WO2021096224A1 - Fuse element, flexible wiring board, and battery pack - Google Patents

Fuse element, flexible wiring board, and battery pack Download PDF

Info

Publication number
WO2021096224A1
WO2021096224A1 PCT/KR2020/015801 KR2020015801W WO2021096224A1 WO 2021096224 A1 WO2021096224 A1 WO 2021096224A1 KR 2020015801 W KR2020015801 W KR 2020015801W WO 2021096224 A1 WO2021096224 A1 WO 2021096224A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
film
pad
fuse element
region
Prior art date
Application number
PCT/KR2020/015801
Other languages
French (fr)
Korean (ko)
Inventor
김경도
김동식
Original Assignee
진영글로벌 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 진영글로벌 주식회사 filed Critical 진영글로벌 주식회사
Publication of WO2021096224A1 publication Critical patent/WO2021096224A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/06Fusible members characterised by the fusible material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H69/00Apparatus or processes for the manufacture of emergency protective devices
    • H01H69/02Manufacture of fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/046Fuses formed as printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10181Fuse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One embodiment of the present invention relates to a fuse element, a flexible wiring board, and a battery pack.
  • embodiments of the present invention relate to a fuse element, a flexible wiring board, and a battery pack formed on a film.
  • a fuse element is installed to protect each functional element installed in the electric circuit from unintended high current in the electric circuit.
  • the fuse element cuts off the current when a certain or more current flows in order to suppress the destruction of each functional element.
  • a fuse for mounting a board with a lead wire has been used. Such a mounting fuse is mounted on a printed wiring board using soldering.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2019-033090
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2017-204525
  • the present invention has been made in view of the above problem, and an object of the present invention is to provide a fuse element in which a portion of a fuse element formed on a flexible wiring board exhibits a stable operation.
  • a fuse element formed on a flexible wiring board it is an object to provide a highly reliable fuse element that does not impair the functions of parts other than the fuse element.
  • the fuse element in the embodiment of the present invention is electrically connected to the first film, the insulating layer on the first film, and the first conductive layer on the insulating layer, and has a pad of a material different from the first conductive layer. .
  • the fuse element is electrically connected to the first film, the insulating layer on the first film, and the first conductive layer on the insulating layer, and has two pads having a composition ratio different from that of the first conductive layer.
  • the first conductive layer may have a lower resistance than the pad.
  • the first conductive layer may have a lower melting point than that of the pad.
  • the first conductive layer may contain silver and copper, and the pad may contain copper.
  • the first conductive layer and the pad may contain silver and copper.
  • the ratio of silver in the first conductive layer may be greater than the ratio of silver in the pad.
  • At least two of the pads are isolated from each other, and the two pads are arranged in a first direction, and the width of the first conductive layer may be smaller than the width of the pad in a second direction orthogonal to the first direction. .
  • the first conductive layer includes a first region and a second region along the first direction, and in the second direction, the width of the first conductive layer of the first region is the first conductive layer of the second region. It is smaller than the width of the layer, and the width of the first conductive layer may be gradually decreased from the second area toward the first area.
  • the fuse element is electrically connected to the first film, the insulating layer on the first film, the first conductive layer on the insulating layer, and the first conductive layer to be separated from each other in the first direction.
  • the two pads and the first conductive layer have a first region and a second region along the first direction, and in a second direction orthogonal to the first direction, the first conductive layer of the first region.
  • the width is smaller than the width of the first conductive layer in the second region, and the width of the first conductive layer gradually decreases from the second region toward the first region.
  • the first film may include polycyclohexylene dimethylene terephthalate (PCT).
  • PCT polycyclohexylene dimethylene terephthalate
  • the insulating layer may be an inorganic insulating layer.
  • the inorganic insulating layer may include one of silicon oxide, silicon nitride, and hafnium oxide, or a stack of two or more of silicon oxide, silicon nitride, and hafnium oxide.
  • the flexible wiring board in the embodiment of the present invention is electrically connected to the first film, the insulating layer on the first film, the first conductive layer on the insulating layer, and the first conductive layer, and is separated from the first conductive layer.
  • a fuse element with a pad of a different material and a fuse element with a pad of a material different from that of the second conductive layer electrically connected are provided.
  • the flexible wiring board in the embodiment of the present invention is electrically connected to the first film, the insulating layer on the first film, the first conductive layer on the insulating layer, and the first conductive layer, and is separated from the first conductive layer.
  • a fuse element having pads of different composition ratios, a second conductive layer electrically connected to the pad, and a second film on the second conductive layer.
  • the pad and the second conductive layer contain copper, and the ratio of copper in the pad may be smaller than the ratio of copper in the second conductive layer.
  • the flexible wiring board is electrically connected to the first film, the insulating layer on the first film, the first conductive layer on the insulating layer, and the first conductive layer to each other in a first direction.
  • the first conductive layer has a first region and a second region in the first direction, and the first conduction of the first region in a second direction orthogonal to the first direction
  • the width of the layer is smaller than the width of the first conductive layer in the second region, and the width of the first conductive layer is gradually reduced from the second region toward the first region,
  • the battery pack has a battery management system having a battery and a monitoring circuit for monitoring voltage, current, and temperature of the battery, and a flexible wiring board connected to the battery and the battery management system,
  • the flexible wiring board is electrically connected to a first film, an insulating layer on the first film, a first conductive layer on the insulating layer, and the first conductive layer, and includes a pad of a material different from the first conductive layer.
  • a fuse element provided, a second conductive layer electrically connected to the pad, and a second film on the second conductive layer, and the battery management system is installed on the second film, and the monitoring circuit is provided with the second conductive layer. It is connected to the conductive layer.
  • the battery pack includes a battery management system having a battery and a monitoring circuit for monitoring voltage, current, and temperature of the battery, and a flexible wiring board connected to the battery and the battery management system.
  • the flexible wiring board includes a first film, an insulating layer on the first film, a first conductive layer on the insulating layer, and a pad electrically connected to the first conductive layer, and having a composition ratio different from that of the first conductive layer.
  • a fuse element, a second conductive layer electrically connected to the pad, and a second film on the second conductive layer are provided, the battery management system is installed on the second film, and the monitoring circuit is It is connected to the second conductive layer.
  • the battery pack in one embodiment of the present invention has a battery management system having a battery and a monitoring circuit for monitoring voltage, current, and temperature of the battery, and a flexible wiring board connected to the battery and the battery management system.
  • the flexible wiring board includes a first film, an insulating layer on the first film, a first conductive layer on the insulating layer, and at least two pads spaced apart from each other in a first direction electrically connected to the first conductive layer,
  • the first conductive layer has a first region and a second region along the first direction, and in a second direction orthogonal to the first direction, the width of the first conductive layer in the first region is the A fuse element that is smaller than the width of the first conductive layer in the second region, and the width of the first conductive layer gradually decreases from the second region toward the first region, and a second conductive layer electrically connected to the pad A layer and a second film are provided on the second conductive layer, the battery management system is installed on the second film, and the monitoring circuit is connected to the second
  • the electric battery pack is used in an electric vehicle (EV), a hybrid electric vehicle (HEV), or a plug-in hybrid electric vehicle (PHEV).
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • a fuse element in which a portion of a fuse element formed on a flexible wiring board is destroyed may exhibit a stable operation. Further, according to one embodiment of the present invention, in a fuse element formed on a flexible wiring board, it is possible to provide a highly reliable fuse element that does not impair the functions of places other than the fuse element.
  • FIG. 1 is a cross-sectional view of a fuse element according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a fuse element according to an embodiment of the present invention.
  • FIG. 3 is a flowchart showing a method of manufacturing a fuse element according to an embodiment of the present invention.
  • Fig. 4 is a plan view of a fuse element according to a modification of the embodiment of the present invention.
  • Fig. 5 is a diagram showing a film thickness profile of a first conductive layer of a fuse element according to a modified example of an embodiment of the present invention.
  • a fuse element according to a comparative example is a diagram showing a film thickness profile of a layer corresponding to the first conductive layer of the fuse element according to the embodiment of the present invention.
  • Fig. 7 is a plan view of a fuse element according to a modification of the embodiment of the present invention.
  • Fig. 8 is a plan view of a fuse element according to a modification of the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a flexible wiring board according to an embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a fuse element according to an embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of a flexible wiring board according to an embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of a fuse element according to an embodiment of the present invention.
  • FIG. 13 is a plan view of a fuse element according to an embodiment of the present invention.
  • FIG. 14 is a cross-sectional view of a flexible wiring board according to an embodiment of the present invention.
  • FIG. 15 is a functional block diagram of a BMS to which a fuse element according to an embodiment of the present invention is applied.
  • 16 is a cross-sectional view of a battery pack to which a fuse element according to an embodiment of the present invention is applied.
  • FIG. 17 is a diagram showing an application example of a battery pack according to an embodiment of the present invention.
  • Fig. 18 is an optical microscope photograph showing a state after being destroyed in a fuse element according to an embodiment of the present invention.
  • 19 is an optical microscope photograph showing a state after being destroyed in a fuse element according to an embodiment of the present invention.
  • Fig. 20 is an optical micrograph showing a state after being destroyed in a fuse element according to an embodiment of the present invention.
  • includes A, B or C
  • includes any one of A, B and C
  • includes one selected from the group consisting of A, B, and C.
  • the expression “" does not exclude the case where ⁇ includes multiple combinations of A to C. Moreover, these expressions do not exclude cases where ⁇ includes other elements.
  • the fuse element 10 is a fuse having a structure in which a conductive layer (metal layer) is formed on a film, and thus may be referred to as a metal on film (MOF) fuse.
  • MOF metal on film
  • the fuse element 10 has a first film 100, an insulating layer 110, a first conductive layer 120, and a pad 130.
  • the insulating layer 110 was installed on the first film 100.
  • the first conductive layer 120 was provided over the insulating layer 110.
  • the insulating layer 110 is in contact with the first conductive layer 120.
  • the first conductive layer 120 is covered by the insulating layer 110.
  • the pad 130 is provided on each of the insulating layer 110 and the first conductive layer 120. Several pads 130 are installed and placed apart from each other.
  • the first conductive layer 120 is electrically connected to each pad 130.
  • the pad 130 is provided at the end of the first conductive layer 120 and is in contact with the sidewall and the upper surface of the first conductive layer 120.
  • the position of the pad 130 is not limited to the end of the first conductive layer 120.
  • FIG. 2 is a plan view of a fuse element according to an embodiment of the present invention.
  • two pads 130 are installed, and two pads 130 are arranged side by side in the D1 direction.
  • the width w1 of the first conductive layer 120 is smaller than the width w2 of the pad 130.
  • the first conductive layer 120 has a width w3 that is greater than the width w1 and less than the width w2.
  • the ratio of [w1/w2] is 10% or more and 90% or less.
  • the above width ratio may be determined based on the melting point of the first conductive layer 120 and the melting point of the pad 130.
  • the entire area of the first conductive layer 120 having a width w3 overlaps the pad 130 in plan view. However, a part of the area having the width w3 of the first conductive layer 120 does not need to overlap the pad 130 in plan view.
  • the material of the first conductive layer 120 and the material of the pad 130 are different.
  • the composition ratio of the first conductive layer 120 and the composition ratio of the pad 130 are different.
  • the resistance of the first conductive layer 120 is lower than that of the pad 130.
  • the melting point of the first conductive layer 120 is lower than that of the pad 130.
  • the first conductive layer 120 contains silver and copper.
  • Pad 130 contains copper. More specifically, as the first conductive layer 120, a silver and copper alloy (hereinafter, referred to as "AgCu”) is used.
  • AgCu eutectic alloy
  • copper (Cu) is used as the pad 130.
  • Cu having a purity of 90% or more and 99.99% or less is used.
  • the melting point of Cu is about 1083°C.
  • the melting point of AgCu is about 141°C.
  • the electrical resistivity of Cu is 1.68 ⁇ 10 -8 [ ⁇ m].
  • the electrical resistivity of the AgCu is 3.88 ⁇ 10 -8 [ ⁇ m]. That is, when Cu and AgCu are compared, the melting point can be lowered without significantly changing the electrical resistivity.
  • an inorganic insulating layer for example, an inorganic insulating layer is used. Specifically, silicon oxide (SiO2) is used as the inorganic insulating layer.
  • silicon oxide SiO2
  • the inorganic insulating layer in addition to silicon oxide, silicon nitride (SiN), hafnium oxide (HfO2), aluminum oxide (Al2O3), aluminum nitride (AlN), titanium dioxide (TiO2), barium titanate (BaTiO3), titanium zirconate One of yellow (PZT:PbZrTiO3) or a stack of two or more of these insulating layers may be used.
  • a material harder than the first film 100 may be used.
  • the first film 100 a film made of a polycyclohexylene dimethylene terephthalate (PCT) material is used.
  • PCT has high heat resistance and high moisture resistance, so its properties do not change depending on moisture even under high temperature and high humidity environments.
  • the material of the first film 100 is not limited to PCT.
  • PET Poly Ethylene Terepthalate
  • PI Poly Imide
  • PEN Poly Ethylene Naphthalate
  • PPS Poly phenylene sulfide
  • the fuse element 10 since the melting point of the first conductive layer 120 is lower than that of the pad 130, when an overcurrent flows through the fuse element 10, the first conductive layer 120 is preferentially melted. Accordingly, destruction of the fuse element in an unintended place can be suppressed, and a probability that the destruction of the fuse element 10 occurs in the region of the first conductive layer 120 can be improved.
  • AgCu above has a sufficiently low electrical resistivity compared to Cu, the current loss of the fuse element 10 before destruction is not significantly different from the current loss of the fuse element when Cu is used as the first conductive layer 120.
  • the PCT film is used as the first film 100 under the first conductive layer 120 as described above, it is possible to suppress the occurrence of sparks when the first conductive layer 120 is melted by an overcurrent. Therefore, it is possible to suppress a problem in which parts other than the fuse element 10 are damaged by spark. Alternatively, when the first conductive layer 120 is melted, scattering of the first conductive layer 120 due to spark may be suppressed. Therefore, it is possible to suppress the problem of short-circuiting between the insulated wirings.
  • pad 130 You may contain silver and copper.
  • the ratio of silver in the first conductive layer 120 may be different from the ratio of silver in the pad 130.
  • Each of the silver ratios are different, and the melting point of the first conductive layer 120 is lower than that of the pad 130.
  • AgCu is used as the first conductive layer 120 and the pad 130
  • the ratio of Ag and Cu of the first conductive layer 120 and the pad 130 is not limited to the above example.
  • the melting point of the first conductive layer 120 is lower than the melting point of the pad 130
  • the ratio of each Ag may be different from the above ratio.
  • a configuration in which AgCu is used as the first conductive layer 120 and Cu is used as the pad 130 is exemplified, but the configuration is not limited thereto.
  • the melting point of the first conductive layer 120 is lower than the melting point of the pad 130, materials other than the above combination may be used for the first conductive layer 120 and the pad 130.
  • Cu, Ag, gold (Au), or aluminum (Al) is used as the pad 130, and zinc (Zn), tin (Sn), indium (In), and bismuth (Bi) are used as the first conductive layer 120.
  • These alloys, Cu or Ag, and their alloys may be used.
  • FIG. 3 is a flowchart showing a method of manufacturing a fuse element according to an embodiment of the present invention.
  • the method of manufacturing the fuse element 10 includes the steps of preparing a first film (S141), applying an insulating layer material (S142), printing a first conductive layer (S143), and printing a pad (S144).
  • S141 a first film
  • S142 an insulating layer material
  • S143 a first conductive layer
  • S144 printing a pad
  • a curing process is performed after each step of S142, S143, and S144.
  • a curing treatment is performed as a curing treatment performed after each step, a heat curing treatment at 120 °C for 20 minutes is performed.
  • ultraviolet (UV) curing treatment may be performed as the curing treatment.
  • the first film 100 made of PCT material is prepared.
  • a film made of a PCT material for example, a PCT film manufactured by SK Chemicals can be used.
  • the first film 100 may be formed by coating and curing a solution containing PCT on a substrate. When curing the applied PCT, it may be cured using a heat curing treatment or may be cured using a UV curing treatment.
  • materials such as PI, PET, PEN, and PPS may be used instead of PCT.
  • step S142 a solution containing silicon oxide is applied on the first film 100.
  • the curing treatment is performed while the solution is applied on the first film 100.
  • An insulating layer 110 containing silicon oxide is formed by this curing treatment.
  • the solution for forming the insulating layer 110 as described above may contain silicon nitride, hafnium oxide, aluminum oxide, aluminum nitride, titanium oxide, barium titanate, and lead zirconate titanium oxide.
  • the insulating layer 110 may be formed using a physical vapor deposition (PVD) or a chemical vapor deposition (CVD) method.
  • the insulating layer 110 may be formed by using a sputtering method, a vacuum evaporation method, an ion beam evaporation method, or the like.
  • the insulating layer 110 may be formed by using plasma CVD, thermal CVD, atomic layer deposition (ALD), organometallic vapor deposition (MOCVD), or the like.
  • an AgCu ink is formed on the first film 100 by a printing method.
  • a solvent including polyester can be used as the AgCu ink.
  • the AgCu ink may be one in which an AgCu alloy is dissolved in a solvent, or Ag and Cu may be dissolved in a solvent, respectively.
  • the AgCu ink may be an ink containing AgCu alloy nanoparticles, or may be an ink containing Ag nanoparticles and Cu nanoparticles individually.
  • pattern formation of the first conductive layer 120 may be performed using a mask or may be performed using ink jet.
  • a plate type printing method such as screen printing (silk printing), offset printing, and gravure printing, or a plateless printing method such as inkjet method, electrostatic method, thermal transfer method, laser method, etc.
  • a plateless printing method such as inkjet method, electrostatic method, thermal transfer method, laser method, etc.
  • a Cu ink is formed on the first film 100 and the first conductive layer 120 according to the printing method.
  • a Cu ink containing Cu particles having a purity of 90% or more and 99.99% or less is used.
  • a solvent containing polyester can be used.
  • the Cu ink may be an ink in which Cu is dissolved in a solvent, or may be an ink containing Cu nanoparticles.
  • pattern formation of the pad 130 may be performed using a mask or ink jet. After the pattern of the pad 130 is formed by the above method, the above curing treatment is performed.
  • the fuse element 10 may be formed according to the steps of S141 to S144. Further, in the above manufacturing method, a manufacturing method in which a curing treatment is performed after each step has been illustrated, but the manufacturing method is not limited thereto. For example, after at least two steps, the members formed in those steps may be cured at once. Further, after each step, a temporary hardening treatment that is weaker than the hardening treatment (hereinafter referred to as the hardening treatment) may be performed, and after at least two steps, the members formed in these steps may be collectively subjected to the main hardening treatment.
  • the hardening treatment a temporary hardening treatment that is weaker than the hardening treatment
  • the temporary hardening treatment weaker than the hardening treatment means, for example, a heat treatment of less than 120°C or less than 20 minutes if the hardening treatment is a heat hardening treatment at 120°C for 20 minutes.
  • the curing treatment is a UV curing treatment
  • the roughness or irradiation time of the temporary curing treatment means that the roughness or irradiation time of the curing treatment is weaker or shorter than the roughness or irradiation time of the curing treatment.
  • the insulating layer 110, the first conductive layer 120, and the pad 130 can be formed on the first film by coating or printing. Therefore, patterning can be performed at low cost without requiring expensive patterning such as photolithography.
  • FIGS. 4 to 8 are plan views of a fuse element according to a modified example of an embodiment of the present invention.
  • the fuse elements 10A to 10C shown in FIGS. 4 to 8 are similar to the fuse element 10 shown in FIG. 2, but the patterns of the first conductive layers 120A to 120C are different from the patterns of the first conductive layer 120 of FIG. 2, respectively.
  • a description of the same features as in FIG. 2 will be omitted, and differences from FIG. 2 will be described.
  • the width in the D2 direction of the first conductive layer 120A in a region that does not overlap with the pad 130A in a plan view varies depending on the location.
  • the first conductive layer 120A has a first region 151A and a second region 153A.
  • the first conductive layer 120A of the first region 151A has a width w5 in the D2 direction.
  • the first conductive layer 120A in the second region 153A has a width w4 in the D2 direction.
  • the width w5 is less than the width w4. In other words, the width of the first conductive layer 120A in the D2 direction decreases stepwise from the second region 153A toward the first region 151A.
  • the width of the first conductive layer 120A in the D2 direction is gradually reduced from the second region 153A toward the first region 151A, so that the melting due to the overcurrent is concentrated in the first region 151A. Accordingly, the fuse element 10A may be melted in the first region 151A with a high probability. In particular, the probability that the melting occurs near the boundary between the first region 151A and the second region 153A is improved. As described above, since the fuse element 10A has a shape in which the width in the direction D2 of the first conductive layer 120A decreases step by step, the position at which the fuse occurs can be controlled according to the shape in which the corresponding width decreases continuously.
  • 5 is a plan view showing only the first conductive layer 120A of FIG. 4.
  • the film thickness profile 121A of FIG. 5 is a film thickness profile measured by scanning from A to A'along the line A-A' in the plan view of FIG. 5. That is, the film thickness profile of FIG. 5 is the film thickness profile of the first conductive layer 120A in the first region 151A where the width in the D2 direction is w5.
  • the first conductive layer 120A has film thickness peaks 123A and 125A at the end portions of the pattern, and has a concave shape 127A from both ends toward the inside.
  • FIG. 6 is a diagram showing a film thickness profile of a layer corresponding to the first conductive layer of the fuse element according to the embodiment of the present invention in the fuse element according to the comparative example.
  • the film thickness profile 121Z in Fig. 6 is a film thickness profile when Cu is used as the first conductive layer 120Z.
  • 6 is a plan view of a fuse element 10Z related to a comparative example.
  • the film thickness profile of FIG. 6 is a film thickness profile measured by scanning from B to B'along line B-B' in the plan view of FIG. 6.
  • the first conductive layer 120Z composed of Cu does not have a film thickness peak at the end of the pattern, and has a substantially rectangular shape.
  • the probability of occurrence of the melting in the first conductive layer 120A can be further improved.
  • the fuse element 10B shown in FIG. 7 has a width in the direction D2 of the first conductive layer 120B in a region that does not overlap with the pad 130B in plan view.
  • the first conductive layer 120B has a first region 151B, a second region 153B, and a third region 155B.
  • the first conductive layer 120B of the first region 151B has a width w8 in the D2 direction.
  • the first conductive layer 120B in the second region 153B has a width w7 in the D2 direction.
  • the first conductive layer 120B in the third region 155B has a width w6 in the D2 direction.
  • the first conductive layer 120B overlapping the pad 130B adjacent to the first region 151B in a plan view has a width w9 in the D2 direction.
  • the width w9 is less than the width w3
  • the width w8 is less than the width w7
  • the width w7 is less than the width w6.
  • the width of the first conductive layer 120B in the direction D2 decreases stepwise from the third area 155B toward the first area 151B.
  • only one end portion in the D2 direction (the lower end portion in Fig. 7) is gradually reduced from the third region 155B toward the first region 151B.
  • the two pads 130B have the same size, but the pad 130B adjacent to the first area 151B may be smaller than the other pad 130B.
  • the width in the D2 direction of the first conductive layer 120B gradually decreases from the third region 155B toward the first region 151B, so that the melting due to the overcurrent is concentrated in the first region 151B.
  • the stepped portion is formed only at one end of the first conductive layer 120B in the D2 direction, the probability of fusing occurs at the side where the stepped portion of the first region 151B is formed is improved. Therefore, it is possible to further control the location where the fusing occurs.
  • the fuse element 10C shown in FIG. 8 has a width in the D2 direction of the first conductive layer 120C in a region that does not overlap with the pad 130C in a plan view, similar to the fuse element 10A of FIG. 4.
  • the first conductive layer 120C has a first region 161C, a second region 163C, a third region 165C, a fourth region 167C, and a fifth region 169C.
  • Each of the first conductive layers 120C in the first region 161C, the third region 165C, and the fifth region 169C has a width w10 in the D2 direction.
  • Each of the first conductive layers 120C in the second region 163C and the fourth region 167C has a width w11 in the D2 direction.
  • the width w11 is smaller than the width w10.
  • the width in the D2 direction of the first conductive layer 120C gradually decreases from the first region 161C toward the second region 163C, and gradually decreases from the fifth region 169C toward the fourth region 167C.
  • the width of the first conductive layer 120C in the D2 direction is gradually increased from the second region 163C toward the third region 165C and from the fourth region 167C toward the third region 165C.
  • each of the first region 161C, the third region 165C, and the fifth region 169C has a width w10 is illustrated, but is not limited to this configuration.
  • the first area 161C, the third area 165C, and the fifth area 169C may have different widths.
  • the configuration in which each of the second area 163C and the fourth area 167C has a width w11 has been exemplified, it is not limited to this configuration.
  • the widths of the second area 163C and the fourth area 167C may be different.
  • the width of the second area 163C sandwiched by the first area 161C and the third area 165C may be smaller than the widths of each of the first area 161C and the third area 165C.
  • the width of the fourth area 167C, which is sandwiched by the fifth area 169C and the third area 165C, may be smaller than the respective widths of the fifth area 169C and the third area 165C.
  • the first conductive layer 120A, 120B, and 120C have a smaller width in the D2 direction than other regions (in FIG. 4).
  • the first conductive layer 120 when both the first conductive layer 120 and the pad 130 contain silver and copper, the first The ratio of silver and copper in the conductive layer 120 may be the same as the ratio of silver and copper in the pad 130.
  • fusing may occur in an area where the width in the D2 direction is smaller than that of other areas (areas of width w5, width w8, and width w11).
  • FIG. 9 is a cross-sectional view of a flexible wiring board according to an embodiment of the present invention.
  • the flexible wiring board 20D shown in FIG. 9 is a fuse element 10D as shown in FIG. 1 connected to the second film 200D on which the second conductive layer 210D is formed.
  • the second film 200D is a flammable substrate.
  • the second conductive layer 210D is a wiring installed on the second film 200D.
  • the two pads 130D are electrically connected to different second conductive layers 210D, respectively.
  • Both of the two second conductive layers 210D are installed under the second film 200D.
  • functional elements such as thermistor element 220D, switching element 230D such as transistor, and capacitive element 240D are installed. These functional elements are electrically connected to the second conductive layer 210D through the pad 211D.
  • the flexible wiring board 20D may be equipped with the functional elements as described above in addition to the fuse element to constitute a circuit having a desired function.
  • the pad 211D can be formed in the same process as the pad 130D. That is, the configuration of the pad 211D and the configuration of the pad 130D may be the same.
  • Thermistor element 220D, switching element 230D, and capacitive element 240D are composed of a conductive layer, an insulating layer, and a semiconductor layer formed on the first film 100D. For example, these layers may be formed on the first film 100D using a printing method. However, these functional elements may be substrate mounting elements with lead wires.
  • a fuse element 10D is provided between the thermistor element 220D and the switching element 230D.
  • the first conductive layer 120D of the fuse element 10D is fused, and the thermistor element 220D and the switching element 230D are insulated.
  • the above configuration is an example, and the position of the fuse element 10D is not limited to the above configuration.
  • each of the fuse elements 10 and 10A to 10C may be used as the fuse element of the flexible wiring board 20D.
  • the fuse element can be formed as a thin film, so that a thin flexible wiring board can be realized.
  • FIG. 10 is a cross-sectional view of a fuse element according to an embodiment of the present invention.
  • the fuse element 10E shown in FIG. 10 is similar to the fuse element 10 of FIG. 1, but differs from the fuse element 10 in that a primer layer 170E is provided between the first film 100E and the insulating layer 110E.
  • a description of the same features as in FIG. 1 will be omitted, and differences from FIG. 1 will be described.
  • the primer layer 170E is provided to improve adhesion between the first film 100E and the insulating layer 110E.
  • an acrylic resin, an ethylene vinyl acetate resin, a urethane resin, and an epoxy resin can be used.
  • the surface of the first film 100E may be subjected to UV irradiation treatment or plasma treatment.
  • UV irradiation treatment or plasma treatment In particular, when PCT is used as the first film 100E, since the PCT is chemically very stable, it is very difficult to form a film such as an insulating layer 110E on the PCT. That is, the adhesion between the PCT and the insulating layer 110E is poor.
  • the primer layer 170E on the PCT and forming the insulating layer 110E on the primer layer 170E, poor adhesion between the PCT and the insulating layer 110E can be improved.
  • the adhesion between the PCT and the primer layer 170E can be improved.
  • the fuse element 10E according to the third embodiment the same effects as those of the fuse element 10 according to the first embodiment can be obtained.
  • the respective configurations of the fuse elements 10 and 10A to 10C can be applied to the configuration of the fuse element 10E.
  • FIG. 11 is a cross-sectional view of a flexible wiring board according to an embodiment of the present invention.
  • the flexible wiring board 20F shown in FIG. 11 is similar to the flexible wiring board 20D shown in FIG. 9, but as in FIG. 10, a primer layer 170F is provided between the first film 100F and the insulating layer 110F, and the pads 130F, 211F and the second. It differs from the flexible wiring board 20D in that a conductive adhesive layer 190F is provided between the conductive layers 210F.
  • a description of the same features as in FIG. 9 will be omitted, and differences from FIG. 9 will be described.
  • the primer layer 170F is provided to improve adhesion between the first film 100F and the insulating layer 110F.
  • the primer layer 170F the same material as the primer layer 170E can be used.
  • the surface of the first film 100F may be subjected to UV irradiation treatment or plasma treatment.
  • a conductive adhesive layer 190F was provided between the pad 130F and the second conductive layer 210F.
  • the conductive adhesive layer 190F is provided individually for each of the pads 130F and 211F.
  • the conductive adhesive layer 190F may be continuously provided on the plurality of pads 130F and 211F on the lower surface of the second film 200D.
  • each of the fuse elements 10 and 10A to 10C may be used as the fuse element of the flexible wiring board 20F. Since the fuse element can be formed as a thin film, a thin flexible wiring board can be realized.
  • FIG. 12 is a cross-sectional view of a fuse element according to an embodiment of the present invention.
  • the fuse element 10G shown in FIG. 12 is similar to the fuse element 10 of FIG. 1, but differs from the fuse element 10 in that a third conductive layer 180G is provided between the first conductive layer 120G and the pad 130G.
  • a description of the same features as in FIG. 1 will be omitted, and differences from FIG. 1 will be described.
  • the fuse element 10G has a third conductive layer 180G between the first conductive layer 120G and the pad 130G in addition to the first conductive layer 120G and the pad 130G.
  • the material of the pad 130G, the material of the third conductive layer 180G, and the material of the first conductive layer 120G are different.
  • the composition ratio of the pad 130G, the composition ratio of the third conductive layer 180G, and the composition ratio of the first conductive layer 120G are different.
  • the resistance of the first conductive layer 120G is lower than that of the third conductive layer 180G.
  • the resistance of the third conductive layer 180G is lower than that of the pad 130G.
  • the melting point of the first conductive layer 120 is lower than that of the third conductive layer 180G.
  • the melting point of the third conductive layer 180G is lower than that of the pad 130G.
  • the pad 130G may be Cu
  • the fuse element 10G is gradually changing from the pad 130G to the first conductive layer 120G into a material that is easy to melt. If a plurality of conductive layers are provided between the first conductive layer 120G and the pad 130G, a material in which the conductive layer provided on the first conductive layer 120G side is easier to melt than the conductive layer provided on the pad 130G side may be used. Further, in FIG.
  • a configuration in which the third conductive layer 180G sits on the end of the first conductive layer 120G and contacts the sidewalls and the top surface of the first conductive layer 120G is illustrated, but the configuration is not limited thereto.
  • 120G of the first conductive layer may be on the end of 180G of the third conductive layer. That is, 120G of the first conductive layer may be in contact with the sidewall and the top surface of the third conductive layer 180G.
  • the pad 130G has a width w12
  • the third conductive layer 180G has a width w13
  • the first conductive layer 120G has a width w14.
  • the width w13 is smaller than the width w12.
  • the width w14 is smaller than the width w13.
  • the fuse element 10G according to the fifth embodiment the same effects as those of the fuse element 10 according to the first embodiment can be obtained.
  • the respective configurations of the fuse elements 10, 10A to 10C, and 10E can be applied to the configuration of the fuse element 10G.
  • FIG. 14 is a cross-sectional view of a flexible wiring board according to an embodiment of the present invention.
  • the flexible wiring board 20H shown in FIG. 14 is similar to the flexible wiring boards 20D and 20F shown in FIGS. 9 and 11, but as in FIG. 12, a third conductive layer 180H is provided between the first conductive layer 120H and the pad 130H. It is different from the flexible wiring board 20D and 20F. Other points are the same as those of the flexible wiring boards 20D and 20F shown in Figs. 9 and 11, so the description is omitted.
  • a conductive layer of a different material may be formed depending on the use of each functional element.
  • the first conductive layer 120H and the third conductive layer 180H can be selected to satisfy the characteristics of the fuse element 10G shown in the fifth embodiment.
  • each of the fuse elements 10, 10A 10C and 10E may be used as the fuse element of the flexible wiring board 20H. Since the fuse element can be formed as a thin film, a thin flexible wiring board can be realized.
  • the fuse elements 10 and 10A to 10H of the first to sixth embodiments or the flexible wiring boards 20D, 20F, and 20H of the second, fourth and sixth embodiments are used in a vehicle.
  • Vehicles such as passenger cars, especially hybrid vehicles and electric vehicles, use hundreds of fuse elements in electric systems.
  • the fuse element described above may be used for some of these fuse elements.
  • the fuse element described above can be used as a fuse element used in an electric circuit installed on a flexible wiring board.
  • the battery management system is an important component used to monitor the condition or reliable operation of the battery in an EV or ESS.
  • BMS is a monitoring circuit that monitors voltage, temperature and current in order to evaluate the state of the battery such as state of charge (SOC), state of deterioration (SOH), and power limit estimate (PLE). It has 801. In order to make the most of the energy of the battery and to protect the battery from abnormal operation, the BMS needs to accurately monitor the condition of the battery in the module or pack.
  • the BMS800 has a measurement block 810, a battery algorithm block 820, a capacity evaluation block 830, a cell equalization block 840, and a thermal management block 850.
  • the function of each block is realized by the monitoring circuit 801.
  • Measurement block 810 stores the ambient temperature as well as the cell voltage, battery current and battery temperature at different points in the battery bank and converts them to digital values.
  • Battery algorithm block 820 evaluates SOC and SOH using battery variables such as battery voltage, current, and temperature.
  • the capacity evaluation block 830 transmits information to the engine control unit (ECU) on the level of the charging current and the pre-discharge current of the battery.
  • ECU engine control unit
  • the cell equalization block 840 uses cell balancing technology by comparing cell voltages and evaluating the difference between the maximum and minimum cell voltages.
  • the thermal management block 850 measures the ambient and battery temperature and initiates a cooling or heating operation to transmit an emergency signal to the ECU when an abnormal temperature rise occurs.
  • each circuit of the measurement block 810, the battery algorithm block 820, the capacity evaluation block 830, the cell equalization block 840, and the thermal management block 850 is provided with a fuse of the first embodiment to the sixth embodiment.
  • Device 10A is installed.
  • FIG. 16 is a cross-sectional view of a battery pack to which a fuse element according to an embodiment of the present invention is applied.
  • a BMS800J and a battery 900J are installed above and below the flexible wiring board 20J.
  • the BMS800J is installed on the second film 200J
  • the battery 900J is installed under the first film 100J.
  • the positions of the BMS800J and the battery 900J may be opposite.
  • the flexible wiring board 20J has the same configuration as the flexible wiring board 20D shown in Fig. 9, but is not limited to this configuration.
  • the fuse element 10J included in the flexible wiring board 20J is electrically connected to the BMS 800J and the battery 900J through a second conductive layer 210J installed on the second film 200J.
  • the second conductive layer 210J and BMS800J may be connected to the outside of the end of the second film 200J by wire bonding, or may be connected by a through electrode provided in a through hole penetrating through the second film 200J.
  • the second conductive layer 210J and the battery 900J may be connected to the outside of the end of the first film 100J by wire bonding, or may be connected by a through electrode provided in a through hole penetrating the first film 100J.
  • FIG. 17 is a diagram showing an application example of a battery pack according to an embodiment of the present invention.
  • the battery pack 30J is mounted on the vehicle 40J.
  • an electric vehicle (EV), a hybrid electric vehicle (HEV), or a plug-in hybrid electric vehicle (PHEV) is used.
  • 18 to 20 the result of an experiment performed by passing a current through the fuse element using the fuse elements 10, 10A, and 10B related to the first embodiment and its modification will be described.
  • 18 to 20 are optical micrographs showing a state after being destroyed in a fuse element related to the present invention.
  • the fuse elements shown in FIGS. 18 to 20 are sample elements in which a glass substrate is used instead of the first film 100.
  • the fuse elements 10, 10A, and 10B are melted by passing current as shown in FIGS. 18 to 20, it is confirmed that the first conductive layers 120, 120A, and 120B are melted in any case.
  • the melting locations 129, 129A, and 129B in Fig. 18 are portions where the melting has occurred due to an overcurrent.
  • the layer corresponding to the first conductive layer 120 flows through a fuse element according to the comparative example composed of only Cu and fuse
  • the fuse occurs in the first conductive layers 120, 120A, and 120B compared to the fuse elements related to the comparative example formed from a single conductive layer (for example, Cu). You can increase the probability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuses (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

[Problem] To provide a fuse element in which a destroyed part of the fuse element formed on a flexible wiring board exhibits stable operation. Alternatively, to provide a stable fuse element that does not impede the functions of parts other than the fuse element formed on the flexible wiring board. [Solution] This fuse element includes a first film, an insulation layer on the first film, a first conductive layer on the insulating layer, and pads spaced apart from each other, electrically connected to the first conductive layer, and having a different material or composition ratio from the first conductive layer.

Description

퓨즈 소자, 플렉서블 배선기판 및 배터리팩Fuse element, flexible wiring board and battery pack
본 발명의 일 실시 형태는 퓨즈 소자, 플렉서블 배선기판 및 배터리팩에 관한 것이다. 특히 본 발명의 실시 형태는 필름상에 형성된 퓨즈 소자, 플렉서블 배선기판 및 배터리팩에 관한 것이다.One embodiment of the present invention relates to a fuse element, a flexible wiring board, and a battery pack. In particular, embodiments of the present invention relate to a fuse element, a flexible wiring board, and a battery pack formed on a film.
전기회로에 의도하지 않은 대전류로부터 전기회로에 설치된 각 기능소자를 보호하기 위해 퓨즈 소자가 설치되어 있다. 퓨즈 소자는 각 기능소자가 파괴되는 것을 억제하기 위해 일정 이상의 전류가 흐를 경우에 전류를 차단한다. 종래의 프린트 배선기판을 이용하여 전기회로를 구성하는 경우, 리드선이 달린 기판 실장용 퓨즈가 이용되고 있었다. 이러한 실장용 퓨즈는 납땜을 이용하여 프린트 배선기판에 실장된다.A fuse element is installed to protect each functional element installed in the electric circuit from unintended high current in the electric circuit. The fuse element cuts off the current when a certain or more current flows in order to suppress the destruction of each functional element. In the case of constructing an electric circuit using a conventional printed wiring board, a fuse for mounting a board with a lead wire has been used. Such a mounting fuse is mounted on a printed wiring board using soldering.
최근, 예를 들면 차량용 전자 디바이스에서도, 종래의 프린트 배선기판을 대신해 플렉서블 배선기판을 이용한 전기회로가 개발되고 있다. 플렉서블 배선기판은 기재가 가요성을 가진 필름상에 배선 및 기능소자를 형성할 수 있기 때문에 종래의 프린트 배선기판에 비해 얇고 구부릴 수 있다. 플렉서블 배선기판상에 퓨즈 소자를 형성하는 경우, 예를 들면 특허문헌 1에 나타나듯이 플렉서블 기판상에 칩 퓨즈가 형성되어 있었다. 특허문헌 1에서는, 땜납에 의해서 칩 퓨즈가 플렉서블 기판상에 실장되어 있다. 그러나, 예를 들면 차량용의 전자 디바이스에서는, 차량의 주행중에 있어서의 진동이나 열 등에 의한 스트레스로 인해 칩 퓨즈가 플렉서블 배선기판에서 탈리해 버리는 문제가 생기고 있었다. 이러한 문제를 해소하기 위해서, 특허문헌 2에 나타내듯이, 플렉서블 배선 기판상에 형성되는 도전층의 패턴에 의해서 퓨즈 소자를 실현하는 기술이 개발되고 있다.In recent years, for example, even in a vehicle electronic device, an electric circuit using a flexible wiring board has been developed in place of the conventional printed wiring board. The flexible wiring board can be thinner and bend compared to a conventional printed wiring board because the substrate can form wiring and functional elements on a flexible film. In the case of forming a fuse element on a flexible wiring board, for example, as shown in Patent Document 1, a chip fuse was formed on the flexible substrate. In Patent Document 1, a chip fuse is mounted on a flexible substrate by solder. However, in, for example, an electronic device for a vehicle, there has been a problem that the chip fuse is detached from the flexible wiring board due to stress caused by vibration or heat while the vehicle is running. In order to solve such a problem, as shown in Patent Document 2, a technique for realizing a fuse element by a pattern of a conductive layer formed on a flexible wiring board has been developed.
(특허문헌 1) [특허문헌 1]특개 2019-033090호 공보(Patent Document 1) [Patent Document 1] Japanese Unexamined Patent Publication No. 2019-033090
(특허문헌 2) [특허문헌 2]특개 2017-204525호 공보(Patent Document 2) [Patent Document 2] Japanese Unexamined Patent Publication No. 2017-204525
특허문헌 2에 기재된 퓨즈 소자는 도전층에 흐르는 전류에 의해 발생하는 줄(joule)열로 도전층이 용융한다. 이 도전층의 용융에 의해서 퓨즈 소자가 파괴되어 전류를 차단한다(즉, 용단한다). 그렇지만, 특허문헌 2에 기재된 구성의 퓨즈 소자에서는, 과전류에 의해서 파괴되는 부분이 안정되지 않는다고 하는 문제가 생기고 있었다. 게다가 특허문헌 2에 기재된 구성의 퓨즈 소자에서는, 파괴 시에 발생하는 스파크에 의해서 비산한 도전층의 재료에 기인하여, 절연되어 있던 배선간이 단락되는 문제나, 해당 스파크에 의해서 퓨즈 소자 이외의 부분이 파손되는 문제가 발생하고 있었다.In the fuse element described in Patent Document 2, the conductive layer is melted by joule heat generated by a current flowing through the conductive layer. The fuse element is destroyed by melting of this conductive layer to cut off the current (that is, it is melted). However, in the fuse element having the configuration described in Patent Literature 2, there has been a problem that a portion to be destroyed by an overcurrent is not stable. In addition, in the fuse element having the configuration described in Patent Document 2, due to the material of the conductive layer scattered by the spark generated at the time of destruction, the problem of shorting between the insulated wirings, or the parts other than the fuse element due to the spark There was a problem of being damaged.
본 발명은 상기 문제에 비추어 이루어진 것으로 플렉서블 배선기판에 형성되는 퓨즈 소자에서 파괴되는 부분이 안정된 동작을 나타내는 퓨즈 소자를 제공하는 것을 과제로 한다. 또, 플렉서블 배선기판에 형성되는 퓨즈 소자에 있어서, 퓨즈 소자 이외의 부분의 기능을 해치지 않는, 신뢰성이 높은 퓨즈 소자를 제공하는 것을 과제로 한다.The present invention has been made in view of the above problem, and an object of the present invention is to provide a fuse element in which a portion of a fuse element formed on a flexible wiring board exhibits a stable operation. In addition, in a fuse element formed on a flexible wiring board, it is an object to provide a highly reliable fuse element that does not impair the functions of parts other than the fuse element.
본 발명의 실시 형태에서의 퓨즈 소자는 제1필름과 상기 제1필름 위의 절연층과 상기 절연층 위의 제1도전층과 전기적으로 접속되어 상기 제1도전층과는 다른 재료의 패드를 가진다.The fuse element in the embodiment of the present invention is electrically connected to the first film, the insulating layer on the first film, and the first conductive layer on the insulating layer, and has a pad of a material different from the first conductive layer. .
본 발명의 실시 형태에서의 퓨즈 소자는 제1필름과 상기 제1필름 위의 절연층과 상기 절연층 위의 제1도전층과 전기적으로 접속되어 상기 제1도전층과는 다른 조성비의 2가지 패드를 가진다.In the embodiment of the present invention, the fuse element is electrically connected to the first film, the insulating layer on the first film, and the first conductive layer on the insulating layer, and has two pads having a composition ratio different from that of the first conductive layer. Have.
상기 제1도전층은 상기 패드보다 저항이 낮아도 좋다.The first conductive layer may have a lower resistance than the pad.
상기 제1도전층은 상기 패드보다 융점이 낮아도 좋다.The first conductive layer may have a lower melting point than that of the pad.
상기 제1도전층은 은 및 구리를 포함하고, 상기 패드는 구리를 포함해도 된다.The first conductive layer may contain silver and copper, and the pad may contain copper.
상기 제1도전층 및 상기 패드는 은 및 동을 포함해도 된다.The first conductive layer and the pad may contain silver and copper.
상기 제1도전층에서 은의 비율은 상기 패드의 은의 비율보다 커도 좋다.The ratio of silver in the first conductive layer may be greater than the ratio of silver in the pad.
상기 패드는 서로 격리되어 최소한 2개가 설치되며, 2개의 상기 패드는 제1방향으로 나열되며, 상기 제1방향으로 직교하는 제2방향에서 상기 제1도전층의 폭은 상기 패드의 폭보다 작아도 된다.At least two of the pads are isolated from each other, and the two pads are arranged in a first direction, and the width of the first conductive layer may be smaller than the width of the pad in a second direction orthogonal to the first direction. .
상기 제1도전층은, 상기 제1방향에 따라서 제1영역 및 제2영역을 갖추어 상기 제2방향에서, 상기 제1영역의 상기 제1도전층의 폭은 상기 제2영역의 상기 제1도전층의 폭보다 작고, 상기 제1도전층의 폭은 상기 제2영역에서 상기 제1영역을 향해 단계적으로 작아져도 된다.The first conductive layer includes a first region and a second region along the first direction, and in the second direction, the width of the first conductive layer of the first region is the first conductive layer of the second region. It is smaller than the width of the layer, and the width of the first conductive layer may be gradually decreased from the second area toward the first area.
본 발명의 실시 형태에서 퓨즈 소자는 제1필름과 상기 제1필름 위의 절연층과 상기 절연층 위의 제1도전층과 상기 제1도전층에 전기적으로 접속되어 제1방향으로 서로 이격된 최소 2개의 패드와 상기 제1도전층은 상기 제1방향에 따라 제1영역 및 제2영역을 갖추고, 상기 제1방향에 직교하는 제2방향에 있어서, 상기 제1영역의 상기 제1도전층의 폭은 상기 제2영역의 상기 제1도전층의 폭보다 작고, 상기 제1도전층의 폭은 상기 제2영역에서 상기 제1영역을 향해 점진적으로 작아진다.In an embodiment of the present invention, the fuse element is electrically connected to the first film, the insulating layer on the first film, the first conductive layer on the insulating layer, and the first conductive layer to be separated from each other in the first direction. The two pads and the first conductive layer have a first region and a second region along the first direction, and in a second direction orthogonal to the first direction, the first conductive layer of the first region The width is smaller than the width of the first conductive layer in the second region, and the width of the first conductive layer gradually decreases from the second region toward the first region.
상기 제1필름은 PCT(Poly Cyclohexylene dimethylene Terephthalate)를 포함해도 된다.The first film may include polycyclohexylene dimethylene terephthalate (PCT).
상기 절연층은 무기 절연층이라도 좋다.The insulating layer may be an inorganic insulating layer.
상기 무기절연층은 산화실리콘, 질화실리콘 및 산화하프늄 중 하나 또는 산화실리콘, 질화실리콘 및 산화하프늄 중 2개 이상의 적층을 포함해도 된다.The inorganic insulating layer may include one of silicon oxide, silicon nitride, and hafnium oxide, or a stack of two or more of silicon oxide, silicon nitride, and hafnium oxide.
상기 절연층과 상기 제1필름 사이의 프라이머층을 더욱 가져도 된다.You may further have a primer layer between the insulating layer and the first film.
본 발명의 실시 형태에서의 플렉서블 배선기판은 제1필름, 상기 제1필름 상의 절연층, 상기 절연층 위의 제1도전층 및 상기 제1도전층에 전기적으로 접속되어 상기 제1도전층과는 다른 재료의 패드를 갖춘 퓨즈 소자와 전기적으로 접속된 제2도전층과는 다른 재료의 패드를 갖춘 퓨즈 소자를 가진다.The flexible wiring board in the embodiment of the present invention is electrically connected to the first film, the insulating layer on the first film, the first conductive layer on the insulating layer, and the first conductive layer, and is separated from the first conductive layer. A fuse element with a pad of a different material and a fuse element with a pad of a material different from that of the second conductive layer electrically connected are provided.
본 발명의 실시 형태에서의 플렉서블 배선기판은 제1필름, 상기 제1필름 상의 절연층, 상기 절연층 위의 제1도전층 및 상기 제1도전층에 전기적으로 접속되어 상기 제1도전층과는 다른 조성비의 패드를 갖춘 퓨즈 소자와 상기 패드에 전기적으로 접속된 제2도전층과 상기 제2도전층 위의 제2필름을 가진다.The flexible wiring board in the embodiment of the present invention is electrically connected to the first film, the insulating layer on the first film, the first conductive layer on the insulating layer, and the first conductive layer, and is separated from the first conductive layer. A fuse element having pads of different composition ratios, a second conductive layer electrically connected to the pad, and a second film on the second conductive layer.
상기 패드 및 상기 제2도전층은 구리를 포함하고 있으며, 상기 패드의 구리의 비율은 상기 제2도전층의 구리의 비율보다 작아도 된다.The pad and the second conductive layer contain copper, and the ratio of copper in the pad may be smaller than the ratio of copper in the second conductive layer.
본 발명의 일 실시 형태에서의 플렉서블 배선기판은 제1필름, 상기 제1필름 위의 절연층, 상기 절연층 위의 제1도전층 및 상기 제1도전층에 전기적으로 접속되어 제1방향으로 서로 이격된 적어도 2개의 패드를 갖추며, 상기 제1도전층은 상기 제1방향으로 제1영역 및 제2영역을 갖추어, 상기 제1방향에 직교하는 제2방향에서 상기 제1영역의 상기 제1도전층의 폭은 상기 제2영역의 상기 제1도전층의 폭보다 작고, 상기 제1도전층의 폭은 상기 제2영역에서 상기 제1영역을 향해 단계적으로 작아지는 퓨즈 소자와, 상기 패드에 전기적으로 연결된 제2도전층과 상기 제2도전층 상에 제2필름이 있다.In one embodiment of the present invention, the flexible wiring board is electrically connected to the first film, the insulating layer on the first film, the first conductive layer on the insulating layer, and the first conductive layer to each other in a first direction. With at least two pads spaced apart, the first conductive layer has a first region and a second region in the first direction, and the first conduction of the first region in a second direction orthogonal to the first direction The width of the layer is smaller than the width of the first conductive layer in the second region, and the width of the first conductive layer is gradually reduced from the second region toward the first region, There is a second conductive layer connected to each other and a second film on the second conductive layer.
상기 패드와 상기 제2도전층간의 도전성 접착층을 한층 더 가져도 된다.You may further have a conductive adhesive layer between the pad and the second conductive layer.
본 발명의 일 실시 형태에 있어서 배터리 팩은 배터리와 상기 배터리의 전압, 전류 및 온도를 감시하는 감시 회로를 갖는 배터리 관리 시스템, 및 상기 배터리 및 상기 배터리 관리 시스템에 접속된 플렉시블 배선 기판을 가지고 있으며, 상기 플렉시블 배선 기판은 제1필름, 상기 제1필름 위에 절연층, 상기 절연층 상에 제1도전 층 및 상기 제1도전층에 전기적으로 연결되고, 상기 제1도전층과는 다른 재료의 패드를 갖춘 퓨즈 소자와, 상기 패드에 전기적으로 연결된 제2도전층과 상기 제2도전층 상에 제2필름을 구비하고, 상기 배터리 관리 시스템은 상기 제2필름 상에 설치되어 상기 감시 회로는 상기 제2도전층에 연결되어있다.In one embodiment of the present invention, the battery pack has a battery management system having a battery and a monitoring circuit for monitoring voltage, current, and temperature of the battery, and a flexible wiring board connected to the battery and the battery management system, The flexible wiring board is electrically connected to a first film, an insulating layer on the first film, a first conductive layer on the insulating layer, and the first conductive layer, and includes a pad of a material different from the first conductive layer. A fuse element provided, a second conductive layer electrically connected to the pad, and a second film on the second conductive layer, and the battery management system is installed on the second film, and the monitoring circuit is provided with the second conductive layer. It is connected to the conductive layer.
본 발명의 일 실시 형태에서 배터리팩은 배터리와 상기 배터리의 전압, 전류 및 온도를 감시하는 감시회로를 갖는 배터리 관리시스템과, 상기 배터리 및 상기 배터리 관리시스템에 접속된 플렉서블 배선기판을 가지고 있으며, 상기 플렉서블 배선기판은 제1필름, 상기 제1필름 상의 절연층, 상기 절연층 위의 제1도전층 및 상기 제1도전층에 전기적으로 접속되고, 상기 제1도전층과는 다른 조성비의 패드를 갖춘 퓨즈 소자와, 상기 패드에 전기적으로 접속된 제2도전층과, 상기 제2도전층 위의 제2필름을 갖추고, 상기 배터리 관리 시스템은 상기 제2필름 상에 설치되어 있으며, 상기 감시회로는 상기 제2도전층에 접속되어 있다.In one embodiment of the present invention, the battery pack includes a battery management system having a battery and a monitoring circuit for monitoring voltage, current, and temperature of the battery, and a flexible wiring board connected to the battery and the battery management system. The flexible wiring board includes a first film, an insulating layer on the first film, a first conductive layer on the insulating layer, and a pad electrically connected to the first conductive layer, and having a composition ratio different from that of the first conductive layer. A fuse element, a second conductive layer electrically connected to the pad, and a second film on the second conductive layer are provided, the battery management system is installed on the second film, and the monitoring circuit is It is connected to the second conductive layer.
본 발명의 일 실시 형태에서의 배터리팩은 배터리와 상기 배터리의 전압, 전류 및 온도를 감시하는 감시회로를 가진 배터리 관리시스템과 상기 배터리 및 상기 배터리 관리시스템에 접속된 플렉서블 배선기판을 가지고 있으며, 상기 플렉서블 배선기판은 제1필름, 상기 제1필름 상의 절연층, 상기 절연층 위의 제1도전층 및 상기 제1도전층에 전기적으로 연결된 제1방향으로 서로 이격된 적어도 2개의 패드를 구비하고, 상기 제1도전층은 상기 제1방향을 따라 제1영역 및 제2영역을 구비하고, 상기 제1방향에 직교하는 제2방향에 있어서, 상기 제1영역의 상기 제1도전층의 폭은 상기 제2영역의 상기 제1도전층의 폭보다 작고, 상기 제1도전층의 폭은 상기 제2영역에서 상기 제1영역을 향해 점진적으로 작아지는 퓨즈 소자와, 상기 패드에 전기적으로 연결된 제2도전층과 상기 제2도전층 상에 제2필름을 구비하고, 상기 배터리 관리 시스템은 상기 제2필름 상에 설치되고 상기 감시 회로는 상기 제2도전층에 연결되어있다.The battery pack in one embodiment of the present invention has a battery management system having a battery and a monitoring circuit for monitoring voltage, current, and temperature of the battery, and a flexible wiring board connected to the battery and the battery management system. The flexible wiring board includes a first film, an insulating layer on the first film, a first conductive layer on the insulating layer, and at least two pads spaced apart from each other in a first direction electrically connected to the first conductive layer, The first conductive layer has a first region and a second region along the first direction, and in a second direction orthogonal to the first direction, the width of the first conductive layer in the first region is the A fuse element that is smaller than the width of the first conductive layer in the second region, and the width of the first conductive layer gradually decreases from the second region toward the first region, and a second conductive layer electrically connected to the pad A layer and a second film are provided on the second conductive layer, the battery management system is installed on the second film, and the monitoring circuit is connected to the second conductive layer.
전기 배터리팩은 전기자동차(EV: Electric Vehicle), 하이브리드 자동차(HEV: Hybrid Electric Vehicle), 또는 플러그인 하이브리드 자동차(PHEV: Plug-in Hybrid Electric Vehicle)에 이용된다.The electric battery pack is used in an electric vehicle (EV), a hybrid electric vehicle (HEV), or a plug-in hybrid electric vehicle (PHEV).
본 발명의 일 실시 형태에 따르면 플렉서블 배선기판에 형성되는 퓨즈 소자에서 파괴되는 부분이 안정된 동작을 나타내는 퓨즈 소자를 제공할 수 있다. 또, 본 발명의 일 실시 형태에 의하면, 플렉서블 배선기판에 형성되는 퓨즈 소자에 있어서, 퓨즈 소자 이외의 개소의 기능을 해치지 않는, 신뢰성이 높은 퓨즈 소자를 제공할 수 있다.According to an exemplary embodiment of the present invention, a fuse element in which a portion of a fuse element formed on a flexible wiring board is destroyed may exhibit a stable operation. Further, according to one embodiment of the present invention, in a fuse element formed on a flexible wiring board, it is possible to provide a highly reliable fuse element that does not impair the functions of places other than the fuse element.
[도 1] 본 발명의 일 실시 형태와 관련된 퓨즈 소자의 단면도이다.1 is a cross-sectional view of a fuse element according to an embodiment of the present invention.
[도 2] 본 발명의 일 실시 형태와 관련된 퓨즈 소자의 평면도이다.2 is a plan view of a fuse element according to an embodiment of the present invention.
[도 3] 본 발명의 일 실시 형태와 관련된 퓨즈 소자의 제조방법을 나타내는 플로차트이다.3 is a flowchart showing a method of manufacturing a fuse element according to an embodiment of the present invention.
[도 4] 본 발명의 일 실시 형태의 변형예에 관한 퓨즈 소자의 평면도이다.Fig. 4 is a plan view of a fuse element according to a modification of the embodiment of the present invention.
[도 5] 본 발명의 일 실시 형태의 변형예에 관한 퓨즈 소자의 제1도전층의 막두께 프로파일을 나타내는 도이다.Fig. 5 is a diagram showing a film thickness profile of a first conductive layer of a fuse element according to a modified example of an embodiment of the present invention.
[도 6] 비교예에 관한 퓨즈 소자는 본 발명의 실시 형태와 관련된 퓨즈 소자의 제1도전층에 상당하는 층의 막두께 프로파일을 나타내는 도이다.[Fig. 6] A fuse element according to a comparative example is a diagram showing a film thickness profile of a layer corresponding to the first conductive layer of the fuse element according to the embodiment of the present invention.
[도 7] 본 발명의 일 실시 형태의 변형예에 관한 퓨즈 소자의 평면도이다.Fig. 7 is a plan view of a fuse element according to a modification of the embodiment of the present invention.
[도 8] 본 발명의 일 실시 형태의 변형예에 관한 퓨즈 소자의 평면도이다.Fig. 8 is a plan view of a fuse element according to a modification of the embodiment of the present invention.
[도 9] 본 발명의 일 실시 형태와 관련된 플렉서블 배선기판의 단면도이다.9 is a cross-sectional view of a flexible wiring board according to an embodiment of the present invention.
[도 10] 본 발명의 일 실시 형태와 관련된 퓨즈 소자의 단면도이다.10 is a cross-sectional view of a fuse element according to an embodiment of the present invention.
[도 11] 본 발명의 일 실시 형태와 관련된 플렉서블 배선기판의 단면도이다.11 is a cross-sectional view of a flexible wiring board according to an embodiment of the present invention.
[도 12] 본 발명의 일 실시 형태와 관련된 퓨즈 소자의 단면도이다.12 is a cross-sectional view of a fuse element according to an embodiment of the present invention.
[도 13] 본 발명의 일 실시 형태와 관련된 퓨즈 소자의 평면도이다.13 is a plan view of a fuse element according to an embodiment of the present invention.
[도 14] 본 발명의 일 실시 형태와 관련된 플렉서블 배선기판의 단면도이다.14 is a cross-sectional view of a flexible wiring board according to an embodiment of the present invention.
[도 15] 본 발명의 일 실시 형태와 관련된 퓨즈 소자를 적용하는 BMS의 기능 블록도이다.15 is a functional block diagram of a BMS to which a fuse element according to an embodiment of the present invention is applied.
[도 16] 본 발명의 일 실시 형태와 관련된 퓨즈 소자를 적용하는 배터리팩의 단면도이다.16 is a cross-sectional view of a battery pack to which a fuse element according to an embodiment of the present invention is applied.
[도 17] 본 발명의 일 실시 형태와 관련된 배터리팩의 적용 예를 나타낸 도이다.17 is a diagram showing an application example of a battery pack according to an embodiment of the present invention.
[도 18] 본 발명의 일 실시 형태와 관련된 퓨즈 소자에서 파괴된 후의 상태를 나타내는 광학현미경 사진이다.Fig. 18 is an optical microscope photograph showing a state after being destroyed in a fuse element according to an embodiment of the present invention.
[도 19] 본 발명의 일 실시 형태와 관련된 퓨즈 소자에서 파괴된 후의 상태를 나타내는 광학현미경 사진이다.19 is an optical microscope photograph showing a state after being destroyed in a fuse element according to an embodiment of the present invention.
[도 20] 본 발명의 일 실시 형태와 관련된 퓨즈 소자에서 파괴된 후의 상태를 나타내는 광학 현미경 사진이다.Fig. 20 is an optical micrograph showing a state after being destroyed in a fuse element according to an embodiment of the present invention.
이하에 본 발명의 각 실시 형태에 대해 도면을 참조하면서 설명한다. 또한 개시는 어디까지나 일례에 지나지 않는다. 즉, 당업자가 발명의 주지를 유지하면서 적절히 변경함으로써 용이하게 상상할 수 있는 구성은 당연히 본 발명의 범위에 포함되는 구성이다. 도면은 설명을 보다 명확히 하기 위해 실제의 양태에 비해 각 부의 폭, 두께, 형상 등에 대해 모식적으로 표시되는 경우가 있다. 그러나 이것들은 어디까지나 일례로서, 본 발명의 해석을 한정하는 것은 아니다. 또, 본명세서와 각 도에 대해, 기출한 도에 관해서 전술한 것과 같은 요소에는, 동일한 부호 뒤에 대문자의 알파벳을 붙여, 상세한 설명을 적당히 생략할 수 있다.Hereinafter, each embodiment of the present invention will be described with reference to the drawings. In addition, the disclosure is only an example. That is, a configuration that can be easily imagined by a person skilled in the art by appropriately changing it while maintaining the knowledge of the invention is, of course, a configuration included in the scope of the present invention. In the drawings, in order to clarify the description, the width, thickness, shape, etc. of each part may be schematically displayed compared to the actual mode. However, these are only examples and do not limit the interpretation of the present invention. In addition, with respect to the present specification and each diagram, the same elements as those described above with respect to the previous diagrams are denoted by the same reference numerals followed by uppercase alphabets, and detailed descriptions can be appropriately omitted.
본 명세서 및 특허청구범위에서 제1부재 위에 제2부재가 배치된 양태를 표현할 때 단순히 "상" 또는 "상방"이라고 표기하는 경우, 특별히 양자가 배치되는 경우와 제1부재의 상방에, 한층 더 다른 제3부재를 통해 제2부재가 배치되는 경우와 양쪽을 포함하는 것으로 정의된다. 또, 본 명세서에서 설명하는 구성의 상하가 반전되어도 좋다.In the present specification and the claims, when expressing the aspect in which the second member is arranged on the first member, simply "upper" or "upper" is indicated, in particular, when both are arranged and above the first member, further It is defined as including a case in which the second member is disposed through another third member and both. Moreover, the top and bottom of the structure described in this specification may be inverted.
본 명세서에서 "α는 A, B 또는 C를 포함한다”, "α는 A, B 및 C 중 어느 하나를 포함한다”, "α는 A, B 및 C로 이루어진 군으로부터 선택되는 하나를 포함한다”라는 표현은 특별히 명시가 없는 한, α가 A~C의 복수의 조합을 포함하는 경우를 배제하지 않는다. 더욱이 이들 표현은 α가 다른 요소를 포함하는 경우도 배제하지 않는다.In the present specification, "α includes A, B or C", "α includes any one of A, B and C", "α includes one selected from the group consisting of A, B, and C. The expression "" does not exclude the case where α includes multiple combinations of A to C. Moreover, these expressions do not exclude cases where α includes other elements.
또한 다음 각 실시 형태는 기술적인 모순이 발생하지 않는 한 서로 조합할 수 있다.In addition, each of the following embodiments can be combined with each other as long as no technical contradiction occurs.
〈제1 실시 형태〉<First embodiment>
[퓨즈 소자 10의 구성] [Configuration of fuse element 10]
도 1~도 3을 이용하여 제1 실시 형태와 관련된 퓨즈 소자 10의 구성에 대해 설명한다. 아래에 설명하는 것처럼, 퓨즈 소자 10은 필름상에 도전층(금속층)이 형성된 구성의 퓨즈이므로, MOF(Metal On Film) 퓨즈라고 할 수 있다.The configuration of the fuse element 10 according to the first embodiment will be described with reference to FIGS. 1 to 3. As described below, the fuse element 10 is a fuse having a structure in which a conductive layer (metal layer) is formed on a film, and thus may be referred to as a metal on film (MOF) fuse.
도 1은 본 발명의 일 실시 형태와 관련된 퓨즈 소자의 단면도이다. 도 1과 같이 퓨즈 소자10은 제1필름100, 절연층110, 제1도전층120 및 패드130을 가진다. 절연층 110은 제1필름 100 위에 설치됐다. 제1도전층 120은 절연층 110 위에 설치되었다. 절연층 110은 제1도전층 120에 접해 있다. 바꿔 말하면, 제1도전층 120은 절연층 110에 의해 덮여 있다. 패드130은 절연층110 및 제1도전층120의 각각 위에 설치되어 있다. 패드 130은 여러 개 설치되며 서로 떨어져 배치돼 있다. 제1도전층 120은 각각의 패드 130에 전기적으로 접속되어 있다. 본 실시 형태에서는 패드 130은 제1도전층 120의 단부에 설치되어 있으며, 제1도전층 120의 측벽 및 윗면에 접하고 있다. 단, 패드 130의 위치는 제1도전층 120의 단부에 한정되지 않는다.1 is a cross-sectional view of a fuse element according to an embodiment of the present invention. As shown in FIG. 1, the fuse element 10 has a first film 100, an insulating layer 110, a first conductive layer 120, and a pad 130. The insulating layer 110 was installed on the first film 100. The first conductive layer 120 was provided over the insulating layer 110. The insulating layer 110 is in contact with the first conductive layer 120. In other words, the first conductive layer 120 is covered by the insulating layer 110. The pad 130 is provided on each of the insulating layer 110 and the first conductive layer 120. Several pads 130 are installed and placed apart from each other. The first conductive layer 120 is electrically connected to each pad 130. In this embodiment, the pad 130 is provided at the end of the first conductive layer 120 and is in contact with the sidewall and the upper surface of the first conductive layer 120. However, the position of the pad 130 is not limited to the end of the first conductive layer 120.
도 2는 본 발명의 일 실시 형태와 관련된 퓨즈 소자의 평면도이다. 도 2와 같이 패드 130은 2개가 설치되어 있으며, 2개의 패드 130은 D1 방향으로 나란히 배치되어 있다. D1방향으로 직교하는 D2방향에서 제1도전층 120의 폭 w1은 패드 130의 폭 w2보다 작다. 평면시각으로 제1도전층120과 패드130이 겹치는 영역에서 제1도전층120은 폭w1보다 크고 폭w2보다 작은 폭w3을 가진다. [w1/w2]의 비율은 10% 이상 90% 이하이다. 위의 너비 비율은 제1도전층 120의 융점 및 패드 130융점에 기초하여 결정할 수 있다. 제1도전층 120의 폭 w3을 가진 영역의 전부는 평면시각으로 패드 130과 겹쳐져 있다. 단, 제1도전층 120의 폭 w3을 가진 영역의 일부가 평면시각에서 패드130과 겹치지 않아도 된다.2 is a plan view of a fuse element according to an embodiment of the present invention. As shown in FIG. 2, two pads 130 are installed, and two pads 130 are arranged side by side in the D1 direction. In the D2 direction orthogonal to the D1 direction, the width w1 of the first conductive layer 120 is smaller than the width w2 of the pad 130. In a region where the first conductive layer 120 and the pad 130 overlap in a plan view, the first conductive layer 120 has a width w3 that is greater than the width w1 and less than the width w2. The ratio of [w1/w2] is 10% or more and 90% or less. The above width ratio may be determined based on the melting point of the first conductive layer 120 and the melting point of the pad 130. The entire area of the first conductive layer 120 having a width w3 overlaps the pad 130 in plan view. However, a part of the area having the width w3 of the first conductive layer 120 does not need to overlap the pad 130 in plan view.
제1도전층 120의 재료와 패드 130의 재료와는 다르다. 또는 제1도전층 120의 조성비와 패드 130의 조성비와는 다르다. 본 실시 형태에서 제1도전층 120의 저항은 패드 130의 저항보다 낮다. 또 제1도전층 120의 융점은 패드 130의 융점보다 낮다. 구체적으로는 제1도전층 120은, 은 및 동을 포함한다. 패드 130은 구리를 포함한다. 보다 구체적으로는 제1도전층 120으로서 은 및 동 합금(이하, "AgCu"라 한다)이 이용된다. 예를 들면, 제1도전층 120으로서 Ag:Cu=9:1의 AgCu(공융합금)가 이용된다. 패드 130으로서 구리(Cu)가 이용된다. 예를 들어 패드 130으로서 순도가 90% 이상 99.99%이하의 Cu가 이용된다.The material of the first conductive layer 120 and the material of the pad 130 are different. Alternatively, the composition ratio of the first conductive layer 120 and the composition ratio of the pad 130 are different. In this embodiment, the resistance of the first conductive layer 120 is lower than that of the pad 130. Also, the melting point of the first conductive layer 120 is lower than that of the pad 130. Specifically, the first conductive layer 120 contains silver and copper. Pad 130 contains copper. More specifically, as the first conductive layer 120, a silver and copper alloy (hereinafter, referred to as "AgCu") is used. For example, as the first conductive layer 120, AgCu (eutectic alloy) of Ag:Cu=9:1 is used. As the pad 130, copper (Cu) is used. For example, as the pad 130, Cu having a purity of 90% or more and 99.99% or less is used.
여기서 Cu의 융점은 약 1083℃이다. 이것에 대해서, 상기의 AgCu의 융점은 약 141℃이다. 또, Cu의 전기 저항율은 1.68×10 -8[Ωm]이다. 이에 대해 상기 AgCu의 전기저항율은 3.88×10 -8[Ωm]이다. 즉, Cu와 AgCu를 비교하면, 전기 저항율을 크게 바꾸지 않고 융점을 내릴 수 있다.Here, the melting point of Cu is about 1083°C. In contrast, the melting point of AgCu is about 141°C. Further, the electrical resistivity of Cu is 1.68×10 -8 [Ωm]. On the other hand, the electrical resistivity of the AgCu is 3.88 × 10 -8 [Ωm]. That is, when Cu and AgCu are compared, the melting point can be lowered without significantly changing the electrical resistivity.
절연층 110으로서 예를 들어 무기 절연층이 이용된다. 구체적으로는 무기 절연층으로 산화 실리콘(SiO2)이 이용된다. 다만, 해당 무기 절연층으로 산화 실리콘 외에도 질화 실리콘(SiN), 산화 하프늄(HfO2), 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 이산화 티타늄(TiO2), 티타늄산 바륨(BaTiO3), 지르콘산 티타늄 옐로(PZT:PbZrTiO3)의 하나, 또는 이들 절연층의 2개 이상의 적층을 사용해도 좋다. 절연층 110으로서 제1필름100보다 딱딱한 재료를 이용할 수 있다.As the insulating layer 110, for example, an inorganic insulating layer is used. Specifically, silicon oxide (SiO2) is used as the inorganic insulating layer. However, as the inorganic insulating layer, in addition to silicon oxide, silicon nitride (SiN), hafnium oxide (HfO2), aluminum oxide (Al2O3), aluminum nitride (AlN), titanium dioxide (TiO2), barium titanate (BaTiO3), titanium zirconate One of yellow (PZT:PbZrTiO3) or a stack of two or more of these insulating layers may be used. As the insulating layer 110, a material harder than the first film 100 may be used.
제1필름100으로 PCT(Poly Cyclohexylene dimethylene Terephthalate)소재의 필름이 이용된다. PCT는 내열성이 높고 내습성이 높아 고온 고습 환경하에서도 수분에 따라 물성이 달라지지 않는 등의 특성을 가지고 있다. 단, 제1필름100의 재료는 PCT에 한정되지 않는다. 예를 들면, 제1필름 100으로서 PET(Poly Ethylene Terepthalate), PI(Poly Imide), PEN(Poly Ethylene Naphthalate) 또는 PPS(Poly phenylene sulfide) 등이 이용되어도 좋다.As the first film 100, a film made of a polycyclohexylene dimethylene terephthalate (PCT) material is used. PCT has high heat resistance and high moisture resistance, so its properties do not change depending on moisture even under high temperature and high humidity environments. However, the material of the first film 100 is not limited to PCT. For example, as the first film 100, PET (Poly Ethylene Terepthalate), PI (Poly Imide), PEN (Poly Ethylene Naphthalate), PPS (Poly phenylene sulfide), or the like may be used.
이상과 같이 본 실시 형태와 관련된 퓨즈 소자10에 따르면 패드130의 융점에 비해 제1도전층120의 융점이 낮기 때문에 퓨즈 소자10에 과전류가 흘렀을 때 제1도전층120이 우선적으로 용단된다. 따라서 의도하지 않은 곳에서 퓨즈 소자가 파괴되는 것을 억제할 수 있으며, 퓨즈 소자 10의 파괴가 제1도전층 120의 영역에서 발생할 확률을 향상시킬 수 있다. 또한 위의 AgCu는 Cu에 비해서도 충분히 낮은 전기저항률을 가지고 있으므로 파괴되기 전의 퓨즈 소자10의 전류손실은 제1도전층 120으로 Cu를 이용했을 경우의 퓨즈 소자 전류손실과 큰 차이가 없다.As described above, according to the fuse element 10 according to the present embodiment, since the melting point of the first conductive layer 120 is lower than that of the pad 130, when an overcurrent flows through the fuse element 10, the first conductive layer 120 is preferentially melted. Accordingly, destruction of the fuse element in an unintended place can be suppressed, and a probability that the destruction of the fuse element 10 occurs in the region of the first conductive layer 120 can be improved. In addition, since AgCu above has a sufficiently low electrical resistivity compared to Cu, the current loss of the fuse element 10 before destruction is not significantly different from the current loss of the fuse element when Cu is used as the first conductive layer 120.
또한 상기와 같이 제1도전층 120 아래의 제1필름 100으로서 PCT필름이 이용됨으로써 과전류에 의해 제1도전층 120이 용단될 때 스파크가 발생하는 것을 억제할 수 있다. 따라서 스파크에 의해 퓨즈 소자 10 이외의 부분이 파손되는 문제를 억제할 수 있다. 또는 제1도전층 120이 용단될 때 스파크에 의한 제1도전층 120의 비산을 억제할 수 있다. 따라서 절연되어 있던 배선간이 단락되는 문제를 억제할 수 있다.In addition, since the PCT film is used as the first film 100 under the first conductive layer 120 as described above, it is possible to suppress the occurrence of sparks when the first conductive layer 120 is melted by an overcurrent. Therefore, it is possible to suppress a problem in which parts other than the fuse element 10 are damaged by spark. Alternatively, when the first conductive layer 120 is melted, scattering of the first conductive layer 120 due to spark may be suppressed. Therefore, it is possible to suppress the problem of short-circuiting between the insulated wirings.
또한 패드 130은. 은 및 구리를 포함해도 된다. 제1도전층120 및 패드130 양쪽이 은 및 동을 포함할 경우, 제1도전층120의 은의 비율이 패드130의 은의 비율과 달라도 좋다. 각각의 은의 비율이 다른 것으로, 제1 도전층 120의 융점이 패드 130의 융점보다 낮다. 보다 구체적으로는 제1도전층 120 및 패드 130으로서 AgCu가 이용될 경우, 제1도전층 120으로서 Ag:Cu=9:1의 AgCu가 이용되며, 패드 130으로서 Ag:Cu=85:15~15:85의 AgCu가 이용되어도 된다. 즉, 제1도전층 120에 있어서의 은의 비율이, 패드 130에 있어서의 은의 비율보다 커도 좋다. 단, 제1도전층 120과 패드 130의 Ag와 Cu의 비율은 상기 예에 한정되지 않는다. 제1도전층 120의 융점이 패드130의 융점보다도 낮으면 각각의 Ag의 비율은 상기 비율과 달라도 좋다.Also pad 130. You may contain silver and copper. When both the first conductive layer 120 and the pad 130 contain silver and copper, the ratio of silver in the first conductive layer 120 may be different from the ratio of silver in the pad 130. Each of the silver ratios are different, and the melting point of the first conductive layer 120 is lower than that of the pad 130. More specifically, when AgCu is used as the first conductive layer 120 and the pad 130, AgCu of Ag:Cu=9:1 is used as the first conductive layer 120, and as the pad 130, Ag:Cu=85:15-15 :85 AgCu may be used. That is, the ratio of silver in the first conductive layer 120 may be larger than the ratio of silver in the pad 130. However, the ratio of Ag and Cu of the first conductive layer 120 and the pad 130 is not limited to the above example. When the melting point of the first conductive layer 120 is lower than the melting point of the pad 130, the ratio of each Ag may be different from the above ratio.
또한 본 실시 형태에서는 제1도전층 120으로서 AgCu가 이용되고 패드 130으로서 Cu가 사용된 구성을 예시하였으나, 이 구성에 한정되지 않는다. 제1도전층120의 융점이 패드130의 융점보다 낮으면 제1도전층120 및 패드130으로 상기 조합 이외의 재료가 사용되어도 좋다. 예를 들어 패드 130으로서 Cu, Ag, 금(Au) 또는 알루미늄(Al)이 이용되며, 제1도전층 120으로서 아연(Zn), 주석(Sn), 인듐(In), 비스머스(Bi) 중 이들 합금, Cu 또는 Ag과 이들의 합금이 사용되어도 된다.Further, in the present embodiment, a configuration in which AgCu is used as the first conductive layer 120 and Cu is used as the pad 130 is exemplified, but the configuration is not limited thereto. If the melting point of the first conductive layer 120 is lower than the melting point of the pad 130, materials other than the above combination may be used for the first conductive layer 120 and the pad 130. For example, Cu, Ag, gold (Au), or aluminum (Al) is used as the pad 130, and zinc (Zn), tin (Sn), indium (In), and bismuth (Bi) are used as the first conductive layer 120. These alloys, Cu or Ag, and their alloys may be used.
[퓨즈 소자10 제조방법][Method of manufacturing fuse element 10]
도 3을 이용하여 제1 실시 형태와 관련된 퓨즈 소자10의 제조방법에 대해 설명한다. 도 3은 본 발명의 일 실시 형태와 관련된 퓨즈 소자의 제조방법을 나타내는 플로차트이다. 도 3과 같이 퓨즈 소자10의 제조방법은 제1필름 준비(S141), 절연층 재료 도포(S142), 제1도전층 인쇄(S143), 및 패드 인쇄(S144)의 단계를 포함한다. 이와 같이 제1도전층 120 및 패드 130로서 메탈을 인쇄에 의해 형성하기 때문에 이들을 메탈 인쇄층이라고 할 수 있다. 또한 S142, S143, 및 S144의 각 단계 후에는 경화 처리가 이루어진다. 또한 각 단계 이후에 이루어지는 경화 처리로 120°C 20min의 열 경화 처리가 이루어진다. 단, 경화 처리로서 자외선(UV) 경화 처리가 이루어져도 좋다.A method of manufacturing the fuse element 10 according to the first embodiment will be described with reference to FIG. 3. 3 is a flowchart showing a method of manufacturing a fuse element according to an embodiment of the present invention. As shown in FIG. 3, the method of manufacturing the fuse element 10 includes the steps of preparing a first film (S141), applying an insulating layer material (S142), printing a first conductive layer (S143), and printing a pad (S144). In this way, since metal is formed as the first conductive layer 120 and the pad 130 by printing, these can be referred to as a metal printed layer. In addition, after each step of S142, S143, and S144, a curing process is performed. In addition, as a curing treatment performed after each step, a heat curing treatment at 120 °C for 20 minutes is performed. However, ultraviolet (UV) curing treatment may be performed as the curing treatment.
단계 S141에서 PCT소재의 제1필름 100이 준비된다. PCT 소재의 필름으로서 예를 들면 SK케미칼사의 PCT 필름을 사용할 수 있다. 또는 PCT를 포함하는 용액을 기판상에 도포하여 경화시킴으로써 제1필름 100을 형성해도 좋다. 도포된 PCT를경화하는 경우 열 경화 처리를 이용하여 경화 처리하여도 되고, UV 경화 처리를 이용하여 경화시켜도 좋다. 또한 상기와 같이 제1필름 100으로서 PCT대신에 PI, PET, PEN, PPS 등의 소재가 이용되어도 좋다.In step S141, the first film 100 made of PCT material is prepared. As a film made of a PCT material, for example, a PCT film manufactured by SK Chemicals can be used. Alternatively, the first film 100 may be formed by coating and curing a solution containing PCT on a substrate. When curing the applied PCT, it may be cured using a heat curing treatment or may be cured using a UV curing treatment. In addition, as the first film 100 as described above, materials such as PI, PET, PEN, and PPS may be used instead of PCT.
단계 S142에서 산화 실리콘을 포함한 용액이 제1필름 100 상에 도포된다. 해당 용액이 제1필름 100 상에 도포된 상태에서 상기 경화 처리가 이루어진다. 이 경화 처리에 의해 산화실리콘을 포함한 절연층 110이 형성된다. 또한 위와 같이 절연층 110을 형성하기 위한 용액이 질화실리콘, 산화하프늄, 산화알루미늄, 질화알루미늄, 산화티타늄, 티타늄산바륨, 지르콘산티타늄산연을 포함해도 된다. 또한 도포 대신 물리 증착법(PVD; Physical Vapor Deposition) 또는 화 학증착법(CVD; Chemical Vapor Deposition)을 사용하여 절연층 110을 형성해도 된다. PVD로서 스패터링법, 진공증착법 및 이온빔 증착법 등을 이용해 절연층 110을 성막해도 된다. CVD로서 플라즈마CVD, 열CVD, 원자층퇴적(ALD;Atomic Layer Deposition) 및 유기금속기상성장법(MOCVD) 등을 이용하여 절연층 110을 성막해도 된다.In step S142, a solution containing silicon oxide is applied on the first film 100. The curing treatment is performed while the solution is applied on the first film 100. An insulating layer 110 containing silicon oxide is formed by this curing treatment. In addition, the solution for forming the insulating layer 110 as described above may contain silicon nitride, hafnium oxide, aluminum oxide, aluminum nitride, titanium oxide, barium titanate, and lead zirconate titanium oxide. In addition, instead of coating, the insulating layer 110 may be formed using a physical vapor deposition (PVD) or a chemical vapor deposition (CVD) method. As PVD, the insulating layer 110 may be formed by using a sputtering method, a vacuum evaporation method, an ion beam evaporation method, or the like. As CVD, the insulating layer 110 may be formed by using plasma CVD, thermal CVD, atomic layer deposition (ALD), organometallic vapor deposition (MOCVD), or the like.
단계 S143으로, 인쇄법에 의해서 AgCu 잉크를 제1필름 100 상에 형성한다. 인쇄되는 AgCu 잉크로써, 예를 들면 Ag:Cu=9:1의 AgCu 잉크가 이용된다. AgCu 잉크로 폴리에스테르를 포함한 용매를 이용할 수 있다. AgCu 잉크는 AgCu 합금이 용매에 용해된 것이어도 좋고, Ag 및 Cu가 각각 용매에 용해된 것이어도 된다. 또, AgCu 잉크는, AgCu 합금의 나노 입자를 포함한 잉크이어도 좋고, Ag나노 입자 및 Cu나노 입자를 개별적으로 포함하는 잉크이어도 된다. 또한 제1도전층 120의 패턴 형성은, 마스크를 이용해 행해져도 좋고, 잉크젯을 이용해 행해져도 좋다. 예를 들어 제1도전층 120의 패턴 형성 방법으로서 스크린 인쇄(실크인쇄), 오프셋 인쇄, 그라비아인쇄 등의 유판식 인쇄방법이나 잉크젯방식, 정전방식, 열전사방식, 레이저방식 등의 무판식 인쇄방법을 이용할 수 있다. 제1도전층 120의 패턴을 형성한 후에, 상기의 방법에 의해 제1도전층 120의 패턴이 형성된 후 상기 경화 처리가 이루어진다.In step S143, an AgCu ink is formed on the first film 100 by a printing method. As the AgCu ink to be printed, for example, AgCu ink of Ag:Cu=9:1 is used. A solvent including polyester can be used as the AgCu ink. The AgCu ink may be one in which an AgCu alloy is dissolved in a solvent, or Ag and Cu may be dissolved in a solvent, respectively. Further, the AgCu ink may be an ink containing AgCu alloy nanoparticles, or may be an ink containing Ag nanoparticles and Cu nanoparticles individually. Further, pattern formation of the first conductive layer 120 may be performed using a mask or may be performed using ink jet. For example, as a pattern forming method of the first conductive layer 120, a plate type printing method such as screen printing (silk printing), offset printing, and gravure printing, or a plateless printing method such as inkjet method, electrostatic method, thermal transfer method, laser method, etc. You can use After the pattern of the first conductive layer 120 is formed, the curing treatment is performed after the pattern of the first conductive layer 120 is formed by the above method.
단계 S144로 인쇄법에 따라 Cu잉크를 제1필름 100 상 및 제1도전층 120 상에 형성한다. 인쇄되는 Cu잉크로 예를 들어 순도가 90% 이상 99.99% 이하인 Cu입자를 포함한 Cu잉크가 사용된다. Cu잉크로서 폴리에스테르를 포함한 용매를 이용할 수 있다. Cu잉크는 Cu가 용매에 용해된 잉크이어도 되고, Cu의 나노 입자를 포함한 잉크이어도 된다. 또한 패드 130의 패턴 형성은 마스크를 사용하여 실시되어도 좋고 잉크젯을 사용하여도 된다. 위의 방법에 의해 패드 130의 패턴이 형성된 후에 위의 경화 처리가 이루어진다.In step S144, a Cu ink is formed on the first film 100 and the first conductive layer 120 according to the printing method. As the printed Cu ink, for example, a Cu ink containing Cu particles having a purity of 90% or more and 99.99% or less is used. As the Cu ink, a solvent containing polyester can be used. The Cu ink may be an ink in which Cu is dissolved in a solvent, or may be an ink containing Cu nanoparticles. Further, pattern formation of the pad 130 may be performed using a mask or ink jet. After the pattern of the pad 130 is formed by the above method, the above curing treatment is performed.
위와 같이 S141~S144의 단계에 따라 퓨즈 소자 10을 형성할 수 있다. 또, 상기 제조방법에서는 각각의 단계 후에 경화 처리를 하는 제조방법을 예시했지만, 이 제조방법에 한정되지 않는다. 예를 들어 적어도 2개의 단계 후에 그 단계로 형성된 부재를 한꺼번에 경화 처리해도 된다. 또한 각 단계 후에 상기 경화 처리(이하, 본 경화 처리라 한다)보다 약한 가경화 처리를 실시하고, 적어도 2개의 단계 후에 이들 단계에서 형성된 부재를 정리하여 본 경화 처리를 해도 된다. 여기서 본 경화 처리보다 약한 가경화 처리란 예를 들어 본 경화 처리가 120℃ 20min의 열경화 처리라면 120℃ 미만 또는 20min 미만의 열처리를 의미한다. 또는 본 경화 처리가 UV경화 처리라면 가경화 처리의 조도 또는 조사시간은 본 경화 처리의 조도 또는 조사시간보다 약하거나 짧은 것을 의미한다.As described above, the fuse element 10 may be formed according to the steps of S141 to S144. Further, in the above manufacturing method, a manufacturing method in which a curing treatment is performed after each step has been illustrated, but the manufacturing method is not limited thereto. For example, after at least two steps, the members formed in those steps may be cured at once. Further, after each step, a temporary hardening treatment that is weaker than the hardening treatment (hereinafter referred to as the hardening treatment) may be performed, and after at least two steps, the members formed in these steps may be collectively subjected to the main hardening treatment. Here, the temporary hardening treatment weaker than the hardening treatment means, for example, a heat treatment of less than 120°C or less than 20 minutes if the hardening treatment is a heat hardening treatment at 120°C for 20 minutes. Alternatively, if the curing treatment is a UV curing treatment, the roughness or irradiation time of the temporary curing treatment means that the roughness or irradiation time of the curing treatment is weaker or shorter than the roughness or irradiation time of the curing treatment.
이상과 같이, 본 실시 형태와 관련된 퓨즈 소자10의 제조방법에 따르면, 제1필름상에 도포 또는 인쇄법에 따라 절연층 110, 제1도전층 120 및 패드 130을 형성할 수 있다. 따라서, 포토 리소그래피와 같은 고비용의 패터닝을 필요로 하지 않고, 저비용으로 패터닝을 실시할 수 있다.As described above, according to the method of manufacturing the fuse element 10 according to the present embodiment, the insulating layer 110, the first conductive layer 120, and the pad 130 can be formed on the first film by coating or printing. Therefore, patterning can be performed at low cost without requiring expensive patterning such as photolithography.
[제1 실시 형태의 변형 예][Modified example of the first embodiment]
도 4 ~ 도 8을 이용하여 본 실시 형태의 변형 예에 대해 설명한다. 도 4 ~ 도 8은 본 발명의 일 실시 형태의 변형예와 관련된 퓨즈 소자의 평면도이다. 도 4 ~ 도 8에 나타난 퓨즈 소자 10A ~ 10C는 도 2에 나타난 퓨즈 소자 10과 유사하지만, 각각 제1도전층 120A ~ 120C의 패턴이 도 2의 제1도전층 120의 패턴과 다르다. 이하의 설명에서, 도 2와 같은 특징에 대해서는 설명을 생략하고, 도 2와의 차이점에 대해 설명한다.A modified example of this embodiment will be described with reference to FIGS. 4 to 8. 4 to 8 are plan views of a fuse element according to a modified example of an embodiment of the present invention. The fuse elements 10A to 10C shown in FIGS. 4 to 8 are similar to the fuse element 10 shown in FIG. 2, but the patterns of the first conductive layers 120A to 120C are different from the patterns of the first conductive layer 120 of FIG. 2, respectively. In the following description, a description of the same features as in FIG. 2 will be omitted, and differences from FIG. 2 will be described.
도 4에 나타난 퓨즈 소자10A는 평면시에서 패드130A와 겹치지 않는 영역의 제1도전층 120A의 D2방향의 폭이 장소에 따라 다르다. 구체적으로는, 제1도전층 120A는 제1 영역 151A 및 제2 영역 153A를 가지고 있다. 제1영역 151A의 제1도전층 120A는 D2방향으로 폭 w5를 가지고 있다. 제2영역 153A의 제1도전층 120A는 D2방향으로 폭 w4를 가지고 있다. 폭 w5는 폭 w4보다 작다. 상기의 구성을 바꾸어 말하면, 제1도전층 120A의 D2방향의 폭은, 제2영역 153A에서 제1영역 151A를 향해 단계적으로 작아지고 있다.In the fuse element 10A shown in FIG. 4, the width in the D2 direction of the first conductive layer 120A in a region that does not overlap with the pad 130A in a plan view varies depending on the location. Specifically, the first conductive layer 120A has a first region 151A and a second region 153A. The first conductive layer 120A of the first region 151A has a width w5 in the D2 direction. The first conductive layer 120A in the second region 153A has a width w4 in the D2 direction. The width w5 is less than the width w4. In other words, the width of the first conductive layer 120A in the D2 direction decreases stepwise from the second region 153A toward the first region 151A.
상기와 같이 제1도전층 120A의 D2방향의 폭이 제2영역 153A에서 제1영역 151A를 향해 단계적으로 작아지고 있어 과전류에 의한 용단이 제1영역 151A에 집중된다. 따라서 고확률로 퓨즈 소자 10A의 용단을 제1영역 151A에서 발생시킬 수 있다. 특히 제1영역 151A와 제2영역 153A와의 경계 부근에서 용단이 일어날 확률이 향상된다. 위와 같이 퓨즈 소자10A가 제1도전층 120A의 D2방향 폭이 단계적으로 작아지는 형상을 가지고 있음으로써 해당 폭이 연속적으로 작아지는 형상에 준하여 용단이 일어나는 위치를 제어할 수 있다.As described above, the width of the first conductive layer 120A in the D2 direction is gradually reduced from the second region 153A toward the first region 151A, so that the melting due to the overcurrent is concentrated in the first region 151A. Accordingly, the fuse element 10A may be melted in the first region 151A with a high probability. In particular, the probability that the melting occurs near the boundary between the first region 151A and the second region 153A is improved. As described above, since the fuse element 10A has a shape in which the width in the direction D2 of the first conductive layer 120A decreases step by step, the position at which the fuse occurs can be controlled according to the shape in which the corresponding width decreases continuously.
도 5는 본 발명의 실시 형태와 관련된 퓨즈 소자의 제1도전층의 막두께 프로파일을 나타내는 도이다. 도 5의 막두께 프로파일 121A는 제1도전층 120A로서 Ag:Cu=9:1 비율의 AgCu가 이용되었을 경우의 막두께 프로파일이다. 도 5의 평면도는 도 4의 제1도전층 120A만을 나타낸 평면도이다. 도 5의 막두께 프로파일 121A는 도 5의 평면도에서의 A-A'선에 따라 A에서 A'를 향해 스캔하여 측정한 막두께 프로파일이다. 즉, 도 5의 막두께 프로파일은 D2 방향의 폭이 w5인 제1영역 151A에서의 제1도전층 120A의 막두께 프로파일이다. 바꿔 말하면, 도 5의 막두께 프로파일은, 퓨즈 소자 10A 중 용단되는 영역의 막두께 프로파일이다. 도 5와 같이 제1도전층 120A는 그 패턴단부에 막두께 피크123A, 125A를 가지며 양단부에서 안쪽을 향해 오목형상 127A를 가지고 있다.5 is a diagram showing a film thickness profile of a first conductive layer of a fuse element according to an embodiment of the present invention. The film thickness profile 121A in FIG. 5 is a film thickness profile when AgCu in the ratio of Ag:Cu=9:1 is used as 120A of the first conductive layer. 5 is a plan view showing only the first conductive layer 120A of FIG. 4. The film thickness profile 121A of FIG. 5 is a film thickness profile measured by scanning from A to A'along the line A-A' in the plan view of FIG. 5. That is, the film thickness profile of FIG. 5 is the film thickness profile of the first conductive layer 120A in the first region 151A where the width in the D2 direction is w5. In other words, the film thickness profile of Fig. 5 is a film thickness profile of a region in the fuse element 10A to be fused. As shown in FIG. 5, the first conductive layer 120A has film thickness peaks 123A and 125A at the end portions of the pattern, and has a concave shape 127A from both ends toward the inside.
도 6은 비교예에 관한 퓨즈 소자에서 본 발명의 실시 형태와 관련된 퓨즈 소자의 제1도전층에 상당하는 층의 막두께 프로파일을 나타내는 도이다. 도6의 막두께 프로파일 121Z는 제1도전층 120Z로서 Cu가 이용되었을 경우의 막두께 프로파일이다. 도6의 평면도는 비교 예와 관련된 퓨즈 소자 10Z의 평면도이다. 도 6의 막두께 프로파일은 도 6의 평면도에서의 B-B'선에 따라 B에서 B'를 향해 스캔하여 측정한 막두께 프로파일이다. 도6에 나타난 바와 같이 Cu로 구성된 제1도전층 120Z는 도5의 제1도전층 120A와는 달리 패턴단부에 막두께 피크를 가지고 있지 않으며 대략 직사각형형태임이 확인된다.6 is a diagram showing a film thickness profile of a layer corresponding to the first conductive layer of the fuse element according to the embodiment of the present invention in the fuse element according to the comparative example. The film thickness profile 121Z in Fig. 6 is a film thickness profile when Cu is used as the first conductive layer 120Z. 6 is a plan view of a fuse element 10Z related to a comparative example. The film thickness profile of FIG. 6 is a film thickness profile measured by scanning from B to B'along line B-B' in the plan view of FIG. 6. As shown in FIG. 6, unlike the first conductive layer 120A of FIG. 5, the first conductive layer 120Z composed of Cu does not have a film thickness peak at the end of the pattern, and has a substantially rectangular shape.
본 실시 형태와 관련된 퓨즈 소자 10A에서 제1도전층 120A가 상기와 같은 막두께 프로파일을 가짐으로써 제1도전층 120A에서 용단이 발생할 확률을 보다 향상시킬 수 있다.In the fuse element 10A according to the present embodiment, since the first conductive layer 120A has the above-described film thickness profile, the probability of occurrence of the melting in the first conductive layer 120A can be further improved.
도 7에 나타난 퓨즈 소자10B는 도4의 퓨즈 소자10A와 마찬가지로 평면시각에서 패드130B와 겹치지 않는 영역의 제1도전층 120B의 D2방향의 폭이 장소에 따라 다르다. 구체적으로는 제1도전층 120B는 제1영역 151B, 제2영역 153B 및 제3영역 155B를 가지고 있다. 제1영역 151B의 제1도전층 120B는 D2방향으로 폭 w8을 가지고 있다. 제2영역 153B의 제1도전층 120B는 D2방향으로 폭 w7을 가지고 있다. 제3영역 155B의 제1도전층 120B는 D2방향으로 폭 w6을 가지고 있다. 제1영역 151B에 인접한 패드 130B와 평면시각으로 겹치는 제1도전층 120B는 D2방향에 폭 w9를 가진다. 폭 w9는 폭 w3보다 작다.폭 w8은 폭 w7보다 작고 폭 w7은 폭 w6보다 작다. 위의 구성을 바꾸어 말하면 제1도전층 120B의 D2방향의 폭은 제3영역 155B에서 제1영역 151B를 향해 단계적으로 작아지고 있다. 또한 제1 도전층 120 B는, D2 방향의 한쪽의 끝부분만(도 7의 하방의 끝부분)이 제3 영역 155 B로부터 제1 영역 151 B를 향해 단계적으로 작아지고 있다. 도7의 예에서는 2개의 패드130B의 크기는 같지만, 제1영역 151B에 인접한 패드130B는 다른 쪽의 패드130B보다 작아도 된다.Like the fuse element 10A of FIG. 4, the fuse element 10B shown in FIG. 7 has a width in the direction D2 of the first conductive layer 120B in a region that does not overlap with the pad 130B in plan view. Specifically, the first conductive layer 120B has a first region 151B, a second region 153B, and a third region 155B. The first conductive layer 120B of the first region 151B has a width w8 in the D2 direction. The first conductive layer 120B in the second region 153B has a width w7 in the D2 direction. The first conductive layer 120B in the third region 155B has a width w6 in the D2 direction. The first conductive layer 120B overlapping the pad 130B adjacent to the first region 151B in a plan view has a width w9 in the D2 direction. The width w9 is less than the width w3, the width w8 is less than the width w7 and the width w7 is less than the width w6. In other words, the width of the first conductive layer 120B in the direction D2 decreases stepwise from the third area 155B toward the first area 151B. In addition, in the first conductive layer 120B, only one end portion in the D2 direction (the lower end portion in Fig. 7) is gradually reduced from the third region 155B toward the first region 151B. In the example of FIG. 7, the two pads 130B have the same size, but the pad 130B adjacent to the first area 151B may be smaller than the other pad 130B.
상기와 같이 제1도전층 120B의 D2방향 폭이 제3영역 155B에서 제1영역 151B를 향해 단계적으로 작아지고 있어 과전류에 의한 용단이 제1영역 151B에 집중된다. 게다가 단차부가 제1도전층 120B의 D2방향의 한쪽 끝에만 형성되어 있기 때문에, 제1영역 151B의 단차부가 형성되어 있는 측에서 용단이 일어날 확률이 향상된다. 따라서 용단이 발생하는 위치를 더 제어할 수 있다.As described above, the width in the D2 direction of the first conductive layer 120B gradually decreases from the third region 155B toward the first region 151B, so that the melting due to the overcurrent is concentrated in the first region 151B. In addition, since the stepped portion is formed only at one end of the first conductive layer 120B in the D2 direction, the probability of fusing occurs at the side where the stepped portion of the first region 151B is formed is improved. Therefore, it is possible to further control the location where the fusing occurs.
도 8에 나타난 퓨즈 소자10C는 도 4의 퓨즈 소자10A와 마찬가지로 평면시각에서 패드130C와 겹치지 않는 영역의 제1도전층 120C의 D2방향 폭이 장소에 따라 다르다. 구체적으로는 제1도전층 120C는 제1영역 161C, 제2영역 163C, 제3영역 165C, 제4영역 167C 및 제5영역 169C를 가지고 있다. 제1영역 161C, 제3영역 165C 및 제5영역 169C의 각각의 제1도전층 120C는 D2방향으로 폭 w10을 가지고 있다. 제2영역 163C 및 제4영역 167C의 각각의 제1도전층 120C는 D2방향으로 폭 w11을 가지고 있다. 폭 w11은 폭 w10보다 작다. 위의 구성을 바꾸어 말하면, 제1도전층 120C의 D2방향 폭은 제1영역 161C에서 제2영역 163C를 향해 단계적으로 작아지고 있으며, 제5영역 169C에서 제4영역 167C를 향해 단계적으로 작아지고 있다. 한편 제1도전층 120C의 D2방향의 폭은 제2영역 163C에서 제3영역 165C를 향해 및 제4영역 167C에서 제3영역 165C를 향해 단계적으로 커지고 있다.The fuse element 10C shown in FIG. 8 has a width in the D2 direction of the first conductive layer 120C in a region that does not overlap with the pad 130C in a plan view, similar to the fuse element 10A of FIG. 4. Specifically, the first conductive layer 120C has a first region 161C, a second region 163C, a third region 165C, a fourth region 167C, and a fifth region 169C. Each of the first conductive layers 120C in the first region 161C, the third region 165C, and the fifth region 169C has a width w10 in the D2 direction. Each of the first conductive layers 120C in the second region 163C and the fourth region 167C has a width w11 in the D2 direction. The width w11 is smaller than the width w10. In other words, the width in the D2 direction of the first conductive layer 120C gradually decreases from the first region 161C toward the second region 163C, and gradually decreases from the fifth region 169C toward the fourth region 167C. . Meanwhile, the width of the first conductive layer 120C in the D2 direction is gradually increased from the second region 163C toward the third region 165C and from the fourth region 167C toward the third region 165C.
상기 구성을 가짐으로써 과전류가 흘렀을 때 제1도전층 120C의 D2방향 폭이 w10에서 w11로 작아지는 곳에서 용단이 발생하기 쉬워진다. 즉, 제1영역 161C, 제2영역 163C, 제3영역 165C, 제4영역 167C및 제 5영역 169C의 각각의 경계 부근에서 용단이 일어날 확률이 향상된다. 또한 도 8의 구성에 따르면 위의 용단이 발생할 확률이 높은 곳을 복수 형성할 수 있으므로 제1도전층 120C에서 용단이 발생할 확률을 향상시킬 수 있다.By having the above configuration, when an overcurrent flows, melting is likely to occur where the width in the D2 direction of the first conductive layer 120C decreases from w10 to w11. That is, the probability that the melting occurs near the boundary of each of the first region 161C, the second region 163C, the third region 165C, the fourth region 167C, and the fifth region 169C is improved. In addition, according to the configuration of FIG. 8, since a plurality of locations with a high probability of occurrence of the above melting can be formed, the probability of occurrence of the melting in the first conductive layer 120C can be improved.
도 8에서는 제1영역 161C, 제3영역 165C및 제 5영역 169C의 각각이 폭 w10인 구성을 예시했지만, 이 구성에 한정되지 않는다. 예를 들어 제1영역 161C, 제3영역 165C및 제 5영역 169C의 각각의 폭이 달라도 좋다. 또한, 제2영역 163C및 제4영역 167C의 각각이 폭 w11인 구성을 예시했지만, 이 구성에 한정되지 않는다. 예를 들어 제2영역 163C및 제4영역 167C의 각각의 폭이 달라도 좋다. 제1영역 161C와 제3영역 165C에 의해 낀 제2영역 163C의 폭이 제1영역 161C및 제3영역 165C의 각각의 너비보다 작으면 된다. 마찬가지로, 제 5영역 169C와 제3영역 165C에 의해서 낀 제4영역 167C의 폭이, 제 5영역 169C및 제3영역 165C의 각각의 폭보다 작으면 된다.In Fig. 8, a configuration in which each of the first region 161C, the third region 165C, and the fifth region 169C has a width w10 is illustrated, but is not limited to this configuration. For example, the first area 161C, the third area 165C, and the fifth area 169C may have different widths. In addition, although the configuration in which each of the second area 163C and the fourth area 167C has a width w11 has been exemplified, it is not limited to this configuration. For example, the widths of the second area 163C and the fourth area 167C may be different. The width of the second area 163C sandwiched by the first area 161C and the third area 165C may be smaller than the widths of each of the first area 161C and the third area 165C. Similarly, the width of the fourth area 167C, which is sandwiched by the fifth area 169C and the third area 165C, may be smaller than the respective widths of the fifth area 169C and the third area 165C.
도 4, 도 7, 및 도 8과 같이 평면시각에서 패드 130A, 130B, 130C와 겹치지 않는 영역에서 제1도전층 120A, 120B, 120C에서 D2방향의 폭이 다른 곳보다 작은 영역(도 4에서의 폭 w5의 영역, 도 7에서의 폭 w8의 영역, 도 8에서의 폭 w11의 영역)을 가진 구성의 경우이며, 제1도전층 120 및 패드 130 모두가 은 및 동을 포함하는 경우, 제1 도전층 (120)의 은과 구리의 비율이 패드 130의 은과 구리의 비율과 같을 수 있다. 예를 들어 제1도전층 120및 패드 130으로서 Ag:Cu=9:1의 AgCu가 이용되어도 좋다. 이 경우 D2방향의 폭이 다른 곳보다 작은 영역(폭 w5, 폭 w8, 폭 w11의 영역)에서 용단을 발생시킬 수 있다.4, 7, and 8, in a region that does not overlap with the pads 130A, 130B, and 130C in a plan view, the first conductive layer 120A, 120B, and 120C have a smaller width in the D2 direction than other regions (in FIG. 4). In the case of a configuration having a width w5, a width w8 in FIG. 7, and a width w11 in FIG. 8), when both the first conductive layer 120 and the pad 130 contain silver and copper, the first The ratio of silver and copper in the conductive layer 120 may be the same as the ratio of silver and copper in the pad 130. For example, AgCu of Ag:Cu=9:1 may be used as the first conductive layer 120 and the pad 130. In this case, fusing may occur in an area where the width in the D2 direction is smaller than that of other areas (areas of width w5, width w8, and width w11).
〈 제2 실시 형태 〉<Second embodiment>
[플렉서블 배선기판 20D의 구성][Configuration of flexible wiring board 20D]
도 9를 이용하여 제2실시 형태와 관련한 플렉서블 배선기판 20D의 구성에 대해 설명한다. 도 9는 본 발명의 일 실시 형태와 관련된 플렉서블 배선기판의 단면도이다. 도 9에 나타난 플렉서블 배선기판 20D는 제2도전층 210D가 형성된 제2필름 200D상에 도 1과 같은 퓨즈 소자 10D를 접속한 것이다. 이하의 설명에서, 도 1과 같은 특징에 대해서는 설명을 생략하고, 도 1과의 차이점에 대해 설명한다. 제2필름 200D는 가연성이 있는 기판이다. 제2도전층 210D는 제2필름 200D상에 설치된 배선이다.A configuration of the flexible wiring board 20D according to the second embodiment will be described with reference to FIG. 9. 9 is a cross-sectional view of a flexible wiring board according to an embodiment of the present invention. The flexible wiring board 20D shown in FIG. 9 is a fuse element 10D as shown in FIG. 1 connected to the second film 200D on which the second conductive layer 210D is formed. In the following description, a description of the same features as in FIG. 1 will be omitted, and differences from FIG. 1 will be described. The second film 200D is a flammable substrate. The second conductive layer 210D is a wiring installed on the second film 200D.
도 9에 나타난 것과 같이 2개의 패드 130D는 각각 다른 제2도전층 210D에 전기적으로 접속되어 있다. 2개의 제2도전층 210D는 모두 제2필름 200D 아래에 설치되어 있다. 제2필름 200D 아래에는 제2도전층 210D 외에도 서미스터 소자 220D, 트랜지스터 등의 스위칭 소자 230D 및 용량 소자 240D 등의 기능 소자가 설치되어 있다. 이들 기능 소자는 패드 211D를 통해 제2도전층 210D에 전기적으로 접속되어 있다. 상기와 같이 플렉서블 배선기판 20D는 퓨즈 소자 외에 상기와 같은 기능소자를 갖추어 원하는 기능을 가진 회로를 구성할 수 있다.As shown in FIG. 9, the two pads 130D are electrically connected to different second conductive layers 210D, respectively. Both of the two second conductive layers 210D are installed under the second film 200D. Under the second film 200D, in addition to the second conductive layer 210D, functional elements such as thermistor element 220D, switching element 230D such as transistor, and capacitive element 240D are installed. These functional elements are electrically connected to the second conductive layer 210D through the pad 211D. As described above, the flexible wiring board 20D may be equipped with the functional elements as described above in addition to the fuse element to constitute a circuit having a desired function.
패드 211D는 패드 130D와 같은 공정으로 형성할 수 있다. 즉, 패드 211D의 구성과 패드 130D의 구성은 같아도 된다. 서미스터 소자 220D, 스위칭 소자 230D 및 용량 소자 240D는 제1필름 100D상에 형성된 도전층, 절연층 및 반도체층으로 구성되어 있다. 예를 들어 제1필름 100D상에 인쇄법을 이용해 이들 층을 형성할 수 있다. 단, 이들 기능소자가 리드선이 있는 기판 실장용 소자이어도 된다.The pad 211D can be formed in the same process as the pad 130D. That is, the configuration of the pad 211D and the configuration of the pad 130D may be the same. Thermistor element 220D, switching element 230D, and capacitive element 240D are composed of a conductive layer, an insulating layer, and a semiconductor layer formed on the first film 100D. For example, these layers may be formed on the first film 100D using a printing method. However, these functional elements may be substrate mounting elements with lead wires.
본 실시 형태에서는 서미스터 소자 220D와 스위칭 소자 230D 사이에 퓨즈 소자 10D가 설치되어 있다. 퓨즈 소자 10D에 과전류가 흐르면 퓨즈 소자 10D의 제1 도전층 120D가 용단돼 서미스터 소자 220D와 스위칭 소자 230D가 절연된다. 단, 상기 구성은 하나의 예이며, 퓨즈 소자 10D의 위치는 상기 구성에 한정되지 않는다.In this embodiment, a fuse element 10D is provided between the thermistor element 220D and the switching element 230D. When an overcurrent flows through the fuse element 10D, the first conductive layer 120D of the fuse element 10D is fused, and the thermistor element 220D and the switching element 230D are insulated. However, the above configuration is an example, and the position of the fuse element 10D is not limited to the above configuration.
이상과 같이, 제2 실시 형태와 관련되는 플렉서블 배선 기판 20D에 의하면, 제1 실시 형태와 같은 효과를 얻을 수 있다. 또한 플렉서블 배선기판 20 D의 퓨즈 소자로서 퓨즈 소자 10 및 10A~10C의 각각을 이용할 수 있다. 플렉서블 배선기판 20D에서는 퓨즈 소자를 박막으로 형성할 수 있어 박막의 플렉서블 배선기판을 실현할 수 있다.As described above, according to the flexible wiring board 20D according to the second embodiment, the same effects as in the first embodiment can be obtained. In addition, as the fuse element of the flexible wiring board 20D, each of the fuse elements 10 and 10A to 10C may be used. In the flexible wiring board 20D, the fuse element can be formed as a thin film, so that a thin flexible wiring board can be realized.
〈제3 실시 형태〉<Third embodiment>
[퓨즈 소자10E의 구성][Configuration of fuse element 10E]
도 10을 이용하여 제3 실시 형태와 관련된 퓨즈 소자10E의 구성에 대해 설명한다. 도 10은 본 발명의 일 실시 형태와 관련된 퓨즈 소자의 단면도이다. 도 10에 나타난 퓨즈 소자10E는 도1의 퓨즈 소자10과 유사하나 제1필름100E와 절연층110E 사이에 프라이머층170E가 설치되어 있다는 점에서 퓨즈 소자10과 상이하다. 이하의 설명에서, 도 1과 같은 특징에 대해서는 설명을 생략하고, 도 1과의 차이점에 대해 설명한다.A configuration of a fuse element 10E according to a third embodiment will be described with reference to FIG. 10. 10 is a cross-sectional view of a fuse element according to an embodiment of the present invention. The fuse element 10E shown in FIG. 10 is similar to the fuse element 10 of FIG. 1, but differs from the fuse element 10 in that a primer layer 170E is provided between the first film 100E and the insulating layer 110E. In the following description, a description of the same features as in FIG. 1 will be omitted, and differences from FIG. 1 will be described.
프라이머층 170E는 제1필름 100E와 절연층 110E와의 밀착성을 향상시키기 위해 설치된다. 프라이머층 170E로서 아크릴계 수지, 에틸렌초산비닐계 수지, 우레탄계 수지 및 에폭시계 수지를 이용할 수 있다. 제1필름100E상에 프라이머층 170E를 형성하기 전에 제1필름100E 표면에 UV조사처리 또는 플라즈마처리를 해도 된다. 특히 제1필름100E로서 PCT가 사용될 경우 PCT는 화학적으로 매우 안정적이므로 PCT상에 절연층 110E 등의 막을 형성하기가 매우 어렵다. 즉, PCT와 절연층 110E와의 밀착성이 나쁘다. 따라서 PCT상에 프라이머층 170E를 형성하고 그 프라이머층 170E 위에 절연층 110E를 형성함으로써 PCT와 절연층 110E의 밀착성이 좋지 않음을 개선할 수 있다. 또한 프라이머층 170E를 형성하기 전에 UV조사처리 또는 플라즈마 처리를 함으로써 PCT와 프라이머층 170E와의 밀착성을 향상시킬 수 있다.The primer layer 170E is provided to improve adhesion between the first film 100E and the insulating layer 110E. As the primer layer 170E, an acrylic resin, an ethylene vinyl acetate resin, a urethane resin, and an epoxy resin can be used. Before forming the primer layer 170E on the first film 100E, the surface of the first film 100E may be subjected to UV irradiation treatment or plasma treatment. In particular, when PCT is used as the first film 100E, since the PCT is chemically very stable, it is very difficult to form a film such as an insulating layer 110E on the PCT. That is, the adhesion between the PCT and the insulating layer 110E is poor. Therefore, by forming the primer layer 170E on the PCT and forming the insulating layer 110E on the primer layer 170E, poor adhesion between the PCT and the insulating layer 110E can be improved. In addition, by performing UV irradiation treatment or plasma treatment before forming the primer layer 170E, the adhesion between the PCT and the primer layer 170E can be improved.
이상과 같이, 제3실시 형태와 관련되는 퓨즈 소자 10E에 의하면, 제1 실시 형태와 관련되는 퓨즈 소자 10과 같은 효과를 얻을 수 있다. 또한 퓨즈 소자 10E의 구성에 퓨즈 소자 10 및 10A~10C의 각각의 구성을 적용할 수 있다.As described above, according to the fuse element 10E according to the third embodiment, the same effects as those of the fuse element 10 according to the first embodiment can be obtained. In addition, the respective configurations of the fuse elements 10 and 10A to 10C can be applied to the configuration of the fuse element 10E.
〈제4 실시 형태〉<4th embodiment>
[플렉서블 배선기판 20F의 구성][Configuration of flexible wiring board 20F]
도 11을 이용하여 제4 실시 형태와 관련한 플렉서블 배선기판 20F의 구성에 대해 설명한다. 도 11은 본 발명의 일 실시 형태와 관련된 플렉서블 배선기판의 단면도이다. 도11에 나타난 플렉서블 배선기판20F는 도9에 나타난 플렉서블 배선기판20D와 유사하지만 도10과 마찬가지로 제1필름100F와 절연층110F 사이에 프라이머층170F가 설치되어 있는 점 및 패드130F, 211F와 제2도전층210F 사이에 도전성 접착층190F가 설치되어 있는 점에서 플렉서블 배선기판20D와 다르다. 이하의 설명에서, 도 9와 같은 특징에 대해서는 설명을 생략하고, 도 9와의 차이점에 대해 설명한다.A configuration of the flexible wiring board 20F according to the fourth embodiment will be described with reference to FIG. 11. 11 is a cross-sectional view of a flexible wiring board according to an embodiment of the present invention. The flexible wiring board 20F shown in FIG. 11 is similar to the flexible wiring board 20D shown in FIG. 9, but as in FIG. 10, a primer layer 170F is provided between the first film 100F and the insulating layer 110F, and the pads 130F, 211F and the second. It differs from the flexible wiring board 20D in that a conductive adhesive layer 190F is provided between the conductive layers 210F. In the following description, a description of the same features as in FIG. 9 will be omitted, and differences from FIG. 9 will be described.
도 10의 퓨즈 소자10E의 프라이머층 170E와 마찬가지로 프라이머층 170F는 제1필름100F와 절연층 110F와의 밀착성을 향상시키기 위해 설치된다. 프라이머층 170F로서 상기 프라이머층 170E와 같은 재료를 이용할 수 있다. 또한 프라이머층 170F를 형성하기 전에 제1필름 100F의 표면에 UV조사처리 또는 플라즈마처리를 해도 된다.Like the primer layer 170E of the fuse element 10E of FIG. 10, the primer layer 170F is provided to improve adhesion between the first film 100F and the insulating layer 110F. As the primer layer 170F, the same material as the primer layer 170E can be used. Further, before forming the primer layer 170F, the surface of the first film 100F may be subjected to UV irradiation treatment or plasma treatment.
도 11에 나타난 바와 같이 패드130F와 제2도전층 210F 사이에 도전성 접착층 190F가 설치되었다. 도전성 접착층 190F는 각 패드(130F, 211F)에 대해 개별적으로 설치되어 있다. 단, 도전성 접착층 190F가 막두께 방향에만 도전성을 갖는 이방성 도전막일 경우에는 도전성 접착층 190F는 제2필름 200D의 하면에 복수의 패드(130F, 211F)에 연속적으로 설치되어 있어도 된다.As shown in FIG. 11, a conductive adhesive layer 190F was provided between the pad 130F and the second conductive layer 210F. The conductive adhesive layer 190F is provided individually for each of the pads 130F and 211F. However, in the case where the conductive adhesive layer 190F is an anisotropic conductive film having conductivity only in the film thickness direction, the conductive adhesive layer 190F may be continuously provided on the plurality of pads 130F and 211F on the lower surface of the second film 200D.
이상과 같이, 제4 실시 형태와 관련되는 플렉서블 배선기판 20F에 의하면, 제2실시 형태와 관련되는 플렉서블 배선기판 20D와 같은 효과를 얻을 수 있다. 또한 플렉서블 배선기판 20F의 퓨즈 소자로서 퓨즈 소자 10 및 10A~10C의 각각을 이용할 수 있다. 퓨즈 소자를 박막으로 형성할 수 있어 박막의 플렉서블 배선기판을 실현할 수 있다.As described above, according to the flexible wiring board 20F according to the fourth embodiment, the same effects as those of the flexible wiring board 20D according to the second embodiment can be obtained. In addition, as the fuse element of the flexible wiring board 20F, each of the fuse elements 10 and 10A to 10C may be used. Since the fuse element can be formed as a thin film, a thin flexible wiring board can be realized.
〈제5 실시 형태〉<Fifth embodiment>
[퓨즈 소자 10G의 구성][Composition of Fuse Device 10G]
도 12를 이용하여 제5 실시 형태와 관련된 퓨즈 소자 10G의 구성에 대해 설명한다. 도 12는 본 발명의 일 실시 형태와 관련된 퓨즈 소자의 단면도이다. 도 12에 나타난 퓨즈 소자10G는 도 1의 퓨즈 소자10과 유사하지만 제1도전층120G와 패드130G 사이에 제3도전층180G가 설치되어 있다는 점에서 퓨즈 소자10과 상이하다. 이하의 설명에서, 도 1과 같은 특징에 대해서는 설명을 생략하고, 도 1과의 차이점에 대해 설명한다.A configuration of a fuse element 10G according to a fifth embodiment will be described with reference to FIG. 12. 12 is a cross-sectional view of a fuse element according to an embodiment of the present invention. The fuse element 10G shown in FIG. 12 is similar to the fuse element 10 of FIG. 1, but differs from the fuse element 10 in that a third conductive layer 180G is provided between the first conductive layer 120G and the pad 130G. In the following description, a description of the same features as in FIG. 1 will be omitted, and differences from FIG. 1 will be described.
도 12에 나타난 바와 같이 퓨즈 소자10G는 제1도전층120G 및 패드130G에 더해 제1도전층120G와 패드130G 사이에 제3도전층180G를 가지고 있다. 패드 130G의 재료, 제3도전층 180G의 재료 및 제1도전층 120G의 재료 각각은 다르다. 또는 패드 130G의 조성비, 제3도전층 180G의 조성비 및 제1도전층 120G의 조성비는 다르다. 실시 형태에서 제1도전층 120G의 저항은 제3도전층 180G의 저항보다 낮다. 제3도전층 180G의 저항은 패드 130G의 저항보다 낮다. 또 제1도전층 120의 융점은 제3도전층 180G의 융점보다 낮다. 제3 도전층 180G의 융점은 패드 130G의 융점보다 낮다.As shown in FIG. 12, the fuse element 10G has a third conductive layer 180G between the first conductive layer 120G and the pad 130G in addition to the first conductive layer 120G and the pad 130G. The material of the pad 130G, the material of the third conductive layer 180G, and the material of the first conductive layer 120G are different. Alternatively, the composition ratio of the pad 130G, the composition ratio of the third conductive layer 180G, and the composition ratio of the first conductive layer 120G are different. In the embodiment, the resistance of the first conductive layer 120G is lower than that of the third conductive layer 180G. The resistance of the third conductive layer 180G is lower than that of the pad 130G. In addition, the melting point of the first conductive layer 120 is lower than that of the third conductive layer 180G. The melting point of the third conductive layer 180G is lower than that of the pad 130G.
구체적으로는 예를 들어 패드 130G가 Cu이고, 제3도전층 180G가 Ag:Cu=85:15~15:85의 AgCu이며, 제1도전층 120G가 Ag:Cu=9:1의 AgCu라도 좋다. 즉 퓨즈 소자 10G는 패드 130G에서 제1도전층 120G를 향해 서서히 용단하기 쉬운 재료로 바뀌고 있다. 만일 제1도전층 120G와 패드 130G 사이에 복수의 도전층이 설치되어 있는 경우, 패드 130G측에 설치된 도전층보다 제1도전층 120G측에 설치된 도전층이 용단하기 쉬운 재료를 이용할 수 있다. 또한 도12에서는 제3도전층 180G가 제1도전층 120G의 단부에 올라앉아 있으며, 제1도전층 120G의 측벽 및 윗면에 접하는 구성을 예시하였으나, 이 구성에 한정되지 않는다. 예를 들어 제1도전층 120G가 제3도전층 180G의 단부에 올라가 있어도 된다. 즉, 제1도전층 120G가 제3도전층 180G의 측벽 및 윗면에 접하고 있어도 된다.Specifically, for example, the pad 130G may be Cu, the third conductive layer 180G may be AgCu with Ag:Cu=85:15-15:85, and the first conductive layer 120G may be AgCu with Ag:Cu=9:1 . In other words, the fuse element 10G is gradually changing from the pad 130G to the first conductive layer 120G into a material that is easy to melt. If a plurality of conductive layers are provided between the first conductive layer 120G and the pad 130G, a material in which the conductive layer provided on the first conductive layer 120G side is easier to melt than the conductive layer provided on the pad 130G side may be used. Further, in FIG. 12, a configuration in which the third conductive layer 180G sits on the end of the first conductive layer 120G and contacts the sidewalls and the top surface of the first conductive layer 120G is illustrated, but the configuration is not limited thereto. For example, 120G of the first conductive layer may be on the end of 180G of the third conductive layer. That is, 120G of the first conductive layer may be in contact with the sidewall and the top surface of the third conductive layer 180G.
도 13은 본 발명의 일 실시 형태와 관련된 퓨즈 소자의 평면도이다. 도 13에 나타난 바와 같이 D2방향에서 패드 130G는 폭 w12를 가지고 있고, 제3도전층 180G는 폭 w13을 가지며, 제1도전층 120G는 폭 w14를 가진다. 폭 w13은 폭 w12보다 작다. 폭 w14는 폭 w13보다 작다.13 is a plan view of a fuse element according to an embodiment of the present invention. 13, in the D2 direction, the pad 130G has a width w12, the third conductive layer 180G has a width w13, and the first conductive layer 120G has a width w14. The width w13 is smaller than the width w12. The width w14 is smaller than the width w13.
이상과 같이 제5 실시 형태와 관련된 퓨즈 소자 10G에 따르면 제1 실시 형태와 관련된 퓨즈 소자 10과 같은 효과를 얻을 수 있다. 또한 퓨즈 소자 10G의 구성에 퓨즈 소자 10, 10A~10C 및 10E의 각각의 구성을 적용할 수 있다.As described above, according to the fuse element 10G according to the fifth embodiment, the same effects as those of the fuse element 10 according to the first embodiment can be obtained. In addition, the respective configurations of the fuse elements 10, 10A to 10C, and 10E can be applied to the configuration of the fuse element 10G.
〈 제6 실시 형태 〉<Sixth embodiment>
[플렉서블 배선기판 20H의 구성][Configuration of flexible wiring board 20H]
도 14를 이용하여 제6 실시 형태와 관련한 플렉서블 배선기판 20H의 구성에 대해 설명한다. 도 14는 본 발명의 일 실시 형태와 관련된 플렉서블 배선기판의 단면도이다. 도 14에 나타난 플렉서블 배선기판 20H는 도 9및 도 11에 나타난 플렉서블 배선기판 20D, 20F와 유사하지만, 도 12와 마찬가지로 제1도전층 120H와 패드 130H사이에 제3도전층 180H가 설치되어 있다는 점에서 플렉서블 배선기판 20D, 20F와 다르다. 그 이외의 점에 대해서는 도 9 및 도 11에 나타낸 플렉서블 배선기판 20D, 20F와 같으므로 설명을 생략한다.A configuration of the flexible wiring board 20H according to the sixth embodiment will be described with reference to FIG. 14. 14 is a cross-sectional view of a flexible wiring board according to an embodiment of the present invention. The flexible wiring board 20H shown in FIG. 14 is similar to the flexible wiring boards 20D and 20F shown in FIGS. 9 and 11, but as in FIG. 12, a third conductive layer 180H is provided between the first conductive layer 120H and the pad 130H. It is different from the flexible wiring board 20D and 20F. Other points are the same as those of the flexible wiring boards 20D and 20F shown in Figs. 9 and 11, so the description is omitted.
제1필름 100H상에 서미스터 소자 220H, 스위칭 소자 230H및 용량 소자 240H를 형성하는 경우, 각 기능 소자의 용도에 따라 다른 재료의 도전층을 형성하는 경우가 있다. 이러한 경우에, 제5 실시 형태에 나타내는 퓨즈 소자 10G의 특징을 채우도록 제1도전층 120H및 제3도전층 180H를 선택할 수 있다.When forming the thermistor element 220H, the switching element 230H, and the capacitive element 240H on the first film 100H, a conductive layer of a different material may be formed depending on the use of each functional element. In this case, the first conductive layer 120H and the third conductive layer 180H can be selected to satisfy the characteristics of the fuse element 10G shown in the fifth embodiment.
이상과 같이, 제6 실시 형태와 관련되는 플렉서블 배선기판 20H에 의하면, 제2실시 형태와 관련되는 플렉서블 배선기판 20D와 같은 효과를 얻을 수 있다. 또한 플렉서블 배선기판 20H의 퓨즈 소자로서 퓨즈 소자10, 10A 10C 및 10E의 각각을 이용할 수 있다. 퓨즈 소자를 박막으로 형성할 수 있어 박막의 플렉서블 배선기판을 실현할 수 있다.As described above, according to the flexible wiring board 20H according to the sixth embodiment, the same effects as those of the flexible wiring board 20D according to the second embodiment can be obtained. In addition, each of the fuse elements 10, 10A 10C and 10E may be used as the fuse element of the flexible wiring board 20H. Since the fuse element can be formed as a thin film, a thin flexible wiring board can be realized.
〈제7 실시 형태〉<Seventh embodiment>
본 실시 형태에서는 제1 실시 형태 ~ 제6 실시 형태의 퓨즈 소자10 및 10A ~ 10H 또는 제2 실시 형태, 제4 실시 형태, 제6 실시 형태의 플렉서블 배선기판 20D, 20F, 20H를 차량에 이용하는 경우에 대해 설명한다. 승용자동차 등의 차량, 특히 하이브리드 자동차나 전기자동차 등의 차량에서는 전기시스템에 수백 개의 퓨즈 소자를 사용하고 있다. 이러한 퓨즈 소자의 일부에 상기의 퓨즈 소자를 이용할 수 있다. 특히 플렉서블 배선기판상에 설치된 전기회로내에 이용되는 퓨즈 소자로서 상기의 퓨즈 소자를 이용할 수 있다.In this embodiment, when the fuse elements 10 and 10A to 10H of the first to sixth embodiments or the flexible wiring boards 20D, 20F, and 20H of the second, fourth and sixth embodiments are used in a vehicle. Explain about. Vehicles such as passenger cars, especially hybrid vehicles and electric vehicles, use hundreds of fuse elements in electric systems. The fuse element described above may be used for some of these fuse elements. In particular, the fuse element described above can be used as a fuse element used in an electric circuit installed on a flexible wiring board.
최근 에너지의 효율적인 사용을 위해 전기자동차(EV; Electric Vehicles), 에너지 저장 시스템(ESS; Eergy Storage Systems) 및 인공지능(AI) 서버의 전력 시스템의 중요성이 높아지고 있어 온실효과가스 방출 저감 및 녹색 전력의 산업화가 세계적으로 요구되고 있다. 차량의 배터리는 EV 비즈니스의 성공을 위한 주요 기술이다. 배터리 기술의 발전은, 적용 범위의 증가나 EV의 코스트 저감으로 연결된다.In recent years, the importance of power systems for electric vehicles (EVs), energy storage systems (ESS), and artificial intelligence (AI) servers for efficient use of energy is increasing. Industrialization is in demand worldwide. Vehicle batteries are a key technology for the success of the EV business. The development of battery technology leads to an increase in the application range and a reduction in EV cost.
배터리 관리 시스템(BMS)은 EV나 ESS에서 배터리의 상태나 신뢰성이 있는 동작을 감시하기 위해 사용되는 중요한 부품이다. BMS는 충전상태(SOC; State Of Charge), 열화상태(SOH; State Of Health), 전력상한평가(PLE; Power Limit Estimate) 등의 배터리 상태를 평가하기 위해 전압, 온도 및 전류를 감시하는 감시회로 801을 갖는다. 배터리의 에너지를 최대한 이용하기 위해서 및 이상 동작으로부터 배터리를 보호하기 위해서 BMS는 모듈이나 팩에 있어서의 배터리 상태를 정확하게 감시할 필요가 있다.The battery management system (BMS) is an important component used to monitor the condition or reliable operation of the battery in an EV or ESS. BMS is a monitoring circuit that monitors voltage, temperature and current in order to evaluate the state of the battery such as state of charge (SOC), state of deterioration (SOH), and power limit estimate (PLE). It has 801. In order to make the most of the energy of the battery and to protect the battery from abnormal operation, the BMS needs to accurately monitor the condition of the battery in the module or pack.
도 15는 본 발명의 일 실시 형태와 관련된 퓨즈 소자를 적용하는 BMS의 기능 블록도이다. 도 15에 제시한 바와 같이 BMS800은 측정 블록 810, 배터리 알고리즘 블록 820, 용량 평가 블록 830, 셀 균등화 블록 840 및 열관리 블록 850을 가진다. 각 블록의 기능은 감시회로 801에 의해 실현된다. 측정블록 810은 주위 온도뿐만 아니라 배터리 뱅크의 다른 점에서의 셀 전압, 배터리 전류 및 배터리 온도를 저장하고 그것들을 디지털 값으로 변환한다. 배터리 알고리즘 블록 820은 배터리 전압, 전류 및 온도 등의 배터리 변수를 이용해 SOC 및 SOH를 평가한다. 용량평가 블록 830은 배터리의 충전전류 및 방전전전류의 수준에 대해 엔진 컨트롤 유닛(ECU)에 정보를 송신한다. 셀균등화블록 840은 셀전압을 비교하고 셀전압의 최대값과 최소값의 차이를 평가하여 셀밸런싱기술을 이용한다. 열관리 블록 850은 주위 및 배터리의 온도를 측정하고 냉각 동작 또는 가열 동작을 개시해 온도의 이상 상승이 일어났을 때 ECU에 긴급 신호를 송신한다.15 is a functional block diagram of a BMS to which a fuse element according to an embodiment of the present invention is applied. As shown in FIG. 15, the BMS800 has a measurement block 810, a battery algorithm block 820, a capacity evaluation block 830, a cell equalization block 840, and a thermal management block 850. The function of each block is realized by the monitoring circuit 801. Measurement block 810 stores the ambient temperature as well as the cell voltage, battery current and battery temperature at different points in the battery bank and converts them to digital values. Battery algorithm block 820 evaluates SOC and SOH using battery variables such as battery voltage, current, and temperature. The capacity evaluation block 830 transmits information to the engine control unit (ECU) on the level of the charging current and the pre-discharge current of the battery. The cell equalization block 840 uses cell balancing technology by comparing cell voltages and evaluating the difference between the maximum and minimum cell voltages. The thermal management block 850 measures the ambient and battery temperature and initiates a cooling or heating operation to transmit an emergency signal to the ECU when an abnormal temperature rise occurs.
BMS800을 과전류, 서지전압 및 정전파괴로부터 보호하기 위해 측정블록 810, 배터리 알고리즘블록 820, 용량평가블록 830, 셀균등화블록 840 및 열관리블록 850의 각 회로에 제1 실시 형태 ~ 제6 실시 형태의 퓨즈 소자10A가 설치된다.In order to protect the BMS800 from overcurrent, surge voltage, and electrostatic breakdown, each circuit of the measurement block 810, the battery algorithm block 820, the capacity evaluation block 830, the cell equalization block 840, and the thermal management block 850 is provided with a fuse of the first embodiment to the sixth embodiment. Device 10A is installed.
도 16은 본 발명의 일 실시 형태와 관련된 퓨즈 소자를 적용하는 배터리팩의 단면도이다. 도 16에 나타난 바와 같이 배터리팩 30J는 플렉서블 배선기판 20J의 상하로 BMS800J 및 배터리 900J가 설치되어 있다. 본 실시 형태에서는 BMS800J가 제2필름200J 위에 설치되어 있으며 배터리 900J가 제1필름100J 아래에 설치되어 있다. 단, BMS800J 및 배터리 900J의 위치가 반대이어도 된다. 또, 플렉서블 배선기판 20J는, 도 9에 나타낸 플렉서블 배선기판 20D와 같은 구성이지만, 이 구성에 한정되지 않는다.16 is a cross-sectional view of a battery pack to which a fuse element according to an embodiment of the present invention is applied. As shown in FIG. 16, in the battery pack 30J, a BMS800J and a battery 900J are installed above and below the flexible wiring board 20J. In this embodiment, the BMS800J is installed on the second film 200J, and the battery 900J is installed under the first film 100J. However, the positions of the BMS800J and the battery 900J may be opposite. Incidentally, the flexible wiring board 20J has the same configuration as the flexible wiring board 20D shown in Fig. 9, but is not limited to this configuration.
플렉서블 배선기판 20J에 포함된 퓨즈 소자 10J는 제2필름 200J에 설치된 제2도전층 210J를 통해 BMS 800J 및 배터리 900J에 전기적으로 접속되어 있다. 제2도전층 210J와 BMS800J는 제2필름 200J의 끝부분의 바깥쪽에 와이어 본딩으로 접속되어도 되며, 제2필름 200J를 관통하는 관통공에 설치된 관통전극으로 접속되어도 된다. 마찬가지로 제2도전층 210J와 배터리 900J는 제1필름 100J의 끝부분 바깥쪽에 와이어 본딩으로 접속되어도 되며, 제1필름 100J를 관통하는 관통공에 설치된 관통전극으로 접속되어도 된다.The fuse element 10J included in the flexible wiring board 20J is electrically connected to the BMS 800J and the battery 900J through a second conductive layer 210J installed on the second film 200J. The second conductive layer 210J and BMS800J may be connected to the outside of the end of the second film 200J by wire bonding, or may be connected by a through electrode provided in a through hole penetrating through the second film 200J. Similarly, the second conductive layer 210J and the battery 900J may be connected to the outside of the end of the first film 100J by wire bonding, or may be connected by a through electrode provided in a through hole penetrating the first film 100J.
도 17은 본 발명의 일 실시 형태와 관련된 배터리팩의 적용 예를 나타낸 도이다. 도 17에 나타난 바와 같이 배터리팩 30J는 차량 40J에 탑재된다. 차량 40J로서 전기자동차(EV: Electric Vehicle), 하이브리드 자동차(HEV: Hybrid Electric Vehicle), 또는 플러그인 하이브리드 자동차(PHEV: Plug-in Hybrid Electric Vehicle)가 이용된다.17 is a diagram showing an application example of a battery pack according to an embodiment of the present invention. As shown in FIG. 17, the battery pack 30J is mounted on the vehicle 40J. As the vehicle 40J, an electric vehicle (EV), a hybrid electric vehicle (HEV), or a plug-in hybrid electric vehicle (PHEV) is used.
[실시 예][Example]
도 18 ~ 도 20을 이용하여 제1 실시 형태 및 그 변형례와 관련된 퓨즈 소자10,10A,10B를 이용하여 퓨즈 소자에 전류를 흘려 용단된 실험결과에 대해 설명한다. 도 18 ~ 도 20은 본 발명 사례와 관련된 퓨즈 소자에서 파괴된 후 상태를 나타내는 광학현미경 사진이다. 또한, 도 18 ~ 도 20에 나타내는 퓨즈 소자는 제1 필름 100 대신에 유리기판이 사용된 샘플 소자이다.18 to 20, the result of an experiment performed by passing a current through the fuse element using the fuse elements 10, 10A, and 10B related to the first embodiment and its modification will be described. 18 to 20 are optical micrographs showing a state after being destroyed in a fuse element related to the present invention. In addition, the fuse elements shown in FIGS. 18 to 20 are sample elements in which a glass substrate is used instead of the first film 100.
도 18 ~ 도 20과 같이 퓨즈 소자10,10A,10B에 전류를 흘려 용단했을 경우, 어느 경우에도 제1도전층 120,120A,120B에서 용단되었음이 확인된다. 또한 도 18의 용단 장소 129, 129A, 129B가 과전류에 의해 용단이 발생한 부분이다. 한편, 제1도전층 120에 상당하는 층이 Cu만으로 구성된 비교예에 관한 퓨즈 소자에 전류를 흘려 용단했을 경우, 랜덤한 위치에서 용단이 발생하고 있음이 확인되었다. 비교예에 관한 퓨즈 소자의 패드에 상당하는 면적이 넓은 지역의 중앙부근에서 용단이 발생하는 경우도 있어 용단후에 안정된 절연상태를 얻을 수 없는 경우가 확인되었다.When the fuse elements 10, 10A, and 10B are melted by passing current as shown in FIGS. 18 to 20, it is confirmed that the first conductive layers 120, 120A, and 120B are melted in any case. In addition, the melting locations 129, 129A, and 129B in Fig. 18 are portions where the melting has occurred due to an overcurrent. On the other hand, when the layer corresponding to the first conductive layer 120 flows through a fuse element according to the comparative example composed of only Cu and fuse|fuses, it was confirmed that fusing occurred at a random position. It was confirmed that the fuse element according to the comparative example may be melted in the vicinity of the center of a large area corresponding to the pad of the fuse element, so that a stable insulation state cannot be obtained after melting.
이상과 같이 본 실시 형태와 관련된 퓨즈 소자 10, 10A, 10B에 의하면 단층의 도전층(예를 들면 Cu)에서 형성된 비교예와 관련된 퓨즈 소자에 비해 제1도전층 120, 120A, 120B에서 용단이 발생할 확률을 높일 수 있다.As described above, according to the fuse elements 10, 10A, and 10B related to the present embodiment, the fuse occurs in the first conductive layers 120, 120A, and 120B compared to the fuse elements related to the comparative example formed from a single conductive layer (for example, Cu). You can increase the probability.
이상, 본 발명에 대하여 도면을 참조하면서 설명하였는데, 본 발명은 상기의 실시 형태에 한정되는 것이 아니라, 본 발명의 취지를 일탈하지 않는 범위에서 적절히 변경하는 것이 가능하다. 예를 들면, 각 실시 형태의 퓨즈 소자를 기본으로 하여 당업자가 적의 구성요소의 추가, 삭제 혹은 설계변경을 실시한 것도 본 발명의 요지를 갖추고 있는 한, 본 발명의 범위에 포함된다. 또한 상술한 각 실시 형태는 서로 모순이 없는 한 적절히 조합할 수 있으며 각 실시 형태에 공통되는 기술사항에 대해서는 명시적인 기재가 없어도 각 실시 형태에 포함된다.In the above, the present invention has been described with reference to the drawings, but the present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope not departing from the spirit of the present invention. For example, the addition, deletion or design change of appropriate components by a person skilled in the art based on the fuse element of each embodiment is also included in the scope of the present invention as long as the gist of the present invention is met. In addition, each of the above-described embodiments can be appropriately combined as long as there is no contradiction with each other, and technical matters common to each embodiment are included in each embodiment even if there is no explicit description.
또, 상술한 각 실시 형태의 양태에 의해 초래되는 작용효과와는 다른 그 밖의 작용효과라도, 본 명세서의 기재로부터 명확한 것, 또는, 당업자에게 용이하게 예측할 수 있는 것에 대해서는, 당연히 본 발명에 의해 초래되는 것으로 해석된다.In addition, even other effects that are different from those caused by the above-described aspects of the respective embodiments are obvious from the description of the present specification or those that can be easily predicted by those skilled in the art are naturally brought about by the present invention. Is interpreted as being.

Claims (23)

  1. 제1필름과,With the first film,
    상기 제1필름 위의 절연층과An insulating layer on the first film and
    상기 절연층 위의 제1 도전층과A first conductive layer on the insulating layer and
    상기 제1도전층에 전기적으로 접속되어, 상기 제1도전층과는 다른 재료의 패드를 가진 퓨즈 소자.A fuse element electrically connected to the first conductive layer and having a pad of a material different from that of the first conductive layer.
  2. 제1필름과,With the first film,
    상기 제1필름 위의 절연층과An insulating layer on the first film and
    상기 절연층 위의 제1 도전층과A first conductive layer on the insulating layer and
    상기 제1도전층에 전기적으로 접속되어, 상기 제1도전층과는 다른 조성비의 2개의 패드를 가지는 퓨즈 소자.A fuse element electrically connected to the first conductive layer and having two pads having a composition ratio different from that of the first conductive layer.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 제1 도전층은 상기 패드보다 저항이 낮은 퓨즈 소자.The first conductive layer has a lower resistance than the pad.
  4. 제1항 내지 제3항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 3,
    상기 제1도전층은 상기 패드보다 융점이 낮은 퓨즈 소자.The first conductive layer has a lower melting point than the pad.
  5. 제1항에 있어서,The method of claim 1,
    상기 제1도전층은 은 및 동을 포함하고,The first conductive layer contains silver and copper,
    상기 패드는 구리를 포함하는 퓨즈 소자.The pad is a fuse element containing copper.
  6. 제2항에 있어서,The method of claim 2,
    상기 제1도전층 및 상기 패드는 은 및 동을 포함하는 퓨즈 소자.The first conductive layer and the pad include silver and copper.
  7. 제6항에 있어서,The method of claim 6,
    상기 제1도전층에 있어서의 은의 비율은, 상기 패드에 있어서의 은의 비율보다 큰 퓨즈 소자.A fuse element in which a ratio of silver in the first conductive layer is larger than a ratio of silver in the pad.
  8. 제1항 내지 제7항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 7,
    상기패드는 서로 떨어져 최소 2개 설치되며,At least two pads are installed apart from each other,
    2개의 상기패드는 1방향으로 나열되며,The two pads are arranged in one direction,
    상기 제1방향으로 직교하는 제2방향에서, 상기 제1도전층의 폭은 상기 패드의 폭보다 작은 퓨즈 소자.In a second direction orthogonal to the first direction, a width of the first conductive layer is smaller than a width of the pad.
  9. 제8항에 있어서,The method of claim 8,
    상기 제1도전층은 상기 제1방향에 따라 제1영역 및 제2영역을 갖추고The first conductive layer has a first region and a second region along the first direction.
    상기 제2방향에서, 상기 제1영역의 상기 제1도전층의 폭은 상기 제2영역의 상기 제1도전층의 폭보다 작고, 상기 제1도전층의 폭은 상기 제2영역에서 상기 제1영역을 향해 단계적으로 작아지는 퓨즈 소자.In the second direction, the width of the first conductive layer in the first area is smaller than the width of the first conductive layer in the second area, and the width of the first conductive layer is in the second area. A fuse element that gradually decreases toward the area.
  10. 제1필름과,With the first film,
    상기 제1필름 위의 절연층과An insulating layer on the first film and
    상기 절연층 위의 제1도전층과A first conductive layer on the insulating layer and
    상기 제1도전층에 전기적으로 접속되어 제1방향으로 서로 격리된 적어도 2개의 패드를 가지고 있으며It has at least two pads electrically connected to the first conductive layer and isolated from each other in a first direction,
    상기 제1도전층은 상기 제1방향에 따라 제1영역 및 제2영역을 갖추고The first conductive layer has a first region and a second region along the first direction.
    상기 제1방향으로 직교하는 제2방향에서, 상기 제1영역의 상기 제1도전층의 폭은 상기 제2영역의 상기 제1도전층의 폭보다 작고, 상기 제1도전층의 폭은 상기 제2영역으로부터 상기 제1영역을 향해 단계적으로 작아지는 퓨즈 소자.In a second direction orthogonal to the first direction, the width of the first conductive layer in the first area is smaller than the width of the first conductive layer in the second area, and the width of the first conductive layer is The fuse element gradually decreases from the second region toward the first region.
  11. 제1항 내지 제10항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 10,
    상기 제1 필름은 PCT(Poly Cyclohexylene dimethylene Terephthalate)를 포함한 퓨즈 소자.The first film is a fuse device including polycyclohexylene dimethylene terephthalate (PCT).
  12. 제1항 내지 제11항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 11,
    상기 절연층은 무기 절연층인 퓨즈 소자.The insulating layer is an inorganic insulating layer fuse element.
  13. 제12항에 있어서,The method of claim 12,
    상기 무기 절연층은 산화 실리콘, 질화 실리콘 및 산화 하프늄 중 하나 또는 산화 실리콘, 질화 실리콘 및 산화 하프늄 중 2개 이상의 적층을 포함하는 퓨즈 소자.The inorganic insulating layer is a fuse device including one of silicon oxide, silicon nitride, and hafnium oxide, or a stack of two or more of silicon oxide, silicon nitride, and hafnium oxide.
  14. 제1항 내지 제13항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 13,
    상기 절연층과 상기 제1필름 사이의 프라이머층을 추가로 갖는 퓨즈 소자.A fuse device further comprising a primer layer between the insulating layer and the first film.
  15. 제1필름, 상기 제1필름 위의 절연층, 상기 절연층 위의 제1도전층 및 상기 제1도전층에 전기적으로 접속되어, 상기 제1도전층과는 다른 재료의 패드를 갖춘 퓨즈 소자와A fuse element electrically connected to the first film, the insulating layer on the first film, the first conductive layer on the insulating layer, and the first conductive layer, and having a pad of a material different from the first conductive layer,
    상기 패드에 전기적으로 연결된 제2도전층과A second conductive layer electrically connected to the pad,
    상기 제2 도전층 위의 제2필름을 가진 플렉서블 배선 기판.A flexible wiring board having a second film on the second conductive layer.
  16. 제1필름, 상기 제1필름 위의 절연층, 상기 절연층 위의 제1도전층 및 상기 제1도전층에 전기적으로 접속되어, 상기 제1도전층과는 다른 조성비의 패드를 갖춘 퓨즈 소자와A fuse element electrically connected to the first film, the insulating layer on the first film, the first conductive layer on the insulating layer, and the first conductive layer, and having a pad having a composition ratio different from that of the first conductive layer,
    상기 패드에 전기적으로 연결된 제2도전층과A second conductive layer electrically connected to the pad,
    상기 제2 도전층 위의 제2필름을 가진 플렉서블 배선 기판.A flexible wiring board having a second film on the second conductive layer.
  17. 제16항에 있어서,The method of claim 16,
    상기 패드 및 상기 제2 도전층은 구리를 포함하고,The pad and the second conductive layer include copper,
    상기 패드에서 구리의 비율은 상기 제2도전층에서 구리의 비율보다 작은 플렉서블 배선기판The flexible wiring board in which the ratio of copper in the pad is smaller than the ratio of copper in the second conductive layer
  18. 제1필름, 상기 제1필름 위의 절연층, 상기 절연층 위의 제1도전층 및 상기 제1도전층에 전기적으로 접속되어 제1방향으로 서로 격리된 최소 2개의 패드를 갖추며, 상기 제1도전층은 상기 제1방향에 따라 제1영역 및 제2영역을 갖추고, 상기 제1방향에 직교하는 제2방향에서 상기 제2영역의 상기 제1도전층 폭은 상기 제2영역의 상기 제2영역의 상기 제2층보다 작고, 상기 제1도전층의 폭은 상기 제2 영역에서 상기 제1영역을 향해 점진적으로 작아지는 퓨즈 소자와, A first film, an insulating layer on the first film, a first conductive layer on the insulating layer, and at least two pads electrically connected to the first conductive layer and isolated from each other in a first direction, and the first The conductive layer has a first region and a second region along the first direction, and a width of the first conductive layer of the second region in a second direction orthogonal to the first direction is the second region of the second region. A fuse element smaller than the second layer of the region, and a width of the first conductive layer gradually decreasing from the second region toward the first region,
    상기 패드에 전기적으로 연결된 제2도전층과,A second conductive layer electrically connected to the pad,
    상기 제2도전층 상에 제2필름을 갖는 플렉서블 배선 기판Flexible wiring board having a second film on the second conductive layer
  19. 제16항 내지 제18항 중 어느 한 항에 있어서,The method according to any one of claims 16 to 18,
    상기 패드와 상기 제2 도전층 사이의 도전성 접착층을 한층 더 가지는 플렉서블 배선기판.A flexible wiring board further comprising a conductive adhesive layer between the pad and the second conductive layer.
  20. 배터리와Battery and
    상기 배터리의 전압, 전류 및 온도를 감시하는 감시 회로를 가진 배터리 관리 시스템과A battery management system having a monitoring circuit for monitoring the voltage, current and temperature of the battery;
    상기 배터리 및 상기 배터리 관리 시스템에 접속된 플렉서블 배선기판을 가지고 있으며It has the battery and a flexible wiring board connected to the battery management system,
    상기 플렉서블 배선 기판은The flexible wiring board
    제1필름, 상기 제1필름 위의 절연층, 상기 절연층 위의 제1도전층 및 상기 제1도전층에 전기적으로 접속되어, 상기 제1도전층과는 다른 재료의 패드를 갖춘 퓨즈 소자와A fuse element electrically connected to the first film, the insulating layer on the first film, the first conductive layer on the insulating layer, and the first conductive layer, and having a pad of a material different from the first conductive layer,
    상기 패드에 전기적으로 연결된 제2도전층과A second conductive layer electrically connected to the pad,
    상기 제2도전층 위의 제2필름을 갖추고Equipped with a second film on the second conductive layer
    상기 배터리 관리 시스템은, 상기 제2필름상에 설치되어 있으며, 상기 감시 회로는, 상기 제2도전층에 접속되어 있는 배터리 팩.The battery management system is provided on the second film, and the monitoring circuit is connected to the second conductive layer.
  21. 배터리와Battery and
    상기 배터리의 전압, 전류 및 온도를 감시하는 감시 회로를 가진 배터리 관리 시스템과A battery management system having a monitoring circuit for monitoring the voltage, current and temperature of the battery;
    상기 배터리 및 상기 배터리 관리 시스템에 접속된 플렉서블 배선기판을 가지고 있으며It has the battery and a flexible wiring board connected to the battery management system,
    상기 플렉서블 배선 기판은The flexible wiring board
    제1필름, 상기 제1필름 위의 절연층, 상기 절연층 위의 제1도전층 및 상기 제1도전층에 전기적으로 접속되어, 상기 제1도전층과는 다른 조성비의 패드를 갖춘 퓨즈 소자와A fuse element electrically connected to the first film, the insulating layer on the first film, the first conductive layer on the insulating layer, and the first conductive layer, and having a pad having a composition ratio different from that of the first conductive layer,
    상기 패드에 전기적으로 연결된 제2도전층과A second conductive layer electrically connected to the pad,
    상기 제2도전층 위에 제2필름을 구비하고Having a second film on the second conductive layer,
    상기 배터리 관리 시스템은, 상기 제2필름상에 설치되어 있으며, 상기 감시 회로는, 상기 제2도전층에 접속되어 있는 배터리 팩.The battery management system is provided on the second film, and the monitoring circuit is connected to the second conductive layer.
  22. 배터리와Battery and
    상기 배터리의 전압, 전류 및 온도를 감시하는 감시 회로를 가진 배터리 관리 시스템과A battery management system having a monitoring circuit for monitoring the voltage, current and temperature of the battery;
    상기 배터리 및 상기 배터리 관리 시스템에 접속된 플렉서블 배선기판을 가지고 있으며It has the battery and a flexible wiring board connected to the battery management system,
    상기 플렉서블 배선 기판은,The flexible wiring board,
    제1필름, 상기 제1필름 위의 절연층, 상기 절연층 위의 제1도전층 및 상기 제1도전층에 전기적으로 접속되어 제1방향에 따라 제1영역 및 제2영역을 갖추고, 상기 제1방향으로 직교하는 제2방향에서 상기 제1도전층의 폭은 상기 제2영역의 상기 제2영역의 상기 제1도전층의 폭보다 작고, 상기 제1도전층의 폭은 상기 제2영역에서 상기 제1영역을 향해 점진적으로 작아지는 퓨즈 소자와,The first film, the insulating layer on the first film, the first conductive layer on the insulating layer, and the first conductive layer are electrically connected to have a first region and a second region along a first direction, and the second In a second direction orthogonal to one direction, the width of the first conductive layer is smaller than the width of the first conductive layer in the second area of the second area, and the width of the first conductive layer is in the second area. A fuse element gradually decreasing toward the first region,
    상기 패드에 전기적으로 연결된 제2도전층과,A second conductive layer electrically connected to the pad,
    상기 제2도전층 위에 제2필름을 구비하고,Providing a second film on the second conductive layer,
    상기 배터리 관리 시스템은, 상기 제2필름 상에 형성되고,The battery management system is formed on the second film,
    상기 감시 회로는 상기 제2도전층에 연결되는 배터리 팩.The monitoring circuit is a battery pack connected to the second conductive layer.
  23. 제20항 내지 제22항 중 어느 한 항에 있어서,The method according to any one of claims 20 to 22,
    전기자동차(EV:Electric Vehicle), 하이브리드 자동차(HEV:Hybrid Electric Vehicle), 또는 플러그인 하이브리드 자동차(PHEV:Plug-in Hybrid Electric Vehicle)에 사용되는 배터리 팩.A battery pack used in an electric vehicle (EV), hybrid electric vehicle (HEV), or plug-in hybrid electric vehicle (PHEV).
PCT/KR2020/015801 2019-11-12 2020-11-11 Fuse element, flexible wiring board, and battery pack WO2021096224A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019204973A JP6887696B2 (en) 2019-11-12 2019-11-12 Fuse element, flexible wiring board and battery pack
JP2019-204973 2019-11-12

Publications (1)

Publication Number Publication Date
WO2021096224A1 true WO2021096224A1 (en) 2021-05-20

Family

ID=75900050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015801 WO2021096224A1 (en) 2019-11-12 2020-11-11 Fuse element, flexible wiring board, and battery pack

Country Status (3)

Country Link
JP (1) JP6887696B2 (en)
KR (1) KR20210057638A (en)
WO (1) WO2021096224A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230062202A (en) * 2021-10-29 2023-05-09 주식회사 엘지에너지솔루션 Fuse and manufacturing method of the same
KR20230123162A (en) 2022-02-16 2023-08-23 주식회사 엘지에너지솔루션 Pattern fuse including opening and battery module including same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060094486A (en) * 2005-02-24 2006-08-29 쿠퍼 테크놀로지스 컴파니 Low resistance polymer matrix fuse apparatus and method
JP2006310277A (en) * 2005-03-29 2006-11-09 Mitsubishi Materials Corp Chip type fuse
JP2011222285A (en) * 2010-04-09 2011-11-04 Hitachi Vehicle Energy Ltd Electricity storage module
KR20170138943A (en) * 2016-06-08 2017-12-18 가부시키가이샤 무라타 세이사쿠쇼 Electronic device and method for manufacturing electronic device
US20180192511A1 (en) * 2015-06-24 2018-07-05 Sumitomo Electric Printed Circuits, Inc. Flexible printed circuit board

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147745A (en) * 1975-06-14 1976-12-18 Fuji Electric Co Ltd Thick film fuse
JPH02164532A (en) * 1988-12-16 1990-06-25 Toray Ind Inc Flexible circuit board
JP2882280B2 (en) * 1994-05-17 1999-04-12 住友電装株式会社 Circuit board and electric junction box provided with the circuit board
JP2002150916A (en) * 2000-11-10 2002-05-24 Koa Corp Fuse element
JP2004342544A (en) * 2003-05-19 2004-12-02 Matsushita Electric Ind Co Ltd Circuit protection element
JP2006339105A (en) * 2005-06-06 2006-12-14 Tdk Corp Chip type fuse element and manufacturing method thereof
JP2008311328A (en) * 2007-06-13 2008-12-25 Hyomen Shori System:Kk Flexible circuit substrate and manufacturing method thereof
JP2017204525A (en) 2016-05-10 2017-11-16 住友電工プリントサーキット株式会社 Flexible printed wiring board and electronic parts
CN107785519A (en) 2016-08-29 2018-03-09 比亚迪股份有限公司 A kind of composite membrane of polymer and preparation method thereof and the lithium ion battery for including it
JP6535309B2 (en) * 2016-09-26 2019-06-26 矢崎総業株式会社 Battery monitoring unit
JP2018156045A (en) * 2017-03-21 2018-10-04 日立化成株式会社 Photosensitive conductive film, method for producing fuse film pattern, base material with fuse film pattern, and chip fuse

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060094486A (en) * 2005-02-24 2006-08-29 쿠퍼 테크놀로지스 컴파니 Low resistance polymer matrix fuse apparatus and method
JP2006310277A (en) * 2005-03-29 2006-11-09 Mitsubishi Materials Corp Chip type fuse
JP2011222285A (en) * 2010-04-09 2011-11-04 Hitachi Vehicle Energy Ltd Electricity storage module
US20180192511A1 (en) * 2015-06-24 2018-07-05 Sumitomo Electric Printed Circuits, Inc. Flexible printed circuit board
KR20170138943A (en) * 2016-06-08 2017-12-18 가부시키가이샤 무라타 세이사쿠쇼 Electronic device and method for manufacturing electronic device

Also Published As

Publication number Publication date
JP6887696B2 (en) 2021-06-16
JP2021077567A (en) 2021-05-20
KR20210057638A (en) 2021-05-21

Similar Documents

Publication Publication Date Title
WO2021096224A1 (en) Fuse element, flexible wiring board, and battery pack
KR101991917B1 (en) Circuit arrangement for motor vehicles, and use of a circuit arrangement
WO2018111001A1 (en) Power relay assembly
US6710263B2 (en) Semiconductor devices
JP5259289B2 (en) Integrated thermistor, metal element device and method
WO2014025195A1 (en) Wafer level light-emitting diode array and method for manufacturing same
WO2018097410A1 (en) Semiconductor package having reliability and method for producing same
WO2014038794A1 (en) Wafer level light-emitting diode array
CN107275165B (en) Electronic control device including interrupt wiring
US8896092B2 (en) Anti-fuse element
EP0715328A1 (en) Protective device
WO2016148424A1 (en) Light emitting element including metal bulk
JP4418177B2 (en) Manufacturing method of heat spreader for high voltage BGA package
WO2020096415A1 (en) Mounting structure for mounting micro led
WO2022055179A1 (en) Film type cable having fuse line
US20120112313A1 (en) Anti-Fuse Element
US8610245B2 (en) Anti-fuse element without defective opens
EP0433650A1 (en) Semiconductor device having bipolar-MOS composite element pellet suitable for pressure contacted structure
WO2023158140A1 (en) Pattern fuse including opening, and battery module comprising same
JP4457633B2 (en) Capacitor module with fuse function
WO2018143596A1 (en) Current collection system for battery module, battery module, and vehicle
WO2024085582A1 (en) Electrode assembly, secondary battery, battery pack, and vehicle
JP2021069180A (en) Power converter, and power converter integrated type rotary electric machine
WO2022119330A1 (en) Stacked ceramic capacitor package for electronic device
JPH10250128A (en) Thermal head and its manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886667

Country of ref document: EP

Kind code of ref document: A1