WO2021095781A1 - Carrier for transfer into immune cells and use thereof - Google Patents

Carrier for transfer into immune cells and use thereof Download PDF

Info

Publication number
WO2021095781A1
WO2021095781A1 PCT/JP2020/042117 JP2020042117W WO2021095781A1 WO 2021095781 A1 WO2021095781 A1 WO 2021095781A1 JP 2020042117 W JP2020042117 W JP 2020042117W WO 2021095781 A1 WO2021095781 A1 WO 2021095781A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
phe
carrier
cells
immune cell
Prior art date
Application number
PCT/JP2020/042117
Other languages
French (fr)
Japanese (ja)
Inventor
千恵 児島
豊 西本
Original Assignee
公立大学法人大阪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪 filed Critical 公立大学法人大阪
Priority to JP2021556131A priority Critical patent/JPWO2021095781A1/ja
Publication of WO2021095781A1 publication Critical patent/WO2021095781A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection

Definitions

  • the present invention relates to a carrier for immune cell transfer.
  • the present invention relates to reagents for immune cell transfer.
  • the present invention relates to a method of transferring a carrier for immune cell transfer to immune cells.
  • the present invention relates to a pharmaceutical composition comprising a drug and a carrier for transfer of immune cells.
  • Immunotherapy for cancer can be broadly divided into passive immunotherapy and active immunotherapy.
  • Passive immunotherapy is a treatment method in which immune cells such as T cells collected from a patient are activated in vitro and returned to the patient's body to attack cancer cells with the activated immune cells.
  • CAR- T cell therapy is known.
  • Active immunotherapy is a treatment method in which a substance that activates immune cells is administered to a patient to attack cancer cells with the activated immune cells.
  • cytokine therapy is known.
  • Patent Document 1 states that a dendrimer having a carboxyl group as a terminal group can be transferred to a lymph node, and when the dendrimer is intradermally administered to a mouse, it accumulates in the sentinel lymph node and the secondary lymph node beyond the dendrimer. Are listed.
  • An object of the present invention is to provide a carrier molecule that can be transferred to immune cells.
  • the present invention is a carrier for immune cell migration containing a complex molecule, wherein the complex molecule contains a branched polymer and a phenylalanine residue and has an anionic terminal structure, and the terminal group of the branched polymer.
  • a carrier for immune cell transfer to which the phenylalanine residue is bound.
  • the present invention provides a reagent for immune cell transfer, which comprises a carrier for immune cell transfer.
  • the present invention provides a method of transferring an immune cell transfer carrier to an immune cell, comprising contacting the immune cell transfer carrier in vivo (but excluding humans), in vitro or ex vivo.
  • the present invention provides a pharmaceutical composition comprising a drug and a carrier for immune cell transfer.
  • a carrier that can be transferred to immune cells is provided.
  • Dendrimers (G4-Suc and G4-CHex) that do not have a phenylalanine residue at the end and have a linker attached to the end, and dendrimers (G4-Suc-Phe and G4-) that have a phenylalanine residue attached to the end via a linker.
  • It is a schematic diagram which showed the chemical structure of one of 64 terminal groups which each has CHex-Phe). It is a distribution map obtained by analyzing cells obtained from the lymph nodes of mice to which a fluorescently labeled immune cell transfer carrier was administered by flow cytometry (FCM).
  • the carrier for immune cell transfer of the present embodiment (hereinafter, also simply referred to as “carrier”) is a complex having an anionic terminal structure in which a phenylalanine residue is directly or indirectly bonded to the terminal group of the branched polymer. Contains molecules.
  • the branched polymer is not particularly limited as long as it is a polymer having a branched structure or a dendritic structure.
  • the terminal group of the branched polymer means the outermost group of the branched structure or the dendritic structure of the branched polymer.
  • the anionic terminal structure in the carrier of the present embodiment is a portion containing a phenylalanine residue that is directly or indirectly bonded to the terminal group of the branched polymer, and the group at the end of the portion is an anionic group.
  • the anionic group include a carboxyl group, a sulfone group, a sulfate group or a salt thereof.
  • the present inventors have completed the present invention by finding that the complex molecule can be used as a carrier for immune cell transfer because the complex molecule can carry a substance of interest.
  • the "substance of interest” refers to a predetermined substance that is desired to be transferred to immune cells.
  • Carrying the substance of interest means connecting the substance of interest to the terminal group of the branched polymer in the complex molecule, encapsulating the substance of interest in the internal space of the branched polymer, and phenylalanine residue. Includes linking the substance of interest to the group.
  • the branched polymer preferably has at least one functional group capable of binding to a phenylalanine residue or a linker described later as a terminal group.
  • the functional group include an amino group, a carboxyl group, a hydroxy group, a sulfone group and the like.
  • the branched polymer include dendrimers, "hyperbranched polymers” having low branching regularity in dendritic structures, “dendrigrafts” (also referred to as random dendritic polymers), and star polymers.
  • Dendrimer is a compound with a three-dimensionally highly branched dendritic structure, and is known to have an almost spherical morphology.
  • the term "dendrimer” also includes a dendron having a partial structure constituting the dendrimer, in which at least one functional group of the core portion is not branched.
  • Dendrimers generally consist of a core, several generations of bifurcations, and end groups. The dendrimer core is derived from a compound having one or more functional groups.
  • the functional group examples include a primary amino group, a secondary amino group, a hydroxy group, a carboxylic acid group, a thiol group, an ester group, an amide group, a ketone group, an aldehyde group and the like.
  • it is a primary amino group and a secondary amino group.
  • Examples of the compounds constituting the core include ammonia, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentano, 1,6-diaminohexane, 1,7-diaminoheptane, 1, Examples include 8-diaminooctane, 1,10-diaminodecane, and 1,12-diaminododecane. It may be an alkyldiamine (cystamine) containing an SS bond.
  • the branched portion of the dendrimer consists of repeating branched structural units containing atoms having a valence of 3 or more.
  • the atom having a valence of 3 or more include carbon, nitrogen, silicon, phosphorus and the like.
  • the following structure is known as a branching portion of a dendrimer.
  • n is an integer of 1 or more, preferably an integer of 60 to 300
  • the branched portion of the dendrimer may include two or more types of repeating units as described above.
  • the structure of the terminal group of the dendrimer can be selected as appropriate.
  • the end group may have a structure of the last repeating unit of the branched portion, or may have a structure different from that of the branched portion.
  • the terminal group of the dendrimer preferably has one or more functional groups capable of binding to a phenylalanine residue or a linker described later.
  • Hyperbranched polymer is generally a polymer in which branching is developed by polymerizing an AB2 type monomer.
  • a and B each indicate a combination of functional groups capable of polymerization reaction, and examples thereof include a combination of a hydroxyl group and a carboxyl group, an amino group and a carboxyl group, and the like.
  • a substance that functions as a branching core may be used in combination.
  • a hyperbranched polymer may be prepared by ring-opening polymerization of glycidol or ethyleneimine.
  • a dendrigraft is not a monomer, but a polymer synthesized by stepwise reacting an oligomer in which a plurality of monomers are bonded.
  • Random dendritic polymers like dendrimers, have bifurcations, but cores are not required.
  • the branched portion of the random dendritic polymer may be partially defective and have irregular or discontinuous portions.
  • the branching unit of the random dendritic polymer may be a polylysine skeleton, a polyglycerin skeleton, or a skeleton of various sugars.
  • Examples of the random dendritic polymer in which the branching unit is lysine (-NH-CH (C 4 H 2 NH-) CO-) include PolyLysine-Dendri-graft (PLD: COLCOM).
  • Examples of the random dendritic polymer in which the branching unit is polyglycerin represented by the following formula include PGL X and PGL 10 (Daicel Chemistry).
  • n and m are independently integers of 10 or more, preferably 20 or more).
  • Star polymer is known as a polymer in which three or more polymer chains are radially branched from the center. Star polymers are roughly classified into a regular type in which the polymer chains are the same type and an asymmetric type in which the types and molecular weights of the polymer chains are different. Regular star polymers can be obtained by living anionic polymerization of styrene or 1,3-diene living anion polymers with polyfunctional silyl chloride. Currently, polybutadiene star polymers having 3 to 128 polymer chains, star polystyrene having 33 polymer chains, and the like are being synthesized. Further, as the asymmetrical star polymer, a four-component star polymer composed of polystyrene, polyisoprene, polybutadiene and poly (4-1 methylstyrene) is known.
  • the star polymer may be of the multi-arm PEG type.
  • Such star polymers are commercially available, for example, 4arm-PEG-NH 2 (C (CH 2 O (CH 2 CH 2 O) n CH 2 CH 2 NH), which is a multi-arm PEG type with four branched chains. 2 HCl) 4 ), 4arm-PEG-COOH (C (CH 2 O (CH 2 CH 2 O) n CH 2 COOH) 4 ) (Merck), etc.
  • R is tripentaerythritol
  • SUNBRIGHT registered trademark
  • the PTE series, HGEO series and DX series Yuka Sangyo Co., Ltd.
  • X is -CO-CH 2 CH 2 -COO-N hydroxysuccinimide (NHS) , -CO-CH 2 CH 2 CH 2 -COO- NHS- (CH 2 ) 3 -NHCO-CH 2 CH 2 -Maleimide, -CH 2 CH 2 CH 2 CH 2 CH 2 -COO-NHS, -COO-p Nitrophenyl-NO 2 , -CH 2 CH 2 CH 2 NH 2 or-(CH 2 ) 3 -NHCO-CH 2 CH 2 -maleimide, where n is an integer greater than or equal to 10)
  • X is -CO-CH 2 CH 2 -COO-NHS, -CO-CH 2 CH 2 CH 2 -COO-NHS, -COO-p nitrophenyl, -CH 2 CH 2 NH 2 ⁇ HCI or -CH 2 CH 2 SH, where n is an integer greater than or equal to 10)
  • X is -CH 2 CH 2 CH 2 -NH 2 , -CH 2 CH 2 -CHO or -CO-CH 2 CH 2 CH 2 -COO-NHS, and n is an integer greater than or equal to 10.
  • a dendrimer as the branched polymer.
  • the number of generations of the dendrimer can be appropriately selected according to the structure of the core and the branch portion of the dendrimer to be used.
  • 0th to 10th generation polyamide amine (PAMAM) dendrimers are generally available in the art. Further, the method for producing a dendrimer itself is known, and is described in, for example, the above-mentioned literature. In this embodiment, it is preferable to use a 4th generation (G4), 5th generation (G5) or 6th generation (G6) dendrimer.
  • the terminal group of the branched polymer and the phenylalanine residue may be directly bonded or indirectly bonded.
  • the number of phenylalanine residues attached to one terminal group of the branched polymer may be one or two or more.
  • the phenylalanine residue may be either L-form or D-form.
  • the phenylalanine residue may be attached to all the end groups of the branched polymer, or may be attached to some end groups of the branched polymer.
  • the phenylalanine residue is 40% or more, preferably 45% or more, preferably 45% or more, 50% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more of the terminal group contained in the branched polymer. , 85% or more, 90% or more, or 95% or more.
  • the branched polymer is a G4 PAMAM dendrimer, 26 or more, preferably 29 or more, 32 or more, 36 or more, 39 or more, 42 or more, 45 or more, 48 or more, 52 among the 64 terminal groups of the dendrimer.
  • a phenylalanine residue binds to 55 or more, 58 or more, or 61 or more terminal groups.
  • the terminal group of the branched polymer and the phenylalanine residue When the terminal group of the branched polymer and the phenylalanine residue are directly bonded, the terminal group of the branched polymer may be reacted with the amino terminal or the carboxyl terminal of phenylalanine. Alternatively, the terminal group of the branched polymer may be reacted with a derivative of phenylalanine.
  • the type of bond between the terminal group of phenylalanine or a derivative thereof and the terminal group of the branched polymer is not particularly limited. Preferred bonds are covalent bonds, such as amide bonds (-NH-CO-), ester bonds (-CO-O-), urethane bonds (-NH-CO-O-), urea bonds (-NH-CO-NH).
  • the structure may be formed by the reaction of maleimide and thiol.
  • the derivative of phenylalanine include a compound in which the amino-terminal or carboxyl-terminal of phenylalanine is derivatized with a group having reactivity with the terminal group of the branched polymer.
  • a carrier for immune cell transfer may be obtained by reacting the amino terminal of phenylalanine with the terminal group of the branched polymer.
  • the anionic terminal structure in the carrier consists of a phenylalanine residue directly bonded to the terminal group of the branched polymer, and the carboxyl group of the phenylalanine residue becomes the anionic group of the terminal structure.
  • the terminal group of the branched polymer is a carboxyl group
  • this terminal group may be reacted with the amino terminal of phenylalanine to form an amide bond.
  • the amino terminal of the branched polymer is an amino group
  • the amino terminal of phenylalanine may be derivatized with a group capable of forming an amide bond or a urethane bond with the amino group (for example, 4-nitrophenyl carbonate group or carboxyl group).
  • the amino terminal of phenylalanine may be derivatized with a group capable of forming an ester bond with the hydroxy group (for example, a carboxyl group).
  • the amino terminus of phenylalanine is reacted with the terminus of the branched polymer, the carboxyl terminus of the phenylalanine may be protected with a known protecting group in advance.
  • the terminal group of the branched polymer and the phenylalanine residue are directly bonded, even if a compound capable of imparting an anionic terminal group is further bonded to the phenylalanine residue.
  • a compound capable of imparting an anionic terminal group is further bonded to the phenylalanine residue.
  • the terminal group of the branched polymer is reacted with the carboxyl terminal of phenylalanine, the amino terminal of phenylalanine in the complex molecule is anionic in order to make the terminal structure of the obtained complex molecule anionic. It is preferable to react with a compound capable of imparting a terminal group.
  • one end of the compound has a functional group capable of reacting with an amino group, and the other end has an anionic group (for example, a carboxyl group, a sulfone group, etc.
  • an anionic group for example, a carboxyl group, a sulfone group, etc.
  • examples thereof include compounds having (sulfuric acid groups, etc.) and intramolecular condensates thereof.
  • succinic anhydride, 1,2-cyclohexanedicarboxylic acid anhydride, phthalic anhydride and other dicarboxylic acid anhydrides are preferred.
  • the compound capable of imparting an anionic terminal group may be a cyclic compound that opens by reacting with an amino group to form an anionic terminal group.
  • Such compounds include, for example, cyclic sulfonic acid esters such as 1,3-propane sultone.
  • the terminal group of the branched polymer and the phenylalanine residue may be bonded via a linker.
  • the linker can be appropriately selected from a hydrophobic compound having a functional group capable of reacting with the terminal group of the branched polymer at one end and a functional group capable of reacting with phenylalanine or a derivative thereof at the other end.
  • a branched polymer having an amino group or a hydroxyl group as a terminal group and an amino group of phenylalanine are bonded as a linker via the above-mentioned anhydride of dicarboxylic acid.
  • linker examples include succinic anhydride, 1,2-cyclohexanedicarboxylic acid anhydride, phthalic anhydride and the like.
  • the amino group or hydroxyl group of the branched polymer is reacted with the anhydride of the dicarboxylic acid to obtain a branched polymer having a carboxyl group as the terminal group.
  • the carboxyl group of the obtained branched polymer is reacted with the amino terminal of phenylalanine whose carboxyl terminal is protected by a protecting group to obtain a branched polymer having a phenylalanine residue bonded to the terminal.
  • the protecting group for the phenylalanine residue can be removed to obtain the carrier of this embodiment.
  • a synthetic scheme itself is known and is described, for example, in Tamaki M. et al., RSC Adv., 2018, vol.8, pp.28147-28151.
  • a cross-linking agent capable of binding the terminal group of the branched polymer and the amino terminal of phenylalanine can also be used.
  • a compound having two isocyanate groups or isothiocyanate groups may be used.
  • the terminal group of the branched polymer is a carboxyl group or a 4-nitrophenyl carbonate group
  • a compound having an amino group and a carboxyl group or a succinimide group (which may be an amino acid) may be used.
  • the terminal group of the branched polymer is a mercapto group
  • a compound having a maleimide group and a carboxyl group or a succinimide group may be used.
  • the terminal group of the branched polymer is a maleimide group
  • a compound having a mercapto group and a carboxyl group or a succinimide group may be used.
  • the anionic terminal structure of the carrier for immune cell transfer comprises a phenylalanine residue attached to the terminal group of the branched polymer and is represented by the following formula (I).
  • R is an alkylene group having 1 to 10 carbon atoms which may have a substituent, or a cycloalkylene group, a heterocycloalkylene group or a phenylene group having 3 to 8 carbon atoms which may have a substituent.
  • Z 1 is a carboxyl group, a sulfone group, a sulfate group or a salt thereof)
  • the terminal structure represented by the formula (I) corresponds to a compound in which the terminal group of the branched polymer and the phenylalanine residue are directly bonded and a compound capable of imparting an anionic terminal group to the phenylalanine residue is further bonded.
  • X 1 indicates the binding site between the terminal group of the branched polymer and the phenylalanine residue, and the left binding site of X 1 is bound to the branched polymer.
  • Y 1 , R and Z 1 correspond to compounds capable of imparting anionic end groups attached to phenylalanine residues.
  • Y 1 indicates the binding site between the terminal group of the phenylalanine residue and the compound capable of imparting an anionic terminal group.
  • Z 1 is the end group of the anionic end structure.
  • the type of salt is not particularly limited, but is preferably an alkali metal salt.
  • R is an alkylene group having 1 to 10 carbon atoms
  • alkylene groups include, for example, methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, neopentylene, hexylene, heptylene, octylene and 2-ethyl.
  • Groups such as hexylene, nonylene and decylene can be mentioned. Among them, an alkylene group having 1 to 4 carbon atoms is preferable.
  • R is an alkylene group having a substituent, the above carbon number does not include the carbon number of the substituent.
  • R is a cycloalkylene group or a heterocycloalkylene group
  • such groups may contain one or more heteroatoms selected from N, S, O and P and have 3 to 8 carbon atoms. It may be a non-aromatic ring. Examples thereof include groups such as cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cycloheptyrene, cyclooctylene, pyrrolidinylene, piperidinylene and morpholinylene.
  • R is a cycloalkylene group having a substituent, a heterocycloalkylene group or a phenylene group, the above carbon number does not include the carbon number of the substituent.
  • Examples of the substituent in R include a linear or branched saturated aliphatic hydrocarbon group having 1 or more and 6 or less carbon atoms, preferably 1 or more and 3 or less carbon atoms.
  • the anionic end structure of the immune cell translocation carrier comprises a phenylalanine residue attached to the end group of the branched polymer and is represented by the following formula (II).
  • R is an alkylene group having 1 to 10 carbon atoms which may have a substituent, or a cycloalkylene group, a heterocycloalkylene group or a phenylene group having 3 to 8 carbon atoms which may have a substituent.
  • the terminal structure represented by the formula (II) is such that the terminal group of the branched polymer and the phenylalanine residue are bonded via a linker, and the carboxyl group of the phenylalanine residue or a salt thereof forms an anionic terminal group.
  • Equivalent to. X 2 indicates the binding site between the end group of the branched polymer and the linker, and the left binding site of X 2 is bound to the branched polymer.
  • R corresponds to the linker moiety intervening between the terminal group of the branched polymer and the phenylalanine residue. The substituents in R and R are as described above.
  • Y 2 indicates the binding site between the linker and the amino group of the phenylalanine residue.
  • Z 2 is the end group of the anionic end structure.
  • the anionic terminal structure of the immune cell transfer carrier contains a phenylalanine residue attached to the terminal group of the branched polymer and is represented by the following formula (III).
  • Z 3 is a carboxyl group or a salt thereof
  • the terminal structure represented by the formula (III) corresponds to one in which the amino group of the phenylalanine residue is directly bonded to the terminal group of the branched polymer, and the carboxyl group of the phenylalanine residue or a salt thereof forms an anionic terminal group. To do.
  • the leftmost bond is attached to the branched polymer.
  • Z 3 is the end group of the anionic end structure.
  • the structures represented by the following formulas (1) to (4) are particularly preferable.
  • the structures represented by the following formulas (5) to (7) are particularly preferable.
  • the structure represented by the following formula (III) is particularly preferable.
  • the leftmost bond is bonded to the branched polymer.
  • X + is a hydrogen ion or an alkali metal ion. Examples of the alkali metal ion include sodium ion, potassium ion, lithium ion and the like. Among them, sodium ion is preferable.
  • the particle size of the carrier of the present embodiment is not particularly limited, but is usually 5 nm or more and 20 nm or less, preferably 5 nm or more and 15 nm or less.
  • the particle size of the carrier is the average particle size of the smallest distribution in the volume-based particle size distribution obtained by analyzing the value measured by the dynamic light scattering (DLS) method by the Marquardt method.
  • the measuring device is ELSZ-DN2 (manufactured by Otsuka Electronics Co., Ltd.) or its equivalent.
  • the immune cell transfer carrier may further comprise a substance of interest. That is, the carrier of the present embodiment contains a complex molecule carrying a substance of interest.
  • the substance of interest may be linked to the terminal group of the branched polymer in the complex molecule, may be encapsulated in the internal space of the branched polymer, or may be linked to a phenylalanine residue.
  • the mode of linking is not particularly limited.
  • the concatenation may be, for example, a covalent bond or a non-covalent bond.
  • the substance of interest may be attached directly or indirectly to the terminal group or phenylalanine residue of the branched polymer.
  • the branched polymer is a dendrimer
  • the method itself for encapsulating the substance of interest in the internal space of the dendrimer is known, and is described in, for example, Kojima C. et al., Bioconjuge Chem 11: 910-7 (2000).
  • it may be utilized by imparting the carrier of the present embodiment to another carrier (for example, liposome, micelle, polymer micelle, etc.) carrying the substance of interest.
  • it may be a mixture of another carrier carrying the substance of interest and the carrier of the present embodiment, or the carrier of the present embodiment may be modified on the surface of the other carrier via a chemical bond or a physical bond. May be good.
  • Examples of the substance of interest include labeling substances, nucleic acids, proteins, peptides and the like.
  • labeling substances include PET compounds containing radioisotopes such as 11 C, 13 N, 15 O, and 18 F, SPECT compounds containing radioisotopes such as 111 In, indocyanine green, and Patent Blue V.
  • Examples thereof include low molecular weight organic dyes, fluorescent dyes such as indocyanine green, fluorescein, rhodamine, Alexa Fluor (trademark) and HiLyte (trademark) Fluor, and contrast agents for nuclear magnetic resonance imaging such as gadolinium chelating agents.
  • nucleic acid examples include a vector incorporating a gene encoding a desired protein, an antisense oligonucleotide, siRNA, shRNA, a ribozyme, an aptamer, a decoy nucleic acid and the like.
  • proteins and peptides include peptides and proteins containing self-antigens and non-self-antigens.
  • cancer preventive vaccines targeting cancer-specific antigens common cancer antigens, neoantigens
  • application to optimal cancer immunotherapy for individual patients and targeting allergic antigens that cause autoimmune diseases
  • the application to immune tolerance can be mentioned.
  • the carrier of the present embodiment is characterized in that it migrates into immune cells, particularly immune cells in lymph nodes.
  • the type of immune cell is not particularly limited, and examples thereof include T cells, B cells, dendritic cells, and macrophages.
  • the carrier of the present embodiment can reach the lymph node and migrate into the immune cells in the lymph node.
  • the carrier of the present embodiment can be transferred into the immune cells by contacting the immune cells in Exvivo or in vitro. As shown in Examples described later, the carrier of this embodiment is considered to migrate into immune cells by cell endocytosis rather than by membrane permeation.
  • the carrier of this embodiment has good transferability to T cells.
  • the carrier of the present embodiment can be suitably used for transferring a substance of interest to T cells.
  • the carrier of this embodiment has improved transferability to immune cells, particularly T cells, under acidic conditions.
  • the acidic condition the pH of the environment surrounding the immune cell is 5 or more and 7 or less.
  • the pH of the liquid in contact with cells such as a medium may be set to an acidic condition.
  • pH is an acidic condition at an inflamed site (eg, cancerous tissue).
  • the terminal group of the 4th generation dendrimer is via an ethylene group, a cyclohexylene group or a phenylene group. It is known that the complex molecule formed by binding phenylalanine residues undergoes a phase transition under acidic pH conditions to become more hydrophobic. It is possible that the property of phase transition in response to this pH is involved in the improvement of the transferability to immune cells under acidic conditions.
  • parenteral administration is preferable, and administration by injection is particularly preferable.
  • the administration by injection may be any of intradermal injection, subcutaneous injection, intravenous injection, arterial injection, intramuscular injection, and intraperitoneal injection, but is preferably intradermal injection, subcutaneous injection, and more preferably intradermal injection. ..
  • the carrier of the present embodiment is administered to a subject (for example, cells) in vitro or exvivo, it is preferable to bring the subject and the carrier into contact with each other by adding an appropriate amount of the carrier of the present embodiment to the culture solution.
  • One embodiment of the present invention is a pharmaceutical composition containing a drug and a carrier for immune cell transfer.
  • a drug is a substance used as an active ingredient or a candidate thereof.
  • the drug is a substance that can be supported by the carrier of this embodiment. That is, in the pharmaceutical composition of the present embodiment, it is preferable that the pharmaceutical is supported on a carrier for immune cell transfer.
  • the medicine include pharmaceutical compounds, proteins, peptides, nucleic acids and the like.
  • the pharmaceutical compound can be selected from, for example, an active ingredient or a known compound used as a candidate thereof.
  • the protein, peptide and nucleic acid can be selected from known antibody drugs, peptide drugs and nucleic acid drugs, respectively.
  • an injection containing the drug and the carrier of the present embodiment is preferable.
  • the injection can be prepared by adding the carrier of the present embodiment to purified water for injection or physiological saline.
  • the content of the carrier for immune cell transfer is, for example, 0.001 to 80 parts by weight, preferably 0.01 to 50 parts by weight, based on 100 parts by weight of the injection.
  • the injection may further contain pharmaceutically acceptable additives.
  • Such additives themselves are known and include, for example, preservatives, stabilizers, pH regulators, tonicity agents, solvents, solubilizers, soothing agents and the like.
  • One embodiment of the present invention is an immune cell transfer reagent containing the above-mentioned immune cell transfer carrier.
  • the reagents of this embodiment are useful, for example, when transferring a substance of interest to immune cells.
  • the reagent of the present embodiment may contain an immune cell transfer carrier in a powder state (for example, a lyophilized state), or may include an immune cell transfer carrier in a state of being dispersed in a suitable solvent.
  • the carrier for immune cell transfer may be contained in a container.
  • the container containing the carrier for immune cell transfer may be packed in a box.
  • the box may include a package insert.
  • the package insert may describe the composition of the reagent, the structure of the carrier for immune cell transfer, the method of use, and the like.
  • One embodiment of the present invention transfers an immune cell transfer carrier to an immune cell, comprising contacting the immune cell transfer carrier in vivo (excluding humans), in vitro or ex vivo with the immune cell transfer carrier described above. How to do it. Details of immune cells are as described above.
  • the method of contact between the immune cell transfer carrier and the immune cell is not particularly limited.
  • the immune cell transfer carrier and the immune cell can be obtained by administering the immune cell transfer carrier to an animal other than human. Can be contacted.
  • the details of administration are as described above.
  • the immune cell transfer carrier and the immune cell can be brought into contact with each other by adding the immune cell transfer carrier to the immune cells in the medium.
  • immune cells are collected by collecting organs containing immune cells (for example, spleen, thymus, lymph nodes, etc.) from animals and perfusing the obtained organs with a liquid containing, for example, a carrier for immune cell transfer.
  • the transfer carrier can be contacted with immune cells.
  • the transfer method of the present embodiment allows the substance of interest to be transferred to immune cells in vitro or exvivo via the carrier for transfer of immune cells.
  • One embodiment of the present invention is the use of a complex molecule for the production of a carrier for immune cell translocation, wherein the complex molecule comprises a branched polymer and a phenylalanine residue and has an anionic terminal structure.
  • the complex molecule comprises a branched polymer and a phenylalanine residue and has an anionic terminal structure.
  • Dendrimer (56 mg, 3.9 ⁇ mol) was dissolved in 125 mM LVDS 3 buffer (5.5 mL) and an excess amount of succinic anhydride or cis-1,2-cyclohexanedicarboxylic acid anhydride (100 equivalents each) was added. .. Each solution was stirred at room temperature overnight and the pH was adjusted to 8-10 with an aqueous 4N NaOH solution. A solution containing a carboxy-terminated dendrimer was purified by dialysis in distilled water using a dialysis membrane (molecular weight cutoff (MWCO): 1,000). The purified solution was lyophilized to give a white powder of each carboxy-terminated dendrimer.
  • MWCO molecular weight cutoff
  • the yield of dendrimer (G4-Suc) with succinic acid added to the end was 95 mg, and the yield was 111%.
  • the yield of dendrimer (G4-CHex) with cyclohexanedicarboxylic acid added to the end was 62 mg, and the yield was 64%.
  • the results of 1 H-NMR spectrum measurement of each solution of G4-Suc and G4-CHex at room temperature using 400 MHz JNM-LA 400 JNM-ECX (manufactured by JEOL) are shown below.
  • G4-Suc (NaOD-containing D2O): 2.24-2.28 (br, NCH2C H2 CONHCH2CH2N in the inner and terminal chains of PAMAM and methylene succinate), 2.46 (br, NCH2CH2CONHCH2C H2 N in the inner chain of PAMAM), 2.65 ( br, NC H2 CH2 CH2CONHCH2CH2N in the inner and terminal strands of PAMAM) and 3.13 (br, NCH2CH2CONHC H2 CH2N in the inner and terminal strands of PAMAM, and NCH2CH2CONHCH2C H2 N in the terminal strand of PAMAM).
  • G4-CHex (NaOD-containing D2O): 1.21-1.83 (m, methylene of cyclohexanedicarboxylic acid), 2.26 (br, NCH2C H2 CONHCH2CH2N of PAMAM), 2.41-2.55 (br, inner chain of PAMAM and methine of cyclohexanedicarboxylic acid) NCH2CH2CONHCH2C H2 N), 2.66 (br, NC H2 CH2CONHCH2CH2N of the inner and terminal chains of PAMAM) and 3.14 (br, NCH2CH2CONHC H2 CH2N of the inner and terminal chains of PAMAM, and NCH2CH2CONHCH2C H2 N of the terminal chains of PAMAM) .
  • G4-Suc-Phe-OBzl (MeOD containing DCl): 2.33 (s, CH3 of tosyl), 2.41-2.49 (methylene succinate), 2.70-3.04 (m, NCH2C H2 CONHCH2CH2N of inner and terminal chains of PAMAM, And NCH2CH2CONHCH2C H2 N on the inner chain of PAMAM, and H ⁇ on Phe), 3.25-3.62 (br, NC H2 CH2CONHCH2CH2N on the inner and terminal chains of PAMAM, and NCH2CH2CONHC H2 CH2N on the inner and terminal chains of PAMAM, and PAMAM.
  • G4-CHex-Phe-OBzl (MeOD containing DCl): 1.27-2.03 (m, methylene of CHex), 2.34 (s, CH3 of Tosyl), 2.50-3.12 (m, NCH2C H2 CONHCH2CH2N of inner and terminal chains of PAMAM and NCH2CH2CONHCH2C H2 N of the inner chain PAMAM and H ⁇ of Phe), 3.44-3.58 (br, NC H2 CH2CONHCH2CH2N strands of the inner and end of PAMAM, and the inner and end of the chain of PAMAM NCH2CH2CONHC H2 CH2N, and NCH2CH2CONHCH2C H2 N in the terminal chain of PAMAM, and methine in CHex), 4.56-4.65 (br, Phe H ⁇ ), 5.00 (br, Phe benzyl), 7.15-7.28 (m, Phe and Tosyl phenyl), and 7.67-7.69 (m, To
  • the purified solution was lyophilized to give white solids of dendrimers (G4-Suc-Phe and G4-CHex-Phe) with phenylalanine residues added to the ends.
  • the yield of G4-Suc-Phe was 57 mg, and the yield was 64%.
  • the yield of G4-CHex-Phe was 55 mg, and the yield was 77%.
  • G4 PAMAM is a dendrimer having 64 end groups.
  • the number of bonds of acid anhydride (Suc or CHex) to the terminal group and the phenylalanine residue to the acid anhydride was as shown in Table 1.
  • FIG. 1 shows a schematic diagram showing the chemical structure of one of the 64 terminal groups of each of the G4-Suc and G4-CHex, G4-Suc-Phe and G4-CHex-Phe dendrimers.
  • “den” indicates G4 PAMAM.
  • G4-Suc-Phe and G4-CHex-Phe which are dendrimers having a phenylalanine residue added to the end, were obtained as carriers for immune cell transfer.
  • the terminal of the dendrimer and the phenylalanine residue were bound via an ethylene group and a cyclohexylene group as linkers, respectively.
  • Example 1 Imaging of a carrier for immune cell transfer to which a fluorescent dye is linked (1) Preparation of carrier for immune cell transfer to which a fluorescent dye is linked (1.1) Preparation of G5-CHex-Phe and G5-Suc
  • succinic acid is added to the end except that G5 PAMAM dendrimer (Sigma-Aldrich) is used instead of G4 PAMAM dendrimer.
  • G5 PAMAM dendrimer Sigma-Aldrich
  • An added dendrimer (G5-Suc) and a dendrimer (G5-CHex-Phe) having a phenylalanine residue added to the end using a cyclohexylene group as a linker were prepared.
  • the reaction mixture was purified by ultrafiltration (MWCO: 3000, 10 ° C., 7500 g, 125 mM LVDS 3 aqueous solution). The obtained solution was lyophilized to give a white powder (G5-CHex-Phe-Boc). The yield was 23.42 mg and the yield was 90%. G5-CHex-Phe-Boc (21.03 mg, 0.305 ⁇ mol) was dissolved in trifluoroacetic acid (TFA) (1.2 mL) and stirred at 4 ° C. overnight to remove the Boc group. Then, the solvent was distilled off under reduced pressure, pure water was added, and the distillation under reduced pressure was carried out a plurality of times to wash the product.
  • TFA trifluoroacetic acid
  • G5-Suc having an amino group added to the terminal G5-Suc having a fluorescent dye linked to the terminal was obtained in the same manner as described above.
  • G5 PAMAM is a dendrimer having 128 end groups. From the results of NMR measurement, in G5-CHex-Phe, CHex was bound to 126 end groups out of 128 end groups, and Phe was further bound to 111 of these end groups. In G5-Suc, Suc was bound to 128 of the 128 end groups.
  • G5-CHex-Phe in which two molecules of fluorescent dye are linked to the end is referred to as "G5-CHex-Phe (dye2)
  • G5-Suc in which one molecule and three molecules of fluorescent dye are linked to the terminal is referred to as "G5-Suc", respectively. They are called “G5-Suc (dye1)” and “G5-Suc (dye3)”.
  • lymph nodes were collected from mice not receiving dendrimers in the same manner.
  • the collected lymph nodes were immersed in a 24-well plate filled with 1 mL serum-free RPMI under ice-cooling.
  • the RPMI in the well was removed, the lymph nodes were separated with scissors, 1 mg / mL collagenase solution (1 mL) was added, and the mixture was allowed to stand at 37 ° C. for 30 minutes.
  • the lymph node tissue was ground on a cell strainer to obtain cells.
  • the cell-containing solution was centrifuged (4000 rpm, 5 minutes) to remove the supernatant, and the cells were dispersed by adding serum-free RPMI (5 mL).
  • a solution of anti-CD3 antibody, anti-CD45R antibody, anti-CD11c antibody and anti-F4 / 80 antibody (50 ⁇ L each) labeled with the yellow fluorescent dye phycoerythrin (PE) was added thereto, and the mixture was cooled on ice for 30 minutes. It was left in the dark.
  • CD3, CD45R, CD11c and F4 / 80 are molecular markers for detecting T cells, B cells, dendritic cells and macrophages, respectively. For comparison, cells to which none of the labeled antibodies were added were also prepared.
  • stain buffer 100 ⁇ L was added, and the cells were washed by centrifugation (9200 rpm, 5 minutes, 4 ° C.) to remove the supernatant.
  • Stain buffer (1 mL) was added to the cells reacted with each labeled antibody to obtain a sample for flow cytometry (FCM) analysis.
  • FCM flow cytometry
  • Each sample was analyzed using BD FACS TM Calibur (manufactured by BD Biosciences). Based on the analysis results of 10,000 cells in each sample, the vertical axis shows the number of cells, the horizontal axis shows the intensity of green fluorescence (530 nm) (see FIG. 2A), and the vertical axis shows yellow fluorescence (see FIG. 2A).
  • a scattergram see FIG.
  • G5-Suc (dye1) or G5-Suc (dye3) shows the same distribution as the control without dendrimer administration, and it can hardly be transferred to the cells in the lymph node. It was suggested.
  • G5-CHex-Phe (dye2) many cells showing a high green fluorescence intensity were detected as compared with the control. Therefore, it was suggested that G5-CHex-Phe (dye2) was transferred to the cells in the lymph nodes.
  • G5-Suc (dye3) was used because few cells showed high green fluorescence intensity, as shown in the scattergram of G5-Suc (dye3) without PE-labeled antibody (No staining). It has been shown that it hardly migrates to cells in the lymph nodes. This is also consistent with FIG. 2A.
  • G5-Suc (dye3) few immune cells showed high values in both green fluorescence intensity and yellow fluorescence intensity, as shown in the scattergram to which each PE-labeled antibody was added.
  • G5-Suc (dye3) is not well taken up by T cells, B cells, dendritic cells and macrophages.
  • G5-CHex-Phe (dye2)
  • immune cells showing higher values in both green fluorescence intensity and yellow fluorescence intensity than G5-Suc (dye3). Many were detected.
  • FIG. 2B among immune cells showing high yellow fluorescence intensity (immune cells detected with PE-labeled antibody), immune cells showing high green fluorescence intensity (cells incorporating a carrier for transfer to immune cells).
  • a graph (Fig. 3) showing the ratio of In FIG.
  • T represents a T cell
  • B represents a B cell
  • DC represents a dendritic cell
  • M ⁇ represents a macrophage.
  • G5-CHex-Phe dide2 successfully translocated to all T cells, B cells, dendritic cells and macrophages.
  • the part surrounded by an ellipse indicates the administration site of each dendrimer
  • the part indicated by the arrow indicates the lymph node
  • the part indicated by the arrowhead indicates the lymphatic vessel.
  • Lymph nodes could be detected in mice 4 hours after administration of G5-CHex-Phe (dye2) and G5-Suc (dye3).
  • mice 4 hours after administration of G5-CHex-Phe (dye2) lymphatic vessels connecting the primary and secondary lymph nodes could be confirmed.
  • lymph nodes could not be detected in mice administered with G5-Suc (dye3).
  • lymph nodes could be detected in mice treated with G5-CHex-Phe (dye2).
  • Example 2 The pharmacokinetics of a carrier for immune cell transfer to which a radioactive substance is linked (1) Preparation of carrier for immune cell transfer to which radioactive substances are linked (1.1) Preparation of Carrier for Immune Cell Translocation Linked with Chelating Agent
  • G5-Suc and G5-CHex-Phe prepared in Example 1 having an amino group added to the end were used.
  • G5-CHex-Phe (12.16 mg, 0.212 ⁇ mol) end-added with an amino group was dissolved in a 125 mM acrylamide 3 aqueous solution (900 ⁇ L, pH 8.3).
  • G5-Suc having an amino group added to the terminal As for G5-Suc having an amino group added to the terminal, G5-Suc having a chelating agent linked to the terminal was obtained in the same manner as described above.
  • each dendrimer to which the radioactive substance was linked was measured by UV-vis, and the number of bonds of the chelating agent to one molecule of the dendrimer was measured using a V-630 ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation). Identified. From the results of UV-vis measurement, two molecules of chelating agent were bound to both one molecule of G5-CHex-Phe and G5-Suc.
  • mice administered with G5-CHex-Phe had significantly higher radioactivity in the lymph nodes than the mice administered with G5-Suc. That is, it was suggested that G5-CHex-Phe was remarkably accumulated in the lymph nodes as compared with G5-Suc.
  • part of the administered G5-CHex-Phe could reach blood vessels from lymph nodes and circulate throughout the body. It was suggested.
  • Example 3 Imaging of a carrier for immune cell transfer to which a fluorescent dye is linked (2) (1) Preparation of carrier for immune cell transfer to which a fluorescent dye is linked
  • G4-Suc-Phe and G4-CHex-Phe prepared in Production Example 1 were used as carriers for immune cell transfer.
  • G4-Suc and G4-CHex prepared in Production Example 1 were also used.
  • G4-Suc-Phe, G4-CHex-Phe, G4-Suc and G4-CHex are each reacted with 4 equivalents of Boc-ethylenediamine and 6 equivalents of DMT-MM. Boc groups were removed by an amount of TFA to add amino groups to the ends of each dendrimer.
  • the obtained solution was freeze-dried to obtain crystals of G4-Suc-Phe, G4-CHex-Phe, G4-Suc and G4-CHex having a fluorescent dye linked to the end.
  • one or two molecules of FITC were bound to the end of each dendrimer of one molecule.
  • the spleen tissue was ground on a cell strainer to obtain cells.
  • the cell-containing solution was centrifuged (4000 rpm, 5 minutes) to remove the supernatant, and the cells were dispersed by adding serum-free RPMI (5 mL).
  • the cell-containing solution was centrifuged (4000 rpm, 5 minutes) to remove the supernatant, and serum-free RPMI (10 mL) was added to obtain a cell suspension.
  • the cell suspension was seeded on a 96-well plate at 1 ⁇ 10 4 cells / well.
  • Each dendrimer linked with FITC was added to serum-free RPMI to a dye concentration of 5 ⁇ M to prepare a dispersion of each dendrimer. 100 ⁇ L of each dendrimer dispersion was added per well and incubated at 4 ° C for 4 hours or 37 ° C for 1 or 4 hours.
  • Example 3 the spleen of a nude mouse was used as a sample. Since nude mice do not have thymus and B cells are abundant in the spleen, this experiment mainly observes the transfer of carriers for immune cell transfer to B cells. As shown in Table 2, when incubated at 37 ° C., only dendrimers with phenylalanine residues attached to the ends could be transferred to cells. On the other hand, at 4 ° C., none of the dendrimers had migrated to the cells. This suggests that the dendrimer with the phenylalanine residue attached to the terminal does not penetrate the cell membrane and translocate into the cell, but translocates into the cell via endocytosis of the cell. It was.
  • Example 4 Imaging of a carrier for immune cell transfer to which a fluorescent dye is linked (3) (1) Carrier for Immune Cell Transfer to which Fluorescent Dye is Linked
  • G4-Suc-Phe and G4-CHex-Phe to which FITC was ligated prepared in Example 3 prepared in Example 3 were used as the carrier for immune cell transfer. Using. For comparison, G4-Suc and G4-CHex with FITC ligated at the ends were also used.
  • Each dendrimer linked with FITC was added to serum-free RPMI to a dye concentration of 5 ⁇ M to prepare a dispersion of each dendrimer.
  • the dispersion of each dendrimer was added to a 1.5 mL tube containing the cells and incubated at 37 ° C. for 3 hours.
  • the dispersion of each dendrimer was added to a 1.5 mL tube containing cells and incubated at 37 ° C. for 3 hours in the same manner as above except that the pH of serum-free RPMI was adjusted to 6.02.
  • the pH of serum-free RPMI without adjusting the pH was 7.95.
  • the cell-containing solution was centrifuged (3000 rpm, 5 minutes, 4 ° C.) to remove the supernatant, and stain buffer (1% FBS, 2 mM EDTA and PBS) (0.5 mL) was added to obtain a cell suspension. ..
  • the cell suspension was divided into 1.5 mL tubes so that the number of cells was 2 ⁇ 10 5 cells / tube.
  • a graph (FIG. 6) showing the proportion of cells containing a carrier for immune cell transfer in the immune cells detected by the PE-labeled antibody was prepared from the analysis results.
  • a graph (FIG. 7) showing the ratio of cells containing a carrier for immune cell transfer among T cells and B cells detected by a PE-labeled antibody when the pH was set to 6.02 was prepared.
  • T represents a T cell
  • B represents a B cell
  • DC represents a dendritic cell
  • M ⁇ represents a macrophage.
  • G4-Suc-Phe translocated to any of spleen-derived T cells, B cells, dendritic cells and macrophages.
  • G4-CHex-Phe also translocated to any immune cell (not shown).
  • G4-Suc and G4-CHex hardly transferred to any of the cells (not shown).
  • T represents a T cell
  • B represents a B cell.
  • G4-Suc-Phe increased the rate of transfer to T cells by adjusting the pH of the medium to 6.02.
  • G4-CHex-Phe showed a similar tendency (not shown).
  • PAMAM dendrimer G4 (56.0 mg, 3.94 ⁇ mol) was dissolved in DMSO-DMF mixed solvent (2.3 mL), excess phthalic anhydride (0.3170 g, 1.90 mmol) was added, TEA (200 ⁇ L, 1.44 mmol) was added. Stirred overnight at room temperature. After dialysis with DMSO (MWCO: 1000), dialysis was performed with distilled water. Finally, freeze-drying was performed to obtain G4-Ph (yield: 67.3 mg, yield: 69%). Next, G4-Ph (34.5 mg, 1.46 ⁇ mol) was weighed, dispersed in DMSO (5 mL), and stirred overnight.
  • G4-Ph- (Phe-OMe) was dissolved in methanol (4 mL), and a 4M NaOH methanol solution (500 ⁇ L) was added. After stirring at 4 ° C. for 2 hours, the dendrimer dispersion was purified by dialysis in distilled water using a dialysis membrane (molecular weight cutoff (MWCO): 1,000). The purified solution was lyophilized to give G4-Ph-Phe (yield: 63.2 mg, yield: 90.2%).
  • Example 5 Measurement of change in transmittance of G4-Suc-Phe, G4-Ph-Phe and G4-Chex-Phe with respect to temperature G4-Suc-Phe, G4-Ph-Phe and G4-Chex having various pHs -Each solution of Phe was prepared and the transmittance was measured by changing the temperature of these solutions. Measurement conditions; Measurement wavelength: 500 nm, heating rate: 1 ° C / min, measurement interval: 0.1 ° C, bandwidth: 1.5 nm.
  • G4 PAMAM dendrimer (Sigma-Aldrich) was reacted with the carboxyl terminus of the amino group-protected phenylalanine residue to give G4-Phe.
  • 1,3-Propane sultone (142.3 mg, 1.17 mmol) was dissolved in acetonitrile (2.8 mL).
  • G4-Phe (92.2 mg, 2.27 ⁇ mol ) was dissolved in 125 mM acrylamide 3 buffer (2.8 mL). These two solutions were mixed, nitrogen bubbling and then stirring at room temperature. Then, it was left for 2 days, and the pH was measured on the 3rd day.
  • LCST critical solution temperature
  • UCST 36 ° C.
  • °C a lower critical solution temperature
  • G4-Phe-SO 3 H was a dendrimer that sensitively undergoes LCST-type and UCST-type phase transitions under acidic conditions.
  • the transmittance of the G4-Phe-SO 3 H solution was 3% at pH 6.5 at room temperature, but improved to 91% at pH 6.5 at about 40 ° C. Also, referring to Tamaki M.
  • the transmittance of the G4-Phe-SO 3 H solution at pH 6.5 at about 37 ° C is the same. It was about the same as the transmittance of the G4-CHex-Phe solution under the conditions (about 30%).
  • G3.5-Phe was also prepared under different synthetic conditions. That is, in the condensation reaction, DMSO (1.5 mL) / water (1 mL) was used as a solvent in the same manner, and G3.5-Phe was obtained (yield: 39.5 mg, yield: 71.0%). As a result of 1 H NMR (DCl-containing D 2 O) spectrum measurement, the number of phenylalanine residue (Phe) bound to the terminal group of PAMAM dendrimer G3.5 was 41. The G3.5-Phe obtained by these reactions is hereinafter referred to as "G3.5-Phe 41 ".
  • G2.5-Phe was also prepared under different synthetic conditions. That is, 0.5 equivalent of Phe-OBzl ⁇ Tos was added to the end of PMAMA dendrimer (G2.5) and the reaction was carried out in the same manner to obtain G2.5-Phe (yield: 13.7 mg, yield: 53.3). %). As a result of 1 H NMR (DCl-containing D 2 O) spectrum measurement, the number of phenylalanine residues (Phe) bound to the terminal group of PAMAM dendrimer G2.5 was 14. The G2.5-Phe obtained by these reactions is hereinafter referred to as "G2.5-Phe 14 ".
  • the LCST type behavior was also observed at pH 4, but the transmittance had already decreased at 5 ° C. As shown in FIG. 10B, the transmittance of the solution of G3.5-Phe 41 did not change at pH 7 and pH 6, and at pH 5, it gradually increased from 35 ° C. to 85 ° C. by heating. This was a UCST type behavior. On the other hand, at pH 4, the transmittance was high at low temperatures, and the transmittance decreased from 5 ° C. This was an LCST type behavior.
  • the permeability of the solution of G2.5-Phe 18 did not change at pH 7, increased in the range of 5 ° C to 25 ° C at pH 6, but was high in the entire temperature range. It became. At pH 5, it gradually increased from 5 ° C to 95 ° C with heating. This was similar to the UCST type behavior.
  • the transmittance was as low as 63% from 5 ° C, and the transmittance decreased with heating. This was an LCST type behavior.
  • the permeability of the solution of G2.5-Phe 14 remains unchanged at pH 7, from 5 ° C to 65 ° C at pH 6 and from 45 ° C to 95 ° C at pH 5 by heating. It rose moderately. This was a UCST type behavior.
  • the transmittance was high at low temperatures, and the transmittance decreased from around 35 ° C. This was an LCST type behavior.
  • Example 6 Comparison of Amino Acid Residues in Immune Cell Translocation Carriers (1) Carrier for Immune Cell Transfer to which Fluorescent Dye is Linked In Example 6, G4-Suc-Phe and G4-CHex-Phe to which FITC was ligated prepared in Example 3 prepared in Example 3 were used as the carrier for immune cell transfer. Using. For comparison, carriers (G4-Suc-Leu and G4-CHex-Leu) in which leucine residues were bound to dendrimers were prepared, and FITC was ligated to the ends.
  • G4-Suc-Leu and G4-CHex-Leu are G4- except that leucine benzyl ester p-toluene phosphonate was used instead of 3-phenyl-L-alanine benzyl ester 4-toluene sulfonate in Production Example 1. It was prepared in the same manner as Suc-Phe and G4-CHex-Phe. The number of leucine residues bound to each of G4-Suc-Leu and G4-CHex-Leu was 64.
  • a schematic diagram of G4-Suc-Phe, G4-CHex-Phe, G4-Suc-Leu and G4-CHex-Leu is shown in FIG.
  • the FITC was linked to G4-Suc-Leu and G4-CHex-Leu in the same manner as in Example 3.
  • Each dendrimer linked with FITC was added to serum-free RPMI (pH 8.85 and pH 6) to a dye concentration of 5 ⁇ M to prepare a dispersion of each dendrimer.
  • Example 7 Imaging of a carrier for immune cell transfer to which a fluorescent dye is linked (4) (1) Preparation of Carrier for Immune Cell Transfer to which Fluorescent Dye is Linked
  • G4-Phe-Suc and G4-Phe-CHex to which FITC was ligated at the end were used as carriers for immune cell transfer.
  • G4-Phe-Suc and G4-Phe-CHex were prepared as follows. In the same manner as in Production Example 3, the amino terminus of G4 PAMAM dendrimer (Sigma-Aldrich) was reacted with the carboxyl terminus of the amino group-protected phenylalanine residue to obtain G4-Phe.
  • the yield of G4-Phe-Suc was 68 mg, and the yield was 56%.
  • the yield of G4-Phe-CHex was 65 mg, and the yield was 72%.
  • Each solution of G4-Phe-Suc and G4-Phe-CHex was measured by 1 H-NMR spectrum.
  • the number of phenylalanine residue (Phe) bound to the terminal group of G4 PAMAM was 56, and the number of succinic acid bound to the terminal group and phenylalanine residue of G4 PAMAM was 57.
  • G4-Phe-CHex the number of bonds of phenylalanine residue (Phe) to the terminal group of G4 PAMAM is 64, and the number of bonds of cyclohexanedicarboxylic acid to the terminal group of G4 PAMAM and phenylalanine residue is 64. there were.
  • a schematic diagram of G4-Phe-Suc and G4-Phe-CHex is shown in FIG.
  • the FITC was linked to G4-Phe-Suc and G4-Phe-CHex in the same manner as in Example 3.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Transplantation (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention pertains to a carrier for transfer into immune cells. The present invention pertains to a reagent for transfer into immune cells. The present invention pertains to a method for transporting a carrier, which is for transfer into immune cells, into immune cells. The present invention pertains to a medicinal composition comprising a medicine and a carrier for transfer into immune cells.

Description

免疫細胞移行用担体及びその利用Immune cell transfer carrier and its use
 本発明は、免疫細胞移行用担体に関する。本発明は、免疫細胞移行用試薬に関する。本発明は、免疫細胞移行用担体を免疫細胞に移送する方法に関する。本発明は、医薬と、免疫細胞移行用担体とを含む医薬組成物に関する。 The present invention relates to a carrier for immune cell transfer. The present invention relates to reagents for immune cell transfer. The present invention relates to a method of transferring a carrier for immune cell transfer to immune cells. The present invention relates to a pharmaceutical composition comprising a drug and a carrier for transfer of immune cells.
 近年、新規ながん治療法として免疫療法が注目されている。がんの免疫療法は、受動免疫療法と能動免疫療法の二つに大別できる。受動免疫療法は、患者から採取したT細胞などの免疫細胞をインビトロで活性化して再び患者の体内に戻すことにより、活性化した免疫細胞でがん細胞を攻撃する治療法であり、例えばCAR-T細胞療法などが知られている。能動免疫療法は、免疫細胞を活性化させる物質を患者に投与することにより、活性化した免疫細胞でがん細胞を攻撃する治療法であり、例えばサイトカイン療法などが知られている。 In recent years, immunotherapy has been attracting attention as a new cancer treatment method. Immunotherapy for cancer can be broadly divided into passive immunotherapy and active immunotherapy. Passive immunotherapy is a treatment method in which immune cells such as T cells collected from a patient are activated in vitro and returned to the patient's body to attack cancer cells with the activated immune cells. For example, CAR- T cell therapy is known. Active immunotherapy is a treatment method in which a substance that activates immune cells is administered to a patient to attack cancer cells with the activated immune cells. For example, cytokine therapy is known.
 CD3などの細胞表面マーカーと特異的に結合するリガンドや抗体などを用いずに、免疫細胞を活性化させる物質を生体内の免疫細胞に効率よく送達するシステムはまだない。T細胞を含む種々の免疫細胞は、主にリンパ節において組織液及びリンパ液中の異物を排除する免疫反応を行っている。特許文献1には、カルボキシル基を末端基として有するデンドリマーがリンパ節に移行可能であり、当該デンドリマーをマウスに皮内投与すると、センチネルリンパ節及びその先にある二次リンパ節に集積したことが記載されている。 There is still no system that efficiently delivers substances that activate immune cells to immune cells in vivo without using ligands or antibodies that specifically bind to cell surface markers such as CD3. Various immune cells, including T cells, carry out an immune response that eliminates foreign substances in tissue fluid and lymph fluid mainly in lymph nodes. Patent Document 1 states that a dendrimer having a carboxyl group as a terminal group can be transferred to a lymph node, and when the dendrimer is intradermally administered to a mouse, it accumulates in the sentinel lymph node and the secondary lymph node beyond the dendrimer. Are listed.
国際公開第2015/170573号International Publication No. 2015/170573
 本発明者らは、特許文献1のデンドリマーは生体のリンパ節には集積するが、リンパ節内の免疫細胞には取り込まれないことを見出した。生体の免疫細胞に選択的に所望の生理活性物質等を移送可能な手段を確立することは、がん免疫療法の発展に寄与すると期待される。本発明は、免疫細胞に移行可能な担体分子を提供することを目的とする。 The present inventors have found that the dendrimer of Patent Document 1 accumulates in the lymph nodes of a living body, but is not taken up by immune cells in the lymph nodes. It is expected that establishing a means capable of selectively transferring desired physiologically active substances and the like to immune cells of a living body will contribute to the development of cancer immunotherapy. An object of the present invention is to provide a carrier molecule that can be transferred to immune cells.
 本発明は、複合体分子を含む免疫細胞移行用担体であって、前記複合体分子が、分岐ポリマーとフェニルアラニン残基とを含み、且つアニオン性の末端構造を有し、前記分岐ポリマーの末端基に前記フェニルアラニン残基が結合している、免疫細胞移行用担体を提供する。本発明は、免疫細胞移行用担体を含む免疫細胞移行用試薬を提供する。本発明は、免疫細胞移行用担体と、免疫細胞とをインビボ(ただし、ヒトを除く)、インビトロ又はエクスビボで接触することを含む、免疫細胞移行用担体を免疫細胞に移送する方法を提供する。本発明は、医薬と、免疫細胞移行用担体とを含む医薬組成物を提供する。 The present invention is a carrier for immune cell migration containing a complex molecule, wherein the complex molecule contains a branched polymer and a phenylalanine residue and has an anionic terminal structure, and the terminal group of the branched polymer. Provided is a carrier for immune cell transfer to which the phenylalanine residue is bound. The present invention provides a reagent for immune cell transfer, which comprises a carrier for immune cell transfer. The present invention provides a method of transferring an immune cell transfer carrier to an immune cell, comprising contacting the immune cell transfer carrier in vivo (but excluding humans), in vitro or ex vivo. The present invention provides a pharmaceutical composition comprising a drug and a carrier for immune cell transfer.
 本発明によれば、免疫細胞に移行可能な担体が提供される。 According to the present invention, a carrier that can be transferred to immune cells is provided.
末端にフェニルアラニン残基を有さず且つ末端にリンカーが結合したデンドリマー(G4-Suc及びG4-CHex)と、リンカーを介して末端にフェニルアラニン残基が結合したデンドリマー(G4-Suc-Phe及びG4-CHex-Phe)とのそれぞれが有する64の末端基のうちの1つの化学構造を表した模式図である。Dendrimers (G4-Suc and G4-CHex) that do not have a phenylalanine residue at the end and have a linker attached to the end, and dendrimers (G4-Suc-Phe and G4-) that have a phenylalanine residue attached to the end via a linker. It is a schematic diagram which showed the chemical structure of one of 64 terminal groups which each has CHex-Phe). 蛍光標識した免疫細胞移行用担体を投与したマウスのリンパ節から得た細胞をフローサイトメトリ(FCM)で分析して得た分布図である。It is a distribution map obtained by analyzing cells obtained from the lymph nodes of mice to which a fluorescently labeled immune cell transfer carrier was administered by flow cytometry (FCM). 蛍光標識した免疫細胞移行用担体を投与したマウスのリンパ節から得た細胞をPE標識抗体で免疫染色し、FCMで分析して得たスキャッタグラムである。It is a scattergram obtained by immunostaining cells obtained from the lymph nodes of mice to which a fluorescently labeled immune cell transfer carrier was administered with a PE-labeled antibody and analyzing with FCM. PE標識抗体で検出された各種の免疫細胞における、免疫細胞移行用担体を含む細胞の割合を示すグラフである。It is a graph which shows the ratio of the cell containing the carrier for immune cell transfer among various immune cells detected by PE-labeled antibody. 蛍光標識した免疫細胞移行用担体を投与したマウスをインビボ蛍光イメージングして得た画像である。6 is an image obtained by in vivo fluorescence imaging of a mouse to which a fluorescently labeled immune cell transfer carrier was administered. 放射性物質で標識した免疫細胞移行用担体を投与したマウスから採取した臓器等が発する放射線を測定して得たグラフである。It is a graph obtained by measuring the radiation emitted from the organ or the like collected from the mouse to which the carrier for transfer of immune cells labeled with a radioactive substance was administered. PE標識抗体で検出された各種の免疫細胞における、免疫細胞移行用担体を含む細胞の割合を示すグラフである。It is a graph which shows the ratio of the cell containing the carrier for immune cell transfer among various immune cells detected by PE-labeled antibody. PE標識抗体で検出された中性又は酸性条件下のT細胞及びB細胞における、免疫細胞移行用担体を含む細胞の割合を示すグラフである。It is a graph which shows the ratio of the cell containing the carrier for immune cell transfer in the T cell and B cell under the neutral or acidic conditions detected by the PE-labeled antibody. リンカーを介して末端にフェニルアラニン残基が結合したデンドリマー(G4-Suc-Phe、G4-Ph-Phe及びG4-CHex-Phe)の溶液(pH 4~7)の温度に対する透過率の変化を示すグラフである。A graph showing the change in transmittance of a solution (pH 4 to 7) of a dendrimer (G4-Suc-Phe, G4-Ph-Phe and G4-CHex-Phe) in which a phenylalanine residue is bound to a terminal via a linker with respect to temperature. Is. 末端にフェニルアラニン残基を有し、末端基がスルホン基であるデンドリマー(G4-Phe-SO3H)の溶液(pH 5又はpH 6.5)の温度に対する透過率の変化を示すグラフである。It is a graph which shows the change of the transmittance with respect to the temperature of the solution (pH 5 or pH 6.5) of the dendrimer (G4-Phe-SO 3 H) which has a phenylalanine residue at the terminal and the terminal group is a sulfone group. デンドリマーの末端基にフェニルアラニン残基が直接結合し、アニオン性末端基がカルボキシル基である免疫細胞移行用担体(G3.5-Phe30)の溶液(pH 4~7)の温度に対する透過率の変化を示すグラフである。Changes in permeability of a solution (pH 4-7) of an immune cell transfer carrier (G3.5-Phe 30 ) in which a phenylalanine residue is directly attached to the terminal group of the dendrimer and the anionic terminal group is a carboxyl group. It is a graph which shows. デンドリマーの末端基にフェニルアラニン残基が直接結合し、アニオン性末端基がカルボキシル基である免疫細胞移行用担体(G3.5-Phe41)の溶液(pH 4~7)の温度に対する透過率の変化を示すグラフである。Changes in permeability of a solution (pH 4-7) of an immune cell transfer carrier (G3.5-Phe 41 ) in which a phenylalanine residue is directly attached to the terminal group of the dendrimer and the anionic terminal group is a carboxyl group. It is a graph which shows. デンドリマーの末端基にフェニルアラニン残基が直接結合し、アニオン性末端基がカルボキシル基である免疫細胞移行用担体(G2.5-Phe18)の溶液(pH 4~7)の温度に対する透過率の変化を示すグラフである。Changes in permeability of a solution (pH 4-7) of an immune cell transfer carrier (G2.5-Phe 18 ) in which a phenylalanine residue is directly attached to the terminal group of the dendrimer and the anionic terminal group is a carboxyl group. It is a graph which shows. デンドリマーの末端基にフェニルアラニン残基が直接結合し、アニオン性末端基がカルボキシル基である免疫細胞移行用担体(G2.5-Phe14)の溶液(pH 4~7)の温度に対する透過率の変化を示すグラフである。Changes in permeability of a solution (pH 4-7) of an immune cell transfer carrier (G2.5-Phe 14 ) in which a phenylalanine residue is directly attached to the terminal group of the dendrimer and the anionic terminal group is a carboxyl group. It is a graph which shows. リンカーを介して末端にフェニルアラニン残基が結合したデンドリマー(G4-Suc-Phe及びG4-CHex-Phe)と、リンカーを介して末端にロイシン残基が結合したデンドリマー(G4-Suc-Leu及びG4-CHex-Leu)とのそれぞれが有する64の末端基のうちの1つの化学構造を表した模式図である。Dendrimers with phenylalanine residues attached to the ends via a linker (G4-Suc-Phe and G4-CHex-Phe) and dendrimers with leucine residues attached to the ends via a linker (G4-Suc-Leu and G4-) It is a schematic diagram which showed the chemical structure of one of 64 terminal groups which each has CHex-Leu). 蛍光標識した免疫細胞移行用担体と接触したJurkat細胞をFCMで分析して得た、細胞の蛍光強度の平均値を示すグラフである。It is a graph which shows the average value of the fluorescence intensity of the Jurkat cell which was in contact with the fluorescently labeled immune cell transfer carrier, and obtained by the analysis by FCM. 末端にフェニルアラニン残基が直接結合し、アニオン性末端基がカルボキシル基であるデンドリマー(G4-Phe-Suc及びG4-Phe-CHex)が有する64の末端基のうちの1つの化学構造を表した模式図である。A schematic showing the chemical structure of one of the 64 terminal groups of dendrimers (G4-Phe-Suc and G4-Phe-CHex) in which a phenylalanine residue is directly attached to the terminal and the anionic terminal group is a carboxyl group. It is a figure. 蛍光標識した免疫細胞移行用担体と接触したJurkat細胞をFCMで分析して得た、細胞の蛍光強度の平均値を示すグラフである。It is a graph which shows the average value of the fluorescence intensity of the Jurkat cell which was in contact with the fluorescently labeled immune cell transfer carrier, and obtained by the analysis by FCM.
 本実施形態の免疫細胞移行用担体(以下、単に「担体」ともいう)は、分岐ポリマーの末端基にフェニルアラニン残基が直接又は間接的に結合して成る、アニオン性の末端構造を有する複合体分子を含む。分岐ポリマーは、分岐状構造又は樹状構造を有するポリマーであれば特に限定されない。分岐ポリマーの末端基とは、分岐ポリマーの分岐状構造又は樹状構造の最も外側にある基をいう。本実施形態の担体におけるアニオン性の末端構造とは、分岐ポリマーの末端基と直接又は間接的に結合したフェニルアラニン残基を含む部分であって、当該部分の末端にある基がアニオン性基である部分をいう。アニオン性基としては、例えばカルボキシル基、スルホン基、硫酸基又はそれらの塩が挙げられる。本発明者らは、該複合体分子が興味対象の物質を担持できることから、該複合体分子を免疫細胞移行用担体に利用できることを見出して、本発明を完成した。ここで、「興味対象の物質」とは、免疫細胞に移送することを所望する所定の物質をいう。「興味対象の物質を担持する」とは、複合体分子における分岐ポリマーの末端基に興味対象の物質を連結すること、該分岐ポリマーの内部空間に興味対象の物質を内包すること、及びフェニルアラニン残基に興味対象の物質を連結することを包含する。 The carrier for immune cell transfer of the present embodiment (hereinafter, also simply referred to as “carrier”) is a complex having an anionic terminal structure in which a phenylalanine residue is directly or indirectly bonded to the terminal group of the branched polymer. Contains molecules. The branched polymer is not particularly limited as long as it is a polymer having a branched structure or a dendritic structure. The terminal group of the branched polymer means the outermost group of the branched structure or the dendritic structure of the branched polymer. The anionic terminal structure in the carrier of the present embodiment is a portion containing a phenylalanine residue that is directly or indirectly bonded to the terminal group of the branched polymer, and the group at the end of the portion is an anionic group. Refers to the part. Examples of the anionic group include a carboxyl group, a sulfone group, a sulfate group or a salt thereof. The present inventors have completed the present invention by finding that the complex molecule can be used as a carrier for immune cell transfer because the complex molecule can carry a substance of interest. Here, the "substance of interest" refers to a predetermined substance that is desired to be transferred to immune cells. “Carrying the substance of interest” means connecting the substance of interest to the terminal group of the branched polymer in the complex molecule, encapsulating the substance of interest in the internal space of the branched polymer, and phenylalanine residue. Includes linking the substance of interest to the group.
 本実施形態では、分岐ポリマーは、末端基として、フェニルアラニン残基又は後述のリンカーと結合可能な官能基を1種以上有するものが好ましい。該官能基としては、例えばアミノ基、カルボキシル基、ヒドロキシ基、スルホン基などが挙げられる。分岐ポリマーとしては、例えばデンドリマー、樹状構造における分岐の規則性が低い「ハイパーブランチポリマー」、「デンドリグラフト」(ランダム樹状ポリマーともいう)やスターポリマーが挙げられる。 In the present embodiment, the branched polymer preferably has at least one functional group capable of binding to a phenylalanine residue or a linker described later as a terminal group. Examples of the functional group include an amino group, a carboxyl group, a hydroxy group, a sulfone group and the like. Examples of the branched polymer include dendrimers, "hyperbranched polymers" having low branching regularity in dendritic structures, "dendrigrafts" (also referred to as random dendritic polymers), and star polymers.
 デンドリマーは、3次元的に高度に分枝した樹状構造の化合物であり、ほぼ球状の形態であることが知られている。本明細書では、「デンドリマー」との用語には、デンドリマーを構成する部分構造であって、コアの部分の少なくとも1つの官能基が分岐していない構造を有するデンドロンも含む。デンドリマーは一般に、コアと、いくつかの世代の分岐部分と、末端基とからなる。デンドリマーのコアは、1つ以上の官能基を有する化合物から誘導される。官能基としては、第1級アミノ基、第2級アミノ基、ヒドロキシ基、カルボン酸基、チオール基、エステル基、アミド基、ケトン基、アルデヒド基などが挙げられる。好ましくは、第1級アミノ基及び第2級アミノ基である。コアを構成する化合物としては、例えばアンモニア、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,10-ジアミノデカン、1,12-ジアミノドデカンが挙げられる。SS結合を含むアルキルジアミン(シスタミン)でもよい。 Dendrimer is a compound with a three-dimensionally highly branched dendritic structure, and is known to have an almost spherical morphology. As used herein, the term "dendrimer" also includes a dendron having a partial structure constituting the dendrimer, in which at least one functional group of the core portion is not branched. Dendrimers generally consist of a core, several generations of bifurcations, and end groups. The dendrimer core is derived from a compound having one or more functional groups. Examples of the functional group include a primary amino group, a secondary amino group, a hydroxy group, a carboxylic acid group, a thiol group, an ester group, an amide group, a ketone group, an aldehyde group and the like. Preferably, it is a primary amino group and a secondary amino group. Examples of the compounds constituting the core include ammonia, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentano, 1,6-diaminohexane, 1,7-diaminoheptane, 1, Examples include 8-diaminooctane, 1,10-diaminodecane, and 1,12-diaminododecane. It may be an alkyldiamine (cystamine) containing an SS bond.
 デンドリマーの分岐部分は、3以上の原子価を有する原子を含む分岐構造単位の繰り返しからなる。3以上の原子価を有する原子としては、炭素、窒素、ケイ素、リンなどが挙げられる。例えば、デンドリマーの分岐部分として、以下の構造が知られている。 The branched portion of the dendrimer consists of repeating branched structural units containing atoms having a valence of 3 or more. Examples of the atom having a valence of 3 or more include carbon, nitrogen, silicon, phosphorus and the like. For example, the following structure is known as a branching portion of a dendrimer.
Figure JPOXMLDOC01-appb-C000004
(式中、nは1以上の整数であり、好ましくは60~300の整数である)
Figure JPOXMLDOC01-appb-C000004
(In the formula, n is an integer of 1 or more, preferably an integer of 60 to 300)
 上記(A)~(C)の分岐構造を有する各デンドリマーについては、以下の文献に記載されている。デンドリマーの分岐部分は、上記のような繰り返し単位を2種以上含むものであってもよい。
(A) Tomalia D.A.ら、Polym. J. 17, 117 (1985)及びTomalia D.A.ら、Angew. Chem. Int. Ed. Engl. 29, 138 (1990)
(B) de Brabander-van den Berg E.M.M.ら、Angew. Chem. Int. Ed. Engl. 32, 1308 (1993); de Brabander-van den Berg E.M.M.ら、Macromol. Symp. 77, 51 (1994);Hummelen J.C.ら、Chem. Eng. J. 3, 1489 (1997)及びWaner C.ら、Angew. Chem. Int. Ed. Engl. 32, 1300 (1993)
(C) Ihre H.R.ら、Bioconjugate Chem. 13, 443-452 (2002)及びGoodwin A.P.ら、J.Am.Chem.Soc., 129, 6994 (2007)
Each dendrimer having the above-mentioned branched structures (A) to (C) is described in the following documents. The branched portion of the dendrimer may include two or more types of repeating units as described above.
(A) Tomalia DA et al., Polym. J. 17, 117 (1985) and Tomalia DA et al., Angelw. Chem. Int. Ed. Engl. 29, 138 (1990)
(B) de Brabander-van den Berg EMM et al., Angelw. Chem. Int. Ed. Engl. 32, 1308 (1993); de Brabander-van den Berg EMM et al., Macromol. Symp. 77, 51 (1994); Hummelen JC et al., Chem. Eng. J. 3, 1489 (1997) and Waner C. et al., Angelw. Chem. Int. Ed. Engl. 32, 1300 (1993)
(C) Ihre HR et al., Bioconjugate Chem. 13, 443-452 (2002) and Goodwin AP et al., J. Am. Chem. Soc., 129, 6994 (2007)
 デンドリマーの末端基の構造は適宜選択できる。例えば、末端基は、分岐部分の最後の繰り返し単位の構造を有してもよいし、分岐部分とは別の構造を有してもよい。デンドリマーの末端基は、フェニルアラニン残基又は後述のリンカーと結合可能な官能基を1種以上有することが好ましい。 The structure of the terminal group of the dendrimer can be selected as appropriate. For example, the end group may have a structure of the last repeating unit of the branched portion, or may have a structure different from that of the branched portion. The terminal group of the dendrimer preferably has one or more functional groups capable of binding to a phenylalanine residue or a linker described later.
 ハイパーブランチポリマーは、一般にAB2型モノマーを重合させることにより、分岐を展開させたポリマーである。ここで、A及びBは、それぞれ重合反応可能な官能基の組み合わせを示し、例えば、水酸基とカルボキシル基、アミノ基とカルボキシル基などの組み合わせが挙げられる。あるいは、分岐のコアとして機能する物質を併用してもよい。また、グリシドールやエチレンイミンなどの開環重合によって、ハイパーブランチポリマーを作製してもよい。デンドリグラフトは、モノマーではなく、モノマーが複数結合したオリゴマーを段階的に反応させることによって合成されるポリマーである。これらを総称してランダム樹状ポリマーという。ランダム樹状ポリマーはデンドリマーと同様に分岐部分を有するが、コアは必須ではない。また、ランダム樹状ポリマーの分岐部分には、一部欠損して不規則又は不連続な箇所があってもよい。 Hyperbranched polymer is generally a polymer in which branching is developed by polymerizing an AB2 type monomer. Here, A and B each indicate a combination of functional groups capable of polymerization reaction, and examples thereof include a combination of a hydroxyl group and a carboxyl group, an amino group and a carboxyl group, and the like. Alternatively, a substance that functions as a branching core may be used in combination. Further, a hyperbranched polymer may be prepared by ring-opening polymerization of glycidol or ethyleneimine. A dendrigraft is not a monomer, but a polymer synthesized by stepwise reacting an oligomer in which a plurality of monomers are bonded. These are collectively called random dendritic polymers. Random dendrimers, like dendrimers, have bifurcations, but cores are not required. In addition, the branched portion of the random dendritic polymer may be partially defective and have irregular or discontinuous portions.
 ランダム樹状ポリマーの分岐ユニットは、ポリリシン骨格、ポリグリセリン骨格、種々の糖類の骨格でもよい。分岐ユニットがリシン(-NH-CH(C4H2NH-)CO-)であるランダム樹状ポリマーとしては、例えばPolyLysine-Dendri-graft(PLD:COLCOM社)が挙げられる。また、分岐ユニットが、下記の式で表されるポリグリセリンであるランダム樹状ポリマーとしては、例えばPGL X及びPGL 10(ダイセル化学)が挙げられる。 The branching unit of the random dendritic polymer may be a polylysine skeleton, a polyglycerin skeleton, or a skeleton of various sugars. Examples of the random dendritic polymer in which the branching unit is lysine (-NH-CH (C 4 H 2 NH-) CO-) include PolyLysine-Dendri-graft (PLD: COLCOM). Examples of the random dendritic polymer in which the branching unit is polyglycerin represented by the following formula include PGL X and PGL 10 (Daicel Chemistry).
Figure JPOXMLDOC01-appb-C000005
(式中、n及びmは独立して10以上、好ましくは20以上の整数である)
Figure JPOXMLDOC01-appb-C000005
(In the formula, n and m are independently integers of 10 or more, preferably 20 or more).
 スターポリマーは、3本以上のポリマー鎖が中心から放射状に分岐したポリマーとして知られている。スターポリマーは、ポリマー鎖が同一種であるレギュラー型と、ポリマー鎖の種類や分子量が異なる非対称型とに大別される。レギュラー型のスターポリマーは、スチレンや1,3-ジエン類のリビングアニオンポリマーと、多官能シリルクロリドとのリビングアニオン重合により得ることができる。現在、3~128のポリマー鎖を有するポリブタジエンスターポリマーや、33のポリマー鎖を有するスターポリスチレンなどが合成されている。また、非対称型スターポリマーとしては、ポリスチレン、ポリイソプレン、ポリブタジエン及びポリ(4一メチルスチレン)から構成される4成分系のスターポリマーなどが知られている。 Star polymer is known as a polymer in which three or more polymer chains are radially branched from the center. Star polymers are roughly classified into a regular type in which the polymer chains are the same type and an asymmetric type in which the types and molecular weights of the polymer chains are different. Regular star polymers can be obtained by living anionic polymerization of styrene or 1,3-diene living anion polymers with polyfunctional silyl chloride. Currently, polybutadiene star polymers having 3 to 128 polymer chains, star polystyrene having 33 polymer chains, and the like are being synthesized. Further, as the asymmetrical star polymer, a four-component star polymer composed of polystyrene, polyisoprene, polybutadiene and poly (4-1 methylstyrene) is known.
 スターポリマーはマルチアームPEG型であってもよい。そのようなスターポリマーは市販されており、例えば、4本分岐鎖を有するマルチアームPEG型である4arm-PEG-NH2 (C(CH2O(CH2CH2O)nCH2CH2NH2HCl)4)、4arm-PEG-COOH (C(CH2O(CH2CH2O)nCH2COOH)4)(Merck社)など、8本分岐鎖を有するマルチアームPEG型であるトリペンタエリスリトールコアの8arm-PEG-NH2 (R(O(CH2CH2O)nCH2CH2NH2HCl)8, Rはトリペンタエリスリトール)及び8arm-PEG-COOH (R(O(CH2CH2O)nCH2COOH)8, Rはトリペンタエリスリトール)(Merck社)などが挙げられる。また、SUNBRIGHT(登録商標)シリーズのうち、下記の式で表されるPTEシリーズ、HGEOシリーズ及びDXシリーズ(油化産業株式会社)なども挙げられる。 The star polymer may be of the multi-arm PEG type. Such star polymers are commercially available, for example, 4arm-PEG-NH 2 (C (CH 2 O (CH 2 CH 2 O) n CH 2 CH 2 NH), which is a multi-arm PEG type with four branched chains. 2 HCl) 4 ), 4arm-PEG-COOH (C (CH 2 O (CH 2 CH 2 O) n CH 2 COOH) 4 ) (Merck), etc. Pentaerythritol core 8arm-PEG-NH 2 (R (O (CH 2 CH 2 O) n CH 2 CH 2 NH 2 HCl) 8 , R is tripentaerythritol) and 8arm-PEG-COOH (R (O (CH 2CH)) 2 CH 2 O) n CH 2 COOH) 8 and R are tripentaerythritol) (Merck). In addition, among the SUNBRIGHT (registered trademark) series, the PTE series, HGEO series and DX series (Yuka Sangyo Co., Ltd.) represented by the following formulas can also be mentioned.
Figure JPOXMLDOC01-appb-C000006
(式中、Xは、-CO-CH2CH2-COO-Nヒドロキシスクシンイミド(NHS)、-CO-CH2CH2CH2-COO-NHS-(CH2)3-NHCO-CH2CH2-マレイミド、-CH2CH2CH2CH2CH2-COO-NHS、-COO-pニトロフェニル-NO2、-CH2CH2CH2NH2又は-(CH2)3-NHCO-CH2CH2-マレイミドであり、nは10以上の整数である)
Figure JPOXMLDOC01-appb-C000006
(In the formula, X is -CO-CH 2 CH 2 -COO-N hydroxysuccinimide (NHS) , -CO-CH 2 CH 2 CH 2 -COO- NHS- (CH 2 ) 3 -NHCO-CH 2 CH 2 -Maleimide, -CH 2 CH 2 CH 2 CH 2 CH 2 -COO-NHS, -COO-p Nitrophenyl-NO 2 , -CH 2 CH 2 CH 2 NH 2 or-(CH 2 ) 3 -NHCO-CH 2 CH 2 -maleimide, where n is an integer greater than or equal to 10)
Figure JPOXMLDOC01-appb-C000007
(式中、Xは、-CO-CH2CH2-COO-NHS、-CO-CH2CH2CH2-COO-NHS、-COO-pニトロフェニル、-CH2CH2NH2・HCI又は-CH2CH2SHであり、nは10以上の整数である)
Figure JPOXMLDOC01-appb-C000007
(In the formula, X is -CO-CH 2 CH 2 -COO-NHS, -CO-CH 2 CH 2 CH 2 -COO-NHS, -COO-p nitrophenyl, -CH 2 CH 2 NH 2 · HCI or -CH 2 CH 2 SH, where n is an integer greater than or equal to 10)
Figure JPOXMLDOC01-appb-C000008
(式中、Xは、-CH2CH2CH2-NH2、-CH2CH2-CHO又は-CO-CH2CH2CH2-COO-NHSであり、nは10以上の整数である)
Figure JPOXMLDOC01-appb-C000008
(In the equation, X is -CH 2 CH 2 CH 2 -NH 2 , -CH 2 CH 2 -CHO or -CO-CH 2 CH 2 CH 2 -COO-NHS, and n is an integer greater than or equal to 10. )
 本実施形態では、分岐ポリマーとしてデンドリマーを用いることが好ましい。デンドリマーの世代数は、用いるデンドリマーのコア及び分岐部分の構造に応じて適宜選択できる。当該技術分野においては、第0~第10世代のポリアミドアミン(PAMAM)デンドリマーが一般に入手可能である。また、デンドリマーの製造方法自体は公知であり、例えば上記の文献に記載されている。本実施形態では、第4世代(G4)、第5世代(G5)又は第6世代(G6)のデンドリマーを用いることが好ましい。 In this embodiment, it is preferable to use a dendrimer as the branched polymer. The number of generations of the dendrimer can be appropriately selected according to the structure of the core and the branch portion of the dendrimer to be used. 0th to 10th generation polyamide amine (PAMAM) dendrimers are generally available in the art. Further, the method for producing a dendrimer itself is known, and is described in, for example, the above-mentioned literature. In this embodiment, it is preferable to use a 4th generation (G4), 5th generation (G5) or 6th generation (G6) dendrimer.
 本実施形態の担体では、分岐ポリマーの末端基とフェニルアラニン残基とが直接結合してもよいし、間接的に結合してもよい。分岐ポリマーの1つの末端基に結合するフェニルアラニン残基の数は、1つでもよいし、2つ以上であってもよい。フェニルアラニン残基は、L体及びD体のいずれであってもよい。フェニルアラニン残基は、分岐ポリマーの全ての末端基に結合していてもよいし、分岐ポリマーの一部の末端基に結合していてもよい。本実施形態では、フェニルアラニン残基は、分岐ポリマーが有する末端基の40%以上、好ましくは45%以上、50%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、又は95%以上に結合する。例えば、分岐ポリマーがG4 PAMAMデンドリマーである場合、該デンドリマーが有する64の末端基のうち、26以上、好ましくは29以上、32以上、36以上、39以上、42以上、45以上、48以上、52以上、55以上、58以上、又は61以上の末端基にフェニルアラニン残基が結合する。 In the carrier of the present embodiment, the terminal group of the branched polymer and the phenylalanine residue may be directly bonded or indirectly bonded. The number of phenylalanine residues attached to one terminal group of the branched polymer may be one or two or more. The phenylalanine residue may be either L-form or D-form. The phenylalanine residue may be attached to all the end groups of the branched polymer, or may be attached to some end groups of the branched polymer. In this embodiment, the phenylalanine residue is 40% or more, preferably 45% or more, preferably 45% or more, 50% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more of the terminal group contained in the branched polymer. , 85% or more, 90% or more, or 95% or more. For example, when the branched polymer is a G4 PAMAM dendrimer, 26 or more, preferably 29 or more, 32 or more, 36 or more, 39 or more, 42 or more, 45 or more, 48 or more, 52 among the 64 terminal groups of the dendrimer. A phenylalanine residue binds to 55 or more, 58 or more, or 61 or more terminal groups.
 分岐ポリマーの末端基とフェニルアラニン残基とを直接結合させる場合、分岐ポリマーの末端基と、フェニルアラニンのアミノ末端又はカルボキシル末端とを反応させればよい。あるいは、分岐ポリマーの末端基とフェニルアラニンの誘導体とを反応させてもよい。本実施形態では、フェニルアラニン又はその誘導体の末端基と、分岐ポリマーの末端基との結合の種類は特に限定されない。好ましい結合は共有結合であり、例えばアミド結合(-NH-CO-)、エステル結合(-CO-O-)、ウレタン結合(-NH-CO-O-)、ウレア結合(-NH-CO-NH-)、チオウレア結合(-NH-CS-NH-)、スルホンアミド結合(-SO2-NH-)、スルホン酸エステル結合(-SO2-O-)などが挙げられる。また、マレイミドとチオールとの反応で形成される構造であってもよい。フェニルアラニンの誘導体としては、例えば、フェニルアラニンのアミノ末端又はカルボキシル末端を、分岐ポリマーの末端基に対して反応性を有する基で誘導体化した化合物などが挙げられる。 When the terminal group of the branched polymer and the phenylalanine residue are directly bonded, the terminal group of the branched polymer may be reacted with the amino terminal or the carboxyl terminal of phenylalanine. Alternatively, the terminal group of the branched polymer may be reacted with a derivative of phenylalanine. In the present embodiment, the type of bond between the terminal group of phenylalanine or a derivative thereof and the terminal group of the branched polymer is not particularly limited. Preferred bonds are covalent bonds, such as amide bonds (-NH-CO-), ester bonds (-CO-O-), urethane bonds (-NH-CO-O-), urea bonds (-NH-CO-NH). -), Thiourea bond (-NH-CS-NH-), sulfonamide bond (-SO 2 -NH-), sulfonic acid ester bond (-SO 2 -O-) and the like. Further, the structure may be formed by the reaction of maleimide and thiol. Examples of the derivative of phenylalanine include a compound in which the amino-terminal or carboxyl-terminal of phenylalanine is derivatized with a group having reactivity with the terminal group of the branched polymer.
 一実施形態では、フェニルアラニンのアミノ末端と分岐ポリマーの末端基とを反応させることにより、免疫細胞移行用担体を得てもよい。この場合、担体におけるアニオン性の末端構造は、分岐ポリマーの末端基と直接結合したフェニルアラニン残基からなり、該フェニルアラニン残基のカルボキシル基が末端構造のアニオン性基となる。例えば、分岐ポリマーの末端基がカルボキシル基である場合、この末端基とフェニルアラニンのアミノ末端とを反応させてアミド結合を形成してもよい。分岐ポリマーの末端基がアミノ基である場合、フェニルアラニンのアミノ末端を、アミノ基とアミド結合又はウレタン結合を形成できる基(例えば4-ニトロフェニルカーボネート基又はカルボキシル基)で誘導体化してもよい。また、分岐ポリマーの末端がヒドロキシ基である場合、フェニルアラニンのアミノ末端を、ヒドロキシ基とエステル結合を形成できる基(例えばカルボキシル基)で誘導体化してもよい。フェニルアラニンのアミノ末端と分岐ポリマーの末端基とを反応させる場合、該フェニルアラニンのカルボキシル末端を予め公知の保護基で保護してもよい。 In one embodiment, a carrier for immune cell transfer may be obtained by reacting the amino terminal of phenylalanine with the terminal group of the branched polymer. In this case, the anionic terminal structure in the carrier consists of a phenylalanine residue directly bonded to the terminal group of the branched polymer, and the carboxyl group of the phenylalanine residue becomes the anionic group of the terminal structure. For example, when the terminal group of the branched polymer is a carboxyl group, this terminal group may be reacted with the amino terminal of phenylalanine to form an amide bond. When the terminal group of the branched polymer is an amino group, the amino terminal of phenylalanine may be derivatized with a group capable of forming an amide bond or a urethane bond with the amino group (for example, 4-nitrophenyl carbonate group or carboxyl group). When the terminal of the branched polymer is a hydroxy group, the amino terminal of phenylalanine may be derivatized with a group capable of forming an ester bond with the hydroxy group (for example, a carboxyl group). When the amino terminus of phenylalanine is reacted with the terminus of the branched polymer, the carboxyl terminus of the phenylalanine may be protected with a known protecting group in advance.
 さらなる実施形態の免疫細胞移行用担体では、分岐ポリマーの末端基とフェニルアラニン残基とが直接結合している場合、該フェニルアラニン残基に、アニオン性末端基を付与できる化合物がさらに結合していてもよい。例えば、分岐ポリマーの末端基と、フェニルアラニンのカルボキシル末端とを反応させた場合、得られた複合体分子の末端構造をアニオン性とするために、該複合体分子におけるフェニルアラニンのアミノ末端と、アニオン性末端基を付与できる化合物とを反応させること好ましい、そのような化合物としては、該化合物の一端にアミノ基と反応できる官能基を有し、他端にアニオン性基(例えばカルボキシル基、スルホン基、硫酸基など)を有する化合物及びその分子内縮合物が挙げられる。例えば、無水コハク酸、1,2-シクロヘキサンジカルボン酸無水物、無水フタル酸などのジカルボン酸の無水物が好ましい。あるいは、アニオン性末端基を付与できる化合物は、アミノ基と反応することにより開環してアニオン性末端基を形成する環状化合物であってもよい。そのような化合物としては、例えば、1,3-プロパンスルトンなどの環状スルホン酸エステルが挙げられる。 In the carrier for immune cell transfer of the further embodiment, when the terminal group of the branched polymer and the phenylalanine residue are directly bonded, even if a compound capable of imparting an anionic terminal group is further bonded to the phenylalanine residue. Good. For example, when the terminal group of the branched polymer is reacted with the carboxyl terminal of phenylalanine, the amino terminal of phenylalanine in the complex molecule is anionic in order to make the terminal structure of the obtained complex molecule anionic. It is preferable to react with a compound capable of imparting a terminal group. As such a compound, one end of the compound has a functional group capable of reacting with an amino group, and the other end has an anionic group (for example, a carboxyl group, a sulfone group, etc. Examples thereof include compounds having (sulfuric acid groups, etc.) and intramolecular condensates thereof. For example, succinic anhydride, 1,2-cyclohexanedicarboxylic acid anhydride, phthalic anhydride and other dicarboxylic acid anhydrides are preferred. Alternatively, the compound capable of imparting an anionic terminal group may be a cyclic compound that opens by reacting with an amino group to form an anionic terminal group. Such compounds include, for example, cyclic sulfonic acid esters such as 1,3-propane sultone.
 本実施形態の担体では、分岐ポリマーの末端基とフェニルアラニン残基とが、リンカーを介して結合してもよい。リンカーは、一端に分岐ポリマーの末端基と反応できる官能基を有し、他端にフェニルアラニン又はその誘導体と反応できる官能基を有する疎水性化合物から適宜選択できる。例えば、末端基がアミノ基又は水酸基である分岐ポリマーと、フェニルアラニンのアミノ基とを、リンカーとして上記のジカルボン酸の無水物を介して結合する。そのようなリンカーとしては、無水コハク酸、1,2-シクロヘキサンジカルボン酸無水物、無水フタル酸などが挙げられる。この場合の合成スキームを簡潔に述べると、まず、分岐ポリマーのアミノ基又は水酸基とジカルボン酸の無水物とを反応させて、末端基がカルボキシル基である分岐ポリマーを得る。そして、得られた分岐ポリマーのカルボキシル基と、カルボキシル末端を保護基で保護したフェニルアラニンのアミノ末端とを反応させて、フェニルアラニン残基を末端に結合した分岐ポリマーを得る。最後に、フェニルアラニン残基の保護基を除去して、本実施形態の担体を得ることができる。このような合成スキーム自体は公知であり、例えばTamaki M.ら, RSC Adv., 2018, vol.8, pp.28147-28151に記載されている。また、分岐ポリマーの末端基とフェニルアラニンのアミノ末端を結合できる架橋剤も用いることもできる。例えば、分岐ポリマーの末端基がアミノ基である場合、イソシアネート基又はイソチオシアネート基を2つもつ化合物を用いてもよい。分岐ポリマーの末端基がカルボキシル基又は4-ニトロフェニルカーボネート基である場合、アミノ基とカルボキシル基又はスクシンイミド基をもつ化合物(アミノ酸であってもよい)を用いてもよい。分岐ポリマーの末端基がメルカプト基である場合、マレイミド基とカルボキシル基又はスクシンイミド基をもつ化合物を用いてもよい。分岐ポリマーの末端基がマレイミド基である場合、メルカプト基とカルボキシル基又はスクシンイミド基をもつ化合物を用いてもよい。 In the carrier of the present embodiment, the terminal group of the branched polymer and the phenylalanine residue may be bonded via a linker. The linker can be appropriately selected from a hydrophobic compound having a functional group capable of reacting with the terminal group of the branched polymer at one end and a functional group capable of reacting with phenylalanine or a derivative thereof at the other end. For example, a branched polymer having an amino group or a hydroxyl group as a terminal group and an amino group of phenylalanine are bonded as a linker via the above-mentioned anhydride of dicarboxylic acid. Examples of such a linker include succinic anhydride, 1,2-cyclohexanedicarboxylic acid anhydride, phthalic anhydride and the like. To briefly describe the synthesis scheme in this case, first, the amino group or hydroxyl group of the branched polymer is reacted with the anhydride of the dicarboxylic acid to obtain a branched polymer having a carboxyl group as the terminal group. Then, the carboxyl group of the obtained branched polymer is reacted with the amino terminal of phenylalanine whose carboxyl terminal is protected by a protecting group to obtain a branched polymer having a phenylalanine residue bonded to the terminal. Finally, the protecting group for the phenylalanine residue can be removed to obtain the carrier of this embodiment. Such a synthetic scheme itself is known and is described, for example, in Tamaki M. et al., RSC Adv., 2018, vol.8, pp.28147-28151. Further, a cross-linking agent capable of binding the terminal group of the branched polymer and the amino terminal of phenylalanine can also be used. For example, when the terminal group of the branched polymer is an amino group, a compound having two isocyanate groups or isothiocyanate groups may be used. When the terminal group of the branched polymer is a carboxyl group or a 4-nitrophenyl carbonate group, a compound having an amino group and a carboxyl group or a succinimide group (which may be an amino acid) may be used. When the terminal group of the branched polymer is a mercapto group, a compound having a maleimide group and a carboxyl group or a succinimide group may be used. When the terminal group of the branched polymer is a maleimide group, a compound having a mercapto group and a carboxyl group or a succinimide group may be used.
 好ましい実施形態では、免疫細胞移行用担体のアニオン性の末端構造は、分岐ポリマーの末端基に結合したフェニルアラニン残基を含み、下記の式(I)で表される。 In a preferred embodiment, the anionic terminal structure of the carrier for immune cell transfer comprises a phenylalanine residue attached to the terminal group of the branched polymer and is represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000009
(式中、X1は、-NH-(C=O)-又は-O-(C=O)-であり、Y1は、-NH-(C=O)-又は-NH-であり、
 Rは、置換基を有していてもよい炭素数1~10のアルキレン基、又は、置換基を有していてもよい炭素数3~8のシクロアルキレン基、ヘテロシクロアルキレン基若しくはフェニレン基であり、
 Z1は、カルボキシル基、スルホン基、硫酸基又はそれらの塩である)
Figure JPOXMLDOC01-appb-C000009
(In the equation, X 1 is -NH- (C = O)-or -O- (C = O) -and Y 1 is -NH- (C = O)-or -NH-.
R is an alkylene group having 1 to 10 carbon atoms which may have a substituent, or a cycloalkylene group, a heterocycloalkylene group or a phenylene group having 3 to 8 carbon atoms which may have a substituent. Yes,
Z 1 is a carboxyl group, a sulfone group, a sulfate group or a salt thereof)
 式(I)で表される末端構造は、分岐ポリマーの末端基とフェニルアラニン残基とが直接結合し、該フェニルアラニン残基にアニオン性末端基を付与できる化合物がさらに結合したものに相当する。式(I)において、X1は、分岐ポリマーの末端基とフェニルアラニン残基との結合部位を示し、X1の左の結合手は分岐ポリマーと結合している。式(I)において、Y1、R及びZ1は、フェニルアラニン残基と結合した、アニオン性末端基を付与できる化合物に相当する。Y1は、フェニルアラニン残基の末端基と、アニオン性末端基を付与できる化合物との結合部位を示す。Z1は、アニオン性の末端構造の末端基である。Z1において、塩の種類は特に限定されないが、好ましくはアルカリ金属の塩である。 The terminal structure represented by the formula (I) corresponds to a compound in which the terminal group of the branched polymer and the phenylalanine residue are directly bonded and a compound capable of imparting an anionic terminal group to the phenylalanine residue is further bonded. In formula (I), X 1 indicates the binding site between the terminal group of the branched polymer and the phenylalanine residue, and the left binding site of X 1 is bound to the branched polymer. In formula (I), Y 1 , R and Z 1 correspond to compounds capable of imparting anionic end groups attached to phenylalanine residues. Y 1 indicates the binding site between the terminal group of the phenylalanine residue and the compound capable of imparting an anionic terminal group. Z 1 is the end group of the anionic end structure. In Z 1 , the type of salt is not particularly limited, but is preferably an alkali metal salt.
 Rが、炭素数1~10のアルキレン基であるとき、そのようなアルキレン基としては、例えばメチレン、エチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、ペンチレン、ネオペンチレン、ヘキシレン、ヘプチレン、オクチレン、2-エチルヘキシレン、ノニレン及びデシレンなどの基が挙げられる。それらの中でも、炭素数1~4のアルキレン基が好ましい。Rが、置換基を有するアルキレン基であるとき、上記の炭素数には、置換基の炭素数は含まれない。 When R is an alkylene group having 1 to 10 carbon atoms, such alkylene groups include, for example, methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, neopentylene, hexylene, heptylene, octylene and 2-ethyl. Groups such as hexylene, nonylene and decylene can be mentioned. Among them, an alkylene group having 1 to 4 carbon atoms is preferable. When R is an alkylene group having a substituent, the above carbon number does not include the carbon number of the substituent.
 Rが、シクロアルキレン基若しくはヘテロシクロアルキレン基であるとき、そのような基は、N、S、O及びPから選択される1つ以上のヘテロ原子を含んでいてもよい炭素数3~8の非芳香環であればよい。例えばシクロプロピレン、シクロブチレン、シクロペンチレン、シクロヘキシレン、シクロヘプチレン、シクロオクチレン、ピロリジニレン、ピペリジニレン、モルホリニレンなどの基が挙げられる。Rが、置換基を有するシクロアルキレン基、ヘテロシクロアルキレン基又はフェニレン基であるとき、上記の炭素数には、置換基の炭素数は含まれない。 When R is a cycloalkylene group or a heterocycloalkylene group, such groups may contain one or more heteroatoms selected from N, S, O and P and have 3 to 8 carbon atoms. It may be a non-aromatic ring. Examples thereof include groups such as cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cycloheptyrene, cyclooctylene, pyrrolidinylene, piperidinylene and morpholinylene. When R is a cycloalkylene group having a substituent, a heterocycloalkylene group or a phenylene group, the above carbon number does not include the carbon number of the substituent.
 Rにおける置換基としては、例えば、炭素数が1以上6以下、好ましくは炭素数が1以上3以下の直鎖状又は分岐鎖状の飽和脂肪族炭化水素基が挙げられる。 Examples of the substituent in R include a linear or branched saturated aliphatic hydrocarbon group having 1 or more and 6 or less carbon atoms, preferably 1 or more and 3 or less carbon atoms.
 さらなる実施形態では、免疫細胞移行用担体のアニオン性の末端構造は、分岐ポリマーの末端基に結合したフェニルアラニン残基を含み、下記の式(II)で表される。 In a further embodiment, the anionic end structure of the immune cell translocation carrier comprises a phenylalanine residue attached to the end group of the branched polymer and is represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000010
(式中、X2は、-NH-(C=O)-、-(C=O)-NH-、-O-(C=O)-、-(C=O)-O-、-O-(C=O)-NH-、-NH-(C=O)-O-、-NH-(C=O)-NH-、-NH-(C=S)-NH-又はマレイミドとチオールの反応で得られる構造であり、
 Rは、置換基を有していてもよい炭素数1~10のアルキレン基、又は、置換基を有していてもよい炭素数3~8のシクロアルキレン基、ヘテロシクロアルキレン基若しくはフェニレン基であり、
 Y2は、-(C=O)-NH-、-O-(C=O)-NH-、-NH-(C=O)-NH-、-NH-(C=S)-NH-であり、
 Z2は、カルボキシル基又はその塩である)
Figure JPOXMLDOC01-appb-C000010
(In the formula, X 2 is -NH- (C = O)-,-(C = O) -NH-, -O- (C = O)-,-(C = O) -O-, -O -(C = O) -NH-, -NH- (C = O) -O-, -NH- (C = O) -NH-, -NH- (C = S) -NH- or maleimide and thiol It is a structure obtained by the reaction,
R is an alkylene group having 1 to 10 carbon atoms which may have a substituent, or a cycloalkylene group, a heterocycloalkylene group or a phenylene group having 3 to 8 carbon atoms which may have a substituent. Yes,
Y 2 is-(C = O) -NH-, -O- (C = O) -NH-, -NH- (C = O) -NH-, -NH- (C = S) -NH- Yes,
Z 2 is a carboxyl group or a salt thereof)
 式(II)で表される末端構造は、分岐ポリマーの末端基とフェニルアラニン残基とがリンカーを介して結合し、該フェニルアラニン残基のカルボキシル基又はその塩がアニオン性末端基を形成するものに相当する。X2は、分岐ポリマーの末端基とリンカーとの結合部位を示し、X2の左の結合手は分岐ポリマーと結合している。式(II)において、Rは、分岐ポリマーの末端基とフェニルアラニン残基とを介在するリンカー部分に相当する。R及びRにおける置換基については上記のとおりである。式(II)において、Y2は、リンカーとフェニルアラニン残基のアミノ基との結合部位を示す。Z2は、アニオン性の末端構造の末端基である。 The terminal structure represented by the formula (II) is such that the terminal group of the branched polymer and the phenylalanine residue are bonded via a linker, and the carboxyl group of the phenylalanine residue or a salt thereof forms an anionic terminal group. Equivalent to. X 2 indicates the binding site between the end group of the branched polymer and the linker, and the left binding site of X 2 is bound to the branched polymer. In formula (II), R corresponds to the linker moiety intervening between the terminal group of the branched polymer and the phenylalanine residue. The substituents in R and R are as described above. In formula (II), Y 2 indicates the binding site between the linker and the amino group of the phenylalanine residue. Z 2 is the end group of the anionic end structure.
 さらなる実施形態では、免疫細胞移行用担体のアニオン性の末端構造は、分岐ポリマーの末端基に結合したフェニルアラニン残基を含み、下記の式(III)で表される。 In a further embodiment, the anionic terminal structure of the immune cell transfer carrier contains a phenylalanine residue attached to the terminal group of the branched polymer and is represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000011
(式中、Z3は、カルボキシル基又はその塩である)
Figure JPOXMLDOC01-appb-C000011
(In the formula, Z 3 is a carboxyl group or a salt thereof)
 式(III)で表される末端構造は、分岐ポリマーの末端基にフェニルアラニン残基のアミノ基が直接結合し、該フェニルアラニン残基のカルボキシル基又はその塩がアニオン性末端基を形成するものに相当する。式(III)において、最も左の結合手は分岐ポリマーと結合している。Z3は、アニオン性の末端構造の末端基である。 The terminal structure represented by the formula (III) corresponds to one in which the amino group of the phenylalanine residue is directly bonded to the terminal group of the branched polymer, and the carboxyl group of the phenylalanine residue or a salt thereof forms an anionic terminal group. To do. In formula (III), the leftmost bond is attached to the branched polymer. Z 3 is the end group of the anionic end structure.
 本実施形態では、上記の式(I)で表される末端構造としては、下記の式(1)~(4)で表される構造が特に好ましい。また、上記の式(II)で表される末端構造としては、下記の式(5)~(7)で表される構造が特に好ましい。上記の式(III)で表される末端構造としては、下記の式(8)で表される構造が特に好ましい。式(1)~(8)において、最も左の結合手は分岐ポリマーと結合している。式(1)~(8)において、X+は、水素イオン又はアルカリ金属イオンである。アルカリ金属イオンとしては、例えばナトリウムイオン、カリウムイオン、リチウムイオンなどが挙げられる。それらの中でもナトリウムイオンが好ましい。 In the present embodiment, as the terminal structure represented by the above formula (I), the structures represented by the following formulas (1) to (4) are particularly preferable. Further, as the terminal structure represented by the above formula (II), the structures represented by the following formulas (5) to (7) are particularly preferable. As the terminal structure represented by the above formula (III), the structure represented by the following formula (8) is particularly preferable. In formulas (1) to (8), the leftmost bond is bonded to the branched polymer. In formulas (1) to (8), X + is a hydrogen ion or an alkali metal ion. Examples of the alkali metal ion include sodium ion, potassium ion, lithium ion and the like. Among them, sodium ion is preferable.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 本実施形態の担体の粒子径は特に限定されないが、通常5nm以上20 nm以下であり、好ましくは5nm以上15 nm以下である。担体の粒子径は、動的光散乱(DLS)法に基づいて測定した値を、Marquardt法で解析して得た体積基準の粒径分布における最も小さい分布の平均粒径である。測定機器としては、ELSZ-DN2(大塚電子製)又はその同等品である。 The particle size of the carrier of the present embodiment is not particularly limited, but is usually 5 nm or more and 20 nm or less, preferably 5 nm or more and 15 nm or less. The particle size of the carrier is the average particle size of the smallest distribution in the volume-based particle size distribution obtained by analyzing the value measured by the dynamic light scattering (DLS) method by the Marquardt method. The measuring device is ELSZ-DN2 (manufactured by Otsuka Electronics Co., Ltd.) or its equivalent.
 さらなる実施形態では、免疫細胞移行用担体は、興味対象の物質をさらに含んでもよい。すなわち、本実施形態の担体は、興味対象の物質を担持した複合体分子を含む。この場合、興味対象の物質は、複合体分子における分岐ポリマーの末端基に連結されてもよいし、該分岐ポリマーの内部空間に内包されてもよいし、フェニルアラニン残基に連結されてもよい。複合体分子における分岐ポリマーの末端基又はフェニルアラニン残基に興味対象の物質を連結する場合、連結の様式は特に限定されない。連結は、例えば共有結合でもよいし、非共有結合でもよい。例えば、興味対象の物質を、分岐ポリマーの末端基又はフェニルアラニン残基に直接又は間接的に結合させてもよい。分岐ポリマーがデンドリマーである場合、興味対象の物質をデンドリマーの内部空間に内包する方法自体は公知であり、例えばKojima C.ら、Bioconjuge Chem 11: 910~7 (2000)などに記載されている。また、興味対象の物質を担持させた他のキャリア(例えばリポソーム、ミセル、高分子ミセルなど)に、本実施形態の担体を付与することによって、利用してもよい。例えば、興味対象の物質を担持させた他のキャリアと本実施形態の担体との混合物としてもよいし、他のキャリアの表面に本実施形態の担体を化学結合や物理結合を介して修飾してもよい。 In a further embodiment, the immune cell transfer carrier may further comprise a substance of interest. That is, the carrier of the present embodiment contains a complex molecule carrying a substance of interest. In this case, the substance of interest may be linked to the terminal group of the branched polymer in the complex molecule, may be encapsulated in the internal space of the branched polymer, or may be linked to a phenylalanine residue. When the substance of interest is linked to the terminal group or phenylalanine residue of the branched polymer in the complex molecule, the mode of linking is not particularly limited. The concatenation may be, for example, a covalent bond or a non-covalent bond. For example, the substance of interest may be attached directly or indirectly to the terminal group or phenylalanine residue of the branched polymer. When the branched polymer is a dendrimer, the method itself for encapsulating the substance of interest in the internal space of the dendrimer is known, and is described in, for example, Kojima C. et al., Bioconjuge Chem 11: 910-7 (2000). Further, it may be utilized by imparting the carrier of the present embodiment to another carrier (for example, liposome, micelle, polymer micelle, etc.) carrying the substance of interest. For example, it may be a mixture of another carrier carrying the substance of interest and the carrier of the present embodiment, or the carrier of the present embodiment may be modified on the surface of the other carrier via a chemical bond or a physical bond. May be good.
 興味対象の物質としては、例えば標識物質、核酸、タンパク質、ペプチドなどが挙げられる。標識物質としては、例えば、11C、13N、15O、18Fなどの放射性同位体を含むPET用化合物、111Inなどの放射性同位体を含むSPECT用化合物、インジゴカルミン、パテントブルーVなどの低分子有機色素、インドシアニングリーン、フルオレセイン、ローダミン、Alexa Fluor(商標)、HiLyte(商標)Fluorなどの蛍光色素、ガドリニウムキレート剤などの核磁気共鳴イメージング用造影剤などが挙げられる。核酸としては、所望のタンパク質をコードする遺伝子を組み込んだベクター、アンチセンスオリゴヌクレオチド、siRNA、shRNA、リボザイム、アプタマー、デコイ核酸などが挙げられる。タンパク質及びペプチドとしては、自己抗原と非自己抗原を含むペプチド及びタンパクなどが挙げられる。具体的には、がん特異的抗原(共通がん抗原、ネオアンチゲン)を標的としたがん予防ワクチンと患者個々に最適ながん免疫治療法への応用、自己免疫疾患を引き起こすアレルギー抗原を標的とした免疫寛容への応用などが挙げられる。 Examples of the substance of interest include labeling substances, nucleic acids, proteins, peptides and the like. Examples of labeling substances include PET compounds containing radioisotopes such as 11 C, 13 N, 15 O, and 18 F, SPECT compounds containing radioisotopes such as 111 In, indocyanine green, and Patent Blue V. Examples thereof include low molecular weight organic dyes, fluorescent dyes such as indocyanine green, fluorescein, rhodamine, Alexa Fluor (trademark) and HiLyte (trademark) Fluor, and contrast agents for nuclear magnetic resonance imaging such as gadolinium chelating agents. Examples of the nucleic acid include a vector incorporating a gene encoding a desired protein, an antisense oligonucleotide, siRNA, shRNA, a ribozyme, an aptamer, a decoy nucleic acid and the like. Examples of proteins and peptides include peptides and proteins containing self-antigens and non-self-antigens. Specifically, cancer preventive vaccines targeting cancer-specific antigens (common cancer antigens, neoantigens), application to optimal cancer immunotherapy for individual patients, and targeting allergic antigens that cause autoimmune diseases The application to immune tolerance can be mentioned.
 上記のとおり、本実施形態の担体は、免疫細胞、特にリンパ節内の免疫細胞内に移行することを特徴とする。免疫細胞の種類は特に限定されず、例えばT細胞、B細胞、樹状細胞、マクロファージなどが挙げられる。本実施形態の担体は、哺乳動物に投与することにより、リンパ節に到達してリンパ節内の免疫細胞内に移行することができる。また、本実施形態の担体は、エクスビボ又はインビトロで免疫細胞と接触することによって、該免疫細胞内に移行することができる。後述の実施例に示されるように、本実施形態の担体は、膜透過ではなく、細胞のエンドサイトーシスにより免疫細胞内へ移行すると考えられる。 As described above, the carrier of the present embodiment is characterized in that it migrates into immune cells, particularly immune cells in lymph nodes. The type of immune cell is not particularly limited, and examples thereof include T cells, B cells, dendritic cells, and macrophages. When the carrier of the present embodiment is administered to a mammal, it can reach the lymph node and migrate into the immune cells in the lymph node. In addition, the carrier of the present embodiment can be transferred into the immune cells by contacting the immune cells in Exvivo or in vitro. As shown in Examples described later, the carrier of this embodiment is considered to migrate into immune cells by cell endocytosis rather than by membrane permeation.
 後述の実施例に示されるように、本実施形態の担体は、T細胞への移行性が良好である。当該技術分野では、T細胞に移行することが可能な担体は少なく、本実施形態の担体は、興味対象の物質をT細胞に移送するのに好適に用いることができる。 As shown in Examples described later, the carrier of this embodiment has good transferability to T cells. In the art, there are few carriers capable of transferring to T cells, and the carrier of the present embodiment can be suitably used for transferring a substance of interest to T cells.
 後述の実施例に示されるように、本実施形態の担体は、酸性条件下では、免疫細胞、特にT細胞への移行性が向上する。酸性条件としては、免疫細胞の周囲の環境のpHが5以上7以下であることが挙げられる。例えば、インビトロ又はエクスビボの場合は、培地などの細胞と接触する液体のpHを酸性条件にしてもよい。インビボの場合は、炎症が生じている部位(例えば、がん部組織など)では、pHが酸性条件となることが知られている。ここで、Tamaki M.ら, RSC Adv., 2018, vol.8, pp.28147-28151に記載のように、第4世代デンドリマーの末端基に、エチレン基、シクロヘキシレン基又はフェニレン基を介してフェニルアラニン残基が結合して成る複合体分子は、酸性のpH条件下で相転移してより疎水性になることが知られている。酸性条件下での免疫細胞への移行性の向上には、このpHに応答して相転移する性質が関与している可能性が考えられる。 As shown in Examples described later, the carrier of this embodiment has improved transferability to immune cells, particularly T cells, under acidic conditions. As the acidic condition, the pH of the environment surrounding the immune cell is 5 or more and 7 or less. For example, in the case of in vitro or exvivo, the pH of the liquid in contact with cells such as a medium may be set to an acidic condition. In vivo, it is known that pH is an acidic condition at an inflamed site (eg, cancerous tissue). Here, as described in Tamaki M. et al., RSC Adv., 2018, vol.8, pp.28147-28151, the terminal group of the 4th generation dendrimer is via an ethylene group, a cyclohexylene group or a phenylene group. It is known that the complex molecule formed by binding phenylalanine residues undergoes a phase transition under acidic pH conditions to become more hydrophobic. It is possible that the property of phase transition in response to this pH is involved in the improvement of the transferability to immune cells under acidic conditions.
 本実施形態の担体をインビボで対象(例えば哺乳動物)に投与する場合、非経口投与が好ましく、注射による投与が特に好ましい。注射による投与は、皮内注射、皮下注射、静脈注射、動脈注射、筋肉注射、腹腔内注射のいずれであってもよいが、好ましくは皮内注射、皮下注射、より好ましくは皮内注射である。本実施形態の担体をインビトロ又はエクスビボで対象(例えば細胞)に投与する場合、培養液に本実施形態の担体を適量添加することにより、対象と担体とを接触させることが好ましい。 When the carrier of the present embodiment is administered to a subject (for example, a mammal) in vivo, parenteral administration is preferable, and administration by injection is particularly preferable. The administration by injection may be any of intradermal injection, subcutaneous injection, intravenous injection, arterial injection, intramuscular injection, and intraperitoneal injection, but is preferably intradermal injection, subcutaneous injection, and more preferably intradermal injection. .. When the carrier of the present embodiment is administered to a subject (for example, cells) in vitro or exvivo, it is preferable to bring the subject and the carrier into contact with each other by adding an appropriate amount of the carrier of the present embodiment to the culture solution.
 本発明の一実施形態は、医薬と、免疫細胞移行用担体とを含む医薬組成物である。医薬とは、有効成分又はその候補として用いられる物質をいう。好ましい実施形態では、医薬は、本実施形態の担体により担持され得る物質である。すなわち、本実施形態の医薬組成物においては、医薬は免疫細胞移行用担体に担持されていることが好ましい。医薬としては、例えば医薬化合物、タンパク質、ペプチド、核酸などが挙げられる。医薬化合物は、例えば、有効成分又はその候補として用いられる公知の化合物から選択できる。タンパク質、ペプチド及び核酸はそれぞれ、公知の抗体医薬、ペプチド医薬及び核酸医薬から選択できる。医薬組成物の形態としては、医薬と、本実施形態の担体とを含む注射剤が好ましい。該注射剤は、注射用精製水又は生理食塩水に本実施形態の担体を添加することにより調製できる。免疫細胞移行用担体の含有量は、注射剤100重量部に対して、例えば0.001~80重量部、好ましくは0.01~50重量部である。注射剤は、薬学的に許容される添加物をさらに含んでもよい。そのような添加物自体は公知であり、例えば保存剤、安定剤、pH調整剤、等張化剤、溶剤、溶解補助剤、無痛化剤などが挙げられる。 One embodiment of the present invention is a pharmaceutical composition containing a drug and a carrier for immune cell transfer. A drug is a substance used as an active ingredient or a candidate thereof. In a preferred embodiment, the drug is a substance that can be supported by the carrier of this embodiment. That is, in the pharmaceutical composition of the present embodiment, it is preferable that the pharmaceutical is supported on a carrier for immune cell transfer. Examples of the medicine include pharmaceutical compounds, proteins, peptides, nucleic acids and the like. The pharmaceutical compound can be selected from, for example, an active ingredient or a known compound used as a candidate thereof. The protein, peptide and nucleic acid can be selected from known antibody drugs, peptide drugs and nucleic acid drugs, respectively. As the form of the pharmaceutical composition, an injection containing the drug and the carrier of the present embodiment is preferable. The injection can be prepared by adding the carrier of the present embodiment to purified water for injection or physiological saline. The content of the carrier for immune cell transfer is, for example, 0.001 to 80 parts by weight, preferably 0.01 to 50 parts by weight, based on 100 parts by weight of the injection. The injection may further contain pharmaceutically acceptable additives. Such additives themselves are known and include, for example, preservatives, stabilizers, pH regulators, tonicity agents, solvents, solubilizers, soothing agents and the like.
 本発明の一実施形態は、上記の免疫細胞移行用担体を含む免疫細胞移行用試薬である。本実施形態の試薬は、例えば、興味対象の物質を免疫細胞に移行するときに有用である。本実施形態の試薬中の免疫細胞移行用担体に興味対象の物質を担持させ、これを免疫細胞に接触することにより、興味対象の物質を免疫細胞に移行することができる。本実施形態の試薬は、粉末の状態(例えば凍結乾燥した状態)にある免疫細胞移行用担体を含んでもよいし、適切な溶媒に分散された状態にある免疫細胞移行用担体を含んでもよい。本実施形態の試薬では、免疫細胞移行用担体は容器に収容されてもよい。また、本実施形態の試薬では、免疫細胞移行用担体を収容した容器は箱に梱包されてもよい。箱には、添付文書を同梱していてもよい。添付文書には、試薬の組成、免疫細胞移行用担体の構造、使用方法などが記載されていてもよい。 One embodiment of the present invention is an immune cell transfer reagent containing the above-mentioned immune cell transfer carrier. The reagents of this embodiment are useful, for example, when transferring a substance of interest to immune cells. By supporting the substance of interest on the carrier for transfer of immune cells in the reagent of the present embodiment and contacting the substance with the immune cells, the substance of interest can be transferred to the immune cells. The reagent of the present embodiment may contain an immune cell transfer carrier in a powder state (for example, a lyophilized state), or may include an immune cell transfer carrier in a state of being dispersed in a suitable solvent. In the reagent of the present embodiment, the carrier for immune cell transfer may be contained in a container. Further, in the reagent of the present embodiment, the container containing the carrier for immune cell transfer may be packed in a box. The box may include a package insert. The package insert may describe the composition of the reagent, the structure of the carrier for immune cell transfer, the method of use, and the like.
 本発明の一実施形態は、上記の免疫細胞移行用担体と、免疫細胞とをインビボ(ただし、ヒトを除く)、インビトロ又はエクスビボで接触することを含む、免疫細胞移行用担体を免疫細胞に移送する方法である。免疫細胞の詳細は、上記のとおりである。免疫細胞移行用担体と免疫細胞との接触方法は特に限定されないが、例えば、インビボの場合は、ヒトを除く動物に免疫細胞移行用担体を投与することにより、免疫細胞移行用担体と免疫細胞とを接触することができる。投与の詳細は上記のとおりである。インビトロの場合は、培地中の免疫細胞に免疫細胞移行用担体を添加することにより、免疫細胞移行用担体と免疫細胞とを接触することができる。エクスビボの場合は、免疫細胞を含む臓器(例えば脾臓、胸腺、リンパ節など)を動物から採取し、得られた臓器を、例えば、免疫細胞移行用担体を含む液体で灌流することにより、免疫細胞移行用担体と免疫細胞とを接触することができる。免疫細胞移行用担体が興味対象の物質を担持している場合、本実施形態の移送方法により、免疫細胞移行用担体を介して興味対象の物質をインビトロ又はエクスビボで免疫細胞に移送できる。 One embodiment of the present invention transfers an immune cell transfer carrier to an immune cell, comprising contacting the immune cell transfer carrier in vivo (excluding humans), in vitro or ex vivo with the immune cell transfer carrier described above. How to do it. Details of immune cells are as described above. The method of contact between the immune cell transfer carrier and the immune cell is not particularly limited. For example, in the case of in vivo, the immune cell transfer carrier and the immune cell can be obtained by administering the immune cell transfer carrier to an animal other than human. Can be contacted. The details of administration are as described above. In the case of in vitro, the immune cell transfer carrier and the immune cell can be brought into contact with each other by adding the immune cell transfer carrier to the immune cells in the medium. In the case of Exvivo, immune cells are collected by collecting organs containing immune cells (for example, spleen, thymus, lymph nodes, etc.) from animals and perfusing the obtained organs with a liquid containing, for example, a carrier for immune cell transfer. The transfer carrier can be contacted with immune cells. When the carrier for transfer of immune cells carries a substance of interest, the transfer method of the present embodiment allows the substance of interest to be transferred to immune cells in vitro or exvivo via the carrier for transfer of immune cells.
 本発明の一実施形態は、免疫細胞移行用担体の製造のための複合体分子の使用であって、前記複合体分子が、分岐ポリマーとフェニルアラニン残基とを含み、且つアニオン性の末端構造を有し、前記分岐ポリマーの末端基に前記フェニルアラニン残基が結合している、前記使用である。免疫細胞移行用担体及び複合体分子の詳細は、上記のとおりである。 One embodiment of the present invention is the use of a complex molecule for the production of a carrier for immune cell translocation, wherein the complex molecule comprises a branched polymer and a phenylalanine residue and has an anionic terminal structure. The use, wherein the phenylalanine residue is attached to the terminal group of the branched polymer. Details of the immune cell transfer carrier and complex molecule are as described above.
 以下に、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples.
製造例1: 免疫細胞移行用担体の調製
(1) カルボキシ末端デンドリマーの調製
 カルボキシ末端デンドリマーは、Tamaki M.ら, RSC Adv., 2018, vol.8, pp.28147-28151に記載の方法で調製した。具体的な手順は次のとおりであった。アミノ末端のG4 PAMAMデンドリマー(Sigma-Aldrich社)のメタノール溶液を減圧留去し、凍結乾燥を行った。デンドリマー(56 mg、3.9μmol)を125 mM NaHCO3緩衝液(5.5 mL)に溶解し、過剰量の無水コハク酸又はシス-1,2-シクロヘキサンジカルボン酸無水物(いずれも100当量)を添加した。各溶液を室温で一晩撹拌し、4N NaOH水溶液を用いてpHを8~10に調整した。カルボキシ末端デンドリマーを含む溶液を、透析膜(分子量カットオフ(MWCO):1,000)を用いて蒸留水中で透析して精製した。精製した溶液を凍結乾燥して、各カルボキシ末端デンドリマーの白色粉末を得た。コハク酸を末端に付加したデンドリマー(G4-Suc)の収量は95 mgであり、収率は111%であった。シクロヘキサンジカルボン酸を末端に付加したデンドリマー(G4-CHex)の収量は62 mgであり、収率は64%であった。G4-Suc及びG4-CHexの各溶液を、400 MHz JNM-LA 400 JNM-ECX(JEOL社製)を用いて室温で1H-NMRスペクトル測定した結果を、以下に示す。
Production Example 1: Preparation of carrier for immune cell transfer
(1) Preparation of carboxy-terminal dendrimer The carboxy-terminal dendrimer was prepared by the method described in Tamaki M. et al., RSC Adv., 2018, vol.8, pp.28147-28151. The specific procedure was as follows. A methanol solution of an amino-terminal G4 PAMAM dendrimer (Sigma-Aldrich) was distilled off under reduced pressure and freeze-dried. Dendrimer (56 mg, 3.9 μmol) was dissolved in 125 mM LVDS 3 buffer (5.5 mL) and an excess amount of succinic anhydride or cis-1,2-cyclohexanedicarboxylic acid anhydride (100 equivalents each) was added. .. Each solution was stirred at room temperature overnight and the pH was adjusted to 8-10 with an aqueous 4N NaOH solution. A solution containing a carboxy-terminated dendrimer was purified by dialysis in distilled water using a dialysis membrane (molecular weight cutoff (MWCO): 1,000). The purified solution was lyophilized to give a white powder of each carboxy-terminated dendrimer. The yield of dendrimer (G4-Suc) with succinic acid added to the end was 95 mg, and the yield was 111%. The yield of dendrimer (G4-CHex) with cyclohexanedicarboxylic acid added to the end was 62 mg, and the yield was 64%. The results of 1 H-NMR spectrum measurement of each solution of G4-Suc and G4-CHex at room temperature using 400 MHz JNM-LA 400 JNM-ECX (manufactured by JEOL) are shown below.
G4-Suc (NaOD含有D2O): 2.24-2.28 (br, PAMAMの内側及び末端の鎖及びコハク酸のメチレンのNCH2CH2CONHCH2CH2N), 2.46 (br, PAMAMの内側の鎖のNCH2CH2CONHCH2CH2N), 2.65 (br, PAMAMの内側及び末端の鎖のNCH2CH2CONHCH2CH2N)及び3.13 (br, PAMAMの内側及び末端の鎖のNCH2CH2CONHCH2CH2N、及びPAMAMの末端の鎖のNCH2CH2CONHCH2CH2N). G4-Suc (NaOD-containing D2O): 2.24-2.28 (br, NCH2C H2 CONHCH2CH2N in the inner and terminal chains of PAMAM and methylene succinate), 2.46 (br, NCH2CH2CONHCH2C H2 N in the inner chain of PAMAM), 2.65 ( br, NC H2 CH2 CH2CONHCH2CH2N in the inner and terminal strands of PAMAM) and 3.13 (br, NCH2CH2CONHC H2 CH2N in the inner and terminal strands of PAMAM, and NCH2CH2CONHCH2C H2 N in the terminal strand of PAMAM).
G4-CHex (NaOD含有D2O): 1.21-1.83 (m, シクロヘキサンジカルボン酸のメチレン), 2.26(br, PAMAMのNCH2CH2CONHCH2CH2N),2.41-2.55 (br, PAMAMの内側の鎖及びシクロヘキサンジカルボン酸のメチンのNCH2CH2CONHCH2CH2N), 2.66(br, PAMAMの内側及び末端の鎖のNCH2CH2CONHCH2CH2N)及び3.14 (br, PAMAMの内側及び末端の鎖のNCH2CH2CONHCH2CH2N、及びPAMAMの末端の鎖のNCH2CH2CONHCH2CH2N). G4-CHex (NaOD-containing D2O): 1.21-1.83 (m, methylene of cyclohexanedicarboxylic acid), 2.26 (br, NCH2C H2 CONHCH2CH2N of PAMAM), 2.41-2.55 (br, inner chain of PAMAM and methine of cyclohexanedicarboxylic acid) NCH2CH2CONHCH2C H2 N), 2.66 (br, NC H2 CH2CONHCH2CH2N of the inner and terminal chains of PAMAM) and 3.14 (br, NCH2CH2CONHC H2 CH2N of the inner and terminal chains of PAMAM, and NCH2CH2CONHCH2C H2 N of the terminal chains of PAMAM) ..
(2) フェニルアラニン残基を末端に付加したデンドリマーの作製
(2.1) G4-Sucへのフェニルアラニン残基の付加
 G4-Sucのカルボキシ末端と、カルボキシ末端を保護したフェニルアラニン残基のアミノ末端とを反応させた。具体的な手順は次のとおりであった。G4-Suc(83 mg、3.8μmol)をDMSO(5 mL)に分散させて一晩撹拌した。その後、G4-Sucの溶液に3-フェニル-L-アラニンベンジルエステル4-トルエンスルホネート(Phe-OBzl・Tos)(0.12 g、0.30 mmol)、1-[ビス(ジメチルアミノ)メチレン]-1H-ベンゾトリアゾール-3-オキシドヘキサフルオロホスフェート(HBTU)(0.11 g、0.28 mmol)及びトリエチルアミン(TEA)(41μL、0.29 mmol)を添加して室温で撹拌した。4日間撹拌した後、蒸留水(1mL)を添加し、得られた溶液を、透析膜(分子量カットオフ(MWCO):1,000)を用いてメタノール中で透析して精製した。精製した溶液からメタノールを減圧除去し、凍結乾燥して、Phe-OBzlが末端に付加されたG4-Suc(G4-Suc-Phe-OBzl)の粉末を得た。収量は88 mgであり、収率は66%であった。G4-Suc-Phe-OBzlの溶液を1H-NMRスペクトル測定した結果を、以下に示す。
(2) Preparation of dendrimer with phenylalanine residue added to the end
(2.1) Addition of phenylalanine residue to G4-Suc The carboxy terminus of G4-Suc was reacted with the amino terminus of the phenylalanine residue that protected the carboxy terminus. The specific procedure was as follows. G4-Suc (83 mg, 3.8 μmol) was dispersed in DMSO (5 mL) and stirred overnight. Then, in a solution of G4-Suc, 3-phenyl-L-alanine benzyl ester 4-toluene sulfonate (Phe-OBzl · Tos) (0.12 g, 0.30 mmol), 1- [bis (dimethylamino) methylene] -1H-benzo Triazole-3-oxide hexafluorophosphate (HBTU) (0.11 g, 0.28 mmol) and triethylamine (TEA) (41 μL, 0.29 mmol) were added and stirred at room temperature. After stirring for 4 days, distilled water (1 mL) was added, and the resulting solution was purified by dialysis in methanol using a dialysis membrane (molecular weight cutoff (MWCO): 1,000). Methanol was removed from the purified solution under reduced pressure and lyophilized to obtain a powder of G4-Suc (G4-Suc-Phe-OBzl) having Phe-OBzl added to the end. The yield was 88 mg and the yield was 66%. The results of 1 H-NMR spectrum measurement of the solution of G4-Suc-Phe-OBzl are shown below.
G4-Suc-Phe-OBzl (DCl含有MeOD):2.33 (s, トシルのCH3), 2.41-2.49 (コハク酸のメチレン), 2.70-3.04 (m, PAMAMの内側及び末端の鎖のNCH2CH2CONHCH2CH2N、及びPAMAMの内側の鎖のNCH2CH2CONHCH2CH2N、及びPheのHβ), 3.25-3.62 (br, PAMAMの内側及び末端の鎖のNCH2CH2CONHCH2CH2N、及びPAMAMの内側及び末端の鎖のNCH2CH2CONHCH2CH2N、及びPAMAMの末端の鎖のNCH2CH2CONHCH2CH2N), 4.62 (br, PheのHα), 5.02 (br, Pheのベンジル), 7.11-7.26 (m, Phe及びトシルのフェニル)、及び7.69 (m, トシルのフェニル). G4-Suc-Phe-OBzl (MeOD containing DCl): 2.33 (s, CH3 of tosyl), 2.41-2.49 (methylene succinate), 2.70-3.04 (m, NCH2C H2 CONHCH2CH2N of inner and terminal chains of PAMAM, And NCH2CH2CONHCH2C H2 N on the inner chain of PAMAM, and Hβ on Phe), 3.25-3.62 (br, NC H2 CH2CONHCH2CH2N on the inner and terminal chains of PAMAM, and NCH2CH2CONHC H2 CH2N on the inner and terminal chains of PAMAM, and PAMAM. NCH2CH2CONHCH2C H2 N), 4.62 (br, Phe Hα), 5.02 (br, Phe benzyl), 7.11-7.26 (m, Phe and Tosyl phenyl), and 7.69 (m, Tosyl phenyl). ..
(2.2) G4-CHexへのフェニルアラニン残基の付加
 上記(2.1)で述べたことと同様にして、G4- CHexのカルボキシ末端と、カルボキシ末端を保護したフェニルアラニン残基のアミノ末端とを反応させた。具体的には、DMSO(5mL)中で、G4- CHex (53 mg、2.11μmol)と、Phe-OBzl・Tos(0.12 g、0.30 mmol)、HBTU(0.09g、0.24 mmol)及びTEA(41μL、0.29 mmol)とを反応させて、Phe-OBzlが末端に付加されたG4-CHex(G4-CHex-Phe-OBzl)を得た。ここに蒸留水(1 mL)を添加し、得られた溶液を、透析膜(分子量カットオフ(MWCO):1,000)を用いてメタノール中で透析して精製した。精製した溶液からメタノールを減圧除去し、凍結乾燥してG4-CHex-Phe-OBzlの粉末を得た。収量は84 mgであり、収率は109%であった。G4-CHex-Phe-OBzlの溶液を1H-NMRスペクトル測定した結果を、以下に示す。
(2.2) Addition of phenylalanine residue to G4-CHex In the same manner as described in (2.1) above, the carboxy terminus of G4-CHex was reacted with the amino terminus of the phenylalanine residue that protected the carboxy terminus. .. Specifically, in DMSO (5 mL), G4-CHex (53 mg, 2.11 μmol), Phe-OBzl · Tos (0.12 g, 0.30 mmol), HBTU (0.09 g, 0.24 mmol) and TEA (41 μL, By reacting with 0.29 mmol), G4-CHex (G4-CHex-Phe-OBzl) to which Phe-OBzl was added to the end was obtained. Distilled water (1 mL) was added thereto, and the obtained solution was purified by dialysis in methanol using a dialysis membrane (molecular weight cutoff (MWCO): 1,000). Methanol was removed from the purified solution under reduced pressure and lyophilized to obtain a powder of G4-CHex-Phe-OBzl. The yield was 84 mg and the yield was 109%. The results of 1 H-NMR spectrum measurement of the solution of G4-CHex-Phe-OBzl are shown below.
G4-CHex-Phe-OBzl (DCl含有MeOD): 1.27-2.03 (m, CHexのメチレン), 2.34 (s, トシルのCH3), 2.50-3.12 (m, PAMAMの内側及び末端の鎖のNCH2CH2CONHCH2CH2N、及びPAMAMの内側の鎖のNCH2CH2CONHCH2CH2N、及びPheのHβ), 3.44-3.58 (br, PAMAMの内側及び末端の鎖のNCH2CH2CONHCH2CH2N、及びPAMAMの内側及び末端の鎖のNCH2CH2CONHCH2CH2N、及びPAMAMの末端の鎖のNCH2CH2CONHCH2CH2N、及びCHexのメチン), 4.56-4.65 (br, PheのHα), 5.00 (br, Pheのベンジル), 7.15-7.28 (m, Phe及びトシルのフェニル), and 7.67-7.69 (m, トシルのフェニル). G4-CHex-Phe-OBzl (MeOD containing DCl): 1.27-2.03 (m, methylene of CHex), 2.34 (s, CH3 of Tosyl), 2.50-3.12 (m, NCH2C H2 CONHCH2CH2N of inner and terminal chains of PAMAM and NCH2CH2CONHCH2C H2 N of the inner chain PAMAM and Hβ of Phe), 3.44-3.58 (br, NC H2 CH2CONHCH2CH2N strands of the inner and end of PAMAM, and the inner and end of the chain of PAMAM NCH2CH2CONHC H2 CH2N, and NCH2CH2CONHCH2C H2 N in the terminal chain of PAMAM, and methine in CHex), 4.56-4.65 (br, Phe Hα), 5.00 (br, Phe benzyl), 7.15-7.28 (m, Phe and Tosyl phenyl), and 7.67-7.69 (m, Tosyl phenyl).
(2.3) デンドリマー末端のフェニルアラニン残基の脱保護
 G4-Suc-Phe-OBzl(101 mg、2.9μmol)及びG4-CHex-Phe-OBzl(84 mg、2.2μmol)をそれぞれメタノール(4mL)に溶解し、4M NaOHメタノール溶液(500μL)を添加した。4℃で2時間撹拌した後、各デンドリマーの分散液を、透析膜(分子量カットオフ(MWCO):1,000)を用いて蒸留水中で透析して精製した。精製した溶液を凍結乾燥して、フェニルアラニン残基を末端に付加したデンドリマー(G4-Suc-Phe及びG4-CHex-Phe)の白色固体を得た。G4-Suc-Pheの収量は57 mgであり、収率は64%であった。G4-CHex-Pheの収量は55 mgであり、収率は77%であった。
(2.3) Deprotection of phenylalanine residue at the terminal of dendrimer G4-Suc-Phe-OBzl (101 mg, 2.9 μmol) and G4-CHex-Phe-OBzl (84 mg, 2.2 μmol) were dissolved in methanol (4 mL), respectively. , 4M NaOH methanol solution (500 μL) was added. After stirring at 4 ° C. for 2 hours, the dispersion of each dendrimer was purified by dialyzing in distilled water using a dialysis membrane (molecular weight cutoff (MWCO): 1,000). The purified solution was lyophilized to give white solids of dendrimers (G4-Suc-Phe and G4-CHex-Phe) with phenylalanine residues added to the ends. The yield of G4-Suc-Phe was 57 mg, and the yield was 64%. The yield of G4-CHex-Phe was 55 mg, and the yield was 77%.
 ここで、G4 PAMAMは64の末端基を有するデンドリマーである。G4-Suc-Phe及びG4-CHex-Pheの各溶液を1H-NMRスペクトル測定した結果、末端基への酸無水物(Suc又はCHex)の結合数、及び酸無水物へのフェニルアラニン残基の結合数は、表1に示すとおりであった。また、G4-Suc及びG4-CHex、G4-Suc-Phe及びG4-CHex-Pheの各デンドリマーが有する64の末端基のうちの1つの化学構造を表した模式図を図1に示す。図1において「den」は、G4 PAMAMを示す。 Here, G4 PAMAM is a dendrimer having 64 end groups. As a result of 1 H-NMR spectrum measurement of each solution of G4-Suc-Phe and G4-CHex-Phe, the number of bonds of acid anhydride (Suc or CHex) to the terminal group and the phenylalanine residue to the acid anhydride The number of bonds was as shown in Table 1. Further, FIG. 1 shows a schematic diagram showing the chemical structure of one of the 64 terminal groups of each of the G4-Suc and G4-CHex, G4-Suc-Phe and G4-CHex-Phe dendrimers. In FIG. 1, "den" indicates G4 PAMAM.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表1より、免疫細胞移行用担体として、フェニルアラニン残基を末端に付加したデンドリマーのG4-Suc-Phe及びG4-CHex-Pheが得られたことが示された。また、G4-Suc-Phe及びG4-CHex-Pheでは、それぞれリンカーとしてエチレン基及びシクロヘキシレン基を介して、デンドリマーの末端とフェニルアラニン残基とが結合したことが示された。 From Table 1, it was shown that G4-Suc-Phe and G4-CHex-Phe, which are dendrimers having a phenylalanine residue added to the end, were obtained as carriers for immune cell transfer. In addition, in G4-Suc-Phe and G4-CHex-Phe, it was shown that the terminal of the dendrimer and the phenylalanine residue were bound via an ethylene group and a cyclohexylene group as linkers, respectively.
実施例1: 蛍光色素を連結した免疫細胞移行用担体のイメージング
(1) 蛍光色素を連結した免疫細胞移行用担体の調製
(1.1) G5-CHex-Phe及びG5-Sucの調製
 G4 PAMAMデンドリマーに替えて、G5 PAMAMデンドリマー(Sigma-Aldrich社)を用いたこと以外は上記の製造例と同様にして、コハク酸を末端に付加したデンドリマー(G5-Suc)、及びシクロヘキシレン基をリンカーとしてフェニルアラニン残基を末端に付加したデンドリマー(G5-CHex-Phe)を調製した。
Example 1: Imaging of a carrier for immune cell transfer to which a fluorescent dye is linked
(1) Preparation of carrier for immune cell transfer to which a fluorescent dye is linked
(1.1) Preparation of G5-CHex-Phe and G5-Suc In the same manner as in the above production example, succinic acid is added to the end except that G5 PAMAM dendrimer (Sigma-Aldrich) is used instead of G4 PAMAM dendrimer. An added dendrimer (G5-Suc) and a dendrimer (G5-CHex-Phe) having a phenylalanine residue added to the end using a cyclohexylene group as a linker were prepared.
(1.2) G5-CHex-Phe及びG5-Sucへのアミノ基の付与
 G5-CHex-Phe(25.34 mg, 0.376μmol)、N-(tert-ブトキシカルボニル)-1,2-ジアミノエタン(Boc-エチレンジアミン)(東京化成工業株式会社、0.3μL、1.88μmol)及び4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(Sigma-Aldrich社、1.23 mg、3.37μmol)を純水(2.5 mL)に溶解し、室温で一晩撹拌して反応させた。反応液を限外ろ過(MWCO:3000、10℃、7500 g、125 mM NaHCO3水溶液)で精製した。得られた溶液を凍結乾燥して、白色粉末(G5-CHex-Phe-Boc)を得た。収量は23.42 mgで、収率は90%であった。G5-CHex-Phe-Boc(21.03 mg、0.305μmol)をトリフルオロ酢酸(TFA)(1.2 mL)に溶解し、4℃で一晩攪拌して、Boc基を除去した。その後、溶媒を減圧留去し、純水を加えて減圧留去を複数回行って生成物を洗浄した。生成物を一晩真空乾燥した後、さらに凍結乾燥して、アミノ基を末端に付与したG5-CHex-Pheの白色結晶を得た。収量は34.48 mgで、収率は166%であった。G5-Sucについても上記と同様にして、アミノ基を末端に付与したG5-Sucを得た。
(1.2) Addition of amino groups to G5-CHex-Phe and G5-Suc G5-CHex-Phe (25.34 mg, 0.376 μmol), N- (tert-butoxycarbonyl) -1,2-diaminoethane (Boc-ethylenediamine) ) (Tokyo Kasei Kogyo Co., Ltd., 0.3 μL, 1.88 μmol) and 4- (4,6-dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium chloride (DMT-MM) ( Sigma-Aldrich, 1.23 mg, 3.37 μmol) was dissolved in pure water (2.5 mL) and reacted by stirring overnight at room temperature. The reaction mixture was purified by ultrafiltration (MWCO: 3000, 10 ° C., 7500 g, 125 mM LVDS 3 aqueous solution). The obtained solution was lyophilized to give a white powder (G5-CHex-Phe-Boc). The yield was 23.42 mg and the yield was 90%. G5-CHex-Phe-Boc (21.03 mg, 0.305 μmol) was dissolved in trifluoroacetic acid (TFA) (1.2 mL) and stirred at 4 ° C. overnight to remove the Boc group. Then, the solvent was distilled off under reduced pressure, pure water was added, and the distillation under reduced pressure was carried out a plurality of times to wash the product. The product was vacuum dried overnight and then lyophilized to give white crystals of G5-CHex-Phe end-added with an amino group. The yield was 34.48 mg and the yield was 166%. As for G5-Suc, G5-Suc having an amino group added to the terminal was obtained in the same manner as above.
(1.3) G5-CHex-Phe及びG5-Sucへの蛍光色素の結合
 アミノ基を末端に付与したG5-CHex-Phe(20 mg、0.29μmol)を125 mM NaHCO3水溶液(1mL、pH 8.3)に溶解した。ここに、デンドリマーに対して4当量の緑色蛍光色素HiLyte(商標) Fluor 488 acid SE(Anaspec社、0.41 mg、0.587μmol)のDMSO溶液(1mL)を加え、遮光した状態で室温にて24時間撹拌した。その後、限外濾過(MWCO:3000、4℃、7500 g、125 mM NaHCO3水溶液)で精製した。得られた溶液を凍結乾燥して、蛍光色素を末端に連結したG5-CHex-Pheの結晶を得た。収量は9.24 mg、収率は45%であった。アミノ基を末端に付与したG5-Sucについても上記と同様にして、蛍光色素を末端に連結したG5-Sucを得た。
(1.3) Binding of Fluorescent Dye to G5-CHex-Phe and G5-Suc G5-CHex-Phe (20 mg, 0.29 μmol) with an amino group added to the end was added to 125 mM acrylamide 3 aqueous solution (1 mL, pH 8.3). Dissolved. To this, add 4 equivalents of DMSO solution (1 mL) of green fluorescent dye HiLyte ™ Fluor 488 acid SE (Anaspec, 0.41 mg, 0.587 μmol) to the dendrimer, and stir at room temperature for 24 hours in a light-shielded state. did. Then, it was purified by ultrafiltration (MWCO: 3000, 4 ° C., 7500 g, 125 mM LVDS 3 aqueous solution). The obtained solution was freeze-dried to obtain crystals of G5-CHex-Phe having a fluorescent dye linked to the end. The yield was 9.24 mg and the yield was 45%. As for G5-Suc having an amino group added to the terminal, G5-Suc having a fluorescent dye linked to the terminal was obtained in the same manner as described above.
(1.4) NMR測定及び紫外可視吸光(UV-vis)測定
 蛍光色素を連結した各デンドリマー(約4mg)をD2O(30μL)及びNaOD(20μL)に溶解し、400 MHz JNM-LA 400 JNM-ECX(JEOL社製)を用いて室温で化合物の1H NMR及び31P NMR測定を行った。デンドリマー1分子に対する蛍光色素の結合数を、V-630紫外可視分光光度計(JASCO社製)を用いて同定した。蛍光色素を連結した各デンドリマーの水溶液(1mL)を測定セルに取り、吸収スペクトル(350-650 nm、25℃)を測定した。ここで、G5 PAMAMは128の末端基を有するデンドリマーである。NMR測定の結果より、G5-CHex-Pheでは、128の末端基のうち126の末端基にCHexが結合し、そのうちの111のCHex結合末端基にさらにPheが結合していた。また、G5-Sucでは、128の末端基のうち128の末端基にSucが結合していた。UV-vis測定の結果より、1分子のG5-CHex-Pheには2分子の蛍光色素が結合しており、1分子のG5-Sucには、1分子又は3分子の蛍光色素が結合していた。以下、2分子の蛍光色素を末端に連結したG5-CHex-Pheを「G5-CHex-Phe(dye2)」と呼び、1分子及び3分子の蛍光色素を末端に連結したG5-Sucをそれぞれ「G5-Suc(dye1)」及び「G5-Suc(dye3)」と呼ぶ。
(1.4) NMR measurement and ultraviolet-visible absorption (UV-vis) measurement Each dendrimer (about 4 mg) linked with a fluorescent dye was dissolved in D 2 O (30 μL) and NaOD (20 μL), and 400 MHz JNM-LA 400 JNM- 1 H NMR and 31 P NMR measurements of the compound were performed at room temperature using ECX (manufactured by JEOL Ltd.). The number of fluorescent dyes bound to one molecule of dendrimer was identified using a V-630 ultraviolet-visible spectrophotometer (manufactured by JASCO). An aqueous solution (1 mL) of each dendrimer concatenated with a fluorescent dye was taken in a measurement cell, and the absorption spectrum (350-650 nm, 25 ° C.) was measured. Here, G5 PAMAM is a dendrimer having 128 end groups. From the results of NMR measurement, in G5-CHex-Phe, CHex was bound to 126 end groups out of 128 end groups, and Phe was further bound to 111 of these end groups. In G5-Suc, Suc was bound to 128 of the 128 end groups. From the results of UV-vis measurement, two molecules of fluorescent dye are bound to one molecule of G5-CHex-Phe, and one or three molecules of fluorescent dye are bound to one molecule of G5-Suc. It was. Hereinafter, G5-CHex-Phe in which two molecules of fluorescent dye are linked to the end is referred to as "G5-CHex-Phe (dye2)", and G5-Suc in which one molecule and three molecules of fluorescent dye are linked to the terminal is referred to as "G5-Suc", respectively. They are called "G5-Suc (dye1)" and "G5-Suc (dye3)".
(2) 蛍光色素を連結した免疫細胞移行用担体のイメージング
(2.1) 動物
 全ての動物実験は、BALB/cCrSlcマウス(8~10週齢、メス、18~21 g、日本エスエルシー株式会社)を用いて、動物実験に関する大学の規定を遵守して行った。
(2) Imaging of a carrier for immune cell transfer to which a fluorescent dye is linked
(2.1) Animals All animal experiments were conducted using BALB / cCrSlc mice (8-10 weeks old, female, 18-21 g, Nippon SLC Co., Ltd.) in compliance with the university regulations regarding animal experiments. ..
(2.2) リンパ節内の免疫細胞への移行
 G5-CHex-Phe(dye2)、G5-Suc(dye1)又はG5-Suc(dye3)を、色素濃度が10 nmol/100μLとなるように生理食塩水に添加して、各デンドリマーの分散液を調製した。マウスの両手両足の甲に各デンドリマーの分散液(手に20μL、足に30μL)を皮内投与した。投与後、即座に投与部位を30秒間マッサージした。3時間後及び24時間後にマウスを安楽死させ、腋窩リンパ節及び膝下リンパ節を採取した。対照として、デンドリマーを投与していないマウスから同様にしてリンパ節を採取した。採取したリンパ節を、氷冷下で1mLの無血清RPMIで満たした24ウェルプレートに浸した。ウェル内のRPMIを除去し、リンパ節をハサミで分断して、1mg/mLコラゲナーゼ溶液(1mL)を加えて37℃で30分間静置した。そして、リンパ節組織をセルストレーナ上ですりつぶして、細胞を得た。細胞を含む液を遠心分離(4000 rpm、5分)して上澄みを除去し、細胞に無血清RPMI(5mL)を加えて分散させた。細胞を含む液を遠心分離(4000 rpm、5分)して上澄みを除去し、ステインバッファー(1%FBS、0.09%NaN3、2mM EDTA及びPBS)(0.5 mL)を加えて細胞懸濁液を得た。細胞懸濁液に、細胞数が2×107 cells/mLとなるようにステインバッファーを添加し、1.5 mLチューブに50μLずつ分取した。細胞懸濁液を遠心分離(9200 rpm、5分)して上澄みを除去した。ここに、黄色蛍光色素のフィコエリスリン(PE)で標識した抗CD3抗体、抗CD45R抗体、抗CD11c抗体及び抗F4/80抗体の溶液(各50μL)を添加し、氷冷下で30分間、暗所に静置した。ここで、CD3、CD45R、CD11c及びF4/80は、それぞれT細胞、B細胞、樹状細胞及びマクロファージを検出するための分子マーカーである。比較のため、いずれの標識抗体も添加しなかった細胞も用意した。その後、ステインバッファー(100μL)を加え、遠心分離(9200 rpm、5分、4℃)して上澄みを除去して、細胞を洗浄した。各標識抗体と反応させた細胞にステインバッファー(1mL)を添加して、フローサイトメトリ(FCM)解析用検体を得た。各検体をBD FACS(商標) Calibur(BD Biosciences社製)を用いて解析した。各検体における10,000 cellsの解析結果に基づいて、縦軸に細胞数を取り、横軸に緑色蛍光(530 nm)の強度を取った分布図(図2A参照)、及び、縦軸に黄色蛍光(585 nm)の強度を取り、横軸に緑色蛍光(530 nm)の強度を取ったスキャッタグラム(図2B参照)を作成した。解析では、死細胞及び不純物を除去するため、前方散乱及び側方散乱の測定による細胞の大きさ及び形状に関する分布図から、リンパ節の生細胞のみを測定するゲートを決定した。
(2.2) Translocation to immune cells in lymph nodes G5-CHex-Phe (dye2), G5-Suc (dye1) or G5-Suc (dye3) in saline so that the pigment concentration is 10 nmol / 100 μL. To prepare a dispersion of each dendrimer. A dispersion of each dendrimer (20 μL in the hand and 30 μL in the foot) was intradermally administered to the insteps of both hands and feet of the mice. Immediately after administration, the administration site was massaged for 30 seconds. Mice were euthanized after 3 and 24 hours and axillary lymph nodes and below-knee lymph nodes were collected. As a control, lymph nodes were collected from mice not receiving dendrimers in the same manner. The collected lymph nodes were immersed in a 24-well plate filled with 1 mL serum-free RPMI under ice-cooling. The RPMI in the well was removed, the lymph nodes were separated with scissors, 1 mg / mL collagenase solution (1 mL) was added, and the mixture was allowed to stand at 37 ° C. for 30 minutes. Then, the lymph node tissue was ground on a cell strainer to obtain cells. The cell-containing solution was centrifuged (4000 rpm, 5 minutes) to remove the supernatant, and the cells were dispersed by adding serum-free RPMI (5 mL). Centrifuge the cell-containing solution (4000 rpm, 5 minutes) to remove the supernatant , add stain buffer (1% FBS, 0.09% NaN 3 , 2 mM EDTA and PBS) (0.5 mL) to make a cell suspension. Obtained. Stain buffer was added to the cell suspension so that the number of cells was 2 × 10 7 cells / mL, and 50 μL was dispensed into a 1.5 mL tube. The cell suspension was centrifuged (9200 rpm, 5 minutes) to remove the supernatant. A solution of anti-CD3 antibody, anti-CD45R antibody, anti-CD11c antibody and anti-F4 / 80 antibody (50 μL each) labeled with the yellow fluorescent dye phycoerythrin (PE) was added thereto, and the mixture was cooled on ice for 30 minutes. It was left in the dark. Here, CD3, CD45R, CD11c and F4 / 80 are molecular markers for detecting T cells, B cells, dendritic cells and macrophages, respectively. For comparison, cells to which none of the labeled antibodies were added were also prepared. Then, stain buffer (100 μL) was added, and the cells were washed by centrifugation (9200 rpm, 5 minutes, 4 ° C.) to remove the supernatant. Stain buffer (1 mL) was added to the cells reacted with each labeled antibody to obtain a sample for flow cytometry (FCM) analysis. Each sample was analyzed using BD FACS ™ Calibur (manufactured by BD Biosciences). Based on the analysis results of 10,000 cells in each sample, the vertical axis shows the number of cells, the horizontal axis shows the intensity of green fluorescence (530 nm) (see FIG. 2A), and the vertical axis shows yellow fluorescence (see FIG. 2A). A scattergram (see FIG. 2B) was prepared with an intensity of 585 nm) and a green fluorescence (530 nm) intensity on the horizontal axis. In the analysis, in order to remove dead cells and impurities, a gate for measuring only live lymph node cells was determined from the distribution map of cell size and shape measured by forward scattering and side scattering.
 図2Aより、G5-Suc(dye1)又はG5-Suc(dye3)は、デンドリマーを投与していない対照(Control)と同様の分布を示しており、リンパ節内の細胞にはほとんど移行しないことが示唆された。これに対して、G5-CHex-Phe(dye2)は、対照に比べて、緑色蛍光強度が高値を示す細胞が多く検出された。よって、G5-CHex-Phe(dye2)は、リンパ節内の細胞に移行したことが示唆された。 From FIG. 2A, G5-Suc (dye1) or G5-Suc (dye3) shows the same distribution as the control without dendrimer administration, and it can hardly be transferred to the cells in the lymph node. It was suggested. On the other hand, in G5-CHex-Phe (dye2), many cells showing a high green fluorescence intensity were detected as compared with the control. Therefore, it was suggested that G5-CHex-Phe (dye2) was transferred to the cells in the lymph nodes.
 図2Bの対照のスキャッタグラムに示されるように、採取したリンパ節内の免疫細胞は、T細胞及びB細胞がほとんどを占めており、樹状細胞及びマクロファージは比較的少なかった。G5-Suc(dye3)のPE標識抗体を添加していない(No staining)のスキャッタグラムに示されるように、緑色蛍光強度が高値を示した細胞が少なかったことから、G5-Suc(dye3)はリンパ節内の細胞にはほとんど移行しないことが示された。これは図2Aとも一致する。また、G5-Suc(dye3)について、各PE標識抗体を添加したスキャッタグラムに示されるように、緑色蛍光強度及び黄色蛍光強度の両方が高値を示した免疫細胞は少なかった。このことから、G5-Suc(dye3)がT細胞、B細胞、樹状細胞及びマクロファージのいずれにもあまり取り込まれないことが示唆された。一方、G5-CHex-Phe(dye2)について、各PE標識抗体を添加したスキャッタグラムでは、G5-Suc(dye3)に比べて、緑色蛍光強度及び黄色蛍光強度の両方が高値を示した免疫細胞が多く検出された。図2Bに基づいて、黄色蛍光強度が高値を示した免疫細胞(PE標識抗体で検出された免疫細胞)における、緑色蛍光強度が高値を示した免疫細胞(免疫細胞移行用担体を取り込んだ細胞)の割合を示すグラフ(図3)を作成した。図3において「T」はT細胞を表し、「B」はB細胞を表し、「DC」は樹状細胞を表し、「MΦ」はマクロファージを表す。図3に示されるように、G5-CHex-Phe(dye2)は、T細胞、B細胞、樹状細胞及びマクロファージのいずれにも良好に移行した。 As shown in the control scattergram of FIG. 2B, most of the immune cells in the collected lymph nodes were T cells and B cells, and there were relatively few dendritic cells and macrophages. G5-Suc (dye3) was used because few cells showed high green fluorescence intensity, as shown in the scattergram of G5-Suc (dye3) without PE-labeled antibody (No staining). It has been shown that it hardly migrates to cells in the lymph nodes. This is also consistent with FIG. 2A. In addition, for G5-Suc (dye3), few immune cells showed high values in both green fluorescence intensity and yellow fluorescence intensity, as shown in the scattergram to which each PE-labeled antibody was added. This suggests that G5-Suc (dye3) is not well taken up by T cells, B cells, dendritic cells and macrophages. On the other hand, for G5-CHex-Phe (dye2), in the scattergram to which each PE-labeled antibody was added, immune cells showing higher values in both green fluorescence intensity and yellow fluorescence intensity than G5-Suc (dye3). Many were detected. Based on FIG. 2B, among immune cells showing high yellow fluorescence intensity (immune cells detected with PE-labeled antibody), immune cells showing high green fluorescence intensity (cells incorporating a carrier for transfer to immune cells). A graph (Fig. 3) showing the ratio of In FIG. 3, "T" represents a T cell, "B" represents a B cell, "DC" represents a dendritic cell, and "MΦ" represents a macrophage. As shown in FIG. 3, G5-CHex-Phe (dye2) successfully translocated to all T cells, B cells, dendritic cells and macrophages.
(2.3) インビボ蛍光イメージング
 G5-CHex-Phe(dye2)又はG5-Suc(dye3)を、色素濃度が10 nmol/100μLとなるように生理食塩水に添加して、デンドリマーの分散液を調製した。マウスの足に各デンドリマーの分散液(30μL)を投与した。投与後、即座に投与部位を30秒間マッサージした。投与から4時間後及び24時間後にマウスを安楽死させ、表皮を剥いだ。手足を固定し、蛍光顕微鏡FluoVivo(INDEC Biosystems社製)を用いてインビボ蛍光イメージングを行った。結果を図4に示す。
(2.3) In vivo fluorescence imaging G5-CHex-Phe (dye2) or G5-Suc (dye3) was added to physiological saline so that the dye concentration was 10 nmol / 100 μL to prepare a dispersion of dendrimer. A dispersion of each dendrimer (30 μL) was administered to the paws of the mice. Immediately after administration, the administration site was massaged for 30 seconds. Mice were euthanized and epidermis stripped 4 and 24 hours after dosing. The limbs were fixed and in vivo fluorescence imaging was performed using a fluorescence microscope FluoVivo (manufactured by INDEC Biosystems). The results are shown in FIG.
 図4において、楕円で囲んだ箇所は各デンドリマーの投与部位を示し、矢印が示す部位はリンパ節を示し、アローヘッドが示す部位はリンパ管を示す。G5-CHex-Phe(dye2)及びG5-Suc(dye3)の投与から4時間後のマウスでは、リンパ節が検出できた。また、G5-CHex-Phe(dye2)の投与から4時間後のマウスでは、1次リンパ節と2次リンパ節とをつなぐリンパ管も確認できた。しかし、投与から24時間後は、G5-Suc(dye3)を投与されたマウスではリンパ節を検出できなかった。一方、G5-CHex-Phe(dye2)を投与されたマウスではリンパ節を検出できた。ここで、図4に示す画像はいずれも同じ露光時間で撮像されたが、G5-CHex-Phe(dye2)は、G5-Suc(dye3)に比べて、明らかに強い蛍光を発していることがわかる。このことから、G5-CHex-Phe(dye2)のリンパ節の集積量は、G5-Suc(dye3)よりも多いことが示唆された。 In FIG. 4, the part surrounded by an ellipse indicates the administration site of each dendrimer, the part indicated by the arrow indicates the lymph node, and the part indicated by the arrowhead indicates the lymphatic vessel. Lymph nodes could be detected in mice 4 hours after administration of G5-CHex-Phe (dye2) and G5-Suc (dye3). In addition, in mice 4 hours after administration of G5-CHex-Phe (dye2), lymphatic vessels connecting the primary and secondary lymph nodes could be confirmed. However, 24 hours after administration, lymph nodes could not be detected in mice administered with G5-Suc (dye3). On the other hand, lymph nodes could be detected in mice treated with G5-CHex-Phe (dye2). Here, all the images shown in FIG. 4 were taken at the same exposure time, but G5-CHex-Phe (dye2) clearly emitted stronger fluorescence than G5-Suc (dye3). Understand. This suggests that the amount of lymph node accumulation in G5-CHex-Phe (dye2) is higher than that in G5-Suc (dye3).
実施例2: 放射性物質を連結した免疫細胞移行用担体の体内動態
(1) 放射性物質を連結した免疫細胞移行用担体の調製
(1.1) キレート剤を連結した免疫細胞移行用担体の調製
 実施例2では、実施例1で調製した、アミノ基を末端に付与したG5-Suc及びG5-CHex-Pheを用いた。アミノ基を末端に付与したG5-CHex-Phe(12.16 mg、0.212μmol)を125 mM NaHCO3水溶液(900μL、pH 8.3)に溶解した。ここに、デンドリマーに対して7当量のキレート剤p-SCN-Bn-DTPA(0.967 mg、1.49μmol)の125 mM NaHCO3水溶液(900μL)を加え、37℃で24時間撹拌した。その後、限外濾過(MWCO:3000、4℃、7500 g、125 mM NaHCO3水溶液)で精製した。得られた溶液を凍結乾燥して、蛍光色素を末端に連結したG5-CHex-Pheの結晶を得た。収量は5.27 mgで、収率は35%であった。アミノ基を末端に付与したG5-Sucについても上記と同様にして、キレート剤を末端に連結したG5-Sucを得た。実施例1と同様にして、放射性物質を連結した各デンドリマーをUV-vis測定して、デンドリマー1分子に対するキレート剤の結合数を、V-630紫外可視分光光度計(JASCO社製)を用いて同定した。UV-vis測定の結果より、1分子のG5-CHex-Phe及びG5-Sucのいずれにも、2分子のキレート剤が結合していた。
Example 2: The pharmacokinetics of a carrier for immune cell transfer to which a radioactive substance is linked
(1) Preparation of carrier for immune cell transfer to which radioactive substances are linked
(1.1) Preparation of Carrier for Immune Cell Translocation Linked with Chelating Agent In Example 2, G5-Suc and G5-CHex-Phe prepared in Example 1 having an amino group added to the end were used. G5-CHex-Phe (12.16 mg, 0.212 μmol) end-added with an amino group was dissolved in a 125 mM acrylamide 3 aqueous solution (900 μL, pH 8.3). To this, 7 equivalents of 7 equivalents of the chelating agent p-SCN-Bn-DTPA (0.967 mg, 1.49 μmol) in 125 mM LVDS 3 aqueous solution (900 μL) was added to the dendrimer, and the mixture was stirred at 37 ° C. for 24 hours. Then, it was purified by ultrafiltration (MWCO: 3000, 4 ° C., 7500 g, 125 mM LVDS 3 aqueous solution). The obtained solution was freeze-dried to obtain crystals of G5-CHex-Phe having a fluorescent dye linked to the end. The yield was 5.27 mg and the yield was 35%. As for G5-Suc having an amino group added to the terminal, G5-Suc having a chelating agent linked to the terminal was obtained in the same manner as described above. In the same manner as in Example 1, each dendrimer to which the radioactive substance was linked was measured by UV-vis, and the number of bonds of the chelating agent to one molecule of the dendrimer was measured using a V-630 ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation). Identified. From the results of UV-vis measurement, two molecules of chelating agent were bound to both one molecule of G5-CHex-Phe and G5-Suc.
(1.2) キレート剤と放射性物質との会合
 アミノ基を末端に付与したG5-CHex-Phe(20 nmol)を0.3 M酢酸アンモニウム水溶液(200μL)に溶解した。ここに、111InCl3(200μL、~0.18 mCi)を加え、室温で1時間撹拌した。その後、PD-10カラム(PBS)で精製し、限外濾過(MWCO:3000)した。得られた溶液を、放射性物質の濃度が10μCi/100μLとなるように生理食塩水で希釈して、放射性物質(111In)を末端に連結したG5-CHex-Pheの溶液を得た。アミノ基を末端に付与したG5-Sucについても上記と同様にして、放射性物質を末端に連結したG5-Sucを得た。
(1.2) Association of chelating agent and radioactive substance G5-CHex-Phe (20 nmol) imparted with an amino group at the end was dissolved in a 0.3 M aqueous ammonium acetate solution (200 μL). 111 InCl 3 (200 μL, ~ 0.18 mCi) was added thereto, and the mixture was stirred at room temperature for 1 hour. Then, it was purified by PD-10 column (PBS) and ultrafiltered (MWCO: 3000). The obtained solution was diluted with physiological saline so that the concentration of the radioactive substance was 10 μCi / 100 μL to obtain a solution of G5-CHex-Phe in which the radioactive substance (111 In) was ligated to the end. As for G5-Suc having an amino group added to the terminal, G5-Suc having a radioactive substance linked to the terminal was obtained in the same manner as above.
(2) 免疫細胞移行用担体の体内動態分析
 動物実験は、BALB/cCrSlcマウス(8~10週齢、メス、18~21 g、日本エスエルシー株式会社)を用いて、動物実験に関する大学の規定を遵守して行った。マウスの足に、放射性物質を連結した各デンドリマーの分散液(30μL)を皮内投与した。投与後、即座に投与部位を30秒間マッサージした。投与から3時間後及び24時間後にマウスを安楽死させ、投与部位、膝下リンパ節、血液、心臓、肺、肝臓、脾臓及び腎臓を採取して秤量した。手足を固定し、マウスから採取した臓器等の放射活性をオートウェルガンマカウンタ(PerkinElmer社製)を用いて測定した。結果を図5に示す。図5から分かるように、G5-CHex-Pheを投与したマウスは、G5-Sucを投与したマウスに比べて、リンパ節における放射活性が顕著に高かった。すなわち、G5-CHex-Pheは、G5-Sucに比べて顕著にリンパ節に集積することが示唆された。また、G5-CHex-Pheを投与したマウスの肝臓及び腎臓から放射線が検出されたことから、投与されたG5-CHex-Pheの一部はリンパ節から血管へ達して、全身に循環することが示唆された。
(2) Dynamics analysis of carrier for immune cell transfer Animal experiments are conducted using BALB / cCrSlc mice (8-10 weeks old, female, 18-21 g, Nippon SLC Co., Ltd.). I went in compliance with. A dispersion (30 μL) of each dendrimer linked with a radioactive substance was intradermally administered to the paws of mice. Immediately after administration, the administration site was massaged for 30 seconds. Mice were euthanized 3 and 24 hours after administration, and the site of administration, below-knee lymph nodes, blood, heart, lungs, liver, spleen and kidneys were collected and weighed. The limbs were fixed, and the radioactivity of organs collected from mice was measured using an autowell gamma counter (manufactured by PerkinElmer). The results are shown in FIG. As can be seen from FIG. 5, the mice administered with G5-CHex-Phe had significantly higher radioactivity in the lymph nodes than the mice administered with G5-Suc. That is, it was suggested that G5-CHex-Phe was remarkably accumulated in the lymph nodes as compared with G5-Suc. In addition, since radiation was detected in the liver and kidneys of mice to which G5-CHex-Phe was administered, part of the administered G5-CHex-Phe could reach blood vessels from lymph nodes and circulate throughout the body. It was suggested.
実施例3: 蛍光色素を連結した免疫細胞移行用担体のイメージング(2)
(1) 蛍光色素を連結した免疫細胞移行用担体の調製
 実施例3では、免疫細胞移行用担体として、製造例1で調製したG4-Suc-Phe及びG4-CHex-Pheを用いた。比較のため、製造例1で調製したG4-Suc及びG4-CHexも用いた。実施例1と同様にして、G4-Suc-Phe、G4-CHex-Phe、G4-Suc及びG4-CHexのそれぞれと、4当量のBoc-エチレンジアミン及び6当量のDMT-MMとを反応させ、適当量のTFAによりBoc基を除去して、各デンドリマーの末端にアミノ基を付与した。これらをNMR測定した結果、1分子の各デンドリマーの末端には4~5分子のエチレンジアミンが結合していた。アミノ基を末端に付与した各デンドリマーをDMSO(1mL)に溶解した。ここに、デンドリマーに対して4当量の緑色蛍光色素FITC(東京化成工業株式会社)及び6当量のTEAを加え、遮光した状態で室温にて一晩撹拌した。その後、限外濾過(MWCO:2000、DMSO、メタノール)で精製した。得られた溶液を凍結乾燥して、蛍光色素を末端に連結したG4-Suc-Phe、G4-CHex-Phe、G4-Suc及びG4-CHexのそれぞれの結晶を得た。これらをUV-vis測定した結果、1分子の各デンドリマーの末端には1~2分子のFITCが結合していた。
Example 3: Imaging of a carrier for immune cell transfer to which a fluorescent dye is linked (2)
(1) Preparation of carrier for immune cell transfer to which a fluorescent dye is linked In Example 3, G4-Suc-Phe and G4-CHex-Phe prepared in Production Example 1 were used as carriers for immune cell transfer. For comparison, G4-Suc and G4-CHex prepared in Production Example 1 were also used. In the same manner as in Example 1, G4-Suc-Phe, G4-CHex-Phe, G4-Suc and G4-CHex are each reacted with 4 equivalents of Boc-ethylenediamine and 6 equivalents of DMT-MM. Boc groups were removed by an amount of TFA to add amino groups to the ends of each dendrimer. As a result of NMR measurement of these, 4 to 5 molecules of ethylenediamine were bonded to the end of each dendrimer of 1 molecule. Each dendrimer with an amino group attached to the end was dissolved in DMSO (1 mL). To this, 4 equivalents of green fluorescent dye FITC (Tokyo Chemical Industry Co., Ltd.) and 6 equivalents of TEA were added to the dendrimer, and the mixture was stirred overnight at room temperature in a light-shielded state. Then, it was purified by ultrafiltration (MWCO: 2000, DMSO, methanol). The obtained solution was freeze-dried to obtain crystals of G4-Suc-Phe, G4-CHex-Phe, G4-Suc and G4-CHex having a fluorescent dye linked to the end. As a result of UV-vis measurement of these, one or two molecules of FITC were bound to the end of each dendrimer of one molecule.
(2) インビトロでの脾臓内の免疫細胞への移行
(2.1) 脾臓の細胞の採取、及び免疫細胞移行用担体との接触
 動物実験は、BALB/c Slc-nu/nuヌードマウス(メス、MDA-MB-231がん腫瘍有り、日本エスエルシー株式会社)を用いて、動物実験に関する大学の規定を遵守して行った。マウスを安楽死させ、脾臓を採取した。採取した脾臓を、氷冷下で無血清RPMIに浸し、ハサミで分断した。分断した脾臓組織に1mg/mLコラゲナーゼ溶液(1mL)を加えて37℃で30分間静置した。そして、脾臓組織をセルストレーナ上ですりつぶして、細胞を得た。細胞を含む液を遠心分離(4000 rpm、5分)して上澄みを除去し、細胞に無血清RPMI(5mL)を加えて分散させた。細胞を含む液を遠心分離(4000 rpm、5分)して上澄みを除去し、無血清RPMI(10 mL)を加えて細胞懸濁液を得た。細胞懸濁液を96ウェルプレートに1×104 cells/wellで播種した。FITCを連結した各デンドリマーを、色素濃度が5μMとなるように無血清RPMIに添加して、各デンドリマーの分散液を調製した。各デンドリマーの分散液を1ウェル当たり100μLずつ添加して、4℃で4時間、又は37℃で1時間若しくは4時間インキュベートした。
(2) Transfer to immune cells in the spleen in vitro
(2.1) Collection of spleen cells and contact with a carrier for immune cell transfer In animal experiments, BALB / c Slc-nu / nu nude mice (female, with MDA-MB-231 cancer tumor, Japan SLC Co., Ltd.) ) Was used to comply with the university's regulations regarding animal experiments. Mice were euthanized and the spleen was harvested. The collected spleen was immersed in serum-free RPMI under ice-cooling and separated with scissors. A 1 mg / mL collagenase solution (1 mL) was added to the divided spleen tissue, and the mixture was allowed to stand at 37 ° C. for 30 minutes. Then, the spleen tissue was ground on a cell strainer to obtain cells. The cell-containing solution was centrifuged (4000 rpm, 5 minutes) to remove the supernatant, and the cells were dispersed by adding serum-free RPMI (5 mL). The cell-containing solution was centrifuged (4000 rpm, 5 minutes) to remove the supernatant, and serum-free RPMI (10 mL) was added to obtain a cell suspension. The cell suspension was seeded on a 96-well plate at 1 × 10 4 cells / well. Each dendrimer linked with FITC was added to serum-free RPMI to a dye concentration of 5 μM to prepare a dispersion of each dendrimer. 100 μL of each dendrimer dispersion was added per well and incubated at 4 ° C for 4 hours or 37 ° C for 1 or 4 hours.
(2.2) 細胞の蛍光イメージング
 96ウェルプレートを遠心分離(4000 rpm、20秒)して上澄みを除去して、PBSで細胞を洗浄した。細胞を倒立顕微鏡IX71(オリンパス株式会社、対物レンズ倍率10倍)で観察し、イメージングソフトウェアCellScens Standard(オリンパス株式会社製)で解析した。結果を表2に示す。表中、「×」は、緑色蛍光を発する細胞が検出されなかったことを示し、「○」は、緑色蛍光を発する細胞が検出されたことを示す。
(2.2) Fluorescence imaging of cells The 96-well plate was centrifuged (4000 rpm, 20 seconds) to remove the supernatant, and the cells were washed with PBS. The cells were observed with an inverted microscope IX71 (Olympus Corporation, objective lens magnification 10 times) and analyzed with imaging software CellScens Standard (Olympus Corporation). The results are shown in Table 2. In the table, "x" indicates that no cells emitting green fluorescence were detected, and "○" indicates that cells emitting green fluorescence were detected.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 実施例3では、検体としてヌードマウスの脾臓を用いた。ヌードマウスには胸腺がなく、また脾臓にはB細胞が豊富に存在することから、この実験では主にB細胞への免疫細胞移行用担体の移行を観察している。表2に示されるように、37℃でインキュベートした場合、末端にフェニルアラニン残基が末端に結合したデンドリマーのみ、細胞に移行できた。一方、4℃では、いずれのデンドリマーも細胞には移行していなかった。このことから、フェニルアラニン残基が末端に結合したデンドリマーは、細胞膜を透過して細胞内に移行しているのではなく、細胞のエンドサイトーシスを介して細胞内に移行していることが示唆された。 In Example 3, the spleen of a nude mouse was used as a sample. Since nude mice do not have thymus and B cells are abundant in the spleen, this experiment mainly observes the transfer of carriers for immune cell transfer to B cells. As shown in Table 2, when incubated at 37 ° C., only dendrimers with phenylalanine residues attached to the ends could be transferred to cells. On the other hand, at 4 ° C., none of the dendrimers had migrated to the cells. This suggests that the dendrimer with the phenylalanine residue attached to the terminal does not penetrate the cell membrane and translocate into the cell, but translocates into the cell via endocytosis of the cell. It was.
実施例4: 蛍光色素を連結した免疫細胞移行用担体のイメージング(3)
(1) 蛍光色素を連結した免疫細胞移行用担体
 実施例4では、免疫細胞移行用担体として、実施例3で調製した、FITCを末端に連結したG4-Suc-Phe及びG4-CHex-Pheを用いた。比較のため、FITCを末端に連結したG4-Suc及びG4-CHexも用いた。
Example 4: Imaging of a carrier for immune cell transfer to which a fluorescent dye is linked (3)
(1) Carrier for Immune Cell Transfer to which Fluorescent Dye is Linked In Example 4, G4-Suc-Phe and G4-CHex-Phe to which FITC was ligated prepared in Example 3 prepared in Example 3 were used as the carrier for immune cell transfer. Using. For comparison, G4-Suc and G4-CHex with FITC ligated at the ends were also used.
(2) インビトロでの脾臓内の免疫細胞への移行
(2.1) 脾臓の細胞の採取、免疫細胞移行用担体との接触、及び免疫染色
 動物実験は、BALB/cマウス(6週齢、メス、日本エスエルシー株式会社)を用いて、動物実験に関する大学の規定を遵守して行った。マウスを安楽死させ、脾臓を採取した。実施例3と同様にして、採取した脾臓から細胞懸濁液を得た。細胞数が1.6×106 cells/tubeとなるように細胞懸濁液を1.5 mLチューブに分取した。FITCを連結した各デンドリマーを、色素濃度が5μMとなるように無血清RPMIに添加して、各デンドリマーの分散液を調製した。各デンドリマーの分散液を、細胞を含む1.5 mLチューブに添加して、37℃で3時間インキュベートした。また、無血清RPMIのpHを6.02に調整したこと以外は上記と同様にして、各デンドリマーの分散液を、細胞を含む1.5 mLチューブに添加して、37℃で3時間インキュベートした。なお、pHを調整していない無血清RPMIのpHは7.95であった。細胞を含む液を遠心分離(3000 rpm、5分、4℃)して上澄みを除去し、ステインバッファー(1%FBS、2mM EDTA及びPBS)(0.5 mL)を加えて細胞懸濁液を得た。細胞数が2×105cells/tubeとなるように細胞懸濁液を1.5 mLチューブに分取した。PEで標識した抗CD3抗体、抗CD45R抗体、抗CD11c抗体及び抗F4/80抗体の溶液(抗体:無血清RPMI=1:49、全量50μL)を添加し、氷冷下で30分間、暗所に静置した。その後、ステインバッファー(100μL)を加え、遠心分離(3000 rpm、5分、4℃)して上澄みを除去して、細胞を洗浄した。各標識抗体と反応させた細胞にステインバッファー(0.5 mL)を添加して、FCM解析用検体を得た。各検体をBD FACS Calibur(BD Biosciences社製)を用いて解析した。実施例1と同様にして、解析結果から、PE標識抗体で検出された免疫細胞における、免疫細胞移行用担体を含む細胞の割合を示すグラフ(図6)を作成した。また、pHを6.02にした場合のPE標識抗体で検出されたT細胞及びB細胞における、免疫細胞移行用担体を含む細胞の割合を示すグラフ(図7)を作成した。
(2) Transfer to immune cells in the spleen in vitro
(2.1) Collection of spleen cells, contact with a carrier for immune cell transfer, and immunostaining For animal experiments, BALB / c mice (6 weeks old, female, Nippon SLC Co., Ltd.) were used at the University of Animal Experiments. It was done in compliance with the regulations of. Mice were euthanized and the spleen was harvested. A cell suspension was obtained from the collected spleen in the same manner as in Example 3. The cell suspension was divided into 1.5 mL tubes so that the number of cells was 1.6 × 10 6 cells / tube. Each dendrimer linked with FITC was added to serum-free RPMI to a dye concentration of 5 μM to prepare a dispersion of each dendrimer. The dispersion of each dendrimer was added to a 1.5 mL tube containing the cells and incubated at 37 ° C. for 3 hours. The dispersion of each dendrimer was added to a 1.5 mL tube containing cells and incubated at 37 ° C. for 3 hours in the same manner as above except that the pH of serum-free RPMI was adjusted to 6.02. The pH of serum-free RPMI without adjusting the pH was 7.95. The cell-containing solution was centrifuged (3000 rpm, 5 minutes, 4 ° C.) to remove the supernatant, and stain buffer (1% FBS, 2 mM EDTA and PBS) (0.5 mL) was added to obtain a cell suspension. .. The cell suspension was divided into 1.5 mL tubes so that the number of cells was 2 × 10 5 cells / tube. Add a solution of PE-labeled anti-CD3 antibody, anti-CD45R antibody, anti-CD11c antibody and anti-F4 / 80 antibody (antibody: serum-free RPMI = 1:49, total volume 50 μL) and place in the dark for 30 minutes under ice-cooling. It was left in place. Then, stain buffer (100 μL) was added, and the cells were washed by centrifugation (3000 rpm, 5 minutes, 4 ° C.) to remove the supernatant. Stain buffer (0.5 mL) was added to the cells reacted with each labeled antibody to obtain a sample for FCM analysis. Each sample was analyzed using BD FACS Calibur (manufactured by BD Biosciences). In the same manner as in Example 1, a graph (FIG. 6) showing the proportion of cells containing a carrier for immune cell transfer in the immune cells detected by the PE-labeled antibody was prepared from the analysis results. In addition, a graph (FIG. 7) showing the ratio of cells containing a carrier for immune cell transfer among T cells and B cells detected by a PE-labeled antibody when the pH was set to 6.02 was prepared.
 図6において「T」はT細胞を表し、「B」はB細胞を表し、「DC」は樹状細胞を表し、「MΦ」はマクロファージを表す。図6に示されるように、G4-Suc-Pheは、脾臓由来のT細胞、B細胞、樹状細胞及びマクロファージのいずれにも移行した。G4-CHex-Pheも同様にいずれの免疫細胞にも移行した(図示せず)。一方で、G4-Suc及びG4-CHexは、いずれの細胞にもほとんど移行しなかった(図示せず)。図7において「T」はT細胞を表し、「B」はB細胞を表す。図7に示されるように、G4-Suc-Pheは、培地のpHを6.02に調整したことで、T細胞へ移行する割合が増加した。G4-CHex-Pheも同様の傾向を示した(図示せず)。一方、B細胞へ移行した割合に変化はなかった。このことから、G4-Suc-Phe及びG4-CHex-Pheは、酸性条件下ではT細胞への移行性が向上することが示唆された。 In FIG. 6, "T" represents a T cell, "B" represents a B cell, "DC" represents a dendritic cell, and "MΦ" represents a macrophage. As shown in FIG. 6, G4-Suc-Phe translocated to any of spleen-derived T cells, B cells, dendritic cells and macrophages. G4-CHex-Phe also translocated to any immune cell (not shown). On the other hand, G4-Suc and G4-CHex hardly transferred to any of the cells (not shown). In FIG. 7, "T" represents a T cell and "B" represents a B cell. As shown in FIG. 7, G4-Suc-Phe increased the rate of transfer to T cells by adjusting the pH of the medium to 6.02. G4-CHex-Phe showed a similar tendency (not shown). On the other hand, there was no change in the rate of transfer to B cells. This suggests that G4-Suc-Phe and G4-CHex-Phe have improved transferability to T cells under acidic conditions.
製造例2: 免疫細胞移行用担体の調製(2)
(1) G4-Ph-Pheの調製
末端にフェニルアラニン残基を有し、フタル酸をリンカーにもつ免疫細胞移行用担体(G4-Ph-Phe)を、Tamaki M.ら, RSC Adv., 2018, vol.8, pp.28147-28151に記載の方法で調製した。合成スキームを下記に示す。
Production Example 2: Preparation of carrier for immune cell transfer (2)
(1) Preparation of G4-Ph-Phe A carrier for immune cell transfer (G4-Ph-Phe) having a phenylalanine residue at the terminal and a phthalic acid as a linker was used by Tamaki M. et al., RSC Adv., 2018, It was prepared by the method described in vol.8, pp.28147-28151. The synthesis scheme is shown below.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 PAMAMデンドリマーG4(56.0 mg、3.94μmol)をDMSO-DMF混合溶媒(2.3 mL)に溶解し、過剰量の無水フタル酸(0.3170 g、1.90 mmol)を加え、TEA(200μL、1.44 mmol)を加え、一晩室温で撹拌した。DMSOで透析(MWCO:1000)後、蒸留水で透析した。最後に凍結乾燥を行い、G4-Phを得た(収量:67.3 mg、収率:69%)。次に、G4-Ph(34.5 mg、1.46μmol)をはかりとり、DMSO(5 mL)に分散させ、一晩撹拌させた。撹拌後、Phe-OMe・HCl (0.1200 g、280μmol)、HBTU(0.1100 g、290μmol)、TEA(40.7μL、294μmol)を加えて、4日間撹拌した後、蒸留水(1mL)を添加し、得られた溶液を、透析膜(分子量カットオフ(MWCO):1,000)を用いてメタノール中で透析して精製した。精製した溶液からメタノールを減圧除去し、凍結乾燥してG4-Ph-(Phe-OMe)を得た(収量:30.5 mg、収率:60 %)。続いて、G4-Ph-(Phe-OMe)をメタノール(4mL)に溶解し、4M NaOHメタノール溶液(500μL)を添加した。4℃で2時間撹拌した後、デンドリマーの分散液を、透析膜(分子量カットオフ(MWCO):1,000)を用いて蒸留水中で透析して精製した。精製した溶液を凍結乾燥して、G4-Ph-Pheを得た(収量:63.2mg、収率:90.2 %)。G4- Ph-Pheの1H-NMRスペクトル測定した結果、G4 PAMAMの末端基へのフタル酸(Ph)の結合数は64、フェニルアラニン残基(Phe)の結合数は58であった。 PAMAM dendrimer G4 (56.0 mg, 3.94 μmol) was dissolved in DMSO-DMF mixed solvent (2.3 mL), excess phthalic anhydride (0.3170 g, 1.90 mmol) was added, TEA (200 μL, 1.44 mmol) was added. Stirred overnight at room temperature. After dialysis with DMSO (MWCO: 1000), dialysis was performed with distilled water. Finally, freeze-drying was performed to obtain G4-Ph (yield: 67.3 mg, yield: 69%). Next, G4-Ph (34.5 mg, 1.46 μmol) was weighed, dispersed in DMSO (5 mL), and stirred overnight. After stirring, Phe-OMe · HCl (0.1200 g, 280 μmol), HBTU (0.1100 g, 290 μmol) and TEA (40.7 μL, 294 μmol) were added, and after stirring for 4 days, distilled water (1 mL) was added to obtain. The solution was purified by dialysis in methanol using a dialysis membrane (molecular weight cutoff (MWCO): 1,000). Methanol was removed from the purified solution under reduced pressure and lyophilized to obtain G4-Ph- (Phe-OMe) (yield: 30.5 mg, yield: 60%). Subsequently, G4-Ph- (Phe-OMe) was dissolved in methanol (4 mL), and a 4M NaOH methanol solution (500 μL) was added. After stirring at 4 ° C. for 2 hours, the dendrimer dispersion was purified by dialysis in distilled water using a dialysis membrane (molecular weight cutoff (MWCO): 1,000). The purified solution was lyophilized to give G4-Ph-Phe (yield: 63.2 mg, yield: 90.2%). As a result of 1 H-NMR spectrum measurement of G4-Ph-Phe, the number of phthalic acid (Ph) bound to the terminal group of G4 PAMAM was 64, and the number of phenylalanine residue (Phe) bound was 58.
実施例5: G4-Suc-Phe、G4-Ph-Phe及びG4-Chex-Pheの温度に対する透過率の変化の測定
 種々のpHを有するG4-Suc-Phe、G4-Ph-Phe及びG4-Chex-Pheの各溶液を作製し、これらの溶液の温度を変化させて透過率を測定した。測定条件; 測定波長:500 nm、昇温速度:1℃/min、測定間隔:0.1℃、バンド幅:1.5 nm。pHをグリシン塩酸緩衝液(pH3.5以下)、酢酸緩衝液(pH 5.5以下)及びリン酸緩衝液(pH 6以上)で調整した後、UV/Vis Spectrophotometer (V-630, JASCO)により透過率の温度変化測定を行った。温度の調整にはペルチェホルダ(ETC-717, JASCO)を用いた。結果を図8に示す。
Example 5: Measurement of change in transmittance of G4-Suc-Phe, G4-Ph-Phe and G4-Chex-Phe with respect to temperature G4-Suc-Phe, G4-Ph-Phe and G4-Chex having various pHs -Each solution of Phe was prepared and the transmittance was measured by changing the temperature of these solutions. Measurement conditions; Measurement wavelength: 500 nm, heating rate: 1 ° C / min, measurement interval: 0.1 ° C, bandwidth: 1.5 nm. After adjusting the pH with glycine hydrochloride buffer (pH 3.5 or less), acetate buffer (pH 5.5 or less) and phosphate buffer (pH 6 or more), the transmittance is measured by UV / Vis Spectrophotometer (V-630, JASCO). The temperature change was measured. A Peltier holder (ETC-717, JASCO) was used to adjust the temperature. The results are shown in FIG.
 いずれのデンドリマーも溶液のpHが酸性になると、透過率が減少する挙動が見られた。G4-Chex-Phe、G4-Ph-Phe、G4-Suc-PheはpH6.5, pH6, pH 5の水溶液では体温付近で透過率が減少した。また、このpH条件では加温すると透過率が上昇する上限臨界溶液温度(UCST)型の挙動が見られた。 All dendrimers showed a behavior that the transmittance decreased when the pH of the solution became acidic. The transmittance of G4-Chex-Phe, G4-Ph-Phe, and G4-Suc-Phe decreased near body temperature in aqueous solutions of pH 6.5, pH 6, and pH 5. In addition, under this pH condition, the behavior of the upper critical solution temperature (UCST) type, in which the transmittance increases when heated, was observed.
製造例3: 免疫細胞移行用担体の調製(3)
(1) G4-Phe-SO3Hの調製
 末端にフェニルアラニン残基を有し、アニオン性末端基がスルホン基である免疫細胞移行用担体(G4-Phe-SO3H)を、Chen HT.ら, J.Am.Chem.Soc., 2004, vol.126(32), pp.10044-10048を参照して、下記のスキームにより合成した。
Production Example 3: Preparation of carrier for immune cell transfer (3)
(1) Preparation of G4-Phe-SO 3 H An immune cell transfer carrier (G4-Phe-SO 3 H) having a phenylalanine residue at the terminal and an anionic terminal group being a sulfone group was prepared by Chen HT. et al. , J.Am.Chem.Soc., 2004, vol.126 (32), pp.10044-10048, and synthesized by the following scheme.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 G4 PAMAMデンドリマー(Sigma-Aldrich社)のアミノ末端と、アミノ基を保護したフェニルアラニン残基のカルボキシル末端とを反応させて、G4-Pheを得た。1,3-プロパンスルトン(142.3 mg、1.17 mmol)をアセトニトリル(2.8 mL)に溶解した。G4-Phe(92.2 mg、2.27μmol)を125 mM NaHCO3緩衝液(2.8 mL)に溶解した。これら2つの溶液を混合し、窒素バブリング後、室温で攪拌した。その後、2日間放置し、3日目にpHを測定した。pHが1以下になっていたので、4M NaOH水溶液を加えてpHを塩基性にして、窒素バブリングして攪拌した。4日目にpHを測定した。pHがpH7~8になっていたので、4M NaOH水溶液を加えてpHを約9まで上げた。5日目にpHを測定した。pHが約8であったので、HCl水溶液を加えてpHを下げた後、pHを約8まで上げた。エバポレーターで溶液の量を減らした後、蒸留水(2.1 mL)を加え、蒸留水で透析した。凍結乾燥後、G4-Phe-SO3Hを得た(収量:60.9 mg, 収率:95%)。G4-Phe-SO3Hの溶液を1H-NMRスペクトル測定した結果、G4 PAMAMの末端基へのフェニルアラニン残基(Phe)の結合数は49であり、G4 PAMAMの末端基及びフェニルアラニン残基へのスルホン酸の結合数は56であった。 The amino terminus of G4 PAMAM dendrimer (Sigma-Aldrich) was reacted with the carboxyl terminus of the amino group-protected phenylalanine residue to give G4-Phe. 1,3-Propane sultone (142.3 mg, 1.17 mmol) was dissolved in acetonitrile (2.8 mL). G4-Phe (92.2 mg, 2.27 μmol ) was dissolved in 125 mM acrylamide 3 buffer (2.8 mL). These two solutions were mixed, nitrogen bubbling and then stirring at room temperature. Then, it was left for 2 days, and the pH was measured on the 3rd day. Since the pH was 1 or less, a 4M NaOH aqueous solution was added to make the pH basic, nitrogen bubbling was performed, and the mixture was stirred. The pH was measured on the 4th day. Since the pH was 7 to 8, the pH was raised to about 9 by adding a 4M NaOH aqueous solution. The pH was measured on the 5th day. Since the pH was about 8, the pH was lowered to about 8 by adding an aqueous HCl solution. After reducing the amount of the solution with an evaporator, distilled water (2.1 mL) was added, and the mixture was dialyzed against distilled water. After lyophilization, G4-Phe-SO 3 H was obtained (yield: 60.9 mg, yield: 95%). As a result of 1 H-NMR spectrum measurement of the solution of G4-Phe-SO 3 H, the number of phenylalanine residue (Phe) bound to the terminal group of G4 PAMAM was 49, and it was found to be the terminal group of G4 PAMAM and the phenylalanine residue. The number of sulfonic acid bonds was 56.
(2) G4-Phe-SO3Hの温度に対する透過率の変化の測定
 1 mg/mL (buffer濃度20 mM)のG4-Phe-SO3H溶液を作製し、該溶液の温度を変化させて透過率を測定した。測定条件; 測定波長:500 nm、昇温速度:1℃/min、測定間隔:0.1℃、バンド幅:1.5 nm。pHをグリシン塩酸緩衝液(pH3.5以下)、酢酸緩衝液(pH 5.5以下)及びリン酸緩衝液(pH 6以上)で調整した後、UV/Vis Spectrophotometer (V-630, JASCO)により透過率の温度変化測定を行った。温度の調整にはペルチェホルダ(ETC-717, JASCO)を用いた。結果を図9に示す。
(2) Measurement of change in transmittance of G4-Phe-SO 3 H with respect to temperature A 1 mg / mL (buffer concentration 20 mM) G4-Phe-SO 3 H solution was prepared, and the temperature of the solution was changed. The transmittance was measured. Measurement conditions; Measurement wavelength: 500 nm, heating rate: 1 ° C / min, measurement interval: 0.1 ° C, bandwidth: 1.5 nm. After adjusting the pH with glycine hydrochloride buffer (pH 3.5 or less), acetate buffer (pH 5.5 or less) and phosphate buffer (pH 6 or more), the transmittance is measured by UV / Vis Spectrophotometer (V-630, JASCO). The temperature change was measured. A Peltier holder (ETC-717, JASCO) was used to adjust the temperature. The results are shown in FIG.
 図9に示されるように、G4-Phe-SO3Hは、pH 5では下限臨界溶液温度(LCST)型相転移(LCST=52℃)を示し、pH 6.5ではUCST型相転移(UCST=36℃)を示した。G4-Phe-SO3Hは、酸性条件でLCST型及びUCST型相転移を鋭敏に起こすデンドリマーであった。G4-Phe-SO3H溶液の透過率は、pH 6.5で室温の条件では3%であったが、pH 6.5で約40℃の条件では91%まで向上した。また、Tamaki M.ら, RSC Adv., 2018, vol.8, pp.28147-28151を参照すると、pH 6.5で約37℃の条件でのG4-Phe-SO3H溶液の透過率は、同条件でのG4-CHex-Phe溶液の透過率と同程度(約30%)であった。 As shown in FIG. 9, G4-Phe-SO 3 H exhibits a lower critical solution temperature (LCST) type phase transition (LCST = 52 ° C.) at pH 5 and a UCST type phase transition (UCST = 36 ° C.) at pH 6.5. ℃) was shown. G4-Phe-SO 3 H was a dendrimer that sensitively undergoes LCST-type and UCST-type phase transitions under acidic conditions. The transmittance of the G4-Phe-SO 3 H solution was 3% at pH 6.5 at room temperature, but improved to 91% at pH 6.5 at about 40 ° C. Also, referring to Tamaki M. et al., RSC Adv., 2018, vol.8, pp.28147-28151, the transmittance of the G4-Phe-SO 3 H solution at pH 6.5 at about 37 ° C is the same. It was about the same as the transmittance of the G4-CHex-Phe solution under the conditions (about 30%).
製造例4: 免疫細胞移行用担体の調製(4)
(1) G3.5-Phe及びG2.5-Pheの調製
 デンドリマーの末端基にフェニルアラニン残基が直接結合し、アニオン性末端基がカルボキシル基である免疫細胞移行用担体(G3.5-Phe及びG2.5-Phe)を下記のスキームにより合成した。この製造例では、末端基がカルボキシル基であるPAMAMデンドリマー(G3.5:末端数64、及びG2.5:末端数32)と、カルボキシル基を保護したフェニルアラニン残基のアミノ基とを反応させた。
Production Example 4: Preparation of carrier for immune cell transfer (4)
(1) Preparation of G3.5-Phe and G2.5-Phe An immune cell transfer carrier (G3.5-Phe and) in which a phenylalanine residue is directly bound to the terminal group of the dendrimer and the anionic terminal group is a carboxyl group. G2.5-Phe) was synthesized by the following scheme. In this production example, a PAMAM dendrimer having a carboxyl group as a terminal group (G3.5: 64 terminals and G2.5: 32 terminals) was reacted with an amino group of a phenylalanine residue having a protected carboxyl group. ..
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(1.1) G3.5-Pheの調製
 PAMAMデンドリマーG3.5(38.7mg、2.99μmol)を125 mM NaHCO3水溶液(pH 9.1、100μL)に溶解し、DMSO(4 mL)を加えて。DMT-MM(215.2 mg、777μmol)を加えた。Phe-OBzl・Tos(156.1 mg、365μmol)を加え、3日間室温で撹拌した。次にメタノールで透析(MWCO:2000)を行った。メタノールを減圧留去し、真空乾燥を3時間した後、凍結乾燥を行い、G3.5-(Phe-OBzl)を得た(収率:39.1 mg、収率:47.5%)。次に、合成したG3.5-(Phe-OBzl)(39.1 mg、1.42μmol)をメタノール(4 mL)に溶解し、4M NaOHを含むメタノール溶液(500μL)を加え、4℃にて2時間撹拌した。撹拌後、蒸留水で透析した(MWCO:2000)。その後、凍結乾燥してG3.5-Pheを得た(収率:25.0 mg、収率:101%)。1H NMR(DCl含有D2O)スペクトル測定の結果、PAMAMデンドリマーG3.5の末端基へのフェニルアラニン残基(Phe)の結合数は30であった。これらの反応で得られたG3.5-Pheを以下「G3.5-Phe30」と呼ぶ。
(1.1) Preparation of G3.5-Phe PAMAM dendrimer G3.5 (38.7 mg, 2.99 μmol) was dissolved in 125 mM LVDS 3 aqueous solution (pH 9.1, 100 μL), and DMSO (4 mL) was added. DMT-MM (215.2 mg, 777 μmol) was added. Phe-OBzl Tos (156.1 mg, 365 μmol) was added, and the mixture was stirred at room temperature for 3 days. Next, dialysis (MWCO: 2000) was performed with methanol. Methanol was distilled off under reduced pressure, vacuum dried for 3 hours, and then freeze-dried to obtain G3.5- (Phe-OBzl) (yield: 39.1 mg, yield: 47.5%). Next, the synthesized G3.5- (Phe-OBzl) (39.1 mg, 1.42 μmol) was dissolved in methanol (4 mL), a methanol solution containing 4M NaOH (500 μL) was added, and the mixture was stirred at 4 ° C. for 2 hours. did. After stirring, the mixture was dialyzed against distilled water (MWCO: 2000). Then, it was freeze-dried to obtain G3.5-Phe (yield: 25.0 mg, yield: 101%). As a result of 1 H NMR (DCl-containing D 2 O) spectrum measurement, the number of phenylalanine residue (Phe) bound to the terminal group of PAMAM dendrimer G3.5 was 30. The G3.5-Phe obtained by these reactions is hereinafter referred to as "G3.5-Phe 30 ".
 別の合成条件でもG3.5-Pheを調製した。すなわち、縮合反応においてDMSO(1.5 mL)/水(1 mL)を溶媒として用いて同様に反応を行って、G3.5-Pheを得た(収量:39.5 mg、収率:71.0%)。1H NMR(DCl含有D2O)スペクトル測定の結果、PAMAMデンドリマーG3.5の末端基へのフェニルアラニン残基(Phe)の結合数は41であった。これらの反応で得られたG3.5-Pheを以下「G3.5-Phe41」と呼ぶ。 G3.5-Phe was also prepared under different synthetic conditions. That is, in the condensation reaction, DMSO (1.5 mL) / water (1 mL) was used as a solvent in the same manner, and G3.5-Phe was obtained (yield: 39.5 mg, yield: 71.0%). As a result of 1 H NMR (DCl-containing D 2 O) spectrum measurement, the number of phenylalanine residue (Phe) bound to the terminal group of PAMAM dendrimer G3.5 was 41. The G3.5-Phe obtained by these reactions is hereinafter referred to as "G3.5-Phe 41 ".
(1.2) G2.5-Pheの調製
 PAMAMデンドリマーG2.5(38.0 mg、6.06μmol)を蒸留水(100μL)に溶解した。次に、DMSO(4 mL)を加えG2.5を分散させた。そしてDMT-MM(198.9 mg、718μmol)、Phe-OBzl・Tos(137.2 mg、321μmol)を加え、上記と同様に反応及び精製することでG2.5-(Phe-OBzl)を得た(収量:57.8 mg、収率:71.9%)。次に、合成したG2.5-(Phe-OBzl)(55.8 mg、4.21μmol)を上記(1.1)と同様に反応及び精製をすることで、G2.5-Pheを得た(収量:25.2mg、収率:92.2%)。1H NMR(DCl含有D2O)スペクトル測定の結果、PAMAMデンドリマーG2.5の末端基へのフェニルアラニン残基(Phe)の結合数は18であった。これらの反応で得られたG2.5-Pheを以下「G2.5-Phe18」と呼ぶ。
(1.2) Preparation of G2.5-Phe PAMAM dendrimer G2.5 (38.0 mg, 6.06 μmol) was dissolved in distilled water (100 μL). Next, DMSO (4 mL) was added to disperse G2.5. Then, DMT-MM (198.9 mg, 718 μmol) and Phe-OBzl · Tos (137.2 mg, 321 μmol) were added, and the reaction and purification were carried out in the same manner as above to obtain G2.5- (Phe-OBzl) (yield: 57.8 mg, yield: 71.9%). Next, the synthesized G2.5- (Phe-OBzl) (55.8 mg, 4.21 μmol) was reacted and purified in the same manner as in (1.1) above to obtain G2.5-Phe (yield: 25.2 mg). , Yield: 92.2%). As a result of 1 H NMR (DCl-containing D 2 O) spectrum measurement, the number of phenylalanine residues (Phe) bound to the terminal group of PAMAM dendrimer G2.5 was 18. The G2.5-Phe obtained by these reactions is hereinafter referred to as "G2.5-Phe 18 ".
 別の合成条件でもG2.5-Pheを調製した。すなわち、PMAMAデンドリマー(G2.5)の末端に対して0.5当量のPhe-OBzl・Tosを加えて同様に反応を行って、G2.5-Pheを得た(収量:13.7 mg、収率:53.3%)。1H NMR(DCl含有D2O)スペクトル測定の結果、PAMAMデンドリマーG2.5の末端基へのフェニルアラニン残基(Phe)の結合数は14であった。これらの反応で得られたG2.5-Pheを以下「G2.5-Phe14」と呼ぶ。 G2.5-Phe was also prepared under different synthetic conditions. That is, 0.5 equivalent of Phe-OBzl · Tos was added to the end of PMAMA dendrimer (G2.5) and the reaction was carried out in the same manner to obtain G2.5-Phe (yield: 13.7 mg, yield: 53.3). %). As a result of 1 H NMR (DCl-containing D 2 O) spectrum measurement, the number of phenylalanine residues (Phe) bound to the terminal group of PAMAM dendrimer G2.5 was 14. The G2.5-Phe obtained by these reactions is hereinafter referred to as "G2.5-Phe 14 ".
(2) G3.5-Phe及びG2.5-Pheの温度に対する透過率の変化の測定
 製造例2と同様にして、種々のpHを有するG3.5-Phe及びG2.5-Pheの溶液を調製し、該溶液の温度を変化させて透過率を測定した。結果を図10A~Dに示す。図10Aに示されるように、G3.5-Phe30の溶液の透過率は、pH 7では変化はなく、pH 6では、5℃から55℃まで加温によって緩やかに上昇した。これはUCST型の挙動であった。一方、pH 5では、低温で透過率が高く、45℃付近から透過率が減少した。これはLCST型の挙動であった。また、pH 4でもLCST型の挙動を示したが、5℃において既に透過率の減少がみられた。図10Bに示されるように、G3.5-Phe41の溶液の透過率は、pH 7及びpH 6では変化はなく、pH 5では、35℃から85℃まで加温によって緩やかに上昇した。これはUCST型の挙動であった。一方、pH 4では低温で透過率が高く、5℃から透過率が減少した。これはLCST型の挙動であった。
(2) Measurement of change in transmittance of G3.5-Phe and G2.5-Phe with respect to temperature In the same manner as in Production Example 2, solutions of G3.5-Phe and G2.5-Phe having various pHs were prepared. It was prepared and the transmittance was measured by changing the temperature of the solution. The results are shown in FIGS. 10A to 10D. As shown in FIG. 10A, the transmittance of the solution of G3.5-Phe 30 did not change at pH 7, and at pH 6, it gradually increased from 5 ° C to 55 ° C by heating. This was a UCST type behavior. On the other hand, at pH 5, the transmittance was high at low temperatures, and the transmittance decreased from around 45 ° C. This was an LCST type behavior. The LCST type behavior was also observed at pH 4, but the transmittance had already decreased at 5 ° C. As shown in FIG. 10B, the transmittance of the solution of G3.5-Phe 41 did not change at pH 7 and pH 6, and at pH 5, it gradually increased from 35 ° C. to 85 ° C. by heating. This was a UCST type behavior. On the other hand, at pH 4, the transmittance was high at low temperatures, and the transmittance decreased from 5 ° C. This was an LCST type behavior.
 図10Cに示されるように、G2.5-Phe18の溶液の透過率は、pH 7では変化はなく、pH 6では5℃~25℃の範囲で上昇したが、全温度範囲で高い透過率となった。pH 5では、5℃から95℃まで加温によって緩やかに上昇した。これはUCST型の挙動に類似していた。一方、pH 4では、5℃から透過率が63%と低く、加温とともに透過率が減少した。これはLCST型の挙動であった。図10Dに示されるように、G2.5-Phe14の溶液の透過率は、pH 7では変化はなく、pH 6では5℃から65℃まで、pH 5では45℃から95℃まで加温によって緩やかに上昇した。これはUCST型の挙動であった。一方、pH 4では低温で透過率が高く、35℃付近から透過率が減少した。これはLCST型の挙動であった。 As shown in FIG. 10C, the permeability of the solution of G2.5-Phe 18 did not change at pH 7, increased in the range of 5 ° C to 25 ° C at pH 6, but was high in the entire temperature range. It became. At pH 5, it gradually increased from 5 ° C to 95 ° C with heating. This was similar to the UCST type behavior. On the other hand, at pH 4, the transmittance was as low as 63% from 5 ° C, and the transmittance decreased with heating. This was an LCST type behavior. As shown in FIG. 10D, the permeability of the solution of G2.5-Phe 14 remains unchanged at pH 7, from 5 ° C to 65 ° C at pH 6 and from 45 ° C to 95 ° C at pH 5 by heating. It rose moderately. This was a UCST type behavior. On the other hand, at pH 4, the transmittance was high at low temperatures, and the transmittance decreased from around 35 ° C. This was an LCST type behavior.
実施例6: 免疫細胞移行用担体におけるアミノ酸残基の比較
(1) 蛍光色素を連結した免疫細胞移行用担体
 実施例6では、免疫細胞移行用担体として、実施例3で調製した、FITCを末端に連結したG4-Suc-Phe及びG4-CHex-Pheを用いた。比較のため、デンドリマーにロイシン残基を結合した担体(G4-Suc-Leu及びG4-CHex-Leu)を調製し、これにFITCを末端に連結した。G4-Suc-Leu及びG4-CHex-Leuは、製造例1において、3-フェニル-L-アラニンベンジルエステル4-トルエンスルホネートに替えてロイシンベンジルエステルp-トルエンホスホネートを用いたこと以外は、G4-Suc-Phe及びG4-CHex-Pheと同様にして調製した。G4-Suc-Leu及びG4-CHex-Leuのそれぞれにおけるロイシン残基の結合数は、いずれも64であった。G4-Suc-Phe、G4-CHex-Phe、G4-Suc-Leu及びG4-CHex-Leuの模式図を図11に示す。G4-Suc-Leu及びG4-CHex-LeuへのFITCの連結は、実施例3と同様にして行った。FITCを連結した各デンドリマーを、色素濃度が5μMとなるように無血清RPMI(pH 8.85およびpH 6)に添加して、各デンドリマーの分散液を調製した。
Example 6: Comparison of Amino Acid Residues in Immune Cell Translocation Carriers
(1) Carrier for Immune Cell Transfer to which Fluorescent Dye is Linked In Example 6, G4-Suc-Phe and G4-CHex-Phe to which FITC was ligated prepared in Example 3 prepared in Example 3 were used as the carrier for immune cell transfer. Using. For comparison, carriers (G4-Suc-Leu and G4-CHex-Leu) in which leucine residues were bound to dendrimers were prepared, and FITC was ligated to the ends. G4-Suc-Leu and G4-CHex-Leu are G4- except that leucine benzyl ester p-toluene phosphonate was used instead of 3-phenyl-L-alanine benzyl ester 4-toluene sulfonate in Production Example 1. It was prepared in the same manner as Suc-Phe and G4-CHex-Phe. The number of leucine residues bound to each of G4-Suc-Leu and G4-CHex-Leu was 64. A schematic diagram of G4-Suc-Phe, G4-CHex-Phe, G4-Suc-Leu and G4-CHex-Leu is shown in FIG. The FITC was linked to G4-Suc-Leu and G4-CHex-Leu in the same manner as in Example 3. Each dendrimer linked with FITC was added to serum-free RPMI (pH 8.85 and pH 6) to a dye concentration of 5 μM to prepare a dispersion of each dendrimer.
(2) インビトロでの免疫細胞への移行
 免疫細胞として、ヒトT細胞性白血病由来細胞株のJurkat細胞を用いた。細胞懸濁液をマイクロチューブに1×105 cells/tubeとなるように入れ、マイクロチューブを遠心分離(3000 rpm、3分)して上澄みを除去した。各デンドリマーの分散液を1チューブ当たり25μLずつ添加して、37℃で3時間インキュベートした。マイクロチューブを遠心分離(3000 rpm、3分)して上澄みを除去して、PBSで細胞を洗浄した。上澄みを除去した後、マイクロチューブに無血清RPMIを1 mLずつ添加して、FCM解析用検体を得た。各検体をBD FACS Calibur(BD Biosciences社製)を用いて解析した。各デンドリマーを添加した細胞の蛍光強度の平均値を示すグラフ(図12)を作成した。
(2) Transition to immune cells in vitro Jurkat cells, a human T-cell leukemia-derived cell line, were used as immune cells. The cell suspension was placed in a microtube at 1 × 10 5 cells / tube, and the microtube was centrifuged (3000 rpm, 3 minutes) to remove the supernatant. 25 μL of each dendrimer dispersion was added per tube and incubated at 37 ° C. for 3 hours. The microtubes were centrifuged (3000 rpm, 3 minutes) to remove the supernatant and the cells were washed with PBS. After removing the supernatant, 1 mL of serum-free RPMI was added to the microtubes to obtain a sample for FCM analysis. Each sample was analyzed using BD FACS Calibur (manufactured by BD Biosciences). A graph (FIG. 12) showing the average value of the fluorescence intensity of the cells to which each dendrimer was added was prepared.
 図12中のA及びBからわかるように、G4-Suc-LeuよりもG4-Suc-Pheの方が蛍光強度は高かった。また、図12中のC及びDからわかるように、G4-CHex-LeuよりもG4-CHex-Pheの方が蛍光強度は高かった。フェニルアラニン及びロイシンはいずれも非極性側鎖を有するアミノ酸であるが、図12より、ロイシン残基を結合したデンドリマーよりも、フェニルアラニン残基を結合したデンドリマーの方が免疫細胞への移行性がよいことが示された。 As can be seen from A and B in FIG. 12, the fluorescence intensity of G4-Suc-Phe was higher than that of G4-Suc-Leu. Further, as can be seen from C and D in FIG. 12, the fluorescence intensity of G4-CHex-Phe was higher than that of G4-CHex-Leu. Both phenylalanine and leucine are amino acids having non-polar side chains, but from FIG. 12, the dendrimer to which a phenylalanine residue is bound has better transferability to immune cells than the dendrimer to which a leucine residue is bound. It has been shown.
実施例7: 蛍光色素を連結した免疫細胞移行用担体のイメージング(4)
(1) 蛍光色素を連結した免疫細胞移行用担体の調製
 実施例7では、免疫細胞移行用担体として、FITCを末端に連結したG4-Phe-Suc及びG4-Phe-CHexを用いた。G4-Phe-Suc及びG4-Phe-CHexは次のようにして調製した。製造例3と同様にして、G4 PAMAMデンドリマー(Sigma-Aldrich社)のアミノ末端と、アミノ基を保護したフェニルアラニン残基のカルボキシル末端とを反応させて、G4-Pheを得た。G4-Phe(125 mg、5.57 μmol)を125 mM NaHCO3緩衝液(3 mL)に溶解し、過剰量の無水コハク酸又はシス-1,2-シクロヘキサンジカルボン酸無水物(いずれも500当量)を添加した。各溶液を室温で一晩撹拌し、4N NaOH水溶液を用いてpHを8~10に調整した。デンドリマーを含む溶液を、透析膜(MWCO:1,000)を用いて蒸留水中で透析して精製した。精製した溶液を凍結乾燥して、G4-Phe-Suc及びG4-Phe-CHexを得た。G4-Phe-Sucの収量は68 mgであり、収率は56%であった。G4-Phe-CHexの収量は65 mgであり、収率は72%であった。G4-Phe-Suc及びG4-Phe-CHexの各溶液を1H-NMRスペクトル測定した。G4-Phe-Sucでは、G4 PAMAMの末端基へのフェニルアラニン残基(Phe)の結合数は56であり、G4 PAMAMの末端基及びフェニルアラニン残基へのコハク酸の結合数は57であった。また、G4-Phe-CHexでは、G4 PAMAMの末端基へのフェニルアラニン残基(Phe)の結合数は64であり、G4 PAMAMの末端基及びフェニルアラニン残基へのシクロヘキサンジカルボン酸の結合数は64であった。G4-Phe-Suc及びG4-Phe-CHexの模式図を図13に示す。G4-Phe-Suc及びG4-Phe-CHexへのFITCの連結は、実施例3と同様にして行った。
Example 7: Imaging of a carrier for immune cell transfer to which a fluorescent dye is linked (4)
(1) Preparation of Carrier for Immune Cell Transfer to which Fluorescent Dye is Linked In Example 7, G4-Phe-Suc and G4-Phe-CHex to which FITC was ligated at the end were used as carriers for immune cell transfer. G4-Phe-Suc and G4-Phe-CHex were prepared as follows. In the same manner as in Production Example 3, the amino terminus of G4 PAMAM dendrimer (Sigma-Aldrich) was reacted with the carboxyl terminus of the amino group-protected phenylalanine residue to obtain G4-Phe. Dissolve G4-Phe (125 mg, 5.57 μmol) in 125 mM LVDS 3 buffer (3 mL) and add an excess of succinic anhydride or cis-1,2-cyclohexanedicarboxylic acid anhydride (both 500 eq). Added. Each solution was stirred at room temperature overnight and the pH was adjusted to 8-10 with an aqueous 4N NaOH solution. The solution containing the dendrimer was purified by dialysis in distilled water using a dialysis membrane (MWCO: 1,000). The purified solution was lyophilized to give G4-Phe-Suc and G4-Phe-CHex. The yield of G4-Phe-Suc was 68 mg, and the yield was 56%. The yield of G4-Phe-CHex was 65 mg, and the yield was 72%. Each solution of G4-Phe-Suc and G4-Phe-CHex was measured by 1 H-NMR spectrum. In G4-Phe-Suc, the number of phenylalanine residue (Phe) bound to the terminal group of G4 PAMAM was 56, and the number of succinic acid bound to the terminal group and phenylalanine residue of G4 PAMAM was 57. In G4-Phe-CHex, the number of bonds of phenylalanine residue (Phe) to the terminal group of G4 PAMAM is 64, and the number of bonds of cyclohexanedicarboxylic acid to the terminal group of G4 PAMAM and phenylalanine residue is 64. there were. A schematic diagram of G4-Phe-Suc and G4-Phe-CHex is shown in FIG. The FITC was linked to G4-Phe-Suc and G4-Phe-CHex in the same manner as in Example 3.
(2) インビトロでの免疫細胞への移行
 実施例6と同様にして、Jurkat細胞へのG4-Phe-Suc及びG4-Phe-Chexの移行性を調べた。各デンドリマーを添加した細胞の蛍光強度の平均値を示すグラフ(図14)を作成した。図14に示されるように、G4-Phe-Suc及びG4-Phe-ChexはJurkat細胞内に移行することが示された。
(2) Transfer to immune cells in vitro The transferability of G4-Phe-Suc and G4-Phe-Chex to Jurkat cells was examined in the same manner as in Example 6. A graph (FIG. 14) showing the average value of the fluorescence intensity of the cells to which each dendrimer was added was prepared. As shown in FIG. 14, G4-Phe-Suc and G4-Phe-Chex were shown to translocate into Jurkat cells.

Claims (16)

  1.  複合体分子を含む免疫細胞移行用担体であって、
     前記複合体分子が、分岐ポリマーとフェニルアラニン残基とを含み、且つアニオン性の末端構造を有し、前記分岐ポリマーの末端基に前記フェニルアラニン残基が結合している、
    免疫細胞移行用担体。
    A carrier for immune cell migration containing a complex molecule.
    The complex molecule contains a branched polymer and a phenylalanine residue, has an anionic terminal structure, and the phenylalanine residue is attached to the terminal group of the branched polymer.
    Carrier for immune cell transfer.
  2.  前記分岐ポリマーの末端基と前記フェニルアラニン残基とが直接結合している請求項1に記載の担体。 The carrier according to claim 1, wherein the terminal group of the branched polymer and the phenylalanine residue are directly bonded.
  3.  前記フェニルアラニン残基に、アニオン性末端基を付与できる化合物がさらに結合している請求項2に記載の担体。 The carrier according to claim 2, wherein a compound capable of imparting an anionic end group is further bound to the phenylalanine residue.
  4.  前記アニオン性末端基が、カルボキシル基、スルホン基、硫酸基又はそれらの塩である請求項3に記載の担体。 The carrier according to claim 3, wherein the anionic end group is a carboxyl group, a sulfone group, a sulfate group, or a salt thereof.
  5.  前記分岐ポリマーの末端基と前記フェニルアラニン残基とがリンカーを介して結合している請求項1に記載の担体。 The carrier according to claim 1, wherein the terminal group of the branched polymer and the phenylalanine residue are bonded via a linker.
  6.  前記アニオン性の末端構造が、前記分岐ポリマーの末端基に結合した前記フェニルアラニン残基を含み、下記の式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、X1は、-NH-(C=O)-又は-O-(C=O)-であり、Y1は、-NH-(C=O)-又は-NH-であり、
     Rは、置換基を有していてもよい炭素数1~10のアルキレン基、又は、置換基を有していてもよい炭素数3~8のシクロアルキレン基、ヘテロシクロアルキレン基若しくはフェニレン基であり、
     Z1は、カルボキシル基、スルホン基、硫酸基又はそれらの塩である)
    で表されるか、又は、下記の式(II):
    Figure JPOXMLDOC01-appb-C000002
    (式中、X2は、-NH-(C=O)-、-(C=O)-NH-、-O-(C=O)-、-(C=O)-O-、-O-(C=O)-NH-、-NH-(C=O)-O-、-NH-(C=O)-NH-、-NH-(C=S)-NH-又はマレイミドとチオールの反応で得られる構造であり、
     Rは、置換基を有していてもよい炭素数1~10のアルキレン基、又は、置換基を有していてもよい炭素数3~8のシクロアルキレン基、ヘテロシクロアルキレン基若しくはフェニレン基であり、
     Y2は、-(C=O)-NH-、-O-(C=O)-NH-、-NH-(C=O)-NH-又は-NH-(C=S)-NH-であり、
     Z2は、カルボキシル基又はその塩である)
    で表されるか、又は、下記の式(III):
    Figure JPOXMLDOC01-appb-C000003
    (式中、Z3は、カルボキシル基又はその塩である)
    で表される請求項1~5のいずれか1項に記載の担体。
    The anionic end structure comprises the phenylalanine residue attached to the end group of the branched polymer and has the following formula (I):
    Figure JPOXMLDOC01-appb-C000001
    (In the equation, X 1 is -NH- (C = O)-or -O- (C = O) -and Y 1 is -NH- (C = O)-or -NH-.
    R is an alkylene group having 1 to 10 carbon atoms which may have a substituent, or a cycloalkylene group, a heterocycloalkylene group or a phenylene group having 3 to 8 carbon atoms which may have a substituent. Yes,
    Z 1 is a carboxyl group, a sulfone group, a sulfate group or a salt thereof)
    It is expressed by the following formula (II):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, X 2 is -NH- (C = O)-,-(C = O) -NH-, -O- (C = O)-,-(C = O) -O-, -O -(C = O) -NH-, -NH- (C = O) -O-, -NH- (C = O) -NH-, -NH- (C = S) -NH- or maleimide and thiol It is a structure obtained by the reaction,
    R is an alkylene group having 1 to 10 carbon atoms which may have a substituent, or a cycloalkylene group, a heterocycloalkylene group or a phenylene group having 3 to 8 carbon atoms which may have a substituent. Yes,
    Y 2 is-(C = O) -NH-, -O- (C = O) -NH-, -NH- (C = O) -NH- or -NH- (C = S) -NH- Yes,
    Z 2 is a carboxyl group or a salt thereof)
    It is expressed by the following formula (III):
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, Z 3 is a carboxyl group or a salt thereof)
    The carrier according to any one of claims 1 to 5, which is represented by.
  7.  前記免疫細胞が、リンパ節に存在する免疫細胞である請求項1~6のいずれか1項に記載の担体。 The carrier according to any one of claims 1 to 6, wherein the immune cell is an immune cell present in a lymph node.
  8.  前記免疫細胞が、T細胞、B細胞、樹状細胞及びマクロファージから選択される少なくとも1種である請求項1~7のいずれか1項に記載の担体。 The carrier according to any one of claims 1 to 7, wherein the immune cell is at least one selected from T cells, B cells, dendritic cells and macrophages.
  9.  前記分岐ポリマーがデンドリマーである請求項1~8のいずれか1項に記載の担体。 The carrier according to any one of claims 1 to 8, wherein the branched polymer is a dendrimer.
  10.  pHに応答してT細胞への移行性が変化する請求項1~9のいずれか1項に記載の担体。 The carrier according to any one of claims 1 to 9, wherein the transferability to T cells changes in response to pH.
  11.  請求項1~10のいずれか1項に記載の免疫細胞移行用担体を含む、免疫細胞移行用試薬。 A reagent for immune cell transfer, which comprises the carrier for immune cell transfer according to any one of claims 1 to 10.
  12.  請求項1~10のいずれか1項に記載の免疫細胞移行用担体と、免疫細胞とをインビボ(ただし、ヒトを除く)、インビトロ又はエクスビボで接触することを含む、免疫細胞移行用担体を免疫細胞に移送する方法。 Immunize an immune cell transfer carrier, which comprises contacting the immune cell transfer carrier according to any one of claims 1 to 10 in vivo (excluding humans), in vitro or ex vivo. How to transfer to cells.
  13.  前記免疫細胞移行用担体が、興味対象の物質を含む請求項12に記載の方法。 The method according to claim 12, wherein the carrier for transfer of immune cells contains a substance of interest.
  14.  前記興味対象の物質が、標識物質、核酸、タンパク質及びペプチドから選択される少なくとも1つである請求項13に記載の方法。 The method according to claim 13, wherein the substance of interest is at least one selected from a labeling substance, a nucleic acid, a protein and a peptide.
  15.  前記標識物質が、放射性同位体、低分子有機色素、蛍光色素及び核磁気共鳴イメージング用造影剤から選択される少なくとも1つである請求項14に記載の方法。 The method according to claim 14, wherein the labeling substance is at least one selected from a radioisotope, a low molecular weight organic dye, a fluorescent dye, and a contrast agent for nuclear magnetic resonance imaging.
  16.  医薬と、請求項1~10のいずれか1項に記載の免疫細胞移行用担体とを含む、医薬組成物。 A pharmaceutical composition comprising a drug and the carrier for immune cell transfer according to any one of claims 1 to 10.
PCT/JP2020/042117 2019-11-14 2020-11-11 Carrier for transfer into immune cells and use thereof WO2021095781A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021556131A JPWO2021095781A1 (en) 2019-11-14 2020-11-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019206377 2019-11-14
JP2019-206377 2019-11-14

Publications (1)

Publication Number Publication Date
WO2021095781A1 true WO2021095781A1 (en) 2021-05-20

Family

ID=75912702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042117 WO2021095781A1 (en) 2019-11-14 2020-11-11 Carrier for transfer into immune cells and use thereof

Country Status (2)

Country Link
JP (1) JPWO2021095781A1 (en)
WO (1) WO2021095781A1 (en)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KOJIMA, CHIE ET AL: "Delivery to lymph nodes using dendrimers with various anionic terminal groups", PROGRAMS AND PREPRINTS OF THE 35TH ANNUAL MEETING OF THE JAPAN SOCIETY OF DRUG DELIVERY SYSTEM, vol. 144, 15 June 2019 (2019-06-15), pages 1441 *
METULLIO, LORENZO ET AL.: "Polyamidoamine (Yet Not PAMAM) Dendrimers as Bioinspired Materials for Drug Delivery: Structure-Activity Relationships by Molecular Simulations", BIOMACROMOLECULES, vol. 5, no. 4, July 2004 (2004-07-01), pages 1371 - 1378, XP055823733 *
NAGASHIMA, SHU ET AL: "Fluorescence imaging of lymph nodes with various anionic dendrimers", PREPRINTS OF THE ANNUAL MEETING OF THE JAPANESE SOCIETY FOR BIOMATERIALS(WEB)), vol. 40, 2018, pages 137 *
TONO, YOHEI ET AL: "Gene transfer activity of polyamide amine dendrimer with phenylalanine residue attached to the surface", THE 55TH POLYMER PREPRINTS, JAPAN, vol. 55, no. 2, 5 September 2006 (2006-09-05), pages 4908 *
WANG, FEI ET AL.: "Synergistic effect of amino acids modified on dendrimer surface in gene delivery", BIOMATERIALS, vol. 35, no. 33, November 2014 (2014-11-01), pages 9187 - 9198, XP055823735, ISSN: 0142-9612 *
WANG, XUE ET AL.: "Synthesis and Evaluation of Phenylalanine- Modified Hyperbranched Poly(amido amine)s as Promising Gene Carriers", BIOMACROMOLECULES, vol. 11, no. 1, 11 January 2010 (2010-01-11), pages 245 - 251, XP055823731 *

Also Published As

Publication number Publication date
JPWO2021095781A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
Liang et al. Core-shell structured upconversion nanocrystal-dendrimer composite as a carrier for mitochondria targeting and catalase enhanced anti-cancer photodynamic therapy
Wu et al. Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges
Ma et al. Overcoming multidrug resistance through the GLUT1-mediated and enzyme-triggered mitochondrial targeting conjugate with redox-sensitive paclitaxel release
Tanisaka et al. Near-infrared fluorescent labeled peptosome for application to cancer imaging
CN105997880B (en) A kind of anti-tumor nano drug and preparation method thereof based on crosslinked bio degradable polymer vesica
Xing et al. Synthesis of disulfide-cross-linked polypeptide nanogel conjugated with a near-infrared fluorescence probe for direct imaging of reduction-induced drug release
CN103550781B (en) Dendrimer self assembly pharmaceutical carrier and its preparation method and application
US20030232968A1 (en) Dendritic poly (amino acid) carriers and methods of use
CA2788736C (en) Polyanionic multivalent macromolecules for intracellular targeting of proliferation and protein synthesis
Xie et al. Self-assembly of Peptide dendrimers and their bio-applications in theranostics
Zhu et al. Cascade-responsive nano-assembly for efficient photothermal-chemo synergistic inhibition of tumor metastasis by targeting cancer stem cells
CN103402547B (en) Switching mode fluorescent nanoparticle probe and use its fluorescent molecules imaging method
US20210252171A1 (en) Magnetic nanoparticles functionalized with catechol, production and use thereof
US9757342B2 (en) Method for preparing protein cage, and in situ method for preparing hydrophobic additive-supported core-shell structured polymer-protein particles
Kim et al. One-dimensional supramolecular nanoplatforms for theranostics based on co-assembly of peptide amphiphiles
CN102657873A (en) Vesicles consisting of amphiphilic polymer and application of vesicles
JPWO2017002979A1 (en) Drug delivery carrier and composition containing the same
Zhou et al. Synthesis and biomedical applications of dendrimers
US20220265836A1 (en) Complex, medicine, therapeutic agent for cancer, kit and conjugate
KR101334780B1 (en) Iodine-containing radial-shape macromolecular compounds, preparation method thereof and contrast medium compositions for CT comprising the same
CN113827567B (en) Application of polymer vesicle carrying small molecular medicine in preparation of medicine for treating acute stranguria leukemia
US6395254B1 (en) Conjugate comprising an active agent, a polypeptide and a polyether
WO2021095781A1 (en) Carrier for transfer into immune cells and use thereof
Bauer et al. Tuning the cross-linking density and cross-linker in core cross-linked polymeric micelles and its effects on the particle stability in human blood plasma and mice
JP2016191034A (en) Polymer, and contrast agent for photoacoustic imaging, including the polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886653

Country of ref document: EP

Kind code of ref document: A1