WO2021095411A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2021095411A1
WO2021095411A1 PCT/JP2020/038352 JP2020038352W WO2021095411A1 WO 2021095411 A1 WO2021095411 A1 WO 2021095411A1 JP 2020038352 W JP2020038352 W JP 2020038352W WO 2021095411 A1 WO2021095411 A1 WO 2021095411A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
transmittance
average transmittance
color
liquid crystal
Prior art date
Application number
PCT/JP2020/038352
Other languages
French (fr)
Japanese (ja)
Inventor
小間 徳夫
矢田 竜也
三井 雅志
Original Assignee
株式会社ピクトリープ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ピクトリープ filed Critical 株式会社ピクトリープ
Publication of WO2021095411A1 publication Critical patent/WO2021095411A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a liquid crystal display device.
  • the polarizing element is generally manufactured by adsorbing and orienting iodine or a dichroic dye, which is a dichroic dye, on a polyvinyl alcohol resin film.
  • a protective film made of triacetyl cellulose or the like is attached to at least one surface of the polarizing element via an adhesive layer to form a polarizing plate, which is used in liquid crystal display devices and the like.
  • a polarizing plate using iodine as a dichroic dye is called an iodine-based polarizing plate, while a polarizing plate using a dichroic dye as a dichroic dye is called a dye-based polarizing plate.
  • dye-based polarizing plates have high heat resistance, high humidity heat durability, and high stability, and are characterized by high color selectivity depending on the composition, while iodine-based polarizing plates having the same contrast.
  • the transmittance was lower than that of. Therefore, it has been difficult to maintain high durability, have various color selectivity, and achieve higher transmittance.
  • conventional polarizing elements are polarizing elements that exhibit a yellowish tinge when the absorption axes are installed in parallel.
  • the color of one iodine-based polarizing plate is a polarizing element that develops yellow-green when the absorption axes are installed in parallel and blue when the absorption axes are installed orthogonally.
  • the color of the polarizing element has a great influence on the display characteristics.
  • the color development due to the wavelength characteristics of such a polarizing element is one of the factors that greatly affect the display characteristics of the display, and in the conventional transmissive liquid crystal device using the backlight, the spectrum distribution of the backlight and the adjustment of the color filter are performed. It is necessary to optimize the display color.
  • a polarizing plate for improving the display performance of a display a polarizing plate using a method of adjusting the spectrum of a color filter or mixing a dye with an adhesive or the like to adjust the display color has been proposed.
  • all of them result in lowering the transmittance of the polarizing plate and are costly, so that great improvement is required.
  • the wavelength characteristics of the polarizing plate have been improved, in the commonly used iodine-based polarizing plate, if the transmission spectrum (when the absorption axes are parallel) is made uniform at each wavelength, the wavelength is short when orthogonal. Light leaked to the light, and sufficient display could not be performed.
  • techniques such as Patent Document 1 or Patent Document 2 are disclosed.
  • Patent Document 1 discloses a polarizing plate having a neutral coefficient calculated and an absolute value of 0 to 3.
  • Patent Document 2 discloses a polarizing element that has a transmittance of 410 nm to 750 nm and is within ⁇ 30% of the average value, and is adjusted by directly adding a dye, a reactive dye, or an acid dye in addition to iodine. ing.
  • the polarizing element disclosed in the same document was obtained by setting the single transmittance, that is, the color when measured using only one polarizing element, within an absolute value of 2 in terms of a value and b value in the UCS color space. It is a polarizing element.
  • the polarizing element is obtained by setting the single transmittance, that is, the color when measured using only one polarizing element, within an absolute value of 2 in terms of a value and b value in the UCS color space. It is a polarized light element.
  • the average value of the single transmittance is 31.95% in Example 1 and 31.41% in Example 2, and the transmittance is low, so that the transmittance is high. It did not have sufficient performance in the required fields, particularly in fields such as liquid crystal display devices and organic electroluminescence.
  • the present invention has been made in view of the above problems, and provides a display device capable of realizing high-quality white display, black display, and excellent color display without coloring while having high reflectance.
  • the purpose is.
  • the present inventors have obtained a substrate containing an azo compound and having a polarizing function, which is obtained by measuring the absorption axes of the two substrates in parallel.
  • the average transmittance at 520 nm to 590 nm is 30% or more
  • the absolute value of the difference between the average transmittance at 420 nm to 480 nm and the average transmittance at 520 nm to 590 nm is within 5%
  • the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm is within 5%, and each is obtained by measuring with the absorption axes of the two substrates orthogonal to each other.
  • the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 2%, and the average transmittance of 520 nm to 590 nm and the average of 600 nm to 660 nm.
  • the display device including the base material (A) characterized in that the absolute value of the difference from the transmittance is within 2% expresses high-quality white and black without coloring while having high transmittance.
  • the present invention has been completed by finding that it is possible to provide a display device capable of displaying a sufficient color as a reflective type.
  • the present invention (1) Containing an azo compound or a salt thereof,
  • the average transmittance of 520 nm to 590 nm is 30% or more
  • the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 5%
  • the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm is within 5%.
  • a display characterized by comprising a substrate (A) having a polarizing function, wherein the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm is within 2%. apparatus.
  • the display device according to (2) or (3), wherein the color filter includes a red color layer, a reddish green color layer, a blue color layer, and a blueish green color layer.
  • Substrate (A) In each wavelength transmittance obtained by measuring with the two absorption axes orthogonal to each other, The absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is larger than 0.3%, and The display device according to (1) to (7), wherein the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm is larger than 0.3%.
  • the display device of the present invention can realize high-quality white display, black display, and excellent color display without coloring while having high reflectance.
  • FIG. 2 It is a figure which showed the relationship between the NTSC ratio and the transmittance when light transmitted through a color filter twice. It is a vertical sectional view of the display device which concerns on Example 1.
  • FIG. 2 It is a top view of the color filter of the display device shown in FIG. 2 (a). It is a figure which shows the relationship between the parallel transmittance and the orthogonal transmittance of the polarizing plate made from the same material as the base material (A). It is a figure which showed the relationship between the parallel transmittance and contrast.
  • FIG. It is a vertical sectional view of the display device which concerns on Example 2.
  • FIG. 5A It is a vertical sectional view of the display device which concerns on Example 3.
  • FIG. 6A It is a top view of the color filter of the display device shown in FIG. 6A. It is a vertical sectional view of the display device which concerns on Example 4.
  • FIG. 7A It is a vertical sectional view of the display device which concerns on Example 5.
  • FIG. 7A It is a vertical sectional view of the display device which concerns on Example 6.
  • the present invention is a base material having a polarizing function and containing an azo compound.
  • the average transmittance from 520 nm to 590 nm is 30% or more,
  • the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 5%, and
  • the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm is within 5%.
  • the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 2% in each wavelength transmittance obtained by measuring the absorption axes of the two substrates at right angles.
  • the present invention relates to a display device comprising a base material (A) characterized in that the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm is within 2%.
  • the transmittance of the display device provided with the base material (A) of the present invention includes an average transmittance of 30 for each wavelength of 520 nm to 590 nm obtained by measuring the two absorption axes of the base material (A) in parallel. % Or more. As a result, the display device provided with the base material (A) of the present invention can be bright and have high brightness.
  • each wavelength of 520 nm to 590 nm is the wavelength with the highest visibility based on the color matching function used in the calculation when showing a color in JIS Z 8701, and the transmittance of each wavelength in this range can be visually confirmed. It is important to control the transmittance of each wavelength from 520 nm to 590 nm to 30% or more because the transmittance is close to the available transmittance.
  • the transmittance required for the display device is 30% to 45% as the average transmittance of each wavelength of 520 nm to 590 nm obtained by measuring the two absorption axes of the base material (A) in parallel, and is preferable. It is 35% to 40%, more preferably 36% to 37%.
  • the degree of polarization at that time may be 50% to 100%, preferably 60% to 100%, and more preferably 70% to 100%.
  • a higher degree of polarization is preferable, but a higher degree of polarization tends to reduce the transmittance. Therefore, it is necessary to select a polarizing element having a degree of polarization suitable for the display device in terms of the relationship between the degree of polarization and the transmittance. is there.
  • each wavelength transmittance obtained by measuring the absorption axes of the two substrates (A) in parallel not only the average transmittance of 520 nm to 590 nm but also the average transmittance of 420 nm to 480 nm and 520 nm.
  • the absolute value of the difference from the average transmittance of ⁇ 590 nm is within 5%, and the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm is within 5%. Also needs.
  • Each wavelength of 420 nm to 480 nm, 520 nm to 590 nm, and 590 nm to 660 nm is a main wavelength band based on the color matching function used in the calculation when showing a color in JIS Z 8729.
  • x ( ⁇ ) having a maximum value of 600 nm, y ( ⁇ ) having a maximum value of 550 nm, and 455 nm as a maximum value are used.
  • the wavelengths showing a value of 20 or more are the wavelengths of 420 nm to 480 nm, 520 nm to 590 nm, and 590 nm to 660 nm.
  • the base material (A) having a polarizing function is used as the base material.
  • the adjustment range is the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm in each wavelength transmittance obtained by measuring the two absorption axes of the base material (A) in parallel.
  • the absolute value needs to be within 5%, preferably within 3%.
  • the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 2%, and the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm.
  • the absolute value of is required to be within 2%.
  • the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm Must be within 2%, but preferably within 1%.
  • the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm needs to be within 2%, but is preferably within 1%.
  • the problem in the process is the variation in dyeing when a plurality of azo dyes are mixed and dyed.
  • FIG. 1 shows a diagram showing the relationship between the NTSC ratio and the transmittance when light is transmitted twice through the color filter.
  • the NTSC ratio when light is transmitted twice through the color filter is the chromaticity when light is transmitted twice through each color element of the color filter on the chromaticity (x, y) diagram of the CIE1931XYZ color system.
  • the NTSC ratio of the color filter is set to the NTSC ratio when the light is transmitted twice.
  • the transmittance is low when the NTSC ratio is large, but the transmittance increases as the NTSC ratio is small. Therefore, in order to increase the reflectance of the color reflective liquid crystal display device, the transmittance may be increased, that is, the NTSC ratio may be decreased.
  • the human eye can sufficiently perceive colors even if the NTSC ratio is small.
  • the value of the NTSC ratio at which the human eye can sufficiently perceive the color is 1% to 20%, preferably 1% to 10%, and more preferably 1% to 5%.
  • a color reflective liquid crystal display device that uses a color filter with a small NTSC ratio
  • the reflectance is improved and the sensitivity to the color of the human eye is improved. Therefore, when a conventional polarizing plate is used, coloring occurs in white display and / or black display, and the display quality is deteriorated by visually recognizing it.
  • a color filter with a small NTSC ratio and the base material (A) at the same time in a color reflective liquid crystal display device for the first time, there is no coloring in bright color display with high reflectance and white display and / or black display. We have found that excellent color display can be achieved.
  • a method of increasing the NTSC ratio of the color filter to 1% to 20% a method of reducing the concentration of the dye or pigment forming the color layer, a method of reducing the thickness of the color layer, and a method of forming a transparent region without the color layer are formed. There is a way to do it.
  • the method of forming a transparent region without a color layer it is possible to suppress coloring of the transparent region without a color layer by a polarizing plate, so that the use of the base material (A) is particularly effective.
  • the area of the transparent region without a color layer needs to be 1/4 or more of the area of the total region.
  • the area of the transparent region without the color layer is 1 ⁇ 2 or more of the area of the total region. More preferably, the area of the transparent region without the color layer is 2/3 or more of the area of the total region.
  • the display device By providing the display device with a polarizing element or a polarizing plate provided with the base material (A), it is possible to control the color expression of the display device.
  • the polarizing element or the polarizing plate provided with the base material (A) is provided in the display device as in general usage, the hue based on the polarizing plate can be controlled, and the display device is of high quality when displaying white. It is possible to express white like paper, and when displaying black, it is possible to express jet-black black.
  • the white purity decreases in the transmittance when the polarizing elements are parallel, and the color develops yellow or yellowish green.
  • the black purity is lowered in the transmittance when the polarizing elements are orthogonal to each other, and the color is colored blue. ..
  • a polarizing element having such a hue is provided in the display device, it is natural that the display device colors the hue of the polarizing element.
  • the color of this display device can be optimized by adjusting the spectral distribution of the backlight and the color filter in the conventional transmissive liquid crystal device using the backlight. However, it was necessary to adjust the color of the polarizing plate with a backlight or a color filter.
  • the reflective display device that displays using external light does not have a backlight
  • the yellow color at the time of white display and the blue color at the time of black display are displayed.
  • it cannot be improved with color filters.
  • the polarizing plate when it is used in a display device that uses a polarizing plate to prevent reflection of external light, for example, an organic electroluminescence display device (hereinafter abbreviated as OLED), a plasma display, or the like, the polarizing plate emits light. It is provided together with a retardation plate on the side of the display device that is observed by a person.
  • the formulation of the present invention is also effective for display devices such as OLEDs that want to control such reflected light. That is, in the present invention, the color development caused by the problem of yellow coloration at the time of white display and blue coloration at the time of black display, which is possessed by the conventional polarizing plate, is improved, and it is similar to high-quality paper at the time of white display. Achieved to provide a display device that displays white and jet-black black when displayed in black, and can improve the brightness at the time of display and also improve the contrast, especially in a reflective display. did.
  • an element capable of containing an azo compound particularly a dichroic dye in general
  • an element made of a hydrophilic polymer is used, for example.
  • the hydrophilic polymer is not particularly limited, and examples thereof include polyvinyl alcohol-based resins, amylose-based resins, starch-based resins, cellulosic-based resins, and polyacrylate-based resins.
  • a dichroic dye is contained, a polyvinyl alcohol-based resin and a resin made of a derivative thereof are most preferable from the viewpoint of processability, dyeability, crosslinkability and the like.
  • a polarizing element or a polarizing plate can be produced by using these resins as a film shape, containing the dye of the present invention and a compound thereof, and applying an orientation treatment such as stretching.
  • Non-Patent Document 1 an organic compound as shown in Non-Patent Document 1 can be used.
  • those having high dichroism are preferable.
  • Sea. Ai. direct. Yellow 12 Sea. Ai. direct. Yellow 28, Sea. Ai. direct. Yellow 44, Sea. Ai. direct. Orange 26, Sea. Ai. direct. Orange 39, Sea. Ai. direct. Orange 107, Sea. Ai. direct. Red 2, Sea. Ai. direct. Red 31, Sea. Ai. direct. Red 79, Sea. Ai. direct. Red 81, Sea. Ai. direct. Red 247, Sea. Ai. direct. Green 80, Sea. Ai. direct. Examples thereof include Green 59 and the organic dyes described in JP-A-2001-33627, JP-A-2002-296417, and JP-A-60-156759.
  • organic dyes can be used as alkali metal salts (for example, Na salt, K salt, Li salt), ammonium salts, or amine salts in addition to free acids.
  • the dichroic dye is not limited to these, and a known dichroic dye can be used.
  • the azo compound is a free acid, a salt thereof, or a copper complex salt dye thereof, the optical properties are particularly improved.
  • This azo dye may be used alone or in combination with another azo compound, and the composition is not limited. Using such an azo compound, the transmittance of the polarizing element is measured with the absorption axes of the two substrates (A) parallel to each other, and the average transmittance of 520 nm to 590 nm is 30 at each wavelength transmittance.
  • the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 5%, and the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm.
  • the absolute value of the difference from the average transmittance is within 5%, and the average transmittance of 420 nm to 480 nm is obtained at each wavelength transmittance obtained by measuring the two substrates (A) with the absorption axes orthogonal to each other.
  • the absolute value of the difference between the rate and the average transmittance of 520 nm to 590 nm is within 2%, and the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm is 2%.
  • a polarizing element for realizing the present invention can be produced.
  • a specific method for manufacturing a polarizing element will be described by taking a polyvinyl alcohol-based resin film as an example of an element that can be impregnated with an azo compound.
  • the method for producing the polyvinyl alcohol-based resin is not particularly limited, and the polyvinyl alcohol-based resin can be produced by a known method. As a production method, for example, it can be obtained by saponifying a polyvinyl acetate-based resin.
  • the polyvinyl acetate-based resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • polyvinyl alcohol-based resin examples include, for example, unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids and the like.
  • the degree of saponification of the polyvinyl alcohol-based resin is usually about 85 to 100 mol%, preferably 95 mol% or more.
  • This polyvinyl alcohol-based resin may be further modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used.
  • the degree of polymerization of the polyvinyl alcohol-based resin means the degree of viscosity average polymerization, and can be obtained by a method well known in the art.
  • the viscosity average degree of polymerization is usually about 1000 to 10000, preferably about 1500 to 6000.
  • a film formed from such a polyvinyl alcohol-based resin is used as a raw film.
  • the method for forming the film of the polyvinyl alcohol-based resin is not particularly limited, and the film can be formed by a known method.
  • the polyvinyl alcohol-based resin film may contain glycerin, ethylene glycol, propylene glycol, low molecular weight polyethylene glycol, or the like as a plasticizer.
  • the amount of the plasticizer is 5 to 20% by weight, preferably 8 to 15% by weight.
  • the film thickness of the raw film made of the polyvinyl alcohol-based resin is not particularly limited, but is preferably about 5 ⁇ m to 150 ⁇ m, preferably about 10 ⁇ m to 100 ⁇ m, for example.
  • the raw film obtained as described above is then subjected to a swelling step.
  • the swelling treatment is applied by immersing in a solution at 20 ° C. to 50 ° C. for 30 seconds to 10 minutes.
  • the solution is preferably water.
  • the draw ratio is preferably adjusted from 1.00 to 1.50 times, preferably 1.10 to 1.35 times.
  • the swelling treatment may be omitted because it swells even during the dyeing treatment of the azo compound.
  • the swelling step is performed by immersing the polyvinyl alcohol resin film in a solution at 20 ° C. to 50 ° C. for 30 seconds to 10 minutes.
  • the solution is preferably water.
  • a dyeing process is performed.
  • the dyeing step it can be impregnated with an azo compound (commonly known as a dichroic dye) shown in Non-Patent Document 1 or the like. Since impregnating this azo compound is a step of coloring the color, it is called a dyeing step.
  • the azo compound the dye described in Non-Patent Document 1 or the azo compound represented by the formula (1) or the like can be adsorbed and impregnated on the polyvinyl alcohol film in the dyeing step.
  • a group having the polarization function of the present application is obtained by immersing in an aqueous solution impregnated with iodine and potassium iodide to adsorb iodine, and then adsorbing and impregnating each of the azo compounds represented by the formula (1). It can also be used as the material (A).
  • the azo compound to be adsorbed together with iodine includes the azo compounds shown in Examples 1 to 5 of Japanese Patent Application Laid-Open No. 64-5623 and Examples of JP-A-03-12606. The azo compounds shown in 1 to 4 may be used.
  • a 1 represents a phenyl group or a naphthyl group having a substituent
  • R 1 or R 2 independently have a hydrogen atom, a lower alkyl group, a lower alkoxy group, a sulfo group, or a lower group having a sulfo group. Indicates an alkoxy group, and X 1 indicates a phenylamino group which may have a substituent.
  • the dyeing step is not particularly limited as long as it is a method of adsorbing and impregnating the dye on the polyvinyl alcohol film, but for example, the dyeing step is performed by immersing the polyvinyl alcohol resin film in a solution containing the dichroic dye. ..
  • the solution temperature in this step is preferably 5 to 60 ° C, more preferably 20 to 50 ° C, and particularly preferably 35 to 50 ° C.
  • the time of immersion in the solution can be appropriately adjusted, but is preferably adjusted to 30 seconds to 20 minutes, more preferably 1 to 10 minutes.
  • the dyeing method is preferably immersed in the solution, but it can also be performed by applying the solution to a polyvinyl alcohol resin film.
  • the solution containing the dichroic dye can contain sodium carbonate, sodium hydrogen carbonate, sodium chloride, sodium sulfate, anhydrous sodium sulfate, sodium tripolyphosphate, etc. as a dyeing aid.
  • the content thereof can be adjusted at an arbitrary concentration depending on the time and temperature depending on the dyeability of the dye, and the respective contents are preferably 0 to 5% by weight, more preferably 0.1 to 2% by weight.
  • the azo compound which is a dichroic dye described in Non-Patent Document 1 and the azo compound represented by the formula (1) are used as a free acid and may be a salt of the compound.
  • Such salts can also be used as alkali metal salts such as lithium salts, sodium salts and potassium salts, or organic salts such as ammonium salts and alkylamine salts.
  • a sodium salt is preferred.
  • the cleaning process (hereinafter referred to as cleaning process 1) can be performed before starting the next process.
  • the cleaning step 1 is a step of cleaning the dye solvent adhering to the surface of the polyvinyl alcohol resin film in the dyeing step. By performing the washing step 1, it is possible to suppress the transfer of the dye into the liquid to be treated next.
  • water is generally used as the cleaning solution.
  • the cleaning method is preferably immersed in a solvent, but cleaning can also be performed by applying a cleaning solution to a polyvinyl alcohol resin film.
  • the washing time is not particularly limited, but is preferably 1 to 300 seconds, more preferably 1 to 60 seconds.
  • the temperature of the cleaning solution in the cleaning step 1 needs to be a temperature at which the hydrophilic polymer does not dissolve. Generally, it is washed at 5 to 40 ° C. However, since there is no problem in performance even if the cleaning step 1 is not performed, this step can be omitted.
  • a step of adding a cross-linking agent and / or a water resistant agent can be performed.
  • the cross-linking agent include a boron compound such as boric acid, boric acid or ammonium borate, a polyvalent aldehyde such as glyoxal or glutaraldehyde, a polyvalent isocyanate compound such as biuret type, isocyanurate type or block type, and titanium oxy. Titanium-based compounds such as sulfate can be used, but ethylene glycol glycidyl ether, polyamide epichlorohydrin and the like can also be used.
  • water resistant agent examples include succinic acid peroxide, ammonium persulfate, calcium perchlorate, benzoin ethyl ether, ethylene glycol diglycidyl ether, glycerin diglycidyl ether, ammonium chloride, magnesium chloride and the like, but boric acid is preferable. Used. A step of incorporating the cross-linking agent and / or the water-resistant agent using at least one or more of the cross-linking agents and / or the water-resistant agents shown above is performed.
  • the solvent at that time is preferably, but not limited to, water.
  • the concentration of the cross-linking agent and / or the water-resistant agent in the solvent in the step of containing the cross-linking agent and / or the water-resistant agent is 0.1 to 6.0 with respect to the solvent when boric acid is taken as an example. By weight% is preferable, and 1.0 to 4.0% by weight is more preferable.
  • the solvent temperature in this step is preferably 5 to 70 ° C, more preferably 5 to 50 ° C.
  • the method of impregnating the polyvinyl alcohol resin film with a cross-linking agent and / or a water resistant agent is preferably to immerse the solution in a solvent, but the solution may be applied or applied to the polyvinyl alcohol resin film.
  • the treatment time in this step is preferably 30 seconds to 6 minutes, more preferably 1 to 5 minutes. However, it is not essential to contain a cross-linking agent and / or a water-resistant agent, and if it is desired to shorten the time and the cross-linking treatment or the water-resistant treatment is unnecessary, this treatment step may be omitted. ..
  • the stretching step is a step of stretching the polyvinyl alcohol film uniaxially.
  • the stretching method may be either a wet stretching method or a dry stretching method, and the present invention can be achieved when the stretching ratio is 3 times or more.
  • the stretching ratio is preferably 3 times or more, preferably 5 to 7 times.
  • the stretching heating medium when the stretching heating medium is an air medium, the temperature of the air medium is preferably room temperature to 180 ° C. Further, the humidity is preferably treated in an atmosphere of 20 to 95% RH.
  • the heating method include an inter-roll zone stretching method, a roll heating stretching method, a pressure stretching method, an infrared heating stretching method, and the like, but the stretching method is not limited.
  • the stretching step can be carried out in one step, but can also be carried out by multi-step stretching in two or more steps.
  • stretching is performed in water, a water-soluble organic solvent, or a mixed solution thereof. It is preferable to carry out the stretching treatment while immersing in a solution containing a cross-linking agent and / or a water resistant agent.
  • a cross-linking agent include a boron compound such as boric acid, boric acid or ammonium borate, a polyvalent aldehyde such as glyoxal or glutaraldehyde, a polyvalent isocyanate compound such as biuret type, isocyanurate type or block type, and titanium oxy.
  • Titanium-based compounds such as sulfate can be used, but ethylene glycol glycidyl ether, polyamide epichlorohydrin and the like can also be used.
  • water resistant agent include succinic acid peroxide, ammonium persulfate, calcium perchlorate, benzoin ethyl ether, ethylene glycol diglycidyl ether, glycerin diglycidyl ether, ammonium chloride and magnesium chloride.
  • Stretching is performed in a solution containing at least one of the above-mentioned cross-linking agents and / or water resistant agents. Boric acid is preferable as the cross-linking agent.
  • the concentration of the cross-linking agent and / or the water resistant agent in the stretching step is preferably, for example, 0.5 to 15% by weight, more preferably 2.0 to 8.0% by weight.
  • the draw ratio is preferably 2 to 8 times, more preferably 5 to 7 times.
  • the stretching temperature is preferably 40 to 60 ° C, more preferably 45 to 58 ° C.
  • the stretching time is usually 30 seconds to 20 minutes, but more preferably 2 to 5 minutes.
  • the wet stretching step can be carried out in one step, but it can also be carried out by multi-step stretching in two or more steps.
  • stretching is performed in water, a water-soluble organic solvent, or a mixed solution thereof. It is preferable to carry out the stretching treatment while immersing in a solution containing a cross-linking agent and / or a water resistant agent.
  • a cross-linking agent include a boron compound such as boric acid, boric acid or ammonium borate, a polyvalent aldehyde such as glyoxal or glutaraldehyde, a polyvalent isocyanate compound such as biuret type, isocyanurate type or block type, and titanium oxy.
  • Titanium-based compounds such as sulfate can be used, but ethylene glycol glycidyl ether, polyamide epichlorohydrin and the like can also be used.
  • water resistant agent include succinic acid peroxide, ammonium persulfate, calcium perchlorate, benzoin ethyl ether, ethylene glycol diglycidyl ether, glycerin diglycidyl ether, ammonium chloride and magnesium chloride.
  • Stretching is performed in a solution containing at least one of the above-mentioned cross-linking agents and / or water resistant agents. Boric acid is preferable as the cross-linking agent.
  • the concentration of the cross-linking agent and / or the water resistant agent in the stretching step is preferably, for example, 0.5 to 15% by weight, more preferably 2.0 to 8.0% by weight.
  • the draw ratio is preferably 2 to 8 times, more preferably 5 to 7 times.
  • the stretching temperature is preferably 40 to 60 ° C, more preferably 45 to 58 ° C.
  • the stretching time is usually 30 seconds to 20 minutes, but more preferably 2 to 5 minutes.
  • the wet stretching step can be carried out in one step, but it can also be carried out by multi-step stretching in two or more steps.
  • a cleaning step for cleaning the film surface may be performed. It can.
  • the washing time is preferably 1 second to 5 minutes.
  • the cleaning method is preferably to immerse in a cleaning solution, but the solution can be washed by coating or coating on a polyvinyl alcohol resin film.
  • the cleaning treatment can be performed in one stage, or the multi-stage treatment in two or more stages can be performed.
  • the solution temperature in the washing step is not particularly limited, but is usually 5 to 50 ° C, preferably 10 to 40 ° C.
  • Examples of the solvent used in the treatment steps up to this point include water, dimethylsulfoxide, N-methylpyrrolidone, methanol, ethanol, propanol, isopropyl alcohol, glycerin, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol or tri.
  • Examples thereof include alcohols such as methylolpropane and solvents such as amines such as ethylenediamine or diethylenetriamine, but the present invention is not limited thereto. It is also possible to use a mixture of one or more of these solvents.
  • the most preferred solvent is water.
  • the film drying step is performed.
  • the drying treatment can be carried out by natural drying, but in order to further improve the drying efficiency, the surface moisture can be removed by compression with a roll, an air knife, a water absorption roll or the like, and / or air drying is performed. You can also do it.
  • the drying treatment temperature is preferably 20 to 100 ° C., more preferably 60 to 100 ° C.
  • the drying treatment time can be applied from 30 seconds to 20 minutes, but is preferably 5 to 10 minutes.
  • the transmittance of the substrate (A) having a polarizing function that is, the transmittance obtained by containing the azo compound and measuring the two absorption axes of the substrate (A) in parallel, is 520 nm.
  • the average transmittance of about 590 nm is 30% or more, the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 5%, and the average of 520 nm to 590 nm.
  • the absolute value of the difference between the transmittance and the average transmittance of 590 nm to 660 nm is within 5%, and each wavelength transmittance obtained by measuring the absorption axes of the two substrates (A) at orthogonal angles.
  • the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 2%, and the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm. It is possible to obtain a polarizing element in which the absolute value of the difference between the two is within 2%.
  • the obtained polarizing element is used as a polarizing plate by providing a transparent protective layer on one side or both sides thereof.
  • the transparent protective layer can be provided as a coating layer made of a polymer or as a laminated layer of a film.
  • a transparent polymer or film forming the transparent protective layer a transparent polymer or film having high mechanical strength and good thermal stability is preferable.
  • the substance used as the transparent protective layer include cellulose acetate resins such as triacetyl cellulose and diacetyl cellulose or films thereof, acrylic resins or films thereof, polyvinyl chloride resins or films thereof, nylon resins or films thereof, polyester resins or films thereof.
  • a resin having a liquid crystal property or a film thereof may be provided as the transparent protective layer.
  • the thickness of the protective film is, for example, about 0.5 to 200 ⁇ m.
  • a polarizing plate is produced by providing one or more layers of the same or different resin or film therein on one side or both sides.
  • the viewing angle is improved and / or on the surface of a protective layer or film which will be a non-exposed surface later.
  • a display device such as a liquid crystal or an organic electroluminescence (commonly known as OLED or OEL)
  • OLED or OEL organic electroluminescence
  • various functional layers for improving contrast, a layer having brightness improving property, or a film may be provided. It is preferable to use an adhesive to attach the polarizing plate to these films and display devices.
  • the various functional layers indicate a layer or a film that controls the phase difference.
  • a polarizing element or a polarizing plate is provided with a retardation plate (hereinafter, 1 / 4 ⁇ ) adjusted to have a phase difference of 1/4 with respect to 550 nm, which has high visibility.
  • a retardation plate hereinafter, 1 / 4 ⁇
  • the 1 / 4 ⁇ retardation value is a retardation plate adjusted to 120 nm to 160 nm, preferably 130 nm to 145 nm.
  • a retardation plate adjusted to a retardation value of 240 nm to 300 nm in order to further improve the antireflection function (hereinafter, 1).
  • this polarizing plate may have various known functional layers such as an antireflection layer, an antiglare layer, and a hard coat layer on the other surface, that is, the protective layer or the exposed surface of the film.
  • a coating method is preferable for producing layers having various functions, but a film having the functions can also be attached via an adhesive or an adhesive.
  • the average transmittance of 520 nm to 590 nm is 30% or more in each wavelength transmittance obtained by containing the azo compound and measuring the two absorption axes of the base material (A) in parallel.
  • the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 5%, and the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm.
  • the absolute value of the difference is within 5%, and the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 520 nm in each wavelength transmittance obtained by measuring the two base materials (A) with the absorption axes orthogonal to each other.
  • a polarizing plate can be obtained.
  • the liquid crystal display device using the polarizing element or the polarizing plate of the present invention can be bright and have high brightness.
  • the result is a liquid crystal display device that is highly reliable, has high contrast over the long term, and has high color reproducibility.
  • the polarizing plate of the present invention is used as a base material (A) having a polarizing function by providing a protective layer or a functional layer and a support such as flat glass as necessary, and is used as a liquid crystal projector, a calculator, a clock, a notebook, etc. It is used in personal computers, word processors, LCD TVs, polarized lenses, polarized glasses, car navigation systems, and indoor and outdoor measuring instruments and displays. In particular, it is suitable for a reflective liquid crystal display device, a transflective liquid crystal display device, an organic electroluminescence, and the like.
  • a general reflective liquid crystal display device has a structure of a reflector, a polarizing plate, a liquid crystal cell, and a polarizing plate in order from the back side, and in order to improve the display quality, a light diffusing plate or a retardation plate (a retardation plate) or a retardation plate (for example, it is a general configuration to use 1 / 4 ⁇ ).
  • a diffuse reflector for the general configuration, using the base material (A) having a polarization function of the present application, a diffuse reflector, a base material (A) having a polarization function, a liquid crystal cell, and a group having a polarization function are used in this order from the back side.
  • the light diffusing plate is generally provided between the reflecting plate and the polarizing plate on the back side, but the laminated structure is not limited as long as the light diffusing effect is obtained.
  • a method such as a single polarizing plate method (SPD mode) as shown in Non-Patent Document 3 and a configuration as shown in Non-Patent Document 4 have been reported.
  • SPD mode single polarizing plate method
  • a white display in which a yellow color is developed is obtained in a white display, and conversely, an attempt is made to display a high-quality paper-like white color. Then, when displaying black, it turned blue.
  • the transmittance is constant and there is no wavelength dependence of the transmittance at each wavelength, it is particularly effective for a black-and-white reflective display whose color cannot be corrected by a color filter.
  • the base material (A) having the present polarization function has a required transmittance range of the average transmittance of each wavelength of 520 nm to 590 nm obtained by measuring the absorption axes of the two base materials in parallel. Since the transmittance can be adjusted arbitrarily from 25% to 45%, it can be achieved that the brightness at the time of display can be improved and the contrast can also be improved.
  • a base material (A) having a polarizing function is laminated with a reflective polarizing plate with a liquid crystal cell sandwiched therein, and a base material having a light diffusing function is provided, and the polarizing function is provided.
  • the reflective polarizing plate includes a polarizer having regular irregularities as exemplified in Japanese Patent No. 4162645 and Japanese Patent No. 4442760, and thermoplastics such as JP-A-2006-215175 and JP-A-2007-298634. It is possible to use an alternating laminated type of resin, a BEF series manufactured by 3M, particularly a DBEF series, or a resin molding type having a special shape such as BEFRP.
  • an anisotropic light diffusing plate as described in Japanese Patent Application Laid-Open No. 2012-37611 can also be used as a reflective polarizing plate because it has a polarization function by anisotropic light diffusion.
  • This anisotropic light diffuser has an anisotropic light diffuser in an exemplary configuration of a reflector, a liquid crystal cell, a retardation plate (for example, 1 / 4 ⁇ ), and a base material (A) having a polarizing function in this order from the back surface side. It may be provided between the reflector and the liquid crystal cell, between the liquid crystal cell and the retardation plate, or between the retardation plate and the polarizing plate.
  • a reflective liquid crystal display device in which a base material having a light diffusion function is provided between a base material (A) having a polarization function and a liquid crystal cell, and the electrode of the liquid crystal cell is a specular reflection type electrode.
  • a reflective electrode, a liquid crystal cell, a light diffusing plate, and a base material (A) having a polarizing function are configured in this order from the back surface side.
  • a retardation plate may be provided between any of the layers.
  • the active matrix type reflective display is suitably used for a reflective color liquid crystal display device, it is easily affected by the color of the polarizing element or the polarizing plate, and is wavelength-dependent in each wavelength transmittance of the parallel position and the orthogonal position.
  • a substrate having no property, having a substantially constant transmittance, no color shift, and a high degree of polarization is required.
  • the base material (A) having a polarizing function is effective, and the display device provided with the base material (A) becomes a display device having a very high color rendering property.
  • the electrode of the liquid crystal cell is made uneven by resin or the like, and an aluminum electrode is used without using a transparent ITO electrode.
  • the display quality can be further improved.
  • a diffusion type reflective electrode, a liquid crystal cell, and a base material (A) having a polarizing function are configured in this order from the back surface side.
  • a retardation plate may be provided between any of the layers.
  • a base material having a light diffusing function may be provided between any of the layers, and further light diffusing property may be provided to improve visibility.
  • a display device can be provided.
  • the base material (A) having a polarizing function has an average transmittance of each wavelength of 520 nm to 590 nm obtained by measuring the absorption axes of the two base materials (A) in parallel as the range of transmittance. Since the transmittance can be adjusted arbitrarily from 25% to 45%, it is possible to improve the brightness at the time of display and also to improve the contrast. Further, depending on the configuration of the reflective liquid crystal, the display quality can be improved to each stage.
  • FIG. 2A is a vertical cross-sectional view of the display device of the first embodiment, in which the base material (A) 1, the retardation plate 2, and the top surface (observer side) of the display device (hereinafter, simply referred to as the top surface) are used.
  • a diffuser plate 3, a first glass substrate 4, a color filter 5, a counter electrode (ITO6), a liquid crystal layer 7, a reflector / pixel electrode (Al) 8, and a second glass substrate 9 are arranged.
  • the aspect ratio of the drawing is different from the actual ratio for the sake of clarity.
  • the parts with the same reference numerals represent the same products.
  • 2B is a plan view of the color filter 5, and shows that the color filter 5 is composed of pixel elements of red 5a, green 5b, and blue 5c. In an actual display device, the period of this red, green, and blue pattern is repeated by the number of pixels.
  • the base material (A) 1 is a dye-based polarizing plate obtained by dyeing PVA with a dye.
  • FIG. 3 is a diagram showing the relationship between the parallel transmittance and the orthogonal transmittance of a polarizing plate made of the same material as the base material (A) 1. That is, a dye-based polarizing plate is produced by adjusting the dyeing concentration with the same material as the base material (A) 1 used, and the transmittance (parallel) obtained by measuring the absorption axes of the two polarizing plates in parallel.
  • FIG. 4 is a diagram showing the relationship between parallel transmittance and contrast. From FIG. 4, it can be seen that the contrast decreases as the parallel transmittance increases.
  • the parallel transmittance of the base material (A) 1 was adjusted to a value of 36% to 39% because the contrast of the polarizing plate needs to be 10 or more and the decrease in reflectance is suppressed.
  • the NTSC ratio of the color filter was adjusted to 5% to 15% so that a reflectance of 20% or more could be obtained and a good color display could be realized.
  • the product of the transmittance of the color filter and the parallel transmittance of the base material (A) 1 is the largest factor.
  • the transmittance of the color filter is 70 to 90 when the NTSC ratio of the color filter is 5% to 15%. %, A reflectance of 20% or more can be obtained, and a good color display can be realized.
  • the color filter can adjust the color depth by changing the layer thickness and the pigment density.
  • the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is 1.0% to 2%
  • the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm is 1.0% to 2.0%.
  • FIG. 5A is a vertical sectional view of the display device of the second embodiment, and is a collar provided with a base material (A) 1, a retardation plate 2, a diffusion plate 3, a glass substrate 4, and a transparent region in this order from the top surface.
  • a filter 51, a counter electrode (ITO) 6, a liquid crystal layer 7, a reflector / pixel electrode (Al) 8, and a second glass substrate 9 are arranged.
  • the aspect ratio of the drawing is different from the actual ratio in order to make the effect easy to understand.
  • FIG. 5B is a plan view of the color filter 51 provided with a transparent region, and shows that the color filter 51 is composed of pixel elements of red 51a, green 51b, and blue 51c.
  • Each color of the color filter 51 is provided with a transparent region without a color layer as a part of each color region.
  • the NTSC ratio of the color filter 51 can be adjusted in the range of 1% to 20%, and the reflectance can be increased. It is more preferable that the transparent region is provided in the central portion because there is less variation during production. Then, by using the base material (A) 1, coloring of the transparent region formed on the color filter 51 is also prevented, and high-quality white display and black display without coloring while having high reflectance are displayed. And excellent color display can be realized.
  • Example 3 of the present invention is shown in FIGS. 6 (a) and 6 (b).
  • Example 3 of the present invention has a different pixel configuration from that of Example 2, and is composed of red, green, blue, and transparent pixels.
  • transparent pixels 52d without a color layer are formed.
  • the NTSC ratio becomes as small as 1% to 20%, the reflectance is improved, and a bright display becomes possible.
  • each color layer 52a to 52c and the transparent pixel 52d substantially square and arranging them in a U-shape, the invalid area becomes smaller than when they are arranged side by side, the aperture ratio can be increased, and the reflection becomes possible. It is possible to realize a high-rate color display. Further, by using the base material (A) 1, coloring of the transparent pixel 52d formed on the color filter 52 is prevented, and high-quality white display and black display without coloring while having high reflectance are displayed. And excellent color display can be realized.
  • Example 4 of the present invention is shown in FIGS. 7 (a) and 7 (b).
  • the pixel configuration is different from that of Examples 2 and 3, and it is composed of semi-transparent pixels of red, green closer to red, blue, and green closer to blue.
  • the color filter 53 includes a color layer of red 53a, reddish green 53b, blue 53c, and blued green 53d.
  • red 53a, reddish green 53b, blue 53c, and blued green 53d are provided with a transparent region without a color layer as a part of each color layer, and the area of the transparent region is changed.
  • the NTSC ratio of the color filter 53 can be adjusted in the range of 1% to 20% without changing the material and thickness of the color filter 53, and the reflectance can be increased.
  • each of the four pixels approximately square and arranging them in a U-shape, the invalid area is smaller than when they are arranged side by side, the aperture ratio can be increased, and a color display with high reflectance is realized. can do.
  • the base material (A) coloring of the transparent region formed on the color filter 53 is prevented, and high-quality white display and black display without coloring while having high reflectance and black display and Excellent color display can be realized.
  • Example 5 of the present invention is shown in FIG.
  • the reflector / display electrode (Al) having the diffused shape 81 formed is formed. Due to the diffusing function of the reflector and the effect of the diffusing plate 3, external light can be diffused over a wider range.
  • Example 6 of the present invention is shown in FIG.
  • the reflector 10 is arranged on the back surface side of the display device, and the second base material 11 and the second glass substrate 9 are arranged in this order on the reflector 10.
  • a transparent pixel electrode (ITO or IZO) 82 is arranged on the second glass substrate 9.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Provided is a display device including a substrate (A) having a polarizing function, in which in the transmittance obtained by measuring the absorption axes of two substrates in parallel, the average transmittance at 520 nm to 590 nm is 30% or more, the absolute value of a difference between the average transmittance at 420 nm to 480 nm and the average transmittance at 520 nm to 590 nm is within 5%, and the absolute value of a difference between the average transmittance at 520 nm to 590 nm and the average transmittance at 590 nm to 660 nm is within 5%, and in each wavelength transmittance obtained by measuring the absorption axes of the two substrates orthogonally, the absolute value of a difference between the average transmittance at 420 nm to 480 nm and the average transmittance at 520 nm to 590 nm is within 2%, and the absolute value of a difference between the average transmittance at 520 nm to 590 nm and the average transmittance at 600 nm to 660 nm is within 2%.

Description

液晶表示装置Liquid crystal display device
 本発明は、液晶表示装置に関するものである。 The present invention relates to a liquid crystal display device.
 偏光素子は一般的に、二色性色素であるヨウ素又は二色性染料をポリビニルアルコール樹脂フィルムに吸着配向させることにより製造されている。この偏光素子の少なくとも片面に接着剤層を介してトリアセチルセルロースなどからなる保護フィルムを貼合して偏光板とされ、液晶表示装置などに用いられる。二色性色素としてヨウ素を用いた偏光板はヨウ素系偏光板と呼ばれ、一方、二色性色素として二色性染料を用いた偏光板は染料系偏光板と呼ばれる。これらのうち染料系偏光板は、高耐熱性、高湿熱耐久性、高安定性を有し、また、配合による色の選択性が高いという特徴がある一方で、同じコントラストを有するヨウ素系偏光板に比べると透過率が低いという問題点があった。そのため、高い耐久性を維持し、色の選択性が多様であって、より高い透過率を実現することが困難とされていた。 The polarizing element is generally manufactured by adsorbing and orienting iodine or a dichroic dye, which is a dichroic dye, on a polyvinyl alcohol resin film. A protective film made of triacetyl cellulose or the like is attached to at least one surface of the polarizing element via an adhesive layer to form a polarizing plate, which is used in liquid crystal display devices and the like. A polarizing plate using iodine as a dichroic dye is called an iodine-based polarizing plate, while a polarizing plate using a dichroic dye as a dichroic dye is called a dye-based polarizing plate. Of these, dye-based polarizing plates have high heat resistance, high humidity heat durability, and high stability, and are characterized by high color selectivity depending on the composition, while iodine-based polarizing plates having the same contrast. There was a problem that the transmittance was lower than that of. Therefore, it has been difficult to maintain high durability, have various color selectivity, and achieve higher transmittance.
 しかしながら、そういった色の選択性が多様である染料系偏光板であっても、これまでの偏光素子は吸収軸を平行に設置すると黄色味を呈する偏光素子である。また、一方のヨウ素系偏光板の色は吸収軸を平行に設置すると黄緑、吸収軸を直交に設置すると青色を呈色する偏光素子であり、そういった偏光板を表示装置(以下、またはディスプレイとも表記する)に用いる場合には、その偏光素子の色が表示特性に大きく影響を与える。特に、液晶を用いた表示装置においては、少なくとも液晶セルを介して観察者側に偏光素子を一枚設けることが必須である。そのため、その偏光板の色が観察者から確認できることは明瞭である。しかしながら、そういった偏光素子の波長特性による発色はディスプレイの表示特性に大きく影響を与える要素の一つであり、バックライトを用いた従来の透過型液晶デバイスでは、バックライトのスペクトル分布やカラーフィルターの調整により表示色を最適化する必要がある。 However, even with dye-based polarizing plates having various color selectivity, conventional polarizing elements are polarizing elements that exhibit a yellowish tinge when the absorption axes are installed in parallel. In addition, the color of one iodine-based polarizing plate is a polarizing element that develops yellow-green when the absorption axes are installed in parallel and blue when the absorption axes are installed orthogonally. When used in (notation), the color of the polarizing element has a great influence on the display characteristics. In particular, in a display device using a liquid crystal, it is essential to provide at least one polarizing element on the observer side via a liquid crystal cell. Therefore, it is clear that the color of the polarizing plate can be confirmed by the observer. However, the color development due to the wavelength characteristics of such a polarizing element is one of the factors that greatly affect the display characteristics of the display, and in the conventional transmissive liquid crystal device using the backlight, the spectrum distribution of the backlight and the adjustment of the color filter are performed. It is necessary to optimize the display color.
 一方で、周囲光を利用する表示装置、特に反射型液晶デバイスでは、透過型ディスプレイのように光源のスペクトルを調整することができないため、偏光板の波長特性がそのまま表示色となる。このことから、偏光板の波長特性の改善が重要な課題となっていた。これまでの反射型の液晶デバイスは白表示がやや黄色がかり、黒表示が、青色がかったものとなる。そのため他の反射型デバイス(電子ペーパーディスプレイ等)と比較して、表示品位が劣ったものと見なされてきた。 On the other hand, in a display device that uses ambient light, especially a reflective liquid crystal device, the spectrum of the light source cannot be adjusted unlike a transmissive display, so the wavelength characteristic of the polarizing plate becomes the display color as it is. For this reason, improvement of the wavelength characteristics of the polarizing plate has been an important issue. Conventional reflective liquid crystal devices have a slightly yellowish white display and a bluish black display. Therefore, it has been regarded as inferior in display quality as compared with other reflective devices (electronic paper displays, etc.).
 また、ディスプレイの表示性能を改善する偏光板として、カラーフィルターのスペクトルの調整や粘着剤等に色素を混ぜて表示色を調整する手法を用いた偏光板が、提案されている。しかしながら、いずれも偏光板の透過率を低下させる結果となり、コストも掛かることから、大いに改善が求められている。また、偏光板の波長特性の改善も行われているが、一般的に用いられているヨウ素系偏光板では透過スペクトル(吸収軸が平行時)を各波長で均一にすると、直交時において短波長に光の漏れが生じ、十分な表示を行うことができなかった。この偏光板の色相を改善する方法として、特許文献1または特許文献2のような技術が開示されている。 Further, as a polarizing plate for improving the display performance of a display, a polarizing plate using a method of adjusting the spectrum of a color filter or mixing a dye with an adhesive or the like to adjust the display color has been proposed. However, all of them result in lowering the transmittance of the polarizing plate and are costly, so that great improvement is required. In addition, although the wavelength characteristics of the polarizing plate have been improved, in the commonly used iodine-based polarizing plate, if the transmission spectrum (when the absorption axes are parallel) is made uniform at each wavelength, the wavelength is short when orthogonal. Light leaked to the light, and sufficient display could not be performed. As a method for improving the hue of this polarizing plate, techniques such as Patent Document 1 or Patent Document 2 are disclosed.
 特許文献1は、ニュートラル係数を算出し、絶対値が0乃至3である偏光板を開示している。特許文献2は、410nm乃至750nmの透過率において、平均値の±30%以内であり、ヨウ素に加えて、直接染料、反応染料、または酸性染料を添加して調整してなる偏光素子を開示している。同文献に開示の偏光素子は、単体透過率、つまりは、偏光素子を1枚のみを用いて測定した時の色をUCS色空間におけるa値、b値で絶対値2以内にして得られた偏光素子である。 Patent Document 1 discloses a polarizing plate having a neutral coefficient calculated and an absolute value of 0 to 3. Patent Document 2 discloses a polarizing element that has a transmittance of 410 nm to 750 nm and is within ± 30% of the average value, and is adjusted by directly adding a dye, a reactive dye, or an acid dye in addition to iodine. ing. The polarizing element disclosed in the same document was obtained by setting the single transmittance, that is, the color when measured using only one polarizing element, within an absolute value of 2 in terms of a value and b value in the UCS color space. It is a polarizing element.
特許第4281261号公報Japanese Patent No. 4281261 特許第3357803号公報Japanese Patent No. 3357803
 しかしながら、特許文献1では、実施例から分かるように、ニュートラル係数(Np)が低くても、JIS Z 8729から求められる平行位の色相だけでもa*値がー2乃至-1、かつ、b*値が2.5乃至4.0であることから、色としては白表現時に黄緑色を呈していることが分かる。また、直交位の色相はa*値が0乃至1ではあるが、b*値が-1.5乃至-4.0であることから、青色を呈している偏光板になってしまっていた。 However, in Patent Document 1, as can be seen from the examples, even if the neutral coefficient (Np) is low, the a * value is -2 to -1 and b * is obtained only by the parallel hue obtained from JIS Z 8729. Since the value is 2.5 to 4.0, it can be seen that the color is yellowish green when expressed in white. Further, the hue at the orthogonal position has an a * value of 0 to 1, but a b * value of −1.5 to -4.0, so that the polarizing plate has a blue color.
 また、特許文献2では、偏光素子は、単体透過率、つまりは、偏光素子を1枚のみを用いて測定した時の色をUCS色空間におけるa値、b値で絶対値2以内にして得られた偏光素子である。しかしながら、偏光板を2枚用いて白表示時(平行にした場合)および黒表示時(直交にした場合)の色相を同時に無彩色が表現できるものではない。また、実施例を見ればわかるように、その単体透過率の平均値は、実施例1で31.95%、実施例2で31.41%であり、透過率が低いため、高透過率を求められる分野、特に、液晶表示装置、有機エレクトロルミネッセンスなどの分野では十分な性能を有するものではなかった。 Further, in Patent Document 2, the polarizing element is obtained by setting the single transmittance, that is, the color when measured using only one polarizing element, within an absolute value of 2 in terms of a value and b value in the UCS color space. It is a polarized light element. However, it is not possible to express an achromatic color at the same time by using two polarizing plates to simultaneously express the hues of white display (when parallel) and black display (when orthogonal). Further, as can be seen from the examples, the average value of the single transmittance is 31.95% in Example 1 and 31.41% in Example 2, and the transmittance is low, so that the transmittance is high. It did not have sufficient performance in the required fields, particularly in fields such as liquid crystal display devices and organic electroluminescence.
 そこで、本発明は、上記課題に鑑みてなされたものであり、高い反射率を有しながらも、着色のない高品位な白表示と黒表示及び優れたカラー表示が実現できる表示装置を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and provides a display device capable of realizing high-quality white display, black display, and excellent color display without coloring while having high reflectance. The purpose is.
 本発明者らは前記課題を解決すべく鋭意検討の結果、アゾ化合物を含有してなる偏光機能を有する基材であって、基材2枚の吸収軸を平行にして測定して得られる各波長透過率において、520nm乃至590nmの平均透過率が30%以上であって、420nm乃至480nmの平均透過率と、520nm乃至590nmの平均透過率との差の絶対値が5%以内であり、かつ、520nm乃至590nmの平均透過率と、590nm乃至660nmの平均透過率との差の絶対値が5%以内であって、さらに、基材2枚の吸収軸を直交にして測定して得られる各波長透過率において、420nm乃至480nmの平均透過率と、520nm乃至590nmの平均透過率との差の絶対値が2%以内であり、かつ、520nm乃至590nmの平均透過率と、600nm乃至660nmの平均透過率との差の絶対値が2%以内であることを特徴とする基材(A)を備える表示装置は、高い反射率を有しながらも、着色のない高品位な白色と黒色を表現でき、かつ、反射型として十分なカラー表示が可能な表示装置を提供できることを見出し、本発明を完成した。 As a result of diligent studies to solve the above problems, the present inventors have obtained a substrate containing an azo compound and having a polarizing function, which is obtained by measuring the absorption axes of the two substrates in parallel. In terms of wavelength transmittance, the average transmittance at 520 nm to 590 nm is 30% or more, the absolute value of the difference between the average transmittance at 420 nm to 480 nm and the average transmittance at 520 nm to 590 nm is within 5%, and The absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm is within 5%, and each is obtained by measuring with the absorption axes of the two substrates orthogonal to each other. In terms of wavelength transmittance, the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 2%, and the average transmittance of 520 nm to 590 nm and the average of 600 nm to 660 nm. The display device including the base material (A) characterized in that the absolute value of the difference from the transmittance is within 2% expresses high-quality white and black without coloring while having high transmittance. The present invention has been completed by finding that it is possible to provide a display device capable of displaying a sufficient color as a reflective type.
 すなわち、本発明は、
 (1)アゾ化合物またはその塩を含有し、
 基材2枚の吸収軸を平行にして測定して得られる透過率において、
 520nm乃至590nmの平均透過率が30%以上であって、
 420nm乃至480nmの平均透過率と、520nm乃至590nmの平均透過率との差の絶対値が5%以内であり、かつ、
 520nm乃至590nmの平均透過率と、590nm乃至660nmの平均透過率との差の絶対値が5%以内であって、
 さらに、基材2枚の吸収軸を直交にして測定して得られる各波長透過率において、
 420nm乃至480nmの平均透過率と、520nm乃至590nmの平均透過率との差の絶対値が2%以内であり、かつ、
 520nm乃至590nmの平均透過率と、600nm乃至660nmの平均透過率との差の絶対値が2%以内であることを特徴とする偏光機能を有する基材(A)を備えることを特徴とする表示装置。
That is, the present invention
(1) Containing an azo compound or a salt thereof,
In the transmittance obtained by measuring the absorption axes of two substrates in parallel,
The average transmittance of 520 nm to 590 nm is 30% or more,
The absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 5%, and
The absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm is within 5%.
Further, in each wavelength transmittance obtained by measuring the absorption axes of the two base materials at right angles,
The absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 2%, and
A display characterized by comprising a substrate (A) having a polarizing function, wherein the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm is within 2%. apparatus.
 (2)カラーフィルターを備えることを特徴とする(1)に記載の表示装置。 (2) The display device according to (1), which comprises a color filter.
 (3)カラーフィルターを光が2回透過したときのNTSC比は、1から20であることを特徴とする(2)に記載の表示装置。 (3) The display device according to (2), wherein the NTSC ratio when light is transmitted twice through the color filter is 1 to 20.
 (4)カラーフィルターは、赤色カラー層、緑色カラー層、および青色カラー層を含むことを特徴とする(2)または(3)に記載の表示装置。 (4) The display device according to (2) or (3), wherein the color filter includes a red color layer, a green color layer, and a blue color layer.
 (5)カラーフィルターは、赤色カラー層、赤寄りの緑色カラー層、青色カラー層、および青寄りの緑色カラー層を含むことを特徴とする(2)または(3)に記載の表示装置。 (5) The display device according to (2) or (3), wherein the color filter includes a red color layer, a reddish green color layer, a blue color layer, and a blueish green color layer.
 (6)カラーフィルターは、無色透明な領域を有することを特徴とする(2)から(5)に記載の表示装置。 (6) The display device according to (2) to (5), wherein the color filter has a colorless and transparent region.
 (7)無色透明な領域の面積は、カラーフィルターの全領域の面積の1/4以上であることを特徴とする(6)に記載の表示装置。 (7) The display device according to (6), wherein the area of the colorless and transparent area is 1/4 or more of the area of the entire area of the color filter.
 (8)基材(A)2枚の吸収軸を直交にして測定して得られる各波長透過率において、
 420nm乃至480nmの平均透過率と、520nm乃至590nmの平均透過率との差の絶対値が0.3%より大きく、かつ、
 520nm乃至590nmの平均透過率と、600nm乃至660nmの平均透過率との差の絶対値が0.3%より大きいことを特徴とする(1)から(7)に記載の表示装置。
(8) Substrate (A) In each wavelength transmittance obtained by measuring with the two absorption axes orthogonal to each other,
The absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is larger than 0.3%, and
The display device according to (1) to (7), wherein the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm is larger than 0.3%.
 (9)表示装置が、液晶表示装置であることを特徴とする(1)から(8)に記載の表示装置。 (9) The display device according to (1) to (8), wherein the display device is a liquid crystal display device.
 (10)液晶表示装置が、反射型液晶表示装置であることを特徴とする(9)に記載の表示装置。 (10) The display device according to (9), wherein the liquid crystal display device is a reflective liquid crystal display device.
 (11)表示装置の背面側から順に、反射板、基材(A)、液晶層、カラーフィルター、基材(A)が少なくとも配置されることを特徴とする(2)から(10)に記載の表示装置。 (11) Described in (2) to (10), wherein at least a reflector, a base material (A), a liquid crystal layer, a color filter, and a base material (A) are arranged in this order from the back side of the display device. Display device.
 (12)液晶層は、背面側から順に、反射電極、液晶層、透明電極と配置されることを特徴とする(11)に記載の表示装置。 (12) The display device according to (11), wherein the liquid crystal layer is arranged as a reflective electrode, a liquid crystal layer, and a transparent electrode in this order from the back surface side.
 (13)反射板は、拡散反射型であることを特徴とする(11)または(12)に記載の表示装置。 (13) The display device according to (11) or (12), wherein the reflector is a diffuse reflection type.
 (14)反射電極は、拡散反射型であることを特徴とする(12)に記載の表示装置。 (14) The display device according to (12), wherein the reflective electrode is a diffuse reflection type.
 (15)光拡散機能を有する基材を、基材(A)と液晶層との間に備えることを特徴とする(11)から(14)に記載の表示装置。 (15) The display device according to (11) to (14), wherein a base material having a light diffusing function is provided between the base material (A) and the liquid crystal layer.
 (16)120乃至160nmの位相差値を有する基材と基材(A)とが積層されていることを特徴とする(1)から(15)に記載の表示装置。 (16) The display device according to (1) to (15), wherein a base material having a retardation value of 120 to 160 nm and the base material (A) are laminated.
 本発明の表示装置は、高い反射率を有しながらも、着色のない高品位な白表示と黒表示及び優れたカラー表示が実現できる。 The display device of the present invention can realize high-quality white display, black display, and excellent color display without coloring while having high reflectance.
カラーフィルターを光が二回透過した際のNTSC比と透過率との関係を表した図である。It is a figure which showed the relationship between the NTSC ratio and the transmittance when light transmitted through a color filter twice. 実施例1に係る表示装置の縦断面図である。It is a vertical sectional view of the display device which concerns on Example 1. FIG. 図2(a)に示される表示装置のカラーフィルターの平面図である。It is a top view of the color filter of the display device shown in FIG. 2 (a). 基材(A)と同様の材料で作製した偏光板の平行透過率と直交透過率との関係を表す図である。It is a figure which shows the relationship between the parallel transmittance and the orthogonal transmittance of the polarizing plate made from the same material as the base material (A). 平行透過率とコントラストとの関係を表した図である。It is a figure which showed the relationship between the parallel transmittance and contrast. 実施例2に係る表示装置の縦断面図である。It is a vertical sectional view of the display device which concerns on Example 2. FIG. 図5(a)に示される表示装置のカラーフィルターの平面図である。It is a top view of the color filter of the display device shown in FIG. 5A. 実施例3に係る表示装置の縦断面図である。It is a vertical sectional view of the display device which concerns on Example 3. FIG. 図6(a)に示される表示装置のカラーフィルターの平面図である。It is a top view of the color filter of the display device shown in FIG. 6A. 実施例4に係る表示装置の縦断面図である。It is a vertical sectional view of the display device which concerns on Example 4. FIG. 図7(a)に示される表示装置のカラーフィルターの平面図である。It is a top view of the color filter of the display device shown in FIG. 7A. 実施例5に係る表示装置の縦断面図である。It is a vertical sectional view of the display device which concerns on Example 5. FIG. 実施例6に係る表示装置の縦断面図である。It is a vertical sectional view of the display device which concerns on Example 6. FIG.
 本発明では、アゾ化合物を含有してなる偏光機能を有する基材であって、
 該基材2枚の吸収軸を平行にして測定して得られる各波長透過率において、
 520nm~590nmの平均透過率が30%以上であって、
 420nm~480nmの平均透過率と、520nm~590nmの平均透過率との差の絶対値が5%以内であり、かつ、
 520nm~590nmの平均透過率と、590nm~660nmの平均透過率との差の絶対値が5%以内であって、
 さらに、前記基材2枚の吸収軸を直交にして測定して得られる各波長透過率において420nm~480nmの平均透過率と、520nm~590nmの平均透過率との差の絶対値が2%以内であり、かつ、
 520nm~590nmの平均透過率と、600nm~660nmの平均透過率との差の絶対値が2%以内であることを特徴とする基材(A)を備えることを特徴とする表示装置に関する。
In the present invention, it is a base material having a polarizing function and containing an azo compound.
In each wavelength transmittance obtained by measuring the absorption axes of the two substrates in parallel,
The average transmittance from 520 nm to 590 nm is 30% or more,
The absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 5%, and
The absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm is within 5%.
Further, the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 2% in each wavelength transmittance obtained by measuring the absorption axes of the two substrates at right angles. And
The present invention relates to a display device comprising a base material (A) characterized in that the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm is within 2%.
(基材(A)について)
 本発明の基材(A)を備えた表示装置の透過率には、基材(A)2枚の吸収軸を平行にして測定して得られる520nm~590nmの各波長の平均透過率が30%以上である。それにより、本発明の基材(A)を設けた表示装置は、明るく、かつ、高い輝度を有することが出来る。
(About base material (A))
The transmittance of the display device provided with the base material (A) of the present invention includes an average transmittance of 30 for each wavelength of 520 nm to 590 nm obtained by measuring the two absorption axes of the base material (A) in parallel. % Or more. As a result, the display device provided with the base material (A) of the present invention can be bright and have high brightness.
 特に、520nm~590nmの各波長は、JIS Z 8701において色を示す際に、計算で用いる等色関数に基づく最も視感度の高い波長であり、この範囲における各波長の透過率が、目視で確認できる透過率に近いことから、520nm~590nmの各波長の透過率を30%以上に制御することが重要である。 In particular, each wavelength of 520 nm to 590 nm is the wavelength with the highest visibility based on the color matching function used in the calculation when showing a color in JIS Z 8701, and the transmittance of each wavelength in this range can be visually confirmed. It is important to control the transmittance of each wavelength from 520 nm to 590 nm to 30% or more because the transmittance is close to the available transmittance.
 例えば、基材2枚の吸収軸を平行にして測定して得られる520nm~590nmの平均透過率と、基材2枚の吸収軸を平行にして得られる視感度補正された平行透過率とは、ほぼ同等な値を示す。このことからも、520nm~590nmの透過率を調整することは非常に重要なことであることが分かる。 For example, what is the average transmittance of 520 nm to 590 nm obtained by measuring the absorption axes of two base materials in parallel and the visible sensitivity-corrected parallel transmittance obtained by making the absorption axes of two base materials parallel to each other? , Shows almost the same value. From this, it can be seen that it is very important to adjust the transmittance between 520 nm and 590 nm.
 表示装置に必要な透過率は、基材(A)2枚の吸収軸を平行にして測定して得られる520nm~590nmの各波長の平均透過率として30%~45%であり、好ましくは、35%~40%であって、さらに好ましくは36%~37%である。その際の偏光度は、50%~100%であれば良く、好ましくは60%~100%、より好ましくは70%~100%である。 The transmittance required for the display device is 30% to 45% as the average transmittance of each wavelength of 520 nm to 590 nm obtained by measuring the two absorption axes of the base material (A) in parallel, and is preferable. It is 35% to 40%, more preferably 36% to 37%. The degree of polarization at that time may be 50% to 100%, preferably 60% to 100%, and more preferably 70% to 100%.
 偏光度は高い方が好ましいが、偏光度を高くすると透過率が低下してしまう傾向があるため、偏光度と透過率との関係において表示装置に適した偏光度の偏光素子を選定する必要がある。 A higher degree of polarization is preferable, but a higher degree of polarization tends to reduce the transmittance. Therefore, it is necessary to select a polarizing element having a degree of polarization suitable for the display device in terms of the relationship between the degree of polarization and the transmittance. is there.
 本発明では、基材(A)2枚の吸収軸を平行にして測定して得られる各波長透過率において、520nm~590nmの平均透過率だけでなく、420nm~480nmの平均透過率と、520nm~590nmの平均透過率との差の絶対値が5%以内であり、かつ、520nm~590nmの平均透過率と、590nm~660nmの平均透過率との差の絶対値が5%以内であることも必要とする。420nm~480nm、520nm~590nm、および、590nm~660nmの各波長は、JIS Z 8729において色を示す際に計算で用いる等色関数に基づく主な波長帯域である。 In the present invention, in each wavelength transmittance obtained by measuring the absorption axes of the two substrates (A) in parallel, not only the average transmittance of 520 nm to 590 nm but also the average transmittance of 420 nm to 480 nm and 520 nm. The absolute value of the difference from the average transmittance of ~ 590 nm is within 5%, and the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm is within 5%. Also needs. Each wavelength of 420 nm to 480 nm, 520 nm to 590 nm, and 590 nm to 660 nm is a main wavelength band based on the color matching function used in the calculation when showing a color in JIS Z 8729.
 具体的には、JIS Z 8729の元になるJIS Z 8701のXYZ等色関数において、600nmを最大値とするx(λ)、550nmを最大値とするy(λ)、455nmを最大値とするz(λ)のそれぞれの最大値を100とした時、20以上となる値を示す波長が、420nm~480nm、520nm~590nm、および、590nm~660nmの各波長である。 Specifically, in the XYZ color matching function of JIS Z 8701, which is the basis of JIS Z 8729, x (λ) having a maximum value of 600 nm, y (λ) having a maximum value of 550 nm, and 455 nm as a maximum value are used. When the maximum value of each z (λ) is set to 100, the wavelengths showing a value of 20 or more are the wavelengths of 420 nm to 480 nm, 520 nm to 590 nm, and 590 nm to 660 nm.
 それらの420nm~480nm、520nm~590nm、および、590nm~660nmの各波長透過率を所定の透過率に調整した偏光素子または偏光板を用いて、偏光機能を有する基材(A)とし、基材(A)を用いることによって、本願発明の表示装置は達成できる。その調整する範囲は、基材(A)2枚の吸収軸を平行にして測定して得られる各波長透過率において、420nm~480nmの平均透過率と520nm~590nmの平均透過率との差の絶対値においては、5%以内であることが必要であり、好ましくは3%以内である。 Using a polarizing element or a polarizing plate in which the respective wavelength transmittances of 420 nm to 480 nm, 520 nm to 590 nm, and 590 nm to 660 nm are adjusted to a predetermined transmittance, the base material (A) having a polarizing function is used as the base material. By using (A), the display device of the present invention can be achieved. The adjustment range is the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm in each wavelength transmittance obtained by measuring the two absorption axes of the base material (A) in parallel. The absolute value needs to be within 5%, preferably within 3%.
 また、基材(A)2枚の吸収軸を直交にして測定して得られる各波長透過率においても所定の透過率を調整する必要がある。420nm~480nmの平均透過率と、520nm~590nmの平均透過率との差の絶対値が2%以内であり、かつ、520nm~590nmの平均透過率と、600nm~660nmの平均透過率との差の絶対値が2%以内であることを必要とする。 It is also necessary to adjust the predetermined transmittance for each wavelength transmittance obtained by measuring the absorption axes of the two base materials (A) at right angles. The absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 2%, and the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm. The absolute value of is required to be within 2%.
 さらに、基材(A)2枚の吸収軸を直交にして測定して得られる各波長透過率において、420nm~480nmの平均透過率と、520nm~590nmの平均透過率との差の絶対値においては2%以内であることが必要であるが、好ましくは1%以内である。かつ、520nm~590nmの平均透過率と、590nm~660nmの平均透過率との差の絶対値においては2%以内であることが必要であるが、好ましくは1%以内である。 Further, in each wavelength transmittance obtained by measuring the absorption axes of the two base materials (A) at orthogonal angles, in the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm. Must be within 2%, but preferably within 1%. Moreover, the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm needs to be within 2%, but is preferably within 1%.
 さらにまた、基材(A)2枚の吸収軸を直交にして測定して得られる各波長透過率において、420nm~480nmの平均透過率と、520nm~590nmの平均透過率との差の絶対値においては、プロセス上の課題から0.3%より大きくすることが必要であるが、好ましくは0.5%以上である。かつ、520nm~590nmの平均透過率と、590nm~660nmの平均透過率との差の絶対値においてはプロセス上の課題から、0.3%より大きくすることが必要であるが、好ましくは0.5%以上である。ここでプロセス上の課題とは、アゾ系の染料を複数まぜて染色する際の染色ばらつきのことである。 Furthermore, the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm in each wavelength transmittance obtained by measuring the absorption axes of the two substrates (A) at orthogonal angles. In, it is necessary to make it larger than 0.3% due to the problem in the process, but it is preferably 0.5% or more. Moreover, the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm needs to be larger than 0.3% due to process problems, but is preferably 0. It is 5% or more. Here, the problem in the process is the variation in dyeing when a plurality of azo dyes are mixed and dyed.
 一方で、380nm~420nm、480nm~520nm、660nm~780nmの平均透過率に関する調整も必要ではあるが、420nm~480nmと、520nm~590nmと、600nm~660nmとが調整されていることにより、色素により大きく影響は受けにくいため、調整はしなくてもよい。 On the other hand, it is necessary to adjust the average transmittance of 380 nm to 420 nm, 480 nm to 520 nm, and 660 nm to 780 nm, but by adjusting 420 nm to 480 nm, 520 nm to 590 nm, and 600 nm to 660 nm, depending on the dye. It is not significantly affected and does not need to be adjusted.
 反射型液晶表示装置において、如何に反射率を高くするかが重要である。これは室内など比較的暗い環境でも十分な視認性を確保する必要があるためである。しかしながら、カラー反射型液晶表示装置では、カラーフィルターの透過率が低いため、反射率が低下してしまっていた。カラーフィルターにより反射率が低下することを示す図として、図1に、カラーフィルターを光が2回透過した際のNTSC比と透過率との関係を表した図を示す。 In a reflective liquid crystal display device, how to increase the reflectance is important. This is because it is necessary to ensure sufficient visibility even in a relatively dark environment such as indoors. However, in the color reflective liquid crystal display device, the transmittance of the color filter is low, so that the reflectance is lowered. As a diagram showing that the reflectance is lowered by the color filter, FIG. 1 shows a diagram showing the relationship between the NTSC ratio and the transmittance when light is transmitted twice through the color filter.
 ここで、カラーフィルターを光が2回透過したときのNTSC比とは、カラーフィルターの各色要素を光が2回透過したときの色度をCIE1931XYZ表色系の色度(x,y)図上にプロットしそれらを直線で結んだ面積と、アメリカテレビジョン標準化委員会(National Television Standards Committee)と、により、CIE1931XYZ表色系の色度(x,y)にて定められた標準方式の3原色、赤(0.670,0.330)、緑(0.210,0.710)、青(0.140,0.080)を結んだ三角形の面積に対する比を%で表したものである。 Here, the NTSC ratio when light is transmitted twice through the color filter is the chromaticity when light is transmitted twice through each color element of the color filter on the chromaticity (x, y) diagram of the CIE1931XYZ color system. The three primary colors of the standard method defined by the CIE1931XYZ color system chromaticity (x, y) by the area plotted in and connected by a straight line and the National Television Standards Committee. , Red (0.670, 0.330), green (0.210, 0.710), and blue (0.140, 0.080) are expressed in% as a ratio to the area of the triangle.
 また、カラー反射型液晶表示装置では、外からの光はカラーフィルターを2回透過することから、カラーフィルターのNTSC比は光が2回透過したときのNTSC比とした。 Further, in the color reflection type liquid crystal display device, since the light from the outside is transmitted through the color filter twice, the NTSC ratio of the color filter is set to the NTSC ratio when the light is transmitted twice.
 図1から、NTSC比が大きいと透過率は低いが、NTSC比が小さくなるにしたがって透過率が高くなることがわかる。従って、カラー反射型液晶表示装置の反射率を高くするには、透過率を高くすればよく、すなわちNTSC比を小さくすればよい。我々はカラー反射型液晶表示装置の研究をしている中で、カラー反射型液晶表示装置においては、NTSC比が小さくても人間の目は十分色を感じることができることを見出した。その結果、人間の目が十分色を感じることができるNTSC比の値は、1%~20%であり、好ましくは1%~10%、より好ましくは1%~5%である。 From FIG. 1, it can be seen that the transmittance is low when the NTSC ratio is large, but the transmittance increases as the NTSC ratio is small. Therefore, in order to increase the reflectance of the color reflective liquid crystal display device, the transmittance may be increased, that is, the NTSC ratio may be decreased. In our research on color-reflective liquid crystal display devices, we have found that in color-reflective liquid crystal display devices, the human eye can sufficiently perceive colors even if the NTSC ratio is small. As a result, the value of the NTSC ratio at which the human eye can sufficiently perceive the color is 1% to 20%, preferably 1% to 10%, and more preferably 1% to 5%.
 NTSC比が小さいカラーフィルターを使用したカラー反射型液晶表示装置では、反射率が向上し、人間の目の色に対する感度が向上する。そのため、従来の偏光板を使用すると、白表示および/または黒表示で着色が発生し、それを視認することで表示品位を低下させていた。カラー反射型液晶表示装置において、NTSC比の小さいカラーフィルターと基材(A)を同時に使用することで、初めて、反射率の高い明るいカラー表示と、白表示および/または黒表示においても着色のない優れたカラー表示と、が実現できることを見出した。 In a color reflective liquid crystal display device that uses a color filter with a small NTSC ratio, the reflectance is improved and the sensitivity to the color of the human eye is improved. Therefore, when a conventional polarizing plate is used, coloring occurs in white display and / or black display, and the display quality is deteriorated by visually recognizing it. By using a color filter with a small NTSC ratio and the base material (A) at the same time in a color reflective liquid crystal display device, for the first time, there is no coloring in bright color display with high reflectance and white display and / or black display. We have found that excellent color display can be achieved.
 カラーフィルターのNTSC比を1%~20%にする方法として、カラー層を形成する染料または顔料の濃度を低くする方法、カラー層の厚みを薄くする方法、およびカラー層のない透明な領域を形成する方法などがある。特にカラー層のない透明な領域を形成する方法では、カラー層のない透明な領域の偏光板による着色を抑えることができることから、特に基材(A)の使用が有効である。 As a method of increasing the NTSC ratio of the color filter to 1% to 20%, a method of reducing the concentration of the dye or pigment forming the color layer, a method of reducing the thickness of the color layer, and a method of forming a transparent region without the color layer are formed. There is a way to do it. In particular, in the method of forming a transparent region without a color layer, it is possible to suppress coloring of the transparent region without a color layer by a polarizing plate, so that the use of the base material (A) is particularly effective.
 カラー層のない透明な領域を形成する方法において、カラー層のない透明な領域の面積は全領域の面積の1/4以上にすることが必要である。好ましくは、カラー層のない透明な領域の面積は全領域の面積の1/2以上である。より好ましくは、カラー層のない透明な領域の面積は全領域の面積の2/3以上である。これにより、透過率の高い、すなわち反射率が高い明るいカラー表示のカラー反射型液晶を実現することができる。 In the method of forming a transparent region without a color layer, the area of the transparent region without a color layer needs to be 1/4 or more of the area of the total region. Preferably, the area of the transparent region without the color layer is ½ or more of the area of the total region. More preferably, the area of the transparent region without the color layer is 2/3 or more of the area of the total region. As a result, it is possible to realize a color-reflecting liquid crystal having a high transmittance, that is, a bright color display having a high reflectance.
 基材(A)を設けた偏光素子または偏光板を表示装置に設けることで、表示装置の色の発現を制御することが出来る。特に、基材(A)を設けた偏光素子または偏光板は、一般的な用法と同じく、表示装置に設けると、偏光板に基づく色相を制御でき、表示装置は白を表示する際には上質の紙のような白を表現でき、また、黒を表示する際には漆黒の黒色を表現できるに至る。 By providing the display device with a polarizing element or a polarizing plate provided with the base material (A), it is possible to control the color expression of the display device. In particular, when the polarizing element or the polarizing plate provided with the base material (A) is provided in the display device as in general usage, the hue based on the polarizing plate can be controlled, and the display device is of high quality when displaying white. It is possible to express white like paper, and when displaying black, it is possible to express jet-black black.
 一般的な偏光板では、黒を表現できるように制御した場合には、偏光素子を平行にした場合の透過率において白色純度が低下し、黄色または黄緑色に呈色してしまう。逆に、白を表現できるように偏光素子を平行にした場合の透過率を制御した場合には、偏光素子が直交になった時の透過率において黒色純度が低下し青色に呈色してしまう。そういった色相を持つ偏光素子が表示装置に設けられることによって、その偏光素子の色相を表示装置が呈色することは当然である。 With a general polarizing plate, when controlled so that black can be expressed, the white purity decreases in the transmittance when the polarizing elements are parallel, and the color develops yellow or yellowish green. On the contrary, when the transmittance when the polarizing elements are parallel to each other so as to express white is controlled, the black purity is lowered in the transmittance when the polarizing elements are orthogonal to each other, and the color is colored blue. .. When a polarizing element having such a hue is provided in the display device, it is natural that the display device colors the hue of the polarizing element.
 この表示装置の呈色は、バックライトを用いた従来の透過型液晶デバイスでは、バックライトのスペクトル分布やカラーフィルターの調整により表示色を最適化できる。しかしながら、偏光板のその色をバックライトやカラーフィルターによって調整する必要があった。 The color of this display device can be optimized by adjusting the spectral distribution of the backlight and the color filter in the conventional transmissive liquid crystal device using the backlight. However, it was necessary to adjust the color of the polarizing plate with a backlight or a color filter.
 ところが、外光を利用して表示させる反射型表示装置、特に、反射型液晶デバイスでは、バックライトを有さないため、白表示時の黄色の呈色と、黒表示時の青色の呈色を同時にカラーフィルターで改善することは出来ない。さらに、外光の反射を防止したい場合に偏光板を用いて反射防止する表示装置、例えば有機エレクトロルミネッセンス表示装置(以下、OLEDと省略)やプラズマディスプレイ等で用いる場合には、偏光板は、発光表示装置よりも人が観察する側に、位相差板と共に設けられている。 However, since the reflective display device that displays using external light, especially the reflective liquid crystal device, does not have a backlight, the yellow color at the time of white display and the blue color at the time of black display are displayed. At the same time, it cannot be improved with color filters. Further, when it is used in a display device that uses a polarizing plate to prevent reflection of external light, for example, an organic electroluminescence display device (hereinafter abbreviated as OLED), a plasma display, or the like, the polarizing plate emits light. It is provided together with a retardation plate on the side of the display device that is observed by a person.
 これまでの一般的な偏光板では、OLEDの発色の色純度を低下させることから、偏光板の色相の改善は非常に重要であった。そういった反射光を制御したいOLEDなどの表示装置などにも本発明の処方は有効である。つまり、本発明では、従来の偏光板が有する白表示時の黄色の呈色と、黒表示時の青色の呈色する問題によって発生する発色を改善し、白表示時に高品位な紙のような白色を表示し、黒表示時に漆黒の黒を表示するに至る表示装置を提供し、かつ、特に反射型ディスプレイにおいて、その表示時の輝度を向上させ、かつ、コントラストをも向上させうることを達成した。 With conventional general polarizing plates, improvement of the hue of the polarizing plate has been very important because it reduces the color purity of the color of the OLED. The formulation of the present invention is also effective for display devices such as OLEDs that want to control such reflected light. That is, in the present invention, the color development caused by the problem of yellow coloration at the time of white display and blue coloration at the time of black display, which is possessed by the conventional polarizing plate, is improved, and it is similar to high-quality paper at the time of white display. Achieved to provide a display device that displays white and jet-black black when displayed in black, and can improve the brightness at the time of display and also improve the contrast, especially in a reflective display. did.
 (本願発明の基材(A)の偏光素子および偏光板の作成方法)
 アゾ化合物、特に一般的に二色性染料を含有し得る素子としては、例えば、親水性高分子よりなるものを製膜されたものを用いる。親水性高分子は特に限定しないが、例えば、ポリビニルアルコール系樹脂、アミロース系樹脂、デンプン系樹脂、セルロース系樹脂、ポリアクリル酸塩系樹脂などがある。二色性染料を含有させる場合、加工性、染色性、および架橋性などからポリビニルアルコール系樹脂、および、その誘導体よりなる樹脂が最も好ましい。それらの樹脂をフィルム形状として、本発明の染料、および、その配合物を含有させ、延伸等の配向処理を適用することによって、偏光素子、または偏光板を作製できる。
(Method for producing a polarizing element and a polarizing plate for the base material (A) of the present invention)
As an element capable of containing an azo compound, particularly a dichroic dye in general, an element made of a hydrophilic polymer is used, for example. The hydrophilic polymer is not particularly limited, and examples thereof include polyvinyl alcohol-based resins, amylose-based resins, starch-based resins, cellulosic-based resins, and polyacrylate-based resins. When a dichroic dye is contained, a polyvinyl alcohol-based resin and a resin made of a derivative thereof are most preferable from the viewpoint of processability, dyeability, crosslinkability and the like. A polarizing element or a polarizing plate can be produced by using these resins as a film shape, containing the dye of the present invention and a compound thereof, and applying an orientation treatment such as stretching.
 アゾ化合物よりなる二色性染料とは、例えば、非特許文献1に示されるような有機化合物を使用することができる。特に、二色性の高いものが好ましい。例えば、シー.アイ.ダイレクト.イエロー12、シー.アイ.ダイレクト.イエロー28、シー.アイ.ダイレクト.イエロー44、シー.アイ.ダイレクト.オレンジ26、シー.アイ.ダイレクト.オレンジ39、シー.アイ.ダイレクト.オレンジ107、シー.アイ.ダイレクト.レッド2、シー.アイ.ダイレクト.レッド31、シー.アイ.ダイレクト.レッド79、シー.アイ.ダイレクト.レッド81、シー.アイ.ダイレクト.レッド247、シー.アイ.ダイレクト.グリーン80、シー.アイ.ダイレクト.グリーン59、並びに特開2001-33627号公報、特開2002-296417号公報及び特開昭60-156759号公報、に記載された有機染料等が挙げられる。 As the dichroic dye composed of an azo compound, for example, an organic compound as shown in Non-Patent Document 1 can be used. In particular, those having high dichroism are preferable. For example, Sea. Ai. direct. Yellow 12, Sea. Ai. direct. Yellow 28, Sea. Ai. direct. Yellow 44, Sea. Ai. direct. Orange 26, Sea. Ai. direct. Orange 39, Sea. Ai. direct. Orange 107, Sea. Ai. direct. Red 2, Sea. Ai. direct. Red 31, Sea. Ai. direct. Red 79, Sea. Ai. direct. Red 81, Sea. Ai. direct. Red 247, Sea. Ai. direct. Green 80, Sea. Ai. direct. Examples thereof include Green 59 and the organic dyes described in JP-A-2001-33627, JP-A-2002-296417, and JP-A-60-156759.
 これらの有機染料は遊離酸の他、アルカリ金属塩(例えばNa塩、K塩、Li塩)、アンモニウム塩、又はアミン類の塩として用いることができる。ただし、二色性染料はこれらに限定されず公知の2色性染料を用いることが出来る。アゾ化合物は、遊離酸、その塩、またはその銅錯塩染料であることで、特に、光学特性が向上される。このアゾ系染料は、1種のみで用いても良いし、他のアゾ化合物と配合して用いても良く、配合は限定されない。こういったアゾ化合物を用いて、偏光素子の透過率を、基材(A)2枚の吸収軸を平行にして測定して得られる各波長透過率において、520nm~590nmの平均透過率が30%以上であって、420nm~480nmの平均透過率と、520nm~590nmの平均透過率との差の絶対値が5%以内であり、かつ、520nm~590nmの平均透過率と、590nm~660nmの平均透過率との差の絶対値が5%以内であって、さらに、基材(A)2枚の吸収軸を直交にして測定して得られる各波長透過率において、420nm~480nmの平均透過率と、520nm~590nmの平均透過率との差の絶対値が2%以内であり、かつ、520nm~590nmの平均透過率と、600nm~660nmの平均透過率との差の絶対値が2%以内に調整することによって、本願発明を実現するための偏光素子を作製するに至る。 These organic dyes can be used as alkali metal salts (for example, Na salt, K salt, Li salt), ammonium salts, or amine salts in addition to free acids. However, the dichroic dye is not limited to these, and a known dichroic dye can be used. When the azo compound is a free acid, a salt thereof, or a copper complex salt dye thereof, the optical properties are particularly improved. This azo dye may be used alone or in combination with another azo compound, and the composition is not limited. Using such an azo compound, the transmittance of the polarizing element is measured with the absorption axes of the two substrates (A) parallel to each other, and the average transmittance of 520 nm to 590 nm is 30 at each wavelength transmittance. % Or more, the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 5%, and the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm. The absolute value of the difference from the average transmittance is within 5%, and the average transmittance of 420 nm to 480 nm is obtained at each wavelength transmittance obtained by measuring the two substrates (A) with the absorption axes orthogonal to each other. The absolute value of the difference between the rate and the average transmittance of 520 nm to 590 nm is within 2%, and the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm is 2%. By adjusting within the range, a polarizing element for realizing the present invention can be produced.
 以下、アゾ化合物を含浸できる素子として、ポリビニルアルコール系樹脂フィルムを例にして、具体的な偏光素子の作製方法を説明する。ポリビニルアルコール系樹脂の製造方法は、特に限定されるものではなく、公知の方法で作製することができる。製造方法として、例えば、ポリ酢酸ビニル系樹脂をケン化することにより得ることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニル及びこれと共重合可能な他の単量体の共重合体などが例示される。酢酸ビニルに共重合する他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、および不飽和スルホン酸類などが挙げられる。ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%程度であり、好ましくは95モル%以上が好ましい。このポリビニルアルコール系樹脂は、さらに変性されていてもよく、例えば、アルデヒド類で変性したポリビニルホルマールやポリビニルアセタールなども使用できる。またポリビニルアルコール系樹脂の重合度は、粘度平均重合度を意味し、当該技術分野において周知の手法によって求めることができる。粘度平均重合度は、通常1000~10000程度、好ましくは1500~6000程度である。 Hereinafter, a specific method for manufacturing a polarizing element will be described by taking a polyvinyl alcohol-based resin film as an example of an element that can be impregnated with an azo compound. The method for producing the polyvinyl alcohol-based resin is not particularly limited, and the polyvinyl alcohol-based resin can be produced by a known method. As a production method, for example, it can be obtained by saponifying a polyvinyl acetate-based resin. Examples of the polyvinyl acetate-based resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith. Other monomers copolymerized with vinyl acetate include, for example, unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids and the like. The degree of saponification of the polyvinyl alcohol-based resin is usually about 85 to 100 mol%, preferably 95 mol% or more. This polyvinyl alcohol-based resin may be further modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used. The degree of polymerization of the polyvinyl alcohol-based resin means the degree of viscosity average polymerization, and can be obtained by a method well known in the art. The viscosity average degree of polymerization is usually about 1000 to 10000, preferably about 1500 to 6000.
 かかるポリビニルアルコール系樹脂を製膜したものが、原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は特に限定されるものでなく、公知の方法で製膜することができる。この場合、ポリビニルアルコール系樹脂フィルムには可塑剤としてグリセリン、エチレングリコール、プロピレングリコール、低分子量ポリエチレングリコールなどが含有していても良い。可塑剤量は5~20重量%であり、好ましくは8~15重量%が良い。ポリビニルアルコール系樹脂からなる原反フィルムの膜厚は特に限定されないが、例えば、5μm~150μm程度、好ましくは10μm~100μm程度が好ましい。 A film formed from such a polyvinyl alcohol-based resin is used as a raw film. The method for forming the film of the polyvinyl alcohol-based resin is not particularly limited, and the film can be formed by a known method. In this case, the polyvinyl alcohol-based resin film may contain glycerin, ethylene glycol, propylene glycol, low molecular weight polyethylene glycol, or the like as a plasticizer. The amount of the plasticizer is 5 to 20% by weight, preferably 8 to 15% by weight. The film thickness of the raw film made of the polyvinyl alcohol-based resin is not particularly limited, but is preferably about 5 μm to 150 μm, preferably about 10 μm to 100 μm, for example.
 以上により得られた原反フィルムには、次に膨潤工程が施される。膨潤処理は20℃~50℃の溶液に30秒~10分間浸漬させることによって処理が適用される。溶液は水が好ましい。延伸倍率は1.00~1.50倍で調整することが良く、好ましくは1.10~1.35倍が良い。偏光素子を作製する時間を短縮する場合には、アゾ化合物の染色処理時にも膨潤するので膨潤処理を省略しても良い。 The raw film obtained as described above is then subjected to a swelling step. The swelling treatment is applied by immersing in a solution at 20 ° C. to 50 ° C. for 30 seconds to 10 minutes. The solution is preferably water. The draw ratio is preferably adjusted from 1.00 to 1.50 times, preferably 1.10 to 1.35 times. When the time for producing the polarizing element is shortened, the swelling treatment may be omitted because it swells even during the dyeing treatment of the azo compound.
 膨潤工程とは20℃~50℃の溶液にポリビニルアルコール樹脂フィルムを30秒~10分間浸漬させることによって行われる。溶液は水が好ましい。偏光素子を製造する時間を短縮する場合には、色素の染色処理時にも膨潤するので膨潤工程を省略することもできる。 The swelling step is performed by immersing the polyvinyl alcohol resin film in a solution at 20 ° C. to 50 ° C. for 30 seconds to 10 minutes. The solution is preferably water. When the time for manufacturing the polarizing element is shortened, the swelling step can be omitted because the swelling occurs even during the dyeing process of the dye.
 膨潤工程の後に、染色工程が施される。染色工程では、非特許文献1などで示されるアゾ化合物(通称 二色性染料)を用いて含浸することが出来る。このアゾ化合物を含浸させることを、色を着色する工程であることから、染色工程としている。ここでアゾ化合物としては非特許文献1に記載されている染料や、式(1)などで示されるアゾ化合物を、染色工程でポリビニルアルコールフィルムに色素を吸着、および、含浸させることができる。または、ヨウ素とヨウ化カリウムが含浸した水溶液に浸漬し、ヨウ素を吸着させた後に、式(1)で示されるアゾ化合物のそれぞれを吸着、および、含浸させることで、本願の偏光機能を有する基材(A)とすることも出来る。ヨウ素とともに吸着させるアゾ化合物は式(1)で表されるアゾ化合物以外にも、特許公報昭64―5623の実施例1乃至実施例5で示されるアゾ化合物や特開平03―12606号の実施例1乃至実施例4で示されるアゾ化合物を用いても良い。 After the swelling process, a dyeing process is performed. In the dyeing step, it can be impregnated with an azo compound (commonly known as a dichroic dye) shown in Non-Patent Document 1 or the like. Since impregnating this azo compound is a step of coloring the color, it is called a dyeing step. Here, as the azo compound, the dye described in Non-Patent Document 1 or the azo compound represented by the formula (1) or the like can be adsorbed and impregnated on the polyvinyl alcohol film in the dyeing step. Alternatively, a group having the polarization function of the present application is obtained by immersing in an aqueous solution impregnated with iodine and potassium iodide to adsorb iodine, and then adsorbing and impregnating each of the azo compounds represented by the formula (1). It can also be used as the material (A). In addition to the azo compound represented by the formula (1), the azo compound to be adsorbed together with iodine includes the azo compounds shown in Examples 1 to 5 of Japanese Patent Application Laid-Open No. 64-5623 and Examples of JP-A-03-12606. The azo compounds shown in 1 to 4 may be used.
Figure JPOXMLDOC01-appb-C000002
(式中、Aは置換基を有するフェニル基、またはナフチル基を示し、RまたはRは各々独立に、水素原子、低級アルキル基、低級アルコキシ基、スルホ基、又はスルホ基を有する低級アルコキシ基を示し、Xは置換基を有してもよいフェニルアミノ基を示す。)
Figure JPOXMLDOC01-appb-C000002
(In the formula, A 1 represents a phenyl group or a naphthyl group having a substituent, and R 1 or R 2 independently have a hydrogen atom, a lower alkyl group, a lower alkoxy group, a sulfo group, or a lower group having a sulfo group. Indicates an alkoxy group, and X 1 indicates a phenylamino group which may have a substituent.)
 染色工程は、色素をポリビニルアルコールフィルムに吸着、および含浸させる方法であれば、特に限定されないが、例えば、染色工程はポリビニルアルコール樹脂フィルムを二色性染料に含有した溶液に浸漬させることによって行われる。この工程での溶液温度は、5~60℃が好ましく、20~50℃がより好ましく、35~50℃が特に好ましい。溶液に浸漬する時間は適度に調節できるが、30秒~20分で調節するのが好ましく、1~10分がより好ましい。染色方法は、該溶液に浸漬することが好ましいが、ポリビニルアルコール樹脂フィルムに該溶液を塗布することによって行うことも出来る。 The dyeing step is not particularly limited as long as it is a method of adsorbing and impregnating the dye on the polyvinyl alcohol film, but for example, the dyeing step is performed by immersing the polyvinyl alcohol resin film in a solution containing the dichroic dye. .. The solution temperature in this step is preferably 5 to 60 ° C, more preferably 20 to 50 ° C, and particularly preferably 35 to 50 ° C. The time of immersion in the solution can be appropriately adjusted, but is preferably adjusted to 30 seconds to 20 minutes, more preferably 1 to 10 minutes. The dyeing method is preferably immersed in the solution, but it can also be performed by applying the solution to a polyvinyl alcohol resin film.
 二色性染料を含有した溶液は、染色助剤として、炭酸ナトリウム、炭酸水素ナトリウム、塩化ナトリウム、硫酸ナトリウム、無水硫酸ナトリウム、トリポリリン酸ナトリウムなどを含有することが出来る。それらの含有量は、染料の染色性による時間、温度によって任意の濃度で調整できるが、それぞれの含有量としては、0~5重量%が好ましく、0.1~2重量%がより好ましい。非特許文献1に記載の二色性染料であるアゾ化合物や、式(1)で示されるアゾ化合物などは遊離酸として用いられるほか、当該化合物の塩でも良い。そのような塩は、リチウム塩、ナトリウム塩、及びカリウム塩などのアルカリ金属塩、或いは、アンモニウム塩やアルキルアミン塩などの有機塩として用いることも出来る。好ましくは、ナトリウム塩である。 The solution containing the dichroic dye can contain sodium carbonate, sodium hydrogen carbonate, sodium chloride, sodium sulfate, anhydrous sodium sulfate, sodium tripolyphosphate, etc. as a dyeing aid. The content thereof can be adjusted at an arbitrary concentration depending on the time and temperature depending on the dyeability of the dye, and the respective contents are preferably 0 to 5% by weight, more preferably 0.1 to 2% by weight. The azo compound which is a dichroic dye described in Non-Patent Document 1 and the azo compound represented by the formula (1) are used as a free acid and may be a salt of the compound. Such salts can also be used as alkali metal salts such as lithium salts, sodium salts and potassium salts, or organic salts such as ammonium salts and alkylamine salts. A sodium salt is preferred.
 染色工程後、次の工程に入る前に洗浄工程(以降洗浄工程1という)を行うことが出来る。洗浄工程1とは、染色工程でポリビニルアルコール樹脂フィルムの表面に付着した染料溶媒を洗浄する工程である。洗浄工程1を行うことによって、次に処理する液中に染料が移行するのを抑制することができる。洗浄工程1では、一般的には洗浄溶液に水が用いられる。洗浄方法は、溶媒に浸漬することが好ましいが、洗浄溶液をポリビニルアルコール樹脂フィルムに塗布することによって洗浄することも出来る。洗浄の時間は、特に限定されないが、好ましくは1~300秒、より好ましくは1~60秒である。洗浄工程1での洗浄溶液の温度は、親水性高分子が溶解しない温度であることが必要となる。一般的には5~40℃で洗浄処理される。ただし、洗浄工程1の工程がなくとも、性能には問題は出ないため、本工程は省略することもできる。 After the dyeing process, the cleaning process (hereinafter referred to as cleaning process 1) can be performed before starting the next process. The cleaning step 1 is a step of cleaning the dye solvent adhering to the surface of the polyvinyl alcohol resin film in the dyeing step. By performing the washing step 1, it is possible to suppress the transfer of the dye into the liquid to be treated next. In the cleaning step 1, water is generally used as the cleaning solution. The cleaning method is preferably immersed in a solvent, but cleaning can also be performed by applying a cleaning solution to a polyvinyl alcohol resin film. The washing time is not particularly limited, but is preferably 1 to 300 seconds, more preferably 1 to 60 seconds. The temperature of the cleaning solution in the cleaning step 1 needs to be a temperature at which the hydrophilic polymer does not dissolve. Generally, it is washed at 5 to 40 ° C. However, since there is no problem in performance even if the cleaning step 1 is not performed, this step can be omitted.
 染色工程又は洗浄工程1の後、架橋剤及び/又は耐水化剤を含有させる工程を行うことが出来る。架橋剤としては、例えば、ホウ酸、ホウ砂又はホウ酸アンモニウムなどのホウ素化合物、グリオキザール又はグルタルアルデヒドなどの多価アルデヒド、ビウレット型、イソシアヌレート型又はブロック型などの多価イソシアネート系化合物、チタニウムオキシサルフェイトなどのチタニウム系化合物などを用いることができるが、他にもエチレングリコールグリシジルエーテル、ポリアミドエピクロルヒドリンなどを用いることができる。耐水化剤としては、過酸化コハク酸、過硫酸アンモニウム、過塩素酸カルシウム、ベンゾインエチルエーテル、エチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、塩化アンモニウム又は塩化マグネシウムなどが挙げられるが、好ましくはホウ酸が用いられる。以上に示された少なくとも1種以上の架橋剤及び/又は耐水化剤を用いて架橋剤及び/又は耐水化剤を含有させる工程を行う。その際の溶媒としては、水が好ましいが限定されるものではない。 After the dyeing step or the cleaning step 1, a step of adding a cross-linking agent and / or a water resistant agent can be performed. Examples of the cross-linking agent include a boron compound such as boric acid, boric acid or ammonium borate, a polyvalent aldehyde such as glyoxal or glutaraldehyde, a polyvalent isocyanate compound such as biuret type, isocyanurate type or block type, and titanium oxy. Titanium-based compounds such as sulfate can be used, but ethylene glycol glycidyl ether, polyamide epichlorohydrin and the like can also be used. Examples of the water resistant agent include succinic acid peroxide, ammonium persulfate, calcium perchlorate, benzoin ethyl ether, ethylene glycol diglycidyl ether, glycerin diglycidyl ether, ammonium chloride, magnesium chloride and the like, but boric acid is preferable. Used. A step of incorporating the cross-linking agent and / or the water-resistant agent using at least one or more of the cross-linking agents and / or the water-resistant agents shown above is performed. The solvent at that time is preferably, but not limited to, water.
 架橋剤及び/又は耐水化剤を含有させる工程での溶媒中の架橋剤及び/又は耐水化剤の含有濃度は、ホウ酸を例にして示すと溶媒に対して濃度0.1~6.0重量%が好ましく、1.0~4.0重量%がより好ましい。この工程での溶媒温度は、5~70℃が好ましく、5~50℃がより好ましい。ポリビニルアルコール樹脂フィルムに架橋剤及び/又は耐水化剤を含有させる方法は、溶媒に浸漬することが好ましいが、溶液をポリビニルアルコール樹脂フィルムに塗布又は塗工してもよい。この工程での処理時間は30秒~6分が好ましく、1~5分がより好ましい。ただし、架橋剤及び/又は耐水化剤を含有させることが必須でなく、時間を短縮したい場合には、架橋処理又は耐水化処理が不必要な場合には、この処理工程を省略してもよい。 The concentration of the cross-linking agent and / or the water-resistant agent in the solvent in the step of containing the cross-linking agent and / or the water-resistant agent is 0.1 to 6.0 with respect to the solvent when boric acid is taken as an example. By weight% is preferable, and 1.0 to 4.0% by weight is more preferable. The solvent temperature in this step is preferably 5 to 70 ° C, more preferably 5 to 50 ° C. The method of impregnating the polyvinyl alcohol resin film with a cross-linking agent and / or a water resistant agent is preferably to immerse the solution in a solvent, but the solution may be applied or applied to the polyvinyl alcohol resin film. The treatment time in this step is preferably 30 seconds to 6 minutes, more preferably 1 to 5 minutes. However, it is not essential to contain a cross-linking agent and / or a water-resistant agent, and if it is desired to shorten the time and the cross-linking treatment or the water-resistant treatment is unnecessary, this treatment step may be omitted. ..
 染色工程、洗浄工程1、または架橋剤及び/又は耐水化剤を含有させる工程を行った後に、延伸工程を行う。延伸工程とは、ポリビニルアルコールフィルムを1軸に延伸する工程である。延伸方法は湿式延伸法又は乾式延伸法のどちらでも良く、延伸倍率は3倍以上延伸されていることで本発明は達成しうる。延伸倍率は、3倍以上、好ましくは5倍~7倍に延伸されていることが良い。 After performing the dyeing step, the cleaning step 1, or the step of containing the cross-linking agent and / or the water resistant agent, the stretching step is performed. The stretching step is a step of stretching the polyvinyl alcohol film uniaxially. The stretching method may be either a wet stretching method or a dry stretching method, and the present invention can be achieved when the stretching ratio is 3 times or more. The stretching ratio is preferably 3 times or more, preferably 5 to 7 times.
 乾式延伸法の場合には、延伸加熱媒体が空気媒体の場合には、空気媒体の温度は常温~180℃で延伸するのが好ましい。また、湿度は20~95%RHの雰囲気中で処理するのが好ましい。加熱方法としては、例えば、ロール間ゾーン延伸法、ロール加熱延伸法
、圧延伸法、赤外線加熱延伸法などが挙げられるが、その延伸方法は限定されるものではない。延伸工程は1段で延伸することもできるが、2段以上の多段延伸により行うことも出来る。
In the case of the dry stretching method, when the stretching heating medium is an air medium, the temperature of the air medium is preferably room temperature to 180 ° C. Further, the humidity is preferably treated in an atmosphere of 20 to 95% RH. Examples of the heating method include an inter-roll zone stretching method, a roll heating stretching method, a pressure stretching method, an infrared heating stretching method, and the like, but the stretching method is not limited. The stretching step can be carried out in one step, but can also be carried out by multi-step stretching in two or more steps.
 湿式延伸法の場合には、水、水溶性有機溶剤、又はその混合溶液中で延伸する。架橋剤及び/又は耐水化剤を含有した溶液中に浸漬しながら延伸処理を行うことが好ましい。架橋剤としては、例えば、ホウ酸、ホウ砂又はホウ酸アンモニウムなどのホウ素化合物、グリオキザール又はグルタルアルデヒドなどの多価アルデヒド、ビウレット型、イソシアヌレート型又はブロック型などの多価イソシアネート系化合物、チタニウムオキシサルフェイトなどのチタニウム系化合物などを用いることができるが、他にもエチレングリコールグリシジルエーテル、ポリアミドエピクロルヒドリンなどを用いることができる。耐水化剤としては、過酸化コハク酸、過硫酸アンモニウム、過塩素酸カルシウム、ベンゾインエチルエーテル、エチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、塩化アンモニウム又は塩化マグネシウムなどが挙げられる。以上に示された少なくとも1種以上の架橋剤及び/又は耐水化剤を含有した溶液中で延伸を行う。架橋剤はホウ酸が好ましい。 In the case of the wet stretching method, stretching is performed in water, a water-soluble organic solvent, or a mixed solution thereof. It is preferable to carry out the stretching treatment while immersing in a solution containing a cross-linking agent and / or a water resistant agent. Examples of the cross-linking agent include a boron compound such as boric acid, boric acid or ammonium borate, a polyvalent aldehyde such as glyoxal or glutaraldehyde, a polyvalent isocyanate compound such as biuret type, isocyanurate type or block type, and titanium oxy. Titanium-based compounds such as sulfate can be used, but ethylene glycol glycidyl ether, polyamide epichlorohydrin and the like can also be used. Examples of the water resistant agent include succinic acid peroxide, ammonium persulfate, calcium perchlorate, benzoin ethyl ether, ethylene glycol diglycidyl ether, glycerin diglycidyl ether, ammonium chloride and magnesium chloride. Stretching is performed in a solution containing at least one of the above-mentioned cross-linking agents and / or water resistant agents. Boric acid is preferable as the cross-linking agent.
 延伸工程での架橋剤及び/又は耐水化剤の濃度は、例えば、0.5~15重量%が好ましく、2.0~8.0重量%がより好ましい。延伸倍率は2~8倍が好ましく、5~7倍がより好ましい。延伸温度は40~60℃で処理することが好ましく、45~58℃がより好ましい。延伸時間は通常30秒~20分であるが、2~5分がより好ましい。湿式延伸工程は1段で延伸することができるが、2段以上の多段延伸により行うこともできる。 The concentration of the cross-linking agent and / or the water resistant agent in the stretching step is preferably, for example, 0.5 to 15% by weight, more preferably 2.0 to 8.0% by weight. The draw ratio is preferably 2 to 8 times, more preferably 5 to 7 times. The stretching temperature is preferably 40 to 60 ° C, more preferably 45 to 58 ° C. The stretching time is usually 30 seconds to 20 minutes, but more preferably 2 to 5 minutes. The wet stretching step can be carried out in one step, but it can also be carried out by multi-step stretching in two or more steps.
 湿式延伸法の場合には、水、水溶性有機溶剤、又はその混合溶液中で延伸する。架橋剤及び/又は耐水化剤を含有した溶液中に浸漬しながら延伸処理を行うことが好ましい。架橋剤としては、例えば、ホウ酸、ホウ砂又はホウ酸アンモニウムなどのホウ素化合物、グリオキザール又はグルタルアルデヒドなどの多価アルデヒド、ビウレット型、イソシアヌレート型又はブロック型などの多価イソシアネート系化合物、チタニウムオキシサルフェイトなどのチタニウム系化合物などを用いることができるが、他にもエチレングリコールグリシジルエーテル、ポリアミドエピクロルヒドリンなどを用いることができる。耐水化剤としては、過酸化コハク酸、過硫酸アンモニウム、過塩素酸カルシウム、ベンゾインエチルエーテル、エチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、塩化アンモニウム又は塩化マグネシウムなどが挙げられる。以上に示された少なくとも1種以上の架橋剤及び/又は耐水化剤を含有した溶液中で延伸を行う。架橋剤はホウ酸が好ましい。 In the case of the wet stretching method, stretching is performed in water, a water-soluble organic solvent, or a mixed solution thereof. It is preferable to carry out the stretching treatment while immersing in a solution containing a cross-linking agent and / or a water resistant agent. Examples of the cross-linking agent include a boron compound such as boric acid, boric acid or ammonium borate, a polyvalent aldehyde such as glyoxal or glutaraldehyde, a polyvalent isocyanate compound such as biuret type, isocyanurate type or block type, and titanium oxy. Titanium-based compounds such as sulfate can be used, but ethylene glycol glycidyl ether, polyamide epichlorohydrin and the like can also be used. Examples of the water resistant agent include succinic acid peroxide, ammonium persulfate, calcium perchlorate, benzoin ethyl ether, ethylene glycol diglycidyl ether, glycerin diglycidyl ether, ammonium chloride and magnesium chloride. Stretching is performed in a solution containing at least one of the above-mentioned cross-linking agents and / or water resistant agents. Boric acid is preferable as the cross-linking agent.
 延伸工程での架橋剤及び/又は耐水化剤の濃度は、例えば、0.5~15重量%が好ましく、2.0~8.0重量%がより好ましい。延伸倍率は2~8倍が好ましく、5~7倍がより好ましい。延伸温度は40~60℃で処理することが好ましく、45~58℃がより好ましい。延伸時間は通常30秒~20分であるが、2~5分がより好ましい。湿式延伸工程は1段で延伸することができるが、2段以上の多段延伸により行うこともできる。 The concentration of the cross-linking agent and / or the water resistant agent in the stretching step is preferably, for example, 0.5 to 15% by weight, more preferably 2.0 to 8.0% by weight. The draw ratio is preferably 2 to 8 times, more preferably 5 to 7 times. The stretching temperature is preferably 40 to 60 ° C, more preferably 45 to 58 ° C. The stretching time is usually 30 seconds to 20 minutes, but more preferably 2 to 5 minutes. The wet stretching step can be carried out in one step, but it can also be carried out by multi-step stretching in two or more steps.
 延伸工程を行った後には、フィルム表面に架橋剤及び/又は耐水化剤の析出、又は異物が付着することがあるため、フィルム表面を洗浄する洗浄工程(以降洗浄工程2という)を行うことができる。洗浄時間は1秒~5分が好ましい。洗浄方法は洗浄溶液に浸漬することが好ましいが、溶液をポリビニルアルコール樹脂フィルムに塗布又は塗工によって洗浄することができる。1段で洗浄処理することもできるし、2段以上の多段処理をすることもできる。洗浄工程の溶液温度は、特に限定されないが通常5~50℃、好ましくは10~40℃である。 After the stretching step, a cross-linking agent and / or a water resistant agent may precipitate on the film surface, or foreign matter may adhere to the film surface. Therefore, a cleaning step (hereinafter referred to as cleaning step 2) for cleaning the film surface may be performed. it can. The washing time is preferably 1 second to 5 minutes. The cleaning method is preferably to immerse in a cleaning solution, but the solution can be washed by coating or coating on a polyvinyl alcohol resin film. The cleaning treatment can be performed in one stage, or the multi-stage treatment in two or more stages can be performed. The solution temperature in the washing step is not particularly limited, but is usually 5 to 50 ° C, preferably 10 to 40 ° C.
 ここまでの処理工程で用いる溶媒として、例えば、水、ジメチルスルホキシド、N-メチルピロリドン、メタノール、エタノール、プロパノール、イソプロピルアルコール、グリセリン、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール又はトリメチロールプロパン等のアルコール類、エチレンジアミン又はジエチレントリアミン等のアミン類などの溶媒が挙げられるがこれらに限定されるものではない。また、1種以上のこれら溶媒の混合物を用いることもできる。最も好ましい溶媒は水である。 Examples of the solvent used in the treatment steps up to this point include water, dimethylsulfoxide, N-methylpyrrolidone, methanol, ethanol, propanol, isopropyl alcohol, glycerin, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol or tri. Examples thereof include alcohols such as methylolpropane and solvents such as amines such as ethylenediamine or diethylenetriamine, but the present invention is not limited thereto. It is also possible to use a mixture of one or more of these solvents. The most preferred solvent is water.
 延伸工程又は洗浄工程2の後には、フィルムの乾燥工程を行う。乾燥処理は、自然乾燥により行うことができるが、より乾燥効率を高めるためにはロールによる圧縮やエアーナイフ、又は吸水ロール等によって表面の水分除去を行うことができ、及び/又は送風乾燥を行うこともできる。乾燥処理温度としては、20~100℃で乾燥処理することが好ましく、60~100℃で乾燥処理することがより好ましい。乾燥処理時間は30秒~20分を適用できるが、5~10分であることが好ましい。 After the stretching step or the washing step 2, the film drying step is performed. The drying treatment can be carried out by natural drying, but in order to further improve the drying efficiency, the surface moisture can be removed by compression with a roll, an air knife, a water absorption roll or the like, and / or air drying is performed. You can also do it. The drying treatment temperature is preferably 20 to 100 ° C., more preferably 60 to 100 ° C. The drying treatment time can be applied from 30 seconds to 20 minutes, but is preferably 5 to 10 minutes.
 以上の方法で、偏光機能を有する基材(A)の偏光素子、すなわち、アゾ化合物を含有し、基材(A)2枚の吸収軸を平行にして測定して得られる透過率において、520nm~590nmの平均透過率が30%以上であって、420nm~480nmの平均透過率と、520nm~590nmの平均透過率との差の絶対値が5%以内であり、かつ、520nm~590nmの平均透過率と、590nm~660nmの平均透過率との差の絶対値が5%以内であって、さらに、基材(A)2枚の吸収軸を直交にして測定して得られる各波長透過率において、420nm~480nmの平均透過率と、520nm~590nmの平均透過率との差の絶対値が2%以内であり、かつ、520nm~590nmの平均透過率と、600nm~660nmの平均透過率との差の絶対値が2%以内である偏光素子を得ることが出来る。 With the above method, the transmittance of the substrate (A) having a polarizing function, that is, the transmittance obtained by containing the azo compound and measuring the two absorption axes of the substrate (A) in parallel, is 520 nm. The average transmittance of about 590 nm is 30% or more, the absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 5%, and the average of 520 nm to 590 nm. The absolute value of the difference between the transmittance and the average transmittance of 590 nm to 660 nm is within 5%, and each wavelength transmittance obtained by measuring the absorption axes of the two substrates (A) at orthogonal angles. The absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 2%, and the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm. It is possible to obtain a polarizing element in which the absolute value of the difference between the two is within 2%.
 得られた偏光素子は、その片面、又は両面に透明保護層を設けることによって偏光板とする。透明保護層はポリマーによる塗布層として、又はフィルムのラミネート層として設けることができる。透明保護層を形成する透明ポリマー又はフィルムとしては、機械的強度が高く、熱安定性が良好な透明ポリマー又はフィルムが好ましい。透明保護層として用いる物質として、例えば、トリアセチルセルロースやジアセチルセルロースのようなセルロースアセテート樹脂又はそのフィルム、アクリル樹脂又はそのフィルム、ポリ塩化ビニル樹脂又はそのフィルム、ナイロン樹脂またはそのフィルム、ポリエステル樹脂又はそのフィルム、ポリアリレート樹脂又はそのフィルム、ノルボルネンのような環状オレフィンをモノマーとする環状ポリオレフィン樹脂又はそのフィルム、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン骨格を有するポリオレフィン又はその共重合体、主鎖又は側鎖がイミド及び/又はアミドの樹脂又はポリマー又はそのフィルムなどが挙げられる。また、透明保護層として、液晶性を有する樹脂又はそのフィルムを設けることもできる。保護フィルムの厚みは、例えば、0.5~200μm程度である。その中の同種又は異種の樹脂又はフィルムを片面、もしくは両面に1層以上設けることによって偏光板を作製する。 The obtained polarizing element is used as a polarizing plate by providing a transparent protective layer on one side or both sides thereof. The transparent protective layer can be provided as a coating layer made of a polymer or as a laminated layer of a film. As the transparent polymer or film forming the transparent protective layer, a transparent polymer or film having high mechanical strength and good thermal stability is preferable. Examples of the substance used as the transparent protective layer include cellulose acetate resins such as triacetyl cellulose and diacetyl cellulose or films thereof, acrylic resins or films thereof, polyvinyl chloride resins or films thereof, nylon resins or films thereof, polyester resins or films thereof. A film, a polyarylate resin or a film thereof, a cyclic polyolefin resin having a cyclic olefin such as norbornene as a monomer or a film thereof, polyethylene, polypropylene, a polyolefin having a cyclo-based or norbornene skeleton or a copolymer thereof, a main chain or a side chain Examples thereof include imide and / or amide resins or polymers, or films thereof. Further, as the transparent protective layer, a resin having a liquid crystal property or a film thereof may be provided. The thickness of the protective film is, for example, about 0.5 to 200 μm. A polarizing plate is produced by providing one or more layers of the same or different resin or film therein on one side or both sides.
 得られた偏光板は場合によって、例えば液晶、有機エレクトロルミネッセンス(通称、OLEDまたはOEL)等の表示装置に貼り合わせる場合、後に非露出面となる保護層またはフィルムの表面に、視野角改善及び/又はコントラスト改善のための各種機能性層、輝度向上性を有する層、またはフィルムを設けることもできる。偏光板を、これらのフィルムや表示装置に貼り合せるには粘着剤を用いるのが好ましい。 In some cases, when the obtained polarizing plate is attached to a display device such as a liquid crystal or an organic electroluminescence (commonly known as OLED or OEL), the viewing angle is improved and / or on the surface of a protective layer or film which will be a non-exposed surface later. Alternatively, various functional layers for improving contrast, a layer having brightness improving property, or a film may be provided. It is preferable to use an adhesive to attach the polarizing plate to these films and display devices.
 また、各種機能性層とは、位相差を制御する層又はフィルムを示す。特に、反射防止を付与するためには、偏光素子または偏光板に、視感度の高い550nmに対して1/4の位相差に調整された位相差板(以下、1/4λ)を、偏光素子または偏光板の吸収軸に対して45°に貼合して設けることが一般的である。その1/4λの位相差値とは120nm~160nmに調整された位相差板であり、好ましくは130nm~145nmである。 Further, the various functional layers indicate a layer or a film that controls the phase difference. In particular, in order to impart antireflection, a polarizing element or a polarizing plate is provided with a retardation plate (hereinafter, 1 / 4λ) adjusted to have a phase difference of 1/4 with respect to 550 nm, which has high visibility. Alternatively, it is generally provided by bonding at 45 ° to the absorption axis of the polarizing plate. The 1 / 4λ retardation value is a retardation plate adjusted to 120 nm to 160 nm, preferably 130 nm to 145 nm.
 しかしながら、1/4λだけでは、反射防止機能が不十分であることがあるため、さらにより反射防止機能を向上させるために、240nm~300nmの位相差値に調整された位相差板(以下、1/2λと省略)を偏光板の吸収軸に対して15°、かつ、1/4λを75°で貼合された位相差板を2枚使用して反射防止を向上させる手法もある。 However, since the antireflection function may be insufficient with only 1 / 4λ, a retardation plate adjusted to a retardation value of 240 nm to 300 nm in order to further improve the antireflection function (hereinafter, 1). There is also a method of improving antireflection by using two retardation plates in which 1 / 4λ is bonded at 15 ° to the absorption axis of the polarizing plate (abbreviated as / 2λ).
 さらに、この偏光板は、もう一方の表面、すなわち、保護層又はフィルムの露出面に、反射防止層、防眩層、ハードコート層など、公知の各種機能性層を有していてもよい。この各種機能性を有する層を作製するには塗工方法が好ましいが、その機能を有するフィルムを接着剤又は粘着剤を介して貼合せることもできる。 Further, this polarizing plate may have various known functional layers such as an antireflection layer, an antiglare layer, and a hard coat layer on the other surface, that is, the protective layer or the exposed surface of the film. A coating method is preferable for producing layers having various functions, but a film having the functions can also be attached via an adhesive or an adhesive.
 以上の方法で、アゾ化合物を含有し、基材(A)2枚の吸収軸を平行にして測定して得られる各波長透過率において、520nm~590nmの平均透過率が30%以上であって、420nm~480nmの平均透過率と、520nm~590nmの平均透過率との差の絶対値が5%以内であり、かつ、520nm~590nmの平均透過率と、590nm~660nmの平均透過率との差の絶対値が5%以内であって、さらに、基材(A)2枚の吸収軸を直交にして測定して得られる各波長透過率において、420nm~480nmの平均透過率と、520nm~590nmの平均透過率との差の絶対値が2%以内であり、かつ、520nm~590nmの平均透過率と、600nm~660nmの平均透過率との差の絶対値が2%以内の偏光素子、および、偏光板を得ることが出来る。 With the above method, the average transmittance of 520 nm to 590 nm is 30% or more in each wavelength transmittance obtained by containing the azo compound and measuring the two absorption axes of the base material (A) in parallel. , The absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 5%, and the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm. The absolute value of the difference is within 5%, and the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 520 nm in each wavelength transmittance obtained by measuring the two base materials (A) with the absorption axes orthogonal to each other. A polarizing element in which the absolute value of the difference from the average transmittance of 590 nm is within 2%, and the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm is within 2%. And a polarizing plate can be obtained.
 本発明の偏光素子または偏光板を用いた液晶表示装置は、明るく、かつ、高い輝度を有することが出来る。その結果、信頼性が高く、長期的に高コントラストで、かつ、高い色再現性を有する液晶表示装置になる。 The liquid crystal display device using the polarizing element or the polarizing plate of the present invention can be bright and have high brightness. The result is a liquid crystal display device that is highly reliable, has high contrast over the long term, and has high color reproducibility.
 こうして得られた本発明の偏光板は、必要に応じて保護層又は機能層及び板ガラスなどの支持体等を設け偏光機能を有する基材(A)として利用され、液晶プロジェクター、電卓、時計、ノートパソコン、ワープロ、液晶テレビ、偏光レンズ、偏光メガネ、カーナビゲーション、及び屋内外の計測器や表示器等に使用される。特に、反射型液晶表示装置、半透過液晶表示装置、有機エレクトロルミネッセンス等では好適である。 The polarizing plate of the present invention thus obtained is used as a base material (A) having a polarizing function by providing a protective layer or a functional layer and a support such as flat glass as necessary, and is used as a liquid crystal projector, a calculator, a clock, a notebook, etc. It is used in personal computers, word processors, LCD TVs, polarized lenses, polarized glasses, car navigation systems, and indoor and outdoor measuring instruments and displays. In particular, it is suitable for a reflective liquid crystal display device, a transflective liquid crystal display device, an organic electroluminescence, and the like.
 一般的な反射型液晶表示装置は、背面側から順に反射板、偏光板、液晶セル、偏光板の構成を有しており、その表示品位を改善するために、光拡散板や位相差板(例えば1/4λ)を用いることが一般的な構成である。 A general reflective liquid crystal display device has a structure of a reflector, a polarizing plate, a liquid crystal cell, and a polarizing plate in order from the back side, and in order to improve the display quality, a light diffusing plate or a retardation plate (a retardation plate) or a retardation plate ( For example, it is a general configuration to use 1 / 4λ).
 その一般的な構成に対して、本願の偏光機能を有する基材(A)を用いて、背面側から順に拡散反射板、偏光機能を有する基材(A)、液晶セル、偏光機能を有する基材(A)の構成、または、背面側から順に反射板、拡散板、偏光機能を有する基材(A)、液晶セル、偏光機能を有する基材(A)にて例示される構成にすることによって、白表示時に高品位な紙のような白を表示し、黒表示時に漆黒な黒を表示するに至る表示装置を提供できるようになるため、表示品位は飛躍的に向上する。 For the general configuration, using the base material (A) having a polarization function of the present application, a diffuse reflector, a base material (A) having a polarization function, a liquid crystal cell, and a group having a polarization function are used in this order from the back side. The structure of the material (A), or the structure exemplified by the reflector, the diffuser, the base material (A) having a polarization function, the liquid crystal cell, and the base material (A) having a polarization function in this order from the back side. As a result, it becomes possible to provide a display device that displays high-quality paper-like white when white is displayed and displays jet-black black when black is displayed, so that the display quality is dramatically improved.
 光拡散板は、反射板と背面側の偏光板との間に設けることが一般的ではあるが、特にその光拡散作用が得られれば、その積層構成は限定されることはない。または、非特許文献3で示されるように一枚偏光板方式(SPDモード)などの方式や、非特許文献4で示されるような構成が報告されている。このような構成において、一般的な偏光板では、漆黒な黒色を表示しようとすると、白色表示において黄色を呈色した白色表示になり、逆に、高品位な紙のような白色を表示しようとすると黒色を表示時に青色を呈色してしまった。 The light diffusing plate is generally provided between the reflecting plate and the polarizing plate on the back side, but the laminated structure is not limited as long as the light diffusing effect is obtained. Alternatively, a method such as a single polarizing plate method (SPD mode) as shown in Non-Patent Document 3 and a configuration as shown in Non-Patent Document 4 have been reported. In such a configuration, in a general polarizing plate, when an attempt is made to display a jet-black black color, a white display in which a yellow color is developed is obtained in a white display, and conversely, an attempt is made to display a high-quality paper-like white color. Then, when displaying black, it turned blue.
 このような問題から、反射型液晶、特にカラー反射型液晶表示装置では、これまでは白表示時の白色、黒表示での黒色を、カラーフィルターまたは液晶素子で改善する必要が生じ、この結果、反射率が低く、表示が暗いとみなされ、表示品位が低いとみなされてきた。こういった反射型液晶の表示装置で偏光機能を有する基材(A)を用いることによって、偏光板が有する白表示時の黄色の呈色と、黒表示時の青色の呈色する問題によって発生する色相を改善し、平行位でも直交位でも、各波長の透過率依存性がないことから、白表示時に高品位な紙のような白を表示し、黒表示時に漆黒な黒を表示するに至る表示装置を提供できる。 Due to such a problem, in a reflective liquid crystal, particularly a color reflective liquid crystal display device, it has been necessary to improve white in white display and black in black display with a color filter or a liquid crystal element. It has been considered low reflectance, dark display, and low display quality. By using the base material (A) having a polarization function in such a reflective liquid crystal display device, it is caused by the problem that the polarizing plate has a yellow color when displaying white and a blue color when displaying black. Since there is no dependency on the transmittance of each wavelength in both parallel and orthogonal positions, high-quality paper-like white is displayed when white is displayed, and jet-black black is displayed when black is displayed. A wide range of display devices can be provided.
 特に、透過率が一定であり、かつ、各波長での透過率の波長依存性がないことから、カラーフィルターで色の補正が出来ない白黒色の反射ディスプレイでは特に有効である。また、本偏光機能を有する基材(A)は、必要な透過率の範囲としては、基材2枚の吸収軸を平行にして測定して得られる520nm~590nmの各波長の平均透過率として25%~45%での任意の透過率の調整が可能であるため、その表示時の輝度を向上させ、および、コントラストをも向上させうることを達成しうる。 In particular, since the transmittance is constant and there is no wavelength dependence of the transmittance at each wavelength, it is particularly effective for a black-and-white reflective display whose color cannot be corrected by a color filter. Further, the base material (A) having the present polarization function has a required transmittance range of the average transmittance of each wavelength of 520 nm to 590 nm obtained by measuring the absorption axes of the two base materials in parallel. Since the transmittance can be adjusted arbitrarily from 25% to 45%, it can be achieved that the brightness at the time of display can be improved and the contrast can also be improved.
 さらに、その表示品位を向上させるためには、偏光機能を有する基材(A)が液晶セルを挟んで反射型偏光板と積層され、かつ、光拡散機能を有する基材を具備し、偏光機能を有する基材(A)が液晶セルに対して観察者側に設置されることで、その表示品位は向上する。反射型偏光板には、特許第4162645号、特許第4442760号に例示されるような規則的な凹凸を設けた偏光子や、特開2006―215175号、特開2007―298634号などの熱可塑性樹脂の交互積層タイプや、3M社製のBEFシリーズ、特にDBEFシリーズ、または、BEFRPなどの特殊な形状を有する樹脂成型タイプを用いることが出来る。 Further, in order to improve the display quality, a base material (A) having a polarizing function is laminated with a reflective polarizing plate with a liquid crystal cell sandwiched therein, and a base material having a light diffusing function is provided, and the polarizing function is provided. By installing the base material (A) having the above on the observer side with respect to the liquid crystal cell, the display quality thereof is improved. The reflective polarizing plate includes a polarizer having regular irregularities as exemplified in Japanese Patent No. 4162645 and Japanese Patent No. 4442760, and thermoplastics such as JP-A-2006-215175 and JP-A-2007-298634. It is possible to use an alternating laminated type of resin, a BEF series manufactured by 3M, particularly a DBEF series, or a resin molding type having a special shape such as BEFRP.
 また、特開2012―37611号に記載されるような異方性光拡散板も、異方性光拡散により偏光機能を有するため、反射型偏光板として用いることが出来る。この異方性光拡散板は、背面側から順に反射板、液晶セル、位相差板(例えば1/4λ)、偏光機能を有する基材(A)という例示される構成の中で、異方性光拡散板を反射板と液晶セルの間、液晶セルと位相差板の間、位相差板と偏光板との間のいずれかに設けることが良い。 Further, an anisotropic light diffusing plate as described in Japanese Patent Application Laid-Open No. 2012-37611 can also be used as a reflective polarizing plate because it has a polarization function by anisotropic light diffusion. This anisotropic light diffuser has an anisotropic light diffuser in an exemplary configuration of a reflector, a liquid crystal cell, a retardation plate (for example, 1 / 4λ), and a base material (A) having a polarizing function in this order from the back surface side. It may be provided between the reflector and the liquid crystal cell, between the liquid crystal cell and the retardation plate, or between the retardation plate and the polarizing plate.
 さらに、アクティブマトリックス型の反射型ディスプレイへの応用も可能である。光拡散機能を有する基材が、偏光機能を有する基材(A)と液晶セルとの間に設けられており、かつ、液晶セルの電極が鏡面反射型電極である反射型液晶表示装置であることで達成しうる。具体的な構成例としては、背面側から順に反射型電極、液晶セル、光拡散板、偏光機能を有する基材(A)の構成である。その際、視認性を改善するために、いずれかの層の間に、位相差板を設けても良い。 Furthermore, it can be applied to active matrix type reflective displays. A reflective liquid crystal display device in which a base material having a light diffusion function is provided between a base material (A) having a polarization function and a liquid crystal cell, and the electrode of the liquid crystal cell is a specular reflection type electrode. Can be achieved by As a specific configuration example, a reflective electrode, a liquid crystal cell, a light diffusing plate, and a base material (A) having a polarizing function are configured in this order from the back surface side. At that time, in order to improve visibility, a retardation plate may be provided between any of the layers.
 特に、アクティブマトリックス型の反射ディスプレイは、反射型カラー液晶表示装置に好適に用いられるため、偏光素子または偏光板の色の影響を受けやすく、平行位および直交位の各波長透過率において、波長依存性がなく、ほぼ一定の透過率を有し、カラーシフトがなく、かつ、高偏光度な基材が求められる。そういった反射型カラー液晶表示用に、偏光機能を有する基材(A)は有効であり、その設けた表示装置は非常に高い演色性を有する表示装置になる。 In particular, since the active matrix type reflective display is suitably used for a reflective color liquid crystal display device, it is easily affected by the color of the polarizing element or the polarizing plate, and is wavelength-dependent in each wavelength transmittance of the parallel position and the orthogonal position. A substrate having no property, having a substantially constant transmittance, no color shift, and a high degree of polarization is required. For such a reflective color liquid crystal display, the base material (A) having a polarizing function is effective, and the display device provided with the base material (A) becomes a display device having a very high color rendering property.
 また、アクティブマトリックス型の反射型ディスプレイへの応用として、非特許文献4に記載されるように、液晶セルの電極が樹脂などによって凹凸を作り、かつ、透明なITO電極を用いずにアルミ電極を用いて反射させる拡散反射型電極であることで、より表示品位を向上させることが出来る。具体的な構成例としては、背面側から順に拡散型反射電極、液晶セル、偏光機能を有する基材(A)の構成である。その際、視認性を改善するために、いずれかの層の間に、位相差板を設けても良い。また、いずれかの層の間に光拡散機能を有する基材を設け、さらに光拡散性を設けて視認性を向上させても良い。 Further, as an application to an active matrix type reflective display, as described in Non-Patent Document 4, the electrode of the liquid crystal cell is made uneven by resin or the like, and an aluminum electrode is used without using a transparent ITO electrode. By using and reflecting the diffuse reflection type electrode, the display quality can be further improved. As a specific configuration example, a diffusion type reflective electrode, a liquid crystal cell, and a base material (A) having a polarizing function are configured in this order from the back surface side. At that time, in order to improve visibility, a retardation plate may be provided between any of the layers. Further, a base material having a light diffusing function may be provided between any of the layers, and further light diffusing property may be provided to improve visibility.
 以上の方法で、これまで表示品位が低いと見なされていた反射型の液晶デバイスであっても、表示品位を飛躍的に向上させ、偏光板が有する白表示時の黄色の呈色と、黒表示時の青色の呈色する問題によって発生する表示装置の色目を改善し、白表示時に白を表示し、黒表示時に黒を表示し、かつ、反射型カラー液晶表示装置において高い演色性を示す表示装置を提供できる。 By the above method, even if it is a reflective liquid crystal device that has been considered to have low display quality, the display quality is dramatically improved, and the yellow color of the white plate and the black color of the black plate are displayed. Improves the color of the display device caused by the problem of blue coloration during display, displays white when displaying white, displays black when displaying black, and shows high color playability in a reflective color liquid crystal display device. A display device can be provided.
 またさらに、偏光機能を有する基材(A)は、透過率の範囲としては、基材(A)2枚の吸収軸を平行にして測定して得られる520nm~590nmの各波長の平均透過率として25%~45%での任意の透過率の調整が可能であるため、その表示時の輝度を向上させ、および、コントラストをも向上させうることを達成しうる。また、反射型液晶の構成によって、その表示品位は各段に向上させることが出来る。 Furthermore, the base material (A) having a polarizing function has an average transmittance of each wavelength of 520 nm to 590 nm obtained by measuring the absorption axes of the two base materials (A) in parallel as the range of transmittance. Since the transmittance can be adjusted arbitrarily from 25% to 45%, it is possible to improve the brightness at the time of display and also to improve the contrast. Further, depending on the configuration of the reflective liquid crystal, the display quality can be improved to each stage.
(実施例1)
 本発明の実施例1の表示装置について図2を用いて説明する。図2(a)は実施例1の表示装置の縦断面図であり、表示装置の上面(観察者側)(以下、単に上面という)から順に、基材(A)1、位相差板2、拡散板3、第1のガラス基板4、カラーフィルター5、対向電極(ITO6)、液晶層7、反射板兼画素電極(Al)8、第2のガラス基板9が配置される。ここで図面の縦横比は、わかりやすくするために実際の比率とは異なっている。なお、以下の実施例において、同一の符号を付した部分は同一物を表している。図2(b)は、カラーフィルター5の平面図であり、赤5a、緑5b、青5cの画素要素からできていることを表している。実際の表示装置はこの赤緑青のパターンの周期が画素の数だけ繰り返されたものになっている。
(Example 1)
The display device according to the first embodiment of the present invention will be described with reference to FIG. FIG. 2A is a vertical cross-sectional view of the display device of the first embodiment, in which the base material (A) 1, the retardation plate 2, and the top surface (observer side) of the display device (hereinafter, simply referred to as the top surface) are used. A diffuser plate 3, a first glass substrate 4, a color filter 5, a counter electrode (ITO6), a liquid crystal layer 7, a reflector / pixel electrode (Al) 8, and a second glass substrate 9 are arranged. Here, the aspect ratio of the drawing is different from the actual ratio for the sake of clarity. In the following examples, the parts with the same reference numerals represent the same products. FIG. 2B is a plan view of the color filter 5, and shows that the color filter 5 is composed of pixel elements of red 5a, green 5b, and blue 5c. In an actual display device, the period of this red, green, and blue pattern is repeated by the number of pixels.
 基材(A)1は染料をPVAに染色した染料系偏光板である。図3は、基材(A)1と同様の材料で作製した偏光板の平行透過率と直交透過率との関係を表す図である。すなわち、使用した基材(A)1と同様の材料で染色濃度を調整して染料系偏光板を作製し、その偏光板2枚の吸収軸を平行にして測定して得られる透過率(平行透過率)と、偏光板2枚の吸収軸を直交にして測定して得られる透過率(直交透過率)の関係を示した図である。図3から平行透過率が高くなるに従い、直交透過率も高くなっていくことがわかる。図4は、平行透過率とコントラストとの関係を示した図である。図4から平行透過率が高くなるに従い、コントラストが低下していくことがわかる。ここでコントラストは、以下の式で表される偏光板のコントラストである。
 コントラスト=平行透過率/直交透過率
The base material (A) 1 is a dye-based polarizing plate obtained by dyeing PVA with a dye. FIG. 3 is a diagram showing the relationship between the parallel transmittance and the orthogonal transmittance of a polarizing plate made of the same material as the base material (A) 1. That is, a dye-based polarizing plate is produced by adjusting the dyeing concentration with the same material as the base material (A) 1 used, and the transmittance (parallel) obtained by measuring the absorption axes of the two polarizing plates in parallel. It is a figure which showed the relationship between the transmittance (transmittance) and the transmittance (orthogonal transmittance) obtained by measuring with the absorption axes of two polarizing plates made orthogonal to each other. From FIG. 3, it can be seen that as the parallel transmittance increases, the orthogonal transmittance also increases. FIG. 4 is a diagram showing the relationship between parallel transmittance and contrast. From FIG. 4, it can be seen that the contrast decreases as the parallel transmittance increases. Here, the contrast is the contrast of the polarizing plate represented by the following equation.
Contrast = parallel transmittance / orthogonal transmittance
 偏光板のコントラストは10以上が必要であること、また反射率の低下を抑える理由から、基材(A)1の平行透過率は36%~39%の値になるように調整した。反射型液晶表示装置では反射率を高くして明るい表示を実現することが重要である。本実施例では、反射率が20%以上得られ、かつ、良好なカラー表示が実現できるよう、カラーフィルターのNTSC比を5%~15%となるように調整した。 The parallel transmittance of the base material (A) 1 was adjusted to a value of 36% to 39% because the contrast of the polarizing plate needs to be 10 or more and the decrease in reflectance is suppressed. In a reflective liquid crystal display device, it is important to increase the reflectance to realize a bright display. In this example, the NTSC ratio of the color filter was adjusted to 5% to 15% so that a reflectance of 20% or more could be obtained and a good color display could be realized.
 ところで、反射率では、カラーフィルターの透過率と基材(A)1の平行透過率との積が最も大きなファクターである。例えば、カラーフィルターを光が二回透過した際のNTSC比と透過率の関係を示した図1を参照すると、カラーフィルターのNTSC比が5%~15%におけるカラーフィルターの透過率は70~90%であり、反射率が20%以上得られ、かつ、良好なカラー表示が実現できる。なお、カラーフィルターは層の厚みや顔料の濃度を変えて色の濃さを調整できる。 By the way, in terms of reflectance, the product of the transmittance of the color filter and the parallel transmittance of the base material (A) 1 is the largest factor. For example, referring to FIG. 1 showing the relationship between the NTSC ratio and the transmittance when light is transmitted twice through the color filter, the transmittance of the color filter is 70 to 90 when the NTSC ratio of the color filter is 5% to 15%. %, A reflectance of 20% or more can be obtained, and a good color display can be realized. The color filter can adjust the color depth by changing the layer thickness and the pigment density.
 また基材(A)2枚の吸収軸を平行にして測定して得られる透過率において、
 420nm乃至480nmの平均透過率と、520nm~590nmの平均透過率との差の絶対値が1.0%~2%、かつ、
 520nm乃至590nmの平均透過率と、590nm~660nmの平均透過率との差の絶対値が1.0%~2.0%、
 さらに、該基材2枚の吸収軸を直交にして測定して得られる各波長透過率において、
 420nm乃至480nmの平均透過率と、520nm~590nmの平均透過率との差の絶対値が0.5%~1.0%、
 520nm乃至590nmの平均透過率と、600nm~660nmの平均透過率との差の絶対値が0.5%~1%になるように調整した。このような方法で作製した実施例1の反射型液晶表示装置において、反射率が高くて明るい、かつ、着色のない高品位な白表示と黒表示、及び、優れたカラー表示が実現した。
Further, in the transmittance obtained by measuring the two absorption axes of the base material (A) in parallel,
The absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is 1.0% to 2%, and
The absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm is 1.0% to 2.0%.
Further, in each wavelength transmittance obtained by measuring the absorption axes of the two substrates at right angles,
The absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is 0.5% to 1.0%.
The absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm was adjusted to be 0.5% to 1%. In the reflective liquid crystal display device of Example 1 produced by such a method, high-quality white and black displays having high reflectance, brightness, and no coloring, and excellent color display have been realized.
(実施例2)
 本発明の実施例2の表示装置について図5を用いて説明する。図5(a)は実施例2の表示装置の縦断面図であり、上面から順に、基材(A)1、位相差板2、拡散板3、ガラス基板4、透明な領域を設けたカラーフィルター51、対向電極(ITO)6、液晶層7、反射板兼画素電極(Al)8、第2のガラス基板9が配置される。ここで図面の縦横比は、効果をわかりやすくするために実際の比率とは異なっている。
(Example 2)
The display device of the second embodiment of the present invention will be described with reference to FIG. FIG. 5A is a vertical sectional view of the display device of the second embodiment, and is a collar provided with a base material (A) 1, a retardation plate 2, a diffusion plate 3, a glass substrate 4, and a transparent region in this order from the top surface. A filter 51, a counter electrode (ITO) 6, a liquid crystal layer 7, a reflector / pixel electrode (Al) 8, and a second glass substrate 9 are arranged. Here, the aspect ratio of the drawing is different from the actual ratio in order to make the effect easy to understand.
 図5(b)は、透明な領域を設けたカラーフィルター51の平面図であり、赤51a、緑51b、青51cの画素要素からできていることを表している。カラーフィルター51の各色にはカラー層のない透明な領域が各色の領域の一部に設けられている。透明な領域は、面積を変えることで、カラーフィルター51のNTSC比を1%~20%の範囲に調整することができ、反射率を高くすることができる。なお、透明な領域は、中央部に設けられる方が生産時のばらつきが少なくより好ましい。そして、基材(A)1を使用することにより、カラーフィルター51に形成された透明な領域の着色も防止し、高い反射率を有しながらも、着色のない高品位な白表示と黒表示及び優れたカラー表示が実現できる。 FIG. 5B is a plan view of the color filter 51 provided with a transparent region, and shows that the color filter 51 is composed of pixel elements of red 51a, green 51b, and blue 51c. Each color of the color filter 51 is provided with a transparent region without a color layer as a part of each color region. By changing the area of the transparent region, the NTSC ratio of the color filter 51 can be adjusted in the range of 1% to 20%, and the reflectance can be increased. It is more preferable that the transparent region is provided in the central portion because there is less variation during production. Then, by using the base material (A) 1, coloring of the transparent region formed on the color filter 51 is also prevented, and high-quality white display and black display without coloring while having high reflectance are displayed. And excellent color display can be realized.
(実施例3)
 本発明の実施例3を図6(a)及び図6(b)に示した。本発明の実施例3は、実施例2と比較して画素の構成が異なっており、赤、緑、青、透明の画素からできている。カラーフィルター52、赤52a、緑52b、青52cのカラー層に加え、カラー層のない透明な画素52dが形成されている。カラー層52a~52cに透明画素52dを加えることで、NTSC比が1%~20%の範囲と小さくなり、反射率が向上し、明るい表示が可能となる。
(Example 3)
Example 3 of the present invention is shown in FIGS. 6 (a) and 6 (b). Example 3 of the present invention has a different pixel configuration from that of Example 2, and is composed of red, green, blue, and transparent pixels. In addition to the color layers of the color filter 52, red 52a, green 52b, and blue 52c, transparent pixels 52d without a color layer are formed. By adding the transparent pixels 52d to the color layers 52a to 52c, the NTSC ratio becomes as small as 1% to 20%, the reflectance is improved, and a bright display becomes possible.
 また、各カラー層52a~52cおよび透明な画素52dを略正方形にし、田の字に配置することで、横並びに配置するよりも無効領域が少なくなり、開口率を高くすることが可能となり、反射率の高いカラー表示を実現することができる。また基材(A)1を使用することにより、カラーフィルター52に形成された透明な画素52dの着色も防止し、高い反射率を有しながらも、着色のない高品位な白表示と黒表示及び優れたカラー表示が実現できる。 Further, by making each color layer 52a to 52c and the transparent pixel 52d substantially square and arranging them in a U-shape, the invalid area becomes smaller than when they are arranged side by side, the aperture ratio can be increased, and the reflection becomes possible. It is possible to realize a high-rate color display. Further, by using the base material (A) 1, coloring of the transparent pixel 52d formed on the color filter 52 is prevented, and high-quality white display and black display without coloring while having high reflectance are displayed. And excellent color display can be realized.
(実施例4)
 本発明の実施例4を図7(a)及び図7(b)に示した。実施例2、3と比較して画素の構成が異なっており、赤、赤寄りの緑、青、青寄りの緑の半透明の画素からできている。カラーフィルター53は、赤53a、赤寄りの緑53b、青53c、青寄りの緑53dのカラー層からなる。カラーフィルター53の、赤53a、赤寄りの緑53b、青53c、青寄りの緑53dにはカラー層のない透明な領域が各色層の一部に設けられており、透明な領域の面積を変えることで、カラーフィルター53の材料や厚みを変えることなくカラーフィルター53のNTSC比を1%~20%の範囲に調整することができ、反射率を高くすることができる。
(Example 4)
Example 4 of the present invention is shown in FIGS. 7 (a) and 7 (b). The pixel configuration is different from that of Examples 2 and 3, and it is composed of semi-transparent pixels of red, green closer to red, blue, and green closer to blue. The color filter 53 includes a color layer of red 53a, reddish green 53b, blue 53c, and blued green 53d. In the color filter 53, red 53a, reddish green 53b, blue 53c, and blued green 53d are provided with a transparent region without a color layer as a part of each color layer, and the area of the transparent region is changed. As a result, the NTSC ratio of the color filter 53 can be adjusted in the range of 1% to 20% without changing the material and thickness of the color filter 53, and the reflectance can be increased.
 また、4つの各画素を略正方形にし、田の字に配置することで、横並びに配置するよりも無効領域が少なくなり、開口率を高くすることが可能となり、反射率の高いカラー表示を実現することができる。また基材(A)1を使用することにより、カラーフィルター53に形成された透明な領域の着色も防止し、高い反射率を有しながらも、着色のない高品位な白表示と黒表示及び優れたカラー表示が実現できる。 In addition, by making each of the four pixels approximately square and arranging them in a U-shape, the invalid area is smaller than when they are arranged side by side, the aperture ratio can be increased, and a color display with high reflectance is realized. can do. Further, by using the base material (A) 1, coloring of the transparent region formed on the color filter 53 is prevented, and high-quality white display and black display without coloring while having high reflectance and black display and Excellent color display can be realized.
(実施例5)
 本発明の実施例5を図8に示した。実施例5では、拡散形状81を形成した反射板兼表示電極(Al)が形成されてある。反射板の拡散機能と拡散板3の効果により、より広い範囲に外光を拡散させることができる。
(Example 5)
Example 5 of the present invention is shown in FIG. In the fifth embodiment, the reflector / display electrode (Al) having the diffused shape 81 formed is formed. Due to the diffusing function of the reflector and the effect of the diffusing plate 3, external light can be diffused over a wider range.
(実施例6)
 本発明の実施例6を図9に示した。実施例6では、表示装置の背面側に反射板10を配置し、反射板10の上に第2の基材11、第2のガラス基板9が順に配置される。そして、第2のガラス基板9の上には透明画素電極(ITOもしくはIZO)82が配置されている。この構造により、第1のガラス基板4ならびに第2のガラス基板9で挟まれた領域内に反射板を形成する必要がなく、また、反射板10に特定の偏光した光を反射するような反射型偏光板を用いることで、反射型偏光板を介して背面側から入射する光を用いた表示も可能となる。
(Example 6)
Example 6 of the present invention is shown in FIG. In the sixth embodiment, the reflector 10 is arranged on the back surface side of the display device, and the second base material 11 and the second glass substrate 9 are arranged in this order on the reflector 10. A transparent pixel electrode (ITO or IZO) 82 is arranged on the second glass substrate 9. With this structure, it is not necessary to form a reflecting plate in the region sandwiched between the first glass substrate 4 and the second glass substrate 9, and the reflecting plate 10 reflects a specific polarized light. By using the type polarizing plate, it is possible to display using the light incident from the back side through the reflective polarizing plate.
 1 基材(A)、2 位相差板、3 拡散板、4 第1のガラス基板、5 カラーフィルター、6 対向電極(ITO)、7 液晶層、8 反射板兼画素電極(Al)、9 第2のガラス基板、5a カラーフィルターの赤の領域、5b カラーフィルターの緑の領域、5c カラーフィルターの青の領域、51 透明な領域を設けたカラーフィルター、51a 透明な領域を設けたカラーフィルターの赤領域、51b 透明領域を設けたカラーフィルターの緑領域、51c 透明な領域を設けたカラーフィルターの青領域、51d 透明な領域を設けたカラーフィルターの赤領域、52a 実施例3のカラーフィルターの赤領域、52b 実施例3カラーフィルターの緑領域、52c 実施例3のカラーフィルターの青領域、52d 実施例3のカラーフィルターの透明領域、53a 実施例4のカラーフィルターの赤領域、53b 実施例4のカラーフィルターの赤寄りの緑領域、53c 実施例4のカラーフィルターの青領域、53d 実施例4のカラーフィルターの青寄りの緑色領域、81 拡散形状を形成した反射板兼表示電極(Al)、82 透明画素電極(ITOもしくはIZO)。 1 base material (A), 2 retardation plate, 3 diffusion plate, 4 first glass substrate, 5 color filter, 6 counter electrode (ITO), 7 liquid crystal layer, 8 reflector and pixel electrode (Al), 9th 2 glass substrate, 5a color filter red area, 5b color filter green area, 5c color filter blue area, 51 color filter with transparent area, 51a color filter red with transparent area Area, 51b green area of color filter provided with transparent area, 51c blue area of color filter provided with transparent area, 51d red area of color filter provided with transparent area, 52a red area of color filter of Example 3 , 52b Green area of the color filter of Example 3, 52c Blue area of the color filter of Example 3, 52d Transparent area of the color filter of Example 3, 53a Red area of the color filter of Example 4, 53b Color of Example 4. Green area near red of the filter, 53c Blue area of the color filter of Example 4, 53d Green area of the color filter of Example 4, 81 Reflector and display electrode (Al) forming a diffused shape, 82 Transparent Pixel electrode (ITO or IZO).

Claims (16)

  1.  式(1)で示されるアゾ化合物またはその塩を含有し、
    Figure JPOXMLDOC01-appb-C000001
    (式中、Aは置換基を有するフェニル基、またはナフチル基を示し、RまたはRは各々独立に、水素原子、低級アルキル基、低級アルコキシ基、スルホ基、又はスルホ基を有する低級アルコキシ基を示し、Xは置換基を有してもよいフェニルアミノ基を示す。)
     基材2枚の吸収軸を平行にして測定して得られる透過率において、
     520nm乃至590nmの平均透過率が30%以上であって、
     420nm乃至480nmの平均透過率と、520nm乃至590nmの平均透過率との差の絶対値が5%以内であり、かつ、
     520nm乃至590nmの平均透過率と、590nm乃至660nmの平均透過率との差の絶対値が5%以内であって、
     さらに、前記基材2枚の吸収軸を直交にして測定して得られる各波長透過率において、
     420nm乃至480nmの平均透過率と、520nm乃至590nmの平均透過率との差の絶対値が2%以内であり、かつ、
     520nm乃至590nmの平均透過率と、600nm乃至660nmの平均透過率との差の絶対値が2%以内である
     ことを特徴とする偏光機能を有する基材(A)を備えることを特徴とする表示装置。
    Contains the azo compound represented by the formula (1) or a salt thereof,
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, A 1 represents a phenyl group or a naphthyl group having a substituent, and R 1 or R 2 independently have a hydrogen atom, a lower alkyl group, a lower alkoxy group, a sulfo group, or a lower group having a sulfo group. Indicates an alkoxy group, and X 1 indicates a phenylamino group which may have a substituent.)
    In the transmittance obtained by measuring the absorption axes of two substrates in parallel,
    The average transmittance of 520 nm to 590 nm is 30% or more,
    The absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 5%, and
    The absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 590 nm to 660 nm is within 5%.
    Further, in each wavelength transmittance obtained by measuring the absorption axes of the two base materials at right angles,
    The absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is within 2%, and
    A display characterized by comprising a base material (A) having a polarizing function, wherein the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm is within 2%. apparatus.
  2.  カラーフィルターを備えることを特徴とする請求項1に記載の表示装置。 The display device according to claim 1, further comprising a color filter.
  3.  前記カラーフィルターを光が2回透過したときのNTSC比は、1乃至20であることを特徴とする請求項2に記載の表示装置。 The display device according to claim 2, wherein the NTSC ratio when light is transmitted twice through the color filter is 1 to 20.
  4.  前記カラーフィルターは、赤色カラー層、緑色カラー層、および青色カラー層を含むことを特徴とする請求項2または請求項3のいずれかに記載の表示装置。 The display device according to claim 2 or 3, wherein the color filter includes a red color layer, a green color layer, and a blue color layer.
  5.  前記カラーフィルターは、赤色カラー層、赤寄りの緑色カラー層、青色カラー層、および青寄りの緑色カラー層を含むことを特徴とする請求項2または請求項3のいずれかに記載の表示装置。 The display device according to any one of claims 2 or 3, wherein the color filter includes a red color layer, a reddish green color layer, a blue color layer, and a blueish green color layer.
  6.  前記カラーフィルターは、無色透明な領域を有することを特徴とする請求項2から請求項5のいずれかに記載の表示装置。 The display device according to any one of claims 2 to 5, wherein the color filter has a colorless and transparent region.
  7.  前記無色透明な領域の面積は、前記カラーフィルターの全領域の面積の1/4以上であることを特徴とする請求項6に記載の表示装置。 The display device according to claim 6, wherein the area of the colorless and transparent region is 1/4 or more of the area of the entire region of the color filter.
  8.  前記基材(A)2枚の吸収軸を直交にして測定して得られる各波長透過率において、
     420nm乃至480nmの平均透過率と、520nm乃至590nmの平均透過率との差の絶対値が0.3%より大きく、かつ、
     520nm乃至590nmの平均透過率と、600nm乃至660nmの平均透過率との差の絶対値が0.3%より大きいことを特徴とする請求項1から請求項7のいずれかに記載の表示装置。
    In each wavelength transmittance obtained by measuring the absorption axes of the two base materials (A) at right angles,
    The absolute value of the difference between the average transmittance of 420 nm to 480 nm and the average transmittance of 520 nm to 590 nm is larger than 0.3%, and
    The display device according to any one of claims 1 to 7, wherein the absolute value of the difference between the average transmittance of 520 nm to 590 nm and the average transmittance of 600 nm to 660 nm is larger than 0.3%.
  9.  液晶表示装置であることを特徴とする請求項1から請求項8のいずれかに記載の表示装置。 The display device according to any one of claims 1 to 8, wherein the display device is a liquid crystal display device.
  10.  前記液晶表示装置が、反射型液晶表示装置であることを特徴とする請求項9に記載の表示装置。 The display device according to claim 9, wherein the liquid crystal display device is a reflective liquid crystal display device.
  11.  背面側から順に、反射板、前記基材(A)、液晶層、前記カラーフィルター、前記基材(A)が少なくとも配置されることを特徴とする請求項2から請求項10のいずれかに記載の表示装置。 The method according to any one of claims 2 to 10, wherein at least the reflector, the base material (A), the liquid crystal layer, the color filter, and the base material (A) are arranged in this order from the back side. Display device.
  12.  前記液晶層は、前記背面側から順に、反射電極、前記液晶層、透明電極と配置されることを特徴とする請求項11に記載の表示装置。 The display device according to claim 11, wherein the liquid crystal layer is arranged in order from the back surface side with a reflective electrode, the liquid crystal layer, and a transparent electrode.
  13.  前記反射板は、拡散反射型であることを特徴とする請求項11または請求項12に記載の表示装置。 The display device according to claim 11 or 12, wherein the reflector is a diffuse reflection type.
  14.  前記反射電極は、拡散反射型であることを特徴とする請求項12に記載の表示装置。 The display device according to claim 12, wherein the reflective electrode is a diffuse reflection type.
  15.  光拡散機能を有する基材を、前記基材(A)と前記液晶層との間に備えることを特徴とする請求項11から請求項14のいずれかに記載の表示装置。 The display device according to any one of claims 11 to 14, wherein a base material having a light diffusing function is provided between the base material (A) and the liquid crystal layer.
  16.  120乃至160nmの位相差値を有する基材と前記基材(A)とが積層されていることを特徴とする請求項1から請求項15のいずれかに記載の表示装置。 The display device according to any one of claims 1 to 15, wherein a base material having a retardation value of 120 to 160 nm and the base material (A) are laminated.
PCT/JP2020/038352 2019-11-15 2020-10-09 Liquid crystal display device WO2021095411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-207427 2019-11-15
JP2019207427A JP2021081521A (en) 2019-11-15 2019-11-15 Liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2021095411A1 true WO2021095411A1 (en) 2021-05-20

Family

ID=75912607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038352 WO2021095411A1 (en) 2019-11-15 2020-10-09 Liquid crystal display device

Country Status (2)

Country Link
JP (1) JP2021081521A (en)
WO (1) WO2021095411A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111472A1 (en) * 2014-01-23 2015-07-30 日本化薬株式会社 Display device equipped with base material having polarizing function
WO2018016573A1 (en) * 2016-07-22 2018-01-25 凸版印刷株式会社 Color filter and reflective display device
WO2018092877A1 (en) * 2016-11-17 2018-05-24 凸版印刷株式会社 Reflective display apparatus
WO2018139522A1 (en) * 2017-01-27 2018-08-02 株式会社オルタステクノロジー Liquid crystal display device
JP2018189945A (en) * 2017-04-28 2018-11-29 株式会社ジャパンディスプレイ Display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111472A1 (en) * 2014-01-23 2015-07-30 日本化薬株式会社 Display device equipped with base material having polarizing function
WO2018016573A1 (en) * 2016-07-22 2018-01-25 凸版印刷株式会社 Color filter and reflective display device
WO2018092877A1 (en) * 2016-11-17 2018-05-24 凸版印刷株式会社 Reflective display apparatus
WO2018139522A1 (en) * 2017-01-27 2018-08-02 株式会社オルタステクノロジー Liquid crystal display device
JP2018189945A (en) * 2017-04-28 2018-11-29 株式会社ジャパンディスプレイ Display

Also Published As

Publication number Publication date
JP2021081521A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
TWI621883B (en) Display device comprising a substrate having polarizing function
JP6317335B2 (en) Achromatic dye-based polarizing element and polarizing plate having high transmittance
KR101918543B1 (en) Polarization element and polarization plate
JP6889178B2 (en) Polarizing element, and polarizing plate and liquid crystal display device using this
TWI698500B (en) Achromatic polarization element, achromatic polarization plate using same and liquid crystal display device
JP6317334B2 (en) Achromatic dye-based polarizing element and polarizing plate
JP6363185B2 (en) Achromatic polarizing plate with high transmission and high degree of polarization
JP6317333B2 (en) Achromatic polarizing element and polarizing plate
TWI776000B (en) Achromatic polarizing element, and achromatic polarizing plate and display using the same
JP6853010B2 (en) Achromatic polarizing element, and achromatic polarizing plate and liquid crystal display device using this
JP6609260B2 (en) Polarizing element, polarizing plate having the polarizing element, and liquid crystal display device having the polarizing element or the polarizing plate
WO2021095411A1 (en) Liquid crystal display device
JP6609259B2 (en) Polarizing element, polarizing plate having the polarizing element, and liquid crystal display device having the polarizing element or the polarizing plate
JP2024031583A (en) Polarizing film, polarizing plate using the same, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886241

Country of ref document: EP

Kind code of ref document: A1