WO2021095653A1 - Rotary actuator - Google Patents

Rotary actuator Download PDF

Info

Publication number
WO2021095653A1
WO2021095653A1 PCT/JP2020/041529 JP2020041529W WO2021095653A1 WO 2021095653 A1 WO2021095653 A1 WO 2021095653A1 JP 2020041529 W JP2020041529 W JP 2020041529W WO 2021095653 A1 WO2021095653 A1 WO 2021095653A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding surface
side sliding
eccentric
input side
output
Prior art date
Application number
PCT/JP2020/041529
Other languages
French (fr)
Japanese (ja)
Inventor
史也 管納
弘之 角
大石 健一
真治 内藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021095653A1 publication Critical patent/WO2021095653A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/04Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow radial displacement, e.g. Oldham couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • This disclosure relates to a rotary actuator.
  • the Oldam mechanism has been known as a means for transmitting and connecting input / output members arranged in different stages.
  • the Oldham joint disclosed in Patent Document 1 includes a first joint member attached to an input shaft, a second joint member attached to an output shaft, and an intermediate joint member interposed between both joint members.
  • the engaging surfaces of the intermediate joint member and each of the first and second joint members are in contact with a cylindrical protrusion that engages with each other so as to be relatively movable in a direction perpendicular to the input / output shaft.
  • a plurality of sets of engaging holes having curved walls are provided.
  • the present disclosed person considers using an old dam mechanism in a rotary actuator including a motor and a speed reducer for reducing the motor rotation in order to transmit the rotation of the gears of the speed reducer to an output member.
  • a rotary actuator including a motor and a speed reducer for reducing the motor rotation in order to transmit the rotation of the gears of the speed reducer to an output member.
  • the old dam joint of Patent Document 1 has not been studied for miniaturization, when this old dam joint is adopted for a rotary actuator, there is a concern that the size in the axial direction may increase.
  • the present disclosure has been made in view of the above points, and an object of the present disclosure is to provide a rotary actuator that uses an old dam mechanism and suppresses an increase in axial size.
  • the rotary actuator of the present disclosure includes a motor and a speed reducer that decelerates and outputs the rotation of the motor.
  • the speed reducer has a ring gear provided coaxially with the rotation axis of the motor and an outer tooth portion provided eccentrically with respect to the rotation axis and meshes with the inner tooth portion of the ring gear, and is eccentric when the motor rotates. It includes an eccentric gear that decelerates and rotates around the axis, an output member provided coaxially or parallel to the axis of rotation, and an oldham mechanism that transmits the rotation around the eccentric axis of the eccentric gear to the output member.
  • the Oldham mechanism includes an input-side sliding surface formed on the eccentric gear, an output-side sliding surface formed on the output member, and a first intermediate sliding surface that can slide in the radial direction with the input-side sliding surface. And an intermediate joint having a sliding surface on the output side and a second intermediate sliding surface slidable in the radial direction.
  • the eccentric gear has a sliding surface on the input side and an accommodating space accommodating at least a part of the intermediate joint at a position radially inside with respect to the external tooth portion and at a position where the external tooth portion and the axial position overlap.
  • FIG. 1 is a cross-sectional view of the rotary actuator according to the first embodiment.
  • FIG. 2 is a diagram showing an eccentric gear in the first embodiment.
  • FIG. 3 is an enlarged cross-sectional view showing the eccentric gear of FIG.
  • FIG. 4 is a diagram showing an output member in the first embodiment.
  • FIG. 5 is a diagram showing an intermediate joint in the first embodiment.
  • FIG. 6 is a diagram showing an eccentric gear in the second embodiment.
  • FIG. 7 is a diagram showing an output member in the second embodiment.
  • FIG. 8 is an enlarged view showing a main part of the eccentric gear in the third embodiment.
  • FIG. 1 is a cross-sectional view of the rotary actuator according to the first embodiment.
  • FIG. 2 is a diagram showing an eccentric gear in the first embodiment.
  • FIG. 3 is an enlarged cross-sectional view showing the eccentric gear of FIG.
  • FIG. 4 is a diagram showing an output member in the first embodiment.
  • FIG. 5 is a diagram showing an intermediate joint in the first
  • FIG. 9 is an enlarged view showing a main part of the output member in the third embodiment.
  • FIG. 10 is a cross-sectional view of the periphery of the old dam mechanism of the rotary actuator according to the fourth embodiment.
  • FIG. 11 is a view of the intermediate joint of FIG. 10 as viewed from the direction of arrow XI.
  • FIG. 12 is a view of the intermediate joint of FIG. 10 as viewed from the direction of arrow XII.
  • actuator rotary actuator
  • the actuator 10 includes a housing 20, a motor 30, and a speed reducer 40.
  • the housing 20 includes a cup-shaped front housing 21 and a rear housing 22.
  • the front housing 21 and the rear housing 22 have openings combined with each other and fastened to each other by bolts 23.
  • a bottomed tubular metal plate 24 is embedded in the front housing 21.
  • An annular metal plate 25 is embedded in the rear housing 22.
  • the rear housing 22 has a tubular protrusion 26 that projects to the opposite side of the front housing 21.
  • the motor 30 includes a stator 31 and a rotor 34.
  • the stator 31 has a stator core 32 fixed to the tubular portion of the metal plate 24 by, for example, press fitting, and a coil 33 provided on the stator core 32.
  • the rotor 34 has a rotating shaft 37 rotatably supported around the rotating shaft center AX1 by bearings 35 and 36, and a rotor core 38 fitted and fixed to the outside of the rotating shaft 37.
  • the bearing 35 is provided at the center of the metal plate 24.
  • the bearing 36 is provided on the shaft portion 54 of the output member 44, which will be described later.
  • the motor 30 can rotate in both directions by controlling the energizing current to the coil 33.
  • the speed reducer 40 includes an eccentric shaft 41, a ring gear 42, an eccentric gear 43, an output member 44, and an old dam mechanism 45.
  • the eccentric shaft 41 is provided on the eccentric shaft center AX2 which is eccentric with respect to the rotation shaft center AX1 at a position adjacent to the rotor core 38 in the axial direction.
  • the eccentric shaft 41 is formed integrally with the rotating shaft 37, and rotates around the rotating shaft center AX1 together with the rotating shaft 37.
  • the ring gear 42 is provided coaxially with the rotation axis AX1 and is fixed to the metal plate 25 by, for example, press fitting.
  • the eccentric gear 43 has an external tooth portion 47 that meshes with the internal tooth portion 46 of the ring gear 42, and is supported by a bearing 48 provided on the eccentric shaft 41 so that the planet can move.
  • the planetary motion is a motion that revolves around the eccentric axis AX1 while rotating around the eccentric axis AX2.
  • the rotation speed of the eccentric gear 43 during planetary motion is changed with respect to the rotation speed of the rotation shaft 37. That is, when the motor 30 rotates, the eccentric gear 43 decelerates and rotates around the eccentric axis AX2.
  • the output member 44 is provided coaxially with the rotation axis AX1 and is rotatably supported by a bearing 49 provided in the rear housing 22.
  • the oldham mechanism 45 is provided between the eccentric gear 43 and the output member 44, and transmits the rotation of the eccentric gear 43 around the eccentric axis AX2 to the output member 44.
  • a rotating magnetic field is generated by switching the energizing phase of the coil 33, and the rotor 34 rotates by receiving a magnetic attraction force or a repulsive force generated by the rotating magnetic field.
  • the eccentric shaft 41 rotates around the rotation axis AX1 together with the rotor 34, the eccentric gear 43 makes a planetary motion, and the rotation of the eccentric gear 43 decelerated with respect to the rotation of the rotor 34 is output from the output member 44 to the outside.
  • the eccentric gear 43, the output member 44, and the intermediate joint 56 of FIG. 1 show the cross sections taken along the line II of FIGS. 2, 4, and 5.
  • the eccentric gear 43 includes an annular shaft support portion 51 rotatably supported around the eccentric shaft center AX2, an annular external tooth portion 47 provided at the same axial position as the shaft support portion 51, and a shaft support portion 51. And the external tooth portion 47 are connected to form a bulging portion 53 provided so as to bulge toward the motor 30 side in the axial direction with respect to the external tooth portion 47.
  • the internal tooth portion 46 and the external tooth portion 47 are arranged between the coil end 39 and the output member 44 in the axial direction.
  • the bulging portion 53 is arranged in a space 28 (that is, an empty space) radially inside the coil end 39.
  • the output member 44 has a shaft portion 54 supported by the bearing 49 and a flange portion 55 protruding radially outward from the shaft portion 54.
  • the oldham mechanism 45 includes an input side sliding surface 61 formed on the eccentric gear 43, an output side sliding surface 62 formed on the output member 44, and an intermediate joint 56.
  • the intermediate joint 56 has a first intermediate sliding surface 63 that can slide radially with the input side sliding surface 61, and a second intermediate sliding surface 64 that can slide radially with the output side sliding surface 62. Has.
  • the bulging portion 53 partitions the accommodation space 65 between the shaft supporting portion 51 and the external tooth portion 47 in the radial direction.
  • the accommodation space 65 includes an annular space 66 in the recess of the bulge 53 recessed toward the motor 30, and a notch space 67 extending radially outward from the annular space 66.
  • the wall surface that partitions the notch space 67 includes an input-side sliding surface 61. That is, the input side sliding surface 61 is composed of a part of the wall surface that divides the notch space 67.
  • the flange portion 55 has a notch space 68 extending radially inward from the outer edge.
  • the wall surface that partitions the notch space 68 includes an output side sliding surface 62. That is, the output side sliding surface 62 is composed of a part of the wall surface that divides the notch space 68.
  • the intermediate joint 56 includes an annular base 57 housed in the annular space 66 of the accommodation space 65, a first protrusion 58 projecting radially outward from the base 57, and a second projecting from the base 57 toward the output member 44. It has a protrusion 59.
  • the second protrusion 59 is formed so as to protrude toward the output member 44 by offsetting toward the output member 44 while extending radially outward from the base 57.
  • the eccentric gear 43 has a structure that encloses a part of the intermediate joint 56. That is, the accommodation space 65 accommodates a part of the intermediate joint 56. Further, the eccentric gear 43 has the input side sliding surface 61 and the accommodation space 65 at a position radially inside the external tooth portion 47 and at a position where the external tooth portion 47 and the axial position overlap.
  • the accommodation space 65 accommodates the base 57 and the first protrusion 58.
  • the input side sliding surface 61 and the accommodation space 65 are provided so as to completely coincide with the external tooth portion 47 in the axial direction.
  • the oldham mechanism 45 is contained within the axial width of the base portion 57 and the flange portion 55.
  • the circumferential width of the tip of the first protrusion 58 is larger than the circumferential width of the base end.
  • the first intermediate sliding surface 63 is formed on both sides in the circumferential direction of the tip end portion of the first protrusion 58.
  • the first intermediate sliding surface 63 has a convex curved surface when viewed in the axial direction, and is in line contact with the flat input side sliding surface 61.
  • the circumferential width of the tip of the second protrusion 59 is larger than the circumferential width of the base end.
  • the second intermediate sliding surface 64 is formed on both sides in the circumferential direction of the tip end portion of the second protrusion 59.
  • the second intermediate sliding surface 64 has a convex curved surface when viewed in the axial direction, and is in line contact with the flat output side sliding surface 62.
  • a recess 69 is formed at the radial outer tips of the first protrusion 58 and the second protrusion 59. Assuming that the deepest portion of the recess 69 (that is, the portion located on the innermost side in the radial direction) is the deepest portion, both sides of the deepest portion in the circumferential direction are inclined surfaces that are continuously deepened toward the deepest portion. In the first embodiment, the recess 69 forms a concave curved surface. The recess 69 functions as a gripping portion and a positioning portion when the intermediate joint 56 is assembled.
  • the eccentric gear 43 has the input side sliding surface 61 and the accommodation space 65 accommodating at least a part of the intermediate joint 56 in the radial direction with respect to the external tooth portion 47. It is provided at a position on the inside where the external tooth portion 47 and the axial position overlap.
  • the input side sliding surface 61 is formed on the eccentric gear 43, and the output side sliding surface 62 is formed on the output member 44. Therefore, the number of parts can be reduced as compared with the form in which the input side sliding surface 61 and the output side sliding surface 62 are provided by using separate members.
  • the first protrusion 58 is provided so as to protrude outward in the radial direction from the base 57. Therefore, as compared with the form in which the base portion of the intermediate joint is arranged so as to be adjacent to the input side rotating body in the axial direction and the protrusion is provided so as to protrude in the axial direction from the base portion toward the input side rotating body. The stress generated at the base of the first protrusion 58 is reduced, and the durability is improved.
  • a recess 69 is formed at the radial outer tips of the first protrusion 58 and the second protrusion 59.
  • the recess 69 is used as a gripping portion and a positioning portion to improve the assembling property.
  • the structure is such that it is not known where the sliding surfaces slide due to the dimensional variation of each part. Therefore, it is not possible to narrow down the wear parts of the parts, and it is necessary to improve the dimensional accuracy of the entire sliding surface in order to improve the wear resistance. In addition, there is concern about abnormal wear.
  • one of the first intermediate sliding surface 63 and the input side sliding surface 61 is a convex curved surface
  • one of the second intermediate sliding surface 64 and the output side sliding surface 62 is convex. It is a curved surface.
  • the first intermediate sliding surface 63 and the input side sliding surface 61 are in line contact
  • the second intermediate sliding surface 64 and the output side sliding surface 62 are in line contact. Therefore, it is possible to reduce the variation in the surface pressure of the sliding surface due to the variation in the dimensions of each component and limit the sliding range of the sliding surface. By limiting the sliding range, design becomes easier and the workability of parts is improved.
  • the eccentric gear 43 has an input side sliding surface 61 formed at a position facing the eccentric axis AX2 and a circumference different from the input side sliding surface 61.
  • An input-side preliminary sliding surface 71 formed at a position facing the eccentric axis AX2 at a directional position is provided.
  • the input-side spare sliding surface 71 is a spare sliding surface and has the same shape as the input-side sliding surface 61.
  • the eccentric gear 43 is formed with a lightening hole 75 between the input side sliding surface 61 and the input side preliminary sliding surface 71 in the circumferential direction.
  • the output member 44 has an output side sliding surface 62 formed at a position facing the eccentric axis AX2 and an eccentric axis at a position different from the output side sliding surface 62 in the circumferential direction.
  • An output-side preliminary sliding surface 72 formed at a position facing the AX2 is provided.
  • the output side spare sliding surface 72 is a spare sliding surface and has the same shape as the output side sliding surface 62.
  • the width W1 of the portion 81 of the notch space 87 located radially inside with respect to the input side sliding surface 61 is the input side sliding of the notch space 87. It is larger than the width W2 of the portion 82 corresponding to the surface 61.
  • the portion 82 other than the input side sliding surface 61 can have an arbitrary shape regardless of the input side sliding surface 61. Therefore, the notch space 87 can be easily machined by simplifying the shape of the portion 82.
  • the width W3 of the portion 83 of the notch space 88 located radially inside with respect to the output side sliding surface 62 is the portion of the notch space 88 corresponding to the output side sliding surface 62. It is larger than the width W4 of 84.
  • the portion 84 other than the output side sliding surface 62 can have an arbitrary shape regardless of the output side sliding surface 62. Therefore, the notch space 88 can be easily machined by simplifying the shape of the portion 84.
  • the intermediate joint 56 projects axially toward the eccentric gear 43 so that the intermediate joint 56 and the eccentric gear 43 partially contact each other in the circumferential direction.
  • the provided input side protrusion 91 is formed.
  • the intermediate joint 56 protrudes in the axial direction toward the output member 44, and the output side protrusion provided so that the intermediate joint 56 and the output member 44 partially contact each other in the circumferential direction. It forms 92.
  • the output side protrusion 92 By providing the output side protrusion 92 in this way, the sliding resistance between the intermediate joint 56 and the output member 44 is reduced, and the slidability is improved.
  • the meshing length between the eccentric gear 43 and the intermediate joint 56 and the meshing length between the output member 44 and the intermediate joint 56 can be easily managed. Therefore, it is possible to suppress an increase in the surface pressure of the sliding surface. As a result, deterioration of transmission efficiency can be prevented.
  • the accommodation space for the eccentric gear may accommodate a portion of the base and first protrusion of the intermediate joint.
  • the input side sliding surface and the accommodation space may partially overlap the external tooth portion in the axial position. Nevertheless, the axial size of the reducer can be suppressed.
  • the first intermediate sliding surface and the second intermediate sliding surface are convex curved surfaces.
  • the input side sliding surface and the output side sliding surface may be convex curved surfaces.
  • the input side protrusion and the output side protrusion are formed on the intermediate joint.
  • the input side protrusion may be formed on the eccentric gear, and the output side protrusion may be formed on the output member.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Retarders (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

A speed reducer (40) is provided with: a ring gear (42); an eccentric gear (43) which is provided eccentrically with respect to an axis of rotation (AX1), and which has external tooth portions (47) that mesh with the ring gear (42); an output member (44) provided coaxially with the axis of rotation (AX1); and an Oldham mechanism (45) which transfers the rotation of the eccentric gear (43) to the output member (44). The Oldham mechanism (45) includes: an input side sliding surface (61) formed on the eccentric gear (43); an output side sliding surface (62) formed on the output member (44); and an intermediate joint (56) having a first intermediate sliding surface (63) which is capable of sliding against the input side sliding surface (61) in the radial direction, and a second intermediate sliding surface (64) which is capable of sliding against the output side sliding surface (62) in the radial direction. The eccentric gear (43) includes the input side sliding surface (61) and an accommodating space (65) which accommodates at least a portion of the intermediate joint (56), in a position that is radially inward of the external tooth portions (47) and that overlaps the position of the external tooth portions (47) in the axial direction.

Description

回転式アクチュエータRotary actuator 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年11月15日に出願された特許出願番号2019-206915号に基づくものであり、ここにその記載内容を援用する。 This application is based on Patent Application No. 2019-206915 filed on November 15, 2019, and the contents of the description are incorporated herein by reference.
 本開示は、回転式アクチュエータに関する。 This disclosure relates to a rotary actuator.
 従来、段違いに配置された入出力部材間を伝動可能に繋ぐ手段としてオルダム機構が知られている。例えば特許文献1に開示されたオルダム継手は、入力軸に取り付けられる第1継手部材と、出力軸に取り付けられる第2継手部材と、両継手部材間に介在する中間継手部材とを備える。中間継手部材と第1及び第2の継手部材の各々との相対向する係合面には、入出力軸と直角な向きで相対移動可能に係合する円柱形突起と当該円柱形突起に接触する箇所が湾曲壁とされた係合穴とが複数組設けられている。 Conventionally, the Oldam mechanism has been known as a means for transmitting and connecting input / output members arranged in different stages. For example, the Oldham joint disclosed in Patent Document 1 includes a first joint member attached to an input shaft, a second joint member attached to an output shaft, and an intermediate joint member interposed between both joint members. The engaging surfaces of the intermediate joint member and each of the first and second joint members are in contact with a cylindrical protrusion that engages with each other so as to be relatively movable in a direction perpendicular to the input / output shaft. A plurality of sets of engaging holes having curved walls are provided.
特開平7-208490号公報Japanese Unexamined Patent Publication No. 7-208490
 本開示者は、モータとモータ回転を減速する減速機とを備える回転式アクチュエータにおいて、減速機の歯車の回転を出力部材に伝達するためにオルダム機構を用いることを考えている。しかし、特許文献1のオルダム継手は小型化の検討がされていないため、このオルダム継手を回転式アクチュエータに採用した場合、軸方向サイズの大型化が懸念される。 The present disclosed person considers using an old dam mechanism in a rotary actuator including a motor and a speed reducer for reducing the motor rotation in order to transmit the rotation of the gears of the speed reducer to an output member. However, since the old dam joint of Patent Document 1 has not been studied for miniaturization, when this old dam joint is adopted for a rotary actuator, there is a concern that the size in the axial direction may increase.
 本開示は、上述の点に鑑みてなされたものであり、その目的は、オルダム機構を用いるとともに軸方向サイズの大型化が抑制された回転式アクチュエータを提供することである。 The present disclosure has been made in view of the above points, and an object of the present disclosure is to provide a rotary actuator that uses an old dam mechanism and suppresses an increase in axial size.
 本開示の回転式アクチュエータは、モータと、モータの回転を減速して出力する減速機とを備える。減速機は、モータの回転軸心と同軸に設けられたリングギアと、回転軸心に対して偏心して設けられ、リングギアの内歯部と噛み合う外歯部を有し、モータが回転すると偏心軸心まわりに減速して回転する偏心ギアと、回転軸心と同軸または平行に設けられた出力部材と、偏心ギアの偏心軸心まわりの回転を出力部材に伝達するオルダム機構とを備える。 The rotary actuator of the present disclosure includes a motor and a speed reducer that decelerates and outputs the rotation of the motor. The speed reducer has a ring gear provided coaxially with the rotation axis of the motor and an outer tooth portion provided eccentrically with respect to the rotation axis and meshes with the inner tooth portion of the ring gear, and is eccentric when the motor rotates. It includes an eccentric gear that decelerates and rotates around the axis, an output member provided coaxially or parallel to the axis of rotation, and an oldham mechanism that transmits the rotation around the eccentric axis of the eccentric gear to the output member.
 オルダム機構は、偏心ギアに形成された入力側摺動面と、出力部材に形成された出力側摺動面と、入力側摺動面と径方向に摺動可能な第1中間摺動面、および出力側摺動面と径方向に摺動可能な第2中間摺動面を有する中間継手とを含む。偏心ギアは、入力側摺動面と、中間継手の少なくとも一部を収容する収容空間とを、外歯部に対して径方向内側であって外歯部と軸方向位置が重なる位置に有する。 The Oldham mechanism includes an input-side sliding surface formed on the eccentric gear, an output-side sliding surface formed on the output member, and a first intermediate sliding surface that can slide in the radial direction with the input-side sliding surface. And an intermediate joint having a sliding surface on the output side and a second intermediate sliding surface slidable in the radial direction. The eccentric gear has a sliding surface on the input side and an accommodating space accommodating at least a part of the intermediate joint at a position radially inside with respect to the external tooth portion and at a position where the external tooth portion and the axial position overlap.
 このように中間継手の少なくとも一部を偏心ギアの外歯部に対して径方向内側の空間に収容することで、オルダム機構を用いた場合であっても減速機の軸方向サイズを抑えることができる。そのため、回転式アクチュエータの軸方向サイズの大型化を抑制することができる。 By accommodating at least a part of the intermediate joint in the space inside the radial direction with respect to the outer tooth portion of the eccentric gear in this way, it is possible to suppress the axial size of the reduction gear even when the Oldham mechanism is used. it can. Therefore, it is possible to suppress an increase in the axial size of the rotary actuator.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態による回転式アクチュエータの断面図であり、 図2は、第1実施形態において偏心ギアを示す図であり、 図3は、図1の偏心ギアを拡大して示す断面図であり、 図4は、第1実施形態において出力部材を示す図であり、 図5は、第1実施形態において中間継手を示す図であり、 図6は、第2実施形態において偏心ギアを示す図であり、 図7は、第2実施形態において出力部材を示す図であり、 図8は、第3実施形態において偏心ギアの要部を拡大して示す図であり、 図9は、第3実施形態において出力部材の要部を拡大して示す図であり、 図10は、第4実施形態による回転式アクチュエータのオルダム機構周辺の断面図であり、 図11は、図10の中間継手を矢印XI方向から見たときの図であり、 図12は、図10の中間継手を矢印XII方向から見たときの図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a cross-sectional view of the rotary actuator according to the first embodiment. FIG. 2 is a diagram showing an eccentric gear in the first embodiment. FIG. 3 is an enlarged cross-sectional view showing the eccentric gear of FIG. FIG. 4 is a diagram showing an output member in the first embodiment. FIG. 5 is a diagram showing an intermediate joint in the first embodiment. FIG. 6 is a diagram showing an eccentric gear in the second embodiment. FIG. 7 is a diagram showing an output member in the second embodiment. FIG. 8 is an enlarged view showing a main part of the eccentric gear in the third embodiment. FIG. 9 is an enlarged view showing a main part of the output member in the third embodiment. FIG. 10 is a cross-sectional view of the periphery of the old dam mechanism of the rotary actuator according to the fourth embodiment. FIG. 11 is a view of the intermediate joint of FIG. 10 as viewed from the direction of arrow XI. FIG. 12 is a view of the intermediate joint of FIG. 10 as viewed from the direction of arrow XII.
 以下、回転式アクチュエータ(以下、アクチュエータ)の複数の実施形態を図面に基づき説明する。実施形態同士で実質的に同一の構成には同一の符号を付して説明を省略する。 Hereinafter, a plurality of embodiments of the rotary actuator (hereinafter, actuator) will be described with reference to the drawings. The same reference numerals are given to substantially the same configurations among the embodiments, and the description thereof will be omitted.
 [第1実施形態]
 先ず、アクチュエータ10の全体構成について図1を参照して説明する。アクチュエータ10は、ハウジング20、モータ30および減速機40を備える。
[First Embodiment]
First, the overall configuration of the actuator 10 will be described with reference to FIG. The actuator 10 includes a housing 20, a motor 30, and a speed reducer 40.
 ハウジング20は、カップ状のフロントハウジング21およびリアハウジング22を備える。フロントハウジング21およびリアハウジング22は、開口部同士が組み合わされてボルト23により互いに締結されている。フロントハウジング21には、有底筒状の金属プレート24が埋め込まれている。リアハウジング22には、環状の金属プレート25が埋め込まれている。リアハウジング22は、フロントハウジング21とは反対側に突き出す筒状突出部26を有する。 The housing 20 includes a cup-shaped front housing 21 and a rear housing 22. The front housing 21 and the rear housing 22 have openings combined with each other and fastened to each other by bolts 23. A bottomed tubular metal plate 24 is embedded in the front housing 21. An annular metal plate 25 is embedded in the rear housing 22. The rear housing 22 has a tubular protrusion 26 that projects to the opposite side of the front housing 21.
 モータ30は、ステータ31およびロータ34を備える。ステータ31は、金属プレート24の筒部に例えば圧入等により固定されたステータコア32と、ステータコア32に設けられたコイル33とを有する。ロータ34は、軸受35、36により回転軸心AX1まわりに回転可能に支持された回転軸37と、回転軸37の外側に嵌合して固定されているロータコア38とを有する。軸受35は、金属プレート24の中央部に設けられている。軸受36は、後述の出力部材44の軸部54に設けられている。モータ30は、コイル33への通電電流が制御されることによって双方向に回転できる。 The motor 30 includes a stator 31 and a rotor 34. The stator 31 has a stator core 32 fixed to the tubular portion of the metal plate 24 by, for example, press fitting, and a coil 33 provided on the stator core 32. The rotor 34 has a rotating shaft 37 rotatably supported around the rotating shaft center AX1 by bearings 35 and 36, and a rotor core 38 fitted and fixed to the outside of the rotating shaft 37. The bearing 35 is provided at the center of the metal plate 24. The bearing 36 is provided on the shaft portion 54 of the output member 44, which will be described later. The motor 30 can rotate in both directions by controlling the energizing current to the coil 33.
 減速機40は、偏心軸41、リングギア42、偏心ギア43、出力部材44およびオルダム機構45を備える。偏心軸41は、軸方向においてロータコア38に隣接する位置で、回転軸心AX1に対して偏心する偏心軸心AX2上に設けられている。偏心軸41は、回転軸37と一体に形成され、回転軸37と共に回転軸心AX1まわりに回転する。リングギア42は、回転軸心AX1と同軸に設けられ、金属プレート25に例えば圧入等により固定されている。 The speed reducer 40 includes an eccentric shaft 41, a ring gear 42, an eccentric gear 43, an output member 44, and an old dam mechanism 45. The eccentric shaft 41 is provided on the eccentric shaft center AX2 which is eccentric with respect to the rotation shaft center AX1 at a position adjacent to the rotor core 38 in the axial direction. The eccentric shaft 41 is formed integrally with the rotating shaft 37, and rotates around the rotating shaft center AX1 together with the rotating shaft 37. The ring gear 42 is provided coaxially with the rotation axis AX1 and is fixed to the metal plate 25 by, for example, press fitting.
 偏心ギア43は、リングギア42の内歯部46と噛み合う外歯部47を有し、偏心軸41に設けられた軸受48により遊星運動可能に支持されている。遊星運動とは、偏心軸心AX2まわりに自転しつつ回転軸心AX1まわりに公転する運動のことである。遊星運動時の偏心ギア43の自転速度は、回転軸37の回転速度に対して変速させられる。つまり、偏心ギア43は、モータ30が回転すると偏心軸心AX2まわりに減速して回転する。 The eccentric gear 43 has an external tooth portion 47 that meshes with the internal tooth portion 46 of the ring gear 42, and is supported by a bearing 48 provided on the eccentric shaft 41 so that the planet can move. The planetary motion is a motion that revolves around the eccentric axis AX1 while rotating around the eccentric axis AX2. The rotation speed of the eccentric gear 43 during planetary motion is changed with respect to the rotation speed of the rotation shaft 37. That is, when the motor 30 rotates, the eccentric gear 43 decelerates and rotates around the eccentric axis AX2.
 出力部材44は、回転軸心AX1と同軸に設けられ、リアハウジング22に設けられた軸受49により回転可能に支持されている。オルダム機構45は、偏心ギア43と出力部材44との間に設けられ、偏心ギア43の偏心軸心AX2まわりの回転を出力部材44に伝達する。 The output member 44 is provided coaxially with the rotation axis AX1 and is rotatably supported by a bearing 49 provided in the rear housing 22. The oldham mechanism 45 is provided between the eccentric gear 43 and the output member 44, and transmits the rotation of the eccentric gear 43 around the eccentric axis AX2 to the output member 44.
 以上のように構成されたアクチュエータ10では、コイル33の通電相が切り替えられることにより回転磁界が発生し、この回転磁界により生じる磁気的吸引力または反発力を受けてロータ34が回転する。ロータ34と共に偏心軸41が回転軸心AX1まわりに回転すると偏心ギア43が遊星運動し、ロータ34の回転に対して減速させられた偏心ギア43の回転が出力部材44から外部に出力される。 In the actuator 10 configured as described above, a rotating magnetic field is generated by switching the energizing phase of the coil 33, and the rotor 34 rotates by receiving a magnetic attraction force or a repulsive force generated by the rotating magnetic field. When the eccentric shaft 41 rotates around the rotation axis AX1 together with the rotor 34, the eccentric gear 43 makes a planetary motion, and the rotation of the eccentric gear 43 decelerated with respect to the rotation of the rotor 34 is output from the output member 44 to the outside.
 (減速機)
 次に、減速機40の詳細な構成について図1~図5を参照して説明する。図1の偏心ギア43、出力部材44および中間継手56は、図2、図4および図5のI-I線断面を示している。偏心ギア43は、偏心軸心AX2まわりに回転可能に支持された環状の軸支持部51と、軸支持部51と同じ軸方向位置に設けられた環状の外歯部47と、軸支持部51と外歯部47とを接続し、外歯部47に対して軸方向のモータ30側に膨出するように設けられた膨出部53とを形成している。
(Decelerator)
Next, the detailed configuration of the speed reducer 40 will be described with reference to FIGS. 1 to 5. The eccentric gear 43, the output member 44, and the intermediate joint 56 of FIG. 1 show the cross sections taken along the line II of FIGS. 2, 4, and 5. The eccentric gear 43 includes an annular shaft support portion 51 rotatably supported around the eccentric shaft center AX2, an annular external tooth portion 47 provided at the same axial position as the shaft support portion 51, and a shaft support portion 51. And the external tooth portion 47 are connected to form a bulging portion 53 provided so as to bulge toward the motor 30 side in the axial direction with respect to the external tooth portion 47.
 内歯部46および外歯部47は、軸方向においてコイルエンド39と出力部材44との間に配置されている。膨出部53は、コイルエンド39に対して径方向内側の空間28(すなわち空きスペース)に配置されている。 The internal tooth portion 46 and the external tooth portion 47 are arranged between the coil end 39 and the output member 44 in the axial direction. The bulging portion 53 is arranged in a space 28 (that is, an empty space) radially inside the coil end 39.
 出力部材44は、軸受49に支持されている軸部54と、軸部54から径方向外側に突き出すフランジ部55とを有する。 The output member 44 has a shaft portion 54 supported by the bearing 49 and a flange portion 55 protruding radially outward from the shaft portion 54.
 オルダム機構45は、偏心ギア43に形成された入力側摺動面61と、出力部材44に形成された出力側摺動面62と、中間継手56とを含む。中間継手56は、入力側摺動面61と径方向に摺動可能な第1中間摺動面63、および、出力側摺動面62と径方向に摺動可能な第2中間摺動面64を有する。 The oldham mechanism 45 includes an input side sliding surface 61 formed on the eccentric gear 43, an output side sliding surface 62 formed on the output member 44, and an intermediate joint 56. The intermediate joint 56 has a first intermediate sliding surface 63 that can slide radially with the input side sliding surface 61, and a second intermediate sliding surface 64 that can slide radially with the output side sliding surface 62. Has.
 膨出部53は、径方向において軸支持部51と外歯部47との間に収容空間65を区画している。収容空間65は、モータ30側に凹む膨出部53の凹部内の環状空間66と、環状空間66から径方向外側に延びる切欠き空間67とを含む。切欠き空間67を区画する壁面には入力側摺動面61が含まれる。つまり、入力側摺動面61は、切欠き空間67を区画する壁面の一部から構成される。 The bulging portion 53 partitions the accommodation space 65 between the shaft supporting portion 51 and the external tooth portion 47 in the radial direction. The accommodation space 65 includes an annular space 66 in the recess of the bulge 53 recessed toward the motor 30, and a notch space 67 extending radially outward from the annular space 66. The wall surface that partitions the notch space 67 includes an input-side sliding surface 61. That is, the input side sliding surface 61 is composed of a part of the wall surface that divides the notch space 67.
 フランジ部55は、外縁から径方向内側に延びる切欠き空間68を有する。切欠き空間68を区画する壁面には出力側摺動面62が含まれる。つまり、出力側摺動面62は、切欠き空間68を区画する壁面の一部から構成される。 The flange portion 55 has a notch space 68 extending radially inward from the outer edge. The wall surface that partitions the notch space 68 includes an output side sliding surface 62. That is, the output side sliding surface 62 is composed of a part of the wall surface that divides the notch space 68.
 中間継手56は、収容空間65の環状空間66に収容された環状の基部57と、基部57から径方向外側に突き出した第1突起部58と、基部57から出力部材44側に突き出した第2突起部59とを有する。第2突起部59は、基部57から径方向外側に延び出しつつ出力部材44側にオフセットすることで、出力部材44側に突き出すように形成されている。 The intermediate joint 56 includes an annular base 57 housed in the annular space 66 of the accommodation space 65, a first protrusion 58 projecting radially outward from the base 57, and a second projecting from the base 57 toward the output member 44. It has a protrusion 59. The second protrusion 59 is formed so as to protrude toward the output member 44 by offsetting toward the output member 44 while extending radially outward from the base 57.
 偏心ギア43は、中間継手56の一部を包み込む構造となっている。つまり収容空間65は、中間継手56の一部を収容している。また、偏心ギア43は、入力側摺動面61と収容空間65とを、外歯部47に対して径方向内側であって外歯部47と軸方向位置が重なる位置に有する。第1実施形態では、収容空間65は基部57および第1突起部58を収容している。そして、入力側摺動面61および収容空間65は外歯部47と軸方向位置が完全に一致するように設けられている。オルダム機構45は、基部57とフランジ部55とを合わせた軸方向幅内に収まっている。 The eccentric gear 43 has a structure that encloses a part of the intermediate joint 56. That is, the accommodation space 65 accommodates a part of the intermediate joint 56. Further, the eccentric gear 43 has the input side sliding surface 61 and the accommodation space 65 at a position radially inside the external tooth portion 47 and at a position where the external tooth portion 47 and the axial position overlap. In the first embodiment, the accommodation space 65 accommodates the base 57 and the first protrusion 58. The input side sliding surface 61 and the accommodation space 65 are provided so as to completely coincide with the external tooth portion 47 in the axial direction. The oldham mechanism 45 is contained within the axial width of the base portion 57 and the flange portion 55.
 第1突起部58の先端部の周方向幅は、基端部の周方向幅と比べて大きくなっている。第1中間摺動面63は、第1突起部58の先端部の周方向両側に形成されている。第1中間摺動面63は、軸方向に見て凸曲面になっており、平面である入力側摺動面61に線接触している。 The circumferential width of the tip of the first protrusion 58 is larger than the circumferential width of the base end. The first intermediate sliding surface 63 is formed on both sides in the circumferential direction of the tip end portion of the first protrusion 58. The first intermediate sliding surface 63 has a convex curved surface when viewed in the axial direction, and is in line contact with the flat input side sliding surface 61.
 第2突起部59の先端部の周方向幅は、基端部の周方向幅と比べて大きくなっている。第2中間摺動面64は、第2突起部59の先端部の周方向両側に形成されている。第2中間摺動面64は、軸方向に見て凸曲面になっており、平面である出力側摺動面62に線接触している。 The circumferential width of the tip of the second protrusion 59 is larger than the circumferential width of the base end. The second intermediate sliding surface 64 is formed on both sides in the circumferential direction of the tip end portion of the second protrusion 59. The second intermediate sliding surface 64 has a convex curved surface when viewed in the axial direction, and is in line contact with the flat output side sliding surface 62.
 第1突起部58および第2突起部59の径方向外側の先端には凹部69が形成されている。凹部69の最も深い部分(すなわち最も径方向内側に位置する部分)を最深部とすると、上記最深部の周方向両側は当該最深部に向けて連続的に深くなる傾斜面になっている。第1実施形態では、凹部69は凹曲面を形成している。凹部69は、中間継手56を組み付けるとき、把持部および位置決め部として機能する。 A recess 69 is formed at the radial outer tips of the first protrusion 58 and the second protrusion 59. Assuming that the deepest portion of the recess 69 (that is, the portion located on the innermost side in the radial direction) is the deepest portion, both sides of the deepest portion in the circumferential direction are inclined surfaces that are continuously deepened toward the deepest portion. In the first embodiment, the recess 69 forms a concave curved surface. The recess 69 functions as a gripping portion and a positioning portion when the intermediate joint 56 is assembled.
 (効果)
 以上説明したように、第1実施形態では、偏心ギア43は、入力側摺動面61と、中間継手56の少なくとも一部を収容する収容空間65とを、外歯部47に対して径方向内側であって外歯部47と軸方向位置が重なる位置に有する。このように中間継手56の少なくとも一部を偏心ギア43の外歯部47に対して径方向内側の空間に収容することで、オルダム機構45を用いた場合であっても減速機40の軸方向サイズを抑えることができる。そのため、回転式アクチュエータ10の軸方向サイズの大型化を抑制することができる。
(effect)
As described above, in the first embodiment, the eccentric gear 43 has the input side sliding surface 61 and the accommodation space 65 accommodating at least a part of the intermediate joint 56 in the radial direction with respect to the external tooth portion 47. It is provided at a position on the inside where the external tooth portion 47 and the axial position overlap. By accommodating at least a part of the intermediate joint 56 in the space inside the radial direction with respect to the outer tooth portion 47 of the eccentric gear 43 in this way, even when the Oldham mechanism 45 is used, the axial direction of the speed reducer 40 The size can be reduced. Therefore, it is possible to suppress an increase in the axial size of the rotary actuator 10.
 また、第1実施形態では、入力側摺動面61が偏心ギア43に形成され、出力側摺動面62が出力部材44に形成されている。そのため、別部材を用いて入力側摺動面61および出力側摺動面62を設ける形態と比べると部品数を低減できる。 Further, in the first embodiment, the input side sliding surface 61 is formed on the eccentric gear 43, and the output side sliding surface 62 is formed on the output member 44. Therefore, the number of parts can be reduced as compared with the form in which the input side sliding surface 61 and the output side sliding surface 62 are provided by using separate members.
 また、第1実施形態では、第1突起部58は基部57から径方向外側に突き出すように設けられている。そのため、入力側回転体に対して軸方向に隣接するように中間継手の基部が配置されて、基部から入力側回転体に向けて軸方向に突き出すように突起部が設けられる形態と比べると、第1突起部58の根元に発生する応力が小さくなり耐久性が向上する。 Further, in the first embodiment, the first protrusion 58 is provided so as to protrude outward in the radial direction from the base 57. Therefore, as compared with the form in which the base portion of the intermediate joint is arranged so as to be adjacent to the input side rotating body in the axial direction and the protrusion is provided so as to protrude in the axial direction from the base portion toward the input side rotating body. The stress generated at the base of the first protrusion 58 is reduced, and the durability is improved.
 また、第1実施形態では、第1突起部58および第2突起部59の径方向外側の先端には凹部69が形成されている。中間継手56を組み付けるとき凹部69を把持部および位置決め部として用いることで、組み付け性が向上する。 Further, in the first embodiment, a recess 69 is formed at the radial outer tips of the first protrusion 58 and the second protrusion 59. When the intermediate joint 56 is assembled, the recess 69 is used as a gripping portion and a positioning portion to improve the assembling property.
 ここで、オルダム機構の部品間の摺動に関し、摺動面同士が2つの平面からなる形態では、各部品の寸法ばらつきに起因してどこが摺動するかわからない構造になる。そのため、部品の磨耗部位を絞り込むことができず、耐磨耗性を向上させるには摺動面全体の寸法精度を上げる必要がある。また、異常磨耗が懸念される。 Here, regarding the sliding between the parts of the Oldham mechanism, in the form in which the sliding surfaces are composed of two planes, the structure is such that it is not known where the sliding surfaces slide due to the dimensional variation of each part. Therefore, it is not possible to narrow down the wear parts of the parts, and it is necessary to improve the dimensional accuracy of the entire sliding surface in order to improve the wear resistance. In addition, there is concern about abnormal wear.
 これに対して第1実施形態では、第1中間摺動面63および入力側摺動面61の一方は凸曲面であり、第2中間摺動面64および出力側摺動面62の一方は凸曲面である。これにより、第1中間摺動面63と入力側摺動面61は線接触し、第2中間摺動面64と出力側摺動面62は線接触する。そのため、各部品の寸法ばらつきによる摺動面の面圧ばらつきを低減させ、かつ摺動面の摺動範囲を限定することができる。摺動範囲を限定することで、設計が容易になり、また部品の加工性が向上する。 On the other hand, in the first embodiment, one of the first intermediate sliding surface 63 and the input side sliding surface 61 is a convex curved surface, and one of the second intermediate sliding surface 64 and the output side sliding surface 62 is convex. It is a curved surface. As a result, the first intermediate sliding surface 63 and the input side sliding surface 61 are in line contact, and the second intermediate sliding surface 64 and the output side sliding surface 62 are in line contact. Therefore, it is possible to reduce the variation in the surface pressure of the sliding surface due to the variation in the dimensions of each component and limit the sliding range of the sliding surface. By limiting the sliding range, design becomes easier and the workability of parts is improved.
 [第2実施形態]
 第2実施形態では、図6に示すように偏心ギア43には、偏心軸心AX2を挟んで対向する位置に形成された入力側摺動面61と、入力側摺動面61とは異なる周方向位置において偏心軸心AX2を挟んで対向する位置に形成された入力側予備摺動面71とが設けられている。入力側予備摺動面71は、予備の摺動面であって、入力側摺動面61と同じ形状になっている。また、偏心ギア43には、周方向において入力側摺動面61と入力側予備摺動面71との間に肉抜き孔75が形成されている。このように予備の摺動面が設けられることで、偏心ギア43と中間継手56の組み付け性が向上する。また、入力側予備摺動面71と肉抜き孔75が設けられることで偏心ギア43を軽量化できる。
[Second Embodiment]
In the second embodiment, as shown in FIG. 6, the eccentric gear 43 has an input side sliding surface 61 formed at a position facing the eccentric axis AX2 and a circumference different from the input side sliding surface 61. An input-side preliminary sliding surface 71 formed at a position facing the eccentric axis AX2 at a directional position is provided. The input-side spare sliding surface 71 is a spare sliding surface and has the same shape as the input-side sliding surface 61. Further, the eccentric gear 43 is formed with a lightening hole 75 between the input side sliding surface 61 and the input side preliminary sliding surface 71 in the circumferential direction. By providing the spare sliding surface in this way, the assembling property of the eccentric gear 43 and the intermediate joint 56 is improved. Further, the weight of the eccentric gear 43 can be reduced by providing the input side preliminary sliding surface 71 and the lightening hole 75.
 図7に示すように出力部材44には、偏心軸心AX2を挟んで対向する位置に形成された出力側摺動面62と、出力側摺動面62とは異なる周方向位置において偏心軸心AX2を挟んで対向する位置に形成された出力側予備摺動面72とが設けられている。出力側予備摺動面72は、予備の摺動面であって、出力側摺動面62と同じ形状になっている。このように予備の摺動面が設けられることで、出力部材44と中間継手56の組み付け性が向上する。また、出力側予備摺動面72が設けられることで出力部材44を軽量化できる。 As shown in FIG. 7, the output member 44 has an output side sliding surface 62 formed at a position facing the eccentric axis AX2 and an eccentric axis at a position different from the output side sliding surface 62 in the circumferential direction. An output-side preliminary sliding surface 72 formed at a position facing the AX2 is provided. The output side spare sliding surface 72 is a spare sliding surface and has the same shape as the output side sliding surface 62. By providing the spare sliding surface in this way, the assembling property of the output member 44 and the intermediate joint 56 is improved. Further, the output member 44 can be reduced in weight by providing the output side spare sliding surface 72.
 [第3実施形態]
 第3実施形態では、図8に示すように切欠き空間87のうち入力側摺動面61に対して径方向内側に位置する部分81の幅W1は、切欠き空間87のうち入力側摺動面61に対応する部分82の幅W2と比べて大きい。これにより、入力側摺動面61以外の部分82は、入力側摺動面61にかかわらず任意の形状にすることが可能となる。そのため、部分82の形状簡素化により切欠き空間87の加工が容易となる。
[Third Embodiment]
In the third embodiment, as shown in FIG. 8, the width W1 of the portion 81 of the notch space 87 located radially inside with respect to the input side sliding surface 61 is the input side sliding of the notch space 87. It is larger than the width W2 of the portion 82 corresponding to the surface 61. As a result, the portion 82 other than the input side sliding surface 61 can have an arbitrary shape regardless of the input side sliding surface 61. Therefore, the notch space 87 can be easily machined by simplifying the shape of the portion 82.
 図9に示すように切欠き空間88のうち出力側摺動面62に対して径方向内側に位置する部分83の幅W3は、切欠き空間88のうち出力側摺動面62に対応する部分84の幅W4と比べて大きい。これにより、出力側摺動面62以外の部分84は、出力側摺動面62にかかわらず任意の形状にすることが可能となる。そのため、部分84の形状簡素化により切欠き空間88の加工が容易となる。 As shown in FIG. 9, the width W3 of the portion 83 of the notch space 88 located radially inside with respect to the output side sliding surface 62 is the portion of the notch space 88 corresponding to the output side sliding surface 62. It is larger than the width W4 of 84. As a result, the portion 84 other than the output side sliding surface 62 can have an arbitrary shape regardless of the output side sliding surface 62. Therefore, the notch space 88 can be easily machined by simplifying the shape of the portion 84.
 [第4実施形態]
 第4実施形態では、図10および図11に示すように中間継手56は、偏心ギア43に向かって軸方向に突き出し、中間継手56と偏心ギア43とが周方向において部分的に接触するように設けられた入力側突起91を形成している。このように入力側突起91が設けられることで、中間継手56と偏心ギア43との摺動抵抗が低減して摺動性が向上する。
[Fourth Embodiment]
In the fourth embodiment, as shown in FIGS. 10 and 11, the intermediate joint 56 projects axially toward the eccentric gear 43 so that the intermediate joint 56 and the eccentric gear 43 partially contact each other in the circumferential direction. The provided input side protrusion 91 is formed. By providing the input side protrusion 91 in this way, the sliding resistance between the intermediate joint 56 and the eccentric gear 43 is reduced, and the slidability is improved.
 図10および図12に示すように中間継手56は、出力部材44に向かって軸方向に突き出し、中間継手56と出力部材44とが周方向において部分的に接触するように設けられた出力側突起92を形成している。このように出力側突起92が設けられることで、中間継手56と出力部材44との摺動抵抗が低減して摺動性が向上する。 As shown in FIGS. 10 and 12, the intermediate joint 56 protrudes in the axial direction toward the output member 44, and the output side protrusion provided so that the intermediate joint 56 and the output member 44 partially contact each other in the circumferential direction. It forms 92. By providing the output side protrusion 92 in this way, the sliding resistance between the intermediate joint 56 and the output member 44 is reduced, and the slidability is improved.
 さらに、入力側突起91および出力側突起92の高さを管理することで、偏心ギア43と中間継手56との噛み合い長さ、および出力部材44と中間継手56との噛み合い長さを容易に管理し、摺動面の面圧増加を抑えることができる。これにより伝達効率悪化を防止できる。 Further, by managing the heights of the input side protrusion 91 and the output side protrusion 92, the meshing length between the eccentric gear 43 and the intermediate joint 56 and the meshing length between the output member 44 and the intermediate joint 56 can be easily managed. Therefore, it is possible to suppress an increase in the surface pressure of the sliding surface. As a result, deterioration of transmission efficiency can be prevented.
 [他の実施形態]
 他の実施形態では、偏心ギアの収容空間は中間継手の基部および第1突起部の一部を収容していてもよい。入力側摺動面および収容空間は、外歯部と軸方向位置の一部が重なっていてもよい。それでも減速機の軸方向サイズを抑えることができる。
[Other Embodiments]
In other embodiments, the accommodation space for the eccentric gear may accommodate a portion of the base and first protrusion of the intermediate joint. The input side sliding surface and the accommodation space may partially overlap the external tooth portion in the axial position. Nevertheless, the axial size of the reducer can be suppressed.
 第1実施形態では、第1中間摺動面および第2中間摺動面が凸曲面であった。これに対して他の実施形態では、入力側摺動面および出力側摺動面が凸曲面であってもよい。 In the first embodiment, the first intermediate sliding surface and the second intermediate sliding surface are convex curved surfaces. On the other hand, in other embodiments, the input side sliding surface and the output side sliding surface may be convex curved surfaces.
 第4実施形態では、中間継手に入力側突起および出力側突起が形成されていた。これに対して他の実施形態では、偏心ギアに入力側突起が形成され、出力部材に出力側突起が形成されてもよい。 In the fourth embodiment, the input side protrusion and the output side protrusion are formed on the intermediate joint. On the other hand, in another embodiment, the input side protrusion may be formed on the eccentric gear, and the output side protrusion may be formed on the output member.
 本開示は、実施形態に基づき記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 This disclosure has been described based on embodiments. However, the present disclosure is not limited to such embodiments and structures. The present disclosure also includes various variations and variations within an equal range. Also, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are within the scope and ideology of the present disclosure.

Claims (7)

  1.  モータ(30)と、前記モータの回転を減速して出力する減速機(40)とを備える回転式アクチュエータであって、
     前記減速機は、前記モータの回転軸心(AX1)と同軸に設けられたリングギア(42)と、前記回転軸心に対して偏心して設けられ、前記リングギアの内歯部(46)と噛み合う外歯部(47)を有し、前記モータが回転すると偏心軸心(AX2)まわりに減速して回転する偏心ギア(43)と、前記回転軸心と同軸または平行に設けられた出力部材(44)と、前記偏心ギアの前記偏心軸心まわりの回転を前記出力部材に伝達するオルダム機構(45)とを備え、
     前記オルダム機構は、前記偏心ギアに形成された入力側摺動面(61)と、前記出力部材に形成された出力側摺動面(62)と、前記入力側摺動面と径方向に摺動可能な第1中間摺動面(63)、および前記出力側摺動面と径方向に摺動可能な第2中間摺動面(64)を有する中間継手(56)とを含み、
     前記偏心ギアは、前記入力側摺動面と、前記中間継手の少なくとも一部を収容する収容空間(65)とを、前記外歯部に対して径方向内側であって前記外歯部と軸方向位置が重なる位置に有する回転式アクチュエータ。
    A rotary actuator including a motor (30) and a speed reducer (40) that decelerates and outputs the rotation of the motor.
    The speed reducer is provided with a ring gear (42) coaxially provided with the rotation axis (AX1) of the motor, and an internal tooth portion (46) of the ring gear provided eccentrically with respect to the rotation axis. An eccentric gear (43) having an meshing external tooth portion (47) and decelerating and rotating around an eccentric axis (AX2) when the motor rotates, and an output member provided coaxially or parallel to the rotation axis. (44) and an old dam mechanism (45) that transmits the rotation of the eccentric gear around the eccentric axis to the output member.
    The Oldham mechanism slides in the radial direction with the input side sliding surface (61) formed on the eccentric gear, the output side sliding surface (62) formed on the output member, and the input side sliding surface. It includes a movable first intermediate sliding surface (63) and an intermediate joint (56) having the output side sliding surface and a second intermediate sliding surface (64) slidable in the radial direction.
    The eccentric gear has the input side sliding surface and the accommodation space (65) accommodating at least a part of the intermediate joint radially inside with respect to the external tooth portion, and has the external tooth portion and the shaft. A rotary actuator held at a position where the directional positions overlap.
  2.  前記偏心ギアは、前記偏心軸心まわりに回転可能に支持された軸支持部(51)と、前記軸支持部と同じ軸方向位置に設けられた前記外歯部と、前記軸支持部と前記外歯部とを接続し、前記外歯部に対して軸方向に膨出するように設けられ、前記収容空間を区画する膨出部(53)とを形成し、
     前記膨出部は、前記モータのコイルエンド(39)に対して径方向内側の空間(28)に配置されている請求項1に記載の回転式アクチュエータ。
    The eccentric gear includes a shaft support portion (51) rotatably supported around the eccentric shaft center, the external tooth portion provided at the same axial position as the shaft support portion, the shaft support portion, and the shaft support portion. It is connected to the external tooth portion and is provided so as to bulge in the axial direction with respect to the external tooth portion to form a bulging portion (53) that partitions the accommodation space.
    The rotary actuator according to claim 1, wherein the bulging portion is arranged in a space (28) radially inside the coil end (39) of the motor.
  3.  前記中間継手は、前記収容空間に収容された環状の基部(57)と、前記基部から径方向外側に突き出し、前記第1中間摺動面が形成された第1突起部(58)と、前記基部から前記出力部材側に突き出し、前記第2中間摺動面が形成された第2突起部(59)とを有し、
     前記第1突起部または前記第2突起部の先端には凹部(69)が形成されている請求項1または2に記載の回転式アクチュエータ。
    The intermediate joint includes an annular base portion (57) accommodated in the accommodation space, a first protrusion portion (58) protruding radially outward from the base portion, and a first protrusion portion (58) on which the first intermediate sliding surface is formed. It has a second protrusion (59) protruding from the base toward the output member and formed with the second intermediate sliding surface.
    The rotary actuator according to claim 1 or 2, wherein a recess (69) is formed at the tip of the first protrusion or the tip of the second protrusion.
  4.  前記偏心ギアには、前記偏心軸心を挟んで対向する位置に形成された前記入力側摺動面と、前記入力側摺動面とは異なる周方向位置において前記偏心軸心を挟んで対向する位置に形成された入力側予備摺動面(71)とが設けられ、
     前記出力部材には、前記偏心軸心を挟んで対向する位置に形成された前記出力側摺動面と、前記出力側摺動面とは異なる周方向位置において前記偏心軸心を挟んで対向する位置に形成された出力側予備摺動面(72)とが設けられている請求項1~3のいずれか一項に記載の回転式アクチュエータ。
    The eccentric gear faces the input-side sliding surface formed at a position facing the eccentric axis with the eccentric axis in between, and the input-side sliding surface facing the eccentric gear at a position different from the input-side sliding surface in the circumferential direction. An input side spare sliding surface (71) formed at the position is provided.
    The output member faces the output-side sliding surface formed at a position facing the eccentric axis so as to sandwich the eccentric axis at a position different from the output-side sliding surface in the circumferential direction. The rotary actuator according to any one of claims 1 to 3, which is provided with an output-side preliminary sliding surface (72) formed at a position.
  5.  前記収容空間は、環状空間(66)と、前記環状空間から径方向外側に延びる切欠き空間(87)とを含み、
     前記切欠き空間を区画する壁面には前記入力側摺動面が含まれ、
     前記切欠き空間のうち前記入力側摺動面に対して径方向内側に位置する部分(81)の幅(W1)は、前記切欠き空間のうち前記入力側摺動面に対応する部分(82)の幅(W2)と比べて大きい請求項1~4のいずれか一項に記載の回転式アクチュエータ。
    The accommodation space includes an annular space (66) and a notched space (87) extending radially outward from the annular space.
    The wall surface that partitions the notch space includes the input side sliding surface, and the wall surface comprises the input side sliding surface.
    The width (W1) of the portion (81) of the notch space located radially inside with respect to the input side sliding surface is the portion (82) of the notch space corresponding to the input side sliding surface. The rotary actuator according to any one of claims 1 to 4, which is larger than the width (W2) of).
  6.  前記中間継手および前記偏心ギアの一方は、他方に向かって軸方向に突き出し、前記中間継手と前記偏心ギアとが周方向において部分的に接触するように設けられた入力側突起(91)を形成し、
     前記中間継手および前記出力部材の一方は、他方に向かって軸方向に突き出し、前記中間継手と前記出力部材とが周方向において部分的に接触するように設けられた出力側突起(92)を形成している請求項1~5のいずれか一項に記載の回転式アクチュエータ。
    One of the intermediate joint and the eccentric gear protrudes in the axial direction toward the other to form an input side protrusion (91) provided so that the intermediate joint and the eccentric gear are partially in contact with each other in the circumferential direction. And
    One of the intermediate joint and the output member protrudes in the axial direction toward the other to form an output side protrusion (92) provided so that the intermediate joint and the output member are partially in contact with each other in the circumferential direction. The rotary actuator according to any one of claims 1 to 5.
  7.  前記第1中間摺動面および前記入力側摺動面の一方は凸曲面であり、
     前記第2中間摺動面および前記出力側摺動面の一方は凸曲面である請求項1~6のいずれか一項に記載の回転式アクチュエータ。
    One of the first intermediate sliding surface and the input side sliding surface is a convex curved surface.
    The rotary actuator according to any one of claims 1 to 6, wherein one of the second intermediate sliding surface and the output side sliding surface is a convex curved surface.
PCT/JP2020/041529 2019-11-15 2020-11-06 Rotary actuator WO2021095653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-206915 2019-11-15
JP2019206915A JP7156253B2 (en) 2019-11-15 2019-11-15 rotary actuator

Publications (1)

Publication Number Publication Date
WO2021095653A1 true WO2021095653A1 (en) 2021-05-20

Family

ID=75912869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041529 WO2021095653A1 (en) 2019-11-15 2020-11-06 Rotary actuator

Country Status (2)

Country Link
JP (1) JP7156253B2 (en)
WO (1) WO2021095653A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243486U (en) * 1988-09-20 1990-03-26
JPH02161189A (en) * 1988-12-13 1990-06-21 Shin Meiwa Ind Co Ltd Scroll type fluid device
JPH0526304A (en) * 1991-07-16 1993-02-02 Nitta Ind Corp Hypocycloid speed reducer
JP2005282601A (en) * 2004-03-26 2005-10-13 Denso Corp Rotary type actuator
JP2008185205A (en) * 2007-01-26 2008-08-14 Kinzo Shinozuka Oldham's coupling with reduced fitting friction
JP2016075369A (en) * 2014-10-08 2016-05-12 株式会社デンソー Inscription engagement planetary gear mechanism
JP2019044801A (en) * 2017-08-30 2019-03-22 株式会社デンソー Eccentric oscillation type speed reduction device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243486U (en) * 1988-09-20 1990-03-26
JPH02161189A (en) * 1988-12-13 1990-06-21 Shin Meiwa Ind Co Ltd Scroll type fluid device
JPH0526304A (en) * 1991-07-16 1993-02-02 Nitta Ind Corp Hypocycloid speed reducer
JP2005282601A (en) * 2004-03-26 2005-10-13 Denso Corp Rotary type actuator
JP2008185205A (en) * 2007-01-26 2008-08-14 Kinzo Shinozuka Oldham's coupling with reduced fitting friction
JP2016075369A (en) * 2014-10-08 2016-05-12 株式会社デンソー Inscription engagement planetary gear mechanism
JP2019044801A (en) * 2017-08-30 2019-03-22 株式会社デンソー Eccentric oscillation type speed reduction device

Also Published As

Publication number Publication date
JP7156253B2 (en) 2022-10-19
JP2021080957A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
US20090178506A1 (en) Robot joint drive system
US8598755B2 (en) Electric rotary actuator
EP2450595B1 (en) Planetary gear mechanism
JP5065692B2 (en) Geared motor
EP3399211B1 (en) Cycloid speed reducer
CN111120583B (en) Speed reducer and electromechanical device
WO2020129661A1 (en) Actuator for variable compression mechanism of internal combustion engine and speed reducer
EP3480924B1 (en) Speed reducing device having power source
JP6176266B2 (en) Planetary gear unit
WO2021095653A1 (en) Rotary actuator
CN110230663B (en) Speed reducer
WO2014087315A2 (en) Hypocycloidal drive mechanism
JP4185116B2 (en) Geared motor and robot geared motor
CN107709830B (en) Transmission device
EP2581253A1 (en) Wheel driving speed reducer
CN111162631B (en) Speed reducer with power source
WO2021095654A1 (en) Rotary actuator
JP2014092208A (en) Wave gear device, and transmission ratio variable device
JP7211753B2 (en) Gear unit and its assembly method
JP2020128817A (en) Transmission device, drive unit, and movable unit
JP6330698B2 (en) Inscribed mesh planetary gear mechanism
KR102534827B1 (en) Rotary type reduction actuator
KR102552219B1 (en) Harmonic reducer that can improve meshing precision
JP2023144282A (en) gear motor
CN118214211A (en) Driving unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887727

Country of ref document: EP

Kind code of ref document: A1