strain was transformed by electroporation using a conjugation solution. Was performed. The strain was plated on LB agar medium containing chloramphenicol antibiotics at a concentration of 20 μg/mL and cultured overnight at 30° C. to prepare a random mutant library.
상기 돌연변이 라이브러리로부터 Cefazolin 합성에 대한 반응성이 증가된 변이 APA를 하기와 같은 방법으로 탐색하였다. Cefazolin 합성을위한 반응기질 및 구체적 화학반응 과정은 도 2에 도시되었다. 돌연변이가 유발된 변이 apa 유전자를 함유한 E. coli MC1061 형질전환체를 클로람페니콜 항생제가 함유된 LB 액체배지가 160μl씩 분주된 96-웰 플레이트에 접종한 후, 23℃, 165 rpm 조건으로 60~70시간 동안 진탕 배양하였다. 그 후 상기 96-웰 플레이트에서 20μl씩의 배양액을 취하여 이를 새로운 96-웰 플레이트로 옮기고 105 μL의 세포 분해용액(1.25mg/mL 라이소자임(lysozyme), 1.25 mM EDTA, 0.375% Triton X-100)을 넣은 후 25℃에서 2시간 동안 방치하고, 10℃에서 1시간 동안 방치하였다. 그 후, 100 mM Ammonium phosphate (pH 7.5) 완충용액에 10mM TDA 및 이를 기준으로 1:1 기질비율인 10mM의 TzAAMe를 녹여 제조한 기질용액 125μL를 첨가한 후 10℃에서 16~18시간 동안 합성반응을 수행하였다. 합성반응을 수행한 후 반응액 중의 상등액 40 μL를 새로운 96-웰 플레이트로 옮겼다. 여기에 반응 정지액 0.2 N HCl 100 μL를 첨가하여 효소반응을 정지시킨 후 HPLC를 사용하여 Cefazolin 합성활성이 증가된 변이체를 탐색하였다. HPLC 분석 조건은 0.01 M Potassium phosphate (pH 6.8)와 Methanol (7:3)을 용매로 사용하였고, 컬럼은 YMC-Triart C18, 250*4.6mm를 사용하였으며, 10 μL를 주입하여 0.8 mL/min으로 흘려서 270 nm에서 12분간 분석하였다.The mutant APA having increased reactivity to Cefazolin synthesis from the mutant library was searched for in the following manner. The reaction quality and specific chemical reaction process for the synthesis of Cefazolin are shown in FIG. 2. The E. coli MC1061 transformant containing the mutant apa gene in which the mutation was induced was inoculated into a 96-well plate dispensed with 160 μl of LB liquid medium containing chloramphenicol antibiotics, and then 60-70 at 23°C and 165 rpm. It was incubated with shaking for hours. Thereafter, 20 μl of culture solution was taken from the 96-well plate, transferred to a new 96-well plate, and 105 μL of cell lysis solution (1.25 mg/mL lysozyme, 1.25 mM EDTA, 0.375% Triton X-100) was added. After the addition, it was left at 25° C. for 2 hours, and then at 10° C. for 1 hour. Thereafter, 125 μL of a substrate solution prepared by dissolving 10 mM TDA and 10 mM TzAAMe, which is a 1:1 substrate ratio based on 100 mM Ammonium phosphate (pH 7.5) buffer solution, was added, followed by synthesis reaction at 10° C. for 16 to 18 hours. Was performed. After performing the synthesis reaction, 40 μL of the supernatant in the reaction solution was transferred to a new 96-well plate. The enzyme reaction was stopped by adding 100 μL of the reaction stop solution 0.2 N HCl, and then the mutant with increased Cefazolin synthesis activity was searched for using HPLC. HPLC analysis conditions were 0.01 M Potassium phosphate (pH 6.8) and Methanol (7:3) as solvents, YMC-Triart C18, 250*4.6mm was used as the column, and 10 μL was injected at 0.8 mL/min. Flowed and analyzed at 270 nm for 12 minutes.
상기와 같은 방법으로 7개의 변이체에서 cefazolin 합성 활성이 증가됨을 확인하였다. 7개 변이체는 유전자의 염기서열 결정을 통하여, 야생형 대비 각각 A116αT(ZEP1-9), I156αN(ZEP1-10), H173βN(ZEP1-12), Y555βC(ZEP1-13), E486βA(ZEP1-18), N169αT(ZEP1-26), 또는 T251βA(ZEP1-33) 로 돌연변이 되었음을 확인하였다.It was confirmed that cefazolin synthesis activity was increased in 7 mutants by the same method as described above. Seven variants were determined by gene sequence determination, respectively, compared to wild-type A116αT(ZEP1-9), I156αN(ZEP1-10), H173βN(ZEP1-12), Y555βC(ZEP1-13), E486βA(ZEP1-18), It was confirmed that it was mutated to N169αT (ZEP1-26), or T251βA (ZEP1-33).
2-2. 위치지정 돌연변이(DNA shuffling)에 의한 2차 변이체 라이브러리의 제조_ZSH1-13 개량 균주 선발2-2. Preparation of secondary variant library by DNA shuffling_Selection of ZSH1-13 improved strain
추가적으로 cefazolin 합성활성이 증가된 변이 페니실린 G 아실라제를 개량하기 위해 에러 유발성 중합효소연쇄반응에서 얻은 개량균주의 활성을 바탕으로 7개의 아미노산 잔기(A116αT, I156αN, N169αT, H173βN, T251βA, E486βA, Y555βC)에 대한 위치지정 돌연변이 라이브러리를 제조하였다.In addition, seven amino acid residues (A116αT, I156αN, N169αT, H173βN, T251βA, E486βA, Y555βC) based on the activity of the modified strain obtained from the error-induced polymerase chain reaction to improve mutant penicillin G acylase with increased cefazolin synthesis activity ) Was prepared.
구체적으로는, A116α 아미노산이 변이된 라이브러리를 제조하기 위하여, 야생형APA를 주형으로 하고 M13R 프라이머(서열번호 15)와 SH116a-R 프라이머(서열번호 17)를 사용해 PCR을 수행하여 약 510 bp 크기의 PCR 산물을 회수하였고, A116α, I156α, N169α 아미노산이 변이된 라이브러리를 제조하기 위해서 야생형 APA와 ZEP1-10을 주형으로 하고 SH116a-F 프라이머(서열번호 16)와 SH169a-R 프라이머(서열번호 19)를 사용해 PCR을 수행하여 약 160 bp 크기의 PCR 산물을 회수하였으며, N169α, H173β, T251β 아미노산이 변이된 라이브러리를 제조하기 위해 야생형 APA, ZEP1-12를 주형으로 하고 SH169a-F 프라이머(서열번호 18)와 SH251b-R 프라이머(서열번호 21)를 사용해 PCR을 수행하여 약 1,100 bp 크기의 PCR을 회수하였다. 또한 T251β, E486β, Y555β 아미노산을 변이시키기 위해 야생형 APA, ZEP1-18를 주형으로 하고 SH251b-F 프라이머(서열번호 20), SH555b-R 프라이머(서열번호 23)를 사용해 PCR을 수행하여 약 910 bp 크기의 PCR을 회수하였고, Y555β 아미노산을 변이시키기 위해 야생형 APA를 주형으로 하고 SH555b-F 프라이머(서열번호 22), M13F 프라이머(서열번호 14)를 사용해 PCR을 수행하여 약 100 bp 크기의 PCR 산물을 회수하였다. Specifically, in order to prepare a library in which the A116α amino acid has been mutated, PCR was performed using wild-type APA as a template and using M13R primer (SEQ ID NO: 15) and SH116a-R primer (SEQ ID NO: 17) to perform PCR with a size of about 510 bp. The product was recovered, and wild-type APA and ZEP1-10 were used as templates to prepare a library with mutated A116α, I156α, and N169α amino acids, and SH116a-F primer (SEQ ID NO: 16) and SH169a-R primer (SEQ ID NO: 19) were used. PCR was performed to recover a PCR product of about 160 bp in size, and to prepare a library in which N169α, H173β, and T251β amino acids were mutated, wild-type APA and ZEP1-12 were used as templates, and SH169a-F primer (SEQ ID NO: 18) and SH251b PCR was performed using the -R primer (SEQ ID NO: 21) to recover a PCR having a size of about 1,100 bp. In addition, in order to mutate amino acids T251β, E486β, Y555β, PCR was performed using wild-type APA, ZEP1-18 as a template, and SH251b-F primer (SEQ ID NO: 20) and SH555b-R primer (SEQ ID NO: 23), and a size of about 910 bp. PCR was recovered, and a PCR product having a size of about 100 bp was recovered by performing PCR using wild-type APA as a template and using SH555b-F primer (SEQ ID NO: 22) and M13F primer (SEQ ID NO: 14) to mutate Y555β amino acid. I did.
PCR 반응액의 조성은 각각의 주형 DNA, 프라이머, pfu-x buffer, dNTPs mix, pfu-x polymerase로 최종부피는 100 μL로 조정하여 수행하였다. PCR 반응조건은 반응 혼합액을 96℃에서 3분 동안 전-변성시키고 변성을 96℃에서 30초, 어닐링을 52℃에서 30초 및 중합을 68℃에서 2분 동안 수행하는 반응을 18회 반복한 후 68℃에서 5분 동안 후-중합시켰다.The composition of the PCR reaction solution was performed by adjusting the final volume to 100 μL with each template DNA, primer, pfu-x buffer, dNTPs mix, and pfu-x polymerase. The PCR reaction conditions are: The reaction mixture was pre-denatured at 96°C for 3 minutes, denaturation was performed at 96°C for 30 seconds, annealing at 52°C for 30 seconds, and polymerization was repeated 18 times at 68°C for 2 minutes. Post-polymerization was performed at 68° C. for 5 minutes.
상기 조건에서 얻은 약 510 bp의 PCR산물과 160 bp의 PCR산물, 1,100 bp의 PCR산물, 910 bp의 PCR산물 및 약 100 bp의 PCR산물을 혼합하고 여기에 T3 프라이머 (서열번호 12)와 T7 프라이머(서열번호 13)를 사용해 PCR을 수행하여, 약 2.7 kb 크기의 다중 변이체 DNA 단편을 증폭하였다. 이렇게 얻은 약 2.7 kb의 PCR 산물을 실시예 2-1의 방법과 동일하게 pBC KS(+) 벡터 DNA에 삽입하고 E. coli MC1061 균주의 형질전환을 수행하여 위치지정 돌연변이체 라이브러리를 제조하였다.About 510 bp of PCR product and 160 bp of PCR product, 1,100 bp of PCR product, 910 bp of PCR product, and about 100 bp of PCR product obtained under the above conditions were mixed, and T3 primer (SEQ ID NO: 12) and T7 primer PCR was performed using (SEQ ID NO: 13) to amplify a multi-variant DNA fragment having a size of about 2.7 kb. The PCR product of about 2.7 kb thus obtained was inserted into pBC KS(+) vector DNA in the same manner as in Example 2-1, and the E. coli MC1061 strain was transformed to prepare a site-directed mutant library.
상기 위치지정 돌연변이 라이브러리로부터 cefazolin 합성활성에 대한 반응성이 증가된 변이체를 실시예 2-1의 방법과 동일하게 탐색한 결과, 야생형 APA 대비 cefazolin 합성활성이 증대된 6중 변이체(I156αN, N169αT, H173βN, T251βA, E486βA 및 Y555βC)를 선발하여 ZSH1-13으로 명명하였다. ZSH1-13은 서열번호 5의 알파 서브유닛과 서열번호 6의 베타 서브유닛을 발현한다.As a result of searching for a mutant having increased reactivity to cefazolin synthesis activity from the position-directed mutant library in the same manner as in Example 2-1, six mutants having increased cefazolin synthesis activity compared to wild-type APA (I156αN, N169αT, H173βN, T251βA, E486βA and Y555βC) were selected and named as ZSH1-13. ZSH1-13 expresses the alpha subunit of SEQ ID NO: 5 and the beta subunit of SEQ ID NO: 6.
2-3. 에러 유발성 중합효소연쇄반응(error prone PCR)에 의한 3차 변이체 라이브러리의 제조2-3. Preparation of tertiary variant library by error-prone polymerase chain reaction (error prone PCR)
상기 실시예 2-2에서 제조된 ZSH1-13 변이체의 cefazolin 합성 활성을 추가적으로 더욱 증가시키기 위해서, ZSH1-13의 DNA를 주형 DNA로 사용하여 실시예 2-1의 방법과 동일하게 에러 유발성 돌연변이 라이브러리를 제조하였다. In order to further increase the cefazolin synthesis activity of the ZSH1-13 mutant prepared in Example 2-2, an error-prone mutation library in the same manner as in Example 2-1 using the DNA of ZSH1-13 as a template DNA Was prepared.
그 후 cefazolin 합성능력에 대한 탐색에서는, 100 mM Ammonium phosphate (pH 7.5) 완충용액에 20mM TDA 및 이를 기준으로 1:1 기질비율인 20mM의 TzAAMe를 녹여 제조한 기질용액 125 μL를 첨가한 후 반응 온도를 낮추어 6℃에서 17~18시간 동안 합성반응을 수행하였다. 상기 기질 농도와 비율, 기질반응 온도를 제외하고는 모두 실시예 2-1에 기재된 방법과 동일하게 수행되었다. Subsequently, in the search for cefazolin synthesis ability, 125 μL of a substrate solution prepared by dissolving 20 mM TDA and 20 mM TzAAMe, which is a 1:1 substrate ratio based on 100 mM Ammonium phosphate (pH 7.5) buffer solution, was added. By lowering the synthesis reaction was performed at 6° C. for 17 to 18 hours. Except for the substrate concentration and ratio, and the substrate reaction temperature, all were carried out in the same manner as described in Example 2-1.
상기 제작된 에러 유발성 돌연변이 라이브러리를 탐색한 결과 6개의 변이체에서 ZSH1-13 대비 cefazolin 합성활성이 증가함을 확인하였다. 아미노산 서열분석을 통하여 6개 변이체는 상기 ZSH1-13에 대하여 각각 T64βA(ZEP2-7), G49αF(ZEP2-9), T388βA(ZEP2-13), T201αS(ZEP2-17), M3βV(ZEP2-21) 또는 T225βN(ZEP2-54)로 돌연변이 되었음을 확인하였다.As a result of searching the constructed error-prone mutant library, it was confirmed that cefazolin synthesis activity was increased compared to ZSH1-13 in 6 mutants. Through amino acid sequencing, the six variants were T64βA (ZEP2-7), G49αF (ZEP2-9), T388βA (ZEP2-13), T201αS (ZEP2-17), M3βV (ZEP2-21), respectively, for the ZSH1-13. Or it was confirmed that it was mutated to T225βN (ZEP2-54).
2-4. 위치지정 돌연변이에 의한 4차 돌연변이체 라이브러리의 제조_ZSH2-5 개량 균주 선발2-4. Preparation of quaternary mutant library by site-directed mutation_Selection of ZSH2-5 improved strain
Cefazolin 합성활성이 더욱 증진된 변이체를 얻기 위하여 상기 실시예 2-3에서 얻은 개량균주들의 활성을 바탕으로, ZSH1-13 플라스미드 DNA를 주형 DNA로 사용하여 6개의 아미노산 잔기(G49αF, T201αS, M3βV, T64βA, T225βN, T388βA)에 대한 위치지정돌연변이 라이브러리를 제조하였다. 본 실시예에서 PCR 반응조건은 상기 실시예 2-2에서 전술한 방법과 동일하게 수행되었다.Based on the activity of the modified strains obtained in Example 2-3 above, in order to obtain a mutant with further enhanced Cefazolin synthesis activity, 6 amino acid residues (G49αF, T201αS, M3βV, T64βA) were used as template DNA using ZSH1-13 plasmid DNA. , T225βN, T388βA) was prepared for the location-directed mutation library. In this Example, PCR reaction conditions were performed in the same manner as in the above-described method in Example 2-2.
구체적으로, G49α, T201α 아미노산이 변이된 라이브러리를 제조하기 위해서 ZSH1-13과 ZEP2-9를 주형으로 하고 M13R 프라이머(서열번호 15)와 SH201a-R 프라이머(서열번호 25)를 사용해 PCR를 수행하여 약 770 bp 크기의 PCR 산물을 회수하였고, T201α, M3β, T64β 아미노산이 변이된 라이브러리를 제조하기 위해서 ZSH1-13, ZEP2-21를 주형으로 하여 SH201a-F 프라이머(서열번호 24), SH64b-R 프라이머(서열번호 27)를 사용해 PCR를 수행하여 약 440 bp 크기의 PCR 산물을 회수하였으며, T64β, T225β, T388β 아미노산이 변이된 라이브러리를 제조하기 위해 ZSH1-13, ZEP2-54를 주형으로 하여 SH64b-F 프라이머(서열번호 26)와 SH388b-R 프라이머(서열번호 29)를 사용해 PCR를 수행하여 약 970 bp 크기의 PCR산물을 회수하였고, T388β 아미노산을 변이시키기 위해 ZSH1-13을 주형으로 하여 SH388b-F 프라이머(서열번호 28)와 M13F프라이머(서열번호 14)를 사용해 PCR를 수행하여 약 600 bp크기의 PCR 산물을 회수하였다. Specifically, in order to prepare a library in which the amino acids G49α and T201α are mutated, PCR was performed using ZSH1-13 and ZEP2-9 as templates and M13R primer (SEQ ID NO: 15) and SH201a-R primer (SEQ ID NO: 25). A PCR product having a size of 770 bp was recovered, and in order to prepare a library with mutated T201α, M3β, and T64β amino acids, using ZSH1-13 and ZEP2-21 as templates, SH201a-F primer (SEQ ID NO: 24), SH64b-R primer ( PCR was performed using SEQ ID NO: 27) to recover a PCR product having a size of about 440 bp, and to prepare a library in which amino acids T64β, T225β, and T388β were mutated, SH64b-F primers were prepared using ZSH1-13 and ZEP2-54 as templates. PCR was performed using (SEQ ID NO: 26) and SH388b-R primer (SEQ ID NO: 29) to recover a PCR product of about 970 bp in size, and to mutate the T388β amino acid, ZSH1-13 as a template was used as a SH388b-F primer ( PCR was performed using SEQ ID NO: 28) and M13F primer (SEQ ID NO: 14) to recover a PCR product having a size of about 600 bp.
상기 조건에서 얻은 약 770 bp의 PCR 산물과 440 bp 크기의 PCR 산물, 970 bp 크기의 PCR 산물 및 600 bp 크기의 PCR 산물을 혼합하고 여기에 T3 프라이머(서열번호 12)와 T7 프라이머(서열번호 13)를 사용해 PCR을 수행하여, 약 2.7 kb 크기의 다중 변이체 DNA 단편을 증폭하였다. 이렇게 얻은 약 2.7 kb의 PCR 산물을 실시예 2-1의 방법과 동일하게 pBC KS(+) 벡터 DNA에 삽입하고 E. coli MC1061 균주의 형질전환을 수행하여 위치지정 돌연변이체 라이브러리를 제조하였다.A PCR product of about 770 bp obtained under the above conditions, a PCR product of 440 bp, a PCR product of 970 bp, and a PCR product of 600 bp were mixed, and T3 primer (SEQ ID NO: 12) and T7 primer (SEQ ID NO: 13) were mixed. ) Was used to perform PCR to amplify a multiple variant DNA fragment having a size of about 2.7 kb. The PCR product of about 2.7 kb thus obtained was inserted into pBC KS(+) vector DNA in the same manner as in Example 2-1, and the E. coli MC1061 strain was transformed to prepare a site-directed mutant library.
그 후 상기 실시예 2-3의 방법과 동일한 방법으로 라이브러리를 탐색한 결과, ZSH1-13대비 cefazolin 합성활성이 현저히 증가한 변이체로서, ZSH1-13에 대하여 M3βV, T64βA 및 T388βA가 추가로 변이된 균주를 선발하여 ZSH2-5로 명명하였다. 상기 ZSH2-5는 서열번호 5로 표시되는 알파 서브유닛과 서열번호 8로 표시되는 베타 서브유닛을 발현한다.Thereafter, as a result of searching the library in the same manner as in Example 2-3, as a result of searching the library, as a mutant in which cefazolin synthesis activity was significantly increased compared to ZSH1-13, a strain in which M3βV, T64βA and T388βA were further mutated with respect to ZSH1-13 were identified. It was selected and named as ZSH2-5. The ZSH2-5 expresses the alpha subunit represented by SEQ ID NO: 5 and the beta subunit represented by SEQ ID NO: 8.
실시예Example
3: 높은 3: high
합성능과Synthesis ability and
동시에 기질분해 활성이 At the same time
감소된Reduced
, 고효율의 , Of high efficiency
cefazolincefazolin
합성 synthesis
변이체의Variant
제조 및 선별 Manufacturing and sorting
3-1. 에러 유발성 중합효소연쇄반응(error prone PCR)에 의한 5차 변이체 라이브러리의 제조3-1. Preparation of 5th variant library by error-prone polymerase chain reaction (error prone PCR)
상기 실시예 2-4에서 제조된 ZSH2-5 변이체의 cefazolin 합성활성 증가 및 반응 기질(대표적으로, TzAAMe) 분해활성 감소를 위해서, ZSH2-5를 주형 DNA로 사용하여 실시예 2-1의 방법과 동일하게 에러 유발성 돌연변이 라이브러리를 제조하였다. 그 후 cefazolin 합성능력에 대한 탐색을 실시예 2-3에 기재된 방법과 동일하게 진행하였다. 또한 기질인 TzAAMe 분해활성에 대한 반응성 탐색에서는, 30 μL 효소액을 96-웰 플레이트로 옮긴 후, 100 mM Ammonium phosphate (pH7.5) 완충용액에 5 mM TDA 및 이를 기준으로 하여 1:1.5 비율인 7.5 mM TzAAMe를 함께 용해시켜 제조한 기질 용액 125 μL를 첨가하고 반응온도를 10℃로 높여 18~20시간 동안 합성반응을 수행하였다. 상기 기질 농도와 기질 반응 온도를 제외하고는 모두 실시예 2-3 에 기재된 방법과 동일하게 수행되었다. In order to increase the cefazolin synthesis activity and decrease the reaction substrate (typically, TzAAMe) degradation activity of the ZSH2-5 mutant prepared in Example 2-4, the method of Example 2-1 and the method of Example 2-1 using ZSH2-5 as a template DNA. In the same way, an error-prone mutation library was prepared. After that, the search for the ability to synthesize cefazolin was carried out in the same manner as in the method described in Example 2-3. In addition, in the search for the reactivity of the substrate TzAAMe degrading activity, 30 μL of enzyme solution was transferred to a 96-well plate, and then 5 mM TDA in 100 mM Ammonium phosphate (pH7.5) buffer solution, and based on this, a 1:1.5 ratio of 7.5 125 μL of a substrate solution prepared by dissolving mM TzAAMe together was added, and the reaction temperature was increased to 10° C. to perform a synthesis reaction for 18 to 20 hours. Except for the substrate concentration and the substrate reaction temperature, all were carried out in the same manner as described in Example 2-3.
이렇게 상기 제작된 에러 유발성 돌연변이 라이브러리의 Cefazolin 합성 활성 및 기질 분해 활성을 탐색한 결과, 6개의 변이체에서 ZSH2-5 대비 cefazolin 합성 활성의 증가 및 TzAAMe 분해 활성이 감소됨을 확인하였다. 아미노산 서열 분석을 통하여, 6개 변이체는 상기 ZSH2-5에 대하여 각각 S54βG(ZEP3-2), S150βT(ZEP3-11), R478βH(ZEP3-14), N226βT (ZEP3-26), A310βD(ZEP3-33), 또는 D541βE(ZEP3-48)로 돌연변이 되었음을 확인하였다.As a result of searching for Cefazolin synthesis activity and substrate degradation activity of the prepared error-prone mutant library, it was confirmed that the increase in cefazolin synthesis activity and decrease in TzAAMe degradation activity compared to ZSH2-5 in the six variants. Through amino acid sequence analysis, the six variants were S54βG(ZEP3-2), S150βT(ZEP3-11), R478βH(ZEP3-14), N226βT (ZEP3-26), A310βD(ZEP3-33) for the ZSH2-5, respectively. ), or D541βE (ZEP3-48).
3-2. 위치지정 돌연변이에 의한 6차 돌연변이체 라이브러리의 제조_ZSH3-1 개량 균주 선발3-2. Preparation of 6th mutant library by site-directed mutation_Selection of ZSH3-1 improved strain
상기 실시예 3-1에서 얻은 개량균주들의 활성을 바탕으로, ZSH2-5의 DNA를 주형 DNA로 사용하여 6개의 아미노산 잔기(S54βG, S150βT, N226βT, A310βD, R478βH, D541βE)에 대한 위치지정돌연변이 라이브러리를 제조하였다. 본 실시예에서 PCR 반응조건은 상기 실시예 2-2에서 전술한 방법과 동일하게 수행되었다.Based on the activity of the improved strains obtained in Example 3-1, the DNA of ZSH2-5 was used as a template DNA, and a site-directed mutation library for 6 amino acid residues (S54βG, S150βT, N226βT, A310βD, R478βH, D541βE) Was prepared. In this Example, PCR reaction conditions were performed in the same manner as in the above-described method in Example 2-2.
구체적으로, S54β 아미노산이 변이된 라이브러리를 제조하기 위해서 ZSH2-5를 주형으로 하여 M13R 프라이머(서열번호 15)와 SH54b-R 프라이머(서열번호 31)를 사용해 약 1,180 bp 크기의 PCR 산물을 회수하였고, S54β, S150β, N226β 아미노산이 변이된 라이브러리를 제조하기 위해서 ZSH2-5, ZEP3-11를 주형으로 하고 SH54b-F 프라이머(서열번호 30), SH226b-R 프라이머(서열번호 33)를 사용해 PCR을 수행하여 약 520 bp 크기의 PCR 산물을 회수하였고, N226β, A310β, R478β 아미노산이 변이된 라이브러리를 제조하기 위해 ZSH2-5, ZEP3-33을 주형으로 하고 SH226b-F 프라이머(서열번호 32)와 SH478b-R 프라이머(서열번호 35)를 사용해 PCR을 수행하여 약 760 bp 크기의 PCR 산물을 회수하였으며, R478β, D541β 아미노산이 변이된 라이브러리를 제조하기 위해 ZSH2-5, ZEP3-48를 주형으로 하고 SH478b-F 프라이머(서열번호 34), M13F 프라이머(서열번호 14)를 사용해 PCR을 수행하여 약 340 bp 크기의 PCR 산물을 회수하였다. 상기 1,180bp 크기의 PCR 산물과 520 bp 크기의 PCR 산물, 760 bp 크기의 PCR 산물 및 340 bp 크기의 PCR 산물을 혼합하고, T3 프라이머(서열번호 12)와 T7 프라이머(서열번호 13)를 사용해 PCR을 수행하여 약 2.7 kb 크기의 다중 변이체 DNA 단편을 증폭하였다. 이렇게 얻은 약 2.7 kb의 PCR 산물을 실시예 2-1의 방법과 동일하게 pBC KS(+) 벡터 DNA에 삽입하고 E. coli MC1061 균주의 형질전환을 수행하여 위치지정 돌연변이체 라이브러리를 제조하였다.Specifically, in order to prepare a library in which the S54β amino acid has been mutated, a PCR product having a size of about 1,180 bp was recovered using the M13R primer (SEQ ID NO: 15) and the SH54b-R primer (SEQ ID NO: 31) using ZSH2-5 as a template, To prepare a library with mutated S54β, S150β, N226β amino acids, PCR was performed using ZSH2-5 and ZEP3-11 as templates and SH54b-F primer (SEQ ID NO: 30) and SH226b-R primer (SEQ ID NO: 33). A PCR product having a size of about 520 bp was recovered, and ZSH2-5 and ZEP3-33 were used as templates to prepare a library in which amino acids N226β, A310β, and R478β were mutated, and SH226b-F primer (SEQ ID NO: 32) and SH478b-R primer PCR was performed using (SEQ ID NO: 35) to recover a PCR product having a size of about 760 bp, and to prepare a library with mutated R478β and D541β amino acids, ZSH2-5 and ZEP3-48 were used as templates and SH478b-F primer ( SEQ ID NO: 34), PCR was performed using M13F primer (SEQ ID NO: 14) to recover a PCR product having a size of about 340 bp. The 1,180 bp PCR product, 520 bp size PCR product, 760 bp size PCR product, and 340 bp size PCR product are mixed, and PCR using T3 primer (SEQ ID NO: 12) and T7 primer (SEQ ID NO: 13) Was performed to amplify a multiple variant DNA fragment having a size of about 2.7 kb. The PCR product of about 2.7 kb thus obtained was inserted into pBC KS(+) vector DNA in the same manner as in Example 2-1, and the E. coli MC1061 strain was transformed to prepare a site-directed mutant library.
그 후 상기 실시예 3-1의 방법과 동일한 방법으로 라이브러리의 활성을 탐색한 결과, ZSH2-5 대비 cefazolin 합성 활성이 현저히 증가된 것으로 나타나고 기질(TzAAMe) 분해 활성이 현저히 감소된 변이체로서, S54βG, R478βH 및 D541βE가 추가로 변이된 균주를 선발하여 ZSH3-1로 명명하였다. ZSH3-1은 서열번호 5로 표시되는 알파 서브유닛과 서열번호 10으로 표시되는 베타 서브유닛을 발현한다.Thereafter, as a result of searching for the activity of the library in the same manner as in Example 3-1, it was found that cefazolin synthesis activity was significantly increased compared to ZSH2-5, and the substrate (TzAAMe) degrading activity was significantly reduced, as a variant, S54βG, A strain in which R478βH and D541βE were further mutated was selected and named as ZSH3-1. ZSH3-1 expresses the alpha subunit represented by SEQ ID NO: 5 and the beta subunit represented by SEQ ID NO: 10.
3-3. 균주기탁3-3. Strains deposit
제조된 변이 효소들 중, 가장 좋은 활성을 나타낸 ZSH3-1 변이 효소를 암호화하는 유전자를 포함하는 pBC-ZSH3-1 플라스미드로 형질전환 된 E. coli MC1061 균주를 “Escherichia coli MC1061/pBC-ZSH3-1”라 명명하였고, 2019년 10월 11일자로 한국생명공학연구원 유전자은행에 기탁하였다(기탁번호: KCTC 13991BP).Among the mutant enzymes produced, the E. coli MC1061 strain transformed with the pBC-ZSH3-1 plasmid containing the gene encoding the ZSH3-1 mutant showing the best activity was selected as “Escherichia coli MC1061/pBC-ZSH3-1. And deposited with the Korea Research Institute of Bioscience and Biotechnology Gene Bank on October 11, 2019 (Accession No.: KCTC 13991BP).
상기 실시예 2 내지 실시예 3에 기술된 바 있는 대표적인 각 변이체들의 Cefazolin 합성효율 비교 평가 결과를 이하의 실시예에서 기술한다.The comparative evaluation results of Cefazolin synthesis efficiency of each of the representative variants described in Examples 2 to 3 will be described in the following Examples.
실시예 4: APA 변이체들의 세파졸린(Cefazolin) 활성 효율 비교Example 4: Comparison of cefazoline activity efficiency of APA variants
4-1. 효소액 제조4-1. Enzyme solution preparation
제조한 APA 변이체들의 활성 정도를 비교하기 위해서, 각 효소액을 하기와 같이 제조하였다. 상기 실시예 2 내지 실시예 3에서 제조한 각각의 APA 변이체를 코딩하는 유전자들을 상기 실시예 1-2에 기재된 것과 동일한 방법으로 pBC-KS(+) 벡터에 삽입한 후, 각 발현 벡터들을 E. coli MC1061의 대장균 균주에 형질전환하였다. 대장균 형질전환체 각각을 20 μg/mL 클로람페니콜이 함유된 3 mL의 LB배지 (1% Bacto-tryptone, 0.5% Yeast Extract, 0.5% NaCl)에 접종한 후 28℃, 200 rpm 조건으로 16시간 동안 진탕배양하였다. 그 후에 배양액 350 μL를 20 μg/mL 클로람페니콜이 함유된 35 mL의 새로운 LB 배지에 접종한 후 23℃, 190 rpm 조건으로 48시간 동안 진탕배양하였다. 이 배양액을 원심분리(4℃, 8000 rpm, 10분)하여 균체를 회수한 후, 0.05 M ammonium phosphate (pH 7.5) 완충용액으로 1회 세척하였다. 이 균체를 35 mL의 동일 완충용액에 현탁한 후 4℃에서 초음파 파쇄기(Vibra Cell VC750, Sonics & Materials Inc, 미국)로 5분 동안 파쇄하고 4℃, 13,500 rpm 조건으로 20분 동안 원심분리하여 상등액을 취함으로써 각각의 APA 변이체 효소액을 제조하였다.In order to compare the degree of activity of the prepared APA variants, each enzyme solution was prepared as follows. After inserting the genes encoding each of the APA variants prepared in Examples 2 to 3 into the pBC-KS(+) vector in the same manner as described in Example 1-2, each of the expression vectors was E. coli MC1061 was transformed into the E. coli strain. Each E. coli transformant was inoculated in 3 mL of LB medium (1% Bacto-tryptone, 0.5% Yeast Extract, 0.5% NaCl) containing 20 μg/mL chloramphenicol, and then shaken at 28° C. and 200 rpm for 16 hours. Cultured. Thereafter, 350 μL of the culture solution was inoculated into 35 mL of fresh LB medium containing 20 μg/mL chloramphenicol, followed by shaking culture at 23° C. and 190 rpm for 48 hours. The culture solution was centrifuged (4° C., 8000 rpm, 10 minutes) to recover the cells, and then washed once with a 0.05 M ammonium phosphate (pH 7.5) buffer solution. The cells were suspended in 35 mL of the same buffer solution, crushed for 5 minutes with an ultrasonic disruptor (Vibra Cell VC750, Sonics & Materials Inc, USA) at 4°C, and centrifuged at 4°C and 13,500 rpm for 20 minutes to obtain the supernatant. Each APA variant enzyme solution was prepared by taking.
4-2. 4-2.
CefazolinCefazolin
합성 활성 측정 Measurement of synthetic activity
Cefazolin 합성활성을 측정하기 위해서, TDA와 TzAAMe를 0.05 M ammonium phosphate (pH 7.5) 완충용액에 각각 10 mM 농도로 녹여 기질용액을 제조하였다. 기질용액 500 μL에 상기 실시예 4-1의 각 APA 변이체 효소액 500 μL를 첨가하여 25℃에서 효소반응을 10분 시킨 후 반응액 500 μL를 취하고, 여기에 0.2N HCl용액을 500 μL을 첨가하여 반응을 정지시켰다. 그 후에 필터링(filtration)하고, 상기 실시예 2-1과 동일한 조건으로 HPLC분석하고, 표준물질의 정량곡선과 비교하여 정량하였다. 이때, 본 명세서에서 1 단위(unit, U)는 분당 1 μmole의 cefazolin을 생성할 수 있는 효소의 양으로 정의한다. 한편, 기질에 대한 비활성은 효소액 중의 단백질 양을 브래드포드의 방법에 따라 측정한 후에 1 mg 단백질에 해당하는 활성 단위로 표시하였다.To measure the Cefazolin synthesis activity, a substrate solution was prepared by dissolving TDA and TzAAMe at a concentration of 10 mM each in a 0.05 M ammonium phosphate (pH 7.5) buffer solution. 500 μL of each APA variant enzyme solution of Example 4-1 was added to 500 μL of the substrate solution, and the enzyme reaction was carried out at 25°C for 10 minutes, and then 500 μL of the reaction solution was taken, and 500 μL of 0.2N HCl solution was added thereto. The reaction was stopped. After that, filtering was performed, HPLC analysis was performed under the same conditions as in Example 2-1, and quantification was performed by comparing with the quantification curve of the standard material. At this time, in the present specification, 1 unit (U) is defined as the amount of an enzyme capable of producing 1 μmole of cefazolin per minute. On the other hand, the specific activity to the substrate was expressed as an activity unit corresponding to 1 mg protein after measuring the amount of protein in the enzyme solution according to Bradford's method.
아실라제Acylase | Cefazolin synthesisCefazolin synthesis | TzAAMe hydrolysisTzAAMe hydrolysis | |||
Specific activity (U/mg protein) Specific activity (U/mg protein) | FoldFold | Specific activity (U/mg protein) Specific activity (U/mg protein) | S/H ratio*S/H ratio* | Relative S/H ratio (Fold)Relative S/H ratio (Fold) | |
APAAPA | 0.20.2 | 1.01.0 | 4.24.2 | 0.050.05 | 1.01.0 |
ZSH1-13ZSH1-13 | 2.52.5 | 12.512.5 | 8.68.6 | 0.30.3 | 6.16.1 |
ZSH2-5ZSH2-5 | 8.68.6 | 43.043.0 | 9.19.1 | 0.90.9 | 19.819.8 |
ZSH3-1ZSH3-1 | 13.113.1 | 65.565.5 | 7.57.5 | 1.71.7 | 36.736.7 |
*, Cefazolin synthesis 활성 / TzAAMe hydrolysis 활성*, Cefazolin synthesis activity / TzAAMe hydrolysis activity
표 1은 본원 발명의 변이체들 중 대표적으로 ZSH1-13변이체, ZSH2-5변이체 및 ZSH3-1 변이체와 야생형 APA 간의 Cefazolin 합성 활성을 비교적으로 나타낸다. 표 1에서 보는 바와 같이, 야생형 APA와 비교하여 본원 발명의 변이체들은 연속적인 개량에 의해 cefazolin 합성 수율이 증가되었다. ZSH1-13은 야생형에 비해 약 12.5배 합성 수율이 증가되었고, ZSH2-5는 야생형 APA에 비해 약 43.0배 증가하였으며, 최종 변이체인 ZSH3-1은 야생형 APA에 비해 약 65.5배 증가하여, 현저히 높은 cefazolin 생산률을 나타냈다. Table 1 shows comparatively the Cefazolin synthesis activity between the ZSH1-13 mutant, the ZSH2-5 mutant, and the ZSH3-1 mutant and wild-type APA among the mutants of the present invention. As shown in Table 1, the yield of cefazolin synthesis was increased by continuous improvement of the mutants of the present invention compared to wild-type APA. ZSH1-13 increased the synthesis yield by about 12.5 times compared to the wild type, ZSH2-5 increased by about 43.0 times compared to the wild type APA, and the final variant ZSH3-1 increased by about 65.5 times compared to the wild type APA, significantly higher cefazolin. The production rate was shown.
4-3. 반응 기질 TzAAMe 분해 활성 및 S/H ratio 측정4-3. Measurement of reaction substrate TzAAMe decomposition activity and S/H ratio
마찬가지로 APA 변이체들에 대한 TzAAMe 분해활성 정도를 측정하기 위해, 15 mM TzAAMe을 0.1 M Ammonium phosphate (pH 7.5) 완충용액에 녹인 기질용액을 제조하였다. 이 기질용액 100 μl에 상기 변이체들 각각의 효소액 100 μl를 첨가하여 25℃에서 효소반응을 10분 시킨 후, 상기 반응액 100 μl에 0.2 N HCl용액 100 μl를 첨가하여 반응을 정지시켰다. 그 후에 상기 실시예 4-2와 동일한 방법으로 필터링(filtration) 및 HPLC 분석하여, 가수분해된 TzAAMe (hydrolyzed TzAAMe, 즉 TzAA)의 양을 산출하고 표준물질의 정량곡선과 비교하여 정량하였다. 이때, 1 단위(unit, U)는 분당 1 μmole의 TzAA를 생성할 수 있는 효소의 양으로 정의한다. 상기방법으로 도출한 TzAAMe 분해 활성과 실시예 4-2에서 얻은 Cefazolin 합성 활성의 값으로 S/H ratio를 측정하였다.Similarly, in order to measure the degree of TzAAMe decomposition activity for APA variants, a substrate solution was prepared by dissolving 15 mM TzAAMe in 0.1 M Ammonium phosphate (pH 7.5) buffer solution. To 100 μl of this substrate solution, 100 μl of the enzyme solution of each of the mutants was added to perform the enzyme reaction at 25° C. for 10 minutes, and then 100 μl of 0.2 N HCl solution was added to 100 μl of the reaction solution to stop the reaction. Thereafter, filtration and HPLC analysis were performed in the same manner as in Example 4-2, to calculate the amount of hydrolyzed TzAAMe (hydrolyzed TzAAMe, that is, TzAA), and quantified by comparing with the quantification curve of the standard. At this time, 1 unit (U) is defined as the amount of enzyme capable of producing 1 μmole of TzAA per minute. The S/H ratio was measured using the values of the TzAAMe decomposition activity derived by the above method and the Cefazolin synthesis activity obtained in Example 4-2.
상기 표 1에서 보는 바와 같이, 야생형 APA와 비교하여 본원 발명의 변이체들은 상대적인 TzAAMe 분해 활성이 감소하여, TzAAMe 분해 활성 대비 Cefazolin 합성 활성의 비율(S/H ratio)이 현저히 증가한 것을 확인하였다. 특히, ZSH1-13, ZSH2-5, ZSH3-1의 순서로 S/H ratio가 높아졌으며, 최종 변이체인 ZSH3-1은 야생형 APA에비해 S/H ratio가 약 36.7배 증가하였다. As shown in Table 1, it was confirmed that the relative TzAAMe decomposition activity of the mutants of the present invention decreased compared to the wild-type APA, so that the ratio of Cefazolin synthesis activity to the TzAAMe decomposition activity (S/H ratio) was remarkably increased. In particular, the S/H ratio increased in the order of ZSH1-13, ZSH2-5, and ZSH3-1, and the final variant, ZSH3-1, increased the S/H ratio by about 36.7 times compared to wild-type APA.
4-4. TDA 및 TzAAMe 으로부터 세파졸린 전환율 측정4-4. Measurement of cefazoline conversion from TDA and TzAAMe
시간 경과에 따른 Cefazolin의 전환율을 측정하기 위해서는, 전구체인 TDA 전환율을 측정하는 것으로 Cefazolin의 합성수율을 유추할 수 있다. 최종 변이체인 ZSH3-1를 이용하여 TDA 전환율을 측정하였다. 구체적으로, 클로람페니콜이 함유된 LB 배지의 양을 1L로 한 것 이외에는 상기 실시예 4-1과 동일한 방법으로 균주를 배양하였다. 배양한 세포현탁액은 4℃에서 8,000 rpm으로 10분간 원심분리하고 상층액을 제거한 후 cell pellet을 얻었다. 90 ml의 0.1 M ammonium phosphate buffer 로 현탁한 다음 초음파 파쇄기를 이용하여 20분간 세포 파쇄를 실행하였다. 이 효소액을 분리정제하기 위해 파쇄한 균체를 10℃에서 2시간 동안 정치시킨 다음 원심분리(4℃, 10,000 rpm, 30분)하여 상등액을 취하였다. 이 용액을 TDA 전환반응 실험에 사용하였다.In order to measure the conversion rate of Cefazolin over time, the synthesis yield of Cefazolin can be inferred by measuring the conversion rate of TDA, a precursor. TDA conversion was measured using the final variant, ZSH3-1. Specifically, the strain was cultured in the same manner as in Example 4-1, except that the amount of the LB medium containing chloramphenicol was 1 L. The cultured cell suspension was centrifuged at 8,000 rpm for 10 minutes at 4° C. and the supernatant was removed to obtain a cell pellet. After suspending in 90 ml of 0.1 M ammonium phosphate buffer, cell disruption was performed for 20 minutes using an ultrasonic disruptor. In order to separate and purify the enzyme solution, the crushed cells were allowed to stand at 10° C. for 2 hours, and then centrifuged (4° C., 10,000 rpm, 30 minutes) to obtain a supernatant. This solution was used in the TDA conversion reaction experiment.
이렇게 제조된 분리정제액(상등액)을 3 U/ml 사용하였고, 0.1 M ammonium phosphate (pH 7.5) 완충용액에 각각 200 mM TDA와 240 mM TzAAMe를 넣어 기질 비율 1:1.2, 총 50 mL로 제조한 기질용액과 반응시켰다. 10℃에서 2시간동안 cefazolin 합성반응을 진행하면서 TDA 전환율과 TzAAMe 잔존양, TzAA 생성양을 HPLC로 상기 실시예 4-2와 동일한 방법으로 분석하였다.3 U/ml of the thus prepared separation and purification solution (supernatant) was used, and 200 mM TDA and 240 mM TzAAMe were respectively added to a 0.1 M ammonium phosphate (pH 7.5) buffer solution to prepare a substrate ratio of 1:1.2 and a total of 50 mL. It was reacted with the substrate solution. While performing the cefazolin synthesis reaction at 10° C. for 2 hours, the TDA conversion rate, the residual amount of TzAAMe, and the amount of TzAA produced were analyzed by HPLC in the same manner as in Example 4-2.
그 결과 도 3에서 보는 바와 같이, 본원 발명의 ZSH3-1 변이 효소는 시간이 경과함에 따라 높은 TDA 전환율을 보였으며, TzAA는 세파졸린 합성 반응 초기와 거의 유사한 정도로 거의 생성되지 않았음이 확인되었다. 이로서 본 발명의 ZSH3-1 변이효소는 Cefazolin을 고효율로 합성할 뿐만 아니라 동시에 TzAAMe의 TzAA로의 분해율 및 세파졸린의 분해율을 현저하게 낮추어줌으로써 Cefazolin의 생산성이 뛰어남을 확인하였다.As a result, as shown in FIG. 3, it was confirmed that the ZSH3-1 mutant enzyme of the present invention showed a high TDA conversion rate over time, and that TzAA was hardly produced to a degree similar to the initial stage of the cefazoline synthesis reaction. As a result, it was confirmed that the ZSH3-1 mutant enzyme of the present invention not only synthesizes Cefazolin with high efficiency, but also significantly lowers the decomposition rate of TzAAMe to TzAA and the decomposition rate of cefazoline, so that the productivity of Cefazolin is excellent.
본 발명에서 개시하는 특유의 변이 형태를 지니는 Achromobacter sp. CCM 4824 유래 페니실린 G 아실라제 변이체들은, 이의 야생형 효소 및 기존에 알려진 다른 변이형태 대비, 특이적으로 세파졸린(cefazolin)에 대한 합성활성이 매우 높으면서도, 세파졸린 합성에 사용되는 기질에 대한 분해활성 대비 합성비율(S/H ratio)이 현저히 높아, 산업적 적용에 있어서 유의한 수준으로 세파졸린 생산성이 현저하게 증가되었으므로, 산업상 이용가능성이 높다. Achromobacter sp. Penicillin G acylase variants derived from CCM 4824 have very high synthesizing activity specifically for cefazolin, compared to their wild-type enzymes and other known mutant forms, while also degrading activity against substrates used for the synthesis of cefazoline. Compared to the synthesis ratio (S/H ratio) is remarkably high, the productivity of cefazoline has been remarkably increased to a significant level for industrial application, so industrial applicability is high.
이상 살펴본 바와 같이, 본 발명은 세파졸린 생산성이 증가된 페니실린 G 아실라제 변이체 및 이의 이용에 관한 것으로, 보다 상세하게는 서열번호 1로 표시되는 알파 서브유닛; 및 서열번호 2로 표시되는 베타 서브유닛을 포함하는 야생형 페니실린 G 아실라제 단백질(Achromobacter sp. CCM 4824 유래) 서열 중에서, A116αT, I156αN, N169αT, M3βV, S54βG, T64βA, H173βN, T251βA, T388βA, R478βH, E486βA, D541βE 및 Y555βC로 이루어지는 군에서 선택되는 하나 이상의 변이를 포함하는 것을 특징으로 하는 변이 페니실린 G 아실라제, 및 이를 이용한 세파졸린의 합성(제조) 방법에 대한 것이다.As described above, the present invention relates to a penicillin G acylase variant and its use with increased cefazoline productivity, and more particularly, to an alpha subunit represented by SEQ ID NO: 1; And in the wild-type penicillin G acylase protein (from Achromobacter sp. CCM 4824) sequence comprising the beta subunit represented by SEQ ID NO: 2, A116αT, I156αN, N169αT, M3βV, S54βG, T64βA, H173βN, T251βA, T388βA, R478βH, It relates to a mutant penicillin G acylase, characterized in that it comprises one or more mutations selected from the group consisting of E486βA, D541βE, and Y555βC, and a method for synthesizing (manufacturing) cefazoline using the same.
[수탁번호][Accession number]
기탁기관명 : 한국생명공학연구원Name of donated institution: Korea Research Institute of Bioscience and Biotechnology
수탁번호 : KCTC13991BPAccession number: KCTC13991BP
수탁일자 : 20191011Consignment Date: 20191011
기탁기관주소 : (56212) 대한민국 전라북도 정읍시 입신길 181 한국생명공학연구원(KRIBB)Depository address: (56212) Korea Research Institute of Bioscience and Biotechnology (KRIBB) 181, Ipsin-gil, Jeongeup-si, Jeollabuk-do, Korea
Claims (17)
- 서열번호 1로 표시되는 알파 서브유닛; 및 서열번호 2로 표시되는 베타 서브유닛을 포함하는 야생형 페니실린 G 아실라제 단백질 서열 중에서, A116αT, I156αN, N169αT, M3βV, S54βG, T64βA, H173βN, T251βA, T388βA, R478βH, E486βA, D541βE 및 Y555βC로 이루어지는 군에서 선택되는 하나 이상의 변이를 포함하는 것을 특징으로 하는 변이 페니실린 G 아실라제.An alpha subunit represented by SEQ ID NO: 1; And a wild-type penicillin G acylase protein sequence comprising a beta subunit represented by SEQ ID NO: 2, the group consisting of A116αT, I156αN, N169αT, M3βV, S54βG, T64βA, H173βN, T251βA, T388βA, R478βH, E486βA, D541βE and Y555βC Variant penicillin G acylase, characterized in that it comprises one or more mutations selected from.
- 제1항에 있어서, 상기 야생형 페니실린 G 아실라제 단백질 서열 중에서 I156αN, N169αT, H173βN, T251βA, E486βA 및 Y555βC의 변이를 포함하는 것을 특징으로 하는 변이 페니실린 G 아실라제.The mutant penicillin G acylase according to claim 1, comprising mutations of I156αN, N169αT, H173βN, T251βA, E486βA and Y555βC in the wild-type penicillin G acylase protein sequence.
- 제2항에 있어서, 상기 변이 페니실린 G 아실라제는The method of claim 2, wherein the mutant penicillin G acylase서열번호 5로 표시되는 알파 서브유닛; 및An alpha subunit represented by SEQ ID NO: 5; And서열번호 6으로 표시되는 베타 서브유닛을 포함하는 것을 특징으로 하는 변이 페니실린 G 아실라제.A mutant penicillin G acylase comprising the beta subunit represented by SEQ ID NO: 6.
- 제2항에 있어서, 상기 변이 페니실린 G 아실라제는 G49αF, T201αS, M3βV, T64βA, T225βN 및 T388βA로 이루어지는 군에서 선택되는 하나 이상의 변이를 추가로 포함하는 것을 특징으로 하는 변이 페니실린 G 아실라제.The mutant penicillin G acylase of claim 2, wherein the mutant penicillin G acylase further comprises one or more mutations selected from the group consisting of G49αF, T201αS, M3βV, T64βA, T225βN and T388βA.
- 제4항에 있어서, 상기 변이 페니실린 G 아실라제는 M3βV, T64βA 및 T388βA의 돌연변이를 포함하는 것을 특징으로 하는 변이 페니실린 G 아실라제.The mutant penicillin G acylase according to claim 4, wherein the mutant penicillin G acylase comprises mutations of M3βV, T64βA and T388βA.
- 제5항에 있어서, 상기 변이 페니실린 G 아실라제는The method of claim 5, wherein the mutant penicillin G acylase서열번호 5로 표시되는 알파 서브유닛; 및An alpha subunit represented by SEQ ID NO: 5; And서열번호 8로 표시되는 베타 서브유닛을 포함하는 것을 특징으로 하는 변이 페니실린 G 아실라제.A mutant penicillin G acylase comprising the beta subunit represented by SEQ ID NO: 8.
- 제4항에 있어서, 상기 변이 페니실린 G 아실라제는 S54βG, S150βT, N226βT, A310βD, R478βH 및 D541βE로 이루어지는 군에서 선택되는 하나 이상의 변이를 추가로 포함하는 것을 특징으로 하는 변이 페니실린 G 아실라제.The mutant penicillin G acylase according to claim 4, wherein the mutant penicillin G acylase further comprises one or more mutations selected from the group consisting of S54βG, S150βT, N226βT, A310βD, R478βH and D541βE.
- 제7항에 있어서, 상기 변이 페니실린 G 아실라제는 S54βG, R478βH 및 D541βE의 돌연변이를 포함하는 것을 특징으로 하는 변이 페니실린 G 아실라제.8. The mutant penicillin G acylase of claim 7, wherein the mutant penicillin G acylase comprises mutations of S54βG, R478βH and D541βE.
- 제8항에 있어서, 상기 변이 페니실린 G 아실라제는The method of claim 8, wherein the mutant penicillin G acylase서열번호 5로 표시되는 알파 서브유닛; 및An alpha subunit represented by SEQ ID NO: 5; And서열번호 10으로 표시되는 베타 서브유닛을 포함하는 것을 특징으로 하는 변이 페니실린 G 아실라제.A mutant penicillin G acylase comprising the beta subunit represented by SEQ ID NO: 10.
- 제1항 내지 9항 중 어느 한 항의 변이 페니실린 G 아실라제를 암호화하는 폴리뉴클레오티드.The polynucleotide encoding the mutant penicillin G acylase of any one of claims 1 to 9.
- 제10항의 폴리뉴클레오티드를 포함하는 재조합 발현벡터.Recombinant expression vector comprising the polynucleotide of claim 10.
- 제11항의 발현벡터에 의해 형질전환된 숙주세포.A host cell transformed by the expression vector of claim 11.
- 제12항에 있어서, 상기 숙주세포는 클로스트리디아 속(Clostridia spp.) 에세리치아 속(Escherichia spp.), 아세토박터 속(Acetobacter spp.), 아에로모나스 속 (Aeromonas spp.), 알칼리제네스 속(Alcaligenes spp.), 아파노클라디움 속(Aphanocladium spp.), 바실러스 속(Bacillus spp.), 세팔로스포리움 속(Cephalosporium spp.), 플라보박테리움 속(Flavobacterium spp.), 클루이베라 속(Kluyvera spp.), 미코플라나 속(Mycoplana spp.), 프로타미노박터 속(Protaminobacter spp.), 슈도모나스 속(Pseudomonas spp.), 아크로모박터 속(Achromobacter spp.) 및 잔토모나스 속(Xanthomonas spp.)으로 이루어지는 군에서 선택된 어느 하나의 속(genus) 미생물인 것을 특징으로 하는 형질전환된 숙주세포.The method of claim 12, wherein the host cells are Clostridia spp., Escherichia spp., Acetobacter spp., Aeromonas spp., and alkali. Genus Alcaligenes (Alcaligenes spp.), Aphanocladium spp., Bacillus spp., Cephalosporium spp., Flavobacterium spp., Cluy Vera spp., Mycoplana spp., Protaminobacter spp., Pseudomonas spp., Achromobacter spp., and Xanthomonas spp. spp.). Transformed host cells, characterized in that any one of the genus (genus) microorganisms selected from the group consisting of.
- 제13항에 있어서, 상기 에세리치아 속의 미생물은 서열번호 5 및 서열번호 10의 아미노산 서열을 암호화하는 폴리뉴클레오티드를 포함하는 재조합 발현벡터에 의해 형질전환된 에세리치아 콜라이 MC1061/pBC-ZSH3-1(Escherichia coli MC1061/pBC-ZSH3-1, 기탁번호 KCTC 13991BP)인 것을 특징으로 하는 형질전환된 숙주세포.The method of claim 13, wherein the microorganism of the genus Escherichia is Escherichia coli MC1061/pBC-ZSH3-1 transformed by a recombinant expression vector comprising a polynucleotide encoding the amino acid sequence of SEQ ID NO: 5 and SEQ ID NO: 10. (Escherichia coli MC1061/pBC-ZSH3-1, accession number KCTC 13991BP) transformed host cell, characterized in that.
- 제1항 내지 제9항 중 어느 한 항의 변이 페니실린 G 아실라제를 포함하는 세파졸린(cefazolin) 제조용 조성물.A composition for preparing cefazolin comprising the mutant penicillin G acylase of any one of claims 1 to 9.
- 테트라졸릴아세트산 에스테르와 3-[5-메틸-1,3,4-티오디아졸-2-일]-7-아미노세팔로스포린산으로부터 세파졸린을 효소적으로 합성하는 방법에 있어서, 제1항 내지 제9항 중 어느 한 항의 변이 페니실린 G 아실라제를 사용하는 것을 특징으로 하는 세파졸린의 효소적 합성 방법.In the method for enzymatically synthesizing cefazoline from tetrazolylacetic acid ester and 3-[5-methyl-1,3,4-thiodiazol-2-yl]-7-aminocephalosporic acid, the method comprising: A method for enzymatic synthesis of cefazoline, characterized in that the mutant penicillin G acylase of any one of claims 9 to 9 is used.
- 세파졸린(cefazolin)을 제조하기 위한 제1항 내지 제9항 중 어느 한 항의 변이 페니실린 G 아실라제의 용도.The use of the modified penicillin G acylase of any one of claims 1 to 9 for the production of cefazolin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080093452.2A CN115397979A (en) | 2019-11-15 | 2020-11-13 | Penicillin G acylase mutants with increased cefazolin productivity and uses thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0147086 | 2019-11-15 | ||
KR1020190147086A KR102363768B1 (en) | 2019-11-15 | 2019-11-15 | Mutants of penicillin G acylase with increased production of cefazolin, and uses thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021096298A1 true WO2021096298A1 (en) | 2021-05-20 |
Family
ID=75913074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/016010 WO2021096298A1 (en) | 2019-11-15 | 2020-11-13 | Penicillin g acylase mutant having increased cefazoline productivity and use thereof |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102363768B1 (en) |
CN (1) | CN115397979A (en) |
WO (1) | WO2021096298A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000053041A (en) * | 1996-11-05 | 2000-08-25 | 스티븐 비. 데이비스 | Mutant Penicillin G Acylase |
KR20110099137A (en) * | 2008-12-23 | 2011-09-06 | 디에스엠 아이피 어셋츠 비.브이. | Mutant penicillin g acylases |
WO2017143944A1 (en) * | 2016-02-23 | 2017-08-31 | 上海星维生物技术有限公司 | Penicillin g acylase mutant |
KR20180004169A (en) * | 2015-05-07 | 2018-01-10 | 코덱시스, 인코포레이티드 | Penicillin-G acylase |
KR101985911B1 (en) * | 2017-12-28 | 2019-06-04 | 아미코젠주식회사 | Mutants of penicillin G acylase from Achromobacter sp. CCM 4824, and uses thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100530299B1 (en) * | 2003-08-11 | 2005-11-22 | 산도즈 게엠베하 | Cephalosporin c acylase mutant and method for preparing 7-aca using same |
CN103805671B (en) * | 2013-11-11 | 2015-08-26 | 华北制药河北华民药业有限责任公司 | A kind of method preparing Cephalexin Monohydrate Micro/Compacted |
KR102696584B1 (en) * | 2017-01-05 | 2024-08-19 | 코덱시스, 인코포레이티드 | Penicillin G acylase |
-
2019
- 2019-11-15 KR KR1020190147086A patent/KR102363768B1/en active IP Right Grant
-
2020
- 2020-11-13 CN CN202080093452.2A patent/CN115397979A/en active Pending
- 2020-11-13 WO PCT/KR2020/016010 patent/WO2021096298A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000053041A (en) * | 1996-11-05 | 2000-08-25 | 스티븐 비. 데이비스 | Mutant Penicillin G Acylase |
KR20110099137A (en) * | 2008-12-23 | 2011-09-06 | 디에스엠 아이피 어셋츠 비.브이. | Mutant penicillin g acylases |
KR20180004169A (en) * | 2015-05-07 | 2018-01-10 | 코덱시스, 인코포레이티드 | Penicillin-G acylase |
WO2017143944A1 (en) * | 2016-02-23 | 2017-08-31 | 上海星维生物技术有限公司 | Penicillin g acylase mutant |
KR101985911B1 (en) * | 2017-12-28 | 2019-06-04 | 아미코젠주식회사 | Mutants of penicillin G acylase from Achromobacter sp. CCM 4824, and uses thereof |
Non-Patent Citations (1)
Title |
---|
DATABASE Protein 1 September 2005 (2005-09-01), ANONYMOUS: "penicillin G acylase [Achromobacter sp. CCM 4824]", XP055811695, retrieved from NCBI Database accession no. AAY25991 * |
Also Published As
Publication number | Publication date |
---|---|
CN115397979A (en) | 2022-11-25 |
KR20210059533A (en) | 2021-05-25 |
KR102363768B1 (en) | 2022-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019147078A1 (en) | Corynebacterium sp. microorganism producing purine nucleotide and method for producing purine nucleotide by using same | |
WO2020027362A1 (en) | Novel adenylosuccinate synthetase and method for producing purine nucleotide using same | |
WO2020175735A1 (en) | Novel promoter and purine nucleotide production method using same | |
WO2018182354A1 (en) | Composition for tagatose production and method for tagatose production using same | |
WO2019135639A1 (en) | Novel polypeptide and method for producing imp using same | |
EP1656450B2 (en) | Cephalosporin c acylase mutant and method for preparing 7-aca using same | |
WO2021167414A1 (en) | Purine nucleotide-producing microorganism and purine nucleotide production method using same | |
JPH05501806A (en) | Mutant β-lactam acylase gene | |
CN109971743B (en) | Penicillin G acylase mutant derived from achromobacter CCM4824 and application thereof | |
WO2019190192A1 (en) | Novel promoter, and method for producing l-amino acid by using same | |
WO2020130300A1 (en) | Novel immunosuppressive interleukin 2 | |
WO2019231159A1 (en) | Modified homoserine dehydrogenase, and method for producing homoserine or homoserine-derived l-amino acid using same | |
AU5248698A (en) | Mutant penicillin g acylases | |
WO2020196993A1 (en) | Variant phosphoribosyl pyrophosphate amidotransferase and method for producing purine nucleotide by using same | |
WO2021096298A1 (en) | Penicillin g acylase mutant having increased cefazoline productivity and use thereof | |
WO2021054545A1 (en) | Method for preparing recombinant acremonium chrysogenum strain producing high concentration of deacetoxycephalosproin c for preparation of 7-adca, and strain prepared by same method | |
WO2022145623A1 (en) | Glutamate-cysteine ligase variant and method for producing glutathione using same | |
WO2020067618A1 (en) | L-amino acid-producing microorganism exhibiting increased α-glucosidase activity, and l-amino acid production method using same | |
Kim et al. | Cloning and high expression of glutaryl 7-aminocephalosporanic acid acylase gene from Pseudomonas diminuta | |
WO2022239953A1 (en) | Microorganism having enhanced activity of 3-methyl-2-oxobutanoate hydroxymethyltransferase and uses thereof | |
WO2021201643A1 (en) | Novel promoter and glutathione producing method using same | |
WO2018016873A1 (en) | Microorganism having activity of acyltransferase and use thereof | |
KR20080084986A (en) | Mutant type ii beta-lactam acylases | |
EP1697509B1 (en) | Processing of peptides and proteins | |
WO2019013569A1 (en) | Microorganism expressing active d-proline reductase, and method for producing active d-proline reductase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20886942 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202237033325 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20886942 Country of ref document: EP Kind code of ref document: A1 |