WO2021095635A1 - Vanillin production method - Google Patents

Vanillin production method Download PDF

Info

Publication number
WO2021095635A1
WO2021095635A1 PCT/JP2020/041356 JP2020041356W WO2021095635A1 WO 2021095635 A1 WO2021095635 A1 WO 2021095635A1 JP 2020041356 W JP2020041356 W JP 2020041356W WO 2021095635 A1 WO2021095635 A1 WO 2021095635A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanillin
gene
protein
precursor
producing
Prior art date
Application number
PCT/JP2020/041356
Other languages
French (fr)
Japanese (ja)
Inventor
晋也 山出
啓太 福井
俊彦 西村
拓人 小野
洋一 幸原
克己 小林
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2021095635A1 publication Critical patent/WO2021095635A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group

Definitions

  • the present invention relates to a method for producing vanillin using a microorganism.
  • Vanillin is the main component of the scent of vanilla, and is used as a fragrance in foods and drinks and perfumes. Vanillin is mainly produced by extraction from natural products or chemical synthesis.
  • vanillin can be produced from a vanillin precursor such as vanillic acid by utilizing a microorganism such as Corynebacterium glutamicum.
  • Non-Patent Documents 1 and 2 are used in culturing microorganisms, for example, as a nitrogen source or for pH adjustment.
  • ammonia may cause inhibition of microbial growth at high concentrations (Non-Patent Documents 1 and 2).
  • Corynebacterium glutamicum is not inhibited by 100 mM ammonia (Non-Patent Document 1), but is inhibited by 1 M ammonia (Non-Patent Document 2).
  • GDH glutamate dehydrogenase
  • An object of the present invention is to develop a novel technique for improving the production of vanillin by microorganisms and to provide an efficient method for producing vanillin.
  • the present inventors have found that the production of vanillin by the microorganism is improved by reducing the ammonia concentration during the production of vanillin using the microorganism, and completed the present invention.
  • the present invention can be exemplified as follows.
  • It a method of making vanillin. Including the production of vanillin using microorganisms capable of producing vanillin, A method in which the production is carried out under conditions where the ammonia concentration is reduced.
  • the method according to the method wherein the ammonia concentration during the production is 700 mM or less.
  • the method according to the method wherein the ammonia concentration during the production is 400 mM or less.
  • the method according to the method, wherein the ammonia concentration during the production is 100 mM or less.
  • the method, wherein the production comprises converting the vanillin precursor to vanillin using the microorganism.
  • the method, wherein the conversion comprises culturing the microorganism in a medium containing the precursor and producing and accumulating vanillin in the medium.
  • the method, wherein the conversion comprises causing the bacterial cells of the microorganism to act on the precursor in the reaction solution and producing and accumulating vanillin in the reaction solution.
  • the method as described above, wherein the cells are used in the form of a culture solution of the microorganism, cells recovered from the culture solution, processed products thereof, or a combination thereof.
  • the method, wherein the precursor is vanillic acid.
  • the method, wherein the precursor is produced using a microorganism capable of producing the precursor.
  • the method which further comprises producing the precursor using a microorganism capable of producing the precursor prior to the production of the vanillin.
  • the method wherein the precursor is produced under conditions where the ammonia concentration is reduced.
  • the precursor is used in the form of a material containing the precursor.
  • the method as described above, wherein the material is a culture or reaction solution containing the precursor, a supernatant separated from the culture solution or reaction solution, a processed product thereof, or a combination thereof.
  • the method according to the method wherein the content of ammonia in the material is 300% or less as a molar ratio to the content of the precursor in the material.
  • the method, wherein the production of vanillin comprises culturing a microorganism capable of producing the vanillin in a medium containing a carbon source, and producing and accumulating vanillin in the medium. [16] The method, further comprising recovering vanillin. [17] The method, wherein the microorganism capable of producing the vanillin is a bacterium or yeast. [18] The method, wherein the microorganism capable of producing the vanillin is a coryneform bacterium or a bacterium of the Enterobacteriaceae family.
  • the microorganism capable of producing the vanillin is a bacterium belonging to the genus Corynebacterium or a bacterium belonging to the genus Escherichia.
  • the method, wherein the microorganism capable of producing the vanillin is Corynebacterium glutamicum or Escherichia coli.
  • the method, wherein the microorganism capable of producing vanillin has been modified to increase the activity of aromatic carboxylic acid reductase and / or phosphopantetinyltransferase as compared to the unmodified strain.
  • the microorganism capable of producing the vanillin has been modified such that the activity of vanillate demethylase and / or alcohol dehydrogenase is reduced as compared to the unmodified strain.
  • the method described herein is a method for producing vanillin, which comprises producing vanillin using a microorganism capable of producing vanillin, and the production is carried out under conditions in which the ammonia concentration is reduced. , May be the method.
  • the method described herein is a method for improving the production of vanillin, which comprises producing vanillin using a microorganism capable of producing vanillin, the production of which has reduced the ammonia concentration. It may be a method carried out under conditions.
  • Vanillin can be specifically produced from carbon sources and / or vanillin precursors, for example, utilizing microorganisms capable of producing vanillin.
  • the vanillin precursor can be produced, for example, by utilizing a microorganism capable of producing the vanillin precursor.
  • Vanillin precursors can be specifically produced from carbon sources and / or additional precursors of vanillin precursors, for example, utilizing microorganisms capable of producing vanillin precursors.
  • Vanillin or vanillin precursor is also referred to as "target substance”.
  • a method for producing a target substance that is, vanillin or a vanillin precursor
  • a target substance that is, vanillin or a vanillin precursor
  • a microorganism having an ability to produce a target substance that is, vanillin or a vanillin precursor
  • the following description of the method for producing the target substance is a description of the method described in the present specification (for example, a method for producing vanillin) and the method described in the present specification (for example, a method for producing vanillin). Also serves as an explanation of the method for producing the vanillin precursor used in the above.
  • microorganism used for producing the target substance is a microorganism having an ability to produce the target substance.
  • the ability to produce a target substance is also called "target substance producing ability”.
  • Microorganisms capable of producing a target substance may mean a microorganism capable of producing a target substance.
  • the "microorganism capable of producing the target substance” may mean a microorganism capable of producing the target substance by fermentation when the microorganism is used in the fermentation method. That is, the “microorganism capable of producing a target substance” may mean, for example, a microorganism capable of producing a target substance from a carbon source. Specifically, the “microorganism capable of producing a target substance” means that, for example, when cultured in a medium (for example, a medium containing a carbon source), the target substance is produced and accumulated in the medium to the extent that it can be recovered. May mean a microorganism that can.
  • the "microorganism capable of producing a target substance” may mean a microorganism capable of producing a target substance by biological conversion when the microorganism is used in a biological conversion method. That is, the “microorganism capable of producing a target substance” may mean, for example, a microorganism capable of producing a target substance from a precursor of the target substance. Specifically, the “microorganism capable of producing a target substance” is a medium that can produce and recover the target substance when cultured in, for example, a medium (for example, a medium containing a precursor of the target substance). It may mean a microorganism that can accumulate in it.
  • the “microorganism capable of producing the target substance” is specifically, for example, in the reaction solution to the extent that the target substance can be produced and recovered when it is allowed to act on the precursor of the target substance in the reaction solution. It may mean a microorganism that can accumulate in.
  • a microorganism capable of producing a target substance may be capable of accumulating a target substance in an amount of 0.01 g / L or more, 0.05 g / L or more, or 0.09 g / L or more in a medium or a reaction solution, for example.
  • Tiget substance means vanillin or vanillin precursor.
  • the "vanillin precursor” may mean a compound that can be converted to vanillin by biological conversion using a microorganism. Examples of vanillin precursors include protocatechuic acid, vanillic acid, and protocatechuic aldehyde. Vanillin precursors include, in particular, vanillic acid.
  • the microorganism may be capable of producing only one target substance, or may be capable of producing two or more target substances. Further, the microorganism may be able to produce the target substance from one kind of target substance precursor, or may be able to produce the target substance from two or more kinds of target substance precursors.
  • the target substance when the target substance is a compound that can take the form of a salt, the target substance may be obtained as a free form, a salt, or a mixture thereof. That is, unless otherwise specified, the "target substance” may mean a free target substance, a salt thereof, or a mixture thereof.
  • the salt include an ammonium salt, a sodium salt, and a potassium salt.
  • the salt of the target substance include salts other than ammonium salts.
  • one kind of salt may be used, or two kinds or more kinds of salts may be used in combination.
  • microorganism used for producing the target substance or the microorganism used as the parent strain for constructing the target substance is not particularly limited.
  • microorganisms include bacteria and yeast.
  • Bacteria include bacteria belonging to the family Enterobacteriaceae and coryneform bacteria.
  • NCBI National Center for Biotechnology Information
  • Bacteria of the genus Escherichia are not particularly limited, but examples thereof include bacteria classified into the genus Escherichia according to a classification known to microbiology experts.
  • Escherichia bacteria include the books of Neidhardt et al. (Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1.
  • F. D. Neidhardt. (ed.) Escherichia coli and Salmonella Cellular and Molecular Biology / Second Edition, American Society for Microbiology Press, Washington, DC).
  • Examples of the bacterium belonging to the genus Escherichia include Escherichia coli.
  • Escherichia coli for example, Escherichia coli K-12 strain such as W3110 strain (ATCC 27325) and MG1655 strain (ATCC 47076); Etc. Escherichia coli B strain; and their derivatives.
  • Escherichia coli K-12 strain such as W3110 strain (ATCC 27325) and MG1655 strain (ATCC 47076); Etc. Escherichia coli B strain; and their derivatives.
  • Bacteria of the genus Enterobacter include, but are not particularly limited, bacteria classified into the genus Enterobacter according to a classification known to microbiology experts.
  • Enterobacter genus bacteria include Enterobacter agglomerans and Enterobacter aerogenes.
  • Specific examples of Enterobacter agglomerans include the Enterobacter agglomerans ATCC12287 strain.
  • Specific examples of Enterobacter aerogenes include Enterobacter aerogenes ATCC13048 strain, NBRC12010 strain (Biotechonol Bioeng. 2007 Mar 27; 98 (2) 340-348), and AJ110637 strain (FERM BP-10955).
  • Enterobacter bacteria include those described in European Patent Application Publication No. EP0952221. Some Enterobacter agglomerans are classified as Pantoea agglomerans.
  • Bacteria belonging to the genus Pantoea include, but are not particularly limited, bacteria classified into the genus Pantoea according to a classification known to microbiology experts.
  • Pantoea bacteria include Pantoea ananatis, Pantoea stewartii, Pantoea agglomerans, and Pantoea citrea.
  • Pantoea ananatis for example, Pantoea ananatis LMG20103 strain, AJ13355 strain (FERM BP-6614), AJ13356 strain (FERM BP-6615), AJ13601 strain (FERM BP-7207), SC17 strain (FERM BP-6614) -11091), SC17 (0) strain (VKPM B-9246), and SC17sucA strain (FERM BP-8646).
  • Some Enterobacter and Elvinia bacteria have been reclassified into the genus Pantoea (Int. J. Syst. Bacteriol., 39, 337-345 (1989); Int. J. Syst. Bacteriol. , 43, 162-173 (1993)).
  • Enterobacter agglomerans have recently been reclassified into Pantoea agglomerans, Pantoea ananatis, Pantoea stewarty, etc. based on 16S rRNA sequencing (Int. J. Syst. Bacteriol). ., 39, 337-345 (1989)).
  • Bacteria of the genus Pantoea may also include bacteria thus reclassified into the genus Pantoea.
  • Erwinia bacteria examples include Erwinia amylovora and Erwinia carotovora.
  • Klebsiella examples of the bacterium belonging to the genus Klebsiella include Klebsiella planticola.
  • Bacteria belonging to the family Enterobacteriaceae have been reclassified into multiple families by comprehensive comparative genome analysis in recent years (Adelou M. et al., Genome-based phylogeny and taxonomy of the'Enterobacteriales': proposalal. for Enterobacterales ord. Nov. Divided into the families Enterobacteriaceae, Erwiniaceae fam. Nov., Pectobacteriaceae fam. Nov., Yersiniaceae fam. Nov., Hafniaceae fam. Nov., Morganellaceae . J. Syst. Evol. Microbiol., 2016, 66: 5575-5599).
  • bacteria conventionally classified in the family Enterobacteriaceae are treated as bacteria belonging to the family Enterobacteriaceae.
  • coryneform bacteria examples include bacteria belonging to genera such as Corynebacterium, Brevibacterium, and Microbacterium.
  • coryneform bacterium include the following species. Corynebacterium acetoacidophilum Corynebacterium acetoglutamicum Corynebacterium alkanolyticum Corynebacterium callunae Corynebacterium crenatum Corynebacterium glutamicum Corynebacterium lilium Corynebacterium melassecola Corynebacterium thermoaminogenes (Corynebacterium efficiens) Corynebacterium herculis Brevibacterium divaricatum (Corynebacterium glutamicum) Brevibacterium flavum (Corynebacterium glutamicum) Brevibacterium immariophilum Brevibacterium lactofermentum (Corynebacterium glutamicum) Brevibacterium roseum Brevibacterium saccharolyticum Brevibacterium thiogenitalis Corynebacterium ammoniagenes (Corynebacterium stationis) Brevibacterium album Brevibacterium
  • coryneform bacterium include the following strains. Corynebacterium acetoacidophilum ATCC 13870 Corynebacterium acetoglutamicum ATCC 15806 Corynebacterium alkanolyticum ATCC 21511 Corynebacterium callunae ATCC 15991 Corynebacterium crenatum AS1.542 Corynebacterium glutamicum ATCC 13020, ATCC 13032, ATCC 13060, ATCC 13869, FERM BP-734 Corynebacterium lilium ATCC 15990 Corynebacterium melassecola ATCC 17965 Corynebacterium efficiens (Corynebacterium thermoaminogenes) AJ12340 (FERM BP-1539) Corynebacterium herculis ATCC 13868 Brevibacterium divaricatum (Corynebacterium glutamicum) ATCC 14020 Brevibacterium flavum (Corynebacterium glutamicum)
  • Corynebacterium stationis includes bacteria that were previously classified as Corynebacterium ammoniagenes, but have been reclassified into Corynebacterium stationis by 16S rRNA nucleotide sequence analysis, etc. (Int. J. .Syst. Evol. Microbiol., 60, 874-879 (2010)).
  • the yeast may be budding yeast or fission yeast.
  • the yeast may be a diploid yeast or a diploid or higher polyploid yeast.
  • Yeasts include the genus Saccharomyces cerevisiae and the genus Pichia ciferrii, the genus Pichia sydowiorum, and the genus Pichia pastoris (Pichia pastoris). ), Yeasts belonging to the genus Pichia such as Candida utilis, the genus Pichia such as Hansenula polymorpha, and the genus Pichia such as Schizosaccharomyces pombe. Can be mentioned.
  • strains can be sold from, for example, the American Type Culture Collection (address P.O.Box 1549, Manassas, VA20108, United States of America or atcc.org). That is, a registration number corresponding to each strain is assigned, and this registration number can be used for distribution (see atcc.org/). The registration number for each strain can be found in the American Type Culture Collection catalog. In addition, these strains can be obtained, for example, from the depositary institution where each strain was deposited.
  • the microorganism may be one that originally has the ability to produce the target substance, or may be one that has been modified to have the ability to produce the target substance.
  • a microorganism having a target substance-producing ability can be obtained, for example, by imparting the target substance-producing ability to the above-mentioned microorganism, or by enhancing the target substance-producing ability of the above-mentioned microorganism.
  • the method of imparting or enhancing the target substance production capacity is not particularly limited.
  • a method for imparting or enhancing the target substance-producing ability for example, a known method can be used.
  • Methods for imparting or enhancing the productivity of the target substance are, for example, WO2018 / 099687, WO2018 / 079686, WO2018 / 079685, WO2018 / 099684, WO2018 / 079683, WO2017 / 073701, WO2018 / 079705, US2018-0334693A, and US2019- It is disclosed in 0161776A.
  • the target substance can be produced by the action of enzymes involved in the biosynthesis of the target substance.
  • an enzyme is also referred to as a "target substance biosynthetic enzyme”. Therefore, the microorganism may have a target substance biosynthetic enzyme.
  • the microorganism may have a gene encoding a target substance biosynthetic enzyme.
  • Such a gene is also referred to as a "target substance biosynthesis gene”.
  • the microorganism may be one that originally has a target substance biosynthesis gene, or may be one into which a target substance biosynthesis gene has been introduced. Techniques for introducing genes are described herein.
  • the ability of microorganisms to produce the target substance can be improved by increasing the activity of the target substance biosynthetic enzyme. That is, as a method for imparting or enhancing the target substance-producing ability, there is a method for increasing the activity of the target substance biosynthetic enzyme. That is, the microorganism may be modified so as to increase the activity of the target substance biosynthetic enzyme.
  • the activity of one target substance biosynthetic enzyme may be increased, or the activity of two or more target substance biosynthetic enzymes may be increased.
  • Techniques for increasing the activity of proteins are described herein.
  • the activity of a protein (enzyme, etc.) can be increased, for example, by increasing the expression of the gene encoding the protein.
  • the target substance can be produced, for example, from a carbon source and / or a precursor of the target substance.
  • target substance biosynthetic enzymes include enzymes that catalyze the conversion of carbon sources and / or precursors to target substances.
  • 3-dehydroshikimic acid an intermediate in the vanillin biosynthetic pathway, can be produced by part of the shikimate pathway.
  • Part of the shikimate pathway is 3-deoxy-D-arabino-heptulosonic acid-7-phosphate synthase (3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase; DAHP synthase), 3-dehydroquinate synthase.
  • 3-Dehydroshikimic acid can be converted to protocatechuic acid by the action of 3-dehydroshikimate dehydratase (DHSD).
  • Protocatechuic acid is converted to vanillic acid or protocatechualdehyde by the action of O-methyltransferase (OMT) or aromatic carboxylic acid reductase (ACAR), respectively.
  • OMT O-methyltransferase
  • ACAR aromatic carboxylic acid reductase
  • Vanillic acid or protocatechuic aldehyde can be converted to vanillin by the action of ACAR or OMT, respectively. That is, specific examples of the target substance biosynthetic enzyme include DAHP synthase, 3-dehydroquinate synthase, 3-dehydroquinate dehydrata, DHSD, OMT, and ACAR.
  • DAHP synthase 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase
  • D-erythrose 4-phosphate and phosphoenols It may mean a protein having an activity of catalyzing the reaction of converting pyruvate to D-arabino-hepturonic acid-7-phosphate (DAHP) and phosphoric acid (EC 2.5.1.54, etc.). This activity is also called “DAHP synthase activity”.
  • the gene encoding DAHP synthase is also referred to as "DAHP synthase gene".
  • Examples of DAHP synthase include AroF, AroG, and AroH proteins encoded by the aroF, aroG, and aroH genes, respectively. Of these, the AroG protein can function as the major DAHP synthase.
  • Examples of DAHP synthases such as AroF, AroG, and AroH proteins include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria.
  • Specific examples of DAHP synthase include AroF, AroG, and AroH proteins of E. coli such as E. coli K-12 MG1655 strain.
  • 3-dehydroquinate synthase may mean a protein having an activity of catalyzing a reaction of dephosphorylating DAHP to produce 3-dehydroquinate (EC 4.2.3.4, etc.). .. This activity is also referred to as "3-dehydroquinate synthase activity".
  • the gene encoding 3-dehydroquinate synthase is also referred to as "3-dehydroquinate synthase gene".
  • Examples of 3-dehydroquinate synthase include AroB protein encoded by the aroB gene.
  • 3-dehydroquinate synthases such as AroB protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of 3-dehydroquinate synthase include AroB protein of E. coli such as E. coli K-12 MG1655 strain.
  • 3-dehydroquinate dehydratase may mean a protein having an activity of catalyzing the reaction of dehydrating 3-dehydroquinate to produce 3-dehydroshikimic acid (EC 4.2.1.10). etc). This activity is also referred to as "3-dehydroquinate dehydratase activity".
  • the gene encoding 3-dehydroquinate dehydratase is also referred to as "3-dehydroquinate dehydratase gene".
  • Examples of 3-dehydroquinate dehydratase include the AroD protein encoded by the aroD gene.
  • 3-dehydroquinate dehydratases such as AroD protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of 3-dehydroquinate dehydratase include AroD protein of E. coli such as E. coli K-12 MG1655 strain.
  • DHSD 3-dehydroshikimate dehydratase
  • DHSD includes the AsbF protein encoded by the asbF gene.
  • Examples of DHSD such as AsbF protein include those of various organisms such as Bacillus thuringiensis, Neurospora crassa, and Podospora pauciseta such as Bacillus thuringiensis BMB171 strain.
  • tyrosine repressor TyrR encoded by the tyrR gene. Therefore, the activity of enzymes in the shikimate pathway can also be increased by reducing the activity of the tyrosine repressor TyrR.
  • the tyrosine repressor TyrR include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of the tyrosine repressor TyrR include the E. coli TyrR protein of the E. coli K-12 MG1655 strain.
  • OMT O-methyltransferase
  • OMT activity The gene encoding OMT is also called the "OMT gene”.
  • OMT may have the required substrate specificity, depending on the type of biosynthetic pathway in which the substance of interest is produced. For example, when the method for producing the target substance includes conversion of protocatechuic acid to vanillic acid, at least OMT using protocatechuic acid as a substrate can be used.
  • OMT oxygen transferase
  • MMT oxygen transferase
  • OMT may usually use both protocatechuic acid and protocatechuic aldehyde as substrates, but is not limited to this.
  • Methyl group donors include S-adenosylmethionine (SAM).
  • OMTs include OMTs of various organisms, such as OMTs of Homo sapiens (Hs) (GenBank Accession No. NP_000745, NP_009294), OMTs of Arabidopsis thaliana (GenBank Accession No. NP_200227, NP_009294), and OMTs of Fragaria xananassa (GenBank). No. AAF28353), and various OMTs of mammals, plants, and microorganisms exemplified in WO2013 / 022881. Four transcription variants and two OMT isoforms are known for the Homo sapiens OMT gene.
  • OMT also includes OMT of Bacteroidetes phylum bacteria (ie, bacteria belonging to the Bacteroidetes phylum) (WO2018 / 079683).
  • Bacteroidetes phylum bacteria include bacteria belonging to the genus Niastella, Terrimonas, Chitinophaga, etc. (International Journal of Systematic and Evolutionary Microbiology (2007), 57, 1828-1833).
  • Niastella bacterium include Niastella koreensis.
  • the OMT further includes the mutant OMT described in WO2013 / 022881 or WO2018 / 079683.
  • Aromatic carboxylic acid reductase is a reaction that reduces vanillic acid and / or protocatechuic acid in the presence of an electron donor and ATP to produce vanillin and / or protocatechuic acid. It may mean a protein having a catalytic activity (EC 1.2.99.6, etc.). This activity is also called “ACAR activity”.
  • the gene encoding ACAR is also called “ACAR gene”.
  • ACAR may, but is not limited to, both vanillic acid and protocatechuic acid as substrates. That is, ACAR may have the required substrate specificity depending on the type of biosynthetic pathway in which the target substance is produced.
  • the method for producing the target substance includes conversion of vanillic acid to vanillin, at least ACAR using vanillic acid as a substrate can be used. Further, for example, when the method for producing the target substance includes conversion of protocatechuic acid to protocatechuic acid, at least ACAR using protocatechuic acid as a substrate can be used.
  • electron donors include NADH and NADPH. Examples of electron donors include NADPH.
  • ACAR includes ACAR of various microorganisms such as Nocardia sp. NRRL 5646 strain, Actinomyces sp., Clostridium thermoaceticum, Aspergillus niger, Corynespora melonis, Coriolus sp., Neurospora sp. (J. Biol. Chem. 2007, Vol. 282, No.1, p478-485).
  • the Nocardia sp. NRRL 5646 strain is classified as Nocardia iowensis.
  • ACAR also includes ACAR of other Nocardia bacteria such as Nocardia brasiliensis and Nocardia vulneris. Examples of Nocardia brasiliensis include Nocardia brasiliensis ATCC 700358 strain.
  • ACAR examples include ACAR of Gordonia bacterium such as Gordonia effusa, ACAR of Novosphingobium bacterium such as Novosphingobium malaysiense, and ACAR of Coccoyxa algae such as Coccoyxa subellipsoidea (WO2018 / 079705).
  • the nucleotide sequence of the ACAR gene of Gordonia effusa is shown in SEQ ID NO: 1
  • amino acid sequence of ACAR encoded by the gene is shown in SEQ ID NO: 2.
  • ACAR can become an active enzyme by being phosphopantetinylated (J. Biol. Chem. 2007, Vol. 282, No. 1, p478-485). Therefore, the activity of ACAR can be increased by increasing the activity of an enzyme that catalyzes the phosphopantetinylation of proteins (also referred to as "phosphopantetinylation enzyme"). That is, as a method for imparting or enhancing the target substance-producing ability, a method for increasing the activity of the phosphopantetinylating enzyme can be mentioned. That is, the microorganism may be modified to increase the activity of the phosphopantetinylating enzyme. Examples of the phosphopantetheinyl transferase include phosphopantetheinyl transferase (PPT).
  • PPT phosphopantetheinyl transferase
  • the "phosphopantetheinyl transferase (PPT)” may mean a protein having an activity of catalyzing the reaction of converting ACAR to phosphopantetinyl in the presence of a phosphopantetheinyl group donor. This activity is also called “PPT activity”.
  • the gene encoding PPT is also called "PPT gene”.
  • Examples of the phosphopantetinyl group donor include coenzyme A (CoA).
  • Examples of PPT include EntD protein encoded by the entD gene.
  • PPTs such as EntD protein include those of various organisms. Specific examples of PPT include E. coli EntD protein such as E. coli K-12 MG1655 strain.
  • coli K-12 MG1655 strain is shown in SEQ ID NO: 3, and the amino acid sequence of the EntD protein encoded by the gene is shown in SEQ ID NO: 4.
  • the PPTs are Nocardia brasiliensis PPT, Nocardia farcinica IFM10152 PPT (J. Biol. Chem. 2007, Vol. 282, No. 1, pp. 478-485), and C. glutamicum PPT (PPT). App. Env. Microbiol. 2009, Vol.75, No. 9, pp.2765-2774) can also be mentioned.
  • Examples of C. glutamicum include the above-exemplified strains such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain.
  • a substance other than the target substance for example, a substance produced as an intermediate during the production of the target substance or a substance used as a precursor of the target substance.
  • examples include a method of increasing the activity of the uptake system of. That is, the microorganism may be modified to increase the activity of such an uptake system.
  • the "substance uptake system” may mean a protein having a function of taking up a substance from the outside of the cell into the cell. This activity is also referred to as “substance uptake activity”.
  • a gene encoding such an uptake system is also referred to as an "uptake system gene".
  • Examples of such an uptake system include a vanillic acid uptake system and a protocatechuic acid uptake system.
  • the vanillic acid uptake system include the VanK protein encoded by the vanK gene (M. T. Chaudhry, et al., Microbiology, 2007. 153: 857-865).
  • Examples of the protocatechuic acid uptake system include the PcaK protein encoded by the pcaK gene (M. T. Chaudhry, et al., Microbiology, 2007. 153: 857-865).
  • Examples of the vanillic acid uptake system such as VanK protein and the vanillic acid uptake system such as PcaK protein include those of various organisms such as coryneform bacteria.
  • vanillic acid uptake system examples include the VanK protein of C. glutamicum such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain.
  • protocatechuic acid uptake system include C. glutamicum PcaK protein (NCgl1031 protein) such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain.
  • NCgl1031 protein C. glutamicum ATCC 13032 strain and ATCC 13869 strain.
  • the nucleotide sequence of the vanK gene (NCgl2302) of the C. glutamicum ATCC 13869 strain is shown in SEQ ID NO: 5
  • amino acid sequence of the VanK protein encoded by the gene is shown in SEQ ID NO: 6.
  • the activity of a protein can be reduced, for example, by disrupting the gene encoding the protein.
  • a protein enzyme, etc.
  • vanillin has been reported to be metabolized and assimilated in the order of vanillin ⁇ vanillic acid ⁇ protocatechuic acid (Current Microbiology, 2005, Vol.51, p59-65). That is, specific examples of by-product-producing enzymes include enzymes that catalyze the conversion of vanillin to protocatechuic acid and enzymes that catalyze the further metabolism of protocatechuic acid.
  • Such enzymes include vanillate demethylase, protocatechuate 3,4-dioxygenase, and reaction products of protocatechuate 3,4-dioxygenase as succinyl CoA and acetyl CoA.
  • Examples include various enzymes (Appl. Microbiol. Biotechnol., 2012, Vol.95, p77-89) that further decompose up to.
  • vanillin can be converted to vanillyl alcohol by the action of alcohol dehydrogenase (Kunjapur AM. Et al., J. Am. Chem. Soc., 2014, Vol.136, p11644-11654. Hansen EH. Et al., App. Env.
  • vanillate demethylase may mean a protein having an activity of catalyzing a reaction of demethylating vanillic acid to produce protocatechuic acid. This activity is also called “vanillate demethylase activity”.
  • the gene encoding vanillate demethylase is also referred to as “vanillate demethylase gene”. Examples of vanillate demethylase include the VanAB protein encoded by the vanAB gene (Current Microbiology, 2005, Vol.51, p59-65).
  • the vanA and vanB genes encode subunit A and subunit B of vanillate demethylase, respectively.
  • vanillate demethylase When reducing the vanillate demethylase activity, for example, both vanAB genes may be disrupted, or only one of the vanillate genes may be disrupted.
  • vanillate demethylase such as VanAB protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria.
  • Specific examples of vanillate demethylase include VanAB proteins of C. glutamicum such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain.
  • the nucleotide sequences of the vanAB gene of the C. glutamicum ATCC 13869 strain are shown in SEQ ID NOs: 7 and 9, and the amino acid sequences of the VanAB protein encoded by the gene are shown in SEQ ID NOs: 8 and 10, respectively.
  • the vanAB gene usually constitutes the vanK gene and the vanABK operon. Therefore, the vanABK operons may be collectively destroyed (for example, deleted) in order to reduce the vanillate demethylase activity. In that case, the vanK gene may be introduced into the microorganism again. For example, when vanillic acid existing outside the cells is used and the vanABK operons are collectively destroyed (for example, deleted), it is preferable to introduce the vanK gene again.
  • Protocatechuate 3,4-dioxygenase means a protein having an activity of catalyzing a reaction of oxidizing protocatechuate to produce ⁇ -carboxycis and cis-muconic acid. It's okay. This activity is also referred to as “protocatechuate 3,4-dioxygenase activity".
  • the gene encoding protocatechuate 3,4-dioxygenase is also referred to as “protocatechuate 3,4-dioxygenase gene”. Examples of protocatechuate 3,4-dioxygenase include the PcaGH protein encoded by the pcaGH gene (Appl. Microbiol.
  • the pcaG and pcaH genes encode the ⁇ and ⁇ subunits of protocatechuate 3,4-dioxygenase, respectively.
  • both of the pcaGH genes may be disrupted, or only one of them may be disrupted.
  • Examples of protocatechuate 3,4-dioxygenase such as PcaGH protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria.
  • Specific examples of protocatechuate 3,4-dioxygenase include PcaGH proteins of C. glutamicum such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain.
  • Alcohol dehydrogenase may mean a protein having an activity of catalyzing a reaction of reducing an aldehyde to produce an alcohol in the presence of an electron donor (EC 1.1.1.1, EC 1.1). 1.2, EC 1.1.1.71, etc.). This activity is also called “ADH activity”.
  • the gene encoding ADH is also referred to as the "ADH gene”. Examples of electron donors include NADH and NADPH.
  • Examples of ADH include those having an activity of catalyzing a reaction of reducing vanillin to produce vanillyl alcohol in the presence of an electron donor. This activity is also referred to as “vanillyl alcohol dehydrogenase activity”. In addition, ADH having vanillyl alcohol dehydrogenase activity is also particularly referred to as “vanillyl alcohol dehydrogenase”.
  • Examples of ADH include YqhD protein, NCgl0324 protein, NCgl0313 protein, NCgl2709 protein, NCgl0219 protein, and NCgl2382 protein encoded by the yqhD gene, NCgl0324 gene, NCgl0313 gene, NCgl2709 gene, NCgl0219 gene, and NCgl2382 gene, respectively. Both the yqhD gene and the NCgl0324 gene encode vanillyl alcohol dehydrogenase. Examples of such ADH include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. The yqhD gene can be found, for example, in bacteria of the Enterobacteriaceae family, such as E. coli.
  • NCgl0324 gene, NCgl0313 gene, NCgl2709 gene, NCgl0219 gene, and NCgl2382 gene can be found in coryneform bacteria such as C. glutamicum, for example. That is, as ADH, specifically, YqhD protein of E. coli such as E. coli K-12 MG1655 strain can be mentioned. Specific examples of ADH include NCgl0324 protein, NCgl0313 protein, NCgl2709 protein, NCgl0219 protein, and NCgl2382 protein of C. glutamicum such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain.
  • the nucleotide sequences of the NCgl0324 gene, NCgl0313 gene, and NCgl2709 gene of the C. glutamicum ATCC 13869 strain are shown in SEQ ID NOs: 11, 13, and 15, and the amino acid sequences of the proteins encoded by the genes are shown in SEQ ID NOs: 12, 14, and 16. Each is shown.
  • the activity of one ADH may be reduced, or the activity of two or more ADHs may be reduced.
  • the activity of one or more of the NCgl0324, NCgl2709, and NCgl0313 proteins may be reduced.
  • at least the activity of the NCgl0324 protein may be reduced.
  • “Shikimate dehydrogenase” may mean a protein having an activity of catalyzing a reaction of reducing 3-dehydrogenic acid to produce shikimic acid in the presence of an electron donor (EC 1.1. 1.25 mag). This activity is also referred to as “shikimate dehydrogenase activity".
  • the gene encoding shikimate dehydrogenase is also referred to as “shikimate dehydrogenase gene".
  • electron donors include NADH and NADPH.
  • Examples of shikimate dehydrogenase include the AroE protein encoded by the aroE gene.
  • shikimate dehydrogenase such as AroE protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of shikimate dehydrogenase include AroE proteins of E. coli such as E. coli K-12 MG1655 strain.
  • L-Cysteine biosynthesis enzyme may mean a protein involved in L-cysteine biosynthesis.
  • the gene encoding the L-cysteine biosynthetic enzyme is also referred to as "L-cysteine biosynthetic gene".
  • Examples of the L-cysteine biosynthetic enzyme include proteins involved in the utilization of sulfur. Proteins involved in the utilization of sulfur include CysIXHDNYZ protein and Fpr2 protein encoded by the cysIXHDNYZ gene and fpr2 gene, respectively.
  • the CysIXHDNYZ protein is particularly involved in the reduction of inorganic sulfur compounds such as sulfates and sulfites.
  • the Fpr2 protein may be particularly involved in electron transfer for the reduction of sulfites.
  • L-cysteine biosynthetic enzyme examples include O-acetylserine (thiol) -lyase.
  • O-acetylserine (thiol) -lyase examples include CysK protein encoded by the cysK gene.
  • L-cysteine biosynthetic enzyme include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria.
  • Specific examples of the L-cysteine biosynthetic enzyme include CysIXHDNYZ protein, Fpr2 protein, and CysK protein of C. glutamicum such as C.
  • the activity of one L-cysteine biosynthetic enzyme may be increased, or the activity of two or more L-cysteine biosynthetic enzymes may be increased.
  • the activity of one or more of the CysIXHDNYZ protein, Fpr2 protein, and CysK protein may be increased, and the activity of one or more of the CysIXHDNYZ protein and Fpr2 protein may be increased.
  • L-cysteine biosynthetic enzyme is, for example, by increasing the expression of genes encoding L-cysteine biosynthetic enzyme (ie, L-cysteine biosynthetic genes such as cysIXHDNYZ gene, fpr2 gene, cysK gene). Can be increased.
  • L-cysteine biosynthetic genes such as cysIXHDNYZ gene, fpr2 gene, cysK gene.
  • the expression of the L-cysteine biosynthesis gene can be increased, for example, by modifying (eg, increasing or decreasing) the activity of the expression regulator of the gene. That is, the expression of the L-cysteine biosynthesis gene can be increased, for example, by increasing the activity of a positive expression regulator (eg, activator) of the gene. In addition, the expression of the L-cysteine biosynthesis gene can be increased, for example, by reducing the activity of a negative expression regulator (eg, repressor) of the gene. Such regulators are also referred to as "regulatory proteins.” A gene encoding such a regulatory factor is also referred to as a "regulatory gene".
  • activators include CysR protein and SsuR protein encoded by the cysR gene and the ssuR gene, respectively. Increased activity of the CysR protein can increase the expression of one or more of the cysIXHDNYZ gene, fpr2 gene, and ssuR gene. In addition, increased activity of the SsuR protein can increase the expression of genes involved in the utilization of organic sulfur compounds. Examples of such activators include those of various organisms such as Enterobacteriaceae bacteria and Coryneform bacteria. Specific examples of such activators include CysR protein and SsuR protein of C. glutamicum such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain.
  • the activity of one or both of the CysR protein and the SsuR protein may be increased.
  • at least the activity of the CysR protein may be reduced.
  • the activity of such an activator can be increased, for example, by increasing the expression of the gene encoding the activator.
  • Examples of such a repressor include the McbR protein encoded by the mcbR gene. Decreased activity of the McbR protein can increase the expression of one or more of the cysR and ssuR genes, which in turn increases the expression of one or more of the cysIXHDNYZ and fpr2 genes. Can be.
  • Examples of such repressors include those of various organisms such as Enterobacteriaceae bacteria and Coryneform bacteria.
  • Specific examples of such repressors include McbR proteins of C. glutamicum such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain. The activity of such a repressor can be reduced, for example, by reducing the expression of the gene encoding the repressor, or by disrupting the gene encoding the repressor.
  • the activity of the L-cysteine biosynthetic enzyme is increased, for example, by increasing the expression of one or more of the cysIXHDNYZ gene, fpr2 gene, cysR gene, and ssuR gene.
  • increased activity of L-cysteine biosynthetic enzyme means, for example, increased expression of one or more of the cysIXHDNYZ gene, fpr2 gene, cysR gene, and ssuR gene.
  • at least the expression of the cysR gene may be increased.
  • NCgl2048 protein WO2018 / 079686
  • NCgl2048 protein may mean a protein encoded by the NCgl2048 gene.
  • NCgl2048 protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria.
  • Specific examples of the NCgl2048 protein include the NCgl2048 protein of C. glutamicum such as the C. glutamicum ATCC 13869 strain.
  • the "original function of NCgl2048 protein” may mean the function of a protein having the amino acid sequence of NCgl2048 protein of C. glutamicum ATCC 13869 strain, and by reducing the activity in microorganisms. It may mean the property of increasing the production of the target substance.
  • Enolase is a protein that has the activity of catalyzing the reaction of dehydrating 2-phospho-D-glyceric acid to produce phosphoenolpyruvic acid. May mean (EC 4.2.1.11, etc.). This activity is also referred to as “enolase activity”. enolase is also referred to as “phosphopyruvate hydratase”. The gene encoding enolase is also referred to as "enolase gene”. Examples of the enolase include an Eno protein encoded by the eno gene. Examples of enolases such as Eno proteins include those of various organisms such as Enterobacteriaceae bacteria and coryneform bacteria. Specific examples of the enolase include the Eno protein of C. glutamicum such as the C. glutamicum ATCC 13869 strain.
  • S-adenosyl-L-homocysteine hydrolase is a hydrolysis of S-adenosyl-L-homocysteine (SAH) and L-. It may mean a protein having an activity of catalyzing the reaction of producing homocysteine and adenosine (EC 3.3.1.1, etc.). This activity is also referred to as "S-adenosyl-L-homocysteine hydrolase activity”. S-adenosyl-L-homocysteine hydrolase is also called “adenosylhomocysteinase”.
  • S-adenosyl-L-homocysteine hydrolase gene The gene encoding S-adenosyl-L-homocysteine hydrolase is also referred to as "S-adenosyl-L-homocysteine hydrolase gene".
  • S-adenosyl-L-homocysteine hydrolase examples include the SahH protein encoded by the sahH gene.
  • S-adenosyl-L-homocysteine hydrolase such as SahH protein include those of various organisms such as yeast, Streptomyces genus bacteria, and coryneform bacteria.
  • Specific examples of the S-adenosyl-L-homocysteine hydrolase include SahH proteins of C. glutamicum such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain.
  • L-serine deaminase may mean a protein having an activity of catalyzing the reaction of converting L-serine to pyruvic acid and ammonia (EC 4.3.1.17, etc.). This activity is also referred to as "L-serine deaminase activity”. L-serine deaminase is also referred to as “L-serine ammonia-lyase”. The gene encoding L-serine deaminase is also referred to as "L-serine deaminase gene". Examples of the L-serine deaminase include the SdaA protein encoded by the sdaA gene.
  • L-serine deaminase such as SdaA protein
  • examples of L-serine deaminase include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria.
  • Specific examples of the L-serine deaminase include the SdaA protein of C. glutamicum such as the C. glutamicum ATCC 13869 strain.
  • AICAR formyltransferase / IMP cyclohydrolase is reduced, or AICAR has a mutation described in US 2018-0334693A.
  • a method of modifying the gene encoding formyltransferase / IMP cyclohydrolase can be mentioned (US2018-0334693A).
  • AICAR formyltransferase / IMP cyclohydrolase may mean AICAR formyltransferase and / or IMP cyclohydrolase, that is, one or both of AICAR formyltransferase and IMP cyclohydrolase.
  • AICAR formyltransferase is 5-amino-1- (5-phospho-D-ribosyl) imidazole (5-amino-1- (5-phospho-D-ribosyl) imidazole).
  • AICAR and 10-formyltetrahydrofolate may mean a protein having an activity of catalyzing the reaction of converting FAICAR) to tetrahydrofolate (EC 2.1.2.3, etc.). This activity is also referred to as "AICAR formytransferase activity".
  • IMP cyclohydrolase may mean a protein having an activity of catalyzing a reaction of dehydrating FAICAR to produce IMP (EC 3.5.4.10, etc.).
  • AICAR formyltransferase / IMP cyclohydrolase gene AICAR formyltransferase and IMP cyclohydrolase may be encoded as bifunctional enzymes. Therefore, "AICAR formyltransferase / IMP cyclohydrolase” specifically refers to a bifunctional AICAR formyltransferase / IMP cyclohydrolase, that is, a protein having both AICAR formyltransferase activity and IMP cyclohydrolase activity. It may mean.
  • AICAR formyltransferase / IMP cyclohydrolase examples include PurH protein, which is a bifunctional AICAR formyltransferase / IMP cyclohydrolase encoded by the purH gene.
  • AICAR formytransferase / IMP cyclohydrolase such as PurH protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria.
  • Specific examples of AICAR formyltransferase / IMP cyclohydrolase include PurH protein of C. glutamicum such as C. glutamicum ATCC 13869 strain.
  • the activity of D-3-phosphoglycerate dehydrogenase (3-PGDH) is increased, or feedback inhibition by L-serine is performed.
  • There is a method of modifying a microorganism to have a gene encoding 3-PGDH resistant to 3 (US2018-0334693A).
  • D-3-phosphoglycerate dehydrogenase (3-PGDH) is a 3-phosphoglyceric acid that oxidizes 3-phosphoglyceric acid in the presence of an electron acceptor. It may mean a protein having an activity of catalyzing a reaction for producing hydroxypyruvic acid (3-phosphohydroxylpyruvic acid) (EC 1.1.1.95, etc.). This activity is also referred to as "3-PGDH activity". Examples of electron acceptors include NAD + and NADP + . The gene encoding 3-PGDH is also referred to as "3-PGDH gene". Examples of 3-PGDH include the SerA protein encoded by the serA gene.
  • 3-PGDH such as SerA protein
  • examples of 3-PGDH include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria.
  • Specific examples of 3-PGDH include SerA protein of B. flavum such as B. flavum ATCC 14067 strain.
  • Specific examples of 3-PGDH include SerA protein of E. coli such as E. coli K-12 MG1655 strain.
  • Examples of 3-PGDH resistant to feedback inhibition by L-serine include those disclosed in US 2018-0334693A.
  • Specific examples of 3-PGDH resistant to feedback inhibition by L-serine include the SerA * protein of the B. flavum AJ13327 strain encoded by the serA * gene (US2018-0334693A).
  • the genes and proteins used for breeding microorganisms capable of producing the target substance include, for example, the type of the target substance, the type of biosynthetic pathway in which the target substance is produced, and the type and activity of the protein inherently possessed by the microorganism. It can be appropriately selected according to the various conditions of. For example, when vanillin is produced by bioconversion from protocatechuic acid, the activity of one or more of the OMT, ACAR, PPT, and protocatechuic acid uptake systems may be increased, in particular. Also, for example, when vanillin is produced by bioconversion from vanillic acid, the activity of one or more of the ACAR, PPT, and vanillic acid uptake systems may be increased, in particular.
  • the activity of at least ACAR and / or PPT may be increased, more particularly.
  • the activity of at least ACAR and PPT may be increased, more particularly.
  • the activity of OMT may be increased.
  • the genes and proteins used for breeding microorganisms capable of producing a target substance may have, for example, known base sequences and amino acid sequences (including those exemplified above), respectively.
  • Known nucleotide sequences and amino acid sequences include those exemplified above, WO2018 / 099687, WO2018 / 079686, WO2018 / 079685, WO2018 / 099684, WO2018 / 079683, WO2017 / 073701, WO2018 / 079705, US2018-0334693A, and US2019.
  • -0161776 A can be mentioned.
  • a gene or protein has a base sequence or an amino acid sequence may mean that the gene or protein contains the base sequence or the amino acid sequence, and the gene or protein has the base sequence or the amino acid sequence. The case consisting of an amino acid sequence may also be included.
  • the gene and protein used for breeding a microorganism capable of producing a target substance may be a conservative variant of the gene and protein having a known base sequence and amino acid sequence, respectively.
  • Consservative variant means a variant that retains its original function.
  • Conservative variants include, for example, homologues and artificial variants of genes and proteins having known nucleotide and amino acid sequences.
  • “Maintaining original function” means that a variant of a gene or protein has a function (eg, activity or property) that corresponds to the function (eg, activity or property) of the original gene or protein. ..
  • “maintaining the original function” of a gene is meant that a variant of the gene encodes a protein that retains its original function.
  • “maintaining the original function” of an ACAR gene means that a variant of the gene encodes a protein with ACAR activity.
  • “maintaining the original function” of ACAR means that the protein variant has ACAR activity.
  • each protein is measured, for example, by the method described in WO2018 / 099687, WO2018 / 079686, WO2018 / 079685, WO2018 / 099684, WO2018 / 079683, WO2017 / 073701, WO2018 / 079705, US2018-0334693A, or US2019-0161776A. can do.
  • Homologs of genes or proteins used for breeding microorganisms capable of producing the target substance can be easily obtained from public databases by, for example, BLAST search or FASTA search using a known base sequence or amino acid sequence as a query sequence. it can.
  • an oligonucleotide prepared based on a known base sequence using a chromosome of an organism such as a coryneform bacterium as a template is used as a primer. It can be obtained by PCR.
  • Genes used for breeding microorganisms capable of producing a target substance are replaced with one or several amino acids at one or several positions in a known amino acid sequence, respectively, as long as the original function is maintained.
  • the encoded protein may have its N-terminus and / or C-terminus extended or shortened.
  • the above "1 or several” differs depending on the position and type of the amino acid residue in the protein structure, but specifically, for example, 1 to 50, 1 to 40, 1 to 30, etc. It preferably means 1 to 20, more preferably 1 to 10, still more preferably 1 to 5, and particularly preferably 1 to 3.
  • substitution, deletion, insertion, or addition of one or several amino acids is a conservative mutation in which the function of the protein is maintained normally.
  • a typical conservative mutation is a conservative substitution.
  • Conservative substitutions are polar amino acids between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In some cases, between Gln and Asn, between Lys, Arg and His if it is a basic amino acid, and between Asp and Glu if it is an acidic amino acid, if it is an amino acid with a hydroxyl group. Is a mutation that replaces each other between Ser and Thr.
  • substitutions that are considered conservative substitutions include, specifically, Ala to Ser or Thr substitutions, Arg to Gln, His or Lys substitutions, Asn to Glu, Gln, Lys, His or Asp substitutions. Asp to Asn, Glu or Gln replacement, Cys to Ser or Ala replacement, Gln to Asn, Glu, Lys, His, Asp or Arg replacement, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Lys to Asn, Glu, Gln, His or Arg, Met to Ile, Leu, Val or Phe, Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitutions include Thr to Ser or Ala, Trp to Phe or Tyr, Tyr to His, Phe
  • amino acid substitutions, deletions, insertions, additions, or inversions are naturally occurring mutations (mutants or variants) such as those based on individual differences or species differences of the organism from which the gene is derived. Also includes those caused by.
  • genes used for breeding microorganisms capable of producing the target substance for example, 50% or more, 65% or more, and 80, respectively, with respect to the entire known amino acid sequence as long as the original functions are maintained. It may be a gene encoding a protein having an amino acid sequence having an identity of% or more, preferably 90% or more, more preferably 95% or more, further preferably 97% or more, and particularly preferably 99% or more.
  • genes used for breeding microorganisms capable of producing a target substance can be prepared from known base sequences, for example, all or part of known base sequences, as long as the original functions are maintained. It may be a DNA that hybridizes with a complementary sequence to the DNA under stringent conditions.
  • the "stringent condition” refers to a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed.
  • DNAs having high identity for example, 50% or more, 65% or more, 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 97% or more, particularly preferably 99.
  • 60 ° C, 1 ⁇ SSC, 0.1% SDS which is a condition in which DNAs having an identity of% or more hybridize with each other and DNAs having a lower identity do not hybridize with each other, or a normal Southern hybridization washing condition.
  • the probe used for the above hybridization may be a part of the complementary sequence of the gene.
  • a probe can be prepared by PCR using an oligonucleotide prepared based on a known base sequence as a primer and a DNA fragment containing the above-mentioned gene as a template.
  • a DNA fragment having a length of about 300 bp can be used as a probe.
  • the conditions for washing the hybridization include 50 ° C., 2 ⁇ SSC, and 0.1% SDS.
  • the gene used for breeding a microorganism capable of producing a target substance may be a gene in which an arbitrary codon is replaced with a codon equivalent thereto.
  • “Increased protein activity” may mean that the activity of the protein is increased as compared with the unmodified strain. “Increased protein activity” may specifically mean that the per-cell activity of the protein is increased relative to the unmodified strain. The "activity of a protein per cell” may mean the average value of the activity of the protein per cell.
  • the unmodified strain is also referred to as a "non-modified microorganism” or a “non-modified microorganism strain”.
  • the term "unmodified strain” as used herein may mean a control strain that has not been modified to increase the activity of the target protein. Examples of the unmodified strain include a wild strain and a parent strain.
  • the unmodified strain examples include a reference strain (type strain) of each microbial species. Further, as the unmodified strain, specifically, the strain exemplified in the description of the microorganism can be mentioned. That is, in one embodiment, the activity of the protein may be increased compared to the reference strain (ie, the reference strain of the species to which the microorganism capable of producing the target substance belongs). Moreover, in another embodiment, the activity of the protein may be increased as compared with the C. glutamicum ATCC 13869 strain. Moreover, in another embodiment, the activity of the protein may be increased as compared with the C. glutamicum ATCC 13032 strain. Moreover, in another embodiment, the activity of the protein may be increased as compared with the E.
  • the reference strain ie, the reference strain of the species to which the microorganism capable of producing the target substance belongs.
  • the activity of the protein may be increased as compared with the C. glutamicum ATCC 13869 strain.
  • the activity of the protein may be increased as compared
  • increasing protein activity is also referred to as “enhancing protein activity”.
  • Increased protein activity means, more specifically, that the number of molecules of the protein per cell is increased as compared to the unmodified strain, and / or per molecule of the protein. It may mean that the function is increasing. That is, the "activity" in the case of “increasing the activity of a protein” means not only the catalytic activity of the protein but also the transcription amount (mRNA amount) or the translation amount (protein amount) of the gene encoding the protein. You may.
  • the “number of molecules of a protein per cell” may mean the average value of the number of molecules of the protein per cell.
  • increasing the activity of a protein means not only increasing the activity of the protein in a strain that originally has the activity of the target protein, but also that the strain of the protein that originally does not have the activity of the target protein has the same protein. It also includes imparting activity. Further, as long as the activity of the protein is increased as a result, the activity of the target protein originally possessed by the host may be reduced or eliminated, and then the activity of the suitable target protein may be imparted.
  • the degree of increase in protein activity is not particularly limited as long as the protein activity is increased as compared with the unmodified strain.
  • the activity of the protein may be increased, for example, 1.2 times or more, 1.5 times or more, 2 times or more, or 3 times or more that of the unmodified strain.
  • the protein may be produced by introducing a gene encoding the protein. For example, the activity of the protein is measured. It may be produced to the extent possible.
  • Modifications that increase the activity of the protein can be achieved, for example, by increasing the expression of the gene encoding the protein.
  • the expression of a gene is increased may mean that the expression of the gene is increased as compared with an unmodified strain such as a wild strain or a parent strain. Specifically, “the expression of a gene is increased” may mean that the expression level of the gene per cell is increased as compared with the unmodified strain.
  • the “expression level of a gene per cell” may mean the average value of the expression level of the gene per cell.
  • Increased gene expression means, more specifically, an increase in the amount of transcription (mRNA) of a gene and / or an increase in the amount of translation (amount of protein) of a gene. It's okay.
  • “increased gene expression” is also referred to as “enhanced gene expression”.
  • the expression of the gene may be increased, for example, 1.2 times or more, 1.5 times or more, 2 times or more, or 3 times or more that of the unmodified strain.
  • “increasing gene expression” means not only increasing the expression level of the gene in the strain in which the target gene is originally expressed, but also in the strain in which the target gene is not originally expressed. Expression of the same gene is also included. That is, “the expression of a gene is increased” may mean, for example, introducing the gene into a strain that does not carry the target gene and expressing the gene.
  • Increased gene expression can be achieved, for example, by increasing the number of copies of the gene.
  • the increase in the number of copies of a gene can be achieved by introducing the gene into the host chromosome.
  • homologous recombination can be used to introduce a gene into a chromosome (Miller, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory).
  • a gene transfer method using homologous recombination for example, the Red-driven integration method (Datsenko, K.A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A.
  • a method using a linear DNA a method using a plasmid containing a temperature-sensitive origin of replication, a method using a conjugation-transmissible plasmid, a suicide vector having no origin of replication that functions in the host.
  • Examples include a method using a plasmid and a transduction method using a phage. Only one copy of the gene may be introduced, or two or more copies may be introduced. For example, a large number of copies of a gene can be introduced into a chromosome by performing homologous recombination targeting a sequence having a large number of copies on the chromosome.
  • Sequences in which a large number of copies are present on a chromosome include repetitive DNA sequences and inverted repeats present at both ends of a transposon.
  • homologous recombination may be performed by targeting an appropriate sequence on the chromosome such as a gene unnecessary for the production of the target substance.
  • the gene can also be randomly introduced onto the chromosome using a transposon or Mini-Mu (Japanese Patent Laid-Open No. 2-109985, US5,882,888, EP805867B1).
  • an increase in the number of copies of a gene can also be achieved by introducing a vector containing the same gene into the host.
  • a DNA fragment containing a target gene can be linked to a vector that functions in the host to construct an expression vector for the gene, and the host can be transformed with the expression vector to increase the number of copies of the gene. it can.
  • the DNA fragment containing the target gene can be obtained, for example, by PCR using the genomic DNA of the microorganism having the target gene as a template.
  • a vector capable of autonomous replication in the host cell can be used.
  • the vector may be a multicopy vector.
  • the vector may have markers such as antibiotic resistance genes.
  • the vector may also include a promoter or terminator for expressing the inserted gene.
  • the vector may be, for example, a vector derived from a bacterial plasmid, a vector derived from a yeast plasmid, a vector derived from a bacteriophage, a cosmid, a phagemid or the like.
  • Specific examples of vectors capable of autonomous replication in Enterobacteriaceae bacteria such as Escherichia coli include pUC19, pUC18, pHSG299, pHSG399, pHSG398, pBR322, and pSTV29 (all available from Takara Bio).
  • pACYC184 pMW219 (Nippon Gene), pTrc99A (Pharmacia), pPROK vector (Clontech), pKK233-2 (Clontech), pET vector (Novagen), pQE vector (Kiagen), pColdTFDNA ( TaKaRa), pACYC-based vector, broad host range vector RSF1010.
  • vectors capable of autonomous replication in coryneform bacteria include pHM1519 (Agric. Biol. Chem., 48, 2901-2903 (1984)); pAM330 (Agric. Biol. Chem., 48, 2901-).
  • a plasmid having an improved drug resistance gene A plasmid having an improved drug resistance gene; pCRY30 (Japanese Patent Laid-Open No. 3-210184); pCRY21, pCRY2KE, pCRY2KX, pCRY31, pCRY3KE, and pCRY3KX (Japanese Patent Laid-Open No. 2-72876, US Pat. No. 5,185,262) PCRY2 and pCRY3 (Japanese Patent Laid-Open No. 1-191686); pAJ655, pAJ611, and pAJ1844 (Japanese Patent Laid-Open No. 58-192900); pCG1 (Japanese Patent Laid-Open No.
  • pCG2 Japanese Patent Laid-Open No. 58-35197
  • pCG4 and pCG11 Japanese Patent Laid-Open No. 57-183799
  • pPK4 US Patent No. 6,090,597
  • pVK4 Japanese Patent Laid-Open No. 9-322774
  • pVK7 Japanese Patent Laid-Open No. 10-215883
  • pVK9 WO2007 / 046389
  • pVS7 WO2013 / 069634
  • PVC7 Japanese Patent Laid-Open No. 9-070291
  • a vector capable of autonomous replication in a coryneform bacterium specifically, a variant of pVC7 such as pVC7H2 can be mentioned (WO2018 / 179834).
  • the gene When introducing a gene, the gene may be expressed by the host. Specifically, the gene may be retained so as to be expressed under the control of a promoter that functions in the host.
  • "Promoter functioning in a host” may mean a promoter having promoter activity in the host.
  • the promoter may be a host-derived promoter or a heterologous promoter.
  • the promoter may be a promoter unique to the gene to be introduced, or may be a promoter of another gene. As the promoter, for example, a stronger promoter as described herein may be used.
  • a terminator for transcription termination can be placed downstream of the gene.
  • the terminator is not particularly limited as long as it functions in the host.
  • the terminator may be a host-derived terminator or a heterogeneous terminator.
  • the terminator may be a unique terminator of the gene to be introduced, or may be a terminator of another gene. Specific examples of the terminator include a T7 terminator, a T4 terminator, an fd phage terminator, a tet terminator, and a trpA terminator.
  • Vectors, promoters, and terminators that can be used in various microorganisms are described in detail in, for example, "Basic Microbiology Course 8 Genetic Engineering, Kyoritsu Shuppan, 1987", and they can be used.
  • each gene when introducing two or more genes, it is sufficient that each gene is retained in the host so that it can be expressed.
  • each gene may be all retained on a single expression vector or all on a chromosome.
  • each gene may be separately retained on a plurality of expression vectors, or may be separately retained on a single or a plurality of expression vectors and on a chromosome.
  • an operon may be composed of two or more genes and introduced.
  • introducing two or more genes for example, when introducing genes encoding two or more proteins (eg, enzymes), a single protein complex (eg, enzyme complex) When introducing a gene encoding each of the two or more subunits constituting it, or a combination thereof may be introduced.
  • the gene to be introduced is not particularly limited as long as it encodes a protein that functions in the host.
  • the gene to be introduced may be a host-derived gene or a heterologous gene.
  • the gene to be introduced can be obtained by PCR using, for example, a primer designed based on the base sequence of the gene, genomic DNA of an organism having the gene, a plasmid carrying the gene, or the like as a template. Further, the gene to be introduced may be totally synthesized, for example, based on the base sequence of the gene (Gene, 60 (1), 115-127 (1987)).
  • the acquired gene can be used as it is or after being appropriately modified. That is, the variant can be obtained by modifying the gene.
  • the gene can be modified by a known method.
  • a site-specific mutation method can be used to introduce a desired mutation into a target site of DNA. That is, for example, site-specific mutagenesis can modify the coding region of a gene such that the encoded protein comprises substitutions, deletions, insertions, and / or additions of amino acid residues at specific sites. ..
  • site-specific mutation method a method using PCR (Higuchi, R., 61, in PCR technology, Erlich, H. A. Eds., Stockton press (1989); Carter, P., Meth. In Enzymol., 154, 382 (1987)) and methods using phage (Kramer, W. and Frits, H. J., Meth. In Enzymol., 154, 350 (1987); Kunkel, T. A. et al., Meth . In Enzymol., 154, 367 (1987)).
  • the gene variant may be totally synthesized.
  • each subunit constituting the complex may be derived from one organism or two or more different organisms as long as the complex has the function of the target protein. That is, for example, a gene derived from the same organism that encodes a plurality of subunits may be introduced into the host, or a gene derived from a different organism may be introduced into the host.
  • an increase in gene expression can be achieved by improving the transcription efficiency of the gene.
  • an increase in gene expression can be achieved by improving the translation efficiency of the gene. Improvements in gene transcription efficiency and translation efficiency can be achieved, for example, by modifying the expression regulatory sequence.
  • the "expression regulatory sequence" may be a general term for sites that affect gene expression. Expression regulatory sequences include, for example, a promoter, a Shine-Dalgarno (SD) sequence (also referred to as a ribosome binding site (RBS)), and a spacer region between the RBS and the start codon.
  • SD Shine-Dalgarno
  • RBS ribosome binding site
  • the expression regulatory sequence can be determined using a promoter search vector or gene analysis software such as GENETYX. These expression regulatory sequences can be modified by, for example, a method using a temperature-sensitive vector or a Red-driven integration method (WO2005 / 010175).
  • Improvement of gene transcription efficiency can be achieved, for example, by replacing the promoter of the gene on the chromosome with a stronger promoter.
  • a "stronger promoter” may mean a promoter in which transcription of a gene is improved over a wild-type promoter that originally exists.
  • More potent promoters include, for example, the well-known highly expressed promoters T7 promoter, trp promoter, lac promoter, thr promoter, tac promoter, trc promoter, tet promoter, araBAD promoter, rpoH promoter, msrA promoter, and Pm1 derived from Bifidobacterium. Promoters include promoters, PR promoters, and PL promoters.
  • the artificially redesigned P54-6 promoter (Appl. Microbiol. Biotechnol., 53, 674-679 (2000)), in coryneform bacteria
  • a highly active form of a conventional promoter may be obtained by using various reporter genes.
  • the activity of the promoter can be enhanced by bringing the -35 and -10 regions within the promoter region closer to the consensus sequence (International Publication No. 00/18935).
  • the highly active promoter include various tac-like promoters (Katashkina JI et al. Russian Federation Patent application 2006134574).
  • SD Shine-Dalgarno
  • RBS ribosome binding site
  • substitution, insertion, or deletion of several nucleotides in the spacer region between the RBS and the start codon, especially in the sequence immediately upstream of the start codon (5'-UTR), contributes to mRNA stability and translation efficiency. It is known to have a great effect, and the translation efficiency of genes can be improved by modifying these.
  • Improvement of gene translation efficiency can also be achieved by, for example, modifying codons.
  • the translation efficiency of a gene can be improved by replacing the rare codon present in the gene with a synonymous codon that is used more frequently. That is, the gene to be introduced may be modified to have an optimum codon depending on, for example, the codon usage frequency of the host used. Codon substitution can be performed, for example, by a site-specific mutation method that introduces the desired mutation into the target site of DNA.
  • the gene fragment in which the codon has been replaced may be totally synthesized. The frequency of codon usage in various organisms is described in the "Codon Usage Database" (http://www.kazusa.or.jp/codon; Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000)). It is disclosed in.
  • an increase in gene expression can also be achieved by amplifying a regulator that increases gene expression, or by deleting or weakening a regulator that decreases gene expression.
  • the above-mentioned method for increasing gene expression may be used alone or in any combination.
  • modifications that increase the activity of the protein can also be achieved by, for example, enhancing the specific activity of the protein.
  • the enhancement of specific activity may also include desensitization to feedback inhibition. That is, when a protein is subject to feedback inhibition by metabolites, the activity of the protein can be increased by mutating the gene or protein in the host so that the feedback inhibition is desensitized.
  • the "desensitization of feedback inhibition” may include a case where the feedback inhibition is completely canceled and a case where the feedback inhibition is reduced. Further, "the feedback inhibition is desensitized” (that is, the feedback inhibition is reduced or canceled) is also referred to as "tolerance to the feedback inhibition".
  • Proteins with enhanced specific activity can be obtained by searching for, for example, various organisms.
  • a highly active form may be obtained by introducing a mutation into a conventional protein.
  • the mutation introduced may be, for example, one or several amino acids substituted, deleted, inserted, and / or added at one or several positions of the protein.
  • the mutation can be introduced by, for example, the site-specific mutation method as described above. Further, the introduction of the mutation may be carried out by, for example, a mutation treatment.
  • Mutation treatment includes X-ray irradiation, ultraviolet irradiation, and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS), and methylmethanesulfonate (MMS). ) And other treatments with a mutagen.
  • the DNA may be treated directly with hydroxylamine in vitro to induce random mutations.
  • the enhancement of specific activity may be used alone or in combination with the above-mentioned method for enhancing gene expression.
  • the transformation method is not particularly limited, and a conventionally known method can be used.
  • a method of treating recipient cells with calcium chloride to increase DNA permeability as reported for Escherichia coli K-12 (Mandel, M. and Higa, A., J. Mol. Biol. 1970, 53, 159-162) and methods of preparing competent cells from proliferative cells and introducing DNA, as reported for Bacillus subtilis (Duncan, C. H., Wilson, G. A. and Young, F. E., 1977. Gene 1: 153-167) can be used.
  • the cells of a DNA-recepting bacterium are transformed into a protoplast or spheroplast that readily incorporates the recombinant DNA to turn the recombinant DNA into a DNA-receptive bacterium.
  • How to introduce (Chang, S. and Choen, S. N., 1979. Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978. Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl. Acad. Sci. USA 75: 1929-1933) can also be applied.
  • the electric pulse method Japanese Patent Laid-Open No. 2-207791 as reported for coryneform bacteria can also be used.
  • the increase in protein activity can be confirmed by measuring the activity of the protein.
  • the increase in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has increased.
  • the increase in gene expression can be confirmed by confirming that the transcription amount of the gene has increased and that the amount of protein expressed from the gene has increased.
  • Confirmation that the transcription amount of the gene has increased can be confirmed by comparing the amount of mRNA transcribed from the gene with an unmodified strain such as a wild strain or a parent strain.
  • Methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR, microarray, RNA-seq, etc. (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual / Third Edition, Cold Spring Harbor Laboratory, etc. Press, Cold Spring Harbor (USA), 2001).
  • the amount of mRNA (for example, the number of molecules per cell) may be increased, for example, 1.2 times or more, 1.5 times or more, 2 times or more, or 3 times or more that of the unmodified strain.
  • the amount of protein (eg, number of molecules per cell) may be increased, for example, 1.2 times or more, 1.5 times or more, 2 times or more, or 3 times or more that of the unmodified strain.
  • the above-mentioned method for increasing the activity of a protein can be used for enhancing the activity of an arbitrary protein or enhancing the expression of an arbitrary gene.
  • Reduced protein activity may mean that the activity of the protein is reduced as compared with the unmodified strain.
  • Reduced protein activity may specifically mean that the per-cell activity of the protein is reduced as compared to the unmodified strain.
  • the "activity of a protein per cell” may mean the average value of the activity of the protein per cell.
  • the unmodified strain is also referred to as a "non-modified microorganism” or a “non-modified microorganism strain”.
  • the term "unmodified strain” as used herein may mean a control strain that has not been modified to reduce the activity of the target protein. Examples of the unmodified strain include a wild strain and a parent strain.
  • the unmodified strain examples include a reference strain (type strain) of each microbial species. Further, as the unmodified strain, specifically, the strain exemplified in the description of the microorganism can be mentioned. That is, in one embodiment, the activity of the protein may be reduced as compared with the reference strain (that is, the reference strain of the species to which the microorganism capable of producing the target substance belongs). Moreover, in another embodiment, the activity of the protein may be reduced as compared with the C. glutamicum ATCC 13869 strain. In another embodiment, the activity of the protein may be reduced as compared to the C. glutamicum ATCC 13032 strain. Moreover, in another embodiment, the activity of the protein may be reduced as compared with the E.
  • the reference strain that is, the reference strain of the species to which the microorganism capable of producing the target substance belongs.
  • the activity of the protein may be reduced as compared with the C. glutamicum ATCC 13869 strain.
  • the activity of the protein may be reduced as compared to the C
  • the "decrease in protein activity” may include the case where the activity of the protein is completely eliminated. More specifically, “reduced protein activity” means that the number of molecules of the protein per cell is reduced as compared with the unmodified strain, and / or per molecule of the protein. It may mean that the function is deteriorated. That is, the "activity” in the case of “reducing the activity of a protein” means not only the catalytic activity of the protein but also the transcription amount (mRNA amount) or the translation amount (protein amount) of the gene encoding the protein. You may.
  • the “number of molecules of a protein per cell” may mean the average value of the number of molecules of the protein per cell.
  • the number of molecules of a protein per cell is reduced may include the case where the protein does not exist at all.
  • the function per molecule of the protein is reduced may include the case where the function per molecule of the protein is completely lost.
  • the degree of decrease in protein activity is not particularly limited as long as the protein activity is decreased as compared with the unmodified strain.
  • the activity of the protein may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% of the unmodified strain.
  • Modifications that reduce the activity of the protein can be achieved, for example, by reducing the expression of the gene encoding the protein.
  • the expression of a gene is reduced may mean that the expression of the gene is reduced as compared with an unmodified strain such as a wild strain or a parent strain.
  • reduced gene expression may mean that the per-cell expression level of the gene is reduced as compared with the unmodified strain.
  • the “expression level of a gene per cell” may mean the average value of the expression level of the gene per cell.
  • Reduced gene expression means, more specifically, a decrease in the transcription amount (mRNA amount) of a gene and / or a decrease in the translation amount (protein amount) of a gene. It's okay.
  • Reduced expression of a gene may include the case where the gene is not expressed at all. It should be noted that “decreased gene expression” is also referred to as “weakened gene expression”. Gene expression may be reduced, for example, to 50% or less, 20% or less, 10% or less, 5% or less, or 0% of the unmodified strain.
  • the decrease in gene expression may be due to, for example, a decrease in transcription efficiency, a decrease in translation efficiency, or a combination thereof.
  • Decreased gene expression is the modification of expression regulatory sequences such as the promoter of a gene, the Shine-Dalgarno (SD) sequence (also called the ribosome binding site (RBS)), and the spacer region between the RBS and the start codon. Can be achieved by.
  • SD Shine-Dalgarno
  • RBS ribosome binding site
  • a decrease in gene transcription efficiency can be achieved, for example, by replacing the promoter of the gene on the chromosome with a weaker promoter.
  • a "weaker promoter” may mean a promoter in which transcription of a gene is weaker than the native wild-type promoter.
  • Weaker promoters include, for example, inducible promoters.
  • Weaker promoters include, for example, the P4 promoter (US2018-0334693A) and the P8 promoter (US2018-0334693A). That is, an inducible promoter can function as a weaker promoter under non-inducible conditions (eg, in the absence of an inducer).
  • a part or all of the expression regulatory sequence may be deleted.
  • a decrease in gene expression can also be achieved by, for example, manipulating factors involved in expression control.
  • factors involved in expression control include small molecules (inducing substances, inhibitors, etc.), proteins (transcription factors, etc.), nucleic acids (siRNA, etc.) involved in transcription and translation control.
  • the reduction in gene expression can also be achieved, for example, by introducing a mutation into the coding region of the gene that reduces the expression of the gene.
  • gene expression can be reduced by replacing codons in the coding region of a gene with synonymous codons that are used less frequently in the host.
  • gene disruption as described herein can reduce gene expression itself.
  • modifications that reduce the activity of the protein can be achieved, for example, by destroying the gene encoding the protein.
  • Gene disruption may mean that the gene is modified so that it does not produce a normally functioning protein.
  • Do not produce a normally functioning protein means that no protein is produced from the gene, or that the gene produces a protein whose per-molecule function (eg, activity or property) is reduced or eliminated. May also be included.
  • Gene destruction can be achieved, for example, by deleting (destroying) a gene on a chromosome.
  • Gene deletion may mean deletion of part or all of the coding region of a gene.
  • the entire gene may be deleted, including the sequences before and after the coding region of the gene on the chromosome.
  • the regions to be deleted are the N-terminal region (ie, the region encoding the N-terminal side of the protein), the internal region, and the C-terminal region (ie, the region encoding the C-terminal side of the protein). It may be any region such as. In general, the longer the region to be deleted, the more reliable the gene can be inactivated.
  • the region to be deleted is, for example, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more of the total length of the coding region of the gene. Alternatively, it may be a region having a length of 95% or more. Further, it is preferable that the reading frames of the sequences before and after the region to be deleted do not match. A reading frame mismatch can result in a frameshift downstream of the region to be deleted.
  • Gene disruption can be, for example, by introducing an amino acid substitution (missense mutation) into the coding region of a gene on a chromosome, by introducing a stop codon (nonsense mutation), or by adding or deleting one or two bases (a missense mutation). It can also be achieved by introducing a frameshift mutation, etc. (Journal of Biological Chemistry 272: 8611-8617 (1997), Proceedings of the National Academy of Sciences, USA 95 5511-5515 (1998), Journal of Biological Chemistry 26 116 , 20833-20839 (1991)).
  • gene disruption can be achieved, for example, by inserting another base sequence into the coding region of the gene on the chromosome.
  • the insertion site may be any region of the gene, but the longer the base sequence to be inserted, the more reliable the gene can be inactivated. Further, it is preferable that the reading frames do not match in the arrangement before and after the insertion site. A frameshift can occur downstream of the insertion site due to a mismatch in the leading frames.
  • the other base sequence is not particularly limited as long as it reduces or eliminates the activity of the encoded protein, and examples thereof include a marker gene such as an antibiotic resistance gene and a gene useful for the production of a target substance.
  • Gene disruption may be performed so that the amino acid sequence of the encoded protein is deleted (deleted).
  • modifications that reduce the activity of a protein are specifically made by deleting the amino acid sequence (a part or all of the region of the amino acid sequence) of the protein, specifically, one of the amino acid sequences (one of the amino acid sequences). This can be achieved by modifying the gene to encode a protein lacking part or all regions.
  • deletion of amino acid sequence of protein may mean deletion of a part or all region of amino acid sequence of protein.
  • “deletion of amino acid sequence of protein” may mean that the original amino acid sequence does not exist in the protein, and may include the case where the original amino acid sequence is changed to another amino acid sequence.
  • a region changed to another amino acid sequence by a frame shift may be regarded as a deleted region.
  • Deletion of the amino acid sequence typically shortens the overall length of the protein, but the overall length of the protein may not change or may be extended.
  • the region encoded by the deleted region can be deleted in the amino acid sequence of the encoded protein.
  • the region encoded by the region downstream from the introduction site can be deleted in the amino acid sequence of the encoded protein.
  • a frameshift in a gene coding region can cause a region encoded by the frameshift site to be deleted.
  • the description of the position and length of the region to be deleted in the deletion of the gene can be applied mutatis mutandis.
  • Modifying a gene on a chromosome as described above is, for example, producing a disrupted gene modified so as not to produce a normally functioning protein, and transforming the host with a recombinant DNA containing the disrupted gene.
  • This can be achieved by substituting the wild gene on the chromosome with the disruptive gene by causing homologous recombination between the disruptive gene and the wild gene on the chromosome.
  • the recombinant DNA contains a marker gene according to a trait such as auxotrophy of the host, it is easy to operate.
  • Destructive genes include genes lacking part or all of the coding region of a gene, genes with missense mutations, genes with nonsense mutations, genes with frameshift mutations, transposons and marker genes.
  • Examples include the inserted gene. Even if the protein encoded by the disrupted gene is produced, it has a three-dimensional structure different from that of the wild-type protein, and its function is reduced or lost. Gene disruption by gene substitution using such homologous recombination has already been established, and a method called "Red-driven integration" (Datsenko, K.A, and Wanner, B.L.Proc) . Natl. Acad. Sci. U S A. 97: 6640-6645 (2000)), Red driven integration method and ⁇ phage-derived excision system (Cho, E. H., Gumport, R. I., Gardner, J A method using linear DNA such as a method combined with F. J. Bacteriol.
  • Mutation treatment includes X-ray irradiation, ultraviolet irradiation, and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS), and methylmethanesulfonate (MMS). ) And other treatments with a mutagen.
  • MNNG N-methyl-N'-nitro-N-nitrosoguanidine
  • EMS ethylmethanesulfonate
  • MMS methylmethanesulfonate
  • a protein functions as a complex composed of a plurality of subunits
  • all of these subunits may be modified or only a part thereof may be modified as long as the activity of the protein is reduced as a result. That is, for example, all of the genes encoding these subunits may be destroyed, or only a part of them may be destroyed.
  • all the activities of those isozymes may be reduced or only a part of the activities may be reduced as long as the activity of the protein is reduced as a result. That is, for example, all of the genes encoding these isozymes may be destroyed, or only a part of them may be destroyed.
  • the above-mentioned method for reducing protein activity may be used alone or in any combination.
  • the decrease in protein activity can be confirmed by measuring the activity of the protein.
  • the decrease in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has decreased.
  • the decrease in gene expression can be confirmed by confirming that the transcription amount of the gene has decreased and that the amount of protein expressed from the gene has decreased.
  • Confirmation that the transcription amount of the gene has decreased can be confirmed by comparing the amount of mRNA transcribed from the gene with that of the unmodified strain.
  • methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR, microarray, RNA-seq, etc. (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual / Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001)).
  • the amount of mRNA (eg, number of molecules per cell) may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% of the unmodified strain.
  • the amount of protein (eg, number of molecules per cell) may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% of the unmodified strain.
  • the gene has been disrupted by determining the base sequence of a part or all of the gene, the restriction enzyme map, the total length, etc., depending on the means used for the disruption.
  • the above-mentioned method for reducing the activity of a protein can be used to reduce the activity of an arbitrary protein or the expression of an arbitrary gene.
  • the target substance can be produced by utilizing a microorganism capable of producing the target substance. That is, the method for producing the target substance may be a method including a step of producing the target substance using a microorganism capable of producing the target substance.
  • the process of producing a target substance by using a microorganism capable of producing the target substance is also referred to as a "target substance manufacturing process”.
  • the target substance can be produced, for example, by fermentation using a microorganism capable of producing the target substance. That is, one aspect of the method for producing the target substance may be a method for producing the target substance by fermentation using microorganisms. This aspect is also referred to as a "fermentation method”. In addition, the process of producing a target substance by fermentation using microorganisms is also referred to as "fermentation process”. That is, the target substance manufacturing step may include, for example, a fermentation step. Further, the target substance manufacturing step may be carried out by, for example, a fermentation step.
  • the fermentation process can be carried out by culturing microorganisms.
  • the target substance can be produced from a carbon source.
  • the fermentation step may be, for example, a step of culturing the microorganism in a medium (for example, a medium containing a carbon source) and producing and accumulating the target substance in the medium.
  • the fermentation method may be a method for producing a target substance, which comprises culturing a microorganism in a medium (for example, a medium containing a carbon source) and producing and accumulating the target substance in the medium.
  • the fermentation step may be, for example, a step of producing a target substance from a carbon source using a microorganism.
  • the medium used is not particularly limited as long as microorganisms can grow and the target substance is produced.
  • a normal medium used for culturing microorganisms such as bacteria and yeast can be used.
  • the medium may contain a medium component such as a carbon source, a nitrogen source, a phosphoric acid source, a sulfur source, and various other organic components and inorganic components, if necessary.
  • the type and concentration of the medium component may be appropriately set according to various conditions such as the type of microorganism used.
  • the carbon source is not particularly limited as long as the microorganism can assimilate and the target substance is produced.
  • Specific examples of the carbon source include sugars such as glucose, fructose, sucrose, lactose, galactose, xylose, arabinose, waste sugar honey, starch hydrolyzate, and biomass hydrolyzate, acetic acid, citric acid, and succinic acid.
  • Organic acids such as gluconic acid, alcohols such as ethanol, glycerol and crude glycerol, and fatty acids.
  • a plant-derived raw material can be used in particular. Plants include, for example, corn, rice, wheat, soybeans, sugar cane, beets and cotton.
  • plant-derived raw materials include organs such as roots, stems, trunks, branches, leaves, flowers, and seeds, plants containing them, and decomposition products of those plant organs.
  • the form of use of the plant-derived raw material is not particularly limited, and for example, any form such as an unprocessed product, a squeezed juice, a crushed product, and a refined product can be used.
  • pentose such as xylose, hexose such as glucose, or a mixture thereof can be obtained from, for example, plant biomass and used.
  • these saccharides can be obtained by subjecting plant biomass to treatments such as steam treatment, concentrated acid hydrolysis, dilute acid hydrolysis, hydrolysis with enzymes such as cellulase, and alkali treatment.
  • hemicellulose is generally more easily hydrolyzed than cellulose
  • hemicellulose in plant biomass may be hydrolyzed in advance to release pentose, and then cellulose may be hydrolyzed to produce pentose.
  • xylose may be supplied by, for example, having a microorganism possess a conversion route from hexose such as glucose to xylose and converting it from hexose.
  • the carbon source one type of carbon source may be used, or two or more types of carbon sources may be used in combination.
  • the concentration of the carbon source in the medium is not particularly limited as long as the microorganism can grow and the target substance is produced.
  • the concentration of the carbon source in the medium may be, for example, as high as possible without inhibiting the production of the target substance.
  • the initial concentration of carbon source in the medium may be, for example, 5-30 w / v% or 10-20 w / v%.
  • a carbon source may be added to the medium as appropriate.
  • a carbon source may be added to the medium in response to the decrease or depletion of the carbon source as the fermentation progresses.
  • the carbon source may be temporarily depleted as long as the target substance is finally produced, but the culture should be carried out so that the carbon source is not depleted or the carbon source is not depleted continuously. May be preferable.
  • the nitrogen source include ammonium salts such as ammonium sulfate, ammonium chloride and ammonium phosphate, organic nitrogen sources such as peptone, yeast extract, meat extract and soybean protein decomposition products, ammonia and urea.
  • Ammonia gas or aqueous ammonia used for pH adjustment may be used as a nitrogen source.
  • the nitrogen source one type of nitrogen source may be used, or two or more types of nitrogen sources may be used in combination.
  • the phosphoric acid source examples include phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate, and phosphoric acid polymers such as pyrophosphoric acid.
  • phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate
  • phosphoric acid polymers such as pyrophosphoric acid.
  • the phosphoric acid source one kind of phosphoric acid source may be used, or two or more kinds of phosphoric acid sources may be used in combination.
  • the sulfur source include inorganic sulfur compounds such as sulfates, thiosulfates and sulfites, and sulfur-containing amino acids such as cysteine, cystine and glutathione.
  • the sulfur source one type of sulfur source may be used, or two or more types of sulfur sources may be used in combination.
  • organic components and inorganic components specifically, for example, inorganic salts such as sodium chloride and potassium chloride; trace metals such as iron, manganese, magnesium and calcium; vitamin B1, vitamin B2, vitamin B6 and nicotine. Vitamins such as acids, nicotinic acid amides and vitamin B12; amino acids; nucleic acids; organic components such as peptone, casamino acid, yeast extract and soybean proteolytic products containing these can be mentioned. As various other organic components and inorganic components, one type of component may be used, or two or more types of components may be used in combination.
  • the medium may preferably contain such nutrients.
  • the medium may also contain components used in the production of the substance of interest. Specific examples of such components include methyl group donors (eg, SAM) and precursors thereof (eg, methionine).
  • the culture conditions are not particularly limited as long as the microorganism can grow and the target substance is produced. Culturing can be carried out under normal conditions used for culturing microorganisms such as bacteria and yeast, for example.
  • the culture conditions may be appropriately set according to various conditions such as the type of microorganism used.
  • Culturing can be performed using a liquid medium.
  • a liquid medium for example, those in which microorganisms are cultured in a solid medium such as agar medium may be directly inoculated into a liquid medium, or those in which microorganisms are seed-cultured in a liquid medium are inoculated into a liquid medium for main culture.
  • the culture may be divided into a seed culture and a main culture. In that case, the culture conditions of the seed culture and the main culture may or may not be the same.
  • the target substance may be produced at least during the main culture period.
  • the amount of microorganisms contained in the medium at the start of culturing is not particularly limited.
  • Culturing can be carried out by batch culture, fed-batch culture, continuous culture, or a combination thereof.
  • the medium at the start of culturing is also referred to as "initial medium”.
  • a medium added to a culture system for example, a fermenter
  • fed-batch medium a medium added to a culture system in fed-batch culture or continuous culture
  • adding a fed-batch medium to a culture system in fed-batch culture or continuous culture is also referred to as "fed-batch”.
  • the culture forms of the seed culture and the main culture may or may not be the same.
  • both seed culture and main culture may be carried out in batch culture
  • seed culture may be carried out in batch culture
  • main culture may be carried out in fed-batch culture or continuous culture.
  • Various components such as a carbon source may be contained in the initial medium, the fed-batch medium, or both. That is, in the process of culturing, various components such as a carbon source may be added to the medium alone or in any combination. All of these components may be added once or multiple times, or may be added continuously.
  • the type of component contained in the initial medium may or may not be the same as the type of component contained in the fed-batch medium.
  • the concentration of each component contained in the initial medium may or may not be the same as the concentration of each component contained in the fed-batch medium.
  • two or more fed-batch media having different types and / or concentrations of the components contained may be used. For example, when multiple feedings are performed intermittently, the types and / or concentrations of the components contained in each fed-batch medium may or may not be the same.
  • Culturing may be carried out under aerobic conditions, for example.
  • the “aerobic condition” may mean a condition in which the dissolved oxygen concentration in the medium is 0.33 ppm or more, or 1.5 ppm or more. Specifically, the oxygen concentration may be controlled to, for example, about 1 to 50% or about 5% with respect to the saturated oxygen concentration.
  • the culture can be carried out, for example, by aeration culture or shaking culture.
  • the pH of the medium may be, for example, pH 3-10 or pH 4.0-9.5. During culturing, the pH of the medium can be adjusted as needed.
  • the pH of the medium is various alkaline or acidic substances such as ammonia gas, aqueous ammonia, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, etc. Can be adjusted using.
  • the pH of the medium may be adjusted, in particular, with a substance other than ammonia, such as ammonia gas or aqueous ammonia.
  • the culture temperature may be, for example, 20 to 45 ° C, or 25 ° C to 37 ° C.
  • the culture period may be, for example, 10 hours to 120 hours. Culturing may continue, for example, until the carbon source in the medium is consumed or until the microbial activity is depleted.
  • the target substance By culturing the microorganism under such conditions, the target substance accumulates in the medium.
  • the production of the target substance can be confirmed by a known method used for detecting or identifying the compound.
  • a known method used for detecting or identifying the compound include, for example, HPLC, UPLC, LC / MS, GC / MS, NMR. These methods can be used alone or in combination as appropriate. These techniques can also be used to determine the concentration of various components present in the medium.
  • the generated target substance can be recovered as appropriate. That is, the fermentation method may further include a step of recovering the target substance. This process is also referred to as a "recovery process".
  • the recovery step may be a step of recovering the target substance from the culture solution, specifically, the medium.
  • the target substance can be recovered by a known method used for separating and purifying the compound. Examples of such a method include an ion exchange resin method, a membrane treatment method, a precipitation method, an extraction method, a distillation method, and a crystallization method. Specifically, the target substance can be recovered by extraction with an organic solvent such as ethyl acetate, or by steam distillation. These methods can be used alone or in combination as appropriate.
  • the target substance precipitates in the medium it can be recovered by, for example, centrifugation or filtration. Further, the target substance precipitated in the medium may be isolated at the same time after the target substance dissolved in the medium is crystallized.
  • the target substance to be recovered may contain other components such as microbial cells, medium components, water, and metabolic by-products of microorganisms.
  • the purity of the recovered target substance is, for example, 30% (w / w) or more, 50% (w / w) or more, 70% (w / w) or more, 80% (w / w) or more, 90% ( It may be w / w) or more, or 95% (w / w) or more.
  • the target substance can also be produced, for example, by biological conversion using a microorganism capable of producing the target substance. That is, another aspect of the method for producing the target substance may be a method for producing the target substance by biological conversion using a microorganism. This aspect is also referred to as a "biological conversion method”.
  • the process of producing a target substance by biological conversion using microorganisms is also referred to as "biological conversion step”. That is, the target substance manufacturing step may include, for example, a biological conversion step. Further, the target substance manufacturing step may be carried out by, for example, a biological conversion step.
  • the target substance in the biological conversion step, can be produced from a precursor of the target substance. More specifically, in the biological conversion step, the target substance can be produced by converting a precursor of the target substance into the target substance using a microorganism. That is, the biological conversion step may be a step of converting a precursor of a target substance into the target substance using a microorganism.
  • the precursor of the target substance is also simply referred to as "precursor".
  • Precursors include intermediates in the biosynthetic pathway of the target substance (eg, those mentioned in connection with the description of the target substance biosynthetic enzyme).
  • the vanillin precursor is as described above. That is, examples of vanillin precursors include protocatechuic acid, vanillic acid, and protocatechuic aldehyde. Vanillin precursors include, in particular, vanillic acid. Vanillic acid precursors include protocatechuic acid. Protocatechuic acid precursors include protocatechuic acid. As the precursor, one kind of precursor may be used, or two or more kinds of precursors may be used in combination.
  • the precursor when the precursor is a compound that can take the form of a salt, the precursor may be used as a free form, as a salt, or as a mixture thereof. That is, unless otherwise specified, "precursor” may mean a precursor of a free form, a salt thereof, or a mixture thereof.
  • the salt include an ammonium salt, a sodium salt, and a potassium salt.
  • the precursor salt include salts other than ammonium salts.
  • one type of salt may be used, or two or more types of salts may be used in combination.
  • the precursor a commercially available product may be used, or one obtained by appropriately producing the precursor may be used.
  • the method for producing the precursor is not particularly limited, and for example, a known method can be used.
  • the precursor can be produced, for example, by a chemical synthesis method, an enzymatic method, a biological conversion method, a fermentation method, an extraction method, or a combination thereof. That is, for example, a precursor of a target substance utilizes an enzyme (also referred to as "precursor-producing enzyme") that catalyzes the conversion reaction of the target substance from the further precursor to the precursor of the target substance. Can be manufactured from the body.
  • a precursor of a target substance can be produced from a carbon source or from such a further precursor by utilizing a microorganism capable of producing a precursor.
  • the “microorganism capable of producing a precursor” may mean a microorganism capable of producing a precursor.
  • Precursor-producing microorganism may specifically mean a microorganism capable of producing a precursor of a substance of interest from a carbon source and / or from such an additional precursor. ..
  • the description of microorganisms capable of producing target substances can be applied mutatis mutandis.
  • the description regarding the production of a target substance using a microorganism capable of producing a target substance can be applied mutatis mutandis.
  • a method for producing protocatechuic acid by an enzymatic method or a biological conversion method a method of converting paracresol to protocatechuic acid using Pseudomonas putida KS-0180 (Japanese Patent Laid-Open No. 7-75589), NADH A method for converting parahydroxybenzoic acid to protocatechuic acid using a dependent parahydroxybenzoic acid hydroxylase (Japanese Patent Laid-Open No.
  • a method for producing protocatechuic acid by culturing the transformant in a medium to which terephthalic acid has been added Japanese Patent Laid-Open No. 2007-104942
  • Examples thereof include a method for producing protocatechuic acid from its precursor using the above-mentioned microorganism (Japanese Patent Laid-Open No. 2010-207094).
  • a method for producing protocatechuic acid by the fermentation method a method for producing protocatechuic acid using acetic acid as a carbon source using a bacterium belonging to the genus Brevibacterium (Japanese Patent Laid-Open No. 50-89592) and 3 -A method for producing protocatechuic acid from glucose as a carbon source using a bacterium belonging to the genus Escherichia or Klebsiella into which a gene encoding dihydroshikimic acid dehydrogenase has been introduced (US Pat. No. 5,272,073). Can be mentioned.
  • protocatechuic aldehyde can be produced by an enzymatic method using ACAR or a biological conversion method using a microorganism having ACAR, using protocatechuic acid as a precursor.
  • vanillic acid can be produced by an enzymatic method using OMT or a biological conversion method using a microorganism having OMT using protocatechuic acid as a precursor (J. Am. CHm. Soc., 1998, Vol. 120).
  • vanillic acid can be produced by a biological conversion method using Pseudomonas sp. AV 10 strain using ferulic acid as a precursor (J. App. Microbiol., 2013, Vol.116, p903-910).
  • the precursor may be one produced as described above.
  • a vanillin precursor such as vanillic acid may be produced by utilizing a microorganism capable of producing a vanillin precursor.
  • the biotransformation method may further include the step of producing a precursor.
  • the biological conversion method may include a step of producing a precursor as described above.
  • the biological conversion method may particularly include a step of producing a vanillin precursor such as vanillic acid by utilizing a microorganism capable of producing a vanillin precursor.
  • the produced precursor can be used as it is or after being appropriately subjected to treatments such as concentration, dilution, drying, dissolution, fractionation, sterilization, extraction and purification, and then used in a biological conversion method.
  • a refined product purified to a desired degree may be used, or a material containing the precursor may be used.
  • vanillin precursors such as vanillic acid may be used, in particular, in the form of materials containing vanillin precursors.
  • the material containing the precursor is not particularly limited as long as the microorganism can utilize the precursor.
  • Specific examples of the material containing the precursor include a culture solution or reaction solution containing the precursor, a supernatant separated from the culture solution or reaction solution, a concentrate thereof (for example, a concentrate), and a diluted product (for example, a concentrate).
  • a treated product such as a diluted solution
  • a dried product can be mentioned.
  • the biological conversion step can be carried out by culturing a microorganism capable of producing a target substance.
  • This aspect is also referred to as "the first aspect of the biological conversion method". That is, the biological conversion step may be, for example, a step of culturing the microorganism in a medium containing a precursor of the target substance and converting the precursor into the target substance.
  • the biological conversion step may be a step of culturing the microorganism in a medium containing a precursor of the target substance and producing and accumulating the target substance in the medium.
  • the medium used is not particularly limited as long as it contains a precursor of the target substance, microorganisms can grow, and the target substance is produced.
  • the culture conditions are not particularly limited as long as the microorganism can grow and the target substance is produced.
  • the description of the culture in the fermentation method (for example, the description of the medium and the culture conditions) is described in the same embodiment except that the medium contains a precursor of the target substance. Can be applied mutatis mutandis.
  • the precursor may be contained in the medium for the entire period of the culture, or may be contained in the medium only for a part of the period of the culture. That is, "culturing a microorganism in a medium containing a precursor" does not require that the precursor be contained in the medium during the entire period of culturing.
  • the precursor may or may not be contained in the medium from the beginning of the culture. If the precursor is not contained in the medium at the start of the culture, the precursor is added to the medium after the start of the culture.
  • the timing of addition can be appropriately set according to various conditions such as culture time.
  • the precursor may be added to the medium after the microorganism has fully grown. In either case, the precursor may be added to the medium as appropriate.
  • the precursor may be added to the medium according to the decrease or depletion of the precursor with the production of the target substance.
  • the means for adding the precursor to the medium is not particularly limited.
  • the precursor can be added to the medium by feeding the fed-batch medium containing the precursor into the medium.
  • a microorganism having a precursor-producing ability is made to produce a precursor in a medium, and thus the precursor is used as a medium. It can also be added.
  • the "component" in the case of "adding a certain component to the medium” may also include those produced or regenerated in the medium.
  • the concentration of the precursor in the medium is not particularly limited as long as the microorganism can use the precursor as a raw material for the target substance.
  • the precursor concentration in the medium is, for example, 0.1 g / L or more, 1 g / L or more, 2 g / L or more, 5 g / L or more, 10 g / L or more, or It may be 15 g / L or more, 200 g / L or less, 100 g / L or less, 50 g / L or less, or 20 g / L or less, or a combination thereof.
  • the precursor may or may not be contained in the medium at the concentrations illustrated above for the entire duration of the culture.
  • the precursor may be contained in the medium at the above-exemplified concentration at the start of culturing, or may be added to the medium at the above-exemplified concentration after the start of culturing.
  • the target substance may be produced at least during the main culture period. Therefore, the precursor may be contained in the medium at least during the main culture, that is, during the entire main culture or a part of the main culture. That is, the precursor may or may not be contained in the medium during the seed culture period.
  • the description about the culture for example, "culture period (culture period)" or "culture start" can be read as that for the main culture.
  • the biological conversion step can be carried out by utilizing the bacterial cells of a microorganism capable of producing the target substance.
  • This aspect is also referred to as "the second aspect of the biological conversion method". That is, the biological conversion step may be, for example, a step of converting a precursor of the target substance in the reaction solution into the target substance by utilizing the bacterial cells of the microorganism.
  • the biological conversion step may be a step of causing the bacterial cells of the microorganism to act on the precursor of the target substance in the reaction solution to generate and accumulate the target substance in the reaction solution.
  • conversion reaction carried out using such cells is also referred to as "conversion reaction".
  • Microbial cells are obtained by culturing microorganisms.
  • the culture method for obtaining the bacterial cells is not particularly limited as long as the microorganism can grow.
  • the precursor may or may not be contained in the medium.
  • the target substance may or may not be produced in a medium.
  • the description of the culture in the fermentation method (for example, the description of the medium and the culture conditions) can be applied mutatis mutandis.
  • the bacterial cells may be used in the conversion reaction as they are contained in the culture medium (specifically, the medium), or may be recovered from the culture solution (specifically, the medium) and used in the conversion reaction.
  • the bacterial cells may be appropriately treated and then used in the conversion reaction. That is, examples of the bacterial cells include a culture solution of microorganisms, bacterial cells recovered from the culture solution, and processed products thereof. That is, the bacterial cells may be used, for example, in the form of a culture solution of microorganisms, bacterial cells recovered from the culture solution, processed products thereof, or a combination thereof.
  • examples of the bacterial cells include bacterial cells contained in a culture solution of a microorganism, bacterial cells recovered from the culture solution, and bacterial cells contained in a processed product thereof. That is, the bacterial cells may be used, for example, in the form of bacterial cells contained in a culture solution of a microorganism, bacterial cells recovered from the culture solution, bacterial cells contained in a processed product thereof, or a combination thereof. ..
  • Examples of the treated product include those obtained by subjecting the bacterial cells (for example, the bacterial cells contained in the culture or the bacterial cells recovered from the culture) to the treatment. The cells of these embodiments may be used alone or in combination as appropriate.
  • the method for recovering the bacterial cells from the culture solution is not particularly limited, and for example, a known method can be used. Such techniques include, for example, natural sedimentation, centrifugation and filtration. Alternatively, a flocculant may be used. These methods may be used alone or in combination as appropriate.
  • the recovered cells can be appropriately washed using a suitable medium. In addition, the recovered cells can be appropriately resuspended using an appropriate medium. Examples of the medium that can be used for washing or suspension include an aqueous medium (aqueous solvent) such as water or an aqueous buffer solution.
  • Examples of the treatment of the bacterial cells include dilution, concentration, immobilization treatment on a carrier such as acrylamide and carrageenan, freeze-thaw treatment, and treatment for increasing the permeability of the membrane.
  • the permeability of the membrane can be enhanced by utilizing, for example, a surfactant or an organic solvent. These processes may be used alone or in combination as appropriate.
  • the bacterial cells used in the conversion reaction are not particularly limited as long as they have the ability to produce the target substance. It is preferable that the bacterial cells maintain their metabolic activity. "Maintaining metabolic activity” may mean that the cells have the ability to assimilate the carbon source to produce or regenerate the substance necessary for the production of the target substance. Examples of such substances include electron donors such as ATP, NADH and NADP, and methyl group donors such as SAM. The cells may or may not have the ability to grow.
  • the conversion reaction can be carried out in an appropriate reaction solution. Specifically, the conversion reaction can be carried out by allowing the cells and the precursor to coexist in an appropriate reaction solution.
  • the conversion reaction may be carried out in a batch manner or in a columnar manner. In the case of the batch type, for example, the conversion reaction can be carried out by mixing the bacterial cells and the precursor of the microorganism in the reaction solution in the reaction vessel. The conversion reaction may be carried out by allowing it to stand, or by stirring or shaking.
  • the conversion reaction can be carried out, for example, by passing a reaction solution containing a precursor through a column packed with immobilized cells. Examples of the reaction solution include an aqueous medium (aqueous solvent) such as water and an aqueous buffer solution.
  • the reaction solution may contain components other than the precursor, if necessary, in addition to the precursor.
  • Ingredients other than precursors include electron donors such as ATP, NADH and NADPH, methyl group donors such as SAM, metal ions, buffers, surfactants, organic solvents, carbon sources, phosphoric acid sources, and various other media. Ingredients are mentioned. That is, for example, a medium containing a precursor may be used as the reaction solution. That is, for the reaction solution in the second aspect of the biological conversion method, the description of the medium in the first aspect of the biological conversion method can be applied mutatis mutandis.
  • the type and concentration of the components contained in the reaction solution may be appropriately set according to various conditions such as the type of precursor to be used and the mode of the bacterial cells to be used.
  • the conditions of the conversion reaction are not particularly limited as long as the target substance is produced.
  • the conversion reaction can be carried out under the usual conditions used for substance conversion using microbial cells such as quiescent cells.
  • the conditions of the conversion reaction may be appropriately set according to various conditions such as the type of microorganism used.
  • the conversion reaction may be carried out under aerobic conditions, for example.
  • the “aerobic condition” may mean a condition in which the dissolved oxygen concentration in the reaction solution is 0.33 ppm or more, or 1.5 ppm or more.
  • the oxygen concentration may be controlled to, for example, about 1 to 50% or about 5% with respect to the saturated oxygen concentration.
  • the pH of the reaction solution may be, for example, usually 6.0 to 10.0, or 6.5 to 9.0.
  • the reaction temperature may be, for example, usually 15-50 ° C, 15-45 ° C, or 20-40 ° C.
  • the reaction time may be, for example, 5 minutes to 200 hours.
  • the flow rate of the reaction solution may be, for example, a rate such that the reaction time is within the range of the reaction time exemplified above.
  • the conversion reaction can also be carried out under culture conditions such as normal conditions used for culturing microorganisms such as bacteria and yeast. In the conversion reaction, the cells may or may not grow.
  • the description of the culture in the first aspect of the biological conversion method is applied mutatis mutandis, except that the cells may or may not grow in the same aspect. it can.
  • the culture conditions for obtaining the bacterial cells and the conditions for the conversion reaction may or may not be the same.
  • the concentration of the precursor in the reaction solution is, for example, 0.1 g / L or more, 1 g / L or more, 2 g / L or more, 5 g / L or more, 10 g / L or more in terms of the weight of the free form.
  • the concentration of the cells in the reaction solution may be, for example, 1 or more, 300 or less, or a combination thereof in terms of optical density (OD) at 600 nm.
  • bacterial cells, precursors, and other components may be added to the reaction solution alone or in any combination.
  • the precursor may be added to the reaction solution according to the decrease or depletion of the precursor due to the production of the target substance.
  • These components may be added once or multiple times, or may be added continuously.
  • the means for adding various components such as precursors to the reaction solution is not particularly limited. All of these components can be added to the reaction solution by adding them directly to the reaction solution. Further, for example, by co-culturing a microorganism having a target substance-producing ability and a microorganism having a precursor-producing ability, a microorganism having a precursor-producing ability can generate a precursor in a reaction solution, thereby reacting the precursor. It can also be added to the liquid. Further, for example, components such as ATP, electron donor, and methyl group donor may all be produced or regenerated in the reaction solution, or may be produced or regenerated in the microbial cell, and are heterologous cells. It may be generated or regenerated by interconjugation.
  • a carbon source can be used to generate or regenerate components such as ATP, an electron donor, and a methyl group donor in the microbial cell.
  • the microorganism may have an enhanced ability to produce or regenerate SAM, and the SAM produced or regenerated by the microorganism may be used in the conversion reaction.
  • the generation or regeneration of SAM can be further enhanced in combination with other techniques for generating or reproducing SAM.
  • a method for producing or regenerating ATP for example, a method of supplying ATP from a carbon source using a bacterium belonging to the genus Corynebacterium (Hori, Het al., Appl. Microbiol. Biotechnol.
  • reaction conditions may be uniform from the start to the end of the conversion reaction, or may change in the process of the conversion reaction.
  • the fact that “the reaction conditions change in the process of the conversion reaction” is not limited to the temporal changes of the reaction conditions, but may also include the spatial changes of the reaction conditions.
  • the reaction conditions change spatially means that, for example, when the conversion reaction is carried out by a column type, the reaction conditions such as the reaction temperature and the cell density are different depending on the position on the flow path. You can do it.
  • the biological conversion method may further include a recovery step (for example, a step of recovering the target substance from the culture solution (specifically, the medium) or the reaction solution).
  • the target substance to be recovered may contain other components such as microbial cells, medium components, reaction solution components, water, and metabolic by-products of microorganisms.
  • the purity of the recovered target substance is, for example, 30% (w / w) or more, 50% (w / w) or more, 70% (w / w) or more, 80% (w / w) or more, 90% ( It may be w / w) or more, or 95% (w / w) or more.
  • ⁇ 2-3> Reduction of Ammonia Concentration In the method described in the present specification (for example, a method for producing vanillin), the production of vanillin is carried out under the condition that the ammonia concentration is reduced. That is, in the method described in the present specification, the vanillin production step is carried out under the condition that the ammonia concentration is reduced.
  • Vanillin production is improved by producing vanillin under conditions where the ammonia concentration is reduced. Specifically, by producing vanillin under the condition that the ammonia concentration is reduced, the vanillin production is improved as compared with the case where the vanillin is produced under the condition that the ammonia concentration is not reduced.
  • the "condition for reducing the ammonia concentration” is also referred to as the "ammonia reduction condition”.
  • “Conditions that do not reduce the ammonia concentration” are also referred to as "control conditions”.
  • Vanillin production may be improved, for example, by improving the growth of microorganisms used in the vanillin production process, by improving the amount of vanillin produced per cell of the microorganisms used in the vanillin production process, or by a combination thereof.
  • Ammonia concentration means the concentration of ammonia in the medium or reaction solution (that is, in the case of vanillin production, the medium or reaction solution in which vanillin production is carried out).
  • Ammonia is a general term for ammonia molecules (NH 3 ) and ammonium ions (NH 4 +). That is, the “ammonia concentration” specifically refers to the concentration of ammonia molecules (NH 3 ) in the medium or reaction solution (that is, in the case of the production of vanillin, the medium or reaction solution in which the production of vanillin is carried out). It means the total concentration of ammonium ions (NH 4 +).
  • the degree of reduction of ammonia concentration is not particularly limited as long as vanillin production is improved.
  • the ammonia concentration during vanillin production (that is, the ammonia concentration under the ammonia reduction conditions) is appropriately determined according to various conditions such as the type of microorganism used in the vanillin production process, the length of the vanillin production process, and the desired vanillin production amount. Can be set.
  • Vanillin production or vanillin production process is carried out under conditions of reduced ammonia concentration
  • vanillin production or vanillin production process is carried out in a medium or reaction solution with reduced ammonia concentration
  • vanillin is produced. It may mean that the ammonia concentration at the time of is in a predetermined range.
  • ammonia may or may not be contained in the medium or reaction solution (ie, in the case of vanillin production, the medium or reaction solution in which the production of vanillin is carried out).
  • the ammonia concentration during the production of vanillin (that is, the ammonia concentration under the ammonia reduction condition) is, for example, 0 mM or more, 0.1 mM or more, 0.3 mM or more, 0.5 mM or more, 0.7 mM or more, 1 mM or more, 1.
  • the ammonia concentration during the production of vanillin may be, for example
  • Ammonia concentration may be reduced during the entire period of the vanillin production process, or may be reduced only during a part of the vanillin production process. That is, for example, when the production of vanillin is carried out by fermentation using microorganisms, the ammonia concentration may be reduced during the entire fermentation process, or may be reduced only during a part of the fermentation process. Good. Further, for example, when the production of vanillin is carried out by biological conversion using microorganisms, the ammonia concentration may be reduced during the entire period of the biological conversion step, and is reduced only during a part of the biological conversion step. May be.
  • the production of vanillin or the vanillin production process is carried out under the condition that the ammonia concentration is reduced" or "the production of vanillin or the vanillin production process is carried out in the medium or the reaction solution in which the ammonia concentration is reduced” means that the ammonia is produced. It suffices if the concentration is reduced during some of the vanillin production steps (eg, fermentation or bioconversion) and the ammonia concentration is reduced during the entire vanillin production process (eg, fermentation or bioconversion). It doesn't need to be.
  • the ammonia concentration may be reduced to the above-exemplified concentration during the entire period of the vanillin production process, or may be reduced to the above-exemplified concentration only during a part of the vanillin production process. That is, for example, when the production of vanillin is carried out by fermentation using microorganisms, the ammonia concentration may be reduced to the above-exemplified concentration during the entire fermentation process, and only during a part of the fermentation process. It may be reduced to the above-exemplified concentration. Further, for example, when the production of vanillin is carried out by biological conversion using microorganisms, the ammonia concentration may be reduced to the above-exemplified concentration during the entire period of the biological conversion step, and is a part of the biological conversion step.
  • the concentration may be reduced to the above-exemplified concentration only during the period. That is, "the production of vanillin or the process of producing vanillin is carried out under the condition that the ammonia concentration is reduced to a certain concentration” or "the production of vanillin or the step of producing vanillin is carried out in a medium or a reaction solution having a certain ammonia concentration". It is sufficient that the ammonia concentration is within the range of the concentration during a part of the vanillin production step (for example, fermentation step or biological conversion step), and the ammonia concentration is in the vanillin production step (for example, fermentation step or biological conversion step). ) Does not need to be within the range of the concentration for the entire period.
  • the “partial period” is not particularly limited as long as vanillin production improves.
  • the “partial period” can be appropriately set according to various conditions such as the type of microorganism used in the vanillin production process, the length of the vanillin production process, and the desired vanillin production amount.
  • “Partial period” is, for example, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more of the entire period of the vanillin production process (for example, fermentation process or biological conversion process). , 97% or more, or 99% or more.
  • the "partial period” is, for example, 10 hours or more, 15 hours or more, 20 hours or more, 30 hours or more, 40 hours or more, 50 in the vanillin production process (for example, fermentation process or biological conversion process).
  • the period may be hours or longer, 70 hours or longer, 100 hours or longer, or 150 hours or longer.
  • the ammonia concentration during the production of vanillin may be reduced to the above-exemplified concentration as an average value over the entire period of the vanillin production process, for example. That is, "the production of vanillin or the process of producing vanillin is carried out under the condition that the ammonia concentration is reduced to a certain concentration” or "the production of vanillin or the process of producing vanillin is carried out in a medium or a reaction solution having a certain concentration of ammonia”. May mean that the average value of the ammonia concentration throughout the entire vanillin production process is within that concentration range.
  • the "average value of ammonia concentration over the entire period of the vanillin production process" is not particularly limited as long as it reflects the fluctuation of the ammonia concentration over the entire period of the vanillin production process.
  • the entire period of the vanillin production process is not limited. It may mean the average value of ammonia concentration measured every 60 minutes, every 30 minutes, every 20 minutes, or every 10 minutes throughout.
  • the means for reducing the ammonia concentration is not particularly limited.
  • Ammonia concentration is, for example, reducing the initial concentration of ammonia (ie, the concentration of ammonia in the medium or reaction solution at the beginning of the vanillin production process), the flow of ammonia (ie, the medium or reaction after the start of the vanillin production process).
  • the amount of ammonia supplied to the liquid may be reduced, or a combination thereof may be used.
  • the initial concentration of ammonia in the production of vanillin (that is, the initial concentration of ammonia under ammonia reduction conditions) is, for example, 0 mM or more, 0.1 mM or more, 0.3 mM or more, 0.5 mM or more, 0.7 mM or more, 1 mM.
  • the initial concentration of ammonia in the production of vanillin (that is, the initial concentration of ammonia under the ammonia reduction condition) may be, for example, 1 to 700 mM, 1 to 400 mM, or 1 to 100 mM.
  • the amount of ammonia used in the production of vanillin (that is, the amount of ammonia used under the ammonia reduction conditions) is, for example, 300% or less, 250% or less, 200% or less, 150 as a molar ratio to the amount of vanillin precursor used. % Or less, 100% or less, 70% or less, 50% or less, 30% or less, 20% or less, 15% or less, 10% or less, 5% or less, 2% or less, or 1% or less.
  • the amount of ammonia used in the production of vanillin (that is, the amount of ammonia used under ammonia reduction conditions) is, for example, 300% or less, 250% or less, 200% or less, 150% as the molar ratio to the amount of carbon source used. Below, it may be 100% or less, 70% or less, 50% or less, 30% or less, 20% or less, 15% or less, 10% or less, 5% or less, 2% or less, or 1% or less.
  • the amount of ammonia used in the production of vanillin (that is, the amount of ammonia used under the ammonia reduction conditions) is, for example, 300% or less, 250% or less, 200 as the molar ratio to the total amount of vanillin precursor and carbon source used. % Or less, 150% or less, 100% or less, 70% or less, 50% or less, 30% or less, 20% or less, 15% or less, 10% or less, 5% or less, 2% or less, or 1% or less. Good.
  • Amount of a certain component used means the initial content of the component (that is, the content of the component in the medium or reaction solution at the start of the vanillin production process) and the fed-batch amount of the component (that is, vanillin production). It means the total amount of the component) supplied to the medium or reaction solution after the start of the process.
  • the "fed-batch amount of a certain component” may mean, in particular, the fed-batch amount of the component in the period from the start of the vanillin production process to the sufficient production of vanillin.
  • “Sufficient vanillin is produced” means, for example, that the vanillin concentration in the medium or reaction solution is 90% or more, 95% or more, 97% or more of the vanillin concentration in the medium or reaction solution at the end of the vanillin production process. Or it may mean reaching a concentration of 99% or higher. Further, “sufficiently produced vanillin” means that, for example, the vanillin production amount is 90% or more, 95% or more, 97% or more, or 99% or more of the vanillin production amount from the start to the end of the vanillin production process. May mean reaching the quantity of.
  • the ammonia concentration may be reduced, in particular, by reducing the amount of ammonia used with the use of the vanillin precursor.
  • the vanillin precursor when used in the form of a composition that may contain ammonia, the use of the vanillin precursor (specifically, the composition) by reducing the amount of ammonia contained in the composition.
  • the amount of ammonia used can be reduced. That is, by reducing the amount of ammonia contained in such a composition, the introduction of ammonia into the medium or reaction solution due to the use of the vanillin precursor (specifically, the use of the composition) is reduced. Therefore, the amount of ammonia used can be reduced.
  • Such compositions include vanillin precursors produced using microorganisms.
  • Such a composition include a material containing a vanillin precursor produced by utilizing a microorganism.
  • the materials containing the vanillin precursor are as described above.
  • Specific examples of the material containing the vanillin precursor include a culture solution or reaction solution containing the vanillin precursor, a supernatant separated from the culture solution or reaction solution, a concentrate thereof (for example, a concentrate), and a dilution thereof. Examples thereof include processed products such as products (for example, diluents) and dried products.
  • the content of the vanillin precursor in such a composition is, for example, 1% (w / w) or more, 3% (w / w) or more, 5% (w / w) or more, 7% (w / w). It may be 10% (w / w) or more, 15% (w / w) or more, or 20% (w / w) or more, 95% (w / w) or less, 90% (w / w) or more.
  • the content of the vanillin precursor in such a composition is, for example, 1% (w / w) or more and 3% (w / w) or more as the amount of the vanillin precursor with respect to the total amount of the composition excluding water.
  • the vanillin precursor may be produced in a form in which the ammonia content is reduced.
  • the vanillin precursor may be specifically prepared in the form of a composition with a reduced ammonia content.
  • the description for the method described in the present specification for example, the method for producing vanillin
  • the production of the vanillin precursor may be carried out under the condition that the ammonia concentration is reduced.
  • Ammonia concentration means the concentration of ammonia in the medium or reaction solution (that is, in the case of production of vanillin precursor, the medium or reaction solution in which the production of vanillin precursor is carried out).
  • the vanillin precursor By producing the vanillin precursor under the condition that the ammonia concentration is reduced, the vanillin precursor can be produced in a form in which the ammonia content is reduced, and thus the amount of ammonia used accompanying the use of the vanillin precursor can be reduced. Can be reduced.
  • the ammonia concentration in the production of vanillin may be reduced at least by producing the vanillin precursor under the condition that the ammonia concentration is reduced.
  • the amount of ammonia that can be used as a nitrogen source in the production of vanillin precursors may be reduced.
  • the amount of ammonia that can be used for pH adjustment in the production of vanillin precursors may be reduced. pH adjustments include neutralization of protocatechuic acid and / or vanillic acid.
  • the amount of ammonia that can be used for neutralizing protocatechuic acid and / or vanillic acid may be reduced.
  • the amount of ammonia that can be used to neutralize protocatechuic acid may be reduced.
  • the amount of ammonia that can be used for neutralizing protocatechuic acid may be reduced.
  • the amount of ammonia that can be used for pH adjustment is, for example, a pH adjustment substance other than ammonia, for example, sodium hydroxide or potassium hydroxide. It can be reduced by using a substance for adjusting the pH of the above-exemplified medium other than ammonia, such as.
  • the amount of ammonia that can be used for pH adjustment, such as neutralization of protocatechuic acid and / or vanillic acid is, for example, a portion or all of the ammonia that can be used for pH adjustment with other pH adjusting substances (eg, for example.
  • ammonia sodium hydroxide and potassium hydroxide.
  • ammonia that can be used for pH adjustment include ammonia gas and ammonia water.
  • the content of ammonia in the composition as described above is not particularly limited as long as a reduction in the ammonia concentration during the production of vanillin can be achieved.
  • the content of ammonia in the composition as described above is, for example, 300% or less, 250% or less, 200 as a molar ratio to the content of the vanillin precursor in the composition. % Or less, 150% or less, 100% or less, 70% or less, 50% or less, 30% or less, 20% or less, 15% or less, 10% or less, 5% or less, 2% or less, or 1% or less. Good.
  • Vanillin was quantified by HPLC analysis. The analysis conditions are as shown below.
  • Ammonia was quantified by BF-7 (Oji measuring instrument). The analysis conditions are as shown below.
  • Mobile phase BF buffer pH 7.0 (Oji measuring instrument) with ⁇ -ketoglutaric acid added to a final concentration of 1 mM and NADH added to a final concentration of 1 mM
  • Flow rate 1 mL / min
  • Time 90 sec
  • Temperature 37 °C
  • Electrodes Glutamic acid electrode, ammonia electrode (Oji measuring instrument) Remarks: Since glutamic acid is also measured with the ammonia electrode, the value obtained by subtracting the glutamic acid concentration after measuring the glutamic acid concentration with the glutamic acid electrode was calculated as the ammonia concentration.
  • OD was measured by UV-1800 (Shimadzu Corporation). The analysis conditions are as shown below. Wavelength: 600 nm Cell length: 1 cm
  • the plasmid pVK9 is a co-expression plasmid of aromatic carboxylic acid reductase (ACAR) from Gordonia effusa and phosphorpantetheinyl transferase (PPT) from E. coli.
  • ACAR aromatic carboxylic acid reductase
  • PPT phosphorpantetheinyl transferase
  • the cells CM-Dex SGFC plates (glucose 2.5 g / L, fructose 2.5 g / L, polypeptone 10 g / L, Yeast extract 10 g / L, KH 2 PO 4 1 g / L, MgSO 4 ⁇ 7H 2 O 0.4 g / L, FeSO 4 ⁇ 7H 2 O 0.01 g / L, MnSO 4 ⁇ 7H 2 O 0.01 g / L, succinate disodium ⁇ 6H 2 O 2 g / L , sodium gluconate 4 g / L, urea 3 g / L, biotin 10 ⁇ g / L, soybean hydrochloric acid hydrolyzate (as total nitrogen) 1.2 g / L, adjusted to pH 7.5 with NaOH, cultivated at 31.5 ° C with canamycin 25 mg / L, Agar 15 g / L) did.
  • the acquired colonies were purified on a CM-Dex SGFC plate and named FKFC14 / pVK9 :: Ptuf * -Ge_ACAR-entD.
  • the obtained strain was cultured in 4 mL of CM-Dex SGFC medium at 31.5 ° C. for about 16 hours, 0.9 mL of the culture solution was mixed with 0.6 mL of 50% glycerol, and stored as a glycerol stock at -80 ° C.
  • Vanillin production from vanillic acid FKFC14 / pVK9 : Ptuf * -Ge_ACAR-entD CM-Dex-Km (glucose 5 g / L, polypeptone 10 g / L, yeast extract 10 g / L, KH 2 PO 4 1 g / L, MgSO 4 ⁇ 7H 2 O 0.4 g / L, urea 3 g / L, FeSO 4 ⁇ 7H 2 O 0.01 g / L, MnSO 4 ⁇ 7H 2 O 0.01 g / L, biotin 10 [mu] g / L, Soybean hydrochloric acid hydrolyzate (as total nitrogen) 1.2 g / L, adjusted to pH 7.5 with KOH, cultivated on a canamycin 25 mg / L, Agar 20 g / L) plate at 20 ° C.
  • CM-Dex-Glc10 medium containing 25 mg / L of canamycin (glucose 10 g / L, polypeptone 10 g / L, yeast extract 10 g / L, KH 2 PO 4 1 g / L, DDL 4 ⁇ 7H 2 O 0.4 g / L, urea 3 g / L, FeSO 4 ⁇ 7H 2 O 0.01 g / L, MnSO 4 ⁇ 7H 2 O 0.01 g / L, biotin 10 [mu] g / L, hydrochloric acid hydrolyzate of soybean (total As nitrogen) 1.2 g / L, adjusted to pH 7.5 with KOH) Inoculated into 50 mL and cultivated with shaking at 31.5 ° C for 18 hours using a Sakaguchi flask.
  • the production of vanillin by microorganisms can be improved, and vanillin can be efficiently produced.
  • SEQ ID NO: 1 Nucleotide sequence of ACAR gene of Gordonia effusa
  • SEQ ID NO: 2 Nucleotide sequence of ACAR protein of Gordonia effusa
  • SEQ ID NO: 3 Nucleotide sequence of entD gene of Escherichia coli MG1655
  • SEQ ID NO: 4 Nucleotide sequence of EntD protein of Escherichia coli MG1655
  • SEQ ID NO: 5 Nucleotide sequence of vanK gene of Corynebacterium glutamicum 2256 (ATCC 13869)
  • SEQ ID NO: 6 Nucleotide sequence of VanK protein of Corynebacterium glutamicum 2256 (ATCC 13869)
  • SEQ ID NO: 7 Nucleotide sequence of vanA gene of Corynebacterium glutamicum 2256 (ATCC 13869)
  • SEQ ID NO: 8 Nucleotide sequence of VanA protein of Corynebacterium glutamicum 2256 (ATCC

Abstract

Provided is a vanillin production method. The present invention enables production of vanillin by using, under a condition in which the concentration of ammonia is reduced, a microorganism having the ability to produce vanillin.

Description

バニリンの製造方法How to make vanillin
 本発明は、微生物を用いたバニリン(vanillin)の製造方法に関するものである。 The present invention relates to a method for producing vanillin using a microorganism.
 バニリンは、バニラの香りの主要な成分であり、香料として飲食品や香水等に配合して使用されている。バニリンは、主に、天然物からの抽出または化学合成により製造されている。 Vanillin is the main component of the scent of vanilla, and is used as a fragrance in foods and drinks and perfumes. Vanillin is mainly produced by extraction from natural products or chemical synthesis.
 また、生物工学的手法によりバニリンを製造する試みもなされている。例えば、Corynebacterium glutamicum等の微生物を利用してバニリン酸等のバニリン前駆体からバニリンを製造することができる。 Attempts have also been made to produce vanillin by biotechnology. For example, vanillin can be produced from a vanillin precursor such as vanillic acid by utilizing a microorganism such as Corynebacterium glutamicum.
 アンモニアは、例えば、窒素源として、またはpH調整のために、微生物の培養に用いられている。しかし、アンモニアは、高濃度では微生物の生育阻害を引き起こす場合がある(非特許文献1および2)。例えば、Corynebacterium glutamicumは、100 mMのアンモニアでは生育阻害を受けないが(非特許文献1)、1 Mのアンモニアでは生育阻害を受ける(非特許文献2)。また、アンモニアによるCorynebacterium glutamicumの生育阻害は、glutamate dehydrogenase(GDH)の欠損株で顕著である(非特許文献1および2)。また、Corynebacterium glutamicumのプロリン生産菌において、アンモニアの添加により生育阻害を引き起こすと、プロリンの生産が向上することが知られている(非特許文献3)。 Ammonia is used in culturing microorganisms, for example, as a nitrogen source or for pH adjustment. However, ammonia may cause inhibition of microbial growth at high concentrations (Non-Patent Documents 1 and 2). For example, Corynebacterium glutamicum is not inhibited by 100 mM ammonia (Non-Patent Document 1), but is inhibited by 1 M ammonia (Non-Patent Document 2). In addition, inhibition of the growth of Corynebacterium glutamicum by ammonia is remarkable in glutamate dehydrogenase (GDH) -deficient strains (Non-Patent Documents 1 and 2). Further, it is known that in Corynebacterium glutamicum proline-producing bacteria, the production of proline is improved when the addition of ammonia causes growth inhibition (Non-Patent Document 3).
 本発明は、微生物によるバニリンの生産を向上させる新規な技術を開発し、以て効率的なバニリンの製造方法を提供することを課題とする。 An object of the present invention is to develop a novel technique for improving the production of vanillin by microorganisms and to provide an efficient method for producing vanillin.
 本発明者らは、微生物を利用したバニリン生産の際のアンモニア濃度を低減することにより、該微生物によるバニリンの生産が向上することを見出し、本発明を完成させた。 The present inventors have found that the production of vanillin by the microorganism is improved by reducing the ammonia concentration during the production of vanillin using the microorganism, and completed the present invention.
 すなわち、本発明は以下の通り例示できる。
[1]
 バニリンの製造方法であって、
 バニリンを生産する能力を有する微生物を利用してバニリンを製造すること
 を含み、
 前記製造が、アンモニア濃度を低減した条件で実施される、方法。
[2]
 前記製造の際のアンモニア濃度が、700mM以下である、前記方法。
[3]
 前記製造の際のアンモニア濃度が、400mM以下である、前記方法。
[4]
 前記製造の際のアンモニア濃度が、100mM以下である、前記方法。
[5]
 前記製造が、前記微生物を利用してバニリン前駆体をバニリンに変換することを含む、前記方法。
[6]
 前記変換が、前記前駆体を含有する培地で前記微生物を培養し、バニリンを該培地中に生成蓄積させることを含む、前記方法。
[7]
 前記変換が、前記微生物の菌体を反応液中の前記前駆体に作用させ、バニリンを該反応液中に生成蓄積させることを含む、前記方法。
[8]
 前記菌体が、前記微生物の培養液、該培養液から回収した菌体、それらの処理物、またはそれらの組み合わせの形態で用いられる、前記方法。
[9]
 前記前駆体が、バニリン酸である、前記方法。
[10]
 前記前駆体が、該前駆体を生産する能力を有する微生物を利用して製造されたものである、前記方法。
[11]
 前記バニリンの製造の前に、さらに、前記前駆体を生産する能力を有する微生物を利用して該前駆体を製造することを含む、前記方法。
[12]
 前記前駆体の製造が、アンモニア濃度を低減した条件で実施される、前記方法。
[13]
 前記前駆体が、該前駆体を含有する素材の形態で用いられ、
 前記素材が、前記前駆体を含有する培養液または反応液、該培養液または反応液から分離した上清、それらの処理物、またはそれらの組み合わせである、前記方法。
[14]
 前記素材におけるアンモニアの含有量が、該素材における前記前駆体の含有量に対するモル比として、300%以下である、前記方法。
[15]
 前記バニリンの製造が、炭素源を含有する培地で前記バニリンを生産する能力を有する微生物を培養し、バニリンを該培地中に生成蓄積させることを含む、前記方法。
[16]
 さらに、バニリンを回収することを含む、前記方法。
[17]
 前記バニリンを生産する能力を有する微生物が、細菌または酵母である、前記方法。
[18]
 前記バニリンを生産する能力を有する微生物が、コリネ型細菌または腸内細菌科(Enterobacteriaceae)の細菌である、前記方法。
[19]
 前記バニリンを生産する能力を有する微生物が、コリネバクテリウム(Corynebacterium)属細菌またはエシェリヒア(Escherichia)属細菌である、前記方法。
[20]
 前記バニリンを生産する能力を有する微生物が、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)またはエシェリヒア・コリ(Escherichia coli)である、前記方法。
[21]
 前記バニリンを生産する能力を有する微生物が、芳香族カルボン酸レダクターゼおよび/またはホスホパンテテイニルトランスフェラーゼの活性が非改変株と比較して増大するように改変されている、前記方法。
[22]
 前記バニリンを生産する能力を有する微生物が、バニリン酸デメチラーゼおよび/またはアルコールデヒドロゲナーゼの活性が非改変株と比較して低下するように改変されている、前記方法。
That is, the present invention can be exemplified as follows.
[1]
It ’s a method of making vanillin.
Including the production of vanillin using microorganisms capable of producing vanillin,
A method in which the production is carried out under conditions where the ammonia concentration is reduced.
[2]
The method according to the method, wherein the ammonia concentration during the production is 700 mM or less.
[3]
The method according to the method, wherein the ammonia concentration during the production is 400 mM or less.
[4]
The method according to the method, wherein the ammonia concentration during the production is 100 mM or less.
[5]
The method, wherein the production comprises converting the vanillin precursor to vanillin using the microorganism.
[6]
The method, wherein the conversion comprises culturing the microorganism in a medium containing the precursor and producing and accumulating vanillin in the medium.
[7]
The method, wherein the conversion comprises causing the bacterial cells of the microorganism to act on the precursor in the reaction solution and producing and accumulating vanillin in the reaction solution.
[8]
The method as described above, wherein the cells are used in the form of a culture solution of the microorganism, cells recovered from the culture solution, processed products thereof, or a combination thereof.
[9]
The method, wherein the precursor is vanillic acid.
[10]
The method, wherein the precursor is produced using a microorganism capable of producing the precursor.
[11]
The method, which further comprises producing the precursor using a microorganism capable of producing the precursor prior to the production of the vanillin.
[12]
The method, wherein the precursor is produced under conditions where the ammonia concentration is reduced.
[13]
The precursor is used in the form of a material containing the precursor.
The method as described above, wherein the material is a culture or reaction solution containing the precursor, a supernatant separated from the culture solution or reaction solution, a processed product thereof, or a combination thereof.
[14]
The method according to the method, wherein the content of ammonia in the material is 300% or less as a molar ratio to the content of the precursor in the material.
[15]
The method, wherein the production of vanillin comprises culturing a microorganism capable of producing the vanillin in a medium containing a carbon source, and producing and accumulating vanillin in the medium.
[16]
The method, further comprising recovering vanillin.
[17]
The method, wherein the microorganism capable of producing the vanillin is a bacterium or yeast.
[18]
The method, wherein the microorganism capable of producing the vanillin is a coryneform bacterium or a bacterium of the Enterobacteriaceae family.
[19]
The method as described above, wherein the microorganism capable of producing the vanillin is a bacterium belonging to the genus Corynebacterium or a bacterium belonging to the genus Escherichia.
[20]
The method, wherein the microorganism capable of producing the vanillin is Corynebacterium glutamicum or Escherichia coli.
[21]
The method, wherein the microorganism capable of producing vanillin has been modified to increase the activity of aromatic carboxylic acid reductase and / or phosphopantetinyltransferase as compared to the unmodified strain.
[22]
The method, wherein the microorganism capable of producing the vanillin has been modified such that the activity of vanillate demethylase and / or alcohol dehydrogenase is reduced as compared to the unmodified strain.
 本明細書に記載の方法は、バニリンの製造方法であって、バニリンを生産する能力を有する微生物を利用してバニリンを製造することを含み、前記製造がアンモニア濃度を低減した条件で実施される、方法であってよい。また、本明細書に記載の方法は、バニリンの生産を向上させる方法であって、バニリンを生産する能力を有する微生物を利用してバニリンを製造することを含み、前記製造がアンモニア濃度を低減した条件で実施される、方法であってもよい。バニリンは、具体的には、例えば、バニリンを生産する能力を有する微生物を利用して、炭素源および/またはバニリン前駆体から製造することができる。 The method described herein is a method for producing vanillin, which comprises producing vanillin using a microorganism capable of producing vanillin, and the production is carried out under conditions in which the ammonia concentration is reduced. , May be the method. In addition, the method described herein is a method for improving the production of vanillin, which comprises producing vanillin using a microorganism capable of producing vanillin, the production of which has reduced the ammonia concentration. It may be a method carried out under conditions. Vanillin can be specifically produced from carbon sources and / or vanillin precursors, for example, utilizing microorganisms capable of producing vanillin.
 バニリン前駆体は、例えば、バニリン前駆体を生産する能力を有する微生物を利用して製造することができる。バニリン前駆体は、具体的には、例えば、バニリン前駆体を生産する能力を有する微生物を利用して、炭素源および/またはバニリン前駆体のさらなる前駆体から製造することができる。 The vanillin precursor can be produced, for example, by utilizing a microorganism capable of producing the vanillin precursor. Vanillin precursors can be specifically produced from carbon sources and / or additional precursors of vanillin precursors, for example, utilizing microorganisms capable of producing vanillin precursors.
 バニリンまたはバニリン前駆体を、「目的物質」ともいう。 Vanillin or vanillin precursor is also referred to as "target substance".
 以下、目的物質(すなわち、バニリンまたはバニリン前駆体)を生産する能力を有する微生物を利用して目的物質(すなわち、バニリンまたはバニリン前駆体)を製造する方法について説明する。下記の目的物質の製造方法に関する説明は、特記しない限り、本明細書に記載の方法(例えば、バニリンの製造方法)についての説明、および本明細書に記載の方法(例えば、バニリンの製造方法)に用いられるバニリン前駆体の製造方法についての説明を兼ねる。 Hereinafter, a method for producing a target substance (that is, vanillin or a vanillin precursor) by utilizing a microorganism having an ability to produce a target substance (that is, vanillin or a vanillin precursor) will be described. Unless otherwise specified, the following description of the method for producing the target substance is a description of the method described in the present specification (for example, a method for producing vanillin) and the method described in the present specification (for example, a method for producing vanillin). Also serves as an explanation of the method for producing the vanillin precursor used in the above.
<1>微生物
 目的物質の製造に用いられる微生物は、目的物質を生産する能力を有する微生物である。目的物質を生産する能力を、「目的物質生産能」ともいう。
<1> Microorganism The microorganism used for producing the target substance is a microorganism having an ability to produce the target substance. The ability to produce a target substance is also called "target substance producing ability".
<1-1>目的物質生産能を有する微生物
 「目的物質生産能を有する微生物」とは、目的物質を生産することができる微生物を意味してよい。
<1-1> Microorganisms capable of producing a target substance “Microorganisms capable of producing a target substance” may mean a microorganism capable of producing a target substance.
 「目的物質生産能を有する微生物」とは、同微生物が発酵法に用いられる場合にあっては、目的物質を発酵により生産することができる微生物を意味してよい。すなわち、「目的物質生産能を有する微生物」とは、例えば、目的物質を炭素源から生産することができる微生物を意味してよい。「目的物質生産能を有する微生物」とは、具体的には、例えば、培地(例えば、炭素源を含有する培地)で培養したときに、目的物質を生産し、回収できる程度に培地中に蓄積することができる微生物を意味してよい。 The "microorganism capable of producing the target substance" may mean a microorganism capable of producing the target substance by fermentation when the microorganism is used in the fermentation method. That is, the “microorganism capable of producing a target substance” may mean, for example, a microorganism capable of producing a target substance from a carbon source. Specifically, the “microorganism capable of producing a target substance” means that, for example, when cultured in a medium (for example, a medium containing a carbon source), the target substance is produced and accumulated in the medium to the extent that it can be recovered. May mean a microorganism that can.
 「目的物質生産能を有する微生物」とは、同微生物が生物変換法に用いられる場合にあっては、目的物質を生物変換により生産することができる微生物を意味してよい。すなわち、「目的物質生産能を有する微生物」とは、例えば、目的物質を該目的物質の前駆体から生産することができる微生物を意味してよい。「目的物質生産能を有する微生物」とは、具体的には、例えば、培地(例えば、目的物質の前駆体を含有する培地)で培養したときに、目的物質を生産し、回収できる程度に培地中に蓄積することができる微生物を意味してよい。また、「目的物質生産能を有する微生物」とは、具体的には、例えば、反応液中で目的物質の前駆体に作用させたときに、目的物質を生産し、回収できる程度に反応液中に蓄積することができる微生物を意味してよい。 The "microorganism capable of producing a target substance" may mean a microorganism capable of producing a target substance by biological conversion when the microorganism is used in a biological conversion method. That is, the “microorganism capable of producing a target substance” may mean, for example, a microorganism capable of producing a target substance from a precursor of the target substance. Specifically, the “microorganism capable of producing a target substance” is a medium that can produce and recover the target substance when cultured in, for example, a medium (for example, a medium containing a precursor of the target substance). It may mean a microorganism that can accumulate in it. Further, the “microorganism capable of producing the target substance” is specifically, for example, in the reaction solution to the extent that the target substance can be produced and recovered when it is allowed to act on the precursor of the target substance in the reaction solution. It may mean a microorganism that can accumulate in.
 目的物質生産能を有する微生物は、例えば、0.01 g/L以上、0.05 g/L以上、または0.09 g/L以上の量の目的物質を培地または反応液に蓄積することができてよい。 A microorganism capable of producing a target substance may be capable of accumulating a target substance in an amount of 0.01 g / L or more, 0.05 g / L or more, or 0.09 g / L or more in a medium or a reaction solution, for example.
 「目的物質」とは、バニリン(vanillin)またはバニリン前駆体を意味する。「バニリン前駆体」とは、微生物を利用した生物変換によりバニリンへと変換できる化合物を意味してよい。バニリン前駆体としては、プロトカテク酸、バニリン酸、プロトカテクアルデヒドが挙げられる。バニリン前駆体としては、特に、バニリン酸が挙げられる。微生物は、1種の目的物質のみを生産することができてもよく、2種またはそれ以上の目的物質を生産することができてもよい。また、微生物は、1種の目的物質前駆体から目的物質を生成することができてもよく、2種またはそれ以上の目的物質前駆体から目的物質を生成することができてもよい。 "Target substance" means vanillin or vanillin precursor. The "vanillin precursor" may mean a compound that can be converted to vanillin by biological conversion using a microorganism. Examples of vanillin precursors include protocatechuic acid, vanillic acid, and protocatechuic aldehyde. Vanillin precursors include, in particular, vanillic acid. The microorganism may be capable of producing only one target substance, or may be capable of producing two or more target substances. Further, the microorganism may be able to produce the target substance from one kind of target substance precursor, or may be able to produce the target substance from two or more kinds of target substance precursors.
 目的物質が塩の形態を取り得る化合物である場合、目的物質は、フリー体、塩、またはそれらの混合物として得られてよい。すなわち、「目的物質」とは、特記しない限り、フリー体の目的物質、もしくはその塩、またはそれらの混合物を意味してよい。塩としては、例えば、アンモニウム塩、ナトリウム塩、カリウム塩が挙げられる。目的物質の塩としては、特に、アンモニウム塩以外の塩が挙げられる。目的物質の塩としては、1種の塩を用いてもよく、2種またはそれ以上の塩を組み合わせて用いてもよい。 When the target substance is a compound that can take the form of a salt, the target substance may be obtained as a free form, a salt, or a mixture thereof. That is, unless otherwise specified, the "target substance" may mean a free target substance, a salt thereof, or a mixture thereof. Examples of the salt include an ammonium salt, a sodium salt, and a potassium salt. Examples of the salt of the target substance include salts other than ammonium salts. As the salt of the target substance, one kind of salt may be used, or two kinds or more kinds of salts may be used in combination.
 目的物質の製造に用いられる微生物またはそれを構築するための親株として用いられる微生物は特に制限されない。微生物としては、細菌や酵母が挙げられる。 The microorganism used for producing the target substance or the microorganism used as the parent strain for constructing the target substance is not particularly limited. Examples of microorganisms include bacteria and yeast.
 細菌としては、腸内細菌科(Enterobacteriaceae)に属する細菌やコリネ型細菌が挙げられる。 Bacteria include bacteria belonging to the family Enterobacteriaceae and coryneform bacteria.
 腸内細菌科に属する細菌としては、エシェリヒア(Escherichia)属、エンテロバクター(Enterobacter)属、パントエア(Pantoea)属、クレブシエラ(Klebsiella)属、セラチア(Serratia)属、エルビニア(Erwinia)属、フォトラブダス(Photorhabdus)属、プロビデンシア(Providencia)属、サルモネラ(Salmonella)属、モルガネラ(Morganella)等の属に属する細菌が挙げられる。具体的には、NCBI(National Center for Biotechnology Information)のデータベース(http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347)で用いられている分類法により腸内細菌科に分類されている細菌を用いることができる。 Bacteria belonging to the family Enterobacteriaceae include Escherichia, Enterobacter, Pantoea, Klebsiella, Serratia, Erwinia, and Photolabdas. Examples include bacteria belonging to the genus (Photorhabdus), Providencia, Salmonella, Morganella and the like. Specifically, according to the classification method used in the NCBI (National Center for Biotechnology Information) database (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347). Bacteria classified in the Department of Enterobacteriaceae can be used.
 エシェリヒア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエシェリヒア属に分類されている細菌が挙げられる。エシェリヒア属細菌としては、例えば、Neidhardtらの著書(Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1. In F. D. Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washington, D.C.)に記載されたものが挙げられる。エシェリヒア属細菌としては、例えば、エシェリヒア・コリ(Escherichia coli)が挙げられる。エシェリヒア・コリとして、具体的には、例えば、W3110株(ATCC 27325)やMG1655株(ATCC 47076)等のエシェリヒア・コリK-12株;エシェリヒア・コリK5株(ATCC 23506);BL21(DE3)株等のエシェリヒア・コリB株;およびそれらの派生株が挙げられる。 Bacteria of the genus Escherichia are not particularly limited, but examples thereof include bacteria classified into the genus Escherichia according to a classification known to microbiology experts. Examples of Escherichia bacteria include the books of Neidhardt et al. (Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1. In F. D. Neidhardt. (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology / Second Edition, American Society for Microbiology Press, Washington, DC). Examples of the bacterium belonging to the genus Escherichia include Escherichia coli. Specifically, as Escherichia coli, for example, Escherichia coli K-12 strain such as W3110 strain (ATCC 27325) and MG1655 strain (ATCC 47076); Etc. Escherichia coli B strain; and their derivatives.
 エンテロバクター属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエンテロバクター属に分類されている細菌が挙げられる。エンテロバクター属細菌としては、例えば、エンテロバクター・アグロメランス(Enterobacter agglomerans)やエンテロバクター・アエロゲネス(Enterobacter aerogenes)が挙げられる。エンテロバクター・アグロメランスとして、具体的には、例えば、エンテロバクター・アグロメランスATCC12287株が挙げられる。エンテロバクター・アエロゲネスとして、具体的には、例えば、エンテロバクター・アエロゲネスATCC13048株、NBRC12010株(Biotechonol Bioeng. 2007 Mar 27; 98(2) 340-348)、AJ110637株(FERM BP-10955)が挙げられる。また、エンテロバクター属細菌としては、例えば、欧州特許出願公開EP0952221号明細書に記載されたものが挙げられる。なお、Enterobacter agglomeransには、Pantoea agglomeransと分類されているものも存在する。 Bacteria of the genus Enterobacter include, but are not particularly limited, bacteria classified into the genus Enterobacter according to a classification known to microbiology experts. Examples of Enterobacter genus bacteria include Enterobacter agglomerans and Enterobacter aerogenes. Specific examples of Enterobacter agglomerans include the Enterobacter agglomerans ATCC12287 strain. Specific examples of Enterobacter aerogenes include Enterobacter aerogenes ATCC13048 strain, NBRC12010 strain (Biotechonol Bioeng. 2007 Mar 27; 98 (2) 340-348), and AJ110637 strain (FERM BP-10955). .. Examples of Enterobacter bacteria include those described in European Patent Application Publication No. EP0952221. Some Enterobacter agglomerans are classified as Pantoea agglomerans.
 パントエア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりパントエア属に分類されている細菌が挙げられる。パントエア属細菌としては、例えば、パントエア・アナナティス(Pantoea ananatis)、パントエア・スチューアルティ(Pantoea stewartii)、パントエア・アグロメランス(Pantoea agglomerans)、パントエア・シトレア(Pantoea citrea)が挙げられる。パントエア・アナナティスとして、具体的には、例えば、パントエア・アナナティスLMG20103株、AJ13355株(FERM BP-6614)、AJ13356株(FERM BP-6615)、AJ13601株(FERM BP-7207)、SC17株(FERM BP-11091)、SC17(0)株(VKPM B-9246)、及びSC17sucA株(FERM BP-8646)が挙げられる。なお、エンテロバクター属細菌やエルビニア属細菌には、パントエア属に再分類されたものもある(Int. J. Syst. Bacteriol., 39, 337-345 (1989); Int. J. Syst. Bacteriol., 43, 162-173 (1993))。例えば、エンテロバクター・アグロメランスのある種のものは、最近、16S rRNAの塩基配列分析等に基づき、パントエア・アグロメランス、パントエア・アナナティス、パントエア・ステワルティイ等に再分類された(Int. J. Syst. Bacteriol., 39, 337-345 (1989))。パントエア属細菌には、このようにパントエア属に再分類された細菌も包含されてよい。 Bacteria belonging to the genus Pantoea include, but are not particularly limited, bacteria classified into the genus Pantoea according to a classification known to microbiology experts. Examples of Pantoea bacteria include Pantoea ananatis, Pantoea stewartii, Pantoea agglomerans, and Pantoea citrea. Specifically, as Pantoea ananatis, for example, Pantoea ananatis LMG20103 strain, AJ13355 strain (FERM BP-6614), AJ13356 strain (FERM BP-6615), AJ13601 strain (FERM BP-7207), SC17 strain (FERM BP-6614) -11091), SC17 (0) strain (VKPM B-9246), and SC17sucA strain (FERM BP-8646). Some Enterobacter and Elvinia bacteria have been reclassified into the genus Pantoea (Int. J. Syst. Bacteriol., 39, 337-345 (1989); Int. J. Syst. Bacteriol. , 43, 162-173 (1993)). For example, some Enterobacter agglomerans have recently been reclassified into Pantoea agglomerans, Pantoea ananatis, Pantoea stewarty, etc. based on 16S rRNA sequencing (Int. J. Syst. Bacteriol). ., 39, 337-345 (1989)). Bacteria of the genus Pantoea may also include bacteria thus reclassified into the genus Pantoea.
 エルビニア属細菌としては、エルビニア・アミロボーラ(Erwinia amylovora)、エルビニア・カロトボーラ(Erwinia carotovora)が挙げられる。クレブシエラ属細菌としては、クレブシエラ・プランティコーラ(Klebsiella planticola)が挙げられる。 Examples of Erwinia bacteria include Erwinia amylovora and Erwinia carotovora. Examples of the bacterium belonging to the genus Klebsiella include Klebsiella planticola.
 なお、腸内細菌科に属する細菌は、近年、包括的な比較ゲノム解析により複数の科に再分類されている(Adelou M. et al., Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov., Int. J. Syst. Evol. Microbiol., 2016, 66:5575-5599)。しかし、本明細書においては、従来腸内細菌科に分類されていた細菌は、腸内細菌科に属する細菌として取り扱うものとする。 Bacteria belonging to the family Enterobacteriaceae have been reclassified into multiple families by comprehensive comparative genome analysis in recent years (Adelou M. et al., Genome-based phylogeny and taxonomy of the'Enterobacteriales': proposalal. for Enterobacterales ord. Nov. Divided into the families Enterobacteriaceae, Erwiniaceae fam. Nov., Pectobacteriaceae fam. Nov., Yersiniaceae fam. Nov., Hafniaceae fam. Nov., Morganellaceae . J. Syst. Evol. Microbiol., 2016, 66: 5575-5599). However, in the present specification, bacteria conventionally classified in the family Enterobacteriaceae are treated as bacteria belonging to the family Enterobacteriaceae.
 コリネ型細菌としては、コリネバクテリウム(Corynebacterium)属、ブレビバクテリウム(Brevibacterium)属、およびミクロバクテリウム(Microbacterium)属等の属に属する細菌が挙げられる。 Examples of coryneform bacteria include bacteria belonging to genera such as Corynebacterium, Brevibacterium, and Microbacterium.
 コリネ型細菌としては、具体的には、下記のような種が挙げられる。
コリネバクテリウム・アセトアシドフィラム(Corynebacterium acetoacidophilum)
コリネバクテリウム・アセトグルタミカム(Corynebacterium acetoglutamicum)
コリネバクテリウム・アルカノリティカム(Corynebacterium alkanolyticum)
コリネバクテリウム・カルナエ(Corynebacterium callunae)
コリネバクテリウム・クレナタム(Corynebacterium crenatum)
コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)
コリネバクテリウム・リリウム(Corynebacterium lilium)
コリネバクテリウム・メラセコーラ(Corynebacterium melassecola)
コリネバクテリウム・サーモアミノゲネス(コリネバクテリウム・エフィシエンス)(Corynebacterium thermoaminogenes (Corynebacterium efficiens))
コリネバクテリウム・ハーキュリス(Corynebacterium herculis)
ブレビバクテリウム・ディバリカタム(コリネバクテリウム・グルタミカム)(Brevibacterium divaricatum (Corynebacterium glutamicum))
ブレビバクテリウム・フラバム(コリネバクテリウム・グルタミカム)(Brevibacterium flavum (Corynebacterium glutamicum))
ブレビバクテリウム・イマリオフィラム(Brevibacterium immariophilum)
ブレビバクテリウム・ラクトファーメンタム(コリネバクテリウム・グルタミカム)(Brevibacterium lactofermentum (Corynebacterium glutamicum))
ブレビバクテリウム・ロゼウム(Brevibacterium roseum)
ブレビバクテリウム・サッカロリティカム(Brevibacterium saccharolyticum)
ブレビバクテリウム・チオゲニタリス(Brevibacterium thiogenitalis)
コリネバクテリウム・アンモニアゲネス(コリネバクテリウム・スタティオニス)(Corynebacterium ammoniagenes (Corynebacterium stationis))
ブレビバクテリウム・アルバム(Brevibacterium album)
ブレビバクテリウム・セリナム(Brevibacterium cerinum)
ミクロバクテリウム・アンモニアフィラム(Microbacterium ammoniaphilum)
Specific examples of the coryneform bacterium include the following species.
Corynebacterium acetoacidophilum
Corynebacterium acetoglutamicum
Corynebacterium alkanolyticum
Corynebacterium callunae
Corynebacterium crenatum
Corynebacterium glutamicum
Corynebacterium lilium
Corynebacterium melassecola
Corynebacterium thermoaminogenes (Corynebacterium efficiens)
Corynebacterium herculis
Brevibacterium divaricatum (Corynebacterium glutamicum)
Brevibacterium flavum (Corynebacterium glutamicum)
Brevibacterium immariophilum
Brevibacterium lactofermentum (Corynebacterium glutamicum)
Brevibacterium roseum
Brevibacterium saccharolyticum
Brevibacterium thiogenitalis
Corynebacterium ammoniagenes (Corynebacterium stationis)
Brevibacterium album
Brevibacterium cerinum
Microbacterium ammoniaphilum
 コリネ型細菌としては、具体的には、下記のような菌株が挙げられる。
Corynebacterium acetoacidophilum ATCC 13870
Corynebacterium acetoglutamicum ATCC 15806
Corynebacterium alkanolyticum ATCC 21511
Corynebacterium callunae ATCC 15991
Corynebacterium crenatum AS1.542
Corynebacterium glutamicum ATCC 13020, ATCC 13032, ATCC 13060, ATCC 13869, FERM BP-734
Corynebacterium lilium ATCC 15990
Corynebacterium melassecola ATCC 17965
Corynebacterium efficiens (Corynebacterium thermoaminogenes) AJ12340 (FERM BP-1539)
Corynebacterium herculis ATCC 13868
Brevibacterium divaricatum (Corynebacterium glutamicum) ATCC 14020
Brevibacterium flavum (Corynebacterium glutamicum) ATCC 13826, ATCC 14067, AJ12418(FERM BP-2205)
Brevibacterium immariophilum ATCC 14068
Brevibacterium lactofermentum (Corynebacterium glutamicum) ATCC 13869
Brevibacterium roseum ATCC 13825
Brevibacterium saccharolyticum ATCC 14066
Brevibacterium thiogenitalis ATCC 19240
Corynebacterium ammoniagenes (Corynebacterium stationis) ATCC 6871, ATCC 6872
Brevibacterium album ATCC 15111
Brevibacterium cerinum ATCC 15112
Microbacterium ammoniaphilum ATCC 15354
Specific examples of the coryneform bacterium include the following strains.
Corynebacterium acetoacidophilum ATCC 13870
Corynebacterium acetoglutamicum ATCC 15806
Corynebacterium alkanolyticum ATCC 21511
Corynebacterium callunae ATCC 15991
Corynebacterium crenatum AS1.542
Corynebacterium glutamicum ATCC 13020, ATCC 13032, ATCC 13060, ATCC 13869, FERM BP-734
Corynebacterium lilium ATCC 15990
Corynebacterium melassecola ATCC 17965
Corynebacterium efficiens (Corynebacterium thermoaminogenes) AJ12340 (FERM BP-1539)
Corynebacterium herculis ATCC 13868
Brevibacterium divaricatum (Corynebacterium glutamicum) ATCC 14020
Brevibacterium flavum (Corynebacterium glutamicum) ATCC 13826, ATCC 14067, AJ12418 (FERM BP-2205)
Brevibacterium immariophilum ATCC 14068
Brevibacterium lactofermentum (Corynebacterium glutamicum) ATCC 13869
Brevibacterium roseum ATCC 13825
Brevibacterium saccharolyticum ATCC 14066
Brevibacterium thiogenitalis ATCC 19240
Corynebacterium ammoniagenes (Corynebacterium stationis) ATCC 6871, ATCC 6872
Brevibacterium album ATCC 15111
Brevibacterium cerinum ATCC 15112
Microbacterium ammoniaphilum ATCC 15354
 なお、コリネバクテリウム属細菌には、従来ブレビバクテリウム属に分類されていたが、現在コリネバクテリウム属に統合された細菌(Int. J. Syst. Bacteriol., 41, 255(1991))も含まれる。また、コリネバクテリウム・スタティオニスには、従来コリネバクテリウム・アンモニアゲネスに分類されていたが、16S rRNAの塩基配列解析等によりコリネバクテリウム・スタティオニスに再分類された細菌も含まれる(Int. J. Syst. Evol. Microbiol., 60, 874-879(2010))。 Bacteria belonging to the genus Corynebacterium were previously classified into the genus Brevibacterium, but bacteria currently integrated into the genus Corynebacterium (Int. J. Syst. Bacteriol., 41, 255 (1991)) are also included. included. In addition, Corynebacterium stationis includes bacteria that were previously classified as Corynebacterium ammoniagenes, but have been reclassified into Corynebacterium stationis by 16S rRNA nucleotide sequence analysis, etc. (Int. J. .Syst. Evol. Microbiol., 60, 874-879 (2010)).
 酵母は出芽酵母であってもよく、分裂酵母であってもよい。酵母は、一倍体の酵母であってもよく、二倍体またはそれ以上の倍数性の酵母であってもよい。酵母としては、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)等のサッカロマイセス属、ピチア・シフェリイ(Pichia ciferrii)、ピチア・シドウィオラム(Pichia sydowiorum)、ピチア・パストリス(Pichia pastoris)等のピヒア属(ウィッカーハモマイセス(Wickerhamomyces)属ともいう)、キャンディダ・ユティリス(Candida utilis)等のキャンディダ属、ハンゼヌラ・ポリモルファ(Hansenula polymorpha)等のハンゼヌラ属、シゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)等のシゾサッカロマイセス属に属する酵母が挙げられる。 The yeast may be budding yeast or fission yeast. The yeast may be a diploid yeast or a diploid or higher polyploid yeast. Yeasts include the genus Saccharomyces cerevisiae and the genus Pichia ciferrii, the genus Pichia sydowiorum, and the genus Pichia pastoris (Pichia pastoris). ), Yeasts belonging to the genus Pichia such as Candida utilis, the genus Pichia such as Hansenula polymorpha, and the genus Pichia such as Schizosaccharomyces pombe. Can be mentioned.
 これらの菌株は、例えば、アメリカン・タイプ・カルチャー・コレクション(住所P.O. Box 1549, Manassas, VA 20108, United States of Americaまたはatcc.org)より分譲を受けることが出来る。すなわち各菌株に対応する登録番号が付与されており、この登録番号を利用して分譲を受けることが出来る(atcc.org/参照)。各菌株に対応する登録番号は、アメリカン・タイプ・カルチャー・コレクションのカタログに記載されている。また、これらの菌株は、例えば、各菌株が寄託された寄託機関から入手することができる。 These strains can be sold from, for example, the American Type Culture Collection (address P.O.Box 1549, Manassas, VA20108, United States of America or atcc.org). That is, a registration number corresponding to each strain is assigned, and this registration number can be used for distribution (see atcc.org/). The registration number for each strain can be found in the American Type Culture Collection catalog. In addition, these strains can be obtained, for example, from the depositary institution where each strain was deposited.
 微生物は、本来的に目的物質生産能を有するものであってもよく、目的物質生産能を有するように改変されたものであってもよい。目的物質生産能を有する微生物は、例えば、上記のような微生物に目的物質生産能を付与することにより、または、上記のような微生物の目的物質生産能を増強することにより、取得できる。 The microorganism may be one that originally has the ability to produce the target substance, or may be one that has been modified to have the ability to produce the target substance. A microorganism having a target substance-producing ability can be obtained, for example, by imparting the target substance-producing ability to the above-mentioned microorganism, or by enhancing the target substance-producing ability of the above-mentioned microorganism.
 目的物質生産能を付与または増強する方法は、特に制限されない。目的物質生産能を付与または増強する方法としては、例えば、公知の方法を利用できる。目的物質の生産能を付与または増強する方法は、例えば、WO2018/079687、WO2018/079686、WO2018/079685、WO2018/079684、WO2018/079683、WO2017/073701、WO2018/079705、US2018-0334693A、およびUS2019-0161776Aに開示されている。 The method of imparting or enhancing the target substance production capacity is not particularly limited. As a method for imparting or enhancing the target substance-producing ability, for example, a known method can be used. Methods for imparting or enhancing the productivity of the target substance are, for example, WO2018 / 099687, WO2018 / 079686, WO2018 / 079685, WO2018 / 099684, WO2018 / 079683, WO2017 / 073701, WO2018 / 079705, US2018-0334693A, and US2019- It is disclosed in 0161776A.
 以下、目的物質生産能を付与または増強する方法について具体的に例示する。なお、以下に例示するような目的物質生産能を付与または増強するための改変は、いずれも、単独で用いてもよく、適宜組み合わせて用いてもよい。 Hereinafter, a method for imparting or enhancing the target substance-producing ability will be specifically illustrated. In addition, any of the modifications for imparting or enhancing the target substance-producing ability as illustrated below may be used alone or in combination as appropriate.
 目的物質は、目的物質の生合成に関与する酵素の作用により生成し得る。そのような酵素を、「目的物質生合成酵素」ともいう。よって、微生物は、目的物質生合成酵素を有していてよい。言い換えると、微生物は、目的物質生合成酵素をコードする遺伝子を有していてよい。そのような遺伝子を、「目的物質生合成遺伝子」ともいう。微生物は、本来的に目的物質生合成遺伝子を有するものであってもよく、目的物質生合成遺伝子が導入されたものであってもよい。遺伝子を導入する手法については本明細書に記載する。 The target substance can be produced by the action of enzymes involved in the biosynthesis of the target substance. Such an enzyme is also referred to as a "target substance biosynthetic enzyme". Therefore, the microorganism may have a target substance biosynthetic enzyme. In other words, the microorganism may have a gene encoding a target substance biosynthetic enzyme. Such a gene is also referred to as a "target substance biosynthesis gene". The microorganism may be one that originally has a target substance biosynthesis gene, or may be one into which a target substance biosynthesis gene has been introduced. Techniques for introducing genes are described herein.
 また、目的物質生合成酵素の活性の増大により、微生物の目的物質生産能を向上させることができる。すなわち、目的物質生産能を付与または増強するための方法としては、目的物質生合成酵素の活性を増大させる方法が挙げられる。すなわち、微生物は、目的物質生合成酵素の活性が増大するように改変されていてよい。1種の目的物質生合成酵素の活性が増大してもよく、2種またはそれ以上の目的物質生合成酵素の活性が増大してもよい。タンパク質(酵素等)の活性を増大させる手法については本明細書に記載する。タンパク質(酵素等)の活性は、例えば、同タンパク質をコードする遺伝子の発現を増大させることにより、増大させることができる。 In addition, the ability of microorganisms to produce the target substance can be improved by increasing the activity of the target substance biosynthetic enzyme. That is, as a method for imparting or enhancing the target substance-producing ability, there is a method for increasing the activity of the target substance biosynthetic enzyme. That is, the microorganism may be modified so as to increase the activity of the target substance biosynthetic enzyme. The activity of one target substance biosynthetic enzyme may be increased, or the activity of two or more target substance biosynthetic enzymes may be increased. Techniques for increasing the activity of proteins (enzymes, etc.) are described herein. The activity of a protein (enzyme, etc.) can be increased, for example, by increasing the expression of the gene encoding the protein.
 目的物質は、例えば、炭素源および/または該目的物質の前駆体から、生成し得る。よって、目的物質生合成酵素としては、例えば、炭素源および/または前駆体の目的物質への変換を触媒する酵素が挙げられる。例えば、バニリン生合成経路の中間体である3-デヒドロシキミ酸(3-dehydroshikimic acid)は、シキミ酸経路の一部によって生産され得る。当該シキミ酸経路の一部は、3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸シンターゼ(3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase;DAHP synthase)、3-デヒドロキナ酸シンターゼ(3-dehydroquinate synthase)、および3-デヒドロキナ酸デヒドラターゼ(3-dehydroquinate dehydratase)により触媒されるステップを含んでいてよい。3-デヒドロシキミ酸は、3-デヒドロシキミ酸デヒドラターゼ(3-dehydroshikimate dehydratase;DHSD)の作用によりプロトカテク酸(protocatechuic acid)へと変換され得る。プロトカテク酸は、O-メチルトランスフェラーゼ(O-methyltransferase;OMT)または芳香族カルボン酸レダクターゼ(aromatic carboxylic acid reductase;ACAR)の作用により、それぞれ、バニリン酸(vanillic acid)またはプロトカテクアルデヒド(protocatechualdehyde)へと変換され得る。バニリン酸またはプロトカテクアルデヒドは、それぞれ、ACARまたはOMTの作用により、バニリンへと変換され得る。すなわち、目的物質生合成酵素として、具体的には、例えば、DAHP synthase、3-dehydroquinate synthase、3-dehydroquinate dehydratase、DHSD、OMT、ACARが挙げられる。 The target substance can be produced, for example, from a carbon source and / or a precursor of the target substance. Thus, examples of target substance biosynthetic enzymes include enzymes that catalyze the conversion of carbon sources and / or precursors to target substances. For example, 3-dehydroshikimic acid, an intermediate in the vanillin biosynthetic pathway, can be produced by part of the shikimate pathway. Part of the shikimate pathway is 3-deoxy-D-arabino-heptulosonic acid-7-phosphate synthase (3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase; DAHP synthase), 3-dehydroquinate synthase. It may include steps catalyzed by (3-dehydroquinate synthase) and 3-dehydroquinate dehydratase. 3-Dehydroshikimic acid can be converted to protocatechuic acid by the action of 3-dehydroshikimate dehydratase (DHSD). Protocatechuic acid is converted to vanillic acid or protocatechualdehyde by the action of O-methyltransferase (OMT) or aromatic carboxylic acid reductase (ACAR), respectively. Can be converted. Vanillic acid or protocatechuic aldehyde can be converted to vanillin by the action of ACAR or OMT, respectively. That is, specific examples of the target substance biosynthetic enzyme include DAHP synthase, 3-dehydroquinate synthase, 3-dehydroquinate dehydrata, DHSD, OMT, and ACAR.
 「3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸シンターゼ(3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase;DAHP synthase)」とは、D-エリトロース4-リン酸とホスホエノールピルビン酸をD-アラビノ-ヘプツロン酸-7-リン酸(DAHP)とリン酸に変換する反応を触媒する活性を有するタンパク質を意味してよい(EC 2.5.1.54等)。同活性を、「DAHP synthase活性」ともいう。DAHP synthaseをコードする遺伝子を、「DAHP synthase遺伝子」ともいう。DAHP synthaseとしては、aroF、aroG、aroH遺伝子にそれぞれコードされるAroF、AroG、AroHタンパク質が挙げられる。これらの内、AroGタンパク質が主要なDAHP synthaseとして機能し得る。AroF、AroG、AroHタンパク質等のDAHP synthaseとしては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。DAHP synthaseとして、具体的には、E. coli K-12 MG1655株等のE. coliのAroF、AroG、AroHタンパク質が挙げられる。 "3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase (DAHP synthase)" means D-erythrose 4-phosphate and phosphoenols. It may mean a protein having an activity of catalyzing the reaction of converting pyruvate to D-arabino-hepturonic acid-7-phosphate (DAHP) and phosphoric acid (EC 2.5.1.54, etc.). This activity is also called "DAHP synthase activity". The gene encoding DAHP synthase is also referred to as "DAHP synthase gene". Examples of DAHP synthase include AroF, AroG, and AroH proteins encoded by the aroF, aroG, and aroH genes, respectively. Of these, the AroG protein can function as the major DAHP synthase. Examples of DAHP synthases such as AroF, AroG, and AroH proteins include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of DAHP synthase include AroF, AroG, and AroH proteins of E. coli such as E. coli K-12 MG1655 strain.
 「3-デヒドロキナ酸シンターゼ(3-dehydroquinate synthase)」とは、DAHPを脱リン酸化して3-デヒドロキナ酸を生成する反応を触媒する活性を有するタンパク質を意味してよい(EC 4.2.3.4等)。同活性を、「3-dehydroquinate synthase活性」ともいう。3-dehydroquinate synthaseをコードする遺伝子を、「3-dehydroquinate synthase遺伝子」ともいう。3-dehydroquinate synthaseとしては、aroB遺伝子にコードされるAroBタンパク質が挙げられる。AroBタンパク質等の3-dehydroquinate synthaseとしては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。3-dehydroquinate synthaseとして、具体的には、E. coli K-12 MG1655株等のE. coliのAroBタンパク質が挙げられる。 "3-dehydroquinate synthase" may mean a protein having an activity of catalyzing a reaction of dephosphorylating DAHP to produce 3-dehydroquinate (EC 4.2.3.4, etc.). .. This activity is also referred to as "3-dehydroquinate synthase activity". The gene encoding 3-dehydroquinate synthase is also referred to as "3-dehydroquinate synthase gene". Examples of 3-dehydroquinate synthase include AroB protein encoded by the aroB gene. Examples of 3-dehydroquinate synthases such as AroB protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of 3-dehydroquinate synthase include AroB protein of E. coli such as E. coli K-12 MG1655 strain.
 「3-デヒドロキナ酸デヒドラターゼ(3-dehydroquinate dehydratase)」とは、3-デヒドロキナ酸を脱水して3-デヒドロシキミ酸を生成する反応を触媒する活性を有するタンパク質を意味してよい(EC 4.2.1.10等)。同活性を、「3-dehydroquinate dehydratase活性」ともいう。3-dehydroquinate dehydrataseをコードする遺伝子を、「3-dehydroquinate dehydratase遺伝子」ともいう。3-dehydroquinate dehydrataseとしては、aroD遺伝子にコードされるAroDタンパク質が挙げられる。AroDタンパク質等の3-dehydroquinate dehydrataseとしては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。3-dehydroquinate dehydrataseとして、具体的には、E. coli K-12 MG1655株等のE. coliのAroDタンパク質が挙げられる。 "3-dehydroquinate dehydratase" may mean a protein having an activity of catalyzing the reaction of dehydrating 3-dehydroquinate to produce 3-dehydroshikimic acid (EC 4.2.1.10). etc). This activity is also referred to as "3-dehydroquinate dehydratase activity". The gene encoding 3-dehydroquinate dehydratase is also referred to as "3-dehydroquinate dehydratase gene". Examples of 3-dehydroquinate dehydratase include the AroD protein encoded by the aroD gene. Examples of 3-dehydroquinate dehydratases such as AroD protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of 3-dehydroquinate dehydratase include AroD protein of E. coli such as E. coli K-12 MG1655 strain.
 「3-デヒドロシキミ酸デヒドラターゼ(3-dehydroshikimate dehydratase;DHSD)」とは、3-デヒドロシキミ酸を脱水してプロトカテク酸を生成する反応を触媒する活性を有するタンパク質を意味してよい(EC 4.2.1.118等)。同活性を、「DHSD活性」ともいう。DHSDをコードする遺伝子を、「DHSD遺伝子」ともいう。DHSDとしては、asbF遺伝子にコードされるAsbFタンパク質が挙げられる。AsbFタンパク質等のDHSDとしては、Bacillus thuringiensis BMB171株等のBacillus thuringiensis、Neurospora crassa、Podospora pauciseta等の各種生物のものが挙げられる。 "3-dehydroshikimate dehydratase (DHSD)" may mean a protein having an activity of catalyzing the reaction of dehydrating 3-dehydroshikimate to produce protocatechuic acid (EC 4.2. 1.118 etc.). This activity is also called "DHSD activity". The gene encoding DHSD is also referred to as the "DHSD gene". DHSD includes the AsbF protein encoded by the asbF gene. Examples of DHSD such as AsbF protein include those of various organisms such as Bacillus thuringiensis, Neurospora crassa, and Podospora pauciseta such as Bacillus thuringiensis BMB171 strain.
 シキミ酸経路の酵素(DAHP synthase、3-dehydroquinate synthase、3-dehydroquinate dehydratase等)をコードする遺伝子の発現は、tyrR遺伝子にコードされるチロシンリプレッサーTyrRにより抑制される。よって、シキミ酸経路の酵素の活性は、チロシンリプレッサーTyrRの活性を低下させることによっても、増大させることができる。チロシンリプレッサーTyrRとしては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。チロシンリプレッサーTyrRとして、具体的には、E. coli K-12 MG1655株のE. coliのTyrRタンパク質が挙げられる。 Expression of genes encoding shikimate pathway enzymes (DAHP synthase, 3-dehydroquinate synthase, 3-dehydroquinate dehydratase, etc.) is suppressed by the tyrosine repressor TyrR encoded by the tyrR gene. Therefore, the activity of enzymes in the shikimate pathway can also be increased by reducing the activity of the tyrosine repressor TyrR. Examples of the tyrosine repressor TyrR include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of the tyrosine repressor TyrR include the E. coli TyrR protein of the E. coli K-12 MG1655 strain.
 「O-メチルトランスフェラーゼ(O-methyltransferase;OMT)」とは、メチル基供与体の存在下で基質の水酸基をメチル化する反応を触媒する活性を有するタンパク質を意味してよい(EC 2.1.1.68等)。同活性を、「OMT活性」ともいう。OMTをコードする遺伝子を、「OMT遺伝子」ともいう。OMTは、目的物質が生産される生合成経路の種類に応じて、必要な基質特異性を有していてよい。例えば、目的物質の製造方法がプロトカテク酸からバニリン酸への変換を含む場合、少なくともプロトカテク酸を基質とするOMTを用いることができる。また、例えば、目的物質の製造方法がプロトカテクアルデヒドからバニリンへの変換を含む場合、少なくともプロトカテクアルデヒドを基質とするOMTを用いることができる。すなわち、「O-メチルトランスフェラーゼ(O-methyltransferase;OMT)」とは、具体的には、メチル基供与体の存在下でプロトカテク酸および/またはプロトカテクアルデヒドをメチル化してバニリン酸および/またはバニリンを生成する反応(すなわちメタ位の水酸基のメチル化)を触媒する活性を有するタンパク質を意味してよい。OMTは、通常はプロトカテク酸とプロトカテクアルデヒドの両方を基質としてよいが、それには限られない。メチル基供与体としては、S-アデノシルメチオニン(SAM)が挙げられる。 "O-methyltransferase (OMT)" may mean a protein having an activity of catalyzing a reaction of methylating a hydroxyl group of a substrate in the presence of a methyl group donor (EC 2.1.1.68, etc.). ). This activity is also called "OMT activity". The gene encoding OMT is also called the "OMT gene". OMT may have the required substrate specificity, depending on the type of biosynthetic pathway in which the substance of interest is produced. For example, when the method for producing the target substance includes conversion of protocatechuic acid to vanillic acid, at least OMT using protocatechuic acid as a substrate can be used. Further, for example, when the method for producing the target substance includes conversion of protocatechuic aldehyde to vanillin, at least OMT using protocatechuic aldehyde as a substrate can be used. That is, "O-methyltransferase (OMT)" specifically refers to methylating protocatechuic acid and / or protocatechuic aldehyde in the presence of a methyl group donor to produce vanillic acid and / or vanillin. It may mean a protein having an activity of catalyzing a reaction to be produced (that is, methylation of a hydroxyl group at the meta position). OMT may usually use both protocatechuic acid and protocatechuic aldehyde as substrates, but is not limited to this. Methyl group donors include S-adenosylmethionine (SAM).
 OMTとしては、各種生物のOMT、例えば、Homo sapiens(Hs)のOMT(GenBank Accession No. NP_000745, NP_009294)、Arabidopsis thalianaのOMT(GenBank Accession No. NP_200227, NP_009294)、Fragaria x ananassaのOMT(GenBank Accession No. AAF28353)、その他WO2013/022881に例示されている哺乳動物、植物、微生物の各種OMTが挙げられる。Homo sapiensのOMT遺伝子には4つの転写バリアントおよび2種のOMTアイソフォームが知られている。OMTとしては、さらに、Bacteroidetes門細菌(すなわちBacteroidetes門に属する細菌)のOMTが挙げられる(WO2018/079683)。Bacteroidetes門細菌としては、Niastella属、Terrimonas属、またはChitinophaga属等に属する細菌が挙げられる(International Journal of Systematic and Evolutionary Microbiology (2007), 57, 1828-1833)。Niastella属細菌としては、Niastella koreensisが挙げられる。OMTとしては、さらに、WO2013/022881またはWO2018/079683に記載の変異型OMTが挙げられる。 OMTs include OMTs of various organisms, such as OMTs of Homo sapiens (Hs) (GenBank Accession No. NP_000745, NP_009294), OMTs of Arabidopsis thaliana (GenBank Accession No. NP_200227, NP_009294), and OMTs of Fragaria xananassa (GenBank). No. AAF28353), and various OMTs of mammals, plants, and microorganisms exemplified in WO2013 / 022881. Four transcription variants and two OMT isoforms are known for the Homo sapiens OMT gene. OMT also includes OMT of Bacteroidetes phylum bacteria (ie, bacteria belonging to the Bacteroidetes phylum) (WO2018 / 079683). Examples of Bacteroidetes phylum bacteria include bacteria belonging to the genus Niastella, Terrimonas, Chitinophaga, etc. (International Journal of Systematic and Evolutionary Microbiology (2007), 57, 1828-1833). Examples of Niastella bacterium include Niastella koreensis. The OMT further includes the mutant OMT described in WO2013 / 022881 or WO2018 / 079683.
 「芳香族カルボン酸レダクターゼ(aromatic carboxylic acid reductase;ACAR)」とは、電子供与体とATPの存在下でバニリン酸および/またはプロトカテク酸を還元してバニリンおよび/またはプロトカテクアルデヒドを生成する反応を触媒する活性を有するタンパク質を意味してよい(EC 1.2.99.6等)。同活性を、「ACAR活性」ともいう。ACARをコードする遺伝子を、「ACAR遺伝子」ともいう。ACARは、バニリン酸とプロトカテク酸の両方を基質としてよいが、それには限られない。すなわち、ACARは、目的物質が生産される生合成経路の種類に応じて、必要な基質特異性を有していてよい。例えば、目的物質の製造方法がバニリン酸からバニリンへの変換を含む場合には、少なくともバニリン酸を基質とするACARを用いることができる。また、例えば、目的物質の製造方法がプロトカテク酸からプロトカテクアルデヒドへの変換を含む場合には、少なくともプロトカテク酸を基質とするACARを用いることができる。電子供与体としては、NADHやNADPHが挙げられる。電子供与体としては、特に、NADPHが挙げられる。 "Aromatic carboxylic acid reductase (ACAR)" is a reaction that reduces vanillic acid and / or protocatechuic acid in the presence of an electron donor and ATP to produce vanillin and / or protocatechuic acid. It may mean a protein having a catalytic activity (EC 1.2.99.6, etc.). This activity is also called "ACAR activity". The gene encoding ACAR is also called "ACAR gene". ACAR may, but is not limited to, both vanillic acid and protocatechuic acid as substrates. That is, ACAR may have the required substrate specificity depending on the type of biosynthetic pathway in which the target substance is produced. For example, when the method for producing the target substance includes conversion of vanillic acid to vanillin, at least ACAR using vanillic acid as a substrate can be used. Further, for example, when the method for producing the target substance includes conversion of protocatechuic acid to protocatechuic acid, at least ACAR using protocatechuic acid as a substrate can be used. Examples of electron donors include NADH and NADPH. Examples of electron donors include NADPH.
 ACARとしては、Nocardia sp. NRRL 5646株、Actinomyces sp.、Clostridium thermoaceticum、Aspergillus niger、Corynespora melonis、Coriolus sp.、Neurospora sp.等の各種微生物のACARが挙げられる(J. Biol. Chem. 2007, Vol. 282, No.1, p478-485)。Nocardia sp. NRRL 5646株は、Nocardia iowensisに分類されている。ACARとしては、さらに、Nocardia brasiliensisやNocardia vulneris等の、他のNocardia属細菌のACARも挙げられる。Nocardia brasiliensisとしては、Nocardia brasiliensis ATCC 700358株が挙げられる。ACARとしては、さらに、Gordonia effusa等のGordonia属細菌のACAR、Novosphingobium malaysiense等のNovosphingobium属細菌のACAR、Coccomyxa subellipsoidea等のCoccomyxa属藻類のACARも挙げられる(WO2018/079705)。Gordonia effusaのACAR遺伝子の塩基配列を配列番号1に、同遺伝子がコードするACARのアミノ酸配列を配列番号2に示す。 ACAR includes ACAR of various microorganisms such as Nocardia sp. NRRL 5646 strain, Actinomyces sp., Clostridium thermoaceticum, Aspergillus niger, Corynespora melonis, Coriolus sp., Neurospora sp. (J. Biol. Chem. 2007, Vol. 282, No.1, p478-485). The Nocardia sp. NRRL 5646 strain is classified as Nocardia iowensis. ACAR also includes ACAR of other Nocardia bacteria such as Nocardia brasiliensis and Nocardia vulneris. Examples of Nocardia brasiliensis include Nocardia brasiliensis ATCC 700358 strain. Examples of ACAR include ACAR of Gordonia bacterium such as Gordonia effusa, ACAR of Novosphingobium bacterium such as Novosphingobium malaysiense, and ACAR of Coccoyxa algae such as Coccoyxa subellipsoidea (WO2018 / 079705). The nucleotide sequence of the ACAR gene of Gordonia effusa is shown in SEQ ID NO: 1, and the amino acid sequence of ACAR encoded by the gene is shown in SEQ ID NO: 2.
 ACARは、ホスホパンテテイニル化されることにより活性型酵素となり得る(J. Biol. Chem. 2007, Vol. 282, No.1, p478-485)。よって、タンパク質のホスホパンテテイニル化を触媒する酵素(「ホスホパンテテイニル化酵素」ともいう)の活性を増大させることにより、ACARの活性を増大させることができる。すなわち、目的物質生産能を付与または増強するための方法としては、ホスホパンテテイニル化酵素の活性を増大させる方法が挙げられる。すなわち、微生物は、ホスホパンテテイニル化酵素の活性が増大するように改変されていてよい。ホスホパンテテイニル化酵素としては、ホスホパンテテイニルトランスフェラーゼ(phosphopantetheinyl transferase;PPT)が挙げられる。 ACAR can become an active enzyme by being phosphopantetinylated (J. Biol. Chem. 2007, Vol. 282, No. 1, p478-485). Therefore, the activity of ACAR can be increased by increasing the activity of an enzyme that catalyzes the phosphopantetinylation of proteins (also referred to as "phosphopantetinylation enzyme"). That is, as a method for imparting or enhancing the target substance-producing ability, a method for increasing the activity of the phosphopantetinylating enzyme can be mentioned. That is, the microorganism may be modified to increase the activity of the phosphopantetinylating enzyme. Examples of the phosphopantetheinyl transferase include phosphopantetheinyl transferase (PPT).
 「ホスホパンテテイニルトランスフェラーゼ(phosphopantetheinyl transferase;PPT)」とは、ホスホパンテテイニル基供与体の存在下でACARをホスホパンテテイニル化する反応を触媒する活性を有するタンパク質を意味してよい。同活性を、「PPT活性」ともいう。PPTをコードする遺伝子を、「PPT遺伝子」ともいう。ホスホパンテテイニル基供与体としては、補酵素A(CoA)が挙げられる。PPTとしては、entD遺伝子にコードされるEntDタンパク質が挙げられる。EntDタンパク質等のPPTとしては、各種生物のものが挙げられる。PPTとして、具体的には、E. coli K-12 MG1655株等のE. coliのEntDタンパク質が挙げられる。E. coli K-12 MG1655株のentD遺伝子の塩基配列を配列番号3に、同遺伝子がコードするEntDタンパク質のアミノ酸配列を配列番号4に、それぞれ示す。また、PPTとして、具体的には、Nocardia brasiliensisのPPT、Nocardia farcinica IFM10152のPPT(J. Biol. Chem. 2007, Vol. 282, No.1, pp.478-485)、C. glutamicumのPPT(App. Env. Microbiol. 2009, Vol.75, No.9, pp.2765-2774)も挙げられる。C. glutamicumとしては、C. glutamicum ATCC 13032株やATCC 13869株等の上記例示した株が挙げられる。 The "phosphopantetheinyl transferase (PPT)" may mean a protein having an activity of catalyzing the reaction of converting ACAR to phosphopantetinyl in the presence of a phosphopantetheinyl group donor. This activity is also called "PPT activity". The gene encoding PPT is also called "PPT gene". Examples of the phosphopantetinyl group donor include coenzyme A (CoA). Examples of PPT include EntD protein encoded by the entD gene. Examples of PPTs such as EntD protein include those of various organisms. Specific examples of PPT include E. coli EntD protein such as E. coli K-12 MG1655 strain. The nucleotide sequence of the entD gene of the E. coli K-12 MG1655 strain is shown in SEQ ID NO: 3, and the amino acid sequence of the EntD protein encoded by the gene is shown in SEQ ID NO: 4. Specifically, the PPTs are Nocardia brasiliensis PPT, Nocardia farcinica IFM10152 PPT (J. Biol. Chem. 2007, Vol. 282, No. 1, pp. 478-485), and C. glutamicum PPT (PPT). App. Env. Microbiol. 2009, Vol.75, No. 9, pp.2765-2774) can also be mentioned. Examples of C. glutamicum include the above-exemplified strains such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain.
 また、目的物質生産能を付与または増強するための方法としては、目的物質以外の物質(例えば、目的物質の生産中に中間体として生成する物質や、目的物質の前駆体として利用される物質)の取り込み系の活性を増大させる方法が挙げられる。すなわち、微生物は、そのような取り込み系の活性が増大するように改変されていてよい。「物質の取り込み系」とは、物質を細胞外から細胞内へ取り込む機能を有するタンパク質を意味してよい。同活性を、「物質の取り込み活性」ともいう。そのような取り込み系をコードする遺伝子を、「取り込み系遺伝子」ともいう。そのような取り込み系としては、バニリン酸取り込み系やプロトカテク酸取り込み系が挙げられる。バニリン酸取り込み系としては、vanK遺伝子にコードされるVanKタンパク質が挙げられる(M. T. Chaudhry, et al., Microbiology, 2007. 153:857-865)。プロトカテク酸取り込み系としては、pcaK遺伝子にコードされるPcaKタンパク質が挙げられる(M. T. Chaudhry, et al., Microbiology, 2007. 153:857-865)。VanKタンパク質等のバニリン酸取り込み系やPcaKタンパク質等のバニリン酸取り込み系としては、コリネ型細菌等の各種生物のものが挙げられる。バニリン酸取り込み系として、具体的には、C. glutamicum ATCC 13032株やATCC 13869株等のC. glutamicumのVanKタンパク質が挙げられる。プロトカテク酸取り込み系として、具体的には、C. glutamicum ATCC 13032株やATCC 13869株等のC. glutamicumのPcaKタンパク質(NCgl1031タンパク質)が挙げられる。C. glutamicum ATCC 13869株のvanK遺伝子(NCgl2302)の塩基配列を配列番号5に、同遺伝子がコードするVanKタンパク質のアミノ酸配列を配列番号6に、それぞれ示す。 In addition, as a method for imparting or enhancing the target substance-producing ability, a substance other than the target substance (for example, a substance produced as an intermediate during the production of the target substance or a substance used as a precursor of the target substance). Examples include a method of increasing the activity of the uptake system of. That is, the microorganism may be modified to increase the activity of such an uptake system. The "substance uptake system" may mean a protein having a function of taking up a substance from the outside of the cell into the cell. This activity is also referred to as "substance uptake activity". A gene encoding such an uptake system is also referred to as an "uptake system gene". Examples of such an uptake system include a vanillic acid uptake system and a protocatechuic acid uptake system. Examples of the vanillic acid uptake system include the VanK protein encoded by the vanK gene (M. T. Chaudhry, et al., Microbiology, 2007. 153: 857-865). Examples of the protocatechuic acid uptake system include the PcaK protein encoded by the pcaK gene (M. T. Chaudhry, et al., Microbiology, 2007. 153: 857-865). Examples of the vanillic acid uptake system such as VanK protein and the vanillic acid uptake system such as PcaK protein include those of various organisms such as coryneform bacteria. Specific examples of the vanillic acid uptake system include the VanK protein of C. glutamicum such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain. Specific examples of the protocatechuic acid uptake system include C. glutamicum PcaK protein (NCgl1031 protein) such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain. The nucleotide sequence of the vanK gene (NCgl2302) of the C. glutamicum ATCC 13869 strain is shown in SEQ ID NO: 5, and the amino acid sequence of the VanK protein encoded by the gene is shown in SEQ ID NO: 6.
 また、目的物質生産能を付与または増強するための方法としては、目的物質以外の物質の副生に関与する酵素の活性を低下させる方法が挙げられる。そのような目的物質以外の物質を、「副生物」ともいう。そのような酵素を、「副生物生成酵素」ともいう。副生物生成酵素としては、例えば、目的物質の資化に関与する酵素や、目的物質の生合成経路から分岐して目的物質以外の物質を生成する反応を触媒する酵素が挙げられる。タンパク質(酵素等)の活性を低下させる手法については本明細書に記載する。タンパク質(酵素等)の活性は、例えば、同タンパク質をコードする遺伝子を破壊等することにより、低下させることができる。例えば、コリネ型細菌において、バニリンは、バニリン→バニリン酸→プロトカテク酸の順に代謝され、資化されることが報告されている(Current Microbiology, 2005, Vol.51, p59-65)。すなわち、副生物生成酵素として、具体的には、バニリンからプロトカテク酸への変換を触媒する酵素や、プロトカテク酸のさらなる代謝を触媒する酵素が挙げられる。そのような酵素としては、バニリン酸デメチラーゼ(vanillate demethylase)、プロトカテク酸3,4-ジオキシゲナーゼ(protocatechuate 3,4-dioxygenase)、およびプロトカテク酸3,4-ジオキシゲナーゼによる反応産物をスクシニルCoAとアセチルCoAまでさらに分解する各種酵素(Appl. Microbiol. Biotechnol., 2012, Vol.95, p77-89)が挙げられる。また、バニリンは、アルコールデヒドロゲナーゼ(alcohol dehydrogenase)の作用により、バニリルアルコールへと変換され得る(Kunjapur AM. et al., J. Am. Chem. Soc., 2014, Vol.136, p11644-11654.; Hansen EH. et al., App. Env. Microbiol., 2009, Vol.75, p2765-2774.)。すなわち、副生物生成酵素として、具体的には、alcohol dehydrogenase(ADH)も挙げられる。また、バニリン生合成経路の中間体である3-デヒドロシキミ酸は、シキミ酸デヒドロゲナーゼ(shikimate dehydrogenase)の作用によりシキミ酸へと変換され得る。すなわち、副生物生成酵素として、具体的には、shikimate dehydrogenaseも挙げられる。 Further, as a method for imparting or enhancing the target substance-producing ability, there is a method of reducing the activity of enzymes involved in the by-product of substances other than the target substance. Substances other than such target substances are also referred to as "by-products". Such an enzyme is also referred to as a "by-product-producing enzyme". Examples of by-product producing enzymes include enzymes involved in the assimilation of the target substance and enzymes that catalyze the reaction of branching from the biosynthetic pathway of the target substance to produce a substance other than the target substance. Techniques for reducing the activity of proteins (enzymes, etc.) are described herein. The activity of a protein (enzyme, etc.) can be reduced, for example, by disrupting the gene encoding the protein. For example, in coryneform bacteria, vanillin has been reported to be metabolized and assimilated in the order of vanillin → vanillic acid → protocatechuic acid (Current Microbiology, 2005, Vol.51, p59-65). That is, specific examples of by-product-producing enzymes include enzymes that catalyze the conversion of vanillin to protocatechuic acid and enzymes that catalyze the further metabolism of protocatechuic acid. Such enzymes include vanillate demethylase, protocatechuate 3,4-dioxygenase, and reaction products of protocatechuate 3,4-dioxygenase as succinyl CoA and acetyl CoA. Examples include various enzymes (Appl. Microbiol. Biotechnol., 2012, Vol.95, p77-89) that further decompose up to. In addition, vanillin can be converted to vanillyl alcohol by the action of alcohol dehydrogenase (Kunjapur AM. Et al., J. Am. Chem. Soc., 2014, Vol.136, p11644-11654. Hansen EH. Et al., App. Env. Microbiol., 2009, Vol.75, p2765-2774.). That is, as a by-product producing enzyme, specifically, alcohol dehydrogenase (ADH) can be mentioned. In addition, 3-dehydroshikimic acid, which is an intermediate of the vanillin biosynthetic pathway, can be converted to shikimic acid by the action of shikimate dehydrogenase. That is, as a by-product producing enzyme, specifically, shikimate dehydrogenase can be mentioned.
 「バニリン酸デメチラーゼ(vanillate demethylase)」とは、バニリン酸を脱メチル化してプロトカテク酸を生成する反応を触媒する活性を有するタンパク質を意味してよい。同活性を、「vanillate demethylase活性」ともいう。vanillate demethylaseをコードする遺伝子を、「vanillate demethylase遺伝子」ともいう。vanillate demethylaseとしては、vanAB遺伝子にコードされるVanABタンパク質が挙げられる(Current Microbiology, 2005, Vol.51, p59-65)。vanA遺伝子およびvanB遺伝子は、それぞれ、vanillate demethylaseのサブユニットAおよびサブユニットBをコードする。vanillate demethylase活性を低下させる場合、例えば、vanAB遺伝子の両方を破壊等してもよく、片方のみを破壊等してもよい。VanABタンパク質等のvanillate demethylaseとしては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。vanillate demethylaseとして、具体的には、C. glutamicum ATCC 13032株やATCC 13869株等のC. glutamicumのVanABタンパク質が挙げられる。C. glutamicum ATCC 13869株のvanAB遺伝子の塩基配列を配列番号7と9に、同遺伝子がコードするVanABタンパク質のアミノ酸配列を配列番号8と10に、それぞれ示す。なお、vanAB遺伝子は、通常、vanK遺伝子とvanABKオペロンを構成している。よって、vanillate demethylase活性を低下させるためにvanABKオペロンをまとめて破壊等(例えば、欠損)してもよい。その場合、改めて微生物にvanK遺伝子を導入してもよい。例えば、菌体外に存在するバニリン酸を利用する場合であって、vanABKオペロンをまとめて破壊等(例えば、欠損)した場合は、改めてvanK遺伝子を導入するのが好ましい。 "Vanillate demethylase" may mean a protein having an activity of catalyzing a reaction of demethylating vanillic acid to produce protocatechuic acid. This activity is also called "vanillate demethylase activity". The gene encoding vanillate demethylase is also referred to as "vanillate demethylase gene". Examples of vanillate demethylase include the VanAB protein encoded by the vanAB gene (Current Microbiology, 2005, Vol.51, p59-65). The vanA and vanB genes encode subunit A and subunit B of vanillate demethylase, respectively. When reducing the vanillate demethylase activity, for example, both vanAB genes may be disrupted, or only one of the vanillate genes may be disrupted. Examples of vanillate demethylase such as VanAB protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of vanillate demethylase include VanAB proteins of C. glutamicum such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain. The nucleotide sequences of the vanAB gene of the C. glutamicum ATCC 13869 strain are shown in SEQ ID NOs: 7 and 9, and the amino acid sequences of the VanAB protein encoded by the gene are shown in SEQ ID NOs: 8 and 10, respectively. The vanAB gene usually constitutes the vanK gene and the vanABK operon. Therefore, the vanABK operons may be collectively destroyed (for example, deleted) in order to reduce the vanillate demethylase activity. In that case, the vanK gene may be introduced into the microorganism again. For example, when vanillic acid existing outside the cells is used and the vanABK operons are collectively destroyed (for example, deleted), it is preferable to introduce the vanK gene again.
 「プロトカテク酸3,4-ジオキシゲナーゼ(protocatechuate 3,4-dioxygenase)」とは、プロトカテク酸を酸化してβ-カルボキシルcis,cis-ムコン酸を生成する反応を触媒する活性を有するタンパク質を意味してよい。同活性を、「protocatechuate 3,4-dioxygenase活性」ともいう。protocatechuate 3,4-dioxygenaseをコードする遺伝子を、「protocatechuate 3,4-dioxygenase遺伝子」ともいう。protocatechuate 3,4-dioxygenaseとしては、pcaGH遺伝子にコードされるPcaGHタンパク質が挙げられる(Appl. Microbiol. Biotechnol., 2012, Vol.95, p77-89)。pcaG遺伝子およびpcaH遺伝子は、それぞれ、protocatechuate 3,4-dioxygenaseのαサブユニットおよびβサブユニットをコードする。protocatechuate 3,4-dioxygenase活性を低下させる場合、例えば、pcaGH遺伝子の両方を破壊等してもよく、片方のみを破壊等してもよい。PcaGHタンパク質等のprotocatechuate 3,4-dioxygenaseとしては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。protocatechuate 3,4-dioxygenaseとして、具体的には、C. glutamicum ATCC 13032株やATCC 13869株等のC. glutamicumのPcaGHタンパク質が挙げられる。 "Protocatechuate 3,4-dioxygenase" means a protein having an activity of catalyzing a reaction of oxidizing protocatechuate to produce β-carboxycis and cis-muconic acid. It's okay. This activity is also referred to as "protocatechuate 3,4-dioxygenase activity". The gene encoding protocatechuate 3,4-dioxygenase is also referred to as "protocatechuate 3,4-dioxygenase gene". Examples of protocatechuate 3,4-dioxygenase include the PcaGH protein encoded by the pcaGH gene (Appl. Microbiol. Biotechnol., 2012, Vol.95, p77-89). The pcaG and pcaH genes encode the α and β subunits of protocatechuate 3,4-dioxygenase, respectively. When reducing the protocatechuate 3,4-dioxygenase activity, for example, both of the pcaGH genes may be disrupted, or only one of them may be disrupted. Examples of protocatechuate 3,4-dioxygenase such as PcaGH protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of protocatechuate 3,4-dioxygenase include PcaGH proteins of C. glutamicum such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain.
 「アルコールデヒドロゲナーゼ(alcohol dehydrogenase;ADH)」とは、電子供与体の存在下でアルデヒドを還元してアルコールを生成する反応を触媒する活性を有するタンパク質を意味してよい(EC 1.1.1.1、EC 1.1.1.2、EC 1.1.1.71等)。同活性を、「ADH活性」ともいう。ADHをコードする遺伝子を、「ADH遺伝子」ともいう。電子供与体としては、NADHやNADPHが挙げられる。 "Alcohol dehydrogenase (ADH)" may mean a protein having an activity of catalyzing a reaction of reducing an aldehyde to produce an alcohol in the presence of an electron donor (EC 1.1.1.1, EC 1.1). 1.2, EC 1.1.1.71, etc.). This activity is also called "ADH activity". The gene encoding ADH is also referred to as the "ADH gene". Examples of electron donors include NADH and NADPH.
 ADHとしては、特に、電子供与体の存在下でバニリンを還元してバニリルアルコールを生成する反応を触媒する活性を有するものが挙げられる。同活性を、特に、「バニリルアルコールデヒドロゲナーゼ(vanillyl alcohol dehydrogenase)活性」ともいう。また、vanillyl alcohol dehydrogenase活性を有するADHを、特に、「バニリルアルコールデヒドロゲナーゼ(vanillyl alcohol dehydrogenase)」ともいう。 Examples of ADH include those having an activity of catalyzing a reaction of reducing vanillin to produce vanillyl alcohol in the presence of an electron donor. This activity is also referred to as "vanillyl alcohol dehydrogenase activity". In addition, ADH having vanillyl alcohol dehydrogenase activity is also particularly referred to as "vanillyl alcohol dehydrogenase".
 ADHとしては、yqhD遺伝子、NCgl0324遺伝子、NCgl0313遺伝子、NCgl2709遺伝子、NCgl0219遺伝子、NCgl2382遺伝子にそれぞれコードされるYqhDタンパク質、NCgl0324タンパク質、NCgl0313タンパク質、NCgl2709タンパク質、NCgl0219タンパク質、NCgl2382タンパク質が挙げられる。yqhD遺伝子およびNCgl0324遺伝子は、いずれも、vanillyl alcohol dehydrogenaseをコードする。このようなADHとしては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。yqhD遺伝子は、例えば、E. coli等の腸内細菌科(Enterobacteriaceae)の細菌に見出され得る。NCgl0324遺伝子、NCgl0313遺伝子、NCgl2709遺伝子、NCgl0219遺伝子、およびNCgl2382遺伝子は、例えば、C. glutamicum等のコリネ型細菌に見出され得る。すなわち、ADHとして、具体的には、E. coli K-12 MG1655株等のE. coliのYqhDタンパク質が挙げられる。また、ADHとして、具体的には、C. glutamicum ATCC 13032株やATCC 13869株等のC. glutamicumのNCgl0324タンパク質、NCgl0313タンパク質、NCgl2709タンパク質、NCgl0219タンパク質、NCgl2382タンパク質が挙げられる。C. glutamicum ATCC 13869株のNCgl0324遺伝子、NCgl0313遺伝子、およびNCgl2709遺伝子の塩基配列を配列番号11、13、および15に、同遺伝子がコードするタンパク質のアミノ酸配列を配列番号12、14、および16に、それぞれ示す。1種のADHの活性を低下させてもよく、2種またはそれ以上のADHの活性を低下させてもよい。例えば、NCgl0324タンパク質、NCgl2709タンパク質、およびNCgl0313タンパク質の内の1種またはそれ以上の活性を低下させてよい。特に、少なくとも、NCgl0324タンパク質の活性を低下させてもよい。 Examples of ADH include YqhD protein, NCgl0324 protein, NCgl0313 protein, NCgl2709 protein, NCgl0219 protein, and NCgl2382 protein encoded by the yqhD gene, NCgl0324 gene, NCgl0313 gene, NCgl2709 gene, NCgl0219 gene, and NCgl2382 gene, respectively. Both the yqhD gene and the NCgl0324 gene encode vanillyl alcohol dehydrogenase. Examples of such ADH include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. The yqhD gene can be found, for example, in bacteria of the Enterobacteriaceae family, such as E. coli. The NCgl0324 gene, NCgl0313 gene, NCgl2709 gene, NCgl0219 gene, and NCgl2382 gene can be found in coryneform bacteria such as C. glutamicum, for example. That is, as ADH, specifically, YqhD protein of E. coli such as E. coli K-12 MG1655 strain can be mentioned. Specific examples of ADH include NCgl0324 protein, NCgl0313 protein, NCgl2709 protein, NCgl0219 protein, and NCgl2382 protein of C. glutamicum such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain. The nucleotide sequences of the NCgl0324 gene, NCgl0313 gene, and NCgl2709 gene of the C. glutamicum ATCC 13869 strain are shown in SEQ ID NOs: 11, 13, and 15, and the amino acid sequences of the proteins encoded by the genes are shown in SEQ ID NOs: 12, 14, and 16. Each is shown. The activity of one ADH may be reduced, or the activity of two or more ADHs may be reduced. For example, the activity of one or more of the NCgl0324, NCgl2709, and NCgl0313 proteins may be reduced. In particular, at least the activity of the NCgl0324 protein may be reduced.
 「シキミ酸デヒドロゲナーゼ(shikimate dehydrogenase)」とは、電子供与体の存在下で3-デヒドロシキミ酸を還元してシキミ酸を生成する反応を触媒する活性を有するタンパク質を意味してよい(EC 1.1.1.25等)。同活性を、「shikimate dehydrogenase活性」ともいう。shikimate dehydrogenaseをコードする遺伝子を、「shikimate dehydrogenase遺伝子」ともいう。電子供与体としては、NADHやNADPHが挙げられる。shikimate dehydrogenaseとしては、aroE遺伝子にコードされるAroEタンパク質が挙げられる。AroEタンパク質等のshikimate dehydrogenaseとしては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。shikimate dehydrogenaseとして、具体的には、E. coli K-12 MG1655株等のE. coliのAroEタンパク質が挙げられる。 “Shikimate dehydrogenase” may mean a protein having an activity of catalyzing a reaction of reducing 3-dehydrogenic acid to produce shikimic acid in the presence of an electron donor (EC 1.1. 1.25 mag). This activity is also referred to as "shikimate dehydrogenase activity". The gene encoding shikimate dehydrogenase is also referred to as "shikimate dehydrogenase gene". Examples of electron donors include NADH and NADPH. Examples of shikimate dehydrogenase include the AroE protein encoded by the aroE gene. Examples of shikimate dehydrogenase such as AroE protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of shikimate dehydrogenase include AroE proteins of E. coli such as E. coli K-12 MG1655 strain.
 また、目的物質生産能を付与または増強するための方法としては、L-システイン生合成酵素の活性を増大させる方法が挙げられる(WO2018/079687)。 Further, as a method for imparting or enhancing the target substance-producing ability, there is a method for increasing the activity of L-cysteine biosynthetic enzyme (WO2018 / 099687).
 「L-システイン生合成酵素」とは、L-システインの生合成に関与するタンパク質を意味してよい。L-システイン生合成酵素をコードする遺伝子を、「L-システイン生合成遺伝子」ともいう。L-システイン生合成酵素としては、硫黄の利用に関与するタンパク質が挙げられる。硫黄の利用に関与するタンパク質としては、cysIXHDNYZ遺伝子およびfpr2遺伝子にそれぞれコードされるCysIXHDNYZタンパク質およびFpr2タンパク質が挙げられる。CysIXHDNYZタンパク質は、特に、硫酸塩や亜硫酸塩等の無機硫黄化合物の還元に関与する。Fpr2タンパク質は、特に、亜硫酸塩の還元のための電子伝達に関与してよい。L-システイン生合成酵素としては、O-アセチルセリン(チオール)リアーゼ(O-acetylserine (thiol)-lyase)も挙げられる。O-acetylserine (thiol)-lyaseとしては、cysK遺伝子にコードされるCysKタンパク質も挙げられる。L-システイン生合成酵素としては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。L-システイン生合成酵素として、具体的には、C. glutamicum ATCC 13032株やATCC 13869株等のC. glutamicumのCysIXHDNYZタンパク質、Fpr2タンパク質、CysKタンパク質が挙げられる。1種のL-システイン生合成酵素の活性を増大させてもよく、2種またはそれ以上のL-システイン生合成酵素の活性を増大させてもよい。例えば、CysIXHDNYZタンパク質、Fpr2タンパク質、およびCysKタンパク質の内の1種またはそれ以上の活性を増大させてもよく、CysIXHDNYZタンパク質およびFpr2タンパク質の内の1種またはそれ以上の活性を増大させてもよい。 "L-Cysteine biosynthesis enzyme" may mean a protein involved in L-cysteine biosynthesis. The gene encoding the L-cysteine biosynthetic enzyme is also referred to as "L-cysteine biosynthetic gene". Examples of the L-cysteine biosynthetic enzyme include proteins involved in the utilization of sulfur. Proteins involved in the utilization of sulfur include CysIXHDNYZ protein and Fpr2 protein encoded by the cysIXHDNYZ gene and fpr2 gene, respectively. The CysIXHDNYZ protein is particularly involved in the reduction of inorganic sulfur compounds such as sulfates and sulfites. The Fpr2 protein may be particularly involved in electron transfer for the reduction of sulfites. Examples of the L-cysteine biosynthetic enzyme include O-acetylserine (thiol) -lyase. Examples of O-acetylserine (thiol) -lyase include CysK protein encoded by the cysK gene. Examples of the L-cysteine biosynthetic enzyme include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of the L-cysteine biosynthetic enzyme include CysIXHDNYZ protein, Fpr2 protein, and CysK protein of C. glutamicum such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain. The activity of one L-cysteine biosynthetic enzyme may be increased, or the activity of two or more L-cysteine biosynthetic enzymes may be increased. For example, the activity of one or more of the CysIXHDNYZ protein, Fpr2 protein, and CysK protein may be increased, and the activity of one or more of the CysIXHDNYZ protein and Fpr2 protein may be increased.
 L-システイン生合成酵素の活性は、例えば、L-システイン生合成酵素をコードする遺伝子(すなわち、cysIXHDNYZ遺伝子、fpr2遺伝子、cysK遺伝子等のL-システイン生合成遺伝子)の発現を増大させることにより、増大させることができる。 The activity of L-cysteine biosynthetic enzyme is, for example, by increasing the expression of genes encoding L-cysteine biosynthetic enzyme (ie, L-cysteine biosynthetic genes such as cysIXHDNYZ gene, fpr2 gene, cysK gene). Can be increased.
 L-システイン生合成遺伝子の発現は、例えば、同遺伝子の発現制御因子の活性を改変(例えば、増大または低下)することにより、増大させることができる。すなわち、L-システイン生合成遺伝子の発現は、例えば、同遺伝子の正の発現制御因子(例えば、アクチベーター)の活性を増大させることにより、増大させることができる。また、L-システイン生合成遺伝子の発現は、例えば、同遺伝子の負の発現制御因子(例えば、リプレッサー)の活性を低下させることにより、増大させることができる。そのような制御因子を、「制御タンパク質」ともいう。そのような制御因子をコードする遺伝子を、「制御遺伝子」ともいう。 The expression of the L-cysteine biosynthesis gene can be increased, for example, by modifying (eg, increasing or decreasing) the activity of the expression regulator of the gene. That is, the expression of the L-cysteine biosynthesis gene can be increased, for example, by increasing the activity of a positive expression regulator (eg, activator) of the gene. In addition, the expression of the L-cysteine biosynthesis gene can be increased, for example, by reducing the activity of a negative expression regulator (eg, repressor) of the gene. Such regulators are also referred to as "regulatory proteins." A gene encoding such a regulatory factor is also referred to as a "regulatory gene".
 そのようなアクチベーターとしては、cysR遺伝子およびssuR遺伝子にそれぞれコードされるCysRタンパク質およびSsuRタンパク質が挙げられる。CysRタンパク質の活性の増大により、cysIXHDNYZ遺伝子、fpr2遺伝子、およびssuR遺伝子の内の1種またはそれ以上の発現が増大し得る。また、SsuRタンパク質の活性の増大により、有機硫黄化合物の利用に関与する遺伝子の発現が増大し得る。そのようなアクチベーターとしては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。そのようなアクチベーターとして、具体的には、C. glutamicum ATCC 13032株やATCC 13869株等のC. glutamicumのCysRタンパク質およびSsuRタンパク質が挙げられる。CysRタンパク質およびSsuRタンパク質の一方または両方の活性を増大させてよい。例えば、少なくとも、CysRタンパク質の活性を低下させてもよい。そのようなアクチベーターの活性は、例えば、同アクチベーターをコードする遺伝子の発現を増大させることにより、増大させることができる。 Examples of such activators include CysR protein and SsuR protein encoded by the cysR gene and the ssuR gene, respectively. Increased activity of the CysR protein can increase the expression of one or more of the cysIXHDNYZ gene, fpr2 gene, and ssuR gene. In addition, increased activity of the SsuR protein can increase the expression of genes involved in the utilization of organic sulfur compounds. Examples of such activators include those of various organisms such as Enterobacteriaceae bacteria and Coryneform bacteria. Specific examples of such activators include CysR protein and SsuR protein of C. glutamicum such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain. The activity of one or both of the CysR protein and the SsuR protein may be increased. For example, at least the activity of the CysR protein may be reduced. The activity of such an activator can be increased, for example, by increasing the expression of the gene encoding the activator.
 そのようなリプレッサーとしては、mcbR遺伝子にコードされるMcbRタンパク質が挙げられる。McbRタンパク質の活性の低下により、cysR遺伝子およびssuR遺伝子の内の1種またはそれ以上の発現が増大し得る、また、それにより、cysIXHDNYZ遺伝子およびfpr2遺伝子の内の1種またはそれ以上の発現が増大し得る。そのようなリプレッサーとしては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。そのようなリプレッサーとして、具体的には、C. glutamicum ATCC 13032株やATCC 13869株等のC. glutamicumのMcbRタンパク質が挙げられる。そのようなリプレッサーの活性は、例えば、同リプレッサーをコードする遺伝子の発現を低下させることにより、または同リプレッサーをコードする遺伝子を破壊することにより、低下させることができる。 Examples of such a repressor include the McbR protein encoded by the mcbR gene. Decreased activity of the McbR protein can increase the expression of one or more of the cysR and ssuR genes, which in turn increases the expression of one or more of the cysIXHDNYZ and fpr2 genes. Can be. Examples of such repressors include those of various organisms such as Enterobacteriaceae bacteria and Coryneform bacteria. Specific examples of such repressors include McbR proteins of C. glutamicum such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain. The activity of such a repressor can be reduced, for example, by reducing the expression of the gene encoding the repressor, or by disrupting the gene encoding the repressor.
 すなわち、具体的には、L-システイン生合成酵素の活性は、例えば、cysIXHDNYZ遺伝子、fpr2遺伝子、cysR遺伝子、およびssuR遺伝子の内の1種またはそれ以上の発現を増大させることにより、増大させることができる。すなわち、「L-システイン生合成酵素の活性が増大する」とは、例えば、cysIXHDNYZ遺伝子、fpr2遺伝子、cysR遺伝子、およびssuR遺伝子の内の1種またはそれ以上の発現が増大することを意味してよい。例えば、少なくとも、cysR遺伝子の発現を増大させてもよい。また、例えば、これらの遺伝子の全ての発現を増大させてもよい。cysIXHDNYZ遺伝子、fpr2遺伝子、およびssuR遺伝子の内の1種またはそれ以上の発現は、cysR遺伝子の発現を増大させることにより増大してもよい。 That is, specifically, the activity of the L-cysteine biosynthetic enzyme is increased, for example, by increasing the expression of one or more of the cysIXHDNYZ gene, fpr2 gene, cysR gene, and ssuR gene. Can be done. That is, "increased activity of L-cysteine biosynthetic enzyme" means, for example, increased expression of one or more of the cysIXHDNYZ gene, fpr2 gene, cysR gene, and ssuR gene. Good. For example, at least the expression of the cysR gene may be increased. Also, for example, the expression of all of these genes may be increased. Expression of one or more of the cysIXHDNYZ gene, fpr2 gene, and ssuR gene may be increased by increasing the expression of the cysR gene.
 また、目的物質生産能を付与または増強するための方法としては、NCgl2048タンパク質の活性を低下させる方法が挙げられる(WO2018/079686)。 Further, as a method for imparting or enhancing the target substance-producing ability, there is a method for reducing the activity of NCgl2048 protein (WO2018 / 079686).
 「NCgl2048タンパク質」とは、NCgl2048遺伝子にコードされるタンパク質を意味してよい。NCgl2048タンパク質としては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。NCgl2048タンパク質として、具体的には、C. glutamicum ATCC 13869株等のC. glutamicumのNCgl2048タンパク質が挙げられる。なお、保存的バリアントに関して、「NCgl2048タンパク質の元の機能」とは、C. glutamicum ATCC 13869株のNCgl2048タンパク質のアミノ酸配列を有するタンパク質の機能を意味してもよく、微生物において活性を低下させることにより目的物質の生産が増大する性質を意味してもよい。 "NCgl2048 protein" may mean a protein encoded by the NCgl2048 gene. Examples of NCgl2048 protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of the NCgl2048 protein include the NCgl2048 protein of C. glutamicum such as the C. glutamicum ATCC 13869 strain. Regarding the conservative variant, the "original function of NCgl2048 protein" may mean the function of a protein having the amino acid sequence of NCgl2048 protein of C. glutamicum ATCC 13869 strain, and by reducing the activity in microorganisms. It may mean the property of increasing the production of the target substance.
 また、目的物質生産能を付与または増強するための方法としては、エノラーゼ(enolase)の活性を低下させる方法が挙げられる(WO2018/079685)。 Further, as a method for imparting or enhancing the target substance-producing ability, there is a method for reducing the activity of enolase (WO2018 / 079685).
 「エノラーゼ(enolase)」とは、2-ホスホ-D-グリセリン酸(2-phospho-D-glyceric acid)を脱水してホスホエノールピルビン酸(phosphoenolpyruvic acid)を生成する反応を触媒する活性を有するタンパク質を意味してよい(EC 4.2.1.11等)。同活性を、「enolase活性」ともいう。enolaseは、「ホスホピルビン酸ヒドラターゼ(phosphopyruvate hydratase)」ともいう。enolaseをコードする遺伝子を、「enolase遺伝子」ともいう。enolaseとしては、eno遺伝子にコードされるEnoタンパク質が挙げられる。Enoタンパク質等のenolaseとしては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。enolaseとして、具体的には、C. glutamicum ATCC 13869株等のC. glutamicumのEnoタンパク質が挙げられる。 "Enolase" is a protein that has the activity of catalyzing the reaction of dehydrating 2-phospho-D-glyceric acid to produce phosphoenolpyruvic acid. May mean (EC 4.2.1.11, etc.). This activity is also referred to as "enolase activity". enolase is also referred to as "phosphopyruvate hydratase". The gene encoding enolase is also referred to as "enolase gene". Examples of the enolase include an Eno protein encoded by the eno gene. Examples of enolases such as Eno proteins include those of various organisms such as Enterobacteriaceae bacteria and coryneform bacteria. Specific examples of the enolase include the Eno protein of C. glutamicum such as the C. glutamicum ATCC 13869 strain.
 また、目的物質生産能を付与または増強するための方法としては、S-アデノシル-L-ホモシステインヒドロラーゼ(S-adenosyl-L-homocysteine hydrolase)の活性を増大させる方法が挙げられる(WO2018/079684)。 In addition, as a method for imparting or enhancing the target substance-producing ability, there is a method for increasing the activity of S-adenosyl-L-homocysteine hydrolase (WO2018 / 079684). ..
 「S-アデノシル-L-ホモシステインヒドロラーゼ(S-adenosyl-L-homocysteine hydrolase)」とは、S-アデノシル-L-ホモシステイン(S-adenosyl-L-homocysteine;SAH)を加水分解してL-ホモシステインとアデノシンを生成する反応を触媒する活性を有するタンパク質を意味してよい(EC 3.3.1.1等)。同活性を、「S-adenosyl-L-homocysteine hydrolase活性」ともいう。S-adenosyl-L-homocysteine hydrolaseは、「アデノシルホモシステイナーゼ(adenosylhomocysteinase)」ともいう。S-adenosyl-L-homocysteine hydrolaseをコードする遺伝子を、「S-adenosyl-L-homocysteine hydrolase遺伝子」ともいう。S-adenosyl-L-homocysteine hydrolaseとしては、sahH遺伝子にコードされるSahHタンパク質が挙げられる。SahHタンパク質等のS-adenosyl-L-homocysteine hydrolaseとしては、酵母、Streptomyces属細菌、コリネ型細菌等の各種生物のものが挙げられる。S-adenosyl-L-homocysteine hydrolaseとして、具体的には、C. glutamicum ATCC 13032株やATCC 13869株等のC. glutamicumのSahHタンパク質が挙げられる。 "S-adenosyl-L-homocysteine hydrolase" is a hydrolysis of S-adenosyl-L-homocysteine (SAH) and L-. It may mean a protein having an activity of catalyzing the reaction of producing homocysteine and adenosine (EC 3.3.1.1, etc.). This activity is also referred to as "S-adenosyl-L-homocysteine hydrolase activity". S-adenosyl-L-homocysteine hydrolase is also called "adenosylhomocysteinase". The gene encoding S-adenosyl-L-homocysteine hydrolase is also referred to as "S-adenosyl-L-homocysteine hydrolase gene". Examples of the S-adenosyl-L-homocysteine hydrolase include the SahH protein encoded by the sahH gene. Examples of S-adenosyl-L-homocysteine hydrolase such as SahH protein include those of various organisms such as yeast, Streptomyces genus bacteria, and coryneform bacteria. Specific examples of the S-adenosyl-L-homocysteine hydrolase include SahH proteins of C. glutamicum such as C. glutamicum ATCC 13032 strain and ATCC 13869 strain.
 また、目的物質生産能を付与または増強するための方法としては、L-セリンデアミナーゼ(L-serine deaminase)の活性を低下させる方法が挙げられる(US2018-0334693A)。 Further, as a method for imparting or enhancing the target substance-producing ability, there is a method for reducing the activity of L-serine deaminase (US2018-0334693A).
 「L-セリンデアミナーゼ(L-serine deaminase)」とは、L-セリンをピルビン酸とアンモニアに変換する反応を触媒する活性を有するタンパク質を意味してよい(EC 4.3.1.17等)。同活性を、「L-serine deaminase活性」ともいう。L-serine deaminaseは、「L-serine ammonia-lyase」ともいう。L-serine deaminaseをコードする遺伝子を、「L-serine deaminase遺伝子」ともいう。L-serine deaminaseとしては、sdaA遺伝子にコードされるSdaAタンパク質が挙げられる。SdaAタンパク質等のL-serine deaminaseとしては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。L-serine deaminaseとして、具体的には、C. glutamicum ATCC 13869株等のC. glutamicumのSdaAタンパク質が挙げられる。 "L-serine deaminase" may mean a protein having an activity of catalyzing the reaction of converting L-serine to pyruvic acid and ammonia (EC 4.3.1.17, etc.). This activity is also referred to as "L-serine deaminase activity". L-serine deaminase is also referred to as "L-serine ammonia-lyase". The gene encoding L-serine deaminase is also referred to as "L-serine deaminase gene". Examples of the L-serine deaminase include the SdaA protein encoded by the sdaA gene. Examples of L-serine deaminase such as SdaA protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of the L-serine deaminase include the SdaA protein of C. glutamicum such as the C. glutamicum ATCC 13869 strain.
 また、目的物質生産能を付与または増強するための方法としては、AICARホルミルトランスフェラーゼ/IMPシクロヒドロラーゼ(AICAR formyltransferase/IMP cyclohydrolase)の活性を低下させる、またはUS2018-0334693Aに記載の変異を有するようにAICAR formyltransferase/IMP cyclohydrolaseをコードする遺伝子を改変する方法が挙げられる(US2018-0334693A)。 In addition, as a method for imparting or enhancing the target substance-producing ability, the activity of AICAR formyltransferase / IMP cyclohydrolase is reduced, or AICAR has a mutation described in US 2018-0334693A. A method of modifying the gene encoding formyltransferase / IMP cyclohydrolase can be mentioned (US2018-0334693A).
 「AICARホルミルトランスフェラーゼ/IMPシクロヒドロラーゼ(AICAR formyltransferase/IMP cyclohydrolase)」とは、AICAR formyltransferaseおよび/またはIMP cyclohydrolase、すなわち、AICAR formyltransferaseおよびIMP cyclohydrolaseの一方または両方を意味してよい。「AICARホルミルトランスフェラーゼ(AICAR formyltransferase)」とは、5-アミノ-1-(5-ホスホ-D-リボシル)イミダゾール-4-カルボキシアミド(5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide;AICAR)と10-ホルミルテトラヒドロ葉酸(10-formyltetrahydrofolate)を、5-ホルムアミド-1-(5-ホスホ-D-リボシル)イミダゾール-4-カルボキシアミド(5-formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide;FAICAR)とテトラヒドロ葉酸(tetrahydrofolate)に変換する反応を触媒する活性を有するタンパク質を意味してよい(EC 2.1.2.3等)。同活性を、「AICAR formyltransferase活性」ともいう。「IMPシクロヒドロラーゼ(IMP cyclohydrolase)」とは、FAICARを脱水してIMPを生成する反応を触媒する活性を有するタンパク質を意味してよい(EC 3.5.4.10等)。同活性を、「IMP cyclohydrolase活性」ともいう。AICAR formyltransferase/IMP cyclohydrolaseをコードする遺伝子を、「AICAR formyltransferase/IMP cyclohydrolase遺伝子」ともいう。AICAR formyltransferaseとIMP cyclohydrolaseは、二機能酵素としてコードされていてもよい。よって、「AICARホルミルトランスフェラーゼ/IMPシクロヒドロラーゼ(AICAR formyltransferase/IMP cyclohydrolase)」とは、具体的には、二機能性AICAR formyltransferase/IMP cyclohydrolase、すなわち、AICAR formyltransferase活性およびIMP cyclohydrolase活性の両方を有するタンパク質を意味してもよい。AICAR formyltransferase/IMP cyclohydrolaseとしては、purH遺伝子にコードされる二機能性AICAR formyltransferase/IMP cyclohydrolaseであるPurHタンパク質が挙げられる。PurHタンパク質等のAICAR formyltransferase/IMP cyclohydrolaseとしては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。AICAR formyltransferase/IMP cyclohydrolaseとして、具体的には、C. glutamicum ATCC 13869株等のC. glutamicumのPurHタンパク質が挙げられる。 "AICAR formyltransferase / IMP cyclohydrolase" may mean AICAR formyltransferase and / or IMP cyclohydrolase, that is, one or both of AICAR formyltransferase and IMP cyclohydrolase. "AICAR formyltransferase" is 5-amino-1- (5-phospho-D-ribosyl) imidazole (5-amino-1- (5-phospho-D-ribosyl) imidazole). -4-carboxamide; AICAR and 10-formyltetrahydrofolate, 5-formamido-1- (5-phospho-D-ribosyl) imidazole-4-carboxamide (5-formamido-1- (5)) -phospho-D-ribosyl) imidazole-4-carboxamide; may mean a protein having an activity of catalyzing the reaction of converting FAICAR) to tetrahydrofolate (EC 2.1.2.3, etc.). This activity is also referred to as "AICAR formytransferase activity". “IMP cyclohydrolase” may mean a protein having an activity of catalyzing a reaction of dehydrating FAICAR to produce IMP (EC 3.5.4.10, etc.). This activity is also called "IMP cyclohydrolase activity". The gene encoding AICAR formyltransferase / IMP cyclohydrolase is also referred to as "AICAR formyltransferase / IMP cyclohydrolase gene". AICAR formyltransferase and IMP cyclohydrolase may be encoded as bifunctional enzymes. Therefore, "AICAR formyltransferase / IMP cyclohydrolase" specifically refers to a bifunctional AICAR formyltransferase / IMP cyclohydrolase, that is, a protein having both AICAR formyltransferase activity and IMP cyclohydrolase activity. It may mean. Examples of AICAR formyltransferase / IMP cyclohydrolase include PurH protein, which is a bifunctional AICAR formyltransferase / IMP cyclohydrolase encoded by the purH gene. Examples of AICAR formytransferase / IMP cyclohydrolase such as PurH protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of AICAR formyltransferase / IMP cyclohydrolase include PurH protein of C. glutamicum such as C. glutamicum ATCC 13869 strain.
 また、目的物質生産能を付与または増強するための方法としては、D-3-ホスホグリセリン酸デヒドロゲナーゼ(D-3-phosphoglycerate dehydrogenase;3-PGDH)の活性を増大させる、またはL-セリンによるフィードバック阻害に耐性の3-PGDHをコードする遺伝子を有するように微生物を改変する方法が挙げられる(US2018-0334693A)。 In addition, as a method for imparting or enhancing the target substance-producing ability, the activity of D-3-phosphoglycerate dehydrogenase (3-PGDH) is increased, or feedback inhibition by L-serine is performed. There is a method of modifying a microorganism to have a gene encoding 3-PGDH resistant to 3 (US2018-0334693A).
 「D-3-ホスホグリセリン酸デヒドロゲナーゼ(D-3-phosphoglycerate dehydrogenase;3-PGDH)」とは、電子受容体の存在下で3-ホスホグリセリン酸(3-phosphoglyceric acid)を酸化して3-ホスホヒドロキシピルビン酸(3-phosphohydroxylpyruvic acid)を生成する反応を触媒する活性を有するタンパク質を意味してよい(EC 1.1.1.95等)。同活性を、「3-PGDH活性」ともいう。電子受容体としては、NAD+やNADP+が挙げられる。3-PGDHをコードする遺伝子を、「3-PGDH遺伝子」ともいう。3-PGDHとしては、serA遺伝子にコードされるSerAタンパク質が挙げられる。SerAタンパク質等の3-PGDHとしては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌等の各種生物のものが挙げられる。3-PGDHとして、具体的には、B. flavum ATCC 14067株等のB. flavumのSerAタンパク質が挙げられる。また、3-PGDHとして、具体的には、E. coli K-12 MG1655株等のE. coliのSerAタンパク質も挙げられる。L-セリンによるフィードバック阻害に耐性の3-PGDHとしては、US2018-0334693Aに開示されているものが挙げられる。L-セリンによるフィードバック阻害に耐性の3-PGDHとして、具体的には、serA*遺伝子にコードされるB. flavum AJ13327株のSerA*タンパク質が挙げられる(US2018-0334693A)。 "D-3-phosphoglycerate dehydrogenase (3-PGDH)" is a 3-phosphoglyceric acid that oxidizes 3-phosphoglyceric acid in the presence of an electron acceptor. It may mean a protein having an activity of catalyzing a reaction for producing hydroxypyruvic acid (3-phosphohydroxylpyruvic acid) (EC 1.1.1.95, etc.). This activity is also referred to as "3-PGDH activity". Examples of electron acceptors include NAD + and NADP + . The gene encoding 3-PGDH is also referred to as "3-PGDH gene". Examples of 3-PGDH include the SerA protein encoded by the serA gene. Examples of 3-PGDH such as SerA protein include those of various organisms such as bacteria of Enterobacteriaceae and coryneform bacteria. Specific examples of 3-PGDH include SerA protein of B. flavum such as B. flavum ATCC 14067 strain. Specific examples of 3-PGDH include SerA protein of E. coli such as E. coli K-12 MG1655 strain. Examples of 3-PGDH resistant to feedback inhibition by L-serine include those disclosed in US 2018-0334693A. Specific examples of 3-PGDH resistant to feedback inhibition by L-serine include the SerA * protein of the B. flavum AJ13327 strain encoded by the serA * gene (US2018-0334693A).
 目的物質生産能を有する微生物の育種に使用される遺伝子およびタンパク質は、例えば、目的物質の種類、目的物質が生産される生合成経路の種類、および微生物が本来的に有するタンパク質の種類や活性等の諸条件に応じて適宜選択できる。例えば、バニリンをプロトカテク酸からの生物変換により製造する場合は、特に、OMT、ACAR、PPT、およびプロトカテク酸取り込み系の1種またはそれ以上の活性を増大させてよい。また、例えば、バニリンをバニリン酸からの生物変換により製造する場合は、特に、ACAR、PPT、およびバニリン酸取り込み系の1種またはそれ以上の活性を増大させてよい。バニリンをバニリン酸からの生物変換により製造する場合、さらに特には、少なくともACARおよび/またはPPTの活性を増大させてよい。バニリンをバニリン酸からの生物変換により製造する場合、さらに特には、少なくともACARおよびPPTの活性を増大させてよい。また、バニリンをプロトカテクアルデヒドからの生物変換により製造する場合は、特に、OMTの活性を増大させてよい。 The genes and proteins used for breeding microorganisms capable of producing the target substance include, for example, the type of the target substance, the type of biosynthetic pathway in which the target substance is produced, and the type and activity of the protein inherently possessed by the microorganism. It can be appropriately selected according to the various conditions of. For example, when vanillin is produced by bioconversion from protocatechuic acid, the activity of one or more of the OMT, ACAR, PPT, and protocatechuic acid uptake systems may be increased, in particular. Also, for example, when vanillin is produced by bioconversion from vanillic acid, the activity of one or more of the ACAR, PPT, and vanillic acid uptake systems may be increased, in particular. When vanillin is produced by bioconversion from vanillic acid, the activity of at least ACAR and / or PPT may be increased, more particularly. When vanillin is produced by bioconversion from vanillic acid, the activity of at least ACAR and PPT may be increased, more particularly. Also, especially when vanillin is produced by bioconversion from protocatechuic aldehyde, the activity of OMT may be increased.
 目的物質生産能を有する微生物の育種に使用される遺伝子およびタンパク質は、それぞれ、例えば、公知の塩基配列およびアミノ酸配列(上記例示したものも含む)を有していてよい。公知の塩基配列およびアミノ酸配列としては、上記例示したものの他、WO2018/079687、WO2018/079686、WO2018/079685、WO2018/079684、WO2018/079683、WO2017/073701、WO2018/079705、US2018-0334693A、およびUS2019-0161776Aに記載のものが挙げられる。なお、「遺伝子またはタンパク質が塩基配列またはアミノ酸配列を有する」という表現は、特記しない限り、遺伝子またはタンパク質が当該塩基配列またはアミノ酸配列を含むことを意味してよく、遺伝子またはタンパク質が当該塩基配列またはアミノ酸配列からなる場合も包含してよい。 The genes and proteins used for breeding microorganisms capable of producing a target substance may have, for example, known base sequences and amino acid sequences (including those exemplified above), respectively. Known nucleotide sequences and amino acid sequences include those exemplified above, WO2018 / 099687, WO2018 / 079686, WO2018 / 079685, WO2018 / 099684, WO2018 / 079683, WO2017 / 073701, WO2018 / 079705, US2018-0334693A, and US2019. -0161776 A can be mentioned. Unless otherwise specified, the expression "a gene or protein has a base sequence or an amino acid sequence" may mean that the gene or protein contains the base sequence or the amino acid sequence, and the gene or protein has the base sequence or the amino acid sequence. The case consisting of an amino acid sequence may also be included.
 目的物質生産能を有する微生物の育種に使用される遺伝子およびタンパク質は、それぞれ、公知の塩基配列およびアミノ酸配列を有する遺伝子およびタンパク質の保存的バリアントであってもよい。「保存的バリアント」とは、元の機能が維持されたバリアントをいう。保存的バリアントとしては、例えば、公知の塩基配列およびアミノ酸配列を有する遺伝子およびタンパク質のホモログや人為的な改変体が挙げられる。 The gene and protein used for breeding a microorganism capable of producing a target substance may be a conservative variant of the gene and protein having a known base sequence and amino acid sequence, respectively. "Conservative variant" means a variant that retains its original function. Conservative variants include, for example, homologues and artificial variants of genes and proteins having known nucleotide and amino acid sequences.
 「元の機能が維持されている」とは、遺伝子またはタンパク質のバリアントが、元の遺伝子またはタンパク質の機能(例えば、活性または性質)に対応する機能(例えば、活性または性質)を有することをいう。遺伝子についての「元の機能が維持されている」とは、遺伝子のバリアントが、元の機能が維持されたタンパク質をコードすることをいう。例えば、ACAR遺伝子についての「元の機能が維持されている」とは、遺伝子のバリアントがACAR活性を有するタンパク質をコードすることをいう。また、ACARについての「元の機能が維持されている」とは、タンパク質のバリアントがACAR活性を有することをいう。各タンパク質の活性は、例えば、WO2018/079687、WO2018/079686、WO2018/079685、WO2018/079684、WO2018/079683、WO2017/073701、WO2018/079705、US2018-0334693A、またはUS2019-0161776Aに記載の方法により測定することができる。 "Maintaining original function" means that a variant of a gene or protein has a function (eg, activity or property) that corresponds to the function (eg, activity or property) of the original gene or protein. .. By "maintaining the original function" of a gene is meant that a variant of the gene encodes a protein that retains its original function. For example, "maintaining the original function" of an ACAR gene means that a variant of the gene encodes a protein with ACAR activity. In addition, "maintaining the original function" of ACAR means that the protein variant has ACAR activity. The activity of each protein is measured, for example, by the method described in WO2018 / 099687, WO2018 / 079686, WO2018 / 079685, WO2018 / 099684, WO2018 / 079683, WO2017 / 073701, WO2018 / 079705, US2018-0334693A, or US2019-0161776A. can do.
 以下、保存的バリアントについて例示する。 The following is an example of a conservative variant.
 目的物質生産能を有する微生物の育種に使用される遺伝子またはタンパク質のホモログは、例えば、公知の塩基配列またはアミノ酸配列を問い合わせ配列として用いたBLAST検索やFASTA検索によって公開データベースから容易に取得することができる。また、目的物質生産能を有する微生物の育種に使用される遺伝子のホモログは、例えば、コリネ型細菌等の生物の染色体を鋳型にして、公知の塩基配列に基づいて作製したオリゴヌクレオチドをプライマーとして用いたPCRにより取得することができる。 Homologs of genes or proteins used for breeding microorganisms capable of producing the target substance can be easily obtained from public databases by, for example, BLAST search or FASTA search using a known base sequence or amino acid sequence as a query sequence. it can. In addition, for the homologue of a gene used for breeding a microorganism capable of producing a target substance, for example, an oligonucleotide prepared based on a known base sequence using a chromosome of an organism such as a coryneform bacterium as a template is used as a primer. It can be obtained by PCR.
 目的物質生産能を有する微生物の育種に使用される遺伝子は、元の機能が維持されている限り、それぞれ、公知のアミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入または付加されたアミノ酸配列を有するタンパク質をコードするものであってもよい。例えば、コードされるタンパク質は、そのN末端および/またはC末端が、延長または短縮されていてもよい。なお上記「1又は数個」とは、アミノ酸残基のタンパク質の立体構造における位置や種類によっても異なるが、具体的には、例えば、1~50個、1~40個、1~30個、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個を意味する。 Genes used for breeding microorganisms capable of producing a target substance are replaced with one or several amino acids at one or several positions in a known amino acid sequence, respectively, as long as the original function is maintained. , Which may encode a protein having an amino acid sequence deleted, inserted or added. For example, the encoded protein may have its N-terminus and / or C-terminus extended or shortened. The above "1 or several" differs depending on the position and type of the amino acid residue in the protein structure, but specifically, for example, 1 to 50, 1 to 40, 1 to 30, etc. It preferably means 1 to 20, more preferably 1 to 10, still more preferably 1 to 5, and particularly preferably 1 to 3.
 上記の1若しくは数個のアミノ酸の置換、欠失、挿入、または付加は、タンパク質の機能が正常に維持される保存的変異である。保存的変異の代表的なものは、保存的置換である。保存的置換とは、置換部位が芳香族アミノ酸である場合には、Phe、Trp、Tyr間で、置換部位が疎水性アミノ酸である場合には、Leu、Ile、Val間で、極性アミノ酸である場合には、Gln、Asn間で、塩基性アミノ酸である場合には、Lys、Arg、His間で、酸性アミノ酸である場合には、Asp、Glu間で、ヒドロキシル基を持つアミノ酸である場合には、Ser、Thr間でお互いに置換する変異である。保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、ArgからGln、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、CysからSer又はAlaへの置換、GlnからAsn、Glu、Lys、His、Asp又はArgへの置換、GluからGly、Asn、Gln、Lys又はAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はPheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換、及び、ValからMet、Ile又はLeuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、遺伝子が由来する生物の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。 The above-mentioned substitution, deletion, insertion, or addition of one or several amino acids is a conservative mutation in which the function of the protein is maintained normally. A typical conservative mutation is a conservative substitution. Conservative substitutions are polar amino acids between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In some cases, between Gln and Asn, between Lys, Arg and His if it is a basic amino acid, and between Asp and Glu if it is an acidic amino acid, if it is an amino acid with a hydroxyl group. Is a mutation that replaces each other between Ser and Thr. Substitutions that are considered conservative substitutions include, specifically, Ala to Ser or Thr substitutions, Arg to Gln, His or Lys substitutions, Asn to Glu, Gln, Lys, His or Asp substitutions. Asp to Asn, Glu or Gln replacement, Cys to Ser or Ala replacement, Gln to Asn, Glu, Lys, His, Asp or Arg replacement, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Lys to Asn, Glu, Gln, His or Arg, Met to Ile, Leu, Val or Phe, Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitutions include Thr to Ser or Ala, Trp to Phe or Tyr, Tyr to His, Phe or Trp, and Val to Met, Ile or Leu. In addition, the above-mentioned amino acid substitutions, deletions, insertions, additions, or inversions are naturally occurring mutations (mutants or variants) such as those based on individual differences or species differences of the organism from which the gene is derived. Also includes those caused by.
 また、目的物質生産能を有する微生物の育種に使用される遺伝子は、元の機能が維持されている限り、それぞれ、公知のアミノ酸配列全体に対して、例えば、50%以上、65%以上、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の同一性を有するアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。 In addition, the genes used for breeding microorganisms capable of producing the target substance, for example, 50% or more, 65% or more, and 80, respectively, with respect to the entire known amino acid sequence as long as the original functions are maintained. It may be a gene encoding a protein having an amino acid sequence having an identity of% or more, preferably 90% or more, more preferably 95% or more, further preferably 97% or more, and particularly preferably 99% or more.
 また、目的物質生産能を有する微生物の育種に使用される遺伝子は、元の機能が維持されている限り、それぞれ、公知の塩基配列から調製され得るプローブ、例えば公知の塩基配列の全体または一部に対する相補配列、とストリンジェントな条件下でハイブリダイズするDNAであってもよい。「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。一例を示せば、同一性が高いDNA同士、例えば、50%以上、65%以上、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の同一性を有するDNA同士がハイブリダイズし、それより同一性が低いDNA同士がハイブリダイズしない条件、あるいは通常のサザンハイブリダイゼーションの洗いの条件である60℃、1×SSC、0.1% SDS、好ましくは60℃、0.1×SSC、0.1% SDS、より好ましくは68℃、0.1×SSC、0.1% SDSに相当する塩濃度および温度で、1回、好ましくは2~3回洗浄する条件を挙げることができる。 In addition, genes used for breeding microorganisms capable of producing a target substance can be prepared from known base sequences, for example, all or part of known base sequences, as long as the original functions are maintained. It may be a DNA that hybridizes with a complementary sequence to the DNA under stringent conditions. The "stringent condition" refers to a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed. To give an example, DNAs having high identity, for example, 50% or more, 65% or more, 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 97% or more, particularly preferably 99. 60 ° C, 1 × SSC, 0.1% SDS, which is a condition in which DNAs having an identity of% or more hybridize with each other and DNAs having a lower identity do not hybridize with each other, or a normal Southern hybridization washing condition. Conditions of washing once, preferably 2-3 times, preferably at a salt concentration and temperature corresponding to 60 ° C., 0.1 × SSC, 0.1% SDS, more preferably 68 ° C., 0.1 × SSC, 0.1% SDS. be able to.
 上述の通り、上記ハイブリダイゼーションに用いるプローブは、遺伝子の相補配列の一部であってもよい。そのようなプローブは、公知の塩基配列に基づいて作製したオリゴヌクレオチドをプライマーとし、上述の遺伝子を含むDNA断片を鋳型とするPCRによって作製することができる。例えば、プローブとしては、300 bp程度の長さのDNA断片を用いることができる。プローブとして300 bp程度の長さのDNA断片を用いる場合には、ハイブリダイゼーションの洗いの条件としては、50℃、2×SSC、0.1% SDSが挙げられる。 As described above, the probe used for the above hybridization may be a part of the complementary sequence of the gene. Such a probe can be prepared by PCR using an oligonucleotide prepared based on a known base sequence as a primer and a DNA fragment containing the above-mentioned gene as a template. For example, as a probe, a DNA fragment having a length of about 300 bp can be used. When a DNA fragment having a length of about 300 bp is used as the probe, the conditions for washing the hybridization include 50 ° C., 2 × SSC, and 0.1% SDS.
 また、宿主によってコドンの縮重性が異なるので、目的物質生産能を有する微生物の育種に使用される遺伝子は、任意のコドンをそれと等価のコドンに置換したものであってもよい。 Further, since the codon degeneracy differs depending on the host, the gene used for breeding a microorganism capable of producing a target substance may be a gene in which an arbitrary codon is replaced with a codon equivalent thereto.
 なお、アミノ酸配列間の「同一性」とは、blastpによりデフォルト設定のScoring Parameters(Matrix:BLOSUM62;Gap Costs:Existence=11, Extension=1;Compositional Adjustments:Conditional compositional score matrix adjustment)を用いて算出されるアミノ酸配列間の同一性を意味する。また、塩基配列間の「同一性」とは、blastnによりデフォルト設定のScoring Parameters(Match/Mismatch Scores=1,-2;Gap Costs=Linear)を用いて算出される塩基配列間の同一性を意味する。 The "identity" between amino acid sequences is calculated by blastp using the default settings of Scoring Parameters (Matrix: BLOSUM62; GapCosts: Presence = 11, Extension = 1; Compositional Adjustments: Conditional compositional score matrix adjustment). It means the identity between amino acid sequences. In addition, "identity" between base sequences means the identity between base sequences calculated by blastn using the default setting Scoring Parameters (Match / Mismatch Scores = 1, -2; Gap Costs = Linear). To do.
<1-2>タンパク質の活性を増大させる手法
 以下に、タンパク質の活性を増大させる手法について説明する。
<1-2> Method for increasing protein activity A method for increasing protein activity will be described below.
 「タンパク質の活性が増大する」とは、同タンパク質の活性が非改変株と比較して増大することを意味してよい。「タンパク質の活性が増大する」とは、具体的には、同タンパク質の細胞当たりの活性が非改変株に対して増大することを意味してよい。「タンパク質の細胞当たりの活性」とは、同タンパク質の活性の細胞当たりの平均値を意味してよい。非改変株を、「非改変微生物」または「非改変微生物の株」ともいう。ここでいう「非改変株」とは、標的のタンパク質の活性が増大するように改変されていない対照株を意味してよい。非改変株としては、野生株や親株が挙げられる。非改変株として、具体的には、各微生物種の基準株(type strain)が挙げられる。また、非改変株として、具体的には、微生物の説明において例示した菌株も挙げられる。すなわち、一態様において、タンパク質の活性は、基準株(すなわち、目的物質生産能を有する微生物が属する種の基準株)と比較して増大してよい。また、別の態様において、タンパク質の活性は、C. glutamicum ATCC 13869株と比較して増大してもよい。また、別の態様において、タンパク質の活性は、C. glutamicum ATCC 13032株と比較して増大してもよい。また、別の態様において、タンパク質の活性は、E. coli K-12 MG1655株と比較して増大してもよい。なお、「タンパク質の活性が増大する」ことを、「タンパク質の活性が増強される」ともいう。「タンパク質の活性が増大する」とは、より具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が増加していること、および/または、同タンパク質の分子当たりの機能が増大していることを意味してよい。すなわち、「タンパク質の活性が増大する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。「タンパク質の細胞当たりの分子数」とは、同タンパク質の分子数の細胞当たりの平均値を意味してよい。また、「タンパク質の活性が増大する」ことには、もともと標的のタンパク質の活性を有する菌株において同タンパク質の活性を増大させることだけでなく、もともと標的のタンパク質の活性が存在しない菌株に同タンパク質の活性を付与することも包含される。また、結果としてタンパク質の活性が増大する限り、宿主が本来有する標的のタンパク質の活性を低下または消失させた上で、好適な標的のタンパク質の活性を付与してもよい。 "Increased protein activity" may mean that the activity of the protein is increased as compared with the unmodified strain. "Increased protein activity" may specifically mean that the per-cell activity of the protein is increased relative to the unmodified strain. The "activity of a protein per cell" may mean the average value of the activity of the protein per cell. The unmodified strain is also referred to as a "non-modified microorganism" or a "non-modified microorganism strain". The term "unmodified strain" as used herein may mean a control strain that has not been modified to increase the activity of the target protein. Examples of the unmodified strain include a wild strain and a parent strain. Specific examples of the unmodified strain include a reference strain (type strain) of each microbial species. Further, as the unmodified strain, specifically, the strain exemplified in the description of the microorganism can be mentioned. That is, in one embodiment, the activity of the protein may be increased compared to the reference strain (ie, the reference strain of the species to which the microorganism capable of producing the target substance belongs). Moreover, in another embodiment, the activity of the protein may be increased as compared with the C. glutamicum ATCC 13869 strain. Moreover, in another embodiment, the activity of the protein may be increased as compared with the C. glutamicum ATCC 13032 strain. Moreover, in another embodiment, the activity of the protein may be increased as compared with the E. coli K-12 MG1655 strain. It should be noted that "increasing protein activity" is also referred to as "enhancing protein activity". "Increased protein activity" means, more specifically, that the number of molecules of the protein per cell is increased as compared to the unmodified strain, and / or per molecule of the protein. It may mean that the function is increasing. That is, the "activity" in the case of "increasing the activity of a protein" means not only the catalytic activity of the protein but also the transcription amount (mRNA amount) or the translation amount (protein amount) of the gene encoding the protein. You may. The “number of molecules of a protein per cell” may mean the average value of the number of molecules of the protein per cell. In addition, "increasing the activity of a protein" means not only increasing the activity of the protein in a strain that originally has the activity of the target protein, but also that the strain of the protein that originally does not have the activity of the target protein has the same protein. It also includes imparting activity. Further, as long as the activity of the protein is increased as a result, the activity of the target protein originally possessed by the host may be reduced or eliminated, and then the activity of the suitable target protein may be imparted.
 タンパク質の活性の増大の程度は、タンパク質の活性が非改変株と比較して増大していれば特に制限されない。タンパク質の活性は、例えば、非改変株の、1.2倍以上、1.5倍以上、2倍以上、または3倍以上に上昇してよい。また、非改変株が標的のタンパク質の活性を有していない場合は、同タンパク質をコードする遺伝子を導入することにより同タンパク質が生成されていればよいが、例えば、同タンパク質はその活性が測定できる程度に生産されていてよい。 The degree of increase in protein activity is not particularly limited as long as the protein activity is increased as compared with the unmodified strain. The activity of the protein may be increased, for example, 1.2 times or more, 1.5 times or more, 2 times or more, or 3 times or more that of the unmodified strain. When the unmodified strain does not have the activity of the target protein, the protein may be produced by introducing a gene encoding the protein. For example, the activity of the protein is measured. It may be produced to the extent possible.
 タンパク質の活性が増大するような改変は、例えば、同タンパク質をコードする遺伝子の発現を上昇させることによって達成できる。「遺伝子の発現が上昇する」とは、同遺伝子の発現が野生株や親株等の非改変株と比較して増大することを意味してよい。「遺伝子の発現が上昇する」とは、具体的には、同遺伝子の細胞当たりの発現量が非改変株と比較して増大することを意味してよい。「遺伝子の細胞当たりの発現量」とは、同遺伝子の発現量の細胞当たりの平均値を意味してよい。「遺伝子の発現が上昇する」とは、より具体的には、遺伝子の転写量(mRNA量)が増大すること、および/または、遺伝子の翻訳量(タンパク質の量)が増大することを意味してよい。なお、「遺伝子の発現が上昇する」ことを、「遺伝子の発現が増強される」ともいう。遺伝子の発現は、例えば、非改変株の、1.2倍以上、1.5倍以上、2倍以上、または3倍以上に上昇してよい。また、「遺伝子の発現が上昇する」ことには、もともと標的の遺伝子が発現している菌株において同遺伝子の発現量を上昇させることだけでなく、もともと標的の遺伝子が発現していない菌株において、同遺伝子を発現させることも包含される。すなわち、「遺伝子の発現が上昇する」とは、例えば、標的の遺伝子を保持しない菌株に同遺伝子を導入し、同遺伝子を発現させることを意味してもよい。 Modifications that increase the activity of the protein can be achieved, for example, by increasing the expression of the gene encoding the protein. "The expression of a gene is increased" may mean that the expression of the gene is increased as compared with an unmodified strain such as a wild strain or a parent strain. Specifically, "the expression of a gene is increased" may mean that the expression level of the gene per cell is increased as compared with the unmodified strain. The “expression level of a gene per cell” may mean the average value of the expression level of the gene per cell. "Increased gene expression" means, more specifically, an increase in the amount of transcription (mRNA) of a gene and / or an increase in the amount of translation (amount of protein) of a gene. It's okay. It should be noted that "increased gene expression" is also referred to as "enhanced gene expression". The expression of the gene may be increased, for example, 1.2 times or more, 1.5 times or more, 2 times or more, or 3 times or more that of the unmodified strain. In addition, "increasing gene expression" means not only increasing the expression level of the gene in the strain in which the target gene is originally expressed, but also in the strain in which the target gene is not originally expressed. Expression of the same gene is also included. That is, "the expression of a gene is increased" may mean, for example, introducing the gene into a strain that does not carry the target gene and expressing the gene.
 遺伝子の発現の上昇は、例えば、遺伝子のコピー数を増加させることにより達成できる。 Increased gene expression can be achieved, for example, by increasing the number of copies of the gene.
 遺伝子のコピー数の増加は、宿主の染色体へ同遺伝子を導入することにより達成できる。染色体への遺伝子の導入は、例えば、相同組み換えを利用して行うことができる(Miller, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory)。相同組み換えを利用する遺伝子導入法としては、例えば、Redドリブンインテグレーション(Red-driven integration)法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))等の直鎖状DNAを用いる方法、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法、ファージを用いたtransduction法が挙げられる。遺伝子は、1コピーのみ導入されてもよく、2コピーまたはそれ以上導入されてもよい。例えば、染色体上に多数のコピーが存在する配列を標的として相同組み換えを行うことで、染色体へ遺伝子の多数のコピーを導入することができる。染色体上に多数のコピーが存在する配列としては、反復DNA配列(repetitive DNA)、トランスポゾンの両端に存在するインバーテッド・リピートが挙げられる。また、目的物質の生産に不要な遺伝子等の染色体上の適当な配列を標的として相同組み換えを行ってもよい。また、遺伝子は、トランスポゾンやMini-Muを用いて染色体上にランダムに導入することもできる(特開平2-109985号公報、US5,882,888、EP805867B1)。 The increase in the number of copies of a gene can be achieved by introducing the gene into the host chromosome. For example, homologous recombination can be used to introduce a gene into a chromosome (Miller, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory). As a gene transfer method using homologous recombination, for example, the Red-driven integration method (Datsenko, K.A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97 : 6640-6645 (2000)), etc., a method using a linear DNA, a method using a plasmid containing a temperature-sensitive origin of replication, a method using a conjugation-transmissible plasmid, a suicide vector having no origin of replication that functions in the host. Examples include a method using a plasmid and a transduction method using a phage. Only one copy of the gene may be introduced, or two or more copies may be introduced. For example, a large number of copies of a gene can be introduced into a chromosome by performing homologous recombination targeting a sequence having a large number of copies on the chromosome. Sequences in which a large number of copies are present on a chromosome include repetitive DNA sequences and inverted repeats present at both ends of a transposon. In addition, homologous recombination may be performed by targeting an appropriate sequence on the chromosome such as a gene unnecessary for the production of the target substance. The gene can also be randomly introduced onto the chromosome using a transposon or Mini-Mu (Japanese Patent Laid-Open No. 2-109985, US5,882,888, EP805867B1).
 染色体上に標的遺伝子が導入されたことの確認は、同遺伝子の全部又は一部と相補的な配列を持つプローブを用いたサザンハイブリダイゼーション、又は同遺伝子の配列に基づいて作成したプライマーを用いたPCR等によって確認できる。 To confirm that the target gene was introduced on the chromosome, Southern hybridization using a probe having a sequence complementary to all or part of the gene was used, or a primer prepared based on the sequence of the gene was used. It can be confirmed by PCR or the like.
 また、遺伝子のコピー数の増加は、同遺伝子を含むベクターを宿主に導入することによっても達成できる。例えば、標的遺伝子を含むDNA断片を、宿主で機能するベクターと連結して同遺伝子の発現ベクターを構築し、当該発現ベクターで宿主を形質転換することにより、同遺伝子のコピー数を増加させることができる。標的遺伝子を含むDNA断片は、例えば、標的遺伝子を有する微生物のゲノムDNAを鋳型とするPCRにより取得できる。ベクターとしては、宿主の細胞内において自律複製可能なベクターを用いることができる。ベクターは、マルチコピーベクターであってよい。また、形質転換体を選択するために、ベクターは抗生物質耐性遺伝子などのマーカーを有していてよい。また、ベクターは、挿入された遺伝子を発現するためのプロモーターやターミネーターを備えていてもよい。ベクターは、例えば、細菌プラスミド由来のベクター、酵母プラスミド由来のベクター、バクテリオファージ由来のベクター、コスミド、またはファージミド等であってよい。エシェリヒア・コリ等の腸内細菌科の細菌において自律複製可能なベクターとして、具体的には、例えば、pUC19、pUC18、pHSG299、pHSG399、pHSG398、pBR322、pSTV29(いずれもタカラバイオ社より入手可)、pACYC184、pMW219(ニッポンジーン社)、pTrc99A(ファルマシア社)、pPROK系ベクター(クロンテック社)、pKK233‐2(クロンテック社)、pET系ベクター(ノバジェン社)、pQE系ベクター(キアゲン社)、pCold TF DNA(TaKaRa)、pACYC系ベクター、広宿主域ベクターRSF1010が挙げられる。コリネ型細菌で自律複製可能なベクターとして、具体的には、例えば、pHM1519(Agric. Biol. Chem., 48, 2901-2903(1984));pAM330(Agric. Biol. Chem., 48, 2901-2903(1984));これらを改良した薬剤耐性遺伝子を有するプラスミド;pCRY30(特開平3-210184);pCRY21、pCRY2KE、pCRY2KX、pCRY31、pCRY3KE、およびpCRY3KX(特開平2-72876、米国特許5,185,262号);pCRY2およびpCRY3(特開平1-191686);pAJ655、pAJ611、およびpAJ1844(特開昭58-192900);pCG1(特開昭57-134500);pCG2(特開昭58-35197);pCG4およびpCG11(特開昭57-183799);pPK4(米国特許6,090,597号);pVK4(特開平No. 9-322774);pVK7(特開平10-215883);pVK9(WO2007/046389);pVS7(WO2013/069634);pVC7(特開平9-070291)が挙げられる。また、コリネ型細菌で自律複製可能なベクターとして、具体的には、例えば、pVC7H2等の、pVC7のバリアントも挙げられる(WO2018/179834)。 In addition, an increase in the number of copies of a gene can also be achieved by introducing a vector containing the same gene into the host. For example, a DNA fragment containing a target gene can be linked to a vector that functions in the host to construct an expression vector for the gene, and the host can be transformed with the expression vector to increase the number of copies of the gene. it can. The DNA fragment containing the target gene can be obtained, for example, by PCR using the genomic DNA of the microorganism having the target gene as a template. As the vector, a vector capable of autonomous replication in the host cell can be used. The vector may be a multicopy vector. Also, in order to select transformants, the vector may have markers such as antibiotic resistance genes. The vector may also include a promoter or terminator for expressing the inserted gene. The vector may be, for example, a vector derived from a bacterial plasmid, a vector derived from a yeast plasmid, a vector derived from a bacteriophage, a cosmid, a phagemid or the like. Specific examples of vectors capable of autonomous replication in Enterobacteriaceae bacteria such as Escherichia coli include pUC19, pUC18, pHSG299, pHSG399, pHSG398, pBR322, and pSTV29 (all available from Takara Bio). pACYC184, pMW219 (Nippon Gene), pTrc99A (Pharmacia), pPROK vector (Clontech), pKK233-2 (Clontech), pET vector (Novagen), pQE vector (Kiagen), pColdTFDNA ( TaKaRa), pACYC-based vector, broad host range vector RSF1010. Specific examples of vectors capable of autonomous replication in coryneform bacteria include pHM1519 (Agric. Biol. Chem., 48, 2901-2903 (1984)); pAM330 (Agric. Biol. Chem., 48, 2901-). 2903 (1984)); A plasmid having an improved drug resistance gene; pCRY30 (Japanese Patent Laid-Open No. 3-210184); pCRY21, pCRY2KE, pCRY2KX, pCRY31, pCRY3KE, and pCRY3KX (Japanese Patent Laid-Open No. 2-72876, US Pat. No. 5,185,262) PCRY2 and pCRY3 (Japanese Patent Laid-Open No. 1-191686); pAJ655, pAJ611, and pAJ1844 (Japanese Patent Laid-Open No. 58-192900); pCG1 (Japanese Patent Laid-Open No. 57-134500); pCG2 (Japanese Patent Laid-Open No. 58-35197); pCG4 and pCG11 (Japanese Patent Laid-Open No. 57-183799); pPK4 (US Patent No. 6,090,597); pVK4 (Japanese Patent Laid-Open No. 9-322774); pVK7 (Japanese Patent Laid-Open No. 10-215883); pVK9 (WO2007 / 046389); pVS7 (WO2013 / 069634) ; PVC7 (Japanese Patent Laid-Open No. 9-070291) can be mentioned. Further, as a vector capable of autonomous replication in a coryneform bacterium, specifically, a variant of pVC7 such as pVC7H2 can be mentioned (WO2018 / 179834).
 遺伝子を導入する場合、遺伝子は、宿主により発現可能であればよい。具体的には、遺伝子は、宿主で機能するプロモーターによる制御を受けて発現するように保持されていればよい。「宿主において機能するプロモーター」とは、宿主においてプロモーター活性を有するプロモーターを意味してよい。プロモーターは、宿主由来のプロモーターであってもよく、異種由来のプロモーターであってもよい。プロモーターは、導入する遺伝子の固有のプロモーターであってもよく、他の遺伝子のプロモーターであってもよい。プロモーターとしては、例えば、本明細書に記載するようなより強力なプロモーターを利用してもよい。 When introducing a gene, the gene may be expressed by the host. Specifically, the gene may be retained so as to be expressed under the control of a promoter that functions in the host. "Promoter functioning in a host" may mean a promoter having promoter activity in the host. The promoter may be a host-derived promoter or a heterologous promoter. The promoter may be a promoter unique to the gene to be introduced, or may be a promoter of another gene. As the promoter, for example, a stronger promoter as described herein may be used.
 遺伝子の下流には、転写終結用のターミネーターを配置することができる。ターミネーターは、宿主において機能するものであれば特に制限されない。ターミネーターは、宿主由来のターミネーターであってもよく、異種由来のターミネーターであってもよい。ターミネーターは、導入する遺伝子の固有のターミネーターであってもよく、他の遺伝子のターミネーターであってもよい。ターミネーターとして、具体的には、例えば、T7ターミネーター、T4ターミネーター、fdファージターミネーター、tetターミネーター、およびtrpAターミネーターが挙げられる。 A terminator for transcription termination can be placed downstream of the gene. The terminator is not particularly limited as long as it functions in the host. The terminator may be a host-derived terminator or a heterogeneous terminator. The terminator may be a unique terminator of the gene to be introduced, or may be a terminator of another gene. Specific examples of the terminator include a T7 terminator, a T4 terminator, an fd phage terminator, a tet terminator, and a trpA terminator.
 各種微生物において利用可能なベクター、プロモーター、ターミネーターに関しては、例えば「微生物学基礎講座8 遺伝子工学、共立出版、1987年」に詳細に記載されており、それらを利用することが可能である。 Vectors, promoters, and terminators that can be used in various microorganisms are described in detail in, for example, "Basic Microbiology Course 8 Genetic Engineering, Kyoritsu Shuppan, 1987", and they can be used.
 また、2またはそれ以上の遺伝子を導入する場合、各遺伝子が、発現可能に宿主に保持されていればよい。例えば、各遺伝子は、全てが単一の発現ベクター上に保持されていてもよく、全てが染色体上に保持されていてもよい。また、各遺伝子は、複数の発現ベクター上に別々に保持されていてもよく、単一または複数の発現ベクター上と染色体上とに別々に保持されていてもよい。また、2またはそれ以上の遺伝子でオペロンを構成して導入してもよい。「2またはそれ以上の遺伝子を導入する」場合、例えば、2またはそれ以上のタンパク質(例えば、酵素)をそれぞれコードする遺伝子を導入する場合、単一のタンパク質複合体(例えば、酵素複合体)を構成する2またはそれ以上のサブユニットをそれぞれコードする遺伝子を導入する場合、またはそれらの組み合わせを導入してよい。 In addition, when introducing two or more genes, it is sufficient that each gene is retained in the host so that it can be expressed. For example, each gene may be all retained on a single expression vector or all on a chromosome. In addition, each gene may be separately retained on a plurality of expression vectors, or may be separately retained on a single or a plurality of expression vectors and on a chromosome. In addition, an operon may be composed of two or more genes and introduced. When "introducing two or more genes", for example, when introducing genes encoding two or more proteins (eg, enzymes), a single protein complex (eg, enzyme complex) When introducing a gene encoding each of the two or more subunits constituting it, or a combination thereof may be introduced.
 導入される遺伝子は、宿主で機能するタンパク質をコードするものであれば特に制限されない。導入される遺伝子は、宿主由来の遺伝子であってもよく、異種由来の遺伝子であってもよい。導入される遺伝子は、例えば、同遺伝子の塩基配列に基づいて設計したプライマーを用い、同遺伝子を有する生物のゲノムDNAや同遺伝子を搭載するプラスミド等を鋳型として、PCRにより取得することができる。また、導入される遺伝子は、例えば、同遺伝子の塩基配列に基づいて全合成してもよい(Gene, 60(1), 115-127 (1987))。取得した遺伝子は、そのまま、あるいは適宜改変して、利用することができる。すなわち、遺伝子を改変することにより、そのバリアントを取得することができる。遺伝子の改変は公知の手法により行うことができる。例えば、部位特異的変異法により、DNAの目的部位に目的の変異を導入することができる。すなわち、例えば、部位特異的変異法により、コードされるタンパク質が特定の部位においてアミノ酸残基の置換、欠失、挿入、および/または付加を含むように、遺伝子のコード領域を改変することができる。部位特異的変異法としては、PCRを用いる方法(Higuchi, R., 61, in PCR technology, Erlich, H. A. Eds., Stockton press (1989);Carter, P., Meth. in Enzymol., 154, 382 (1987))や、ファージを用いる方法(Kramer, W. and Frits, H. J., Meth. in Enzymol., 154, 350 (1987);Kunkel, T. A. et al., Meth. in Enzymol., 154, 367 (1987))が挙げられる。あるいは、遺伝子のバリアントを全合成してもよい。 The gene to be introduced is not particularly limited as long as it encodes a protein that functions in the host. The gene to be introduced may be a host-derived gene or a heterologous gene. The gene to be introduced can be obtained by PCR using, for example, a primer designed based on the base sequence of the gene, genomic DNA of an organism having the gene, a plasmid carrying the gene, or the like as a template. Further, the gene to be introduced may be totally synthesized, for example, based on the base sequence of the gene (Gene, 60 (1), 115-127 (1987)). The acquired gene can be used as it is or after being appropriately modified. That is, the variant can be obtained by modifying the gene. The gene can be modified by a known method. For example, a site-specific mutation method can be used to introduce a desired mutation into a target site of DNA. That is, for example, site-specific mutagenesis can modify the coding region of a gene such that the encoded protein comprises substitutions, deletions, insertions, and / or additions of amino acid residues at specific sites. .. As a site-specific mutation method, a method using PCR (Higuchi, R., 61, in PCR technology, Erlich, H. A. Eds., Stockton press (1989); Carter, P., Meth. In Enzymol., 154, 382 (1987)) and methods using phage (Kramer, W. and Frits, H. J., Meth. In Enzymol., 154, 350 (1987); Kunkel, T. A. et al., Meth . In Enzymol., 154, 367 (1987)). Alternatively, the gene variant may be totally synthesized.
 なお、タンパク質が複数のサブユニットからなる複合体として機能する場合、結果としてタンパク質の活性が増大する限り、それらのサブユニットの全てを改変してもよく、一部のみを改変してもよい。すなわち、例えば、遺伝子の発現を上昇させることによりタンパク質の活性を増大させる場合、それらのサブユニットをそれぞれコードする遺伝子の全ての発現を増強してもよく、一部の発現のみを増強してもよい。通常は、それらのサブユニットをコードする遺伝子の全ての発現を増強するのが好ましい。また、複合体を構成する各サブユニットは、複合体が標的のタンパク質の機能を有する限り、1種の生物由来であってもよく、2種またはそれ以上の異なる生物由来であってもよい。すなわち、例えば、複数のサブユニットをコードする、同一の生物由来の遺伝子を宿主に導入してもよく、それぞれ異なる生物由来の遺伝子を宿主に導入してもよい。 When a protein functions as a complex composed of a plurality of subunits, all of these subunits may be modified or only a part thereof may be modified as long as the activity of the protein is increased as a result. That is, for example, when increasing the activity of a protein by increasing the expression of a gene, the expression of all the genes encoding each of these subunits may be enhanced, or only a part of the expression may be enhanced. Good. Usually, it is preferable to enhance the expression of all genes encoding those subunits. In addition, each subunit constituting the complex may be derived from one organism or two or more different organisms as long as the complex has the function of the target protein. That is, for example, a gene derived from the same organism that encodes a plurality of subunits may be introduced into the host, or a gene derived from a different organism may be introduced into the host.
 また、遺伝子の発現の上昇は、遺伝子の転写効率を向上させることにより達成できる。また、遺伝子の発現の上昇は、遺伝子の翻訳効率を向上させることにより達成できる。遺伝子の転写効率や翻訳効率の向上は、例えば、発現調節配列の改変により達成できる。「発現調節配列」とは、遺伝子の発現に影響する部位の総称であってよい。発現調節配列としては、例えば、プロモーター、シャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)、およびRBSと開始コドンとの間のスペーサー領域が挙げられる。発現調節配列は、プロモーター検索ベクターやGENETYX等の遺伝子解析ソフトを用いて決定することができる。これら発現調節配列の改変は、例えば、温度感受性ベクターを用いた方法や、Redドリブンインテグレーション法(WO2005/010175)により行うことができる。 In addition, an increase in gene expression can be achieved by improving the transcription efficiency of the gene. In addition, an increase in gene expression can be achieved by improving the translation efficiency of the gene. Improvements in gene transcription efficiency and translation efficiency can be achieved, for example, by modifying the expression regulatory sequence. The "expression regulatory sequence" may be a general term for sites that affect gene expression. Expression regulatory sequences include, for example, a promoter, a Shine-Dalgarno (SD) sequence (also referred to as a ribosome binding site (RBS)), and a spacer region between the RBS and the start codon. The expression regulatory sequence can be determined using a promoter search vector or gene analysis software such as GENETYX. These expression regulatory sequences can be modified by, for example, a method using a temperature-sensitive vector or a Red-driven integration method (WO2005 / 010175).
 遺伝子の転写効率の向上は、例えば、染色体上の遺伝子のプロモーターをより強力なプロモーターに置換することにより達成できる。「より強力なプロモーター」とは、遺伝子の転写が、もともと存在している野生型のプロモーターよりも向上するプロモーターを意味してよい。より強力なプロモーターとしては、例えば、公知の高発現プロモーターであるT7プロモーター、trpプロモーター、lacプロモーター、thrプロモーター、tacプロモーター、trcプロモーター、tetプロモーター、araBADプロモーター、rpoHプロモーター、msrAプロモーター、Bifidobacterium由来のPm1プロモーター、PRプロモーター、およびPLプロモーターが挙げられる。また、コリネ型細菌で利用できるより強力なプロモーターとしては、例えば、人為的に設計変更されたP54-6プロモーター(Appl. Microbiol. Biotechnol., 53, 674-679(2000))、コリネ型細菌内で酢酸、エタノール、ピルビン酸等で誘導できるpta、aceA、aceB、adh、amyEプロモーター、コリネ型細菌内で発現量が多い強力なプロモーターであるcspB、SOD、tuf(EF-Tu)プロモーター(Journal of Biotechnology 104 (2003) 311-323, Appl Environ Microbiol. 2005 Dec;71(12):8587-96.)、P2プロモーター(US2018-0334693A)、P3プロモーター(US2018-0334693A)、F1プロモーター(WO2018/179834)、lacプロモーター、tacプロモーター、trcプロモーターが挙げられる。また、より強力なプロモーターとしては、各種レポーター遺伝子を用いることにより、在来のプロモーターの高活性型のものを取得してもよい。例えば、プロモーター領域内の-35、-10領域をコンセンサス配列に近づけることにより、プロモーターの活性を高めることができる(国際公開第00/18935号)。高活性型プロモーターとしては、各種tac様プロモーター(Katashkina JI et al. Russian Federation Patent application 2006134574)が挙げられる。プロモーターの強度の評価法および強力なプロモーターの例は、Goldsteinらの論文(Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev., 1, 105-128 (1995))等に記載されている。 Improvement of gene transcription efficiency can be achieved, for example, by replacing the promoter of the gene on the chromosome with a stronger promoter. A "stronger promoter" may mean a promoter in which transcription of a gene is improved over a wild-type promoter that originally exists. More potent promoters include, for example, the well-known highly expressed promoters T7 promoter, trp promoter, lac promoter, thr promoter, tac promoter, trc promoter, tet promoter, araBAD promoter, rpoH promoter, msrA promoter, and Pm1 derived from Bifidobacterium. Promoters include promoters, PR promoters, and PL promoters. In addition, as stronger promoters that can be used in coryneform bacteria, for example, the artificially redesigned P54-6 promoter (Appl. Microbiol. Biotechnol., 53, 674-679 (2000)), in coryneform bacteria The pta, aceA, aceB, adh, amyE promoters that can be induced with acetic acid, ethanol, pyruvate, etc., and the cspB, SOD, tuf (EF-Tu) promoters (Journal of), which are strong promoters with high expression levels in coryneform bacteria. Biotechnology 104 (2003) 311-323, Appl Environment Microbiol. 2005 Dec; 71 (12): 8587-96.), P2 promoter (US2018-0334693A), P3 promoter (US2018-0334693A), F1 promoter (WO2018 / 179834) , Lac promoter, tac promoter, trc promoter. Further, as a stronger promoter, a highly active form of a conventional promoter may be obtained by using various reporter genes. For example, the activity of the promoter can be enhanced by bringing the -35 and -10 regions within the promoter region closer to the consensus sequence (International Publication No. 00/18935). Examples of the highly active promoter include various tac-like promoters (Katashkina JI et al. Russian Federation Patent application 2006134574). Methods for evaluating the strength of promoters and examples of strong promoters are described in the paper by Goldstein et al. (Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev., 1, 105-128 (1995)).
 遺伝子の翻訳効率の向上は、例えば、染色体上の遺伝子のシャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)をより強力なSD配列に置換することにより達成できる。「より強力なSD配列」とは、mRNAの翻訳が、もともと存在している野生型のSD配列よりも向上するSD配列を意味してよい。より強力なSD配列としては、例えば、ファージT7由来の遺伝子10のRBSが挙げられる(Olins P. O. et al, Gene, 1988, 73, 227-235)。さらに、RBSと開始コドンとの間のスペーサー領域、特に開始コドンのすぐ上流の配列(5’-UTR)における数個のヌクレオチドの置換、あるいは挿入、あるいは欠失がmRNAの安定性および翻訳効率に非常に影響を及ぼすことが知られており、これらを改変することによっても遺伝子の翻訳効率を向上させることができる。 Improvement of gene translation efficiency can be achieved, for example, by replacing the Shine-Dalgarno (SD) sequence (also referred to as ribosome binding site (RBS)) of the gene on the chromosome with a stronger SD sequence. A "stronger SD sequence" may mean an SD sequence in which the translation of mRNA is improved over the originally existing wild-type SD sequence. As a stronger SD sequence, for example, RBS of gene 10 derived from phage T7 can be mentioned (Olins P. O. et al, Gene, 1988, 73, 227-235). In addition, the substitution, insertion, or deletion of several nucleotides in the spacer region between the RBS and the start codon, especially in the sequence immediately upstream of the start codon (5'-UTR), contributes to mRNA stability and translation efficiency. It is known to have a great effect, and the translation efficiency of genes can be improved by modifying these.
 遺伝子の翻訳効率の向上は、例えば、コドンの改変によっても達成できる。例えば、遺伝子中に存在するレアコドンを、より高頻度で利用される同義コドンに置き換えることにより、遺伝子の翻訳効率を向上させることができる。すなわち、導入される遺伝子は、例えば、使用する宿主のコドン使用頻度に応じて最適なコドンを有するように改変されてよい。コドンの置換は、例えば、DNAの目的部位に目的の変異を導入する部位特異的変異法により行うことができる。また、コドンが置換された遺伝子断片を全合成してもよい。種々の生物におけるコドンの使用頻度は、「コドン使用データベース」(http://www.kazusa.or.jp/codon; Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000))に開示されている。 Improvement of gene translation efficiency can also be achieved by, for example, modifying codons. For example, the translation efficiency of a gene can be improved by replacing the rare codon present in the gene with a synonymous codon that is used more frequently. That is, the gene to be introduced may be modified to have an optimum codon depending on, for example, the codon usage frequency of the host used. Codon substitution can be performed, for example, by a site-specific mutation method that introduces the desired mutation into the target site of DNA. In addition, the gene fragment in which the codon has been replaced may be totally synthesized. The frequency of codon usage in various organisms is described in the "Codon Usage Database" (http://www.kazusa.or.jp/codon; Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000)). It is disclosed in.
 また、遺伝子の発現の上昇は、遺伝子の発現を上昇させるようなレギュレーターを増幅すること、または、遺伝子の発現を低下させるようなレギュレーターを欠失または弱化させることによっても達成できる。 In addition, an increase in gene expression can also be achieved by amplifying a regulator that increases gene expression, or by deleting or weakening a regulator that decreases gene expression.
 上記のような遺伝子の発現を上昇させる手法は、単独で用いてもよく、任意の組み合わせで用いてもよい。 The above-mentioned method for increasing gene expression may be used alone or in any combination.
 また、タンパク質の活性が増大するような改変は、例えば、タンパク質の比活性を増強することによっても達成できる。比活性の増強には、フィードバック阻害の脱感作(desensitization to feedback inhibition)も包含されてよい。すなわち、タンパク質が代謝物によるフィードバック阻害を受ける場合は、フィードバック阻害が脱感作されるよう遺伝子またはタンパク質を宿主において変異させることにより、タンパク質の活性を増大させることができる。なお、「フィードバック阻害の脱感作」には、特記しない限り、フィードバック阻害が完全に解除される場合、および、フィードバック阻害が低減される場合が包含されてよい。また、「フィードバック阻害が脱感作されている」(すなわちフィードバック阻害が低減又は解除されている)ことを「フィードバック阻害に耐性」ともいう。比活性が増強されたタンパク質は、例えば、種々の生物を探索し取得することができる。また、在来のタンパク質に変異を導入することで高活性型のものを取得してもよい。導入される変異は、例えば、タンパク質の1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されるものであってよい。変異の導入は、例えば、上述したような部位特異的変異法により行うことができる。また、変異の導入は、例えば、突然変異処理により行ってもよい。突然変異処理としては、X線の照射、紫外線の照射、ならびにN-メチル-N'-ニトロ-N-ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、およびメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。また、in vitroでDNAを直接ヒドロキシルアミンで処理し、ランダム変異を誘発してもよい。比活性の増強は、単独で用いてもよく、上記のような遺伝子の発現を増強する手法と任意に組み合わせて用いてもよい。 Further, modifications that increase the activity of the protein can also be achieved by, for example, enhancing the specific activity of the protein. The enhancement of specific activity may also include desensitization to feedback inhibition. That is, when a protein is subject to feedback inhibition by metabolites, the activity of the protein can be increased by mutating the gene or protein in the host so that the feedback inhibition is desensitized. Unless otherwise specified, the "desensitization of feedback inhibition" may include a case where the feedback inhibition is completely canceled and a case where the feedback inhibition is reduced. Further, "the feedback inhibition is desensitized" (that is, the feedback inhibition is reduced or canceled) is also referred to as "tolerance to the feedback inhibition". Proteins with enhanced specific activity can be obtained by searching for, for example, various organisms. In addition, a highly active form may be obtained by introducing a mutation into a conventional protein. The mutation introduced may be, for example, one or several amino acids substituted, deleted, inserted, and / or added at one or several positions of the protein. The mutation can be introduced by, for example, the site-specific mutation method as described above. Further, the introduction of the mutation may be carried out by, for example, a mutation treatment. Mutation treatment includes X-ray irradiation, ultraviolet irradiation, and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS), and methylmethanesulfonate (MMS). ) And other treatments with a mutagen. Alternatively, the DNA may be treated directly with hydroxylamine in vitro to induce random mutations. The enhancement of specific activity may be used alone or in combination with the above-mentioned method for enhancing gene expression.
 形質転換の方法は特に限定されず、従来知られた方法を用いることができる。例えば、エシェリヒア・コリ K-12について報告されているような、受容菌細胞を塩化カルシウムで処理してDNAの透過性を増す方法(Mandel, M. and Higa, A., J. Mol. Biol. 1970, 53, 159-162)や、バチルス・ズブチリスについて報告されているような、増殖段階の細胞からコンピテントセルを調製してDNAを導入する方法(Duncan, C. H., Wilson, G. A. and Young, F. E., 1977. Gene 1: 153-167)を用いることができる。あるいは、バチルス・ズブチリス、放線菌類、及び酵母について知られているような、DNA受容菌の細胞を、組換えDNAを容易に取り込むプロトプラストまたはスフェロプラストの状態にして組換えDNAをDNA受容菌に導入する方法(Chang, S. and Choen, S. N., 1979. Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978. Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl. Acad. Sci. USA 75: 1929-1933)も応用できる。あるいは、コリネ型細菌について報告されているような、電気パルス法(特開平2-207791)を利用することもできる。 The transformation method is not particularly limited, and a conventionally known method can be used. For example, a method of treating recipient cells with calcium chloride to increase DNA permeability, as reported for Escherichia coli K-12 (Mandel, M. and Higa, A., J. Mol. Biol. 1970, 53, 159-162) and methods of preparing competent cells from proliferative cells and introducing DNA, as reported for Bacillus subtilis (Duncan, C. H., Wilson, G. A. and Young, F. E., 1977. Gene 1: 153-167) can be used. Alternatively, the cells of a DNA-recepting bacterium, as known for Bacillus subtilis, actinomycetes, and yeast, are transformed into a protoplast or spheroplast that readily incorporates the recombinant DNA to turn the recombinant DNA into a DNA-receptive bacterium. How to introduce (Chang, S. and Choen, S. N., 1979. Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978. Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl. Acad. Sci. USA 75: 1929-1933) can also be applied. Alternatively, the electric pulse method (Japanese Patent Laid-Open No. 2-207791) as reported for coryneform bacteria can also be used.
 タンパク質の活性が増大したことは、同タンパク質の活性を測定することで確認できる。 The increase in protein activity can be confirmed by measuring the activity of the protein.
 タンパク質の活性が増大したことは、同タンパク質をコードする遺伝子の発現が上昇したことを確認することによっても、確認できる。遺伝子の発現が上昇したことは、同遺伝子の転写量が上昇したことを確認することや、同遺伝子から発現するタンパク質の量が上昇したことを確認することにより確認できる。 The increase in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has increased. The increase in gene expression can be confirmed by confirming that the transcription amount of the gene has increased and that the amount of protein expressed from the gene has increased.
 遺伝子の転写量が上昇したことの確認は、同遺伝子から転写されるmRNAの量を野生株または親株等の非改変株と比較することによって行うことができる。mRNAの量を評価する方法としてはノーザンハイブリダイゼーション、RT-PCR、マイクロアレイ、RNA-seq等が挙げられる(Sambrook, J., et al., Molecular Cloning: A Laboratory Manual/Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001)。mRNAの量(例えば、細胞当たりの分子数)は、例えば、非改変株の、1.2倍以上、1.5倍以上、2倍以上、または3倍以上に上昇してよい。 Confirmation that the transcription amount of the gene has increased can be confirmed by comparing the amount of mRNA transcribed from the gene with an unmodified strain such as a wild strain or a parent strain. Methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR, microarray, RNA-seq, etc. (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual / Third Edition, Cold Spring Harbor Laboratory, etc. Press, Cold Spring Harbor (USA), 2001). The amount of mRNA (for example, the number of molecules per cell) may be increased, for example, 1.2 times or more, 1.5 times or more, 2 times or more, or 3 times or more that of the unmodified strain.
 タンパク質の量が上昇したことの確認は、抗体を用いてウェスタンブロットによって行うことができる(Sambrook, J., et al., Molecular Cloning: A Laboratory Manual/Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001))。タンパク質の量(例えば、細胞当たりの分子数)は、例えば、非改変株の、1.2倍以上、1.5倍以上、2倍以上、または3倍以上に上昇してよい。 Confirmation that the amount of protein has increased can be confirmed by Western blotting using an antibody (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual / Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001)). The amount of protein (eg, number of molecules per cell) may be increased, for example, 1.2 times or more, 1.5 times or more, 2 times or more, or 3 times or more that of the unmodified strain.
 上記したタンパク質の活性を増大させる手法は、任意のタンパク質の活性増強や任意の遺伝子の発現増強に利用できる。 The above-mentioned method for increasing the activity of a protein can be used for enhancing the activity of an arbitrary protein or enhancing the expression of an arbitrary gene.
<1-3>タンパク質の活性を低下させる手法
 以下に、タンパク質の活性を低下させる手法について説明する。
<1-3> Method for reducing protein activity A method for reducing protein activity will be described below.
 「タンパク質の活性が低下する」とは、同タンパク質の活性が非改変株と比較して低下することを意味してよい。「タンパク質の活性が低下する」とは、具体的には、同タンパク質の細胞当たりの活性が非改変株と比較して低下することを意味してよい。「タンパク質の細胞当たりの活性」とは、同タンパク質の活性の細胞当たりの平均値を意味してよい。非改変株を、「非改変微生物」または「非改変微生物の株」ともいう。ここでいう「非改変株」とは、標的のタンパク質の活性が低下するように改変されていない対照株を意味してよい。非改変株としては、野生株や親株が挙げられる。非改変株として、具体的には、各微生物種の基準株(type strain)が挙げられる。また、非改変株として、具体的には、微生物の説明において例示した菌株も挙げられる。すなわち、一態様において、タンパク質の活性は、基準株(すなわち、目的物質生産能を有する微生物が属する種の基準株)と比較して低下してよい。また、別の態様において、タンパク質の活性は、C. glutamicum ATCC 13869株と比較して低下してもよい。また、別の態様において、タンパク質の活性は、C. glutamicum ATCC 13032株と比較して低下してもよい。また、別の態様において、タンパク質の活性は、E. coli K-12 MG1655株と比較して低下してもよい。なお、「タンパク質の活性が低下する」ことには、同タンパク質の活性が完全に消失している場合も包含されてよい。「タンパク質の活性が低下する」とは、より具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が低下していること、および/または、同タンパク質の分子当たりの機能が低下していることを意味してよい。すなわち、「タンパク質の活性が低下する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。「タンパク質の細胞当たりの分子数」とは、同タンパク質の分子数の細胞当たりの平均値を意味してよい。なお、「タンパク質の細胞当たりの分子数が低下している」ことには、同タンパク質が全く存在していない場合も包含されてよい。また、「タンパク質の分子当たりの機能が低下している」ことには、同タンパク質の分子当たりの機能が完全に消失している場合も包含されてよい。タンパク質の活性の低下の程度は、タンパク質の活性が非改変株と比較して低下していれば特に制限されない。タンパク質の活性は、例えば、非改変株の、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。 "Reduced protein activity" may mean that the activity of the protein is reduced as compared with the unmodified strain. "Reduced protein activity" may specifically mean that the per-cell activity of the protein is reduced as compared to the unmodified strain. The "activity of a protein per cell" may mean the average value of the activity of the protein per cell. The unmodified strain is also referred to as a "non-modified microorganism" or a "non-modified microorganism strain". The term "unmodified strain" as used herein may mean a control strain that has not been modified to reduce the activity of the target protein. Examples of the unmodified strain include a wild strain and a parent strain. Specific examples of the unmodified strain include a reference strain (type strain) of each microbial species. Further, as the unmodified strain, specifically, the strain exemplified in the description of the microorganism can be mentioned. That is, in one embodiment, the activity of the protein may be reduced as compared with the reference strain (that is, the reference strain of the species to which the microorganism capable of producing the target substance belongs). Moreover, in another embodiment, the activity of the protein may be reduced as compared with the C. glutamicum ATCC 13869 strain. In another embodiment, the activity of the protein may be reduced as compared to the C. glutamicum ATCC 13032 strain. Moreover, in another embodiment, the activity of the protein may be reduced as compared with the E. coli K-12 MG1655 strain. The "decrease in protein activity" may include the case where the activity of the protein is completely eliminated. More specifically, "reduced protein activity" means that the number of molecules of the protein per cell is reduced as compared with the unmodified strain, and / or per molecule of the protein. It may mean that the function is deteriorated. That is, the "activity" in the case of "reducing the activity of a protein" means not only the catalytic activity of the protein but also the transcription amount (mRNA amount) or the translation amount (protein amount) of the gene encoding the protein. You may. The “number of molecules of a protein per cell” may mean the average value of the number of molecules of the protein per cell. The fact that "the number of molecules of a protein per cell is reduced" may include the case where the protein does not exist at all. In addition, "the function per molecule of the protein is reduced" may include the case where the function per molecule of the protein is completely lost. The degree of decrease in protein activity is not particularly limited as long as the protein activity is decreased as compared with the unmodified strain. The activity of the protein may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% of the unmodified strain.
 タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子の発現を低下させることにより達成できる。「遺伝子の発現が低下する」とは、同遺伝子の発現が野生株や親株等の非改変株と比較して低下することを意味してよい。「遺伝子の発現が低下する」とは、具体的には、同遺伝子の細胞当たりの発現量が非改変株と比較して減少することを意味してよい。「遺伝子の細胞当たりの発現量」とは、同遺伝子の発現量の細胞当たりの平均値を意味してよい。「遺伝子の発現が低下する」とは、より具体的には、遺伝子の転写量(mRNA量)が低下すること、および/または、遺伝子の翻訳量(タンパク質の量)が低下することを意味してよい。「遺伝子の発現が低下する」ことには、同遺伝子が全く発現していない場合も包含されてよい。なお、「遺伝子の発現が低下する」ことを、「遺伝子の発現が弱化される」ともいう。遺伝子の発現は、例えば、非改変株の、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。 Modifications that reduce the activity of the protein can be achieved, for example, by reducing the expression of the gene encoding the protein. "The expression of a gene is reduced" may mean that the expression of the gene is reduced as compared with an unmodified strain such as a wild strain or a parent strain. Specifically, "reduced gene expression" may mean that the per-cell expression level of the gene is reduced as compared with the unmodified strain. The “expression level of a gene per cell” may mean the average value of the expression level of the gene per cell. "Reduced gene expression" means, more specifically, a decrease in the transcription amount (mRNA amount) of a gene and / or a decrease in the translation amount (protein amount) of a gene. It's okay. "Reduced expression of a gene" may include the case where the gene is not expressed at all. It should be noted that "decreased gene expression" is also referred to as "weakened gene expression". Gene expression may be reduced, for example, to 50% or less, 20% or less, 10% or less, 5% or less, or 0% of the unmodified strain.
 遺伝子の発現の低下は、例えば、転写効率の低下によるものであってもよく、翻訳効率の低下によるものであってもよく、それらの組み合わせによるものであってもよい。遺伝子の発現の低下は、例えば、遺伝子のプロモーター、シャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)、RBSと開始コドンとの間のスペーサー領域等の発現調節配列を改変することにより達成できる。発現調節配列を改変する場合には、発現調節配列は、1塩基以上、2塩基以上、または3塩基以上が改変される。遺伝子の転写効率の低下は、例えば、染色体上の遺伝子のプロモーターをより弱いプロモーターに置換することにより達成できる。「より弱いプロモーター」とは、遺伝子の転写が、もともと存在している野生型のプロモーターよりも弱化するプロモーターを意味してよい。より弱いプロモーターとしては、例えば、誘導型のプロモーターが挙げられる。より弱いプロモーターとしては、例えば、P4プロモーター(US2018-0334693A)やP8プロモーター(US2018-0334693A)も挙げられる。すなわち、誘導型のプロモーターは、非誘導条件下(例えば、誘導物質の非存在下)でより弱いプロモーターとして機能し得る。また、発現調節配列の一部または全部を欠失させてもよい。また、遺伝子の発現の低下は、例えば、発現制御に関わる因子を操作することによっても達成できる。発現制御に関わる因子としては、転写や翻訳制御に関わる低分子(誘導物質、阻害物質など)、タンパク質(転写因子など)、核酸(siRNAなど)等が挙げられる。また、遺伝子の発現の低下は、例えば、遺伝子のコード領域に遺伝子の発現が低下するような変異を導入することによっても達成できる。例えば、遺伝子のコード領域のコドンを、宿主においてより低頻度で利用される同義コドンに置き換えることによって、遺伝子の発現を低下させることができる。また、例えば、本明細書に記載するような遺伝子の破壊により、遺伝子の発現自体が低下し得る。 The decrease in gene expression may be due to, for example, a decrease in transcription efficiency, a decrease in translation efficiency, or a combination thereof. Decreased gene expression is the modification of expression regulatory sequences such as the promoter of a gene, the Shine-Dalgarno (SD) sequence (also called the ribosome binding site (RBS)), and the spacer region between the RBS and the start codon. Can be achieved by. When the expression regulatory sequence is modified, the expression regulatory sequence is modified by 1 or more bases, 2 or more bases, or 3 or more bases. A decrease in gene transcription efficiency can be achieved, for example, by replacing the promoter of the gene on the chromosome with a weaker promoter. A "weaker promoter" may mean a promoter in which transcription of a gene is weaker than the native wild-type promoter. Weaker promoters include, for example, inducible promoters. Weaker promoters include, for example, the P4 promoter (US2018-0334693A) and the P8 promoter (US2018-0334693A). That is, an inducible promoter can function as a weaker promoter under non-inducible conditions (eg, in the absence of an inducer). In addition, a part or all of the expression regulatory sequence may be deleted. In addition, a decrease in gene expression can also be achieved by, for example, manipulating factors involved in expression control. Examples of factors involved in expression control include small molecules (inducing substances, inhibitors, etc.), proteins (transcription factors, etc.), nucleic acids (siRNA, etc.) involved in transcription and translation control. The reduction in gene expression can also be achieved, for example, by introducing a mutation into the coding region of the gene that reduces the expression of the gene. For example, gene expression can be reduced by replacing codons in the coding region of a gene with synonymous codons that are used less frequently in the host. Also, for example, gene disruption as described herein can reduce gene expression itself.
 また、タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子を破壊することにより達成できる。「遺伝子が破壊される」とは、正常に機能するタンパク質を産生しないように同遺伝子が改変されることを意味してよい。「正常に機能するタンパク質を産生しない」ことには、同遺伝子からタンパク質が全く産生されない場合や、同遺伝子から分子当たりの機能(例えば、活性または性質)が低下又は消失したタンパク質が産生される場合も包含されてよい。 Further, modifications that reduce the activity of the protein can be achieved, for example, by destroying the gene encoding the protein. "Gene disruption" may mean that the gene is modified so that it does not produce a normally functioning protein. "Do not produce a normally functioning protein" means that no protein is produced from the gene, or that the gene produces a protein whose per-molecule function (eg, activity or property) is reduced or eliminated. May also be included.
 遺伝子の破壊は、例えば、染色体上の遺伝子を欠失(欠損)させることにより達成できる。「遺伝子の欠失」とは、遺伝子のコード領域の一部又は全部の領域の欠失を意味してよい。さらには、染色体上の遺伝子のコード領域の前後の配列を含めて、遺伝子全体を欠失させてもよい。タンパク質の活性の低下が達成できる限り、欠失させる領域は、N末端領域(すなわちタンパク質のN末端側をコードする領域)、内部領域、C末端領域(すなわちタンパク質のC末端側をコードする領域)等のいずれの領域であってもよい。通常、欠失させる領域は長い方が確実に遺伝子を不活化し得る。欠失させる領域は、例えば、遺伝子のコード領域全長の10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、または95%以上の長さの領域であってよい。また、欠失させる領域の前後の配列は、リーディングフレームが一致しないことが好ましい。リーディングフレームの不一致により、欠失させる領域の下流でフレームシフトが生じ得る。 Gene destruction can be achieved, for example, by deleting (destroying) a gene on a chromosome. "Gene deletion" may mean deletion of part or all of the coding region of a gene. Furthermore, the entire gene may be deleted, including the sequences before and after the coding region of the gene on the chromosome. As long as reduced protein activity can be achieved, the regions to be deleted are the N-terminal region (ie, the region encoding the N-terminal side of the protein), the internal region, and the C-terminal region (ie, the region encoding the C-terminal side of the protein). It may be any region such as. In general, the longer the region to be deleted, the more reliable the gene can be inactivated. The region to be deleted is, for example, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more of the total length of the coding region of the gene. Alternatively, it may be a region having a length of 95% or more. Further, it is preferable that the reading frames of the sequences before and after the region to be deleted do not match. A reading frame mismatch can result in a frameshift downstream of the region to be deleted.
 また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域にアミノ酸置換(ミスセンス変異)を導入すること、終止コドン(ナンセンス変異)を導入すること、または1~2塩基の付加または欠失(フレームシフト変異)を導入すること等によっても達成できる(Journal of Biological Chemistry 272:8611-8617(1997), Proceedings of the National Academy of Sciences, USA 95 5511-5515(1998), Journal of Biological Chemistry 26 116, 20833-20839(1991))。 Gene disruption can be, for example, by introducing an amino acid substitution (missense mutation) into the coding region of a gene on a chromosome, by introducing a stop codon (nonsense mutation), or by adding or deleting one or two bases (a missense mutation). It can also be achieved by introducing a frameshift mutation, etc. (Journal of Biological Chemistry 272: 8611-8617 (1997), Proceedings of the National Academy of Sciences, USA 95 5511-5515 (1998), Journal of Biological Chemistry 26 116 , 20833-20839 (1991)).
 また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域に他の塩基配列を挿入することによっても達成できる。挿入部位は遺伝子のいずれの領域であってもよいが、挿入する塩基配列は長い方が確実に遺伝子を不活化し得る。また、挿入部位の前後の配列は、リーディングフレームが一致しないことが好ましい。リーディングフレームの不一致により、挿入部位の下流でフレームシフトが生じ得る。他の塩基配列としては、コードされるタンパク質の活性を低下又は消失させるものであれば特に制限されないが、例えば、抗生物質耐性遺伝子等のマーカー遺伝子や目的物質の生産に有用な遺伝子が挙げられる。 Also, gene disruption can be achieved, for example, by inserting another base sequence into the coding region of the gene on the chromosome. The insertion site may be any region of the gene, but the longer the base sequence to be inserted, the more reliable the gene can be inactivated. Further, it is preferable that the reading frames do not match in the arrangement before and after the insertion site. A frameshift can occur downstream of the insertion site due to a mismatch in the leading frames. The other base sequence is not particularly limited as long as it reduces or eliminates the activity of the encoded protein, and examples thereof include a marker gene such as an antibiotic resistance gene and a gene useful for the production of a target substance.
 遺伝子の破壊は、特に、コードされるタンパク質のアミノ酸配列が欠失(欠損)するように実施してよい。言い換えると、タンパク質の活性が低下するような改変は、例えば、タンパク質のアミノ酸配列(アミノ酸配列の一部または全部の領域)を欠失させることにより、具体的には、アミノ酸配列(アミノ酸配列の一部または全部の領域)を欠失したタンパク質をコードするように遺伝子を改変することにより、達成できる。なお、「タンパク質のアミノ酸配列の欠失」とは、タンパク質のアミノ酸配列の一部または全部の領域の欠失を意味してよい。また、「タンパク質のアミノ酸配列の欠失」とは、タンパク質において元のアミノ酸配列が存在しなくなることを意味してよく、元のアミノ酸配列が別のアミノ酸配列に変化する場合も包含されてよい。すなわち、例えば、フレームシフトにより別のアミノ酸配列に変化した領域は、欠失した領域とみなしてよい。アミノ酸配列の欠失により、典型的にはタンパク質の全長が短縮されるが、タンパク質の全長が変化しないか、あるいは延長される場合もあり得る。例えば、遺伝子のコード領域の一部又は全部の領域の欠失により、コードされるタンパク質のアミノ酸配列において、当該欠失した領域がコードする領域を欠失させることができる。また、例えば、遺伝子のコード領域への終止コドンの導入により、コードされるタンパク質のアミノ酸配列において、当該導入部位より下流の領域がコードする領域を欠失させることができる。また、例えば、遺伝子のコード領域におけるフレームシフトにより、当該フレームシフト部位がコードする領域を欠失させることができる。アミノ酸配列の欠失における欠失させる領域の位置および長さについては、遺伝子の欠失における欠失させる領域の位置および長さの説明を準用できる。 Gene disruption may be performed so that the amino acid sequence of the encoded protein is deleted (deleted). In other words, modifications that reduce the activity of a protein are specifically made by deleting the amino acid sequence (a part or all of the region of the amino acid sequence) of the protein, specifically, one of the amino acid sequences (one of the amino acid sequences). This can be achieved by modifying the gene to encode a protein lacking part or all regions. In addition, "deletion of amino acid sequence of protein" may mean deletion of a part or all region of amino acid sequence of protein. Further, "deletion of amino acid sequence of protein" may mean that the original amino acid sequence does not exist in the protein, and may include the case where the original amino acid sequence is changed to another amino acid sequence. That is, for example, a region changed to another amino acid sequence by a frame shift may be regarded as a deleted region. Deletion of the amino acid sequence typically shortens the overall length of the protein, but the overall length of the protein may not change or may be extended. For example, by deleting a part or all of the coding region of a gene, the region encoded by the deleted region can be deleted in the amino acid sequence of the encoded protein. Further, for example, by introducing a stop codon into the coding region of a gene, the region encoded by the region downstream from the introduction site can be deleted in the amino acid sequence of the encoded protein. Further, for example, a frameshift in a gene coding region can cause a region encoded by the frameshift site to be deleted. Regarding the position and length of the region to be deleted in the deletion of the amino acid sequence, the description of the position and length of the region to be deleted in the deletion of the gene can be applied mutatis mutandis.
 染色体上の遺伝子を上記のように改変することは、例えば、正常に機能するタンパク質を産生しないように改変した破壊型遺伝子を作製し、該破壊型遺伝子を含む組換えDNAで宿主を形質転換して、破壊型遺伝子と染色体上の野生型遺伝子とで相同組換えを起こさせることにより、染色体上の野生型遺伝子を破壊型遺伝子に置換することによって達成できる。その際、組換えDNAには、宿主の栄養要求性等の形質にしたがって、マーカー遺伝子を含ませておくと操作がしやすい。破壊型遺伝子としては、遺伝子のコード領域の一部又は全部の領域を欠失した遺伝子、ミスセンス変異を導入した遺伝子、ナンセンス変異を導入した遺伝子、フレームシフト変異を導入した遺伝子、トランスポゾンやマーカー遺伝子が挿入された遺伝子が挙げられる。破壊型遺伝子によってコードされるタンパク質は、生成したとしても、野生型タンパク質とは異なる立体構造を有し、機能が低下又は消失する。このような相同組換えを利用した遺伝子置換による遺伝子破壊は既に確立しており、「Redドリブンインテグレーション(Red-driven integration)」と呼ばれる方法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))、Redドリブンインテグレーション法とλファージ由来の切り出しシステム(Cho, E. H., Gumport, R. I., Gardner, J. F. J. Bacteriol. 184: 5200-5203 (2002))とを組み合わせた方法(WO2005/010175号参照)等の直鎖状DNAを用いる方法や、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法などがある(米国特許第6303383号、特開平05-007491号)。 Modifying a gene on a chromosome as described above is, for example, producing a disrupted gene modified so as not to produce a normally functioning protein, and transforming the host with a recombinant DNA containing the disrupted gene. This can be achieved by substituting the wild gene on the chromosome with the disruptive gene by causing homologous recombination between the disruptive gene and the wild gene on the chromosome. At that time, if the recombinant DNA contains a marker gene according to a trait such as auxotrophy of the host, it is easy to operate. Destructive genes include genes lacking part or all of the coding region of a gene, genes with missense mutations, genes with nonsense mutations, genes with frameshift mutations, transposons and marker genes. Examples include the inserted gene. Even if the protein encoded by the disrupted gene is produced, it has a three-dimensional structure different from that of the wild-type protein, and its function is reduced or lost. Gene disruption by gene substitution using such homologous recombination has already been established, and a method called "Red-driven integration" (Datsenko, K.A, and Wanner, B.L.Proc) . Natl. Acad. Sci. U S A. 97: 6640-6645 (2000)), Red driven integration method and λ phage-derived excision system (Cho, E. H., Gumport, R. I., Gardner, J A method using linear DNA such as a method combined with F. J. Bacteriol. 184: 5200-5203 (2002) (see WO2005 / 010175), or a method using a plasmid containing a temperature-sensitive replication origin, There are a method using a plasmid capable of conjugation and transmission, a method using a suicidal vector having no replication origin that functions in the host, and the like (US Patent No. 6303383, JP-A 05-007491).
 また、タンパク質の活性が低下するような改変は、例えば、突然変異処理により行ってもよい。突然変異処理としては、X線の照射、紫外線の照射、ならびにN-メチル-N'-ニトロ-N-ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、およびメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。 Further, modifications that reduce the activity of the protein may be performed, for example, by mutation treatment. Mutation treatment includes X-ray irradiation, ultraviolet irradiation, and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS), and methylmethanesulfonate (MMS). ) And other treatments with a mutagen.
 なお、タンパク質が複数のサブユニットからなる複合体として機能する場合、結果としてタンパク質の活性が低下する限り、それらのサブユニットの全てを改変してもよく、一部のみを改変してもよい。すなわち、例えば、それらのサブユニットをそれぞれコードする遺伝子の全てを破壊等してもよく、一部のみを破壊等してもよい。また、タンパク質に複数のアイソザイムが存在する場合、結果としてタンパク質の活性が低下する限り、それらのアイソザイムの全ての活性を低下させてもよく、一部のみの活性を低下させてもよい。すなわち、例えば、それらのアイソザイムをそれぞれコードする遺伝子の全てを破壊等してもよく、一部のみを破壊等してもよい。 When a protein functions as a complex composed of a plurality of subunits, all of these subunits may be modified or only a part thereof may be modified as long as the activity of the protein is reduced as a result. That is, for example, all of the genes encoding these subunits may be destroyed, or only a part of them may be destroyed. In addition, when a plurality of isozymes are present in a protein, all the activities of those isozymes may be reduced or only a part of the activities may be reduced as long as the activity of the protein is reduced as a result. That is, for example, all of the genes encoding these isozymes may be destroyed, or only a part of them may be destroyed.
 上記のようなタンパク質の活性を低下させる手法は、単独で用いてもよく、任意の組み合わせで用いてもよい。 The above-mentioned method for reducing protein activity may be used alone or in any combination.
 タンパク質の活性が低下したことは、同タンパク質の活性を測定することで確認できる。 The decrease in protein activity can be confirmed by measuring the activity of the protein.
 タンパク質の活性が低下したことは、同タンパク質をコードする遺伝子の発現が低下したことを確認することによっても、確認できる。遺伝子の発現が低下したことは、同遺伝子の転写量が低下したことを確認することや、同遺伝子から発現するタンパク質の量が低下したことを確認することにより確認できる。 The decrease in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has decreased. The decrease in gene expression can be confirmed by confirming that the transcription amount of the gene has decreased and that the amount of protein expressed from the gene has decreased.
 遺伝子の転写量が低下したことの確認は、同遺伝子から転写されるmRNAの量を非改変株と比較することによって行うことが出来る。mRNAの量を評価する方法としては、ノーザンハイブリダイゼーション、RT-PCR、マイクロアレイ、RNA-seq等が挙げられる(Sambrook, J., et al., Molecular Cloning: A Laboratory Manual/Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001))。mRNAの量(例えば、細胞当たりの分子数)は、例えば、非改変株の、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。 Confirmation that the transcription amount of the gene has decreased can be confirmed by comparing the amount of mRNA transcribed from the gene with that of the unmodified strain. Examples of methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR, microarray, RNA-seq, etc. (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual / Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001)). The amount of mRNA (eg, number of molecules per cell) may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% of the unmodified strain.
 タンパク質の量が低下したことの確認は、抗体を用いてウェスタンブロットによって行うことが出来る(Sambrook, J., et al., Molecular Cloning: A Laboratory Manual/Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001))。タンパク質の量(例えば、細胞当たりの分子数)は、例えば、非改変株の、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。 Confirmation that the amount of protein has decreased can be confirmed by Western blotting using an antibody (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual / Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001)). The amount of protein (eg, number of molecules per cell) may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% of the unmodified strain.
 遺伝子が破壊されたことは、破壊に用いた手段に応じて、同遺伝子の一部または全部の塩基配列、制限酵素地図、または全長等を決定することで確認できる。 It can be confirmed that the gene has been disrupted by determining the base sequence of a part or all of the gene, the restriction enzyme map, the total length, etc., depending on the means used for the disruption.
 上記したタンパク質の活性を低下させる手法は、任意のタンパク質の活性低下や任意の遺伝子の発現低下に利用できる。 The above-mentioned method for reducing the activity of a protein can be used to reduce the activity of an arbitrary protein or the expression of an arbitrary gene.
<2>目的物質の製造方法
 目的物質は、目的物質生産能を有する微生物を利用して製造することができる。すなわち、目的物質の製造方法は、目的物質生産能を有する微生物を利用して目的物質を製造する工程を含む方法であってよい。目的物質生産能を有する微生物を利用して目的物質を製造する工程を、「目的物質製造工程」ともいう。
<2> Method for Producing Target Substance The target substance can be produced by utilizing a microorganism capable of producing the target substance. That is, the method for producing the target substance may be a method including a step of producing the target substance using a microorganism capable of producing the target substance. The process of producing a target substance by using a microorganism capable of producing the target substance is also referred to as a "target substance manufacturing process".
<2-1>発酵法
 目的物質は、例えば、目的物質生産能を有する微生物を利用した発酵により製造することができる。すなわち、目的物質の製造方法の一態様は、微生物を利用した発酵により目的物質を製造する方法であってよい。この態様を、「発酵法」ともいう。また、微生物を利用した発酵により目的物質を製造する工程を、「発酵工程」ともいう。すなわち、目的物質製造工程は、例えば、発酵工程を含んでいてよい。また、目的物質製造工程は、例えば、発酵工程により実施されてよい。
<2-1> Fermentation method The target substance can be produced, for example, by fermentation using a microorganism capable of producing the target substance. That is, one aspect of the method for producing the target substance may be a method for producing the target substance by fermentation using microorganisms. This aspect is also referred to as a "fermentation method". In addition, the process of producing a target substance by fermentation using microorganisms is also referred to as "fermentation process". That is, the target substance manufacturing step may include, for example, a fermentation step. Further, the target substance manufacturing step may be carried out by, for example, a fermentation step.
 発酵工程は、微生物を培養することにより実施できる。具体的には、発酵工程において、目的物質は、炭素源から製造することができる。すなわち、発酵工程は、例えば、微生物を培地(例えば、炭素源を含有する培地)で培養し、目的物質を該培地中に生成蓄積する工程であってよい。すなわち、発酵法は、微生物を培地(例えば、炭素源を含有する培地)で培養し、目的物質を該培地中に生成蓄積することを含む、目的物質を製造する方法であってよい。また、言い換えると、発酵工程は、例えば、微生物を利用して炭素源から目的物質を製造する工程であってよい。 The fermentation process can be carried out by culturing microorganisms. Specifically, in the fermentation step, the target substance can be produced from a carbon source. That is, the fermentation step may be, for example, a step of culturing the microorganism in a medium (for example, a medium containing a carbon source) and producing and accumulating the target substance in the medium. That is, the fermentation method may be a method for producing a target substance, which comprises culturing a microorganism in a medium (for example, a medium containing a carbon source) and producing and accumulating the target substance in the medium. In other words, the fermentation step may be, for example, a step of producing a target substance from a carbon source using a microorganism.
 使用する培地は、微生物が増殖でき、目的物質が生産される限り、特に制限されない。培地としては、例えば、細菌や酵母等の微生物の培養に用いられる通常の培地を用いることができる。培地は、炭素源、窒素源、リン酸源、硫黄源、その他の各種有機成分や無機成分等の培地成分を必要に応じて含有してよい。培地成分の種類や濃度は、使用する微生物の種類等の諸条件に応じて適宜設定してよい。 The medium used is not particularly limited as long as microorganisms can grow and the target substance is produced. As the medium, for example, a normal medium used for culturing microorganisms such as bacteria and yeast can be used. The medium may contain a medium component such as a carbon source, a nitrogen source, a phosphoric acid source, a sulfur source, and various other organic components and inorganic components, if necessary. The type and concentration of the medium component may be appropriately set according to various conditions such as the type of microorganism used.
 炭素源は、微生物が資化でき、目的物質が生産される限り、特に制限されない。炭素源として、具体的には、例えば、グルコース、フルクトース、スクロース、ラクトース、ガラクトース、キシロース、アラビノース、廃糖蜜、澱粉の加水分解物、バイオマスの加水分解物等の糖類、酢酸、クエン酸、コハク酸、グルコン酸等の有機酸類、エタノール、グリセロール、粗グリセロール等のアルコール類、脂肪酸類が挙げられる。なお、炭素源としては、特に、植物由来原料を用いることができる。植物としては、例えば、トウモロコシ、米、小麦、大豆、サトウキビ、ビート、綿が挙げられる。植物由来原料としては、例えば、根、茎、幹、枝、葉、花、種子等の器官、それらを含む植物体、それら植物器官の分解産物が挙げられる。植物由来原料の利用形態は特に制限されず、例えば、未加工品、絞り汁、粉砕物、精製物等のいずれの形態でも利用できる。また、キシロース等の五炭糖、グルコース等の六炭糖、またはそれらの混合物は、例えば、植物バイオマスから取得して利用できる。具体的には、これらの糖類は、植物バイオマスを、水蒸気処理、濃酸加水分解、希酸加水分解、セルラーゼ等の酵素による加水分解、アルカリ処理等の処理に供することにより取得できる。なお、ヘミセルロースは一般的にセルロースよりも加水分解されやすいため、植物バイオマス中のヘミセルロースを予め加水分解して五炭糖を遊離させ、次いで、セルロースを加水分解して六炭糖を生成させてもよい。また、キシロースは、例えば、微生物にグルコース等の六炭糖からキシロースへの変換経路を保有させて、六炭糖からの変換により供給してもよい。炭素源としては、1種の炭素源を用いてもよく、2種またはそれ以上の炭素源を組み合わせて用いてもよい。 The carbon source is not particularly limited as long as the microorganism can assimilate and the target substance is produced. Specific examples of the carbon source include sugars such as glucose, fructose, sucrose, lactose, galactose, xylose, arabinose, waste sugar honey, starch hydrolyzate, and biomass hydrolyzate, acetic acid, citric acid, and succinic acid. , Organic acids such as gluconic acid, alcohols such as ethanol, glycerol and crude glycerol, and fatty acids. As the carbon source, a plant-derived raw material can be used in particular. Plants include, for example, corn, rice, wheat, soybeans, sugar cane, beets and cotton. Examples of plant-derived raw materials include organs such as roots, stems, trunks, branches, leaves, flowers, and seeds, plants containing them, and decomposition products of those plant organs. The form of use of the plant-derived raw material is not particularly limited, and for example, any form such as an unprocessed product, a squeezed juice, a crushed product, and a refined product can be used. Further, pentose such as xylose, hexose such as glucose, or a mixture thereof can be obtained from, for example, plant biomass and used. Specifically, these saccharides can be obtained by subjecting plant biomass to treatments such as steam treatment, concentrated acid hydrolysis, dilute acid hydrolysis, hydrolysis with enzymes such as cellulase, and alkali treatment. Since hemicellulose is generally more easily hydrolyzed than cellulose, hemicellulose in plant biomass may be hydrolyzed in advance to release pentose, and then cellulose may be hydrolyzed to produce pentose. Good. Further, xylose may be supplied by, for example, having a microorganism possess a conversion route from hexose such as glucose to xylose and converting it from hexose. As the carbon source, one type of carbon source may be used, or two or more types of carbon sources may be used in combination.
 培地中の炭素源の濃度は、微生物が増殖でき、目的物質が生産される限り、特に制限されない。培地中の炭素源の濃度は、例えば、目的物質の生産が阻害されない範囲で可能な限り高くしてよい。培地中の炭素源の初発濃度は、例えば、5~30w/v%、または10~20w/v%であってよい。また、適宜、炭素源を培地に添加してもよい。例えば、発酵の進行に伴う炭素源の減少または枯渇に応じて、炭素源を培地に添加してもよい。最終的に目的物質が生産される限り炭素源は一時的に枯渇してもよいが、培養は、炭素源が枯渇しないように、あるいは炭素源が枯渇した状態が継続しないように、実施するのが好ましい場合がある。 The concentration of the carbon source in the medium is not particularly limited as long as the microorganism can grow and the target substance is produced. The concentration of the carbon source in the medium may be, for example, as high as possible without inhibiting the production of the target substance. The initial concentration of carbon source in the medium may be, for example, 5-30 w / v% or 10-20 w / v%. In addition, a carbon source may be added to the medium as appropriate. For example, a carbon source may be added to the medium in response to the decrease or depletion of the carbon source as the fermentation progresses. The carbon source may be temporarily depleted as long as the target substance is finally produced, but the culture should be carried out so that the carbon source is not depleted or the carbon source is not depleted continuously. May be preferable.
 窒素源として、具体的には、例えば、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等のアンモニウム塩、ペプトン、酵母エキス、肉エキス、大豆タンパク質分解物等の有機窒素源、アンモニア、ウレアが挙げられる。pH調整に用いられるアンモニアガスやアンモニア水を窒素源として利用してもよい。窒素源としては、1種の窒素源を用いてもよく、2種またはそれ以上の窒素源を組み合わせて用いてもよい。 Specific examples of the nitrogen source include ammonium salts such as ammonium sulfate, ammonium chloride and ammonium phosphate, organic nitrogen sources such as peptone, yeast extract, meat extract and soybean protein decomposition products, ammonia and urea. Ammonia gas or aqueous ammonia used for pH adjustment may be used as a nitrogen source. As the nitrogen source, one type of nitrogen source may be used, or two or more types of nitrogen sources may be used in combination.
 リン酸源として、具体的には、例えば、リン酸2水素カリウム、リン酸水素2カリウム等のリン酸塩、ピロリン酸等のリン酸ポリマーが挙げられる。リン酸源としては、1種のリン酸源を用いてもよく、2種またはそれ以上のリン酸源を組み合わせて用いてもよい。 Specific examples of the phosphoric acid source include phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate, and phosphoric acid polymers such as pyrophosphoric acid. As the phosphoric acid source, one kind of phosphoric acid source may be used, or two or more kinds of phosphoric acid sources may be used in combination.
 硫黄源として、具体的には、例えば、硫酸塩、チオ硫酸塩、亜硫酸塩等の無機硫黄化合物、システイン、シスチン、グルタチオン等の含硫アミノ酸が挙げられる。硫黄源としては、1種の硫黄源を用いてもよく、2種またはそれ以上の硫黄源を組み合わせて用いてもよい。 Specific examples of the sulfur source include inorganic sulfur compounds such as sulfates, thiosulfates and sulfites, and sulfur-containing amino acids such as cysteine, cystine and glutathione. As the sulfur source, one type of sulfur source may be used, or two or more types of sulfur sources may be used in combination.
 その他の各種有機成分や無機成分として、具体的には、例えば、塩化ナトリウム、塩化カリウム等の無機塩類;鉄、マンガン、マグネシウム、カルシウム等の微量金属類;ビタミンB1、ビタミンB2、ビタミンB6、ニコチン酸、ニコチン酸アミド、ビタミンB12等のビタミン類;アミノ酸類;核酸類;これらを含有するペプトン、カザミノ酸、酵母エキス、大豆タンパク質分解物等の有機成分が挙げられる。その他の各種有機成分や無機成分としては、1種の成分を用いてもよく、2種またはそれ以上の成分を組み合わせて用いてもよい。 As various other organic components and inorganic components, specifically, for example, inorganic salts such as sodium chloride and potassium chloride; trace metals such as iron, manganese, magnesium and calcium; vitamin B1, vitamin B2, vitamin B6 and nicotine. Vitamins such as acids, nicotinic acid amides and vitamin B12; amino acids; nucleic acids; organic components such as peptone, casamino acid, yeast extract and soybean proteolytic products containing these can be mentioned. As various other organic components and inorganic components, one type of component may be used, or two or more types of components may be used in combination.
 また、生育にアミノ酸等の栄養素を要求する栄養要求性変異株を使用する場合には、培地は、好ましくは、そのような栄養素を含有していてよい。培地は、また、目的物質の生産に利用される成分を含有していてよい。そのような成分として、具体的には、例えば、メチル基供与体(例えば、SAM)やそれらの前駆体(例えば、メチオニン)が挙げられる。 Further, when an auxotrophic mutant strain that requires nutrients such as amino acids for growth is used, the medium may preferably contain such nutrients. The medium may also contain components used in the production of the substance of interest. Specific examples of such components include methyl group donors (eg, SAM) and precursors thereof (eg, methionine).
 培養条件は、微生物が増殖でき、目的物質が生産される限り、特に制限されない。培養は、例えば、細菌や酵母等の微生物の培養に用いられる通常の条件で行うことができる。培養条件は、使用する微生物の種類等の諸条件に応じて適宜設定してよい。 The culture conditions are not particularly limited as long as the microorganism can grow and the target substance is produced. Culturing can be carried out under normal conditions used for culturing microorganisms such as bacteria and yeast, for example. The culture conditions may be appropriately set according to various conditions such as the type of microorganism used.
 培養は、液体培地を用いて行うことができる。培養の際には、例えば、微生物を寒天培地等の固体培地で培養したものを直接液体培地に接種してもよく、微生物を液体培地で種培養したものを本培養用の液体培地に接種してもよい。すなわち、培養は、種培養と本培養とに分けて行われてもよい。その場合、種培養と本培養の培養条件は、同一であってもよく、そうでなくてもよい。目的物質は、少なくとも本培養の期間に生産されればよい。培養開始時に培地に含有される微生物の量は特に制限されない。例えば、OD660=4~100の種培養液を、培養開始時に、本培養用の培地に対して0.1質量%~100質量%、または1質量%~50質量%、植菌してよい。 Culturing can be performed using a liquid medium. At the time of culturing, for example, those in which microorganisms are cultured in a solid medium such as agar medium may be directly inoculated into a liquid medium, or those in which microorganisms are seed-cultured in a liquid medium are inoculated into a liquid medium for main culture. You may. That is, the culture may be divided into a seed culture and a main culture. In that case, the culture conditions of the seed culture and the main culture may or may not be the same. The target substance may be produced at least during the main culture period. The amount of microorganisms contained in the medium at the start of culturing is not particularly limited. For example, a seed culture solution having OD660 = 4 to 100 may be inoculated at the start of culture in an amount of 0.1% by mass to 100% by mass or 1% by mass to 50% by mass with respect to the medium for main culture.
 培養は、回分培養(batch culture)、流加培養(Fed-batch culture)、連続培養(continuous culture)、またはそれらの組み合わせにより実施することができる。なお、培養開始時の培地を、「初発培地」ともいう。また、流加培養または連続培養において培養系(例えば、発酵槽)に添加する培地を、「流加培地」ともいう。また、流加培養または連続培養において培養系に流加培地を添加することを、「流加」ともいう。なお、培養が種培養と本培養とに分けて行われる場合、種培養と本培養の培養形態は、同一であってもよく、そうでなくてもよい。例えば、種培養と本培養を、共に回分培養で行ってもよく、種培養を回分培養で行い、本培養を流加培養または連続培養で行ってもよい。 Culturing can be carried out by batch culture, fed-batch culture, continuous culture, or a combination thereof. The medium at the start of culturing is also referred to as "initial medium". Further, a medium added to a culture system (for example, a fermenter) in fed-batch culture or continuous culture is also referred to as "fed-batch medium". In addition, adding a fed-batch medium to a culture system in fed-batch culture or continuous culture is also referred to as "fed-batch". When the culture is divided into a seed culture and a main culture, the culture forms of the seed culture and the main culture may or may not be the same. For example, both seed culture and main culture may be carried out in batch culture, seed culture may be carried out in batch culture, and main culture may be carried out in fed-batch culture or continuous culture.
 炭素源等の各種成分は、初発培地、流加培地、またはその両方に含有されていてよい。すなわち、培養の過程において、炭素源等の各種成分を単独で、あるいは任意の組み合わせで、培地に添加してもよい。これらの成分は、いずれも、1回または複数回添加されてもよく、連続的に添加されてもよい。初発培地に含有される成分の種類は、流加培地に含有される成分の種類と、同一であってもよく、そうでなくてもよい。また、初発培地に含有される各成分の濃度は、流加培地に含有される各成分の濃度と、同一であってもよく、そうでなくてもよい。また、含有する成分の種類および/または濃度の異なる2種またはそれ以上の流加培地を用いてもよい。例えば、複数回の流加が間欠的に行われる場合、各流加培地に含有される成分の種類および/または濃度は、同一であってもよく、そうでなくてもよい。 Various components such as a carbon source may be contained in the initial medium, the fed-batch medium, or both. That is, in the process of culturing, various components such as a carbon source may be added to the medium alone or in any combination. All of these components may be added once or multiple times, or may be added continuously. The type of component contained in the initial medium may or may not be the same as the type of component contained in the fed-batch medium. Further, the concentration of each component contained in the initial medium may or may not be the same as the concentration of each component contained in the fed-batch medium. In addition, two or more fed-batch media having different types and / or concentrations of the components contained may be used. For example, when multiple feedings are performed intermittently, the types and / or concentrations of the components contained in each fed-batch medium may or may not be the same.
 培養は、例えば、好気条件で実施してよい。「好気条件」とは、培地中の溶存酸素濃度が、0.33 ppm以上、または1.5 ppm以上である条件を意味してよい。酸素濃度は、具体的には、例えば、飽和酸素濃度に対し、1~50%、または5%程度に制御されてよい。培養は、例えば、通気培養または振盪培養で行うことができる。培地のpHは、例えば、pH 3~10、またはpH 4.0~9.5であってよい。培養中、必要に応じて培地のpHを調整することができる。培地のpHは、アンモニアガス、アンモニア水、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の各種アルカリ性または酸性物質を用いて調整することができる。培地のpHは、特に、アンモニアガスやアンモニア水等のアンモニア以外の物質で調整されてよい。培養温度は、例えば、20~45℃、または25℃~37℃であってよい。培養期間は、例えば、10時間~120時間であってよい。培養は、例えば、培地中の炭素源が消費されるまで、あるいは微生物の活性がなくなるまで、継続してもよい。 Culturing may be carried out under aerobic conditions, for example. The “aerobic condition” may mean a condition in which the dissolved oxygen concentration in the medium is 0.33 ppm or more, or 1.5 ppm or more. Specifically, the oxygen concentration may be controlled to, for example, about 1 to 50% or about 5% with respect to the saturated oxygen concentration. The culture can be carried out, for example, by aeration culture or shaking culture. The pH of the medium may be, for example, pH 3-10 or pH 4.0-9.5. During culturing, the pH of the medium can be adjusted as needed. The pH of the medium is various alkaline or acidic substances such as ammonia gas, aqueous ammonia, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, etc. Can be adjusted using. The pH of the medium may be adjusted, in particular, with a substance other than ammonia, such as ammonia gas or aqueous ammonia. The culture temperature may be, for example, 20 to 45 ° C, or 25 ° C to 37 ° C. The culture period may be, for example, 10 hours to 120 hours. Culturing may continue, for example, until the carbon source in the medium is consumed or until the microbial activity is depleted.
 このような条件下で微生物を培養することにより、培地中に目的物質が蓄積する。 By culturing the microorganism under such conditions, the target substance accumulates in the medium.
 目的物質が生成したことは、化合物の検出または同定に用いられる公知の手法により確認することができる。そのような手法としては、例えば、HPLC、UPLC、LC/MS、GC/MS、NMRが挙げられる。これらの手法は、単独で、あるいは適宜組み合わせて、用いることができる。これらの手法は、培地中に存在する各種成分の濃度を決定するためにも用いることができる。 The production of the target substance can be confirmed by a known method used for detecting or identifying the compound. Such techniques include, for example, HPLC, UPLC, LC / MS, GC / MS, NMR. These methods can be used alone or in combination as appropriate. These techniques can also be used to determine the concentration of various components present in the medium.
 生成した目的物質は、適宜回収することができる。すなわち、発酵法は、さらに、目的物質を回収する工程を含んでいてよい。同工程を、「回収工程」ともいう。回収工程は、培養液から、具体的には培地から、目的物質を回収する工程であってよい。目的物質の回収は、化合物の分離精製に用いられる公知の手法により行うことができる。そのような手法としては、例えば、イオン交換樹脂法、膜処理法、沈殿法、抽出法、蒸留法、および晶析法が挙げられる。目的物質は、具体的には、酢酸エチル等の有機溶媒での抽出により、または蒸気蒸留により、回収することができる。これらの手法は、単独で、あるいは適宜組み合わせて、用いることができる。 The generated target substance can be recovered as appropriate. That is, the fermentation method may further include a step of recovering the target substance. This process is also referred to as a "recovery process". The recovery step may be a step of recovering the target substance from the culture solution, specifically, the medium. The target substance can be recovered by a known method used for separating and purifying the compound. Examples of such a method include an ion exchange resin method, a membrane treatment method, a precipitation method, an extraction method, a distillation method, and a crystallization method. Specifically, the target substance can be recovered by extraction with an organic solvent such as ethyl acetate, or by steam distillation. These methods can be used alone or in combination as appropriate.
 また、目的物質が培地中に析出する場合は、例えば、遠心分離または濾過により回収することができる。また、培地中に析出した目的物質は、培地中に溶解している目的物質を晶析した後に、併せて単離してもよい。 If the target substance precipitates in the medium, it can be recovered by, for example, centrifugation or filtration. Further, the target substance precipitated in the medium may be isolated at the same time after the target substance dissolved in the medium is crystallized.
 尚、回収される目的物質は、目的物質以外に、例えば、微生物菌体、培地成分、水分、及び微生物の代謝副産物等の他の成分を含んでいてもよい。回収された目的物質の純度は、例えば、30%(w/w)以上、50%(w/w)以上、70%(w/w)以上、80%(w/w)以上、90%(w/w)以上、または95%(w/w)以上であってよい。 In addition to the target substance, the target substance to be recovered may contain other components such as microbial cells, medium components, water, and metabolic by-products of microorganisms. The purity of the recovered target substance is, for example, 30% (w / w) or more, 50% (w / w) or more, 70% (w / w) or more, 80% (w / w) or more, 90% ( It may be w / w) or more, or 95% (w / w) or more.
<2-2>生物変換法
 目的物質は、例えば、目的物質生産能を有する微生物を利用した生物変換により製造することもできる。すなわち、目的物質の製造方法の別の態様は、微生物を利用した生物変換により目的物質を製造する方法であってよい。この態様を、「生物変換法」ともいう。また、微生物を利用した生物変換により目的物質を製造する工程を、「生物変換工程」ともいう。すなわち、目的物質製造工程は、例えば、生物変換工程を含んでいてよい。また、目的物質製造工程は、例えば、生物変換工程により実施されてよい。
<2-2> Biological conversion method The target substance can also be produced, for example, by biological conversion using a microorganism capable of producing the target substance. That is, another aspect of the method for producing the target substance may be a method for producing the target substance by biological conversion using a microorganism. This aspect is also referred to as a "biological conversion method". In addition, the process of producing a target substance by biological conversion using microorganisms is also referred to as "biological conversion step". That is, the target substance manufacturing step may include, for example, a biological conversion step. Further, the target substance manufacturing step may be carried out by, for example, a biological conversion step.
 具体的には、生物変換工程において、目的物質は、該目的物質の前駆体から製造することができる。より具体的には、生物変換工程において、目的物質は、微生物を利用して該目的物質の前駆体を該目的物質に変換することにより製造することができる。すなわち、生物変換工程は、微生物を利用して目的物質の前駆体を該目的物質に変換する工程であってよい。 Specifically, in the biological conversion step, the target substance can be produced from a precursor of the target substance. More specifically, in the biological conversion step, the target substance can be produced by converting a precursor of the target substance into the target substance using a microorganism. That is, the biological conversion step may be a step of converting a precursor of a target substance into the target substance using a microorganism.
 目的物質の前駆体を、単に、「前駆体」ともいう。前駆体としては、目的物質の生合成経路における中間体(例えば、目的物質生合成酵素の記載に関連して言及したもの)が挙げられる。バニリン前駆体については、上述の通りである。すなわち、バニリン前駆体としては、プロトカテク酸、バニリン酸、プロトカテクアルデヒドが挙げられる。バニリン前駆体としては、特に、バニリン酸が挙げられる。バニリン酸前駆体としては、プロトカテク酸が挙げられる。プロトカテクアルデヒド前駆体としては、プロトカテク酸が挙げられる。前駆体としては、1種の前駆体を用いてもよく、2種またはそれ以上の前駆体を組み合わせて用いてもよい。前駆体が塩の形態を取り得る化合物である場合、前駆体は、フリー体として用いてもよく、塩として用いてもよく、それらの混合物として用いてもよい。すなわち、「前駆体」とは、特記しない限り、フリー体の前駆体、もしくはその塩、またはそれらの混合物を意味してよい。塩としては、例えば、アンモニウム塩、ナトリウム塩、カリウム塩が挙げられる。前駆体の塩としては、特に、アンモニウム塩以外の塩が挙げられる。前駆体の塩としては、1種の塩を用いてもよく、2種またはそれ以上の塩を組み合わせて用いてもよい。 The precursor of the target substance is also simply referred to as "precursor". Precursors include intermediates in the biosynthetic pathway of the target substance (eg, those mentioned in connection with the description of the target substance biosynthetic enzyme). The vanillin precursor is as described above. That is, examples of vanillin precursors include protocatechuic acid, vanillic acid, and protocatechuic aldehyde. Vanillin precursors include, in particular, vanillic acid. Vanillic acid precursors include protocatechuic acid. Protocatechuic acid precursors include protocatechuic acid. As the precursor, one kind of precursor may be used, or two or more kinds of precursors may be used in combination. When the precursor is a compound that can take the form of a salt, the precursor may be used as a free form, as a salt, or as a mixture thereof. That is, unless otherwise specified, "precursor" may mean a precursor of a free form, a salt thereof, or a mixture thereof. Examples of the salt include an ammonium salt, a sodium salt, and a potassium salt. Examples of the precursor salt include salts other than ammonium salts. As the precursor salt, one type of salt may be used, or two or more types of salts may be used in combination.
 前駆体としては、市販品を用いてもよく、適宜製造して取得したものを用いてもよい。前駆体の製造方法は特に制限されず、例えば、公知の方法を利用できる。前駆体は、例えば、化学合成法、酵素法、生物変換法、発酵法、抽出法、またはそれらの組み合わせにより製造することができる。すなわち、例えば、目的物質の前駆体は、そのさらなる前駆体から該目的物質の前駆体への変換反応を触媒する酵素(「前駆体生成酵素」ともいう)を利用して、そのようなさらなる前駆体から製造することができる。また、例えば、目的物質の前駆体は、前駆体生産能を有する微生物を利用して、炭素源から、あるいはそのようなさらなる前駆体から、製造することができる。「前駆体生産能を有する微生物」とは、前駆体を生産することができる微生物を意味してよい。「前駆体生産能を有する微生物」とは、具体的には、目的物質の前駆体を、炭素源から、および/またはそのようなさらなる前駆体から、生産することができる微生物を意味してよい。前駆体生産能を有する微生物については、目的物質生産能を有する微生物についての記載を準用できる。また、前駆体生産能を有する微生物を利用した前駆体の製造については、目的物質生産能を有する微生物を利用した目的物質の製造についての記載を準用できる。例えば、酵素法または生物変換法によるプロトカテク酸の製造方法としては、シュードモナス・プチダ(Pseudomonas putida)KS-0180を用いてパラクレゾールをプロトカテク酸に変換する方法(特開平7-75589号公報)、NADH依存性パラヒドロキシ安息香酸ヒドロキシラーゼを用いてパラヒドロキシ安息香酸をプロトカテク酸に変換する方法(特開平5-244941号公報)、テレフタル酸からプロトカテク酸を生成する反応に関与する遺伝子が導入された形質転換体をテレフタル酸が添加された培地で培養することによりプロトカテク酸を製造する方法(特開2007-104942号公報)、プロトカテク酸生産能を有し且つプロトカテク酸5位酸化酵素活性が低下または欠損した微生物を用いてプロトカテク酸をその前駆体から製造する方法(特開2010-207094号公報)が挙げられる。また、発酵法によるプロトカテク酸の製造方法としては、ブレビバクテリウム(Brevibacterium)属に属する細菌を用いて酢酸を炭素源としてプロトカテク酸を製造する方法(特開昭50-89592号公報)や、3-ジヒドロシキミ酸デヒドロゲナーゼをコードする遺伝子が導入されたエシェリヒア(Escherichia)属またはクレブシエラ(Klebsiella)属に属する細菌を用いてグルコースを炭素源としてプロトカテク酸を製造する方法(米国特許第5,272,073号明細書)が挙げられる。また、プロトカテクアルデヒドは、プロトカテク酸を前駆体として、ACARを利用した酵素法またはACARを有する微生物を利用した生物変換法により製造することができる。また、バニリン酸は、プロトカテク酸を前駆体として、OMTを利用した酵素法またはOMTを有する微生物を利用した生物変換法により製造することができる(J. Am. CHm. Soc., 1998, Vol.120)。また、バニリン酸は、フェルラ酸を前駆体として、Pseudomonas sp. AV10株を利用した生物変換法により製造することができる(J. App. Microbiol., 2013, Vol.116, p903-910)。前駆体は、上記のようにして製造されたものであってよい。例えば、バニリン酸等のバニリン前駆体は、特に、バニリン前駆体生産能を有する微生物を利用して製造されたものであってよい。生物変換法は、さらに、前駆体を製造する工程を含んでいてもよい。生物変換法は、具体的には、上記のようにして前駆体を製造する工程を含んでいてもよい。例えば、目的物質がバニリンである場合、生物変換法は、特に、バニリン前駆体生産能を有する微生物を利用してバニリン酸等のバニリン前駆体を製造する工程を含んでいてもよい。製造された前駆体は、そのまま、あるいは、適宜、濃縮、希釈、乾燥、溶解、分画、除菌、抽出、精製等の処理に供してから、生物変換法に利用できる。すなわち、前駆体としては、例えば、所望の程度に精製された精製品を用いてもよく、前駆体を含有する素材を用いてもよい。例えば、バニリン酸等のバニリン前駆体は、特に、バニリン前駆体を含有する素材の形態で用いられてもよい。前駆体を含有する素材は、微生物が前駆体を利用できる限り特に制限されない。前駆体を含有する素材として、具体的には、前駆体を含有する培養液または反応液、該培養液または反応液から分離した上清、それらの濃縮物(例えば、濃縮液)、希釈物(例えば、希釈液)、乾燥物等の処理物が挙げられる。 As the precursor, a commercially available product may be used, or one obtained by appropriately producing the precursor may be used. The method for producing the precursor is not particularly limited, and for example, a known method can be used. The precursor can be produced, for example, by a chemical synthesis method, an enzymatic method, a biological conversion method, a fermentation method, an extraction method, or a combination thereof. That is, for example, a precursor of a target substance utilizes an enzyme (also referred to as "precursor-producing enzyme") that catalyzes the conversion reaction of the target substance from the further precursor to the precursor of the target substance. Can be manufactured from the body. Further, for example, a precursor of a target substance can be produced from a carbon source or from such a further precursor by utilizing a microorganism capable of producing a precursor. The “microorganism capable of producing a precursor” may mean a microorganism capable of producing a precursor. "Precursor-producing microorganism" may specifically mean a microorganism capable of producing a precursor of a substance of interest from a carbon source and / or from such an additional precursor. .. For microorganisms capable of producing precursors, the description of microorganisms capable of producing target substances can be applied mutatis mutandis. Further, with respect to the production of a precursor using a microorganism capable of producing a precursor, the description regarding the production of a target substance using a microorganism capable of producing a target substance can be applied mutatis mutandis. For example, as a method for producing protocatechuic acid by an enzymatic method or a biological conversion method, a method of converting paracresol to protocatechuic acid using Pseudomonas putida KS-0180 (Japanese Patent Laid-Open No. 7-75589), NADH A method for converting parahydroxybenzoic acid to protocatechuic acid using a dependent parahydroxybenzoic acid hydroxylase (Japanese Patent Laid-Open No. 5-244941), a trait into which a gene involved in the reaction for producing protocatechuic acid from terephthalic acid has been introduced. A method for producing protocatechuic acid by culturing the transformant in a medium to which terephthalic acid has been added (Japanese Patent Laid-Open No. 2007-104942), having protocatechuic acid producing ability and decreased or deficient protocatechuic acid 5-position oxidase activity. Examples thereof include a method for producing protocatechuic acid from its precursor using the above-mentioned microorganism (Japanese Patent Laid-Open No. 2010-207094). Further, as a method for producing protocatechuic acid by the fermentation method, a method for producing protocatechuic acid using acetic acid as a carbon source using a bacterium belonging to the genus Brevibacterium (Japanese Patent Laid-Open No. 50-89592) and 3 -A method for producing protocatechuic acid from glucose as a carbon source using a bacterium belonging to the genus Escherichia or Klebsiella into which a gene encoding dihydroshikimic acid dehydrogenase has been introduced (US Pat. No. 5,272,073). Can be mentioned. Further, protocatechuic aldehyde can be produced by an enzymatic method using ACAR or a biological conversion method using a microorganism having ACAR, using protocatechuic acid as a precursor. In addition, vanillic acid can be produced by an enzymatic method using OMT or a biological conversion method using a microorganism having OMT using protocatechuic acid as a precursor (J. Am. CHm. Soc., 1998, Vol. 120). In addition, vanillic acid can be produced by a biological conversion method using Pseudomonas sp. AV 10 strain using ferulic acid as a precursor (J. App. Microbiol., 2013, Vol.116, p903-910). The precursor may be one produced as described above. For example, a vanillin precursor such as vanillic acid may be produced by utilizing a microorganism capable of producing a vanillin precursor. The biotransformation method may further include the step of producing a precursor. Specifically, the biological conversion method may include a step of producing a precursor as described above. For example, when the target substance is vanillin, the biological conversion method may particularly include a step of producing a vanillin precursor such as vanillic acid by utilizing a microorganism capable of producing a vanillin precursor. The produced precursor can be used as it is or after being appropriately subjected to treatments such as concentration, dilution, drying, dissolution, fractionation, sterilization, extraction and purification, and then used in a biological conversion method. That is, as the precursor, for example, a refined product purified to a desired degree may be used, or a material containing the precursor may be used. For example, vanillin precursors such as vanillic acid may be used, in particular, in the form of materials containing vanillin precursors. The material containing the precursor is not particularly limited as long as the microorganism can utilize the precursor. Specific examples of the material containing the precursor include a culture solution or reaction solution containing the precursor, a supernatant separated from the culture solution or reaction solution, a concentrate thereof (for example, a concentrate), and a diluted product (for example, a concentrate). For example, a treated product such as a diluted solution) and a dried product can be mentioned.
 一態様において、生物変換工程は、目的物質生産能を有する微生物を培養することにより実施できる。この態様を、「生物変換法の第1の態様」ともいう。すなわち、生物変換工程は、例えば、目的物質の前駆体を含有する培地で微生物を培養し、該前駆体を目的物質に変換する工程であってよい。生物変換工程は、具体的には、目的物質の前駆体を含有する培地で微生物を培養し、目的物質を該培地中に生成蓄積する工程であってもよい。 In one embodiment, the biological conversion step can be carried out by culturing a microorganism capable of producing a target substance. This aspect is also referred to as "the first aspect of the biological conversion method". That is, the biological conversion step may be, for example, a step of culturing the microorganism in a medium containing a precursor of the target substance and converting the precursor into the target substance. Specifically, the biological conversion step may be a step of culturing the microorganism in a medium containing a precursor of the target substance and producing and accumulating the target substance in the medium.
 使用する培地は、目的物質の前駆体を含有し、微生物が増殖でき、目的物質が生産される限り、特に制限されない。培養条件は、微生物が増殖でき、目的物質が生産される限り、特に制限されない。生物変換法の第1の態様における培養については、同態様においては培地が目的物質の前駆体を含有すること以外は、発酵法における培養についての記載(例えば、培地や培養条件についての記載)を準用できる。 The medium used is not particularly limited as long as it contains a precursor of the target substance, microorganisms can grow, and the target substance is produced. The culture conditions are not particularly limited as long as the microorganism can grow and the target substance is produced. Regarding the culture in the first aspect of the biological conversion method, the description of the culture in the fermentation method (for example, the description of the medium and the culture conditions) is described in the same embodiment except that the medium contains a precursor of the target substance. Can be applied mutatis mutandis.
 前駆体は、培養の全期間において培地に含有されていてもよく、培養の一部の期間にのみ培地に含有されていてもよい。すなわち、「前駆体を含有する培地で微生物を培養する」とは、前駆体が培養の全期間において培地に含有されていることを要しない。例えば、前駆体は、培養開始時から培地に含有されていてもよく、いなくてもよい。前駆体が培養開始時に培地に含有されていない場合は、培養開始後に培地に前駆体を添加する。添加のタイミングは、培養時間等の諸条件に応じて適宜設定できる。例えば、微生物が十分に生育してから培地に前駆体を添加してもよい。また、いずれの場合にも、適宜、培地に前駆体を添加してよい。例えば、目的物質の生成に伴う前駆体の減少または枯渇に応じて培地に前駆体を添加してもよい。前駆体を培地に添加する手段は特に制限されない。例えば、前駆体を含有する流加培地を培地に流加することにより、前駆体を培地に添加することができる。また、例えば、目的物質生産能を有する微生物と前駆体生産能を有する微生物を共培養することにより、前駆体生産能を有する微生物に前駆体を培地中に生成させ、以て前駆体を培地に添加することもできる。「或る成分を培地に添加する」という場合の「成分」には、培地中で生成または再生するものも包含されてよい。これらの添加手段は、単独で、あるいは適宜組み合わせて、利用してよい。培地中の前駆体濃度は、微生物が前駆体を目的物質の原料として利用できる限り、特に制限されない。培地中の前駆体濃度は、フリー体の重量に換算して、例えば、0.1 g/L以上、1 g/L以上、2 g/L以上、5 g/L以上、10 g/L以上、または15 g/L以上であってもよく、200 g/L以下、100 g/L以下、50 g/L以下、または20 g/L以下であってもよく、それらの組み合わせであってもよい。前駆体は、培養の全期間において上記例示した濃度で培地に含有されていてもよく、そうでなくてもよい。前駆体は、例えば、培養開始時に上記例示した濃度で培地に含有されていてもよく、培養開始後に上記例示した濃度となるように培地に添加されてもよい。培養が種培養と本培養とに分けて行われる場合、目的物質は、少なくとも本培養の期間に生産されればよい。よって、前駆体は、少なくとも本培養の期間に、すなわち本培養の全期間または本培養の一部の期間に、培地に含有されていればよい。すなわち、前駆体は、種培養の期間には培地に含有されていてもよく、いなくてもよい。このような場合、培養についての記載(例えば、「培養期間(培養の期間)」や「培養開始」)は、本培養についてのものとして読み替えることができる。 The precursor may be contained in the medium for the entire period of the culture, or may be contained in the medium only for a part of the period of the culture. That is, "culturing a microorganism in a medium containing a precursor" does not require that the precursor be contained in the medium during the entire period of culturing. For example, the precursor may or may not be contained in the medium from the beginning of the culture. If the precursor is not contained in the medium at the start of the culture, the precursor is added to the medium after the start of the culture. The timing of addition can be appropriately set according to various conditions such as culture time. For example, the precursor may be added to the medium after the microorganism has fully grown. In either case, the precursor may be added to the medium as appropriate. For example, the precursor may be added to the medium according to the decrease or depletion of the precursor with the production of the target substance. The means for adding the precursor to the medium is not particularly limited. For example, the precursor can be added to the medium by feeding the fed-batch medium containing the precursor into the medium. Further, for example, by co-culturing a microorganism having a target substance-producing ability and a microorganism having a precursor-producing ability, a microorganism having a precursor-producing ability is made to produce a precursor in a medium, and thus the precursor is used as a medium. It can also be added. The "component" in the case of "adding a certain component to the medium" may also include those produced or regenerated in the medium. These adding means may be used alone or in combination as appropriate. The concentration of the precursor in the medium is not particularly limited as long as the microorganism can use the precursor as a raw material for the target substance. The precursor concentration in the medium is, for example, 0.1 g / L or more, 1 g / L or more, 2 g / L or more, 5 g / L or more, 10 g / L or more, or It may be 15 g / L or more, 200 g / L or less, 100 g / L or less, 50 g / L or less, or 20 g / L or less, or a combination thereof. The precursor may or may not be contained in the medium at the concentrations illustrated above for the entire duration of the culture. The precursor may be contained in the medium at the above-exemplified concentration at the start of culturing, or may be added to the medium at the above-exemplified concentration after the start of culturing. When the culture is divided into a seed culture and a main culture, the target substance may be produced at least during the main culture period. Therefore, the precursor may be contained in the medium at least during the main culture, that is, during the entire main culture or a part of the main culture. That is, the precursor may or may not be contained in the medium during the seed culture period. In such a case, the description about the culture (for example, "culture period (culture period)" or "culture start") can be read as that for the main culture.
 別の態様において、生物変換工程は、目的物質生産能を有する微生物の菌体を利用することにより実施できる。この態様を、「生物変換法の第2の態様」ともいう。すなわち、生物変換工程は、例えば、微生物の菌体を利用して反応液中の目的物質の前駆体を目的物質に変換する工程であってよい。生物変換工程は、具体的には、微生物の菌体を反応液中の目的物質の前駆体に作用させ、目的物質を該反応液中に生成蓄積する工程であってもよい。そのような菌体を利用して実施する生物変換工程を、「変換反応」ともいう。 In another embodiment, the biological conversion step can be carried out by utilizing the bacterial cells of a microorganism capable of producing the target substance. This aspect is also referred to as "the second aspect of the biological conversion method". That is, the biological conversion step may be, for example, a step of converting a precursor of the target substance in the reaction solution into the target substance by utilizing the bacterial cells of the microorganism. Specifically, the biological conversion step may be a step of causing the bacterial cells of the microorganism to act on the precursor of the target substance in the reaction solution to generate and accumulate the target substance in the reaction solution. The biological conversion step carried out using such cells is also referred to as "conversion reaction".
 微生物の菌体は、微生物を培養することにより得られる。菌体を取得するための培養法は、微生物が増殖できる限り、特に制限されない。菌体を取得するための培養時には、前駆体は、培地に含まれていてもよく、含まれていなくてもよい。また、菌体を取得するための培養時には、目的物質は、培地に生産されてもよく、されなくてもよい。生物変換法の第2の態様における菌体を取得するための培養については、発酵法における培養についての記載(例えば、培地や培養条件についての記載)を準用できる。 Microbial cells are obtained by culturing microorganisms. The culture method for obtaining the bacterial cells is not particularly limited as long as the microorganism can grow. At the time of culturing to obtain the cells, the precursor may or may not be contained in the medium. Further, at the time of culturing for obtaining bacterial cells, the target substance may or may not be produced in a medium. Regarding the culture for obtaining the cells in the second aspect of the biological conversion method, the description of the culture in the fermentation method (for example, the description of the medium and the culture conditions) can be applied mutatis mutandis.
 菌体は、培養液(具体的には培地)に含有されたまま変換反応に用いてもよく、培養液(具体的には培地)から回収して変換反応に用いてもよい。また、菌体は、適宜処理に供してから変換反応に用いてもよい。すなわち、菌体としては、微生物の培養液、該培養液から回収した菌体、それらの処理物が挙げられる。すなわち、菌体は、例えば、微生物の培養液、該培養液から回収した菌体、それらの処理物、またはそれらの組み合わせの形態で用いられてよい。また、言い換えると、菌体としては、微生物の培養液に含有される菌体、該培養液から回収した菌体、それらの処理物に含有される菌体が挙げられる。すなわち、菌体は、例えば、微生物の培養液に含有される菌体、該培養液から回収した菌体、それらの処理物に含有される菌体、またはそれらの組み合わせの形態で用いられてよい。処理物としては、菌体(例えば、培養物に含有される菌体や、培養物から回収した菌体)を処理に供したものが挙げられる。これらの態様の菌体は、単独で、あるいは適宜組み合わせて利用してよい。 The bacterial cells may be used in the conversion reaction as they are contained in the culture medium (specifically, the medium), or may be recovered from the culture solution (specifically, the medium) and used in the conversion reaction. In addition, the bacterial cells may be appropriately treated and then used in the conversion reaction. That is, examples of the bacterial cells include a culture solution of microorganisms, bacterial cells recovered from the culture solution, and processed products thereof. That is, the bacterial cells may be used, for example, in the form of a culture solution of microorganisms, bacterial cells recovered from the culture solution, processed products thereof, or a combination thereof. In other words, examples of the bacterial cells include bacterial cells contained in a culture solution of a microorganism, bacterial cells recovered from the culture solution, and bacterial cells contained in a processed product thereof. That is, the bacterial cells may be used, for example, in the form of bacterial cells contained in a culture solution of a microorganism, bacterial cells recovered from the culture solution, bacterial cells contained in a processed product thereof, or a combination thereof. .. Examples of the treated product include those obtained by subjecting the bacterial cells (for example, the bacterial cells contained in the culture or the bacterial cells recovered from the culture) to the treatment. The cells of these embodiments may be used alone or in combination as appropriate.
 菌体を培養液から回収する手法は特に制限されず、例えば公知の手法を利用できる。そのような手法としては、例えば、自然沈降、遠心分離、濾過が挙げられる。また、凝集剤(flocculant)を利用してもよい。これらの手法は、単独で、あるいは適宜組み合わせて利用してよい。回収した菌体は、適当な媒体を用いて適宜洗浄することができる。また、回収した菌体は、適当な媒体を用いて適宜再懸濁することができる。洗浄や懸濁に利用できる媒体としては、例えば、水や水性緩衝液等の水性媒体(水性溶媒)が挙げられる。 The method for recovering the bacterial cells from the culture solution is not particularly limited, and for example, a known method can be used. Such techniques include, for example, natural sedimentation, centrifugation and filtration. Alternatively, a flocculant may be used. These methods may be used alone or in combination as appropriate. The recovered cells can be appropriately washed using a suitable medium. In addition, the recovered cells can be appropriately resuspended using an appropriate medium. Examples of the medium that can be used for washing or suspension include an aqueous medium (aqueous solvent) such as water or an aqueous buffer solution.
 菌体の処理としては、例えば、希釈、濃縮、アクリルアミドやカラギーナン等の担体への固定化処理、凍結融解処理、膜の透過性を高める処理が挙げられる。膜の透過性は、例えば、界面活性剤または有機溶媒を利用して高めることができる。これらの処理は、単独で、あるいは適宜組み合わせて利用してよい。 Examples of the treatment of the bacterial cells include dilution, concentration, immobilization treatment on a carrier such as acrylamide and carrageenan, freeze-thaw treatment, and treatment for increasing the permeability of the membrane. The permeability of the membrane can be enhanced by utilizing, for example, a surfactant or an organic solvent. These processes may be used alone or in combination as appropriate.
 変換反応に用いられる菌体は、目的物質生産能を有していれば特に制限されない。菌体は、代謝活性が維持されているのが好ましい。「代謝活性が維持されている」とは、菌体が炭素源を資化して目的物質の製造に必要な物質を生成または再生する能力を有していることを意味してよい。そのような物質としては、ATP、NADHやNADP等の電子供与体、SAM等のメチル基供与体が挙げられる。菌体は、生育する能力を有していてもよく、有していなくてもよい。 The bacterial cells used in the conversion reaction are not particularly limited as long as they have the ability to produce the target substance. It is preferable that the bacterial cells maintain their metabolic activity. "Maintaining metabolic activity" may mean that the cells have the ability to assimilate the carbon source to produce or regenerate the substance necessary for the production of the target substance. Examples of such substances include electron donors such as ATP, NADH and NADP, and methyl group donors such as SAM. The cells may or may not have the ability to grow.
 変換反応は、適切な反応液中で実施することができる。変換反応は、具体的には、菌体と前駆体とを適切な反応液中で共存させることにより実施することができる。変換反応は、バッチ式で実施してもよく、カラム式で実施してもよい。バッチ式の場合は、例えば、反応容器内の反応液中で、微生物の菌体と前駆体とを混合することにより、変換反応を実施できる。変換反応は、静置して実施してもよく、撹拌や振盪して実施してもよい。カラム式の場合は、例えば、固定化菌体を充填したカラムに前駆体を含有する反応液を通液することにより、変換反応を実施できる。反応液としては、水や水性緩衝液等の水性媒体(水性溶媒)が挙げられる。 The conversion reaction can be carried out in an appropriate reaction solution. Specifically, the conversion reaction can be carried out by allowing the cells and the precursor to coexist in an appropriate reaction solution. The conversion reaction may be carried out in a batch manner or in a columnar manner. In the case of the batch type, for example, the conversion reaction can be carried out by mixing the bacterial cells and the precursor of the microorganism in the reaction solution in the reaction vessel. The conversion reaction may be carried out by allowing it to stand, or by stirring or shaking. In the case of the column type, the conversion reaction can be carried out, for example, by passing a reaction solution containing a precursor through a column packed with immobilized cells. Examples of the reaction solution include an aqueous medium (aqueous solvent) such as water and an aqueous buffer solution.
 反応液は、前駆体に加えて、前駆体以外の成分を必要に応じて含有してよい。前駆体以外の成分としては、ATP、NADHやNADPH等の電子供与体、SAM等のメチル基供与体、金属イオン、緩衝剤、界面活性剤、有機溶媒、炭素源、リン酸源、その他各種培地成分が挙げられる。すなわち、例えば、前駆体を含有する培地を反応液として用いてもよい。すなわち、生物変換法の第2の態様における反応液については、生物変換法の第1の態様における培地についての記載を準用できる。反応液に含有される成分の種類や濃度は、用いる前駆体の種類や、用いる菌体の態様等の諸条件に応じて適宜設定してよい。 The reaction solution may contain components other than the precursor, if necessary, in addition to the precursor. Ingredients other than precursors include electron donors such as ATP, NADH and NADPH, methyl group donors such as SAM, metal ions, buffers, surfactants, organic solvents, carbon sources, phosphoric acid sources, and various other media. Ingredients are mentioned. That is, for example, a medium containing a precursor may be used as the reaction solution. That is, for the reaction solution in the second aspect of the biological conversion method, the description of the medium in the first aspect of the biological conversion method can be applied mutatis mutandis. The type and concentration of the components contained in the reaction solution may be appropriately set according to various conditions such as the type of precursor to be used and the mode of the bacterial cells to be used.
 変換反応の条件(溶存酸素濃度、反応液のpH、反応温度、反応時間、各種成分の濃度等)は、目的物質が生成する限り特に制限されない。変換反応は、例えば、静止菌体等の微生物菌体を利用した物質変換に用いられる通常の条件で行うことができる。変換反応の条件は、使用する微生物の種類等の諸条件に応じて適宜設定してよい。変換反応は、例えば、好気条件で実施してよい。「好気条件」とは、反応液中の溶存酸素濃度が、0.33 ppm以上、または1.5 ppm以上である条件を意味してよい。酸素濃度は、具体的には、例えば、飽和酸素濃度に対し、1~50%、または5%程度に制御されてよい。反応液のpHは、例えば、通常6.0~10.0、または6.5~9.0であってよい。反応温度は、例えば、通常15~50℃、15~45℃、または20~40℃であってよい。反応時間は、例えば、5分~200時間であってよい。カラム法の場合、反応液の通液速度は、例えば、反応時間が上記例示した反応時間の範囲となるような速度であってよい。また、変換反応は、例えば、細菌や酵母等の微生物の培養に用いられる通常の条件等の培養条件で行うこともできる。変換反応においては、菌体は、生育してもよく、しなくてもよい。すなわち、生物変換法の第2の態様における変換反応については、同態様においては菌体が生育してもしなくてもよいこと以外は、生物変換法の第1の態様における培養についての記載を準用できる。そのような場合、菌体を取得するための培養条件と、変換反応の条件は、同一であってもよく、なくてもよい。反応液中の前駆体の濃度は、フリー体の重量に換算して、例えば、0.1 g/L以上、1 g/L以上、2 g/L以上、5 g/L以上、10 g/L以上、または15 g/L以上であってもよく、200 g/L以下、100 g/L以下、50 g/L以下、または20 g/L以下であってもよく、それらの組み合わせであってもよい。反応液中の菌体の濃度は、例えば、600nmにおける光学密度(OD)に換算して、1以上であってもよく、300以下であってもよく、それらの組み合わせであってもよい。 The conditions of the conversion reaction (dissolved oxygen concentration, pH of the reaction solution, reaction temperature, reaction time, concentration of various components, etc.) are not particularly limited as long as the target substance is produced. The conversion reaction can be carried out under the usual conditions used for substance conversion using microbial cells such as quiescent cells. The conditions of the conversion reaction may be appropriately set according to various conditions such as the type of microorganism used. The conversion reaction may be carried out under aerobic conditions, for example. The “aerobic condition” may mean a condition in which the dissolved oxygen concentration in the reaction solution is 0.33 ppm or more, or 1.5 ppm or more. Specifically, the oxygen concentration may be controlled to, for example, about 1 to 50% or about 5% with respect to the saturated oxygen concentration. The pH of the reaction solution may be, for example, usually 6.0 to 10.0, or 6.5 to 9.0. The reaction temperature may be, for example, usually 15-50 ° C, 15-45 ° C, or 20-40 ° C. The reaction time may be, for example, 5 minutes to 200 hours. In the case of the column method, the flow rate of the reaction solution may be, for example, a rate such that the reaction time is within the range of the reaction time exemplified above. Further, the conversion reaction can also be carried out under culture conditions such as normal conditions used for culturing microorganisms such as bacteria and yeast. In the conversion reaction, the cells may or may not grow. That is, with respect to the conversion reaction in the second aspect of the biological conversion method, the description of the culture in the first aspect of the biological conversion method is applied mutatis mutandis, except that the cells may or may not grow in the same aspect. it can. In such a case, the culture conditions for obtaining the bacterial cells and the conditions for the conversion reaction may or may not be the same. The concentration of the precursor in the reaction solution is, for example, 0.1 g / L or more, 1 g / L or more, 2 g / L or more, 5 g / L or more, 10 g / L or more in terms of the weight of the free form. , Or 15 g / L or more, 200 g / L or less, 100 g / L or less, 50 g / L or less, or 20 g / L or less, or a combination thereof. Good. The concentration of the cells in the reaction solution may be, for example, 1 or more, 300 or less, or a combination thereof in terms of optical density (OD) at 600 nm.
 変換反応の過程において、菌体、前駆体、およびその他の成分を単独で、あるいは任意の組み合わせで、反応液に添加してもよい。例えば、目的物質の生成に伴う前駆体の減少または枯渇に応じて反応液に前駆体を添加してもよい。これらの成分は、1回または複数回添加されてもよく、連続的に添加されてもよい。 In the process of conversion reaction, bacterial cells, precursors, and other components may be added to the reaction solution alone or in any combination. For example, the precursor may be added to the reaction solution according to the decrease or depletion of the precursor due to the production of the target substance. These components may be added once or multiple times, or may be added continuously.
 前駆体等の各種成分を反応液に添加する手段は特に制限されない。これらの成分は、いずれも、反応液に直接添加することにより、反応液に添加することができる。また、例えば、目的物質生産能を有する微生物と前駆体生産能を有する微生物を共培養することにより、前駆体生産能を有する微生物に前駆体を反応液中に生成させ、以て前駆体を反応液に添加することもできる。また、例えば、ATP、電子供与体、メチル基供与体等の成分は、いずれも、反応液中で生成または再生されてもよく、微生物の菌体内で生成または再生されてもよく、異菌体間共役により生成または再生されてもよい。例えば、微生物の菌体において代謝活性が維持されている場合、炭素源を利用して微生物の菌体内でATP、電子供与体、メチル基供与体等の成分を生成または再生することができる。例えば、具体的には、微生物はSAMを生成または再生する増強された能力を有していてもよく、同微生物により生成または再生されたSAMが変換反応に用いられてもよい。SAMの生成または再生は、SAMを生成または再生する他の手法との組み合わせによってさらに増強され得る。また、ATPを生成または再生する方法としては、例えば、コリネバクテリウム属細菌を利用して炭素源からATPを供給させる方法(Hori, H et al., Appl. Microbiol. Biotechnol. 48(6): 693-698 (1997))、酵母菌体とグルコースを利用してATPを再生する方法(Yamamoto, S et al., Biosci. Biotechnol. Biochem. 69(4): 784-789 (2005))、ホスホエノールピルビン酸とピルビン酸キナーゼを利用してATPを再生する方法(C. Aug’e and Ch. Gautheron, Tetrahedron Lett. 29:789-790 (1988))、ポリリン酸とポリリン酸キナーゼを利用してATPを再生する方法(Murata, K et al., Agric. Biol. Chem. 52(6): 1471-1477 (1988))が挙げられる。「或る成分を反応液に添加する」という場合の「成分」には、反応液中で生成または再生するものも包含されてよい。 The means for adding various components such as precursors to the reaction solution is not particularly limited. All of these components can be added to the reaction solution by adding them directly to the reaction solution. Further, for example, by co-culturing a microorganism having a target substance-producing ability and a microorganism having a precursor-producing ability, a microorganism having a precursor-producing ability can generate a precursor in a reaction solution, thereby reacting the precursor. It can also be added to the liquid. Further, for example, components such as ATP, electron donor, and methyl group donor may all be produced or regenerated in the reaction solution, or may be produced or regenerated in the microbial cell, and are heterologous cells. It may be generated or regenerated by interconjugation. For example, when the metabolic activity is maintained in the microbial cell, a carbon source can be used to generate or regenerate components such as ATP, an electron donor, and a methyl group donor in the microbial cell. For example, specifically, the microorganism may have an enhanced ability to produce or regenerate SAM, and the SAM produced or regenerated by the microorganism may be used in the conversion reaction. The generation or regeneration of SAM can be further enhanced in combination with other techniques for generating or reproducing SAM. As a method for producing or regenerating ATP, for example, a method of supplying ATP from a carbon source using a bacterium belonging to the genus Corynebacterium (Hori, Het al., Appl. Microbiol. Biotechnol. 48 (6): 693-698 (1997)), ATP regeneration method using yeast cells and glucose (Yamamoto, S et al., Biosci. Biotechnol. Biochem. 69 (4): 784-789 (2005)), phospho Method of regenerating ATP using enolpyrbic acid and pyruvate kinase (C. Aug'e and Ch. Gautheron, Tetrahedron Lett. 29: 789-790 (1988)), using polyphosphate and polyphosphate kinase Examples include a method of regenerating ATP (Murata, K et al., Agric. Biol. Chem. 52 (6): 1471-1477 (1988)). The "component" in the case of "adding a certain component to the reaction solution" may also include those produced or regenerated in the reaction solution.
 また、反応条件は、変換反応の開始から終了まで均一であってもよく、変換反応の過程において変化してもよい。「反応条件が変換反応の過程において変化する」ことには、反応条件が時間的に変化することに限られず、反応条件が空間的に変化することも包含されてよい。「反応条件が空間的に変化する」とは、例えば、カラム式で変換反応を実施する場合に、反応温度や菌体密度等の反応条件が流路上の位置に応じて異なっていることを意味してよい。 Further, the reaction conditions may be uniform from the start to the end of the conversion reaction, or may change in the process of the conversion reaction. The fact that "the reaction conditions change in the process of the conversion reaction" is not limited to the temporal changes of the reaction conditions, but may also include the spatial changes of the reaction conditions. "The reaction conditions change spatially" means that, for example, when the conversion reaction is carried out by a column type, the reaction conditions such as the reaction temperature and the cell density are different depending on the position on the flow path. You can do it.
 このようにして生物変換工程を実施することにより、目的物質を含有する培養液(具体的には培地)または反応液が得られる。目的物質が生成したことの確認や目的物質の回収は、いずれも、上述した発酵法と同様に実施することができる。すなわち、生物変換法は、さらに、回収工程(例えば、培養液(具体的には培地)または反応液から目的物質を回収する工程)を含んでいてよい。尚、回収される目的物質は、目的物質以外に、例えば、微生物菌体、培地成分、反応液成分、水分、及び微生物の代謝副産物等の他の成分を含んでいてもよい。回収された目的物質の純度は、例えば、30%(w/w)以上、50%(w/w)以上、70%(w/w)以上、80%(w/w)以上、90%(w/w)以上、または95%(w/w)以上であってよい。 By carrying out the biological conversion step in this way, a culture solution (specifically, a medium) or a reaction solution containing the target substance can be obtained. Confirmation that the target substance has been produced and recovery of the target substance can both be carried out in the same manner as in the fermentation method described above. That is, the biological conversion method may further include a recovery step (for example, a step of recovering the target substance from the culture solution (specifically, the medium) or the reaction solution). In addition to the target substance, the target substance to be recovered may contain other components such as microbial cells, medium components, reaction solution components, water, and metabolic by-products of microorganisms. The purity of the recovered target substance is, for example, 30% (w / w) or more, 50% (w / w) or more, 70% (w / w) or more, 80% (w / w) or more, 90% ( It may be w / w) or more, or 95% (w / w) or more.
<2-3>アンモニア濃度の低減
 本明細書に記載の方法(例えば、バニリンの製造方法)においては、バニリンの製造がアンモニア濃度を低減した条件で実施される。すなわち、本明細書に記載の方法においては、バニリン製造工程がアンモニア濃度を低減した条件で実施される。
<2-3> Reduction of Ammonia Concentration In the method described in the present specification (for example, a method for producing vanillin), the production of vanillin is carried out under the condition that the ammonia concentration is reduced. That is, in the method described in the present specification, the vanillin production step is carried out under the condition that the ammonia concentration is reduced.
 アンモニア濃度を低減した条件でバニリンを製造することにより、バニリン生産が向上する。具体的には、アンモニア濃度を低減した条件でバニリンを製造することにより、アンモニア濃度を低減しない条件でバニリンを製造する場合と比較して、バニリン生産が向上する。「アンモニア濃度を低減した条件」を「アンモニア低減条件」ともいう。「アンモニア濃度を低減しない条件」を「対照条件」ともいう。バニリン生産は、例えば、バニリン製造工程に用いられる微生物の生育の向上により、バニリン製造工程に用いられる微生物の菌体当たりのバニリン生産量の向上により、またはそれらの組み合わせにより、向上してよい。 Vanillin production is improved by producing vanillin under conditions where the ammonia concentration is reduced. Specifically, by producing vanillin under the condition that the ammonia concentration is reduced, the vanillin production is improved as compared with the case where the vanillin is produced under the condition that the ammonia concentration is not reduced. The "condition for reducing the ammonia concentration" is also referred to as the "ammonia reduction condition". "Conditions that do not reduce the ammonia concentration" are also referred to as "control conditions". Vanillin production may be improved, for example, by improving the growth of microorganisms used in the vanillin production process, by improving the amount of vanillin produced per cell of the microorganisms used in the vanillin production process, or by a combination thereof.
 「アンモニア濃度」とは、培地または反応液(すなわち、バニリンの製造の場合、バニリンの製造が実施される培地または反応液)におけるアンモニア濃度を意味する。「アンモニア」とは、アンモニア分子(NH)およびアンモニウムイオン(NH )を総称する。すなわち、「アンモニア濃度」とは、具体的には、培地または反応液(すなわち、バニリンの製造の場合、バニリンの製造が実施される培地または反応液)における、アンモニア分子(NH)の濃度およびアンモニウムイオン(NH )の濃度の合計を意味する。 "Ammonia concentration" means the concentration of ammonia in the medium or reaction solution (that is, in the case of vanillin production, the medium or reaction solution in which vanillin production is carried out). "Ammonia" is a general term for ammonia molecules (NH 3 ) and ammonium ions (NH 4 +). That is, the "ammonia concentration" specifically refers to the concentration of ammonia molecules (NH 3 ) in the medium or reaction solution (that is, in the case of the production of vanillin, the medium or reaction solution in which the production of vanillin is carried out). It means the total concentration of ammonium ions (NH 4 +).
 アンモニア濃度の低減の程度は、バニリン生産が向上する限り、特に制限されない。バニリンの製造の際のアンモニア濃度(すなわち、アンモニア低減条件におけるアンモニア濃度)は、バニリン製造工程に用いられる微生物の種類、バニリン製造工程の長さ、所望のバニリン生産量等の諸条件に応じて適宜設定できる。 The degree of reduction of ammonia concentration is not particularly limited as long as vanillin production is improved. The ammonia concentration during vanillin production (that is, the ammonia concentration under the ammonia reduction conditions) is appropriately determined according to various conditions such as the type of microorganism used in the vanillin production process, the length of the vanillin production process, and the desired vanillin production amount. Can be set.
 「バニリンの製造またはバニリン製造工程がアンモニア濃度を低減した条件で実施される」または「バニリンの製造またはバニリン製造工程がアンモニア濃度を低減した培地または反応液で実施される」とは、バニリンの製造の際のアンモニア濃度が所定の範囲であることを意味してよい。バニリンの製造の際に、アンモニアは培地または反応液(すなわち、バニリンの製造の場合、バニリンの製造が実施される培地または反応液)に含有されていてもよく、いなくてもよい。 "Vanillin production or vanillin production process is carried out under conditions of reduced ammonia concentration" or "vanillin production or vanillin production process is carried out in a medium or reaction solution with reduced ammonia concentration" means that vanillin is produced. It may mean that the ammonia concentration at the time of is in a predetermined range. During the production of vanillin, ammonia may or may not be contained in the medium or reaction solution (ie, in the case of vanillin production, the medium or reaction solution in which the production of vanillin is carried out).
 バニリンの製造の際のアンモニア濃度(すなわち、アンモニア低減条件におけるアンモニア濃度)は、例えば、0mM以上、0.1mM以上、0.3mM以上、0.5mM以上、0.7mM以上、1mM以上、1.5mM以上、2mM以上、2.5mM以上、3mM以上、3.5mM以上、4mM以上、4.5mM以上、5mM以上、5.5mM以上、6mM以上、6.5mM以上、7mM以上、7.5mM以上、8mM以上、8.5mM以上、9mM以上、9.5mM以上、または10mM以上であってもよく、700mM以下、600mM以下、500mM以下、400mM以下、300mM以下、200mM以下、100mM以下、50mM以下、20mM以下、または10mM以下であってもよく、それらの矛盾しない組み合わせであってもよい。バニリンの製造の際のアンモニア濃度(すなわち、アンモニア低減条件におけるアンモニア濃度)は、具体的には、例えば、1~700mM、1~400mM、または1~100mMであってもよい。 The ammonia concentration during the production of vanillin (that is, the ammonia concentration under the ammonia reduction condition) is, for example, 0 mM or more, 0.1 mM or more, 0.3 mM or more, 0.5 mM or more, 0.7 mM or more, 1 mM or more, 1. 5 mM or more, 2 mM or more, 2.5 mM or more, 3 mM or more, 3.5 mM or more, 4 mM or more, 4.5 mM or more, 5 mM or more, 5.5 mM or more, 6 mM or more, 6.5 mM or more, 7 mM or more, 7.5 mM or more , 8 mM or more, 8.5 mM or more, 9 mM or more, 9.5 mM or more, or 10 mM or more, 700 mM or less, 600 mM or less, 500 mM or less, 400 mM or less, 300 mM or less, 200 mM or less, 100 mM or less, 50 mM or less, It may be 20 mM or less, or 10 mM or less, and may be a consistent combination thereof. Specifically, the ammonia concentration during the production of vanillin (that is, the ammonia concentration under the ammonia reduction condition) may be, for example, 1 to 700 mM, 1 to 400 mM, or 1 to 100 mM.
 アンモニア濃度は、バニリン製造工程の全期間において低減されていてもよく、バニリン製造工程の一部の期間にのみ低減されていてもよい。すなわち、例えば、バニリンの製造が微生物を利用した発酵により実施される場合、アンモニア濃度は、発酵工程の全期間において低減されていてもよく、発酵工程の一部の期間にのみ低減されていてもよい。また、例えば、バニリンの製造が微生物を利用した生物変換により実施される場合、アンモニア濃度は、生物変換工程の全期間において低減されていてもよく、生物変換工程の一部の期間にのみ低減されていてもよい。すなわち、「バニリンの製造またはバニリン製造工程がアンモニア濃度を低減した条件で実施される」または「バニリンの製造またはバニリン製造工程がアンモニア濃度を低減した培地または反応液で実施される」とは、アンモニア濃度がバニリン製造工程(例えば、発酵工程または生物変換工程)の一部の期間において低減されていれば足り、アンモニア濃度がバニリン製造工程(例えば、発酵工程または生物変換工程)の全期間において低減されていることを要しない。 Ammonia concentration may be reduced during the entire period of the vanillin production process, or may be reduced only during a part of the vanillin production process. That is, for example, when the production of vanillin is carried out by fermentation using microorganisms, the ammonia concentration may be reduced during the entire fermentation process, or may be reduced only during a part of the fermentation process. Good. Further, for example, when the production of vanillin is carried out by biological conversion using microorganisms, the ammonia concentration may be reduced during the entire period of the biological conversion step, and is reduced only during a part of the biological conversion step. May be. That is, "the production of vanillin or the vanillin production process is carried out under the condition that the ammonia concentration is reduced" or "the production of vanillin or the vanillin production process is carried out in the medium or the reaction solution in which the ammonia concentration is reduced" means that the ammonia is produced. It suffices if the concentration is reduced during some of the vanillin production steps (eg, fermentation or bioconversion) and the ammonia concentration is reduced during the entire vanillin production process (eg, fermentation or bioconversion). It doesn't need to be.
 アンモニア濃度は、バニリン製造工程の全期間において上記例示した濃度に低減されていてもよく、バニリン製造工程の一部の期間にのみ上記例示した濃度に低減されていてもよい。すなわち、例えば、バニリンの製造が微生物を利用した発酵により実施される場合、アンモニア濃度は、発酵工程の全期間において上記例示した濃度に低減されていてもよく、発酵工程の一部の期間にのみ上記例示した濃度に低減されていてもよい。また、例えば、バニリンの製造が微生物を利用した生物変換により実施される場合、アンモニア濃度は、生物変換工程の全期間において上記例示した濃度に低減されていてもよく、生物変換工程の一部の期間にのみ上記例示した濃度に低減されていてもよい。すなわち、「バニリンの製造またはバニリン製造工程がアンモニア濃度を或る濃度に低減した条件で実施される」または「バニリンの製造またはバニリン製造工程が或るアンモニア濃度の培地または反応液で実施される」とは、アンモニア濃度がバニリン製造工程(例えば、発酵工程または生物変換工程)の一部の期間において当該濃度の範囲内にあれば足り、アンモニア濃度がバニリン製造工程(例えば、発酵工程または生物変換工程)の全期間において当該濃度の範囲内にあることを要しない。 The ammonia concentration may be reduced to the above-exemplified concentration during the entire period of the vanillin production process, or may be reduced to the above-exemplified concentration only during a part of the vanillin production process. That is, for example, when the production of vanillin is carried out by fermentation using microorganisms, the ammonia concentration may be reduced to the above-exemplified concentration during the entire fermentation process, and only during a part of the fermentation process. It may be reduced to the above-exemplified concentration. Further, for example, when the production of vanillin is carried out by biological conversion using microorganisms, the ammonia concentration may be reduced to the above-exemplified concentration during the entire period of the biological conversion step, and is a part of the biological conversion step. The concentration may be reduced to the above-exemplified concentration only during the period. That is, "the production of vanillin or the process of producing vanillin is carried out under the condition that the ammonia concentration is reduced to a certain concentration" or "the production of vanillin or the step of producing vanillin is carried out in a medium or a reaction solution having a certain ammonia concentration". It is sufficient that the ammonia concentration is within the range of the concentration during a part of the vanillin production step (for example, fermentation step or biological conversion step), and the ammonia concentration is in the vanillin production step (for example, fermentation step or biological conversion step). ) Does not need to be within the range of the concentration for the entire period.
 「一部の期間」は、バニリン生産が向上する限り、特に制限されない。「一部の期間」は、バニリン製造工程に用いられる微生物の種類、バニリン製造工程の長さ、所望のバニリン生産量等の諸条件に応じて適宜設定できる。「一部の期間」は、例えば、バニリン製造工程(例えば、発酵工程または生物変換工程)の全期間の50%以上、60%以上、70%以上、80%以上、90%以上、95%以上、97%以上、または99%以上の期間であってよい。また、「一部の期間」は、例えば、バニリン製造工程(例えば、発酵工程または生物変換工程)の内の、10時間以上、15時間以上、20時間以上、30時間以上、40時間以上、50時間以上、70時間以上、100時間以上、または150時間以上の期間であってもよい。 The "partial period" is not particularly limited as long as vanillin production improves. The "partial period" can be appropriately set according to various conditions such as the type of microorganism used in the vanillin production process, the length of the vanillin production process, and the desired vanillin production amount. "Partial period" is, for example, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more of the entire period of the vanillin production process (for example, fermentation process or biological conversion process). , 97% or more, or 99% or more. Further, the "partial period" is, for example, 10 hours or more, 15 hours or more, 20 hours or more, 30 hours or more, 40 hours or more, 50 in the vanillin production process (for example, fermentation process or biological conversion process). The period may be hours or longer, 70 hours or longer, 100 hours or longer, or 150 hours or longer.
 また、バニリンの製造の際のアンモニア濃度(すなわち、アンモニア低減条件におけるアンモニア濃度)は、例えば、バニリン製造工程の全期間を通じての平均値として、上記例示した濃度に低減されていてもよい。すなわち、「バニリンの製造またはバニリン製造工程がアンモニア濃度を或る濃度に低減した条件で実施される」または「バニリンの製造またはバニリン製造工程が或るアンモニア濃度の培地または反応液で実施される」とは、バニリン製造工程の全期間を通じてのアンモニア濃度の平均値が当該濃度の範囲内にあることを意味してもよい。「バニリン製造工程の全期間を通じてのアンモニア濃度の平均値」とは、バニリン製造工程の全期間を通じてのアンモニア濃度の変動を反映するものであれば特に制限されないが、例えば、バニリン製造工程の全期間を通じて60分ごと、30分ごと、20分ごと、または10分ごとに測定されたアンモニア濃度の平均値を意味してよい。 Further, the ammonia concentration during the production of vanillin (that is, the ammonia concentration under the ammonia reduction conditions) may be reduced to the above-exemplified concentration as an average value over the entire period of the vanillin production process, for example. That is, "the production of vanillin or the process of producing vanillin is carried out under the condition that the ammonia concentration is reduced to a certain concentration" or "the production of vanillin or the process of producing vanillin is carried out in a medium or a reaction solution having a certain concentration of ammonia". May mean that the average value of the ammonia concentration throughout the entire vanillin production process is within that concentration range. The "average value of ammonia concentration over the entire period of the vanillin production process" is not particularly limited as long as it reflects the fluctuation of the ammonia concentration over the entire period of the vanillin production process. For example, the entire period of the vanillin production process is not limited. It may mean the average value of ammonia concentration measured every 60 minutes, every 30 minutes, every 20 minutes, or every 10 minutes throughout.
 アンモニア濃度を低減する手段は、特に制限されない。アンモニア濃度は、例えば、アンモニアの初発濃度(すなわち、バニリン製造工程の開始時の培地または反応液におけるアンモニア濃度)を低減すること、アンモニアの流加量(すなわち、バニリン製造工程の開始後に培地または反応液に供給されるアンモニア量)を低減すること、またはそれらの組み合わせにより、低減されてよい。 The means for reducing the ammonia concentration is not particularly limited. Ammonia concentration is, for example, reducing the initial concentration of ammonia (ie, the concentration of ammonia in the medium or reaction solution at the beginning of the vanillin production process), the flow of ammonia (ie, the medium or reaction after the start of the vanillin production process). The amount of ammonia supplied to the liquid) may be reduced, or a combination thereof may be used.
 バニリンの製造の際のアンモニアの初発濃度(すなわち、アンモニア低減条件におけるアンモニアの初発濃度)は、例えば、0mM以上、0.1mM以上、0.3mM以上、0.5mM以上、0.7mM以上、1mM以上、1.5mM以上、2mM以上、2.5mM以上、3mM以上、3.5mM以上、4mM以上、4.5mM以上、5mM以上、5.5mM以上、6mM以上、6.5mM以上、7mM以上、7.5mM以上、8mM以上、8.5mM以上、9mM以上、9.5mM以上、または10mM以上であってもよく、700mM以下、600mM以下、500mM以下、400mM以下、300mM以下、200mM以下、100mM以下、50mM以下、20mM以下、または10mM以下であってもよく、それらの矛盾しない組み合わせであってもよい。バニリンの製造の際のアンモニアの初発濃度(すなわち、アンモニア低減条件におけるアンモニアの初発濃度)は、具体的には、例えば、1~700mM、1~400mM、または1~100mMであってもよい。 The initial concentration of ammonia in the production of vanillin (that is, the initial concentration of ammonia under ammonia reduction conditions) is, for example, 0 mM or more, 0.1 mM or more, 0.3 mM or more, 0.5 mM or more, 0.7 mM or more, 1 mM. 1.5 mM or more, 2 mM or more, 2.5 mM or more, 3 mM or more, 3.5 mM or more, 4 mM or more, 4.5 mM or more, 5 mM or more, 5.5 mM or more, 6 mM or more, 6.5 mM or more, 7 mM or more, It may be 7.5 mM or more, 8 mM or more, 8.5 mM or more, 9 mM or more, 9.5 mM or more, or 10 mM or more, 700 mM or less, 600 mM or less, 500 mM or less, 400 mM or less, 300 mM or less, 200 mM or less, 100 mM or less. , 50 mM or less, 20 mM or less, or 10 mM or less, and may be a consistent combination thereof. Specifically, the initial concentration of ammonia in the production of vanillin (that is, the initial concentration of ammonia under the ammonia reduction condition) may be, for example, 1 to 700 mM, 1 to 400 mM, or 1 to 100 mM.
 バニリンの製造の際のアンモニアの使用量(すなわち、アンモニア低減条件におけるアンモニアの使用量)は、例えば、バニリン前駆体の使用量に対するモル比として、300%以下、250%以下、200%以下、150%以下、100%以下、70%以下、50%以下、30%以下、20%以下、15%以下、10%以下、5%以下、2%以下、または1%以下であってよい。 The amount of ammonia used in the production of vanillin (that is, the amount of ammonia used under the ammonia reduction conditions) is, for example, 300% or less, 250% or less, 200% or less, 150 as a molar ratio to the amount of vanillin precursor used. % Or less, 100% or less, 70% or less, 50% or less, 30% or less, 20% or less, 15% or less, 10% or less, 5% or less, 2% or less, or 1% or less.
 バニリンの製造の際のアンモニアの使用量(すなわち、アンモニア低減条件におけるアンモニアの使用量)は、例えば、炭素源の使用量に対するモル比として、300%以下、250%以下、200%以下、150%以下、100%以下、70%以下、50%以下、30%以下、20%以下、15%以下、10%以下、5%以下、2%以下、または1%以下であってよい。 The amount of ammonia used in the production of vanillin (that is, the amount of ammonia used under ammonia reduction conditions) is, for example, 300% or less, 250% or less, 200% or less, 150% as the molar ratio to the amount of carbon source used. Below, it may be 100% or less, 70% or less, 50% or less, 30% or less, 20% or less, 15% or less, 10% or less, 5% or less, 2% or less, or 1% or less.
 バニリンの製造の際のアンモニアの使用量(すなわち、アンモニア低減条件におけるアンモニアの使用量)は、例えば、バニリン前駆体と炭素源の総使用量に対するモル比として、300%以下、250%以下、200%以下、150%以下、100%以下、70%以下、50%以下、30%以下、20%以下、15%以下、10%以下、5%以下、2%以下、または1%以下であってよい。 The amount of ammonia used in the production of vanillin (that is, the amount of ammonia used under the ammonia reduction conditions) is, for example, 300% or less, 250% or less, 200 as the molar ratio to the total amount of vanillin precursor and carbon source used. % Or less, 150% or less, 100% or less, 70% or less, 50% or less, 30% or less, 20% or less, 15% or less, 10% or less, 5% or less, 2% or less, or 1% or less. Good.
 「或る成分の使用量」とは、当該成分の初発含有量(すなわち、バニリン製造工程の開始時の培地または反応液における当該成分の含有量)および当該成分の流加量(すなわち、バニリン製造工程の開始後に培地または反応液に供給される当該成分の量)の総量を意味する。「或る成分の流加量」とは、特に、バニリン製造工程の開始から十分にバニリンが生産されるまでの期間における当該成分の流加量を意味してよい。「十分にバニリンが生産される」とは、例えば、培地または反応液におけるバニリン濃度が、バニリン製造工程の終了時の培地または反応液におけるバニリン濃度の90%以上、95%以上、97%以上、または99%以上の濃度に到達することを意味してよい。また、「十分にバニリンが生産される」とは、例えば、バニリン生産量が、バニリン製造工程の開始から終了までのバニリン生産量の90%以上、95%以上、97%以上、または99%以上の量に到達することを意味してよい。 “Amount of a certain component used” means the initial content of the component (that is, the content of the component in the medium or reaction solution at the start of the vanillin production process) and the fed-batch amount of the component (that is, vanillin production). It means the total amount of the component) supplied to the medium or reaction solution after the start of the process. The "fed-batch amount of a certain component" may mean, in particular, the fed-batch amount of the component in the period from the start of the vanillin production process to the sufficient production of vanillin. "Sufficient vanillin is produced" means, for example, that the vanillin concentration in the medium or reaction solution is 90% or more, 95% or more, 97% or more of the vanillin concentration in the medium or reaction solution at the end of the vanillin production process. Or it may mean reaching a concentration of 99% or higher. Further, "sufficiently produced vanillin" means that, for example, the vanillin production amount is 90% or more, 95% or more, 97% or more, or 99% or more of the vanillin production amount from the start to the end of the vanillin production process. May mean reaching the quantity of.
 アンモニア濃度は、特に、バニリン前駆体の使用に伴うアンモニアの使用量を低減することにより、低減されてよい。例えば、バニリン前駆体がアンモニアを含有し得る組成物の形態で使用される場合、該組成物に含有されるアンモニア量を低減することにより、バニリン前駆体の使用(具体的には、該組成物の使用)に伴うアンモニアの使用量を低減することができる。すなわち、そのような組成物に含有されるアンモニア量を低減することにより、バニリン前駆体の使用(具体的には、該組成物の使用)に伴う培地または反応液へのアンモニアの持ち込みを低減することができ、以て、アンモニアの使用量を低減することができる。そのような組成物としては、微生物を利用して製造されたバニリン前駆体が挙げられる。そのような組成物として、具体的には、微生物を利用して製造された、バニリン前駆体を含有する素材が挙げられる。バニリン前駆体を含有する素材については、上述の通りである。バニリン前駆体を含有する素材として、具体的には、バニリン前駆体を含有する培養液または反応液、該培養液または反応液から分離した上清、それらの濃縮物(例えば、濃縮液)、希釈物(例えば、希釈液)、乾燥物等の処理物が挙げられる。そのような組成物におけるバニリン前駆体の含有量は、例えば、1%(w/w)以上、3%(w/w)以上、5%(w/w)以上、7%(w/w)以上、10%(w/w)以上、15%(w/w)以上、または20%(w/w)以上であってもよく、95%(w/w)以下、90%(w/w)以下、80%(w/w)以下、70%(w/w)以下、60%(w/w)以下、50%(w/w)以下、40%(w/w)以下、30%(w/w)以下、20%(w/w)以下、または10%(w/w)以下であってもよく、それらの矛盾しない組み合わせであってもよい。そのような組成物におけるバニリン前駆体の含有量は、例えば、水分を除く該組成物全量に対するバニリン前駆体の量として、例えば、1%(w/w)以上、3%(w/w)以上、5%(w/w)以上、7%(w/w)以上、10%(w/w)以上、15%(w/w)以上、または20%(w/w)以上であってもよく、95%(w/w)以下、90%(w/w)以下、80%(w/w)以下、70%(w/w)以下、60%(w/w)以下、50%(w/w)以下、40%(w/w)以下、30%(w/w)以下、20%(w/w)以下、または10%(w/w)以下であってもよく、それらの矛盾しない組み合わせであってもよい。 The ammonia concentration may be reduced, in particular, by reducing the amount of ammonia used with the use of the vanillin precursor. For example, when the vanillin precursor is used in the form of a composition that may contain ammonia, the use of the vanillin precursor (specifically, the composition) by reducing the amount of ammonia contained in the composition. The amount of ammonia used can be reduced. That is, by reducing the amount of ammonia contained in such a composition, the introduction of ammonia into the medium or reaction solution due to the use of the vanillin precursor (specifically, the use of the composition) is reduced. Therefore, the amount of ammonia used can be reduced. Such compositions include vanillin precursors produced using microorganisms. Specific examples of such a composition include a material containing a vanillin precursor produced by utilizing a microorganism. The materials containing the vanillin precursor are as described above. Specific examples of the material containing the vanillin precursor include a culture solution or reaction solution containing the vanillin precursor, a supernatant separated from the culture solution or reaction solution, a concentrate thereof (for example, a concentrate), and a dilution thereof. Examples thereof include processed products such as products (for example, diluents) and dried products. The content of the vanillin precursor in such a composition is, for example, 1% (w / w) or more, 3% (w / w) or more, 5% (w / w) or more, 7% (w / w). It may be 10% (w / w) or more, 15% (w / w) or more, or 20% (w / w) or more, 95% (w / w) or less, 90% (w / w) or more. ) Or less, 80% (w / w) or less, 70% (w / w) or less, 60% (w / w) or less, 50% (w / w) or less, 40% (w / w) or less, 30% It may be (w / w) or less, 20% (w / w) or less, or 10% (w / w) or less, and may be a consistent combination thereof. The content of the vanillin precursor in such a composition is, for example, 1% (w / w) or more and 3% (w / w) or more as the amount of the vanillin precursor with respect to the total amount of the composition excluding water. Even if it is 5% (w / w) or more, 7% (w / w) or more, 10% (w / w) or more, 15% (w / w) or more, or 20% (w / w) or more. Well, 95% (w / w) or less, 90% (w / w) or less, 80% (w / w) or less, 70% (w / w) or less, 60% (w / w) or less, 50% ( It may be w / w) or less, 40% (w / w) or less, 30% (w / w) or less, 20% (w / w) or less, or 10% (w / w) or less. It may be a consistent combination.
 バニリン前駆体は、アンモニアの含有量が低減された形態で製造されてよい。バニリン前駆体は、具体的には、アンモニアの含有量が低減された組成物の形態で製造されてよい。アンモニアの含有量が低減された形態でバニリン前駆体を製造する方法については、本明細書に記載の方法(例えば、バニリンの製造方法)についての記載を準用できる。すなわち、バニリン前駆体の製造は、アンモニア濃度を低減した条件で実施されてよい。「アンモニア濃度」とは、培地または反応液(すなわち、バニリン前駆体の製造の場合、バニリン前駆体の製造が実施される培地または反応液)におけるアンモニア濃度を意味する。アンモニア濃度を低減した条件でバニリン前駆体を製造することにより、アンモニアの含有量が低減された形態でバニリン前駆体を製造することができ、以てバニリン前駆体の使用に伴うアンモニアの使用量を低減することができる。言い換えると、バニリンの製造の際のアンモニア濃度は、少なくとも、アンモニア濃度を低減した条件でバニリン前駆体を製造することにより低減されてよい。例えば、バニリン前駆体の製造の際に窒素源として用いられ得るアンモニア量を低減してよい。また、例えば、バニリン前駆体の製造の際にpH調整に用いられ得るアンモニア量を低減してよい。pH調整としては、プロトカテク酸および/またはバニリン酸の中和が挙げられる。すなわち、具体的には、例えば、プロトカテク酸を原料としてバニリン酸を製造する際に、プロトカテク酸および/またはバニリン酸の中和に用いられ得るアンモニア量を低減してよい。特に、プロトカテク酸を原料としてバニリン酸を製造する際に、プロトカテク酸の中和に用いられ得るアンモニア量を低減してもよい。また、具体的には、例えば、プロトカテク酸を原料としてプロトカテクアルデヒドを製造する際に、プロトカテク酸の中和に用いられ得るアンモニア量を低減してよい。プロトカテク酸および/またはバニリン酸の中和等のpH調整に用いられ得るアンモニア量は、例えば、pH調整を部分的または完全にアンモニア以外のpH調整用の物質(例えば、水酸化ナトリウムや水酸化カリウム等の、アンモニア以外の上記例示した培地のpH調整用の物質)を用いて実施することにより、低減することができる。言い換えると、プロトカテク酸および/またはバニリン酸の中和等のpH調整に用いられ得るアンモニア量は、例えば、pH調整に用いられ得るアンモニアの一部または全部を他のpH調整用の物質(例えば、水酸化ナトリウムや水酸化カリウム等の、アンモニア以外の上記例示した培地のpH調整用の物質)に代替することにより、低減することができる。pH調整に用いられ得るアンモニアとしては、アンモニアガスやアンモニア水が挙げられる。 The vanillin precursor may be produced in a form in which the ammonia content is reduced. The vanillin precursor may be specifically prepared in the form of a composition with a reduced ammonia content. As for the method for producing the vanillin precursor in a form in which the content of ammonia is reduced, the description for the method described in the present specification (for example, the method for producing vanillin) can be applied mutatis mutandis. That is, the production of the vanillin precursor may be carried out under the condition that the ammonia concentration is reduced. "Ammonia concentration" means the concentration of ammonia in the medium or reaction solution (that is, in the case of production of vanillin precursor, the medium or reaction solution in which the production of vanillin precursor is carried out). By producing the vanillin precursor under the condition that the ammonia concentration is reduced, the vanillin precursor can be produced in a form in which the ammonia content is reduced, and thus the amount of ammonia used accompanying the use of the vanillin precursor can be reduced. Can be reduced. In other words, the ammonia concentration in the production of vanillin may be reduced at least by producing the vanillin precursor under the condition that the ammonia concentration is reduced. For example, the amount of ammonia that can be used as a nitrogen source in the production of vanillin precursors may be reduced. Also, for example, the amount of ammonia that can be used for pH adjustment in the production of vanillin precursors may be reduced. pH adjustments include neutralization of protocatechuic acid and / or vanillic acid. That is, specifically, for example, when producing vanillic acid from protocatechuic acid as a raw material, the amount of ammonia that can be used for neutralizing protocatechuic acid and / or vanillic acid may be reduced. In particular, when producing vanillic acid from protocatechuic acid as a raw material, the amount of ammonia that can be used to neutralize protocatechuic acid may be reduced. Specifically, for example, when protocatechuic acid is produced as a raw material, the amount of ammonia that can be used for neutralizing protocatechuic acid may be reduced. The amount of ammonia that can be used for pH adjustment, such as neutralization of protocatechuic acid and / or vanillic acid, is, for example, a pH adjustment substance other than ammonia, for example, sodium hydroxide or potassium hydroxide. It can be reduced by using a substance for adjusting the pH of the above-exemplified medium other than ammonia, such as. In other words, the amount of ammonia that can be used for pH adjustment, such as neutralization of protocatechuic acid and / or vanillic acid, is, for example, a portion or all of the ammonia that can be used for pH adjustment with other pH adjusting substances (eg, for example. It can be reduced by substituting with a substance for adjusting the pH of the above-exemplified medium other than ammonia, such as sodium hydroxide and potassium hydroxide. Examples of ammonia that can be used for pH adjustment include ammonia gas and ammonia water.
 上記のような組成物(例えば、バニリン前駆体を含有する素材)におけるアンモニアの含有量は、バニリンの製造の際のアンモニア濃度の低減を達成できる限り、特に制限されない。上記のような組成物(例えば、バニリン前駆体を含有する素材)におけるアンモニアの含有量は、例えば、該組成物におけるバニリン前駆体の含有量に対するモル比として、300%以下、250%以下、200%以下、150%以下、100%以下、70%以下、50%以下、30%以下、20%以下、15%以下、10%以下、5%以下、2%以下、または1%以下であってよい。 The content of ammonia in the composition as described above (for example, a material containing a vanillin precursor) is not particularly limited as long as a reduction in the ammonia concentration during the production of vanillin can be achieved. The content of ammonia in the composition as described above (for example, a material containing a vanillin precursor) is, for example, 300% or less, 250% or less, 200 as a molar ratio to the content of the vanillin precursor in the composition. % Or less, 150% or less, 100% or less, 70% or less, 50% or less, 30% or less, 20% or less, 15% or less, 10% or less, 5% or less, 2% or less, or 1% or less. Good.
 以下、非限定的な実施例を参照して、本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to non-limiting examples.
実施例:アンモニア制限条件におけるバニリン酸からのバニリン生産
(1)分析条件
 バニリンの定量は、HPLC分析により行った。分析条件は以下に示す通り。
移動相A: 0.1%リン酸
移動相B: アセトニトリル
流速:1.0 ml/min
カラム温度:40℃
検出:UV 210 nm
カラム:Cadenza CD-C18、4.6×150 mm、3μm(Imtakt)
グラジエント:0-2 min(B: 5%)、2-15 min(B: 5-25%)、15-16 min (B: 25-60%)、16-20 min (B: 60%) 20.1-25 min(B: 5%)
Example: Vanillin production from vanillic acid under ammonia-restricted conditions (1) Analytical conditions Vanillin was quantified by HPLC analysis. The analysis conditions are as shown below.
Mobile phase A: 0.1% Phosphate mobile phase B: Acetonitrile Flow rate: 1.0 ml / min
Column temperature: 40 ° C
Detection: UV 210 nm
Column: Cadenza CD-C18, 4.6 × 150 mm, 3 μm (Imtakt)
Gradient: 0-2 min (B: 5%), 2-15 min (B: 5-25%), 15-16 min (B: 25-60%), 16-20 min (B: 60%) 20.1 -25 min (B: 5%)
 アンモニアの定量は、BF-7(王子計測機器)により行った。分析条件は以下に示す通り。
移動相: BF用緩衝液 pH 7.0(王子計測機器)にα-ケトグルタル酸を終濃度 1 mM、NADHを終濃度1 mMとなるように添加した
流速:1 mL/min
時間:90 sec
温度:37℃
電極:グルタミン酸電極、アンモニア電極(王子計測機器)
備考:アンモニア電極ではグルタミン酸も測定されるため、グルタミン酸電極でグルタミン酸濃度を測定した後、グルタミン酸濃度を引いた値をアンモニア濃度として算出した。
Ammonia was quantified by BF-7 (Oji measuring instrument). The analysis conditions are as shown below.
Mobile phase: BF buffer pH 7.0 (Oji measuring instrument) with α-ketoglutaric acid added to a final concentration of 1 mM and NADH added to a final concentration of 1 mM Flow rate: 1 mL / min
Time: 90 sec
Temperature: 37 ℃
Electrodes: Glutamic acid electrode, ammonia electrode (Oji measuring instrument)
Remarks: Since glutamic acid is also measured with the ammonia electrode, the value obtained by subtracting the glutamic acid concentration after measuring the glutamic acid concentration with the glutamic acid electrode was calculated as the ammonia concentration.
 ODの測定は、UV-1800(島津製作所)により行った。分析条件は以下に示す通り。
波長:600 nm
セル長:1 cm
OD was measured by UV-1800 (Shimadzu Corporation). The analysis conditions are as shown below.
Wavelength: 600 nm
Cell length: 1 cm
(2)バニリン生産株の構築
 プラスミドpVK9::Ptuf*-Ge_ACAR-entD(WO2018/079705の実施例<3>)をCorynebacterium glutamicum FKFC14(C. glutamicum 2256ΔvanABKΔNCgl0324ΔNCgl0313ΔNCgl2709;WO2018/079705の実施例<2>)にエレクトロポレーション法で導入した。FKFC14は、C. glutamicum 2256(ATCC 13869)を親株として構築された、vanillate demethylaseおよびバニリン酸取り込み系遺伝子(vanABK)ならびにalcohol dehydrogenase遺伝子(NCgl0324、NCgl0313、NCgl2709)の欠損株である。プラスミドpVK9::Ptuf*-Ge_ACAR-entDは、Gordonia effusa由来aromatic carboxylic acid reductase(ACAR)およびE. coli由来phosphopantetheinyl transferase(PPT)の共発現プラスミドである。菌体をCM-Dex SGFCプレート(グルコース2.5 g/L、フルクトース2.5 g/L、polypeptone 10 g/L、Yeast extract 10 g/L、KH2PO4 1 g/L、MgSO4・7H2O 0.4 g/L、FeSO4・7H2O 0.01 g/L、MnSO4・7H2O 0.01 g/L、コハク酸ニナトリウム・6H2O 2 g/L、グルコン酸ナトリウム 4 g/L、尿素3 g/L、ビオチン 10 μg/L、大豆の塩酸加水分解物(全窒素として)1.2 g/L、NaOHでpH 7.5へ調整、カナマイシン25 mg/L、Agar 15 g/L)にて31.5℃で培養した。取得したコロニーをCM-Dex SGFCプレートにて純化し、FKFC14/pVK9::Ptuf*-Ge_ACAR-entDと命名した。取得した株を4 mLのCM-Dex SGFC培地にて31.5℃で16時間程度培養し、0.9 mLの培養液を0.6 mLの50%グリセロールと混合し、グリセロールストックとして-80℃にて保存した。
(2) Construction of vanillin-producing strain The plasmid pVK9 :: Ptuf * -Ge_ACAR-entD (Example <3> of WO2018 / 079705) was applied to Corynebacterium glutamicum FKFC14 (C. glutamicum 2256ΔvanABKΔNCgl0324ΔNCgl0313ΔNCgl2709; Example <2> of WO2018 / 079705). Introduced by the electroporation method. FKFC14 is a deficient strain of vanillate demethylase and vanillate uptake gene (vanABK) and alcohol dehydrogenase gene (NCgl0324, NCgl0313, NCgl2709) constructed with C. glutamicum 2256 (ATCC 13869) as the parent strain. The plasmid pVK9 :: Ptuf * -Ge_ACAR-entD is a co-expression plasmid of aromatic carboxylic acid reductase (ACAR) from Gordonia effusa and phosphorpantetheinyl transferase (PPT) from E. coli. The cells CM-Dex SGFC plates (glucose 2.5 g / L, fructose 2.5 g / L, polypeptone 10 g / L, Yeast extract 10 g / L, KH 2 PO 4 1 g / L, MgSO 4 · 7H 2 O 0.4 g / L, FeSO 4 · 7H 2 O 0.01 g / L, MnSO 4 · 7H 2 O 0.01 g / L, succinate disodium · 6H 2 O 2 g / L , sodium gluconate 4 g / L, urea 3 g / L, biotin 10 μg / L, soybean hydrochloric acid hydrolyzate (as total nitrogen) 1.2 g / L, adjusted to pH 7.5 with NaOH, cultivated at 31.5 ° C with canamycin 25 mg / L, Agar 15 g / L) did. The acquired colonies were purified on a CM-Dex SGFC plate and named FKFC14 / pVK9 :: Ptuf * -Ge_ACAR-entD. The obtained strain was cultured in 4 mL of CM-Dex SGFC medium at 31.5 ° C. for about 16 hours, 0.9 mL of the culture solution was mixed with 0.6 mL of 50% glycerol, and stored as a glycerol stock at -80 ° C.
(3)バニリン酸からのバニリン生産
 FKFC14/pVK9::Ptuf*-Ge_ACAR-entDをCM-Dex-Km(グルコース5 g/L、polypeptone 10 g/L、Yeast extract 10 g/L、KH2PO41 g/L、MgSO4・7H2O 0.4 g/L、尿素3 g/L、FeSO4・7H2O 0.01 g/L、MnSO4・7H2O 0.01 g/L、ビオチン 10 μg/L、大豆の塩酸加水分解物(全窒素として)1.2 g/L、KOHでpH 7.5へ調整、カナマイシン25 mg/L、Agar 20 g/L)プレート上で20℃、3日間培養した。得られた菌体をカナマイシン25 mg/L含むCM-Dex-Glc10培地(グルコース10 g/L、polypeptone 10 g/L、Yeast extract 10 g/L、KH2PO4 1 g/L、MgSO4・7H2O 0.4 g/L、尿素3 g/L、FeSO4・7H2O 0.01 g/L、MnSO4・7H2O 0.01 g/L、ビオチン 10 μg/L、大豆の塩酸加水分解物(全窒素として)1.2 g/L、KOHでpH 7.5へ調整)50 mLに植菌し、坂口フラスコを用いて31.5℃で18時間振盪培養を行った。得られた培養液25 mLを遠心し、上清を取り除き、OD 600 nmが15となるように0.85% NaCl溶液で懸濁し、菌体懸濁液を得た。1 mLの菌体懸濁液を9 mLのバニリン生産培地(終濃度:バニリン酸30 g/L、NH4Cl 0-1000 mM、(NH4)2SO40-500 mM、グルコース60 g/L、polypeptone 10 g/L、Yeast extract 10 g/L、KH2PO41 g/L、MgSO4・7H2O 0.4 g/L、FeSO4・7H2O 0.01 g/L、MnSO4・7H2O 0.01 g/L、ビオチン 10 μg/L、KOHでpH 7.4へ調整、カナマイシン25 mg/L)に植菌し、30℃で48時間培養した。培養開始時の培養液8 μLを1 mLの超純水と混合し、アンモニア濃度を測定した。また、培養48時間目の培養液10 μLと1 mLの培養停止液(1%リン酸、50%エタノール)を混合し、フィルターろ過液をHPLC分析に供した。また、培養48時間目の培養液20 μLを1 mLの超純水と混合し、ODを測定した。添加したNH4Clおよび(NH4)2SO4の量、培養開始時におけるアンモニア濃度、培養48時間目のODおよびバニリン生成量を表1に示す。
(3) Vanillin production from vanillic acid FKFC14 / pVK9 :: Ptuf * -Ge_ACAR-entD CM-Dex-Km (glucose 5 g / L, polypeptone 10 g / L, yeast extract 10 g / L, KH 2 PO 4 1 g / L, MgSO 4 · 7H 2 O 0.4 g / L, urea 3 g / L, FeSO 4 · 7H 2 O 0.01 g / L, MnSO 4 · 7H 2 O 0.01 g / L, biotin 10 [mu] g / L, Soybean hydrochloric acid hydrolyzate (as total nitrogen) 1.2 g / L, adjusted to pH 7.5 with KOH, cultivated on a canamycin 25 mg / L, Agar 20 g / L) plate at 20 ° C. for 3 days. CM-Dex-Glc10 medium containing 25 mg / L of canamycin (glucose 10 g / L, polypeptone 10 g / L, yeast extract 10 g / L, KH 2 PO 4 1 g / L, DDL 4・7H 2 O 0.4 g / L, urea 3 g / L, FeSO 4 · 7H 2 O 0.01 g / L, MnSO 4 · 7H 2 O 0.01 g / L, biotin 10 [mu] g / L, hydrochloric acid hydrolyzate of soybean (total As nitrogen) 1.2 g / L, adjusted to pH 7.5 with KOH) Inoculated into 50 mL and cultivated with shaking at 31.5 ° C for 18 hours using a Sakaguchi flask. 25 mL of the obtained culture solution was centrifuged, the supernatant was removed, and the mixture was suspended in 0.85% NaCl solution so that OD 600 nm was 15, to obtain a bacterial cell suspension. 1 mL of the cell suspension 9 mL of vanillin production medium (final concentration: vanillic acid 30 g / L, NH 4 Cl 0-1000 mM, (NH 4) 2 SO 4 0-500 mM, glucose 60 g / L, polypeptone 10 g / L, Yeast extract 10 g / L, KH 2 PO 4 1 g / L, DDL 4・ 7H 2 O 0.4 g / L, FeSO 4・ 7H 2 O 0.01 g / L, MnSO 4・ 7H 2 O 0.01 g / L, biotin 10 μg / L, adjusted to pH 7.4 with KOH, inoculated into canamycin 25 mg / L), and cultured at 30 ° C. for 48 hours. 8 μL of the culture solution at the start of the culture was mixed with 1 mL of ultrapure water, and the ammonia concentration was measured. In addition, 10 μL of the culture solution at 48 hours of culture and 1 mL of the culture stop solution (1% phosphoric acid, 50% ethanol) were mixed, and the filter filtrate was subjected to HPLC analysis. In addition, 20 μL of the culture solution at 48 hours of culture was mixed with 1 mL of ultrapure water, and the OD was measured. Table 1 shows the amounts of NH 4 Cl and (NH 4 ) 2 SO 4 added, the ammonia concentration at the start of culture, and the amount of OD and vanillin produced at 48 hours of culture.
 アンモニウム塩の添加量の減少に伴い、生育の向上およびバニリン生産の向上が認められた。また、特に、NH4 +添加濃度が50-600 mMの場合には、NH4 +添加濃度が800-1000 mMの場合と比較して、OD当たりのバニリン生産量の増大が認められた。アンモニウム塩の種類で結果の傾向に差が認められなかったことから、生育の向上およびバニリン生産の向上はアンモニア濃度の低減によるものと考えられる。 As the amount of ammonium salt added decreased, the growth and vanillin production improved. In particular, when the NH 4 + addition concentration was 50-600 mM, an increase in vanillin production per OD was observed as compared with the case where the NH 4 + addition concentration was 800-1000 mM. Since there was no difference in the tendency of the results depending on the type of ammonium salt, it is considered that the improvement in growth and the improvement in vanillin production were due to the reduction in ammonia concentration.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、微生物によるバニリンの生産を向上させることができ、バニリンを効率よく製造することができる。 According to the present invention, the production of vanillin by microorganisms can be improved, and vanillin can be efficiently produced.
<配列表の説明>
配列番号1:Gordonia effusaのACAR遺伝子の塩基配列
配列番号2:Gordonia effusaのACARタンパク質のアミノ酸配列
配列番号3:Escherichia coli MG1655のentD遺伝子の塩基配列
配列番号4:Escherichia coli MG1655のEntDタンパク質のアミノ酸配列
配列番号5:Corynebacterium glutamicum 2256 (ATCC 13869)のvanK遺伝子の塩基配列
配列番号6:Corynebacterium glutamicum 2256 (ATCC 13869)のVanKタンパク質のアミノ酸配列
配列番号7:Corynebacterium glutamicum 2256 (ATCC 13869)のvanA遺伝子の塩基配列
配列番号8:Corynebacterium glutamicum 2256 (ATCC 13869)のVanAタンパク質のアミノ酸配列
配列番号9:Corynebacterium glutamicum 2256 (ATCC 13869)のvanB遺伝子の塩基配列
配列番号10:Corynebacterium glutamicum 2256 (ATCC 13869)のVanBタンパク質のアミノ酸配列
配列番号11:Corynebacterium glutamicum 2256 (ATCC 13869)のNCgl0324遺伝子の塩基配列
配列番号12:Corynebacterium glutamicum 2256 (ATCC 13869)のNCgl0324タンパク質のアミノ酸配列
配列番号13:Corynebacterium glutamicum 2256 (ATCC 13869)のNCgl0313遺伝子の塩基配列
配列番号14:Corynebacterium glutamicum 2256 (ATCC 13869)のNCgl0313タンパク質のアミノ酸配列
配列番号15:Corynebacterium glutamicum 2256 (ATCC 13869)のNCgl2709遺伝子の塩基配列
配列番号16:Corynebacterium glutamicum 2256 (ATCC 13869)のNCgl2709タンパク質のアミノ酸配列
<Explanation of sequence listing>
SEQ ID NO: 1: Nucleotide sequence of ACAR gene of Gordonia effusa SEQ ID NO: 2: Nucleotide sequence of ACAR protein of Gordonia effusa SEQ ID NO: 3: Nucleotide sequence of entD gene of Escherichia coli MG1655 SEQ ID NO: 4: Nucleotide sequence of EntD protein of Escherichia coli MG1655 SEQ ID NO: 5: Nucleotide sequence of vanK gene of Corynebacterium glutamicum 2256 (ATCC 13869) SEQ ID NO: 6: Nucleotide sequence of VanK protein of Corynebacterium glutamicum 2256 (ATCC 13869) SEQ ID NO: 7: Nucleotide sequence of vanA gene of Corynebacterium glutamicum 2256 (ATCC 13869) SEQ ID NO: 8: Nucleotide sequence of VanA protein of Corynebacterium glutamicum 2256 (ATCC 13869) SEQ ID NO: 9: Nucleotide sequence of vanB gene of Corynebacterium glutamicum 2256 (ATCC 13869) SEQ ID NO: 10: VanB protein of Corynebacterium glutamicum 2256 (ATCC 13869) Amino acid sequence SEQ ID NO: 11: Nucleotide sequence of NCgl0324 gene of Corynebacterium glutamicum 2256 (ATCC 13869) SEQ ID NO: 12: Nucleotide sequence of NCgl0324 protein of Corynebacterium glutamicum 2256 (ATCC 13869) SEQ ID NO: 13: NCgl0313 gene of Corynebacterium glutamicum 2256 (ATCC 13869) Nucleotide sequence of Corynebacterium glutamicum 2256 (ATCC 13869) NCgl0313 Protein amino acid sequence SEQ ID NO: 15: Nucleotide sequence of NCgl2709 gene of Corynebacterium glutamicum 2256 (ATCC 13869) SEQ ID NO: 16: NCgl2709 of Corynebacterium glutamicum 2256 (ATCC 13869) Protein amino acid sequence

Claims (22)

  1.  バニリンの製造方法であって、
     バニリンを生産する能力を有する微生物を利用してバニリンを製造すること
     を含み、
     前記製造が、アンモニア濃度を低減した条件で実施される、方法。
    It ’s a method of making vanillin.
    Including the production of vanillin using microorganisms capable of producing vanillin,
    A method in which the production is carried out under conditions where the ammonia concentration is reduced.
  2.  前記製造の際のアンモニア濃度が、700mM以下である、請求項1に記載の方法。 The method according to claim 1, wherein the ammonia concentration at the time of the production is 700 mM or less.
  3.  前記製造の際のアンモニア濃度が、400mM以下である、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the ammonia concentration at the time of the production is 400 mM or less.
  4.  前記製造の際のアンモニア濃度が、100mM以下である、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the ammonia concentration at the time of the production is 100 mM or less.
  5.  前記製造が、前記微生物を利用してバニリン前駆体をバニリンに変換することを含む、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the production comprises converting a vanillin precursor into vanillin using the microorganism.
  6.  前記変換が、前記前駆体を含有する培地で前記微生物を培養し、バニリンを該培地中に生成蓄積させることを含む、請求項5に記載の方法。 The method of claim 5, wherein the conversion comprises culturing the microorganism in a medium containing the precursor and producing and accumulating vanillin in the medium.
  7.  前記変換が、前記微生物の菌体を反応液中の前記前駆体に作用させ、バニリンを該反応液中に生成蓄積させることを含む、請求項5に記載の方法。 The method according to claim 5, wherein the conversion comprises causing the bacterial cells of the microorganism to act on the precursor in the reaction solution and producing and accumulating vanillin in the reaction solution.
  8.  前記菌体が、前記微生物の培養液、該培養液から回収した菌体、それらの処理物、またはそれらの組み合わせの形態で用いられる、請求項7に記載の方法。 The method according to claim 7, wherein the cells are used in the form of a culture solution of the microorganism, cells recovered from the culture solution, processed products thereof, or a combination thereof.
  9.  前記前駆体が、バニリン酸である、請求項5~8のいずれか1項に記載の方法。 The method according to any one of claims 5 to 8, wherein the precursor is vanillic acid.
  10.  前記前駆体が、該前駆体を生産する能力を有する微生物を利用して製造されたものである、請求項5~9のいずれか1項に記載の方法。 The method according to any one of claims 5 to 9, wherein the precursor is produced by utilizing a microorganism having an ability to produce the precursor.
  11.  前記バニリンの製造の前に、さらに、前記前駆体を生産する能力を有する微生物を利用して該前駆体を製造することを含む、請求項5~10のいずれか1項に記載の方法。 The method according to any one of claims 5 to 10, further comprising producing the precursor using a microorganism capable of producing the precursor before producing the vanillin.
  12.  前記前駆体の製造が、アンモニア濃度を低減した条件で実施される、請求項10または11に記載の方法。 The method according to claim 10 or 11, wherein the production of the precursor is carried out under conditions where the ammonia concentration is reduced.
  13.  前記前駆体が、該前駆体を含有する素材の形態で用いられ、
     前記素材が、前記前駆体を含有する培養液または反応液、該培養液または反応液から分離した上清、それらの処理物、またはそれらの組み合わせである、請求項10~12のいずれか1項に記載の方法。
    The precursor is used in the form of a material containing the precursor.
    Any one of claims 10 to 12, wherein the material is a culture solution or reaction solution containing the precursor, a supernatant separated from the culture solution or reaction solution, a processed product thereof, or a combination thereof. The method described in.
  14.  前記素材におけるアンモニアの含有量が、該素材における前記前駆体の含有量に対するモル比として、300%以下である、請求項13に記載の方法。 The method according to claim 13, wherein the content of ammonia in the material is 300% or less as a molar ratio to the content of the precursor in the material.
  15.  前記バニリンの製造が、炭素源を含有する培地で前記バニリンを生産する能力を有する微生物を培養し、バニリンを該培地中に生成蓄積させることを含む、請求項1~4のいずれか1項に記載の方法。 The production of vanillin comprises culturing a microorganism capable of producing the vanillin in a medium containing a carbon source, and producing and accumulating vanillin in the medium, according to any one of claims 1 to 4. The method described.
  16.  さらに、バニリンを回収することを含む、請求項1~15のいずれか1項に記載の方法。 The method according to any one of claims 1 to 15, further comprising recovering vanillin.
  17.  前記バニリンを生産する能力を有する微生物が、細菌または酵母である、請求項1~16のいずれか1項に記載の方法。 The method according to any one of claims 1 to 16, wherein the microorganism capable of producing vanillin is a bacterium or yeast.
  18.  前記バニリンを生産する能力を有する微生物が、コリネ型細菌または腸内細菌科(Enterobacteriaceae)の細菌である、請求項1~17のいずれか1項に記載の方法。 The method according to any one of claims 1 to 17, wherein the microorganism capable of producing vanillin is a coryneform bacterium or a bacterium of Enterobacteriaceae.
  19.  前記バニリンを生産する能力を有する微生物が、コリネバクテリウム(Corynebacterium)属細菌またはエシェリヒア(Escherichia)属細菌である、請求項1~18のいずれか1項に記載の方法。 The method according to any one of claims 1 to 18, wherein the microorganism capable of producing vanillin is a bacterium belonging to the genus Corynebacterium or a bacterium belonging to the genus Escherichia.
  20.  前記バニリンを生産する能力を有する微生物が、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)またはエシェリヒア・コリ(Escherichia coli)である、請求項1~19のいずれか1項に記載の方法。 The method according to any one of claims 1 to 19, wherein the microorganism capable of producing the vanillin is Corynebacterium glutamicum or Escherichia coli.
  21.  前記バニリンを生産する能力を有する微生物が、芳香族カルボン酸レダクターゼおよび/またはホスホパンテテイニルトランスフェラーゼの活性が非改変株と比較して増大するように改変されている、請求項1~20のいずれか1項に記載の方法。 Any of claims 1-20, wherein the microorganism capable of producing vanillin has been modified to increase the activity of aromatic carboxylic acid reductase and / or phosphopantetinyltransferase as compared to the unmodified strain. The method according to item 1.
  22.  前記バニリンを生産する能力を有する微生物が、バニリン酸デメチラーゼおよび/またはアルコールデヒドロゲナーゼの活性が非改変株と比較して低下するように改変されている、請求項1~21のいずれか1項に記載の方法。 The invention according to any one of claims 1 to 21, wherein the microorganism capable of producing vanillin is modified so that the activity of vanillate demethylase and / or alcohol dehydrogenase is reduced as compared with the unmodified strain. the method of.
PCT/JP2020/041356 2019-11-11 2020-11-05 Vanillin production method WO2021095635A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019203786A JP2023001394A (en) 2019-11-11 2019-11-11 Method for producing vanillin
JP2019-203786 2019-11-11

Publications (1)

Publication Number Publication Date
WO2021095635A1 true WO2021095635A1 (en) 2021-05-20

Family

ID=75912062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041356 WO2021095635A1 (en) 2019-11-11 2020-11-05 Vanillin production method

Country Status (2)

Country Link
JP (1) JP2023001394A (en)
WO (1) WO2021095635A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05244965A (en) * 1991-05-31 1993-09-24 Kraft General Foods Inc Production of vanillin
JP2002537770A (en) * 1999-02-24 2002-11-12 ジレプシス リミティド Flavor / fragrance materials and their manufacture
JP2004267131A (en) * 2003-03-10 2004-09-30 Tsuno Rice Fine Chemicals Co Ltd Method for producing vanillin by using alkalophilic bacterium
JP2016540522A (en) * 2013-11-04 2016-12-28 ビージーエヌ テック エルエルシーBgn Tech Llc Process for producing vanillin via microbial fermentation of ferulic acid from eugenol using plant dehydrogenase
WO2018079705A1 (en) * 2016-10-27 2018-05-03 Ajinomoto Co., Inc. Method for producing aldehyde

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05244965A (en) * 1991-05-31 1993-09-24 Kraft General Foods Inc Production of vanillin
JP2002537770A (en) * 1999-02-24 2002-11-12 ジレプシス リミティド Flavor / fragrance materials and their manufacture
JP2004267131A (en) * 2003-03-10 2004-09-30 Tsuno Rice Fine Chemicals Co Ltd Method for producing vanillin by using alkalophilic bacterium
JP2016540522A (en) * 2013-11-04 2016-12-28 ビージーエヌ テック エルエルシーBgn Tech Llc Process for producing vanillin via microbial fermentation of ferulic acid from eugenol using plant dehydrogenase
WO2018079705A1 (en) * 2016-10-27 2018-05-03 Ajinomoto Co., Inc. Method for producing aldehyde

Also Published As

Publication number Publication date
JP2023001394A (en) 2023-01-05

Similar Documents

Publication Publication Date Title
JP6881448B2 (en) Aldehyde production method
JP7318199B2 (en) Production method of target substance
JP7331985B2 (en) Production method of target substance
JP7380768B2 (en) Method for producing aldehydes
JP7359248B2 (en) Production method of target substance
JP6838584B2 (en) Manufacturing method of target substance
JP7074133B2 (en) Manufacturing method of target substance
JP7063332B2 (en) Manufacturing method of target substance
WO2020226087A1 (en) Vanillin production method
JP2019531758A (en) Method for producing L-methionine or a metabolite requiring S-adenosylmethionine for synthesis
WO2021095635A1 (en) Vanillin production method
JP2021182882A (en) Method for producing sarcosine
WO2020027251A1 (en) Method for producing objective substance
JP2023111889A (en) Method for producing 3-hydroxy 3-methylbutyric acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP