WO2021093797A1 - 一种信息上报方法和信息处理方法及设备 - Google Patents

一种信息上报方法和信息处理方法及设备 Download PDF

Info

Publication number
WO2021093797A1
WO2021093797A1 PCT/CN2020/128260 CN2020128260W WO2021093797A1 WO 2021093797 A1 WO2021093797 A1 WO 2021093797A1 CN 2020128260 W CN2020128260 W CN 2020128260W WO 2021093797 A1 WO2021093797 A1 WO 2021093797A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
information
bgp
field
address family
Prior art date
Application number
PCT/CN2020/128260
Other languages
English (en)
French (fr)
Inventor
庄顺万
王海波
顾钰楠
闫刚
李振斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20887621.9A priority Critical patent/EP4047886A4/en
Publication of WO2021093797A1 publication Critical patent/WO2021093797A1/zh
Priority to US17/744,098 priority patent/US20220272025A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • H04L41/0826Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability for reduction of network costs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/065Generation of reports related to network devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery

Definitions

  • This application relates to the field of communications, in particular to an information reporting method and information processing method and equipment.
  • Border Gateway Protocol (Border Gateway Protocol, BGP) is a dynamic routing protocol used between autonomous systems (AS). It uses Transmission Control Protocol (TCP) as its transport layer protocol, which improves the protocol’s performance. reliability.
  • TCP Transmission Control Protocol
  • a network architecture using BGP usually includes a BGP speaker, which receives or generates routing information and sends the routing information to other BGP speakers. BGP speakers that exchange routing information are called peers.
  • the embodiments of the present application provide an information reporting method, an information processing method, and equipment to improve the efficiency of obtaining BGP information and reduce costs.
  • the embodiments of the present application provide an information reporting method, which can be applied to network devices, such as routers and switches.
  • the method includes the following steps: First, the network device obtains the BGP information of the network device.
  • the BGP information may include one or more of the address family monitoring information of the network device, the resource information of the network device, the health status information of the network device, and the security status information of the network device.
  • the address family monitoring information of the network device is information for monitoring the address family, and is used to ensure the normal operation of the address family.
  • the resource information of the network device is information indicating the resource of the network device, and reflects the load condition of the network device.
  • the health status information of the network device is information indicating the health status of the network device, and reflects whether the network device is malfunctioning.
  • the security status information of the network equipment is information indicating the security status of the network equipment, and reflects whether the network equipment has hidden security risks.
  • the network device sends a BGP Monitoring Protocol (BGP Monitoring Protocol, BMP) notification message to the first device, and the BMP notification message carries the BGP information of the network device.
  • BGP Monitoring Protocol BGP Monitoring Protocol
  • BMP notification message carries the BGP information of the network device.
  • the BGP information of the network device may be carried in the type-length-value (TLV) field of the BMP notification message.
  • the network device reports the BGP information to the first device by carrying the BGP information in the BMP notification message, so that the first device can automatically obtain the BGP information and perform subsequent corresponding processing, thereby improving the efficiency of obtaining BGP information and Reduce the corresponding cost.
  • the first device may be a server or a terminal device running a BMP service (server).
  • the address family monitoring information of the network device may be carried in the BGP monitoring update (BGP monitoring update) TLV field.
  • the address family monitoring information of the network device may include address family information and the first indication.
  • the address family information may include an address family identifier (AFI), and may also include an address family identifier and a sub-address family identifier (SAFI).
  • AFI address family identifier
  • SAFI sub-address family identifier
  • the address family identifier is used to identify the address family
  • the sub-address family identifier is used to identify the sub-address family of the address family.
  • the first indication is used to indicate whether to enable monitoring of the address family corresponding to the address family information.
  • the network device reports the address family information and the first instruction to the first device, and the first device can know the configuration status of whether to monitor the address family corresponding to the address family information, and determine whether the configuration of the address family information by the network device is correct, and so on.
  • the configuration of the address family information by the network device is used to establish a BGP session corresponding to the address family information. If the configuration is correct, the BGP session can be established; if the configuration is incorrect, the BGP session cannot be established.
  • the address family monitoring information of the network device also includes the configuration status corresponding to the address family information, and the configuration status is the status of whether the network device and/or the peer of the network device configures the address family information.
  • the configuration state may be the first configuration state, the second configuration state, or the third configuration state.
  • the first configuration state indicates that both the network device and the peer of the network device have configured address family information;
  • the second configuration state means that the network device has configured address family information, and the peer of the network device has not configured address family information;
  • third The configuration status means that the network device is not configured with address family information.
  • the second configuration state and the third configuration state indicate that the address family information is incorrectly configured. What kind of processing the first device performs for these three configuration states will be introduced later, and will not be repeated here.
  • the optional BGP information of the network device also includes the routing information type.
  • the routing information type is the type of routing information corresponding to the address family information.
  • the routing information type may include pre-policy routing information before the policy and/or post-policy routing information after the policy. , To achieve the purpose of monitoring the address family of a specific routing information type.
  • the resource information of the network device may include resource usage information and/or resource quota information of the network device.
  • the resource usage information indicates the usage status of the resource by the network device.
  • the resource quota information indicates the maximum resource supported or allowed to be used by the network device.
  • the resource information of the network device can be carried in the BGP Resource Usage (BGP Resource Usage) TLV field.
  • the resource information of the network device may include at least one or more of the following: the number of BGP sessions used by the network device and/or the total number of BGP sessions supported by the network device; the number of BGP instances used by the network device and/or Or the total number of BGP instances supported by the network device; the number of BGP routing table entries that the network device has used and/or the total number of BGP routing table entries supported by the network device; the number of routing table entries corresponding to the address family information configured by the network device; The number of forwarding entries in the network equipment and/or the total number of forwarding entries supported by the network equipment; the number of forwarding entries corresponding to the address family information configured by the network equipment; the amount of memory used by the network equipment and/or the total memory of the network equipment Size; and the used memory size corresponding to the address family information configured by the network device.
  • the health status information of the network device may be carried in the BGP Health Update (BGP Health Update) TLV field.
  • the health status information of the network device may include at least one or more of the following: message backlog information of the message queue of the network device and slow peer information corresponding to the address family information configured by the network device.
  • the message backlog information indicates the status of the message backlog in the message queue, and is used to determine whether the input and/or output speed of the BGP message on the network device is normal.
  • the message backlog information includes the number of messages in the message queue and/or the maximum number of messages allowed by the message queue.
  • Slow Peer also known as slow neighbor, its meaning is that when a BGP packet group includes multiple peers, if a network device sends a message to one of the peers due to network congestion, etc.
  • the speed of routing information is slow, which in turn affects the speed at which the network device sends routing information to other peers in this packaging group. At this time, this peer is called a slow peer.
  • the information of the slow peer may include at least one or more of the following: the address of the slow peer, the number of times that the peer corresponding to the address family information is identified as a slow peer, and the address The start time when the peer corresponding to the family information is identified as the slow peer and the end time when the peer corresponding to the address family information is identified as the slow peer.
  • the security state information of the network device may be carried in the BGP Security State (BGP Security State) TLV field.
  • the security status information of the network device includes at least one or more of the following: whether the BGP session of the network device is enabled with the generalized time to live security mechanism (GTSM); when the BGP session of the network device is enabled If GTSM is enabled, the security status information of the network device also includes the effective time to live (TTL) hop count; whether the BGP session of the network device is enabled with security authentication; the BGP session of the network device is enabled with security authentication, then the network device’s
  • the security status information also includes the authentication mode and/or authentication algorithm of the security authentication; whether the BGP session of the network device is enabled for origin authentication; the BGP session of the network device is enabled for origin validation (OV), the security status information of the network device It also includes illegal routing prefix information; the number of routing prefixes that the network device has received and/or the routing prefix threshold that the network device is allowed to receive; the number of
  • the embodiments of the present application also provide an information processing method, which can be applied to a first device.
  • the method specifically includes the following steps: First, the first device receives a BMP notification message from a network device. Including BGP information of network devices. Please refer to the above for the introduction of BGP information, and it will not be introduced here. Then, the first device performs corresponding processing according to the BGP information of the network device to realize the guarantee for the normal operation of the network device.
  • the BMP notification message is used to carry BGP information, so that the first device can automatically obtain BGP information and perform corresponding processing, thereby improving the efficiency of obtaining BGP information and reducing costs.
  • the BGP information of the network device includes address family monitoring information.
  • the address family monitoring information includes the address family information and the first instruction
  • the first device can display or notify the relevant personnel of the address family information and the first instruction through SMS, email, etc., so that the relevant personnel know which address family the network device needs to be.
  • Information enable monitoring, which address family information to enable monitoring, and then perform corresponding judgment processing.
  • the address family monitoring information of the network device may also include the type of routing message.
  • the first device may display or notify related personnel of the address family information, first indication, and type of routing message by means of SMS, email, etc. In order to let relevant personnel know which type of routing message of which address family information needs to be monitored by the network device, and which type of routing message of which address family information needs to enable monitoring, and then perform corresponding judgment processing.
  • the first device can detect whether the network device is faulty according to the address family information, the first indication, and the configuration status.
  • the configuration state is the first configuration state, the second configuration state, or the third configuration state.
  • the BMP notification message received by the first device includes the first indication corresponding to a certain address family information to enable monitoring
  • the corresponding configuration state is the first configuration state, that is, the network device and the peer are configured with the address Family information
  • the first device can receive the Route Monitoring (RM) message corresponding to the address family information, it means that the network device is operating normally; if the first device does not receive the RM corresponding to the address family information Message, it means that the network device is malfunctioning.
  • RM Route Monitoring
  • the first device can perform specific fault analysis in combination with the health status message below.
  • the BMP notification message received by the first device includes the first indication corresponding to a certain address family information to enable monitoring, and the corresponding configuration state is the second configuration state, that is, the network device has been configured with address family information and the network device’s If the address family information is not configured on the peer, it means that the network device is configured incorrectly or the peer is configured incorrectly. If it is the former, the first device can send a delete instruction to the network device, and the delete instruction is used to delete the address family information configured by the network device to solve the problem of network device configuration errors; if it is the latter, the first device can send a delete instruction to the network device.
  • the peer sends a configuration instruction, which is used to configure the address family information in the peer.
  • the BMP notification message received by the first device includes the first indication corresponding to a certain address family information to enable monitoring, and the corresponding configuration state is the third configuration state, that is, the network device is not configured with address family information, indicating the network device Configuration error, peer configuration error, or network device monitoring configuration error.
  • the first device may send a configuration instruction to the network device, where the configuration instruction is used to configure the address family information in the network device to solve the problem of the network device configuration error.
  • the first device may also send a delete instruction to the peer.
  • the delete instruction is used to delete the address family information configured by the peer to solve the problem of the peer configuration error.
  • the first device may also send a delete instruction to the network device, where the delete instruction is used to delete the first instruction corresponding to the address family information, so as to solve the problem of the network device monitoring configuration error.
  • the first device can determine whether monitoring has been enabled for the address family information. If so, it means that there may be link congestion between the network device and the first device, resulting in information loss. In this case, the first device and network can be added. The link bandwidth between devices. Through the above measures, the first device can ensure the normal operation of the BGP session between the network device and the peer.
  • the BGP information of the network device includes the resource usage information of the network device.
  • the resource usage information of the network device meets the preset conditions, it indicates that the network device is overloaded.
  • the first device can The service flow corresponding to the resource usage information is adjusted or alarmed to reduce the load of the network equipment.
  • resource usage information please refer to the above, which will not be repeated here.
  • the BGP information of the network device includes the health status information of the network device.
  • the first device diagnoses that the network device may be faulty according to the health status information of the network device, the first device can take corresponding measures Eliminate the failure of network equipment.
  • the health status information of the network device may include the message backlog information of the message queue of the network device.
  • the first device may adjust the message queue Corresponding business flow or alarm.
  • the message backlog information includes the number of messages in the message queue, and the first device adjusts the service flow corresponding to the message queue or issues an alarm to eliminate the message backlog problem.
  • the health status information of the network device includes the information of the slow peer corresponding to the address family information configured by the network device.
  • the first device confirms that the peer may be faulty or the network device and the peer according to the information of the slow peer When the link between the entities may fail, the first device can perform further inspections to determine the cause of the problem and take measures to eliminate the problem.
  • the BGP information of the network device includes the security status information of the network device.
  • the first device determines that the network device has a hidden security risk based on the security status information of the network device, the first device can take relevant measures to weaken or even reduce the security status of the network device. Eliminate this safety hazard.
  • the first device can judge whether the effective time to live TTL hop count is reasonable, and if it is unreasonable, it can make corresponding adjustments to ensure the security of the network device. Find a balance between normal operation.
  • the first device can issue an enable command to the network device.
  • the enable command is used to instruct the network device to enable GTSM , To ensure the security of network equipment.
  • the security status information of the network device includes whether security authentication is enabled for the BGP session of the network device.
  • the security status information of the network device includes the BGP session enabling security authentication of the network device
  • the first device may confirm whether the security authentication meets the security requirements according to the authentication mode and/or authentication algorithm of the security authentication. If it does not, the algorithm and/or mode of the security authentication can be adjusted to ensure the security of the network device.
  • the security status information of the network device includes whether origin authentication is enabled for the BGP session of the network device.
  • the security status information of the network device includes the BGP session enabling origin authentication of the network device
  • the first device can confirm whether the illegal routing prefix information of the origin authentication is misjudged. If it is a misjudgment, the first device may issue an activation instruction to the network device.
  • the activation instruction is used to activate the misjudged routing prefix, so as to reduce the waste of resources on the basis of ensuring the security of the network device.
  • the security status information of the network device includes the origin authentication of the BGP session is not enabled
  • the network device is more likely to be attacked, and the first device can send an enable command to the network device.
  • the enable command is used to instruct the network device to enable the origin Certification to ensure the security of network equipment.
  • the first device can determine whether the number of routing prefixes that the network device has received is greater than or equal to the threshold. If so, it indicates that the network device is in a reload operation state, which may cause Some services cannot operate normally, and the first device can perform an early warning or adjust the service flow of the network device, so as to reduce the load of the network device on the basis of ensuring the safety of the network device.
  • the first device can determine whether the number of received routing prefixes corresponding to the address family information is greater than or equal to the threshold. If so, it indicates that the network device is in Heavy load operation status may cause some services to fail to operate normally.
  • the first device can give an early warning to reduce the load of the network device on the basis of ensuring the safety of the network device. Or the first device can further determine whether the routing prefix corresponding to the address family information is legal. If so, increase the maximum allowable routing prefix and send the adjusted value to the network device to ensure the security of the network device. Guarantee the normal operation of network equipment on the basis of sex.
  • the network device may have the risk of overloading operation due to receiving a large number of routing prefixes, and the first device can issue a setting command.
  • the instruction is used by the network device to set the routing prefix threshold for the address family, so that the network device can give an early warning to ensure the security of the network device.
  • the network device may have the risk that the routing information is not synchronized with the routing information of the peer.
  • the first device can obtain the error update message and update the error The message is analyzed to ensure the security of network equipment.
  • the network device When the security status information of the network device includes disabling the function of ignoring error update messages, the network device cuts off the BGP session with the peer, which may cause the risk of network shock.
  • the first device can send an enable command to the network device.
  • the enable instruction is used to instruct the network device to enable the function of ignoring the error update message, or the first device can perform the protective measures against network oscillations to ensure the security of the network.
  • the action performed by the first device is similar to the action when the security status information of the network device includes the function of enabling ignoring error update messages , I won’t repeat it here.
  • the security status information of the network device includes the function of checking the first autonomous system AS number of the AS_Path attribute in the update message sent by the EBGP peer to the network device
  • the first device can determine all of the network device Whether the peers are all routing servers (Route Server), if not, you can send an enable command to the network device.
  • the enable command is used to enable the autonomous system in the update message sent by the EBGP peer to the network device.
  • the function of the AS number of the first autonomous system in the AS_Path attribute of the path to ensure the security of network devices.
  • the first device can determine Whether the EBGP peer is a routing server, if not, you can send an enable command to the network device.
  • the enable command is used to enable checking of the AS_Path attribute of the autonomous system path in the update message sent by the EBGP peer to the network device.
  • the first autonomous system AS number function to ensure the security of network equipment.
  • the first device can determine whether the network device and the peer belong to the same network operator. If not, the risk of routing loops in the network device is higher.
  • the first device can send a disabling instruction to the network device.
  • the disabling instruction is used to instruct the network device to disable the function that allows the local AS number to appear multiple times to ensure the security of the network device.
  • the first device can determine whether the network device and the peer belong to the same network operator, if not, the network device may receive an illegal route With greater performance, the first device can send a configuration instruction to the network device, where the configuration instruction is used to instruct the network device to configure an entry policy for the address family to ensure the security of the network device.
  • the first device can determine whether the network device and the peer belong to the same network operator, if not, the network is more likely to be impacted , The first device may send a configuration instruction to the network device, where the configuration instruction is used to instruct the network device to configure an egress policy for the address family, so as to ensure the security of the network device.
  • the security status information of the network device includes enabling Secure Socket Layer SSL authentication, it indicates that the security of the BGP session of the network device is relatively high.
  • the first device receives different BGP sessions carrying the same routing prefix, the first device receives different BGP sessions that carry the same routing prefix.
  • the device preferentially uses the BGP session of the network device with SSL authentication enabled to ensure the security of the network device.
  • the embodiments of the present application provide a network device, including a processor and a memory, the memory is used to store computer programs or instructions, and the processor is used to call the computer programs or instructions stored in the memory, so that the network management device executes the above information Reporting method.
  • an embodiment of the present application provides a network management device, including a processor and a memory, the memory is used to store computer programs or instructions, and the processor is used to call the computer programs or instructions stored in the memory, so that the network management device executes the foregoing Information processing methods.
  • an embodiment of the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the above-mentioned information reporting method and information processing method.
  • FIG. 1 is a schematic diagram of the architecture of a system 100 provided by an embodiment of the application;
  • Figure 2 is an interactive signaling diagram of a monitoring method provided by an embodiment of the application
  • Figure 3 is a schematic diagram of a BMP notification message format provided by an embodiment of the application.
  • Figure 4 is a schematic diagram of the format of the common header provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of the format of per-peer header provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of the format of the BGP monitoring update TLV field provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of each bit of the Flag field provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of the format of the BGP Resource Usage TLV field provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of the format of the BGP Session Number Sub-TLV field provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of the format of the BGP Instance Number Sub-TLV field provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of the format of the BGP Routes Number Sub-TLV field provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of the format of the BGP Routes Number Per AFI/SAFI Sub-TLV field provided by an embodiment of the application;
  • FIG. 13 is a schematic diagram of the format of the BGP FIB Number Sub-TLV field provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of the format of the BGP FIB Number Per AFI/SAFI Sub-TLV field provided by an embodiment of the application;
  • FIG. 15 is a schematic diagram of the format of the BGP Memory Size Sub-TLV field provided by an embodiment of the application.
  • FIG. 16 is a schematic diagram of the format of the BGP Memory Size Per AFI/SAFI Sub-TLV field provided by an embodiment of the application;
  • FIG. 17 is a schematic diagram of the format of the BGP Health Update TLV field provided by an embodiment of the application.
  • FIG. 19 is a schematic diagram of the format of the BGP Slow Peer Sub-TLV field provided by an embodiment of the application.
  • FIG. 20 is a schematic diagram of the format of the BGP Security State TLV field provided by an embodiment of the application.
  • FIG. 21 is a schematic diagram of the format of the BGP GTSM Enabled Sub-TLV field provided by an embodiment of the application.
  • FIG. 22 is a schematic diagram of the format of the BGP GTSM Not Enabled Sub-TLV field provided by an embodiment of the application;
  • FIG. 23 is a schematic diagram of the format of the BGP Authentication Sub-TLV field provided by an embodiment of the application.
  • FIG. 24 is a schematic diagram of the format of the BGP Non-Authentication Sub-TLV field provided by an embodiment of the application.
  • FIG. 25 is a schematic diagram of the format of the BGP Prefix OV Sub-TLV field provided by an embodiment of the application.
  • FIG. 26 is a schematic diagram of the format of the BGP NO Prefix OV Sub-TLV field provided by an embodiment of the application.
  • FIG. 27 is a schematic diagram of the format of the BGP Prefix Limit Sub-TLV field provided by an embodiment of the application.
  • FIG. 28 is a schematic diagram of the format of the BGP Peer Prefix Limit Sub-TLV field provided by an embodiment of the application.
  • FIG. 29 is a schematic diagram of the format of the BGP No Prefix Limit Sub-TLV field provided by an embodiment of the application.
  • FIG. 30 is a schematic diagram of the format of the BGP Update-Err ignore Sub-TLV field provided by an embodiment of the application.
  • FIG. 31 is a schematic diagram of the format of the BGP Peer Update-Err ignore Sub-TLV field provided by an embodiment of the application;
  • FIG. 32 is a schematic diagram of the format of the BGP Not Check-First-AS Sub-TLV field provided by an embodiment of the application;
  • FIG. 33 is a schematic diagram of the format of the BGP Peer Not Check-First-AS Sub-TLV field provided by an embodiment of the application;
  • FIG. 34 is a schematic diagram of the format of the BGP Peer Allow-AS-Loop Sub-TLV field provided by an embodiment of the application;
  • FIG. 35 is a schematic diagram of the format of the BGP No Inbound-Policy Sub-TLV field provided by an embodiment of the application.
  • FIG. 36 is a schematic diagram of the format of the BGP No Outbound-Policy Sub-TLV field provided by an embodiment of the application;
  • FIG. 37 is a schematic diagram of the format of the BGP SSL-Policy Sub-TLV field provided by an embodiment of the application.
  • FIG. 38 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 39 is a schematic structural diagram of a network management device provided by an embodiment of this application.
  • the embodiments of the present application provide a method for achieving the purpose of automatically acquiring BGP information, improving the efficiency of information acquisition, and reducing costs.
  • FIG. 1 is a schematic diagram of the architecture of a system 100 provided by an embodiment of the application.
  • the system 100 includes a customer edge (CE) device 101, a customer edge device 102, an operator edge (Provider Edge, PE) device 103, and an operator edge device 104.
  • the user edge device 101 is connected to the operator edge device 103
  • the user edge device 102 is connected to the operator edge device 104
  • the operator edge device 103 and the operator edge device 104 pass through one or more operator (provider, P) devices.
  • 105 connections The customer edge (CE) device 101, a customer edge device 102, an operator edge (Provider Edge, PE) device 103, and an operator edge device 104.
  • the user edge device 101 and the user edge device 102 may be terminal devices.
  • Terminal equipment which can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), terminal, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the device, or the chip set in the device for example, a handheld device with a wireless connection function, a vehicle-mounted device, etc.
  • terminal devices are: mobile phones, desktop computers, tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals in the transportation safety (transportation safety), wireless terminals in the smart city (smart city), wireless terminals in the smart home (smart home), and 5G-residential gateway devices that support 5G access. , 5G-RG) and so on.
  • MID mobile internet devices
  • VR virtual reality
  • AR augmented reality
  • wireless terminals in the smart city smart city
  • wireless terminals in the smart home smart home
  • 5G-residential gateway devices that support 5G access. , 5G-RG) and so on.
  • the operator edge device 103, the operator edge device 104, and the operator device 105 may be routers, switches, etc., for transmitting messages between the user edge device 101 and the user edge device 102. Any two devices between the operator edge device 103, the operator edge device 104, and one or more operator devices 105 that transfer routing messages to each other are called peers.
  • the system 100 further includes a BGP Monitoring Protocol (BMP) server 106, which can be connected to one or more of the operator edge device 103, the operator edge device 104, and the operator device 105. Used to obtain the BGP information of the corresponding device.
  • BMP BGP Monitoring Protocol
  • Fig. 2 is an interactive signaling diagram of a monitoring method provided by an embodiment of the application.
  • the network device obtains the BGP information of the network device.
  • the network device sends a BMP notification message to the first device, where the BMP notification message carries the BGP information of the network device.
  • the network device may be the operator edge device 103, the operator edge device 104, or the operator device 105 in FIG. 1.
  • the first device may be the BMP server 106 in FIG. 1.
  • the first device may also be a terminal device, such as a notebook computer, a desktop computer, etc., which is not specifically limited in this application.
  • the BGP information of the network device may include one or more of the address family monitoring information of the network device, the resource information of the network device, the health status information of the network device, and the security status information of the network device. This will be described in detail below.
  • the BGP information of the network device may be carried in a BMP notification message (inform message) sent by the network device to the first device for sending.
  • the network device Before sending the BMP notification message to the first device, the network device may first establish a BMP session with the first device.
  • the BMP notification message includes a common header (common header), each peer header (per-peer header), and a BMP notification protocol data unit (BMP inform PDU).
  • BMP inform PDU BMP notification protocol data unit
  • the common header includes a version (version) field, a message length (message length) field, and a message type (message type, Msg. Type) field.
  • version field carries the version number of the BMP notification message
  • message length field carries the length value of the BMP notification message
  • Msg.Type field carries the type value corresponding to the BMP notification message.
  • the per-peer header includes the peer type field, the peer flags field, and the peer distinguisher field (currently determined based on the peer type). ), peer address field, peer AS field, peer BGP ID field, timestamp (second level) field, and timestamp ) (Millisecond level) field.
  • the peer type field carries a value indicating the type of the peer; the peer flags field carries peer information; the peer distinguisher field carries the identifier of the peer; the peer address field carries the peer address; the peer AS field It carries the identifier of the peer autonomous system; the peer BGP ID field carries the BGP identifier of the peer; and the timestamp field carries the time (including seconds and milliseconds) of sending the BMP notification message.
  • the BGP information of the network device may be carried in the type-length-value (TLV) field of the BMP inform PDU. Different BGP information can be carried in different TLV fields.
  • TLV type-length-value
  • the BGP information of the network device may include the address family monitoring information of the network device.
  • the address family monitoring information may include address family information (address family information) and a first indication, where the first indication is used to indicate whether to enable monitoring of the address family corresponding to the address family information.
  • the address family information may include an address family identifier (AFI), and may also include an address family identifier and a sub-address family identifier (SAFI).
  • AFI address family identifier
  • SAFI sub-address family identifier
  • the BMP configuration table can be obtained from the network device.
  • the BMP configuration table can store the correspondence between address family information and whether the address family corresponding to the address family information is enabled for monitoring, and the correspondence indicates which address families The BGP sessions corresponding to the information need to be monitored and which ones are not.
  • the BMP configuration table may be pre-configured in the network device, or may be issued to the network device by the controller.
  • the network device can send to the first device the BMP notification message of the corresponding relationship.
  • Table 1 is an example of a BMP configuration table in a network device.
  • Table 1 shows that the BGP sessions corresponding to the IPv4 unicast address family, the VPNv4 address family, and the IPv6 unicast address family need to be monitored, and there is no need to monitor the BGP sessions corresponding to the IPv4 multicast address family.
  • the address family information and the first indication may be carried in the BGP monitoring update (BGP monitoring update) TLV field.
  • BGP monitoring update BGP monitoring update
  • AFI can occupy 2 bytes in the BGP monitoring update TLV field
  • SAFI can occupy 1 byte in the BGP monitoring update TLV field.
  • the type field in the BGP monitoring update TLV field carries the value of the BGP monitoring update TLV type.
  • the value is, for example, 1.
  • the specific value can be assigned by the Internet Engineering Task Force (IETF) .
  • the length field in the BGP monitoring update TLV field carries the length value of the BGP monitoring update TLV.
  • the value field in the BGP monitoring update TLV field includes the AFI field, the SAFI field, the flag field, and the route distinguisher field.
  • the AFI field carries AFI.
  • the SAFI field carries SAFI.
  • the Flag field carries the value of the first indication. For example, when the value of the Flag field is 0, it means that the monitoring of the address family corresponding to the address family information is enabled; when the value of the Flag field is 1, it means that the address family corresponding to the address family information is disabled. Can monitor.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier.
  • the BGP monitoring update TLV field can be in the BMP inform PDU, and can also be in the per-peer header. In the latter case, the value of the Route Distinguisher field in the BMP inform PDU can be 0.
  • the address family monitoring information of the network device may also include the configuration status corresponding to the address family information.
  • the configuration status is whether the network device and/or the peer of the network device configures the address family information or not status. It should be noted that the "configuration" of the address family information here is for establishing a BGP session, which has a different meaning from the "configuration" of the BMP configuration table mentioned above.
  • the configuration state may be the first configuration state, the second configuration state, or the third configuration state.
  • the first configuration state indicates that the network device and the peer of the network device have configured address family information. If the network device and the peers of the network device have been configured with address family information, then the network device and the peers of the network device can establish a BGP session corresponding to the address family information.
  • the network device may send a routing monitoring (Route Monitoring, RM) message to the first device, and the RM message may carry routing information corresponding to the address family information.
  • RM routing monitoring
  • the first device may store the routing information corresponding to the address family information.
  • the second configuration state means that the network device has been configured with address family information, and the peer of the network device has not been configured with address family information.
  • the third configuration state means that the network device is not configured with address family information.
  • the above two configuration states indicate that the network device and the peer of the network device cannot establish a BGP session corresponding to the address family information. In this case, if the first indication indicates that monitoring is enabled for the address family corresponding to the address family information, It indicates that there may be problems in the configuration of the network device and/or the peer of the network device, and further processing by the first device is required.
  • the specific processing method can be referred to below, and the details are not described here.
  • the configuration status may be carried in the BGP monitoring update TLV field, and specifically carried in the Flag field.
  • the flag field When the value of the Flag field is 0, it indicates the first configuration state; when the value of the Flag field is 1, it indicates the second configuration state; when the value of the Flag field is 2, it indicates the third configuration state.
  • the address family monitoring information of the network device may also include routing information types.
  • the type of routing information refers to the type of routing information corresponding to the address family information.
  • the routing information type may include pre-policy routing information and/or post-policy routing information.
  • the routing information type can also be carried in the BGP monitoring update TLV field, and specifically carried in the Flag field. When the value of the Flag field is 0, it means that the routing information type is pre-policy routing information; when the value of the Flag field is 1, it means that the routing information type is post-policy routing information; when the value of the Flag field is 2, it means routing The information types are pre-policy routing information and post-policy routing information.
  • the type of routing information can also be stored in the aforementioned BMP configuration table. See Table 2, which is another example of the BMP configuration table.
  • Table 2 shows that the BGP session of the IPv4 unicast address family needs to be monitored.
  • the routing information types of the BGP session are pre-policy and post-policy; the BGP session corresponding to the VPNv4 address family needs to be monitored, and the routing information of the BGP session The type is post-policy; there is no need to monitor the BGP session corresponding to the IPv4 multicast address family.
  • the Flag field includes four bits, which are represented by A, L, S, and reserved (Res.) respectively. Among them, A is used to carry the first indication, L users carry the configuration status, and S is used to carry the routing information type.
  • the BGP information of the network device includes resource information of the network device.
  • the resource information of the network device includes resource usage information and/or resource quota information of the network device.
  • the resource usage information indicates the usage status of the resource by the network device.
  • the resource quota information indicates the maximum resource allowed to be used by the network device.
  • the resource information of the network device may be carried in the BGP Resource Usage TLV field of the BMP notification message.
  • the BGP Resource Usage TLV field includes a type field, a length field, and a sub-TLV (Sub-TLV) field.
  • the value of the type field may be 2, for example, which indicates that the TLV is a BGP Resource Usage TLV.
  • the length field can occupy 2 bytes, indicating the total length of one or more subsequent Sub-TLVs.
  • the Sub-TLV field may include one or more sub-TLVs representing specific resource usage information and/or resource quota information.
  • the BGP Session Number TLV field may also include the number of used internal border gateway protocol (Internal Border Gateway Protocol, IBGP) peer sessions and/or the used external border gateway protocol (External Border Gateway Protocol, EBGP) pair Number of equal sessions.
  • IBGP Internal Border Gateway Protocol
  • EBGP External Border Gateway Protocol
  • the BGP Session Number Sub-TLV field includes Sub-Type field, Length field, Allowed Total Number field, Used Total Number field, Used Number of IBGP Peer Session field, and Used Number of EBGP Peer Session field.
  • the Sub-Type field carries a value indicating the type of the BGP Session Number TLV field, for example, 1.
  • the Length field carries the total length of the Sub-TLV value.
  • the Allowed Total Number field carries the total number of BGP sessions supported by the network device.
  • the Used Total Number field carries the number of BGP sessions that the network device has used.
  • the Used Number of IBGP Peer Session field carries the number of IBGP peer sessions that the network device has used.
  • the Used Number of EBGP Peer Session field carries the number of EBGP peer sessions that the network device has used.
  • the BGP Instance Number Sub-TLV field includes the Sub-Type field, the Length field, the Allowed Total Number field, and the Used Total Number field.
  • the Sub-Type field carries a value representing the type of the BGP Instance Number Sub-TLV field, for example, 2.
  • the Length field carries the total length of the Sub-TLV value.
  • the Allowed Total Number field carries the total number of BGP instances supported by the network device, and the Used Total Number field carries the number of BGP instances that the network device has used.
  • the BGP instance may include a public network instance and/or a private network instance.
  • the BGP Routes Number Sub-TLV field includes the Sub-Type field, the Length field, the Allowed Total Number field, and the Used Total Number field.
  • the Sub-Type field carries a value indicating the type of the BGP Routes Number Sub-TLV field, for example, 3.
  • the Length field carries the total length of the Sub-TLV value.
  • the Allowed Total Number field carries the total number of BGP routing table entries supported by the network device, and the Used Total Number field carries the number of BGP routing table entries that the network device has used.
  • the BGP routing table entry may include a routing table entry related to a public network and/or a routing table entry related to a private network.
  • the BGP Route Number Per AFI/SAFI Sub-TLV field includes the Sub-Type field, the Length field, the AFI field, the SAFI field, the Reserved field, the Route Distinguisher field, and the Used Number of Per AFI/SAFI field.
  • the Sub-Type field carries a value indicating the type of the BGP Routes Number Per AFI/SAFI Sub-TLV field, for example, 4.
  • the Length field carries the total length of the Sub-TLV value.
  • the AFI field carries AFI.
  • the SAFI field carries SAFI.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier. Used Number of Per AFI/SAFI field carries the number of BGP routing table entries corresponding to address family information.
  • the BGP FIB Number Sub-TLV field includes the Sub-Type field, the Length field, the Allowed Total Number field, and the Used Total Number field.
  • the Sub-Type field carries a value indicating the type of the BGP FIB Number Sub-TLV field, for example, 5.
  • the Length field carries the total length of the Sub-TLV value.
  • the Allowed Total Number field carries the total number of forwarding table entries (forward information base, FIB) supported by the network device, and the Used Total Number field carries the number of BGP routing table entries issued to the forwarding table entries of the network device.
  • the forwarding entry issued by the BGP routing table entry may include the forwarding entry related to the public network and/or the forwarding entry related to the private network.
  • BGP FIB Number Per AFI/SAFI Sub-TLV field includes Sub-Type field, Length field, AFI field, SAFI field, Reserved field, Route Distinguisher field, and Used Number of Per AFI/SAFI field.
  • the Sub-Type field carries a value indicating the type of the BGP FIB Number Per AFI/SAFI Sub-TLV field, for example, 6.
  • the Length field carries the total length of the Sub-TLV value.
  • the AFI field carries AFI.
  • the SAFI field carries SAFI.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier. Used Number of Per The AFI/SAFI field carries the number of BGP forwarding entries corresponding to the address family information.
  • the BGP Memory Size Sub-TLV field includes the Sub-Type field, the Length field, the Allowed Total Number field, and the Used Total Number field.
  • the Sub-Type field carries a value indicating the type of the BGP Memory Size Sub-TLV field, for example, 7.
  • the Length field carries the total length of the Sub-TLV value.
  • the Allowed Total Number field carries the total memory size of the network device, and the Used Total Number field carries the memory size used by the network device.
  • the memory size may refer to the memory size allocated to BGP.
  • the BGP Memory Size Per AFI/SAFI Sub-TLV field includes the Sub-Type field, the Length field, the AFI field, the SAFI field, the Reserved field, the Route Distinguisher field, and the Used Size Per AFI/SAFI field.
  • the Sub-Type field carries a value representing the type of the BGP Memory Size Per AFI/SAFI Sub-TLV field, for example, 8.
  • the Length field carries the total length of the Sub-TLV value.
  • the AFI field carries AFI.
  • the SAFI field carries SAFI.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier. Used Size Per The AFI/SAFI field carries the used memory size corresponding to the address family information.
  • Sub-TLV field shown in FIGS. 9-16 does not constitute a limitation on the BGP resource information of this application, and those skilled in the art can design by themselves.
  • the BGP information of the network device includes the health status information of the network device.
  • the health status information of the network device may be carried in the BGP Health Update (BGP Health Update) TLV field.
  • BGP Health Update BGP Health Update
  • the BGP Health Update TLV field includes a type field, a length field, and a Sub-TLV field.
  • the value of the type field may be 3, for example, indicating that the TLV is a BGP Health Update TLV.
  • the length field can occupy 2 bytes, indicating the total length of one or more Sub-TLVs that follow.
  • the Sub-TLV field may include one or more sub-TLVs representing the health status information of the network device.
  • the message queue includes a message input queue and/or a message output queue.
  • the names of the Sub-TLVs shown in Table 5 as the BGP message input queue and the message output queue Sub-TLV do not constitute a limitation on this application.
  • the message backlog information indicates the status of the message backlog in the message queue, and is used to determine whether the input and/or output speed of the BGP message on the network device is normal.
  • the message backlog information includes the number of messages in the message queue, the maximum number of messages allowed in the message queue, and/or the alarm threshold of the message backlog of the message queue.
  • the alarm threshold of the message backlog of the message queue may be a percentage. For example, the alarm threshold of the message backlog of the message queue is 80%, which means that if the messages in the message queue exceed 80% of the maximum allowed number of messages, alarm processing is required.
  • the alarm threshold of the message backlog of the message queue may also be a specific number, which means that if the messages in the message queue exceed the alarm threshold, alarm processing is required.
  • a slow peer also known as a slow neighbor
  • a slow peer means that when multiple peers are included in a BGP package group, if the network device is caused by network congestion, etc.
  • the speed of sending routing information to one of the peers is slow, which in turn affects the speed at which the network device sends routing information to other peers in this packaging group.
  • this peer is called a slow peer.
  • a slow peer detection function can be configured on the network device to detect slow peers.
  • the BGP package group refers to the BGP peers with the same configuration as a package group, so that when the network device sends routing information, it only needs to be packaged once and then sent to all peers in the group to improve the packaging efficiency.
  • the information of the slow peer corresponding to the address family information may include the address of the slow peer, and the peer address corresponding to the address family information The number of times of identification as a slow peer, the start time when the peer corresponding to the address family information was identified as a slow peer, and the end time when the peer corresponding to the address family information was identified as a slow peer, etc. One or more.
  • the BGP InQ&OutQ Sub-TLV field includes Sub-Type field, Length field, Peer Address field, Route Distinguisher field, Allowed Max Number of InQ field, Current Number in InQ field, Alarm Threshold for InQ field, Allowed Max Number of OutQ field, Current Number in OutQ field and Alarm Threshold for OutQ field.
  • the Sub-Type field carries a value indicating the type of the BGP InQ&OutQ Sub-TLV field, for example, 1.
  • the Length field carries the total length of the Sub-TLV value.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the peer.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it indicates that the peer belongs to a VPN instance identified by the route.
  • the Allowed Max Number of InQ field is used to carry the maximum number of messages allowed in the message input queue.
  • the Current Number in InQ field is used to carry the current number of messages in the message input queue.
  • the Alarm Threshold for InQ field is used to carry the alarm threshold of the message input queue backlog (for example, it may be a percentage).
  • the Allowed Max Number of OutQ field is used to carry the maximum number of messages allowed in the message output queue.
  • the Current Number in OutQ field is used to carry the number of messages in the current message output queue.
  • the Alarm Threshold for OutQ field is used to carry the alarm threshold of the message output queue backlog (for example, it may be a percentage).
  • the BGP Slow Peer Sub-TLV field includes the Sub-Type field, Length field, AFI field, SAFI field, Reserved field, Peer Address field, Route Distinguisher field, Slow Count field, Timestamp of Last Slow End Time (seconds Level) field, Timestamp of Last Slow End Time (microsecond level) field, Timestamp of Slow Start Time (second level) field, and Timestamp of Slow Start Time (microsecond level) field.
  • the Sub-Type field carries a value indicating the type of the BGP Slow Peer Sub-TLV field, for example, 2.
  • the Length field carries the total length of the Sub-TLV value.
  • the AFI field carries AFI.
  • the SAFI field carries SAFI.
  • the Reserved field is carried.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the slow peer.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the slow peer belongs to a VPN instance identified by the route.
  • the Slow Count field carries the number of times the peer is considered a slow peer.
  • the Timestamp of Last Slow End Time field carries the end time when the peer was identified as a slow peer last time.
  • the Timestamp of Slow Start Time field carries the start time when the peer is identified as a slow peer this time.
  • Sub-TLV field shown in Figs. 18-19 does not constitute a limitation on the health status information of this application, and those skilled in the art can design by themselves.
  • the BGP information of the network device includes the security status information of the network device.
  • the security status information of the network device is information indicating the security status of the network device, which can reflect the defense of the network device against external attacks.
  • the security state information of the network device may be carried in the BGP Security State (BGP Security State) TLV field.
  • BGP Security State BGP Security State
  • the BGP Security State TLV field includes a type field, a length field, and a Sub-TLV field.
  • the value of the type field may be 4, for example, indicating that the TLV is a BGP Security State TLV.
  • the length field can occupy 2 bytes, indicating the total length of one or more Sub-TLVs that follow.
  • the Sub-TLV field may include one or more sub-TLVs representing the security status information of the network device.
  • the generalized time to live security mechanism is used to protect against attacks initiated by attackers on network devices.
  • the network device can detect whether the time to live (TTL) value in the header of the Internet Protocol (IP) message received by the network device is within the preset range, if not, then If the message is considered to be an illegal message, the message can be discarded; if it is, the message is considered to be a legal message, that is, it can be received through GTSM detection.
  • TTL time to live
  • IP Internet Protocol
  • valid-TTL-hops refers to the maximum number of TTL hops corresponding to the establishment of a BGP session between a network device and a peer. If the number of valid TTL hops is exceeded, the BGP session cannot be established.
  • the BGP GTSM Enabled Sub-TLV field includes the Sub-Type field, the Length field, the Peer Address field, the Route Distinguisher field, the Valid-TTL-Hops field, the DropCounters field, the PassCounters field, and the TotalCounters field.
  • the Sub-Type field carries a value indicating the type of the BGP GTSM Enabled Sub-TLV field, for example, 1.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the peer of the network device.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier.
  • the Valid-TTL-Hops field carries the number of TTL hops to be detected.
  • the DropCounters field carries the number of dropped packets.
  • the PassCounters field carries the number of packets passed.
  • the TotalCounters field carries the total number of received packets.
  • the BGP GTSM Not Enabled Sub-TLV field includes the Sub-Type field, the Length field, the Peer Address field, and the Route Distinguisher field.
  • the Sub-Type field carries a value indicating the type of the BGP GTSM Enabled Sub-TLV field, for example, 2.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the peer of the network device.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier.
  • the BGP security authentication is used to encrypt the BGP session.
  • Common authentication algorithms include message digest 5 (MD5) algorithm, keychain (keychain) algorithm, and so on.
  • the BGP Authentication Sub-TLV field includes a Sub-Type field, a Length field, a Peer Address field, a Route Distinguisher field, an Authentication Mode field, and an Algorithm field.
  • the Sub-Type field is used to carry a value indicating the type of the BGP Authentication Sub-TLV field, for example, 3.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the peer of the network device.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier.
  • the Authentication Mode field is used to carry the mode of the authentication algorithm.
  • the Algorithm field is used to carry the identification of the authentication algorithm.
  • the mode of the authentication algorithm refers to whether the password used for encryption sent between the network device and the peer is plaintext or ciphertext.
  • the BGP Non-Authentication Sub-TLV field includes the Sub-Type field, the Length field, the Peer Address field, and the Route Distinguisher field.
  • the Sub-Type field is used to carry a value indicating the type of the BGP Non-Authentication Sub-TLV field, for example, 4.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the peer of the network device.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier.
  • origin validation is used to check whether the BGP routing prefix is legal.
  • the network device that enables origin authentication can obtain the correspondence between the BGP routing prefix and the autonomous system number.
  • the network device receives the routing prefix and the autonomous system number in the AS-Path from the BGP session, the network device can Find the corresponding autonomous system number according to the routing prefix and the corresponding relationship. If the autonomous system number is the same as the autonomous system number in the AS-Path, the origin authentication is passed; otherwise, it is not passed.
  • the BGP Prefix OV Sub-TLV field includes the Sub-Type field, Length field, AFI field, SAFI field, Reserved field, Peer Address field, Route Distinguisher field, Expect Origin AS field, Invalid Origin AS field, and Prefix List Field.
  • the Sub-Type field carries a value indicating the type of the BGP Prefix OV Sub-TLV field, for example, 5.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the AFI field carries AFI.
  • the SAFI field carries SAFI.
  • the Reserved field is carried.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the peer of the network device.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier.
  • the Expect Origin AS field carries the expected starting autonomous system number.
  • the Invalid Origin AS field carries an illegal initial autonomous system number.
  • the Prefix List field carries a list of illegal routing prefixes.
  • the BGP NO Prefix OV Sub-TLV field includes the Sub-Type field, the Length field, the AFI field, the SAFI field, the Reserved field, the Peer Address field, and the Route Distinguisher field.
  • the Sub-Type field carries a value indicating the type of the BGP NO Prefix OV Sub-TLV field, for example, 6.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the AFI field carries AFI.
  • the SAFI field carries SAFI.
  • the Reserved field is carried.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the peer of the network device.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier.
  • the BGP Prefix Limit Sub-TLV field includes the Sub-Type field, the Length field, the Allowed Max Prefix Number Per Router field, the Current Prefix Number Per Router field, and the Threshold field.
  • the Sub-Type field carries a value indicating the type of the BGP Prefix Limit Sub-TLV field, for example, 7.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the Allowed Max Prefix Number Per Router field carries the route prefix threshold that the network device is allowed to receive.
  • the Current Prefix Number Per Router field carries the number of routing prefixes that the network device has received.
  • the Threshold field carries an early warning threshold for the number of routing prefixes (for example, a percentage).
  • the warning threshold for the number of routing prefixes may be a percentage. For example, when the warning threshold for the number of routing prefixes is 90%, it means that when the number of routing prefixes that the network device has received exceeds 90% of the threshold for routing prefixes that are allowed to be received , The need for early warning.
  • the warning threshold of the number of routing prefixes may be a specific number, which is less than the threshold of the routing prefixes allowed to be received.
  • the BGP Peer Prefix Limit Sub-TLV field includes Sub-Type field, Length field, AFI field, SAFI field, Reserved field, Peer Address field, Route Distinguisher field, Allowed Max Prefix Number Per Peer Per AFI/SAFI field , Current Max Prefix Number Per Peer Per AFI/SAFI field and Threshold field.
  • the Sub-Type field carries a value indicating the type of the BGP NO Prefix OV Sub-TLV field, for example, 8.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the AFI field carries AFI.
  • the SAFI field carries SAFI.
  • the Reserved field is carried.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the peer of the network device.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier.
  • the Allowed Max Prefix Number Per Peer Per AFI/SAFI field carries the allowable routing prefix threshold corresponding to the address family information.
  • Current Max Prefix Number Per Peer Per AFI/SAFI field carries the number of received routing prefixes corresponding to address family information.
  • the Threshold field carries the warning threshold of the number of routing prefixes corresponding to the address family information.
  • the warning threshold for the number of routing prefixes corresponding to the address family information may be a percentage. For example, when the warning threshold for the number of routing prefixes is 90%, it means that the network device has received the routing prefixes corresponding to the address family information. When the number exceeds 90% of the allowable routing prefix threshold, an early warning is required.
  • the warning threshold of the number of routing prefixes corresponding to the address family information may be a specific number, which is less than the threshold of the routing prefixes allowed to be received.
  • the BGP No Prefix Limit Sub-TLV field includes the Sub-Type field, the Length field, the AFI field, the SAFI field, the Direction field, the Peer Address field, and the Route Distinguisher field.
  • the Sub-Type field carries a value indicating the type of the BGP No Prefix Limit Sub-TLV field, for example, 9.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the AFI field carries AFI.
  • the SAFI field carries SAFI.
  • the Direction field carries a value indicating in which network device packet direction the maximum number of routing prefixes is set, for example, 0 means in the packet input direction; 1 means the packet output direction; 2 means bidirectional.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the peer of the network device.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier.
  • an update message refers to a message used to publish or revoke BGP routing information. If the update message is wrong, in order not to interrupt the BGP session, you can enable the function of ignoring the error update message on the network device.
  • the BGP Update-Err ignore Sub-TLV field includes the Sub-Type field, the Length field, and the Enable Per Router field.
  • the Sub-Type field carries a value indicating the type of the BGP Update-Err ignore Sub-TLV field, for example, 10.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the Enable Per Router field carries a value indicating whether to enable the function of ignoring error update messages, for example, 0 means disabling, and 1 means enabling.
  • the BGP Peer Update-Err ignore Sub-TLV field includes Sub-Type field, Length field, AFI field, SAFI field, Reserved field, Peer Address field, Route Distinguisher field, and Enable Per Peer Per AFI/SAFI field.
  • the Sub-Type field carries a value indicating the type of the BGP NO Prefix OV Sub-TLV field, for example, 11.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the AFI field carries AFI.
  • the SAFI field carries SAFI.
  • the Reserved field is carried.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the peer of the network device.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier.
  • the Enable Per Peer Per AFI/SAFI field carries a value indicating whether to enable the function of ignoring the error-ignoring update message corresponding to the peer information, for example, 0 means disabling and 1 means enabling.
  • the network device can check the AS path (AS_Path) list in the update message sent by the EBGP peer The first AS number. If the first AS number belongs to the AS where the EBGP peer is located, then there will be no loop between the network device and the EBGP peer; if it does not belong, then the network device and the EBGP peer There may be a risk of routing loops between peers. At this time, the network device can reject the update message and disconnect from the EBGP.
  • a routing loop refers to a loop that routes are sent between network devices and peers, forming a loop that cannot be stopped.
  • the BGP Not Check-First-AS Sub-TLV field includes the Sub-Type field, the Length field, and the Enable Per Router field.
  • the Sub-Type field carries a value indicating the type of the BGP NO Prefix OV Sub-TLV field, for example, 12.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the Enable Per Router field carries whether the network device is enabled to check the first AS number in the AS_Path list in the update message sent by the EBGP peer. For example, 0 means disable, and 1 means enable.
  • the BGP Peer Not Check-First-AS Sub-TLV field includes the Sub-Type field, the Length field, the Peer Address field, the Route Distinguisher field, and the Enable Per Peer field.
  • the Sub-Type field is used to carry a value indicating the type of the BGP Peer Not Check-First-AS Sub-TLV field, for example, 13.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the peer of the network device.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier.
  • the Enable Per Peer field is used to carry whether the network device enables the first EBGP peer to check the first AS number in the AS_Path list in the update message sent from the first EBGP peer. For example, 0 means to enable Yes, 1 means enable.
  • the first EBGP peer is any one of the EBGP peers.
  • the BGP Peer Allow-AS-Loop Sub-TLV field includes the Sub-Type field, the Length field, the Peer Address field, the Route Distinguisher field, and the Enable Per Peer field.
  • the Sub-Type field is used to carry a value indicating the type of the BGP Peer Not Check-First-AS Sub-TLV field, for example, 14.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the peer of the network device.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier.
  • the Enable Per Peer field is used to carry whether the network device is enabled to allow the local AS number to appear multiple times. For example, 0 means disabling and 1 means enabling. If enabled, there is a greater risk of routing loops in network equipment.
  • the entry strategy refers to a control strategy for receiving routing information sent by a peer. If the ingress policy is not configured for the BGP session of the network device, the received routing information may not be restricted. When the peer suddenly sends a large number of illegal routes, it may seriously impact the normal operation of the network device.
  • the BGP No Inbound-Policy Sub-TLV field includes the Sub-Type field, the Length field, the AFI field, the SAFI field, the Reserved field, the Peer Address field, and the Route Distinguisher field.
  • the Sub-Type field carries a value indicating the type of the BGP No Inbound-Policy Sub-TLV field, for example, 15.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the AFI field carries AFI.
  • the SAFI field carries SAFI.
  • the Reserved field is carried.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the peer of the network device.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier.
  • the egress strategy is a control strategy for sending routing information to a peer. If the BGP session of the network device is not configured with an export policy, it may cause the network device to send out routes without restrictions, which may impact the normal operation of the entire network.
  • the BGP No Outbound-Policy Sub-TLV field includes the Sub-Type field, the Length field, the AFI field, the SAFI field, the Reserved field, the Peer Address field, and the Route Distinguisher field.
  • the Sub-Type field carries a value indicating the type of the BGP No Inbound-Policy Sub-TLV field, for example, 16.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the AFI field carries AFI.
  • the SAFI field carries SAFI.
  • the Reserved field is carried.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the peer of the network device.
  • the Route Distinguisher field can occupy 8 bytes. When the value of the Route Distinguisher field is not 0, it identifies that the peer belongs to a VPN instance of the route identifier.
  • the Secure Sockets Layer (SSL) protocol is a security protocol provided on the Internet to ensure privacy.
  • SSL authentication uses the SSL protocol to encrypt messages to ensure data transmission. safety.
  • the BGP SSL-Policy Sub-TLV field includes the Sub-Type field, the Length field, the Peer Address field, the Route Distinguisher field, the Role field, and the Enable field.
  • the Sub-Type field is used to carry a value indicating the type of the BGP SSL-Policy Sub-TLV field, for example, 17.
  • the Length field carries the length of the value of the Sub-TLV field.
  • the Peer Address field can occupy 16 bytes and is used to carry the address of the peer of the network device.
  • the Route Distinguisher field can occupy 8 bytes.
  • the Role field is used to carry the corresponding role of the network device in the SSL protocol, for example, 1 is the client and 2 is the server.
  • the Enable field is used to carry whether the network device enables SSL authentication.
  • S103 The first device receives the BMP notification message from the first device.
  • S104 The first device performs corresponding processing according to the BGP information of the network device in the BMP notification message.
  • BGP information includes one or more of the address family monitoring information of the network equipment, the resource information of the network equipment, the health status information of the network equipment, and the security status information of the network equipment.
  • the first device can be handled in different ways.
  • BGP information includes monitoring information of the address family of network devices
  • the first device can display or notify the relevant personnel of the address family information and the first instruction through SMS, email, etc., so that the relevant personnel know that the network device needs to be Which address family information enables monitoring, which address family information disables monitoring, and then performs corresponding judgment processing.
  • the address family monitoring information of the network device may also include the type of routing message.
  • the first device may display or notify related personnel of the address family information, first indication, and type of routing message by means of SMS, email, etc. In order to let relevant personnel know which type of routing message of which address family information needs to be monitored by the network device, and which type of routing message of which address family information needs to enable monitoring, and then perform corresponding judgment processing.
  • the first device can detect whether the network device is faulty according to the address family information, the first indication, and the configuration status.
  • each other can configure address family information for each other, and inform each other of the address family information configured for each other through an open message.
  • the network devices can obtain the first configuration state or the second configuration state corresponding to the address family information.
  • Peer 190.94.251.48 is configured on the network device, where 190.94.251.48 is the address of the peer.
  • Peer 190.201.164.32 is configured on the peer, where 190.201.164.32 is the address of the network device.
  • the configuration state of is the second configuration state.
  • the network device and the peer can respectively establish BGP sessions corresponding to the two address family information. Under normal circumstances, the network device will send a routing monitoring (Route Monitoring, RM) message corresponding to the two address family information to the first device, and the RM message carries routing information corresponding to the two address family information.
  • RM Roue Monitoring
  • the corresponding configuration state is the first configuration state, that is, the network device and the peer are configured with the address Family information
  • the first device can receive the RM message corresponding to the address family information, the network device is operating normally; if the first device does not receive the RM message corresponding to the address family information, then the network device is present malfunction.
  • the first device can perform specific fault analysis in combination with the health status message below.
  • the first device When the BMP notification message received by the first device includes the first indication corresponding to a certain address family information to enable monitoring, and the corresponding configuration state is the second configuration state, that is, the network device has been configured with address family information and the network device’s If the address family information is not configured on the peer, it means that the network device is configured incorrectly or the peer is configured incorrectly. If it is the former, the first device can send a delete instruction to the network device, and the delete instruction is used to delete the address family information configured by the network device to solve the problem of network device configuration errors; if it is the latter, first The device may send a configuration instruction to the peer, and the configuration instruction is used to configure the address family information in the peer.
  • the first device can send to the network device
  • the first device may send a configuration instruction to the network device, where the configuration instruction is used to configure the address family information in the network device to solve the problem of the network device configuration error. If the peer is configured with the address family information, the first device may also send a delete instruction to the peer. The delete instruction is used to delete the address family information configured by the peer to solve the problem of the peer configuration error.
  • the first device may also send a delete instruction to the network device, where the delete instruction is used to delete the first instruction corresponding to the address family information, so as to solve the problem of the network device monitoring configuration error.
  • the first device can determine whether monitoring has been enabled for the address family information. If so, it means that there may be link congestion between the network device and the first device, resulting in information loss. In this case, the first device and network can be added. The link bandwidth between devices.
  • BGP information includes resource information of network equipment
  • the first device can determine whether the number of used BGP sessions is greater than or equal to the threshold. If so, it means that the network device is heavily loaded, and the first device can determine whether the number of used BGP sessions is greater than or equal to the threshold. Adjust the service flow corresponding to the BGP session.
  • the threshold may be determined according to the total number of BGP sessions supported by the network device. For example, in FIG. 9, when the value of the Used Total Number field is greater than or equal to the value of the Allowed Total Number field, it indicates that the load of the network device is high, and the first device can adjust the service flow corresponding to the BGP session.
  • the service flow corresponding to the IBGP session can be adjusted; when the value of the Used Number of IBGP Peer Session field and the Used Number of EBGP If the ratio of the value of the Peer Session field is lower than the threshold, the service flow corresponding to the EBGP session can be adjusted.
  • the implementation manner of adjusting the service flow corresponding to the BGP session may be to migrate the service flow from the network device to other network devices.
  • the first device may send a delete instruction to network device A.
  • the delete instruction is used to delete one or more BGP sessions of network device A.
  • the first device sends an establishment instruction to network device B.
  • a BGP session is established on the network device B, and the BGP session is used to transmit the service flow of the BGP session of the network device A.
  • the service flow migration method is only an example, and does not constitute a limitation on the application.
  • the first device can determine whether the number of used BGP instances is greater than or equal to the threshold. If so, it means that the network device has a heavy load, and the first device can adjust the number of BGP instances.
  • the threshold can be determined according to the total number of BGP instances supported by the network device. For example, in FIG. 10, when the value of the Used Total Number field is greater than or equal to the value of the Allowed Total Number field, the first device adjusts the service flow corresponding to the BGP instance.
  • the implementation manner of adjusting the service flow corresponding to the BGP instance may be to migrate the service flow from the network device to other network devices.
  • the first device may send a delete instruction to network device A.
  • the delete instruction is used to delete one or more BGP instances of network device A.
  • the first device sends a setup instruction to network device B.
  • a BGP instance is established on the network device B, and the BGP instance is used to transmit the service flow of the BGP instance of the network device A.
  • the service flow migration method is only an example, and does not constitute a limitation on the application.
  • the first device can determine whether the number of used BGP routing table entries exceeds the threshold. If so, it means that the network device has a heavy load and the first device can adjust The service flow corresponding to the BGP routing table entry on the network device.
  • the threshold can be determined according to the total number of BGP routing table entries supported by the network device. For example, in FIG. 11, when the value of the Used Total Number field is greater than or equal to the value of the Allowed Total Number field, the first device adjusts the service flow corresponding to the BGP routing table entry on the network device.
  • the implementation manner of adjusting the service flow corresponding to the BGP routing table entry may be to migrate the service flow from the network device to other network devices.
  • the first device may send a delete instruction to network device A.
  • the delete instruction is used to delete one or more BGP routing table entries of network device A.
  • the first device sends a setup instruction to network device B.
  • a BGP routing table entry is generated on the network device B, and the BGP routing table entry is used to transmit the service flow corresponding to the BGP routing table entry of the network device A.
  • the service flow migration method is only an example, and does not constitute a limitation on this application.
  • the first device can determine whether the number of BGP routing table entries corresponding to the address family information exceeds the threshold. If so, the network device is heavily loaded , The first device can adjust the service flow corresponding to the BGP routing table entry on the network device. For example, in FIG. 12, when the value of the Used Number of Per AFI/SAFI field is greater than or equal to the threshold, the first device adjusts the service flow corresponding to the BGP routing table entry corresponding to the AFI field and the SAFI field on the network device.
  • the first device may determine the proportion of the routing table entries corresponding to each address family in the used BGP routing table entries according to the number of BGP routing table entries corresponding to the address family information, and if the proportion exceeds the threshold, adjust the address family Corresponding business flow. For example, the first device can determine whether the ratio between the value of the Used Number of Per AFI/SAFI field and the value of the Used Total Number field in Figure 11 exceeds the threshold, and if so, adjust the BGP route corresponding to the AFI field and SAFI field in Figure 12 The service flow corresponding to the entry.
  • the first device can determine whether the number of forwarding entries exceeds the threshold. If so, it means that the network device is heavily loaded and the first device can adjust The service flow corresponding to the BGP forwarding entry on the network device.
  • the threshold can be determined according to the total number of forwarding entries supported by the network device. For example, in FIG. 13, when the value of the Used Total Number field is greater than or equal to the value of the Allowed Total Number field, the first device adjusts the service flow corresponding to the BGP forwarding entry on the network device. In the embodiment of the present application, the first device adjusts the service flow corresponding to the BGP forwarding entry on the network device and adjusts the service flow corresponding to the BGP routing table entry in a similar manner, which will not be repeated here.
  • the first device can determine whether the number of BGP forwarding entries corresponding to the address family information exceeds the threshold. If so, it means that the network device is heavily loaded.
  • the first device may adjust the service flow corresponding to the BGP forwarding entry on the network device. For example, in FIG. 14, when the value of the Used Number of Per AFI/SAFI field is greater than or equal to the threshold, the first device adjusts the service flow corresponding to the BGP forwarding entry corresponding to the AFI field and the SAFI field on the network device.
  • the first device may determine the proportion of the forwarding entry corresponding to each address family in the used BGP forwarding entry according to the number of BGP forwarding entries corresponding to the address family information, and if the proportion exceeds the threshold, adjust the address family Corresponding business flow. For example, the first device can determine whether the ratio between the value of the Used Number of Per AFI/SAFI field in Figure 14 and the value of the Used Total Number field in Figure 13 exceeds the threshold, and if so, adjust the corresponding AFI field and SAFI field in Figure 14 The service flow corresponding to the BGP forwarding entry.
  • the first device can determine whether the size of the used memory exceeds the threshold. If so, it means that the network device has a heavy load, and the first device can adjust the service flow on the network device. .
  • the threshold can be determined according to the total memory size of the network device. For example, in FIG. 15, when the value of the Used Total Number field is greater than or equal to the value of the Allowed Total Number field, the first device adjusts the service flow on the network device.
  • the first device can determine whether the used memory size corresponding to the address family information exceeds the threshold. If so, the network device has a heavy load.
  • a device can adjust the service flow on the network device. For example, in Figure 16, when the value of the Used Size Per AFI/SAFI field is greater than or equal to the threshold, the first device adjusts the service flow on the network device.
  • the first device may determine the proportion of the memory size corresponding to each address family to the total used memory size according to the used memory size corresponding to the address family information, and if the proportion exceeds the threshold, adjust the corresponding address family business flow.
  • the first device can determine whether the ratio between the value of the Used Size Per AFI/SAFI field in Figure 16 and the value of the Used Total Number field in Figure 15 exceeds the threshold, and if so, adjust the corresponding value of the AFI field and SAFI field in Figure 16 business flow.
  • BGP information includes health status information of network equipment
  • the first device can determine the health status of the message queue of the network device according to the message backlog information. If the message backlog of the message queue is serious, the first device can perform services Flow adjustment to reduce the load on network equipment, or to check whether the message queue is faulty.
  • the first device may determine the peer or the peer based on the number of times the peer is identified as the slow peer Whether the link between them is faulty. For example, when the value of the Slow Count field in FIG. 19 is greater than or equal to the threshold, the first device may perform an alarm or check whether the peer or the link between the peer is faulty. The first device may also determine whether the peer or the link with the peer fails according to the time when the peer is recognized as a slow peer.
  • the first device can perform an alarm or check the peer or peer Whether the link between the bodies is faulty.
  • BGP information includes security status information of network equipment
  • the first device can determine whether the number of TTL hops for the effective lifetime is reasonable. Specifically, the first device may determine the effective time-to-live TTL based on the ratio between the number of discarded packets and the total number of received packets, and/or the ratio between the number of passed packets and the total number of received packets. Whether the number is reasonable.
  • the first device can issue an enable command to the network device.
  • the enable command is used to instruct the network device to enable GTSM .
  • the first device can confirm whether the security authentication of the network device meets the requirements of the security level according to the authentication mode and/or the authentication algorithm.
  • the security status information of the network device includes that the security authentication is not enabled for the BGP session
  • the message sent by the first device is more likely to be intercepted and cracked. Therefore, the first device can send an enable command to the network device.
  • the instruction is used to instruct the network device to enable security authentication.
  • the first device can confirm which are genuine illegal routing prefixes and which are misjudgment according to the illegal routing prefix information obtained by the network device through the origin authentication. If it is a misjudgment, the first device may issue an activation instruction to the network device, and the activation instruction is used to activate the misjudged routing prefix. For example, the first device may further confirm the real illegal routing prefix according to the value of the Prefix List field in FIG. 25.
  • the security status information of the network device includes the origin authentication of the BGP session is not enabled
  • the network device is more likely to be attacked, and the first device can send an enable command to the network device.
  • the enable command is used to instruct the network device to enable the origin Certification.
  • the first device can determine whether the number of routing prefixes that the network device has received is greater than or equal to the threshold. If so, it indicates that the network device is in a reload operation state, which may cause Some services cannot operate normally, and the first device can perform an early warning or adjust the service flow of the network device. For example, in Figure 27, when the value of the Current Prefix Number Per Router field is greater than or equal to the product of the value of the Allowed Max Prefix Number Per Router field and the value of the Threshold field, then the first device can perform an alert or adjust the service flow of the network device.
  • the first device can determine whether the number of received routing prefixes corresponding to the address family information is greater than or equal to the threshold. If so, it indicates that the network device is in Heavy load operation status may cause some services to fail to operate normally. The first device can give an early warning or further determine whether the routing prefix corresponding to the address family information is legal. If it is, increase the maximum allowable routing prefix value, and Send the adjusted value to the network device.
  • the network device may have the risk of overloading operation due to receiving a large number of routing prefixes, and the first device can issue a setting command.
  • the instruction is used by the network device to set the routing prefix threshold for this address family, so that the network device can give an early warning.
  • the setting instruction issued by the first device can be used by the network device to set the routing prefix threshold for the address family in the message output direction; if the value of the Direction field is 0, the setting instruction issued by the first device can be used by the network device to set the routing prefix threshold for this address family in the message input direction; if the value of the Direction field is 2, the setting instruction issued by the first device can be used The network device sets the routing prefix threshold for the address family in the message output direction and the message input direction.
  • the network device may have the risk that the routing information is not synchronized with the routing information of the peer.
  • the first device can obtain the error update message and update the error The message is analyzed.
  • the security status information of the network device includes disabling the function of ignoring error update messages, the network device cuts off the BGP session with the peer, which may cause the risk of network shock.
  • the first device can send an enable command to the network device.
  • the enabling instruction is used to instruct the network device to enable the function of ignoring the error update message, or the first device can perform the protective measures against network oscillations.
  • the action performed by the first device is similar to the action when the security status information of the network device includes the function of enabling ignoring error update messages , I won’t repeat it here.
  • the security status information of the network device includes the function of checking the first autonomous system AS number of the AS_Path attribute in the update message sent by the EBGP peer to the network device
  • the first device can determine the network device Whether all peers of the EBGP are routing servers (Route Server), if not, you can send an enable command to the network device, and the enable command is used to enable the check for updates sent by the EBGP peer to the network device
  • the first device can determine Whether the EBGP peer is a routing server, if not, an enable command can be sent to the network device.
  • the enable command is used to enable checking of the autonomous system path in the update message sent by the EBGP peer to the network device.
  • the first EBGP peer is any one of all EBGP peers of the network device.
  • the first device can determine whether the network device and the peer belong to the same network operator. If not, the risk of routing loops in the network device is higher. Large, the first device can send a disabling instruction to the network device. The disabling instruction is used to instruct the network device to disable the function that allows the local AS number to appear multiple times.
  • the first device can determine whether the network device and the peer belong to the same network operator, if not, the network device may receive an illegal route With greater flexibility, the first device can send a configuration instruction to the network device, where the configuration instruction is used to instruct the network device to configure an ingress policy for the address family. For example, in Figure 35, when the value of the Sub-Type field indicates that the Sub-TLV is BGP No Inbound-Policy Sub-TLV, the first device may send a configuration instruction to the network device, and the configuration instruction is used to indicate that the network device is the AFI field Configure the entry policy with the address family information corresponding to the SAFI field.
  • the first device can determine whether the network device and the peer belong to the same network operator, if not, the network is more likely to be impacted , The first device may send a configuration instruction to the network device, where the configuration instruction is used to instruct the network device to configure an egress policy for the address family.
  • the configuration instruction is used to instruct the network device to configure an egress policy for the address family.
  • the first device may send a configuration instruction to the network device, and the configuration instruction is used to indicate that the network device is the AFI field Configure the egress policy with the address family information corresponding to the SAFI field.
  • the security status information of the network device includes enabling Secure Socket Layer SSL authentication, it indicates that the security of the BGP session of the network device is relatively high.
  • the first device receives different BGP sessions carrying the same routing prefix, the first device receives different BGP sessions that carry the same routing prefix.
  • the device preferentially uses the BGP session of the network device with SSL authentication enabled.
  • an embodiment of the present application also provides a network device 800, which can implement the functions of the network device in the embodiment shown in FIG. 2 above.
  • the network device 800 includes a memory 801, a processor 802, and a communication interface 803.
  • the memory 801 is used to store computer programs or instructions
  • the processor 802 is configured to call a computer program or instruction stored in the memory, so that the network management device executes the information reporting method of the network device in the embodiment shown in FIG. 2.
  • the communication interface 803 is used to communicate with the first device.
  • the memory 801, the processor 802, and the communication interface 803 are connected to each other through a bus 804; the bus 804 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus Wait.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of presentation, only one thick line is used in FIG. 8, but it does not mean that there is only one bus or one type of bus.
  • the processor 801 is configured to obtain BGP information, and carry the BGP information in a BMP notification message.
  • the processor 801 please refer to S102 in the embodiment shown in FIG. 2 and will not be repeated here.
  • the communication interface 803 is used to send a BMP message to the first device.
  • a BMP message For the specific process, please refer to S102 in the embodiment shown in Figure 2 above, which will not be repeated here.
  • an embodiment of the present application provides a network management device 900, and the network management device 900 can implement the function of the first device in the embodiment shown in FIG. 2 above.
  • the network management device 900 includes a memory 901, a processor 902, and a communication interface 903.
  • the memory 901 is used to store computer programs or instructions.
  • the processor 902 is configured to call a computer program or instruction stored in the memory, so that the network management device executes the information processing method of the first device in the embodiment shown in FIG. 2.
  • the communication interface 803 is used to communicate with network devices.
  • the memory 901, the processor 902, and the communication interface 903 are connected to each other through a bus 904; the bus 904 may be a peripheral component interconnect standard (PCI) bus or an extended industry standard architecture (EISA) bus Wait.
  • PCI peripheral component interconnect standard
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of presentation, only one thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • the communication interface 903 is used to receive the BMP notification message from the network device.
  • the specific process please refer to the detailed description of S103 in the embodiment shown in FIG. 2, and details are not repeated here.
  • the processor 901 is configured to obtain BGP information from the BMP notification message, and perform corresponding processing according to the BGP information.
  • BGP information For the detailed processing process of the processor 901, please refer to the detailed description of S104 in the embodiment shown in FIG. 2, which will not be repeated here.
  • the above-mentioned memory 801 and memory 901 may be random-access memory (RAM), flash memory (flash), read only memory (ROM), erasable programmable read only memory (erasable programmable read only memory). memory, EPROM), electrically erasable programmable read-only memory (electrically erasable programmable read only memory, EEPROM), register, hard disk, mobile hard disk, CD-ROM or any other form of storage known to those skilled in the art medium.
  • RAM random-access memory
  • flash memory flash memory
  • ROM read only memory
  • EEPROM electrically erasable programmable read-only memory
  • register hard disk, mobile hard disk, CD-ROM or any other form of storage known to those skilled in the art medium.
  • the aforementioned processor 802 and processor 902 may be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (digital signal processor, DSP), or an application-specific integrated circuit (ASIC). , Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and microprocessor, and so on.
  • the above-mentioned communication interface 803 and communication interface 903 may be, for example, an interface card or the like, and may be an ethernet interface or an asynchronous transfer mode (ATM) interface.
  • ATM asynchronous transfer mode
  • the embodiment of the present application also provides a monitoring system, including the above-mentioned network device 800 and the network management device 900.
  • the embodiment of the present application provides a computer-readable storage medium, which is characterized by including instructions, which when run on a computer, cause the computer to execute the above-mentioned information reporting method and information processing method.
  • the embodiment of the present application also provides a chip.
  • the chip is arranged in a network device, and the chip includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is configured to run code instructions to execute the foregoing information reporting method applied to the network device in the embodiment shown in FIG. 2.
  • the processor is configured to obtain BGP information of the network device, and send a BMP notification message to the first device, where the BMP notification message carries the BGP information of the network device.
  • the processor For the detailed processing process of the processor, please refer to S101 and S102 in the embodiment shown in FIG. 2, which will not be repeated here.
  • the embodiment of the present application also provides a chip.
  • the chip is arranged in a network management device, and the chip includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run code instructions to execute the foregoing information processing method applied to the first device in the embodiment shown in FIG. 2.
  • the processor is configured to obtain a BMP notification message from a network device, where the BMP notification message includes BGP information of the network device, and perform corresponding processing according to the BGP information of the network device.
  • the BMP notification message includes BGP information of the network device
  • the processor performs corresponding processing according to the BGP information of the network device.
  • At least one item (a) refers to one or more, and “multiple” refers to two or more.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • “A and/or B” is considered to include A alone, B alone, and A+B.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical module division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be acquired according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each module unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or in the form of a software module unit.
  • the integrated unit is implemented in the form of a software module unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .
  • the functions described in the present invention can be implemented by hardware, software, firmware, or any combination thereof.
  • these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例公开了一种信息上报方法、一种信息处理方法及设备,提高获取BGP信息的效率以及降低成本。信息上报方法包括:网络设备获取网络设备的边界网关协议BGP信息;所述网络设备向第一设备发送BGP监控协议BMP通知消息,所述BMP通知消息携带所述网络设备的BGP信息。

Description

一种信息上报方法和信息处理方法及设备
本申请要求于2019年11月15日提交中国国家知识产权局、申请号201911120618.0、申请名称为“一种信息上报方法和信息处理方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别是涉及一种信息上报方法和信息处理方法及设备。
背景技术
边界网关协议(Border Gateway Protocol,BGP)是用于自治系统(autonomous system,AS)之间的动态路由协议,它使用传输控制协议(Transmission Control Protocol,TCP)作为其传输层协议,提高了协议的可靠性。应用BGP的网络架构通常包括BGP发言者(speaker),它接收或产生路由信息,并将该路由信息发送给其他BGP发言者。相互交换路由信息的BGP发言者之间互称对等体(peer)。
在目前对网络高可靠性日益增长的需求下,保证发言者的正常运行非常重要。传统的监控发言者的BGP信息的方式主要靠人工来完成,即工作人员手动输入信息查询命令,以获取相应发言者的BGP信息。但是这种方式不仅人力成本较高,而且效率低下。所以目前急需一种自动化的方式代替人工来获取BGP信息。
发明内容
本申请实施例提供了一种信息上报方法、一种信息处理方法及设备,提高获取BGP信息的效率以及降低成本。
第一方面,本申请实施例提供了一种信息上报方法,该方法可以应用于网络设备,例如路由器、交换机等。该方法包括如下步骤:首先,网络设备获取网络设备的BGP信息。在本申请实施例中,BGP信息可以包括网络设备的地址族监控信息、网络设备的资源信息、网络设备的健康状态信息和网络设备的安全状态信息等其中的一种或多种。其中,网络设备的地址族监控信息为对地址族进行监控的信息,用于保证地址族的正常运行。网络设备的资源信息是表示网络设备的资源的信息,反映网络设备的负载情况。网络设备的健康状态信息是表示网络设备健康状态的信息,反映网络设备是否出现故障。网络设备的安全状态信息是表示网络设备安全状态的信息,反映网络设备是否存在安全隐患。然后,网络设备向第一设备发送BGP监控协议(BGP Monitoring Protocol,BMP)通知消息,BMP通知消息携带网络设备的BGP信息。具体的,网络设备的BGP信息可以携带在BMP通知消息的类型-长度-值(type-length-value,TLV)字段中。在本申请实施例中,网络设备通过将BGP信息携带在BMP通知消息中上报给第一设备,以使第一设备自动的获取到BGP信息并进行后续相应的处理,提高获取BGP信息的效率以及降低相应的成本。在本申请实施例中,第一设备可以是运行BMP 服务(server)的服务器或终端设备。
下面对上述BGP信息进行具体介绍。
在本申请实施例中,网络设备的地址族监控信息可以携带在BGP监控更新(BGP monitoring update)TLV字段中。具体的,网络设备的地址族监控信息可以包括地址族信息和第一指示。地址族信息可以包括地址族标识(address family identifier,AFI),也可以包括地址族标识和子地址族标识(subsequent address family Identifier,SAFI)。其中地址族标识用于标识地址族;子地址族标识用于标识地址族的子地址族。第一指示用于指示是否对地址族信息对应的地址族使能监控。网络设备将地址族信息和第一指示上报给第一设备,第一设备可以知晓对地址族信息对应的地址族是否进行监控的配置情况,以及确定网络设备对地址族信息的配置是否正确等。在本申请实施例中,网络设备对地址族信息的配置用于建立与该地址族信息对应的BGP会话,如果配置正确,则可以建立BGP会话;如果配置不正确,则无法建立BGP会话。
具体的,网络设备的地址族监控信息还包括地址族信息对应的配置状态,配置状态为网络设备和/或网络设备的对等体对地址族信息配置与否的状态。其中,配置状态可以是第一配置状态、第二配置状态或第三配置状态。第一配置状态指示网络设备和网络设备的对等体均已配置地址族信息;第二配置状态是指网络设备已配置地址族信息,且网络设备的对等体未配置地址族信息;第三配置状态是指网络设备未配置地址族信息。第二配置状态和第三配置状态表示地址族信息配置不正确。后续将对第一设备针对这三种配置状态进行何种处理进行介绍,此处不再赘述。
可选的网络设备的BGP信息还包括路由信息类型,路由信息类型为地址族信息对应的路由信息的类型,路由信息类型可以包括策略前pre-policy路由信息和/或策略后post-policy路由信息,实现对特定的路由信息类型的地址族进行监控的目的。
在本申请实施例中,网络设备的资源信息可以包括网络设备的资源使用信息和/或资源额度信息。资源使用信息表示网络设备对资源的使用状态。资源额度信息表示网络设备所支持或允许使用的最大资源。网络设备的资源信息可以携带在BGP资源使用(BGP Resource Usage)TLV字段中。
例如,网络设备的资源信息可以包括以下其中至少一项或多项:网络设备已使用的BGP会话的数目和/或网络设备支持的BGP会话的总数;网络设备已使用的BGP实例的数目和/或网络设备支持的BGP实例的总数;网络设备已使用的BGP路由表项的数目和/或网络设备支持的BGP路由表项的总数;网络设备配置的地址族信息对应的路由表项的数目;网络设备中转发表项的数目和/或网络设备支持的转发表项的总数;网络设备配置的地址族信息对应的转发表项的数目;网络设备已使用的内存大小和/或网络设备的内存总大小;以及网络设备配置的地址族信息对应的已使用内存大小。
在本申请实施例中,网络设备的健康状态信息可以携带在BGP健康更新(BGP Health Update)TLV字段中。例如,网络设备的健康状态信息可以包括以下其中至少一项或多项:网络设备的消息队列的消息积压信息和网络设备配置的地址族信息对应的慢对等体的信息。
消息积压信息表示消息队列中的消息积压的情况,用于判断网络设备上BGP报文输入和/或输出的速度是否正常。作为其中一种可能实现的方式,消息积压信息包括消 息队列中消息的数目和/或消息队列所允许的最大消息数目。
慢对等体(Slow Peer),又称慢邻居,其含义为在一个BGP打包组里包括多个对等体的情况下,如果由于网络拥塞等原因使的网络设备向其中一个对等体发送路由信息的速度较慢,进而影响到网络设备向这个打包组中的其他对等体发送路由信息的速度,此时这个对等体被称为慢对等体。在本申请实施例中,慢对等体的信息可以包括以下其中至少一项或多项:慢对等体的地址、地址族信息对应的对等体被识别为慢对等体的次数、地址族信息对应的对等体被识别为慢对等体的开始时间和地址族信息对应的对等体被识别为慢对等体的结束时间。
在本申请实施例中,网络设备的安全状态信息可以携带在BGP安全状态(BGP Security State)TLV字段中。具体的,网络设备的安全状态信息包括以下至少一项或多项:网络设备的BGP会话是否使能通用生存时间安全保护机制(generalized time to live security mechanism,GTSM);当网络设备的BGP会话使能GTSM,则网络设备的安全状态信息还包括有效生存时间(time to live,TTL)跳数;网络设备的BGP会话是否使能安全认证;网络设备的BGP会话使能安全认证,则网络设备的安全状态信息还包括安全认证的认证模式和/或认证算法;网络设备的BGP会话是否使能起源认证;网络设备的BGP会话使能起源认证(origin validation,OV),则网络设备的安全状态信息还包括非法路由前缀信息;网络设备已接收的路由前缀数目和/或网络设备允许接收的路由前缀阈值;地址族信息对应的路由前缀数目和/或地址族信息对应的路由前缀阈值;网络设备的未设置路由前缀阈值的地址族信息;网络设备是否使能忽略错误更新消息(Update message)的功能;网络设备是否使能与地址族信息对应的忽略错误更新消息的功能;网络设备是否使能检查外部边界网关协议(External Border Gateway Protocol,EBGP)对等体向网络设备发送的更新消息中自治系统路径(AS_Path)属性的第一个自治系统AS号的功能;网络设备是否允许本地自治系统号重复出现多次;网络设备是否为地址族配置对应的入口策略和/或出口策略;以及网络设备是否使能安全套接层(Secure Sockets Layer,SSL)认证。
第二方面,本申请实施例还提供了一种信息处理方法,该方法可以应用于第一设备,该方法具体包括如下步骤:首先,第一设备接收来自网络设备的BMP通知消息,BMP通知消息包括网络设备的BGP信息。BGP信息的介绍请见上文,此处不再介绍。然后,第一设备根据网络设备的BGP信息进行相应的处理,实现对网络设备的正常运行提供保障。本申请实施例利用BMP通知消息携带BGP信息,使的第一设备能够自动的获取BGP信息并进行相应的处理,提高BGP信息的获取效率以及降低成本。
下面结合上文提到的具体的BGP信息对第一设备的处理方式以及所实现的效果进行介绍。
作为第一种可能的实现方式,网络设备的BGP信息包括地址族监控信息。当地址族监控信息包括地址族信息和第一指示时,第一设备可以显示或通过短信、邮箱等方式通知相关人员地址族信息和第一指示,以使相关人员知晓网络设备需要为哪个地址族信息使能监控,哪个地址族信息去使能监控,然后进行相应的判断处理。
可选的,网络设备的地址族监控信息还可以包括路由消息的类型,同样的,第一设备可以显示或通过短信、邮箱等方式通知相关人员地址族信息、第一指示和路由消 息的类型,以使相关人员知晓网络设备需要为哪个地址族信息的哪个类型的路由消息使能监控,哪个地址族信息的哪个类型的路由消息去使能监控,然后进行相应的判断处理。
当地址族监控信息还包括地址族信息对应的配置状态时,第一设备可以根据地址族信息、第一指示和配置状态检测网络设备是否发生故障。具体的,配置状态为第一配置状态、第二配置状态或第三配置状态。当第一设备接收到的BMP通知消息中包括某个地址族信息对应的第一指示为使能监控,且对应的配置状态为第一配置状态,即网络设备和对等体均配置了该地址族信息,那么第一设备若能接收到与该地址族信息对应的路由监控(Route Monitoring,RM)消息,则说明网络设备运行正常;若第一设备没有接收到与该地址族信息对应的RM消息,则说明网络设备出现故障。此时第一设备可以结合下文的健康状态消息来进行具体故障分析。当第一设备接收到的BMP通知消息中包括某个地址族信息对应的第一指示为使能监控,且对应的配置状态为第二配置状态,即网络设备已配置地址族信息且网络设备的对等体未配置该地址族信息,那么说明网络设备配置错误,或者对等体配置错误。若为前者,第一设备可以向网络设备发送删除指令,该删除指令用于对网络设备配置的地址族信息进行删除,解决网络设备配置错误的问题;若为后者,第一设备可以向对等体发送配置指令,该配置指令用于在对等体中配置该地址族信息。当第一设备接收到的BMP通知消息中包括某个地址族信息对应的第一指示为使能监控,且对应的配置状态为第三配置状态,即网络设备未配置地址族信息,说明网络设备配置错误、对等体配置错误或者网络设备监控配置错误。第一设备可以向网络设备发送配置指令,该配置指令用于在网络设备中配置该地址族信息,以解决网络设备配置错误的问题。若对等体配置了该地址族信息,第一设备还可以向对等体发送删除指令,该删除指令用于删除对等体配置的该地址族信息,以解决对等体配置错误的问题。第一设备还可以向网络设备发送删除指令,该删除指令用于删除与地址族信息对应的第一指示,以解决网络设备监控配置错误的问题。或者,第一设备可以判断该地址族信息是否曾使能监控,如果是,则说明网络设备与第一设备之间可能会存在链路拥塞,导致信息丢失,这时可以增加第一设备和网络设备之间的链路带宽。通过上述措施,第一设备可以保证网络设备与对等体之间的BGP会话正常运行。
作为第二种可能的实现方式,网络设备的BGP信息包括网络设备的资源使用信息,当网络设备的资源使用信息满足预设条件时,表明网络设备超负荷运行,此时,第一设备可以对资源使用信息对应的业务流进行调整或进行告警,以减少网络设备的负荷。具体的资源使用信息可以参见上文,此处不再赘述。
作为第三种可能的实现方式,网络设备的BGP信息包括网络设备的健康状态信息,当第一设备根据网络设备的健康状态信息诊断出网络设备可能出现故障时,第一设备可以采取相应的措施消除网络设备的故障。
例如,网络设备的健康状态信息可以包括网络设备的消息队列的消息积压信息,当第一设备根据消息积压信息确定网络设备的消息队列中消息积压的情况较为严重时,第一设备可以调整消息队列对应的业务流或进行告警。例如消息积压信息包括消息队列中消息的数目,第一设备调整消息队列对应的业务流或进行告警,以消除消息积压 的问题。
再例如,网络设备的健康状态信息包括网络设备配置的地址族信息对应的慢对等体的信息,当第一设备根据慢对等体的信息确认对等体可能出现故障或网络设备和对等体之间的链路可能出现故障时,第一设备可以做进一步的检查,以确定问题出现的原因并采取手段消除该问题。
作为第四种可能实现的方式,网络设备的BGP信息包括网络设备的安全状态信息,当第一设备根据网络设备的安全状态信息确定网络设备存在安全隐患,则第一设备可以采取相关措施减弱甚至消除该安全隐患。
例如,当网络设备的安全状态信息包括BGP会话使能GTSM时,第一设备可以根据判断有效生存时间TTL跳数是否合理,如果不合理,则可以进行相应的调整,以在保证网络设备的安全和正常运行之间找到平衡。
当网络设备的安全状态信息包括BGP会话未使能GTSM时,网络设备被攻击的风险较高,第一设备可以向网络设备下发使能指令,该使能指令用于指示网络设备使能GTSM,以保证网络设备的安全性。
可选的,网络设备的安全状态信息包括网络设备的BGP会话是否使能安全认证。当网络设备的安全状态信息包括网络设备的BGP会话使能安全认证时,第一设备可以根据安全认证的认证模式和/或认证算法确认安全认证是否符合安全要求。如果不符合,则可以调整安全认证的算法和/或模式,以保证网络设备的安全性。
可选的,网络设备的安全状态信息包括网络设备的BGP会话是否使能起源认证。当网络设备的安全状态信息包括网络设备的BGP会话使能起源认证,第一设备可以确认起源认证的非法路由前缀信息是否误判。如果是误判,则第一设备可以向网络设备下发启用指令,该启用指令用于启用被误判的路由前缀,以在保证网络设备的安全性的基础上降低资源的浪费。
当网络设备的安全状态信息包括BGP会话未使能起源认证,网络设备受到攻击的可能性较高,第一设备可以向网络设备发送使能指令,该使能指令用于指示网络设备使能起源认证,以保证网络设备的安全性。
当网络设备的安全状态信息包括已接收的路由前缀数目时,第一设备可以判断网络设备已接收的路由前缀数目是否大于或等于阈值,若是,则表明网络设备处于重载运行状态、有可能导致一些业务无法正常运行,第一设备可以进行预警或调整网络设备的业务流,以在保证网络设备的安全性的基础上降低网络设备的负荷。
当网络设备的安全状态信息包括地址族信息对应的已接收的路由前缀数目时,第一设备可以判断地址族信息对应的已接收的路由前缀数目是否大于或等于阈值,若是,则表明网络设备处于重载运行状态、有可能导致一些业务无法正常运行,第一设备可以进行预警,以在保证网络设备的安全性的基础上降低网络设备的负荷。或者第一设备可以进一步判断该地址族信息对应的路由前缀是否合法,如果是,则调高允许接收的路由前缀最大值,并将调整后的值发送给网络设备,以在保证网络设备的安全性的基础上保证网络设备的正常运行。
当网络设备的安全状态信息包括未设置路由前缀阈值的地址族信息时,网络设备可能会存在由于接收到大量的路由前缀而导致超负荷运行的风险,第一设备可以下发 设置指令,该设置指令用于网络设备为该地址族设置路由前缀阈值,这样网络设备就可以进行预警,以保证网络设备的安全性。
当网络设备的安全状态信息包括使能忽略错误更新消息的功能时,网络设备可能会存在路由信息与对等体的路由信息不同步的风险,第一设备可以获取错误更新消息,并对错误更新消息进行分析,以保证网络设备的安全性。
当网络设备的安全状态信息包括去使能忽略错误更新消息的功能时,网络设备切断与对等体的BGP会话,可能会引起网络震荡的风险,第一设备可以向网络设备发送使能指令,该使能指令用于指示网络设备使能忽略错误更新消息的功能该功能,或者,第一设备可以执行网络震荡的防护措施,以保证网络的安全性。
当网络设备的安全状态信息包括是否使能与地址族信息对应的忽略错误更新消息的功能,第一设备执行的动作与网络设备的安全状态信息包括使能忽略错误更新消息的功能时的动作类似,此处不再赘述。
当网络设备的安全状态信息包括未使能检查EBGP对等体向网络设备发送的更新消息中自治系统路径AS_Path属性的第一个自治系统AS号的功能时,第一设备可以判断网络设备的所有对等体是否都为路由服务器(Route Server),如果否,则可以向网络设备发送使能指令,该使能指令用于使能该检查EBGP对等体向网络设备发送的更新消息中自治系统路径AS_Path属性的第一个自治系统AS号的功能,以保证网络设备的安全性。
当网络设备的安全状态信息包括未使能针对第一EBGP对等体检查来自该第一EBGP对等体发来的更新消息中AS_Path列表的第一个AS号的功能时,第一设备可以判断该EBGP对等体是否为路由服务器,如果否,则可以向网络设备发送使能指令,该使能指令用于使能检查该EBGP对等体向网络设备发送的更新消息中自治系统路径AS_Path属性的第一个自治系统AS号的功能,以保证网络设备的安全性。
当网络设备的安全状态信息包括允许本地AS号重复出现多次时,第一设备可以判断网络设备和对等体是否属于同一个网络运营商,如果否,则网络设备出现路由环路的风险较大,第一设备可以向网络设备发送去使能指令,该去使能指令用于指示网络设备去使能允许本地AS号重复出现多次的功能,以保证网络设备的安全性。
当网络设备的安全状态信息包括未为地址族配置对应的入口策略时,第一设备可以判断网络设备和对等体是否属于同一个网络运营商,如果否,则网络设备收到非法路由的可能性较大,第一设备可以向网络设备发送配置指令,该配置指令用于指示网络设备为该地址族配置入口策略,以保证网络设备的安全性。
当网络设备的安全状态信息包括未为地址族配置对应的出口策略时,第一设备可以判断网络设备和对等体是否属于同一个网络运营商,如果否,则网络被冲击的可能性较大,第一设备可以向网络设备发送配置指令,该配置指令用于指示网络设备为该地址族配置出口策略,以保证网络设备的安全性。
当网络设备的安全状态信息包括使能安全套接层SSL认证时,说明网络设备的BGP会话安全性较高,在第一设备接收到携带相同的路由前缀的不同的BGP会话的情况下,第一设备优先采用使能SSL认证的网络设备的BGP会话,以保证网络设备的安全性。
第三方面,本申请实施例提供了一种网络设备,包括处理器和存储器,存储器用于存储计算机程序或指令,处理器用于调用存储器中存储的计算机程序或指令,使得网络管理设备执行上述信息上报方法。
第四方面,本申请实施例提供了一种网络管理设备,包括处理器和存储器,存储器用于存储计算机程序或指令,处理器用于调用存储器中存储的计算机程序或指令,使得网络管理设备执行上述信息处理方法。
第五方面,本申请实施例提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述信息上报方法和信息处理方法。
附图说明
图1为本申请实施例提供的系统100的架构示意图;
图2为本申请实施例提供的一种监控方法的交互信令图;
图3为本申请实施例提供的BMP通知消息格式的示意图;
图4为本申请实施例提供的common header的格式的示意图;
图5为本申请实施例提供的per-peer header的格式的示意图;
图6为本申请实施例提供的BGP monitoring update TLV字段的格式的示意图;
图7为本申请实施例提供的Flag字段的各比特位的示意图;
图8为本申请实施例提供的BGP Resource Usage TLV字段的格式的示意图;
图9为本申请实施例提供的BGP Session Number Sub-TLV字段的格式的示意图;
图10为本申请实施例提供的BGP Instance Number Sub-TLV字段的格式的示意图;
图11为本申请实施例提供的BGP Routes Number Sub-TLV字段的格式的示意图;
图12为本申请实施例提供的BGP Routes Number Per AFI/SAFI Sub-TLV字段的格式的示意图;
图13为本申请实施例提供的BGP FIB Number Sub-TLV字段的格式的示意图;
图14为本申请实施例提供的BGP FIB Number Per AFI/SAFI Sub-TLV字段的格式的示意图;
图15为本申请实施例提供的BGP Memory Size Sub-TLV字段的格式的示意图;
图16为本申请实施例提供的BGP Memory Size Per AFI/SAFI Sub-TLV字段的格式的示意图;
图17为本申请实施例提供的BGP Health Update TLV字段的格式的示意图;
图18为本申请实施例提供的BGP InQ&OutQ Sub-TLV字段的格式的示意图;
图19为本申请实施例提供的BGP Slow Peer Sub-TLV字段的格式的示意图;
图20为本申请实施例提供的BGP Security State TLV字段的格式的示意图;
图21为本申请实施例提供的BGP GTSM Enabled Sub-TLV字段的格式的示意图;
图22为本申请实施例提供的BGP GTSM Not Enabled Sub-TLV字段的格式的示意图;
图23为本申请实施例提供的BGP Authentication Sub-TLV字段的格式的示意图;
图24为本申请实施例提供的BGP Non-Authentication Sub-TLV字段的格式的示意图;
图25为本申请实施例提供的BGP Prefix OV Sub-TLV字段的格式的示意图;
图26为本申请实施例提供的BGP NO Prefix OV Sub-TLV字段的格式的示意图;
图27为本申请实施例提供的BGP Prefix Limit Sub-TLV字段的格式的示意图;
图28为本申请实施例提供的BGP Peer Prefix Limit Sub-TLV字段的格式的示意图;
图29为本申请实施例提供的BGP No Prefix Limit Sub-TLV字段的格式的示意图;
图30为本申请实施例提供的BGP Update-Err ignore Sub-TLV字段的格式的示意图;
图31为本申请实施例提供的BGP Peer Update-Err ignore Sub-TLV字段的格式的示意图;
图32为本申请实施例提供的BGP Not Check-First-AS Sub-TLV字段的格式的示意图;
图33为本申请实施例提供的BGP Peer Not Check-First-AS Sub-TLV字段的格式的示意图;
图34为本申请实施例提供的BGP Peer Allow-AS-Loop Sub-TLV字段的格式的示意图;
图35为本申请实施例提供的BGP No Inbound-Policy Sub-TLV字段的格式的示意图;
图36为本申请实施例提供的BGP No Outbound-Policy Sub-TLV字段的格式的示意图;
图37为本申请实施例提供的BGP SSL-Policy Sub-TLV字段的格式的示意图;
图38为本申请实施例提供的网络设备的结构示意图;
图39为本申请实施例提供的网络管理设备的结构示意图。
具体实施方式
本申请实施例提供了一种方法,用于实现自动的获取BGP信息的目的,提高信息获取效率,降低成本。
为方便理解,首先对本申请实施例的应用场景进行介绍。
参见图1,该图为本申请实施例提供的系统100的架构示意图。
该系统100包括用户边缘(customer edge,CE)设备101、用户边缘设备102、运营商边缘(provider edge,PE)设备103和运营商边缘设备104。其中,用户边缘设备101与运营商边缘设备103连接,用户边缘设备102与运营商边缘设备104连接,运营商边缘设备103和运营商边缘设备104通过一个或多个运营商(provider,P)设备105连接。
其中,用户边缘设备101和用户边缘设备102可以是终端设备。终端设备,又可以称为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、终端等,是一种向用户提供语音和/或数据连通性的设备,或,设置于该设备内的芯片,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例为:手机、台式电脑、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control) 中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、支持5G接入的家庭网关设备(5G-residential gateway,5G-RG)等。
运营商边缘设备103、运营商边缘设备104和运营商设备105可以是路由器(router)、交换机(switch)等,用于传输用户边缘设备101和用户边缘设备102之间的消息。运营商边缘设备103、运营商边缘设备104和一个或多个运营商设备105之间任意两个相互传递路由消息的设备互称对等体。
在本申请实施例中,系统100还包括BGP监控协议(BGP Monitoring Protocol,BMP)服务器106,可以与运营商边缘设备103、运营商边缘设备104和运营商设备105中的一个或多个连接,用于获取对应设备的BGP信息。
参见图2,该图为本申请实施例提供的一种监控方法的交互信令图。
本申请实施例提供的监控方法包括如下步骤:
S101:网络设备获取网络设备的BGP信息。
S102:网络设备向第一设备发送BMP通知消息,该BMP通知消息中携带网络设备的BGP信息。
在本申请实施例中,网络设备可以是图1中的运营商边缘设备103、运营商边缘设备104或运营商设备105。第一设备可以是图1中的BMP服务器106。除了可以是服务器以外,第一设备还可以是终端设备,例如笔记本电脑、台式电脑等,本申请不做具体限定。
在本申请实施例中,网络设备的BGP信息可以包括网络设备的地址族监控信息、网络设备的资源信息、网络设备的健康状态信息和网络设备的安全状态信息等其中的一种或多种,下文将详细介绍。
当网络设备获取到网络设备的BGP信息之后,可以将网络设备的BGP信息携带在网络设备向第一设备发送的BMP通知消息(inform message)中进行发送。在向第一设备发送BMP通知消息之前,网络设备可以先建立与第一设备的BMP会话(session)。
参见图3,该图为BMP通知消息格式的示意图。在图3中,BMP通知消息包括普通头(common header)、各个对等体头(per-peer header)和BMP通知协议数据单元(BMP inform protocol data unit,BMP inform PDU)。
参见图4,该图为common header的格式的示意图。从该图可以看出,common header包括版本(version)字段、消息长度(message length)字段和消息类型(message type,Msg.Type)字段。其中,version字段中携带BMP通知消息的版本号;message length字段中携带BMP通知消息的长度值;Msg.Type字段中携带BMP通知消息所对应的类型值。
参见图5,该图为per-peer header的格式的示意图。从该图可以看出,per-peer header包括对等体类型(peer type)字段、对等体标识(peer flags)字段、对等体区分器(peer distinguisher)字段(目前基于对等体类型确定)、对等体地址(peer address)字段、对等体自治系统(peer AS)字段、对等体BGP标识(peer BGP ID)字段、时间戳 (timestamp)(秒级)字段和时间戳(timestamp)(毫秒级)字段。
其中,peer type字段中携带表示对等体类型的值;peer flags字段中携带对等体信息;peer distinguisher字段中携带对等体的标识符;peer address字段中携带对等体地址;peer AS字段中携带对等体自治系统的标识;peer BGP ID字段中携带对等体的BGP标识;timestamp字段中携带发送BMP通知消息的时间(包括秒级和毫秒级)。
在本申请实施例中,网络设备的BGP信息可以携带在BMP inform PDU的类型-长度-值(type-length-value,TLV)字段中。不同的BGP信息可以携带在不同的TLV字段中。
下面介绍具体的BGP信息和对应的TLV字段的格式。
作为第一种可能的实现方式,网络设备的BGP信息可以包括网络设备的地址族监控信息。具体的,地址族监控信息可以包括地址族信息(address family information)和第一指示,第一指示用于指示是否对地址族信息对应的地址族使能监控。
在本申请实施例中,地址族信息可以包括地址族标识(address family identifier,AFI),也可以包括地址族标识和子地址族标识(subsequent address family Identifier,SAFI)。其中地址族标识用于标识地址族;子地址族标识用于标识地址族的子地址族。
在实际应用中,网络设备中可以获取BMP配置表,该BMP配置表中可以存储有地址族信息和是否对该地址族信息对应的地址族使能监控的对应关系,该对应关系表示哪些地址族信息对应的BGP会话需要进行监控,哪些不需要。该BMP配置表可以是预先配置在网络设备中,也可以是由控制器下发给网络设备。当BMP配置表生成之后或有变化(例如对新的地址族信息使能监控或对地址族信息由使能监控变为未使能监控等)时,网络设备可以向第一设备发送携带有该对应关系的BMP通知消息。
例如,参见表1,该表网络设备中BMP配置表的示例。
表1
地址族信息 是否使能监控
AFI=1,SAFI=1 使能监控
AFI=1,SAFI=2 未使能监控
AFI=1,SAFI=128 使能监控
AFI=2,SAFI=1 使能监控
其中,AFI=1,SAFI=1表示互联网协议第四版(Internet Protocol version 4,IPv4)单播地址族;AFI=1,SAFI=2表示IPv4多播地址族;AFI=1,SAFI=128表示虚拟专用网络第四版(virtual private network version 4,VPNv4)地址族;AFI=2,SAFI=1表示互联网协议第六版(Internet Protocol version 6,IPv6)单播地址族。表1表示需要对IPv4单播地址族、VPNv4地址族和IPv6单播地址族对应的BGP会话进行监控,不需要对IPv4多播地址族对应的BGP会话进行监控。
在本申请实施例中,地址族信息和第一指示可以携带在BGP监控更新(BGP monitoring update)TLV字段中。其中,AFI可以在BGP monitoring update TLV字段中占用2字节,SAFI可以在BGP monitoring update TLV字段中占用1字节。
参见图6,该图为BGP monitoring update TLV字段的格式的示意图。在图6中,BGP monitoring update TLV字段中的type字段携带BGP monitoring update TLV的类型 的值,该值例如为1,具体取值可以由国际互联网工程任务组(internet engineering task force,IETF)进行分配。BGP monitoring update TLV字段中的length字段携带BGP monitoring update TLV的长度值。BGP monitoring update TLV字段中的value字段包括AFI字段、SAFI字段、标识(flag)字段以及路由区分器(Route distinguisher)字段。
其中,AFI字段携带AFI。SAFI字段携带SAFI。Flag字段携带第一指示的值,例如当Flag字段的值为0,表示对地址族信息对应的地址族使能监控;当Flag字段的值为1,表示对地址族信息对应的地址族去使能监控。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。
在本申请实施例中,BGP monitoring update TLV字段除了可以在BMP inform PDU中,还可以在per-peer header中。若为后者,BMP inform PDU中的Route Distinguisher字段的值可以为0。
除了地址族信息和第一指示以外,网络设备的地址族监控信息还可以包括地址族信息对应的配置状态,该配置状态为网络设备和/或网络设备的对等体对地址族信息配置与否的状态。需要说明的是,此处对地址族信息的“配置”是为了建立BGP会话,与上文中提到的BMP配置表的“配置”的含义不同。
在本申请实施例中,配置状态可以为第一配置状态、第二配置状态或第三配置状态。
其中,第一配置状态指示网络设备和网络设备的对等体均已配置地址族信息。若网络设备和网络设备的对等体均已配置地址族信息,那么网络设备和网络设备的对等体之间可以建立与该地址族信息对应的BGP会话。
当该配置状态为第一配置状态时,网络设备可以向第一设备发送路由监控(Route Monitoring,RM)消息,该RM消息中可以携带与地址族信息对应的路由信息。第一设备在接收到该RM消息之后,可以存储该地址族信息对应的路由信息。
第二配置状态是指网络设备已配置地址族信息,且网络设备的对等体未配置地址族信息。第三配置状态是指网络设备未配置地址族信息。以上两种配置状态表明网络设备和网络设备的对等体无法建立与该地址族信息对应的BGP会话,在这种情况下,若第一指示表示对地址族信息对应的地址族使能监控,说明网络设备和/或网络设备的对等体在配置上可能会存在问题,需要第一设备进行进一步处理,具体处理方法可以参见下文,此处不再赘述。
在本申请实施例中,配置状态可以携带在BGP monitoring update TLV字段中,具体携带在Flag字段中。当Flag字段的值为0时,表示第一配置状态;当Flag字段的值为1时,表示第二配置状态;当Flag字段的值为2时,表示第三配置状态。
可选的,网络设备的地址族监控信息还可以包括路由信息类型。在本申请实施例中,路由信息类型是指所述地址族信息对应的路由信息的类型。例如,路由信息类型可以包括策略前(pre-policy)路由信息和/或策略后(post-policy)路由信息。路由信息类型也可以携带在BGP monitoring update TLV字段中,具体携带在Flag字段中。当Flag字段的值为0时,表示路由信息类型为pre-policy路由信息;当Flag字段的值为1时,表示路由信息类型为post-policy路由信息;Flag字段的值为2时,表示路由信 息类型为pre-policy路由信息和post-policy路由信息。
关于路由信息的类型也可以存储在前述BMP配置表中。参见表2,该表为BMP配置表的另外一个示例。
表2
地址族信息 是否使能监控 路由信息类型
AFI=1,SAFI=1 使能监控 pre-policy&post-policy
AFI=1,SAFI=2 未使能监控  
AFI=1,SAFI=128 使能监控 post-policy
表2表示需要对IPv4单播地址族的BGP会话进行监控,该BGP会话的路由信息类型为pre-policy和post-policy;需要对VPNv4地址族对应的BGP会话进行监控,该BGP会话的路由信息类型为post-policy;不需要对IPv4多播地址族对应的BGP会话进行监控。
参见图7,该图为Flag字段的各比特位的示意图。在该图中,Flag字段包括四个比特位,分别用A、L、S和保留(Res.)来表示。其中A用于携带第一指示,L用户携带配置状态,S用于携带路由信息类型。
参见表3,该表示出了A、L和S为不同的值时表达的含义。
表3
Figure PCTCN2020128260-appb-000001
可以理解的是,上述地址族监控信息并不构成对本申请技术方案的限定,本领域技术人员可以根据实际情况自行设计。
作为第二种可能的实现方式,所述网络设备的BGP信息包括所述网络设备的资源信息。所述网络设备的资源信息包括网络设备的资源使用信息和/或资源额度信息。资源使用信息表示网络设备对资源的使用状态。资源额度信息表示网络设备所允许使用的最大资源。
在本申请实施例中,网络设备的资源信息可以携带在BMP通知消息的BGP资源使用(BGP Resource Usage)TLV字段中。参见图8,该图为BGP Resource Usage TLV字段的格式的示意图。在图8中,BGP Resource Usage TLV字段包括type字段、length字段和子TLV(Sub-TLV)字段。其中,type字段的值可以例如为2,表示该TLV为BGP Resource Usage TLV。length字段可以占2字节,表示后续一个或多个Sub-TLV 的总长度。Sub-TLV字段可以包括一个或多个表示具体资源使用信息和/或资源额度信息的子TLV。
参见表4,该表为资源使用信息、资源额度信息和子TLV名称的示例。
表4
Figure PCTCN2020128260-appb-000002
其中,BGP Session Number TLV字段中还可以包括已使用的内部边界网关协议(Internal Border Gateway Protocol,IBGP)对等体会话数目和/或已使用的外部边界网关协议(External Border Gateway Protocol,EBGP)对等体会话数目。
例如,参见图9,该图为本申请实施例提供的BGP Session Number Sub-TLV字段的格式的示意图。在图9中,BGP Session Number Sub-TLV字段包括Sub-Type字段、Length字段、Allowed Total Number字段、Used Total Number字段、Used Number of IBGP Peer Session字段和Used Number of EBGP Peer Session字段。其中,Sub-Type字段携带表示BGP Session Number TLV字段的类型的值,例如为1。Length字段携带该Sub-TLV的值的总长度。Allowed Total Number字段携带网络设备支持的BGP会话总数。Used Total Number字段携带网络设备已使用的BGP会话数目。Used Number of IBGP Peer Session字段携带网络设备已使用的IBGP对等体会话数目。Used Number of EBGP Peer Session字段携带网络设备已使用的EBGP对等体会话数目。
参见图10,该图为本申请实施例提供的BGP Instance Number Sub-TLV字段的格式的示意图。在图10中,BGP Instance Number Sub-TLV字段包括Sub-Type字段、Length字段、Allowed Total Number字段和Used Total Number字段。其中,Sub-Type字段携带表示BGP Instance Number Sub-TLV字段的类型的值,例如为2。Length字段携带该Sub-TLV的值的总长度。Allowed Total Number字段携带网络设备支持的BGP实例总数,Used Total Number字段携带网络设备已使用的BGP实例数目。在本申请实施例中,BGP实例可以包括公网实例和/或私网实例。
参见图11,该图为本申请实施例提供的BGP Routes Number Sub-TLV字段的格式的示意图。在图11中,BGP Routes Number Sub-TLV字段包括Sub-Type字段、Length字段、Allowed Total Number字段和Used Total Number字段。其中,Sub-Type字段携带表示BGP Routes Number Sub-TLV字段的类型的值,例如为3。Length字段携带该Sub-TLV的值的总长度。Allowed Total Number字段携带网络设备支持的BGP路由表项总数,Used Total Number字段携带网络设备已使用的BGP路由表项数目。在本申请实施例中,BGP路由表项可以包括关于公网的路由表项和/或关于私网的路由表项。
参见图12,该图为本申请实施例提供的BGP Routes Number Per AFI/SAFI Sub-TLV字段的格式的示意图。在图12中,BGP Routes Number Per AFI/SAFI Sub-TLV字段包括Sub-Type字段、Length字段、AFI字段、SAFI字段、Reserved字段、Route Distinguisher字段和Used Number of Per AFI/SAFI字段。其中,Sub-Type字段携带表示BGP Routes Number Per AFI/SAFI Sub-TLV字段的类型的值,例如为4。Length字段携带该Sub-TLV的值的总长度。AFI字段携带AFI。SAFI字段携带SAFI。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。Used Number of Per AFI/SAFI字段中携带地址族信息对应的BGP路由表项的数目。
参见图13,该图为本申请实施例提供的BGP FIB Number Sub-TLV字段的格式的示意图。在图13中,BGP FIB Number Sub-TLV字段包括Sub-Type字段、Length字段、Allowed Total Number字段和Used Total Number字段。其中,Sub-Type字段携带表示BGP FIB Number Sub-TLV字段的类型的值,例如为5。Length字段携带该Sub-TLV的值的总长度。Allowed Total Number字段携带网络设备支持的转发表项(forward information base,FIB)的总数,Used Total Number字段携带网络设备的BGP路由表项下发到转发表项的数目。在本申请实施例中,BGP路由表项下发的转发表项可以包括关于公网的转发表项和/或关于私网的转发表项。
参见图14,该图为本申请实施例提供的BGP FIB Number Per AFI/SAFI Sub-TLV字段的格式的示意图。在图14中,BGP FIB Number Per AFI/SAFI Sub-TLV字段包括Sub-Type字段、Length字段、AFI字段、SAFI字段、Reserved字段、Route Distinguisher字段和Used Number of Per AFI/SAFI字段。其中,Sub-Type字段携带表示BGP FIB Number Per AFI/SAFI Sub-TLV字段的类型的值,例如为6。Length字段携带该Sub-TLV的值的总长度。AFI字段携带AFI。SAFI字段携带SAFI。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。Used Number of Per AFI/SAFI字段中携带地址族信息对应的BGP 转发表项的数目。
参见图15,该图为本申请实施例提供的BGP Memory Size Sub-TLV字段的格式的示意图。在图15中,BGP Memory Size Sub-TLV字段包括Sub-Type字段、Length字段、Allowed Total Number字段和Used Total Number字段。其中,Sub-Type字段携带表示BGP Memory Size Sub-TLV字段的类型的值,例如为7。Length字段携带该Sub-TLV的值的总长度。Allowed Total Number字段携带网络设备的内存总大小,Used Total Number字段携带网络设备已使用的内存大小。在本申请实施例中,内存大小可以指分配给BGP使用的内存大小。
参见图16,该图为本申请实施例提供的BGP Memory Size Per AFI/SAFI Sub-TLV字段的格式的示意图。在图16中,BGP Memory Size Per AFI/SAFI Sub-TLV字段包括Sub-Type字段、Length字段、AFI字段、SAFI字段、Reserved字段、Route Distinguisher字段和Used Size Per AFI/SAFI字段。其中,Sub-Type字段携带表示BGP Memory Size Per AFI/SAFI Sub-TLV字段的类型的值,例如为8。Length字段携带该Sub-TLV的值的总长度。AFI字段携带AFI。SAFI字段携带SAFI。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。Used Size Per AFI/SAFI字段中携带地址族信息对应的已使用的内存大小。
需要说明的是,上述图9-图16所示的Sub-TLV字段并不构成对本申请BGP资源信息的限定,本领域技术人员可以自行设计。
作为第三种可能的实现方式,网络设备的BGP信息包括网络设备的健康状态信息。网络设备的健康状态信息可以携带在BGP健康更新(BGP Health Update)TLV字段中。参见图17,该图为BGP Health Update TLV字段的格式的示意图。在图17中,BGP Health Update TLV字段包括type字段、length字段和Sub-TLV字段。其中,type字段的值可以例如为3,表示该TLV为BGP Health Update TLV。length字段可以占2字节,表示后续一个或多个Sub-TLV的总长度。Sub-TLV字段可以包括一个或多个表示网络设备的健康状态信息的子TLV。
参见表5,该表为Sub-TLV名称和具体的健康状态信息的示例。
表5
Figure PCTCN2020128260-appb-000003
需要说明的是,在本申请实施例中,消息队列包括消息输入队列和/或消息输出队列。表5所示的Sub-TLV名称为BGP消息输入队列和消息输出队列Sub-TLV并不构成对本申请的限定。
在本申请实施例中,消息积压信息表示消息队列中消息积压的情况,用于判断网络设备上BGP报文输入和/或输出的速度是否正常。消息积压信息包括消息队列中消 息的数目、消息队列所允许的最大消息数目和/或消息队列消息积压的警报阈值。其中,消息队列消息积压的警报阈值可以是百分比,例如消息队列消息积压的警报阈值为80%,表示消息队列的消息超过所允许的最大消息数目的80%就需要进行报警处理。消息队列消息积压的警报阈值还可以是具体的数目,表示消息队列的消息超过该警报阈值就需要进行报警处理。
在本申请实施例中,慢对等体(Slow Peer),又称慢邻居,其含义为在一个BGP打包组里包括多个对等体的情况下,如果由于网络拥塞等原因使的网络设备向其中一个对等体发送路由信息的速度较慢,进而影响到网络设备向这个打包组中的其他对等体发送路由信息的速度,此时这个对等体被称为慢对等体。在本申请实施例中,网络设备上可以配置慢对等体检测功能,用于对慢对等体进行检测。其中,BGP打包组是指具有相同配置的BGP对等体为一个打包组,这样网络设备在发送路由信息时只需要打包一次就可以发给组内所有对等体,提升打包效率。
在本申请实施例中,由于对等体与地址族信息具有对应关系,所以与地址族信息对应的慢对等体的信息可以包括慢对等体的地址、地址族信息对应的对等体被识别为慢对等体的次数、地址族信息对应的对等体被识别为慢对等体的开始时间和地址族信息对应的对等体被识别为慢对等体的结束时间等其中的至少一项或多项。
下面结合表5所示的具体的健康状态信息介绍BGP Health Update TLV字段中Sub-TLV字段的格式。
参见图18,该图为本申请实施例提供的BGP InQ&OutQ Sub-TLV字段的格式的示意图。在图18中,BGP InQ&OutQ Sub-TLV字段包括Sub-Type字段、Length字段、Peer Address字段、Route Distinguisher字段、Allowed Max Number of InQ字段、Current Number in InQ字段、Alarm Threshold for InQ字段、Allowed Max Number of OutQ字段、Current Number in OutQ字段和Alarm Threshold for OutQ字段。其中,Sub-Type字段携带表示BGP InQ&OutQ Sub-TLV字段的类型的值,例如为1。Length字段携带该Sub-TLV的值的总长度。Peer Address字段可以占用16字节,用于携带对等体的地址。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,表示该对等体属于该路由标识的一个VPN实例。Allowed Max Number of InQ字段用于携带消息输入队列所允许的最大消息数目。Current Number in InQ字段用于携带目前消息输入队列中消息的数目。Alarm Threshold for InQ字段用于携带消息输入队列积压的警报阈值(例如可以是百分比)。Allowed Max Number of OutQ字段用于携带消息输出队列所允许的最大消息数目。Current Number in OutQ字段用于携带目前消息输出队列中消息的数目。Alarm Threshold for OutQ字段用于携带消息输出队列积压的警报阈值(例如可以是百分比)。
参见图19,该图为本申请实施例提供的BGP Slow Peer Sub-TLV字段的格式的示意图。在图19中,BGP Slow Peer Sub-TLV字段包括Sub-Type字段、Length字段、AFI字段、SAFI字段、Reserved字段、Peer Address字段、Route Distinguisher字段、Slow Count字段、Timestamp of Last Slow End Time(秒级)字段、Timestamp of Last Slow End Time(微秒级)字段、Timestamp of Slow Start Time(秒级)字段和Timestamp of Slow Start Time(微秒级)字段。其中,Sub-Type字段携带表示BGP Slow Peer Sub-TLV 字段类型的值,例如为2。Length字段携带该Sub-TLV的值的总长度。AFI字段携带AFI。SAFI字段携带SAFI。Reserved字段携带。Peer Address字段可以占用16字节,用于携带慢对等体的地址。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该慢对等体属于该路由标识的一个VPN实例。Slow Count字段携带该对等体被认为是慢对等体的次数。Timestamp of Last Slow End Time字段携带上一次该对等体被识别为慢对等体的结束时间。Timestamp of Slow Start Time字段携带本次该对等体被识别为慢对等体的开始时间。
需要说明的是,上述图18-图19所示的Sub-TLV字段并不构成对本申请健康状态信息的限定,本领域技术人员可以自行设计。
作为第四种可能的实现方式,网络设备的BGP信息包括网络设备的安全状态信息。网络设备的安全状态信息为表示网络设备安全状态的信息,能够体现网络设备防御外界攻击的情况。
网络设备的安全状态信息可以携带在BGP安全状态(BGP Security State)TLV字段中。参见图20,该图为BGP Security State TLV字段的格式的示意图。在图20中,BGP Security State TLV字段包括type字段、length字段和Sub-TLV字段。其中,type字段的值可以例如为4,表示该TLV为BGP Security State TLV。length字段可以占2字节,表示后续一个或多个Sub-TLV的总长度。Sub-TLV字段可以包括一个或多个表示网络设备的安全状态信息的子TLV。
参见表6,该表为Sub-TLV名称和具体的安全状态信息的示例。
表6
Figure PCTCN2020128260-appb-000004
Figure PCTCN2020128260-appb-000005
下面结合表6所示的具体的安全状态信息介绍BGP Security State TLV字段中Sub-TLV字段的格式。
在本申请实施例中,通用生存时间安全保护机制(generalized time to live security mechanism,GTSM)用于防护攻击者对网络设备发起的攻击。具体的,网络设备可以检测网络设备接收到的互联网协议(Internet Protocol,IP)报文的报文头中的生存时间(time to live,TTL)的值是否在预设范围内,如果否,则认为该报文为非法报文,可以将该报文丢弃;如果是,则认为该报文为合法报文,即通过GTSM检测,可以接收。
在GTSM中,有效TTL跳数(Valid-TTL-Hops)是指网络设备和对等体之间建立BGP会话所对应的最大TTL跳数,若超过该有效TTL跳数,则无法建立BGP会话。
参见图21,该图为本申请实施例提供的BGP GTSM Enabled Sub-TLV字段的格式的示意图。在图21中,BGP GTSM Enabled Sub-TLV字段包括Sub-Type字段、Length 字段、Peer Address字段、Route Distinguisher字段、Valid-TTL-Hops字段、Drop Counters字段、Pass Counters字段和Total Counters字段。其中,Sub-Type字段携带表示BGP GTSM Enabled Sub-TLV字段类型的值,例如为1。Length字段携带该Sub-TLV字段的值的长度。Peer Address字段可以占16个字节,用于携带网络设备的对等体的地址。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。Valid-TTL-Hops字段携带需要检测的TTL跳数。Drop Counters字段携带丢弃的报文数目。Pass Counters字段携带通过的报文数目。Total Counters字段携带接收的报文总数。
参见图22,该图为本申请实施例提供的BGP GTSM Not Enabled Sub-TLV字段的格式的示意图。在图22中,BGP GTSM Not Enabled Sub-TLV字段包括Sub-Type字段、Length字段、Peer Address字段和Route Distinguisher字段。其中,Sub-Type字段携带表示BGP GTSM Enabled Sub-TLV字段类型的值,例如为2。Length字段携带该Sub-TLV字段的值的长度。Peer Address字段可以占16个字节,用于携带网络设备的对等体的地址。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。
在本申请实施例中,BGP安全认证用于对BGP会话进行加密。常见的认证算法包括信息摘要(message digest 5,MD5)算法、秘钥链(keychain)算法等。
参见图23,该图为本申请实施例提供的BGP Authentication Sub-TLV字段的格式的示意图。在图23中,BGP Authentication Sub-TLV字段包括Sub-Type字段、Length字段、Peer Address字段、Route Distinguisher字段、Authentication Mode字段和Algorithm字段。其中,Sub-Type字段用于携带表示BGP Authentication Sub-TLV字段类型的值,例如为3。Length字段携带该Sub-TLV字段的值的长度。Peer Address字段可以占16个字节,用于携带网络设备的对等体的地址。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。Authentication Mode字段用于携带认证算法的模式。Algorithm字段用于携带认证算法的标识。其中认证算法的模式是指网络设备与对等体之间相互发送的用于加密的密码是明文还是密文。
参见图24,该图为本申请实施例提供的BGP Non-Authentication Sub-TLV字段的格式的示意图。在图24中,BGP Non-Authentication Sub-TLV字段包括Sub-Type字段、Length字段、Peer Address字段和Route Distinguisher字段。其中,Sub-Type字段用于携带表示BGP Non-Authentication Sub-TLV字段类型的值,例如为4。Length字段携带该Sub-TLV字段的值的长度。Peer Address字段可以占16个字节,用于携带网络设备的对等体的地址。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。
在本申请实施例中,起源认证(origin validation,OV)用于检验BGP路由前缀是否合法。具体的,使能起源认证的网络设备可以获取BGP路由前缀和自治系统号码之间的对应关系,当网络设备从BGP会话中接收到路由前缀和AS-Path中的自治系统号码时,网络设备可以根据该路由前缀和对应关系查找对应的自治系统号码,若该自治系统号码与AS-Path中的自治系统号码相同,则起源认证通过;否则不通过。
参见图25,该图为本申请实施例提供的BGP Prefix OV Sub-TLV字段的格式的示意图。在图25中,BGP Prefix OV Sub-TLV字段包括Sub-Type字段、Length字段、AFI字段、SAFI字段、Reserved字段、Peer Address字段、Route Distinguisher字段、Expect Origin AS字段、Invalid Origin AS字段和Prefix List字段。其中,Sub-Type字段携带表示BGP Prefix OV Sub-TLV字段类型的值,例如为5。Length字段携带该Sub-TLV字段的值的长度。AFI字段携带AFI。SAFI字段携带SAFI。Reserved字段携带。Peer Address字段可以占16个字节,用于携带网络设备的对等体的地址。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。Expect Origin AS字段携带预期的起始自治系统号码。Invalid Origin AS字段携带非法的起始自治系统号码。Prefix List字段携带非法路由前缀列表。
参见图26,该图为本申请实施例提供的BGP NO Prefix OV Sub-TLV字段的格式的示意图。在图26中,BGP NO Prefix OV Sub-TLV字段包括Sub-Type字段、Length字段、AFI字段、SAFI字段、Reserved字段、Peer Address字段和Route Distinguisher字段。其中,Sub-Type字段携带表示BGP NO Prefix OV Sub-TLV字段类型的值,例如为6。Length字段携带该Sub-TLV字段的值的长度。AFI字段携带AFI。SAFI字段携带SAFI。Reserved字段携带。Peer Address字段可以占16个字节,用于携带网络设备的对等体的地址。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。
参见图27,该图为本申请实施例提供的BGP Prefix Limit Sub-TLV字段的格式的示意图。在图27中,BGP Prefix Limit Sub-TLV字段包括Sub-Type字段、Length字段、Allowed Max Prefix Number Per Router字段、Current Prefix Number Per Router字段和Threshold字段。其中,Sub-Type字段携带表示BGP Prefix Limit Sub-TLV字段类型的值,例如为7。Length字段携带该Sub-TLV字段的值的长度。Allowed Max Prefix Number Per Router字段携带网络设备允许接收的路由前缀阈值。Current Prefix Number Per Router字段中携带网络设备已接收的路由前缀的数目。Threshold字段中携带路由前缀数目预警阈值(例如为百分比)。
在本申请实施例中,路由前缀数目预警阈值可以为百分比,例如当路由前缀数目预警阈值为90%时,表示当网络设备已接收的路由前缀的数目超过允许接收的路由前缀阈值的90%时,需要进行预警。当然,路由前缀数目预警阈值可以是具体的数目,其小于允许接收的路由前缀阈值。
参见图28,该图为本申请实施例提供的BGP Peer Prefix Limit Sub-TLV字段的格式的示意图。在图28中,BGP Peer Prefix Limit Sub-TLV字段包括Sub-Type字段、Length字段、AFI字段、SAFI字段、Reserved字段、Peer Address字段、Route Distinguisher字段、Allowed Max Prefix Number Per Peer Per AFI/SAFI字段、Current Max Prefix Number Per Peer Per AFI/SAFI字段和Threshold字段。其中,Sub-Type字段携带表示BGP NO Prefix OV Sub-TLV字段类型的值,例如为8。Length字段携带该Sub-TLV字段的值的长度。AFI字段携带AFI。SAFI字段携带SAFI。Reserved字段携带。Peer Address字段可以占16个字节,用于携带网络设备的对等体的地址。Route Distinguisher 字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。Allowed Max Prefix Number Per Peer Per AFI/SAFI字段携带与地址族信息对应的允许接收的路由前缀阈值。Current Max Prefix Number Per Peer Per AFI/SAFI字段携带地址族信息对应的已接收的路由前缀数目。Threshold字段携带与地址族信息对应的路由前缀数目预警阈值。
在本申请实施例中,与地址族信息对应的路由前缀数目预警阈值可以为百分比,例如当路由前缀数目预警阈值为90%时,表示当网络设备的已接收的与地址族信息对应的路由前缀的数目超过允许接收的路由前缀阈值的90%时,需要进行预警。当然,地址族信息对应的路由前缀数目预警阈值可以是具体的数目,其小于允许接收的路由前缀阈值。
参见图29,该图为本申请实施例提供的BGP No Prefix Limit Sub-TLV字段的格式的示意图。在图29中,BGP No Prefix Limit Sub-TLV字段包括Sub-Type字段、Length字段、AFI字段、SAFI字段、Direction字段、Peer Address字段和Route Distinguisher字段。其中,Sub-Type字段携带表示BGP No Prefix Limit Sub-TLV字段类型的值,例如为9。Length字段携带该Sub-TLV字段的值的长度。AFI字段携带AFI。SAFI字段携带SAFI。Direction字段携带表示在哪个网络设备报文方向上设置了最大路由前缀数目的值,例如0表示在报文输入方向;1表示报文输出方向;2表示双向。Peer Address字段可以占16个字节,用于携带网络设备的对等体的地址。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。
在本申请实施例中,更新消息(Update message)是指用于发布或撤销BGP路由信息的消息。如果更新消息错误,为了不中断BGP会话,可以在网络设备上使能忽略错误更新消息的功能。
参见图30,该图为本申请实施例提供的BGP Update-Err ignore Sub-TLV字段的格式的示意图。在图30中,BGP Update-Err ignore Sub-TLV字段包括Sub-Type字段、Length字段和Enable Per Router字段。其中,Sub-Type字段携带表示BGP Update-Err ignore Sub-TLV字段类型的值,例如为10。Length字段携带该Sub-TLV字段的值的长度。Enable Per Router字段携带表示是否使能忽略错误的更新消息的功能的值,例如0表示去使能,1表示使能。
参见图31,该图为本申请实施例提供的BGP Peer Update-Err ignore Sub-TLV字段的格式的示意图。在图31中,BGP Peer Update-Err ignore Sub-TLV字段包括Sub-Type字段、Length字段、AFI字段、SAFI字段、Reserved字段、Peer Address字段、Route Distinguisher字段和Enable Per Peer Per AFI/SAFI字段。其中,Sub-Type字段携带表示BGP NO Prefix OV Sub-TLV字段类型的值,例如为11。Length字段携带该Sub-TLV字段的值的长度。AFI字段携带AFI。SAFI字段携带SAFI。Reserved字段携带。Peer Address字段可以占16个字节,用于携带网络设备的对等体的地址。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。Enable Per Peer Per AFI/SAFI字段携带表示是否使能与对等体信息对应的忽略错误的更新消息的功能的值,例如0表示去使能,1表示使能。
在本申请实施例中,当网络设备的对等体为EBGP对等体时,为了保证网络设备的安全性,网络设备可以检查EBGP对等体发来的更新消息中AS路径(AS_Path)列表的第一个AS号,如果该第一个AS号属于该EBGP对等体所在的AS,那么网络设备和该EBGP对等体之间不会出现环路;若不属于,那么网络设备和该EBGP对等体之间可能会有出现路由环路的风险,此时网络设备可以拒绝该更新消息,并与该EBGP断开连接。路由环路是指路由在网络设备和对等体之间循环发送,形成了一个环,并且无法停止下来。
参见图32,该图为本申请实施例提供的BGP Not Check-First-AS Sub-TLV字段的格式的示意图。在图32中,BGP Not Check-First-AS Sub-TLV字段包括Sub-Type字段、Length字段和Enable Per Router字段。其中,Sub-Type字段携带表示BGP NO Prefix OV Sub-TLV字段类型的值,例如为12。Length字段携带该Sub-TLV字段的值的长度。Enable Per Router字段携带网络设备是否使能检查EBGP对等体发来的更新消息中AS_Path列表的第一个AS号的功能,例如0表示去使能,1表示使能。
参见图33,该图为本申请实施例提供的BGP Peer Not Check-First-AS Sub-TLV字段的格式的示意图。在图33中,BGP Peer Not Check-First-AS Sub-TLV字段包括Sub-Type字段、Length字段、Peer Address字段、Route Distinguisher字段和Enable Per Peer字段。其中,Sub-Type字段用于携带表示BGP Peer Not Check-First-AS Sub-TLV字段类型的值,例如为13。Length字段携带该Sub-TLV字段的值的长度。Peer Address字段可以占16个字节,用于携带网络设备的对等体的地址。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。Enable Per Peer字段用于携带网络设备是否使能针对第一EBGP对等体检查来自该第一EBGP对等体发来的更新消息中AS_Path列表的第一个AS号的功能,例如0表示去使能,1表示使能。其中,第一EBGP对等体为EBGP对等体中的任意一个。
参见图34,该图为本申请实施例提供的BGP Peer Allow-AS-Loop Sub-TLV字段的格式的示意图。在图34中,BGP Peer Allow-AS-Loop Sub-TLV字段包括Sub-Type字段、Length字段、Peer Address字段、Route Distinguisher字段和Enable Per Peer字段。其中,Sub-Type字段用于携带表示BGP Peer Not Check-First-AS Sub-TLV字段类型的值,例如为14。Length字段携带该Sub-TLV字段的值的长度。Peer Address字段可以占16个字节,用于携带网络设备的对等体的地址。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。Enable Per Peer字段用于携带网络设备是否使能了允许本地AS号重复出现多次的功能,例如0表示去使能,1表示使能。若使能,则网络设备中出现路由环路的风险较大。
在本申请实施例中,入口策略是指接收对等体发送的路由信息的控制策略。若网络设备的BGP会话没有配置入口策略,则可能会导致不对接收到的路由信息进行限制,当对等体突然发送大量非法路由时,可能会严重冲击网络设备的正常运行。
参见图35,该图为本申请实施例提供的BGP No Inbound-Policy Sub-TLV字段的格式的示意图。在图35中,BGP No Inbound-Policy Sub-TLV字段包括Sub-Type字段、 Length字段、AFI字段、SAFI字段、Reserved字段、Peer Address字段和Route Distinguisher字段。其中,Sub-Type字段携带表示BGP No Inbound-Policy Sub-TLV字段类型的值,例如为15。Length字段携带该Sub-TLV字段的值的长度。AFI字段携带AFI。SAFI字段携带SAFI。Reserved字段携带。Peer Address字段可以占16个字节,用于携带网络设备的对等体的地址。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。
在本申请实施例中,出口策略是指向对等体发送路由信息的控制策略。若网络设备的BGP会话没有配置出口策略,则可能会导致网络设备不加限制的往外发路由,存在冲击整个网络正常运行的风险。
参见图36,该图为本申请实施例提供的BGP No Outbound-Policy Sub-TLV字段的格式的示意图。在图36中,BGP No Outbound-Policy Sub-TLV字段包括Sub-Type字段、Length字段、AFI字段、SAFI字段、Reserved字段、Peer Address字段和Route Distinguisher字段。其中,Sub-Type字段携带表示BGP No Inbound-Policy Sub-TLV字段类型的值,例如为16。Length字段携带该Sub-TLV字段的值的长度。AFI字段携带AFI。SAFI字段携带SAFI。Reserved字段携带。Peer Address字段可以占16个字节,用于携带网络设备的对等体的地址。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。
在本申请实施例中,安全套接层(Secure Sockets Layer,SSL)协议是在Internet基础上提供的一种保证私密性的安全协议,SSL认证通过利用SSL协议对报文进行加密,保证数据传输的安全性。
参见图37,该图为本申请实施例提供的BGP SSL-Policy Sub-TLV字段的格式的示意图。在图37中,BGP SSL-Policy Sub-TLV字段包括Sub-Type字段、Length字段、Peer Address字段、Route Distinguisher字段、角色(Role)字段和Enable字段。其中,Sub-Type字段用于携带表示BGP SSL-Policy Sub-TLV字段类型的值,例如为17。Length字段携带该Sub-TLV字段的值的长度。Peer Address字段可以占16个字节,用于携带网络设备的对等体的地址。Route Distinguisher字段可以占8个字节,当Route Distinguisher字段的值不为0时,标识该对等体属于该路由标识的一个VPN实例。Role字段用于携带网络设备在SSL协议中对应的角色,例如1为客户端,2为服务器。Enable字段用于携带网络设备是否使能SSL认证。
可以理解的是,上述具体的安全状态信息并不构成对本申请技术方案的限定,本领域技术人员可以根据具体情况自行设计。
S103:第一设备接收来自第一设备的BMP通知消息。
S104:第一设备根据BMP通知消息中的网络设备的BGP信息进行相应的处理。
如前文所提,BGP信息包括网络设备的地址族监控信息、网络设备的资源信息、网络设备的健康状态信息和网络设备的安全状态信息等其中的一种或多种,根据不同类型的BGP信息,第一设备可以由不同的处理方式。
1、BGP信息包括网络设备的地址族监控信息
具体的,当地址族监控信息包括地址族信息和第一指示时,第一设备可以显示或通过短信、邮箱等方式通知相关人员地址族信息和第一指示,以使相关人员知晓网络 设备需要为哪个地址族信息使能监控,哪个地址族信息去使能监控,然后进行相应的判断处理。
可选的,网络设备的地址族监控信息还可以包括路由消息的类型,同样的,第一设备可以显示或通过短信、邮箱等方式通知相关人员地址族信息、第一指示和路由消息的类型,以使相关人员知晓网络设备需要为哪个地址族信息的哪个类型的路由消息使能监控,哪个地址族信息的哪个类型的路由消息去使能监控,然后进行相应的判断处理。
当地址族监控信息还包括地址族信息对应的配置状态时,第一设备可以根据地址族信息、第一指示和配置状态检测网络设备是否发生故障。
具体的,网络设备和对等体之间建立连接之后,可以互相为对方配置地址族信息,并通过打开消息(open message)告知对方自己为对方配置的地址族信息。根据相互发送的Open Message,网络设备可以获取到与地址族信息对应的第一配置状态或第二配置状态。
例如假设在网络设备上配置了Peer 190.94.251.48,其中,190.94.251.48为对等体的地址。相应的,在对等体上配置了Peer 190.201.164.32,其中,190.201.164.32为网络设备的地址。
参见表6,该表为网络设备为Peer 190.94.251.48配置的地址族信息以及对等体为Peer 190.201.164.32配置的地址族信息。
表6
Figure PCTCN2020128260-appb-000006
其中,AFI=1,SAFI=1、AFI=1,SAFI=2和AFI=1,SAFI=128的含义请见上文。AFI=1,SAFI=133是指IPv4流规范(Flowspec)地址族信息。
根据表6可知,网络设备向地址为190.94.251.48对等体发送的Open Message包括的地址族信息为AFI=1,SAFI=1、AFI=1,SAFI=2、AFI=1,SAFI=128和AFI=1,SAFI=133。该对等体向网络设备发送的Open Message包括的地址族信息为AFI=1,SAFI=1和AFI=1,SAFI=2。也就是说,网络设备为对等体配置的地址族信息和对等体为网络设备配置的地址族信息均包括AFI=1,SAFI=1和AFI=1,SAFI=2这两个地址族信息。那么,按照上文对配置状态的定义以及表1,与AFI=1,SAFI=1和AFI=1,SAFI=2对应的配置状态均为第一配置状态;与AFI=1,SAFI=128对应的配置状态为第二配置状态。
由于AFI=1,SAFI=1和AFI=1,SAFI=2对应的配置状态均为第一配置状态,那么网络设备和对等体可以分别建立与这两个地址族信息对应的BGP会话。在正常情况下,网络设备会向第一设备发送与该两个地址族信息对应的路由监控(Route Monitoring,RM)消息,该RM消息中携带与这两个地址族信息对应的路由信息。
当第一设备接收到的BMP通知消息中包括某个地址族信息对应的第一指示为使能监控,且对应的配置状态为第一配置状态,即网络设备和对等体均配置了该地址族信息,那么第一设备若能接收到与该地址族信息对应的RM消息,则说明网络设备运行正常;若第一设备没有接收到与该地址族信息对应的RM消息,则说明网络设备出现故障。此时第一设备可以结合下文的健康状态消息来进行具体故障分析。
例如,第一设备接收到的BMP通知消息中与AFI=1,SAFI=1对应的第一指示表示使能监控,且对应的配置状态为第一配置状态,那么第一设备若能在预设时间段内接收到与AFI=1,SAFI=1对应的RM消息,则说明网络设备运行正常;若第一设备没有在预设时间段内接收到与AFI=1,SAFI=1对应的RM消息,则说明网络设备出现故障,例如网络设备上AFI=1,SAFI=1对应的IPv4单播路由信息的收发可能存在故障,此时可以通过获取上文中的BGP健康状态信息,来分析BGP会话上的消息队列是否存在问题。
当第一设备接收到的BMP通知消息中包括某个地址族信息对应的第一指示为使能监控,且对应的配置状态为第二配置状态,即网络设备已配置地址族信息且网络设备的对等体未配置该地址族信息,那么说明网络设备配置错误,或者对等体配置错误。若为前者,第一设备可以向网络设备发送删除指令,该删除指令用于对所述网络设备配置的所述地址族信息进行删除,解决网络设备配置错误的问题;若为后者,第一设备可以向对等体发送配置指令,该配置指令用于在对等体中配置该地址族信息。
例如,第一设备接收到的BMP通知消息中与AFI=1,SAFI=128对应的第一指示为使能监控,且对应的配置状态为第二配置状态,那么第一设备可以向网络设备发送第一删除指令,以对所述网络设备配置的AFI=1,SAFI=128进行删除,解决网络设备配置错误的问题;或者,第一设备可以向对等体发送配置指令,该配置指令用于在对等体中配置该AFI=1,SAFI=128。
当第一设备接收到的BMP通知消息中包括某个地址族信息对应的第一指示为使能监控,且对应的配置状态为第三配置状态,即网络设备未配置所述地址族信息,说明网络设备配置错误、对等体配置错误或者网络设备监控配置错误。第一设备可以向网络设备发送配置指令,该配置指令用于在网络设备中配置该地址族信息,以解决网络设备配置错误的问题。若对等体配置了该地址族信息,第一设备还可以向对等体发送删除指令,该删除指令用于删除对等体配置的该地址族信息,以解决对等体配置错误的问题。第一设备还可以向网络设备发送删除指令,该删除指令用于删除与地址族信息对应的第一指示,以解决网络设备监控配置错误的问题。或者,第一设备可以判断该地址族信息是否曾使能监控,如果是,则说明网络设备与第一设备之间可能会存在链路拥塞,导致信息丢失,这时可以增加第一设备和网络设备之间的链路带宽。
例如,当第一设备接收到的BMP通知消息中与AFI=2,SAFI=1对应的第一指示为使能监控,但从表6可知,网络设备未配置该地址族信息,所以该地址族信息对应的配置状态为第三配置状态。在这种情况下,第一设备可以向网络设备发送配置指令,以在网络设备中配置AFI=2,SAFI=1;或者,第一设备向网络设备发送删除指令,以删除表1中与AFI=2,SAFI=1对应的配置表项。
可以理解的是,上述对地址族监控信息的处理方式并不构成对本申请的限定,本 领域技术人员可以根据具体情况自行设计。
2、BGP信息包括网络设备的资源信息
具体的,当网络设备的资源信息包括已使用的BGP会话数目时,第一设备可以判断该已使用的BGP会话数目是否大于或等于阈值,若是,则说明网络设备负载较大,第一设备可以调整所述BGP会话对应的业务流。其中,阈值可以根据网络设备支持的BGP会话的总数进行确定。例如,在图9中,当Used Total Number字段的值大于或等于Allowed Total Number字段的值,说明网络设备负载较高,第一设备可以调整BGP会话对应的业务流。当Used Number of IBGP Peer Session字段的值与Used Number of EBGP Peer Session字段的值的比例超过阈值,则可以调整IBGP会话对应的业务流;当Used Number of IBGP Peer Session字段的值与Used Number of EBGP Peer Session字段的值的比例低于阈值,则可以调整EBGP会话对应的业务流.
在本申请实施例中,调整BGP会话对应的业务流的实现方式可以是将该业务流从该网络设备迁移到其他网络设备。例如,第一设备可以向网络设备A发送删除指令,该删除指令用于删除一个或多个网络设备A的BGP会话,同时,第一设备向网络设备B发送建立指令,该建立指令用于在网络设备B上建立BGP会话,该BGP会话用于传输网络设备A的BGP会话的业务流。当然,该业务流迁移方式只是一个示例,并不构成对本申请的限定。
当网络设备的资源信息包括已使用的BGP实例数目时,第一设备可以判断该已使用的BGP实例数目是否大于或等于阈值,若是,则说明网络设备负载较大,第一设备可以调整所述BGP实例对应的业务流。其中,阈值可以根据网络设备支持的BGP实例总数进行确定。例如,在图10中,当Used Total Number字段的值大于或等于Allowed Total Number字段的值,则第一设备调整BGP实例对应的业务流。
在本申请实施例中,调整BGP实例对应的业务流的实现方式可以是将该业务流从该网络设备迁移到其他网络设备。例如,第一设备可以向网络设备A发送删除指令,该删除指令用于删除一个或多个网络设备A的BGP实例,同时,第一设备向网络设备B发送建立指令,该建立指令用于在网络设备B上建立BGP实例,该BGP实例用于传输网络设备A的BGP实例的业务流。当然,该业务流迁移方式只是一个示例,并不构成对本申请的限定。
当网络设备的资源信息包括已使用的BGP路由表项数目时,第一设备可以判断该已使用的BGP路由表项数目是否超过阈值,若是,则说明网络设备负载较大,第一设备可以调整该网络设备上与该BGP路由表项对应的业务流。其中,阈值可以根据网络设备支持的BGP路由表项总数进行确定。例如在图11中,当Used Total Number字段的值大于或等于Allowed Total Number字段的值,则第一设备调整网络设备上与BGP路由表项对应的业务流。
在本申请实施例中,调整BGP路由表项对应的业务流的实现方式可以是将该业务流从该网络设备迁移到其他网络设备。例如,第一设备可以向网络设备A发送删除指令,该删除指令用于删除一个或多个网络设备A的BGP路由表项,同时,第一设备向网络设备B发送建立指令,该建立指令用于在网络设备B上生成BGP路由表项,该BGP路由表项用于传输网络设备A的BGP路由表项对应的业务流。当然,该业务 流迁移方式只是一个示例,并不构成对本申请的限定。
当网络设备的资源信息包括地址族信息对应的BGP路由表项的数目时,第一设备可以判断该地址族信息对应的BGP路由表项的数目是否超过阈值,若是,则说明网络设备负载较大,第一设备可以调整该网络设备上与该BGP路由表项对应的业务流。例如在图12中,当Used Number of Per AFI/SAFI字段的值大于或等于阈值时,第一设备调整网络设备上与AFI字段和SAFI字段对应的BGP路由表项对应的业务流。或者,第一设备可以根据地址族信息对应的BGP路由表项的数目确定各个地址族对应的路由表项在已使用的BGP路由表项所占的比重,如果比重超过阈值,则调整该地址族对应的业务流。例如,第一设备可以判断Used Number of Per AFI/SAFI字段的值和图11中Used Total Number字段的值之间的比值是否超过阈值,若是则调整图12中AFI字段和SAFI字段对应的BGP路由表项对应的业务流。
当网络设备的资源信息包括BGP路由表项下发到转发表项的数目,第一设备可以判断该转发表项的数目是否超过阈值,若是,则说明网络设备负载较大,第一设备可以调整该网络设备上与该BGP转发表项对应的业务流。其中,阈值可以根据网络设备支持的转发表项的总数进行确定。例如在图13中,当Used Total Number字段的值大于或等于Allowed Total Number字段的值时,第一设备调整网络设备上与该BGP转发表项对应的业务流。在本申请实施例中,第一设备调整网络设备上与该BGP转发表项对应的业务流和调整与BGP路由表项对应的业务流的方式类似,此处不再赘述。
当网络设备的资源信息包括地址族信息对应的BGP转发表项的数目,第一设备可以判断该地址族信息对应的BGP转发表项的数目是否超过阈值,若是,则说明网络设备负载较大,第一设备可以调整该网络设备上与该BGP转发表项对应的业务流。例如在图14中,当Used Number of Per AFI/SAFI字段的值大于或等于阈值时,第一设备调整网络设备上与AFI字段和SAFI字段对应的BGP转发表项对应的业务流。或者,第一设备可以根据地址族信息对应的BGP转发表项的数目确定各个地址族对应的转发表项在已使用的BGP转发表项所占的比重,如果比重超过阈值,则调整该地址族对应的业务流。例如,第一设备可以判断图14中Used Number of Per AFI/SAFI字段的值和图13中Used Total Number字段的值之间的比值是否超过阈值,若是则调整图14中AFI字段和SAFI字段对应的BGP转发表项对应的业务流。
当网络设备的资源信息包括已使用的内存大小,第一设备可以判断该已使用的内存大小是否超过阈值,若是,则说明网络设备负载较大,第一设备可以调整该网络设备上的业务流。其中,阈值可以根据网络设备的内存总大小进行确定。例如在图15中,当Used Total Number字段的值大于或等于Allowed Total Number字段的值时,第一设备调整网络设备上的业务流。
当网络设备的资源信息包括地址族信息对应的已使用的内存大小时,第一设备可以判断该地址族信息对应的已使用的内存大小是否超过阈值,若是,则说明网络设备负载较大,第一设备可以调整该网络设备上的业务流。例如在图16中,当Used Size Per AFI/SAFI字段的值大于或等于阈值时,第一设备调整网络设备上的业务流。或者,第一设备可以根据地址族信息对应的已使用的内存大小确定各个地址族对应的内存大小在已使用的总的内存大小所占的比重,如果比重超过阈值,则调整该地址族对应的业 务流。例如,第一设备可以判断图16中Used Size Per AFI/SAFI字段的值和图15中Used Total Number字段的值之间的比值是否超过阈值,若是则调整图16中AFI字段和SAFI字段对应的业务流。
可以理解的是,上述对资源信息的处理方式并不构成对本申请的限定,本领域技术人员可以根据具体情况自行设计。
3、BGP信息包括网络设备的健康状态信息
当网络设备的健康状态信息包括消息队列的消息积压信息时,第一设备可以根据该消息积压信息判断网络设备消息队列的健康状态,如果消息队列的消息积压较为严重,则第一设备可以进行业务流的调整,以减轻网络设备的负荷,或者查看消息队列是否出现故障。
例如,图18中,当Current Number in InQ字段的值大于或等于Allowed Max Number of InQ字段的值与Alarm Threshold for InQ字段的值的乘积时,说明网络设备的消息输入队列积压严重,第一设备可以进行告警或调整输入网络设备的业务流。
再例如,图18中,当Current Number in OutQ字段的值大于或等于Allowed Max Number of OutQ字段的值与Alarm Threshold for OutQ字段的值的乘积时,说明网络设备的消息输出队列积压严重,第一设备可以进行告警或调整网络设备输出的业务流。
当网络设备的健康状态信息包括与地址族信息对应的慢对等体的信息时,第一设备可以根据对等体被识别为慢对等体的次数确定该对等体或与该对等体之间的链路是否出现故障。例如,当图19中Slow Count字段的值大于或等于阈值,第一设备可以进行告警或检查对等体或与对等体之间的链路是否出现故障。第一设备还可以根据对等体被识别为慢对等体的时间确定该对等体或与该对等体之间的链路是否出现故障。例如,当图19中Timestamp of Last Slow End Time字段的值和Timestamp of Slow Start Time字段的值之间的差值大于或等于阈值时,第一设备可以进行告警或检查对等体或与对等体之间的链路是否出现故障。
可以理解的是,上述对健康状态信息的处理方式并不构成对本申请的限定,本领域技术人员可以根据具体情况自行设计。
4、BGP信息包括网络设备的安全状态信息
当网络设备的安全状态信息包括BGP会话使能GTSM时,第一设备可以根据判断有效生存时间TTL跳数是否合理。具体的,第一设备可以根据丢弃的报文数目与接收的报文总数之间的比值,和/或,通过的报文数目与接收的报文总数之间的比值,确定有效生存时间TTL跳数是否合理。例如图21中,当Drop Counters字段的值与Total Counters字段的值的比值小于或等于阈值,和/或,Pass Counters字段的值与Total Counters字段的值的比值大于或等于阈值时,认为Valid-TTL-Hops设置过大,第一设备可以将Valid-TTL-Hops的值进行下调,并向网络设备发送调整之后的Valid-TTL-Hops的值。
当网络设备的安全状态信息包括BGP会话未使能GTSM时,网络设备被攻击的风险较高,第一设备可以向网络设备下发使能指令,该使能指令用于指示网络设备使能GTSM。
当网络设备的安全状态信息包括BGP会话使能安全认证时,第一设备可以根据认 证模式和/或认证算法确认网络设备的安全认证是否符合安全级别的要求。
当网络设备的安全状态信息包括BGP会话未使能安全认证时,第一设备发送的报文被截获并破解的可能性较大,所以第一设备可以向网络设备发送使能指令,该使能指令用于指示网络设备使能安全认证。
当网络设备的安全状态信息包括BGP会话使能起源认证时,第一设备可以根据网络设备通过起源认证得到的非法路由前缀信息确认哪些是真正的非法路由前缀,哪些是误判。如果是误判,则第一设备可以向网络设备下发启用指令,该启用指令用于启用被误判的路由前缀。例如,第一设备可以根据图25中Prefix List字段的值进一步确认真正的非法路由前缀。
当网络设备的安全状态信息包括BGP会话未使能起源认证,网络设备受到攻击的可能性较高,第一设备可以向网络设备发送使能指令,该使能指令用于指示网络设备使能起源认证。
当网络设备的安全状态信息包括已接收的路由前缀数目时,第一设备可以判断网络设备已接收的路由前缀数目是否大于或等于阈值,若是,则表明网络设备处于重载运行状态、有可能导致一些业务无法正常运行,第一设备可以进行预警或调整网络设备的业务流。例如图27中,当Current Prefix Number Per Router字段的值大于或等于Allowed Max Prefix Number Per Router字段的值与Threshold字段的值的乘积,那么第一设备可以进行预警或调整网络设备的业务流。
当网络设备的安全状态信息包括地址族信息对应的已接收的路由前缀数目时,第一设备可以判断地址族信息对应的已接收的路由前缀数目是否大于或等于阈值,若是,则表明网络设备处于重载运行状态、有可能导致一些业务无法正常运行,第一设备可以进行预警,或者进一步判断该地址族信息对应的路由前缀是否合法,如果是,则调高允许接收的路由前缀最大值,并将调整后的值发送给网络设备。例如图28中,当Current Max Prefix Number Per Peer Per AFI/SAFI字段的值大于或等于Allowed Max Prefix Number Per Peer Per AFI/SAFI字段的值与Threshold字段的值的乘积,那么第一设备可以执行上述操作。
当网络设备的安全状态信息包括未设置路由前缀阈值的地址族信息时,网络设备可能会存在由于接收到大量的路由前缀而导致超负荷运行的风险,第一设备可以下发设置指令,该设置指令用于网络设备为该地址族设置路由前缀阈值,这样网络设备就可以进行预警。例如,在图29中,若Direction字段的值为1,则第一设备下发的设置指令可以用于网络设备在报文输出方向上为该地址族设置路由前缀阈值;若Direction字段的值为0,则第一设备下发的设置指令可以用于网络设备在报文输入方向上为该地址族设置路由前缀阈值;若Direction字段的值为2,则第一设备下发的设置指令可以用于网络设备在报文输出方向和报文输入方向上为该地址族设置路由前缀阈值。
当网络设备的安全状态信息包括使能忽略错误更新消息的功能时,网络设备可能会存在路由信息与对等体的路由信息不同步的风险,第一设备可以获取错误更新消息,并对错误更新消息进行分析。当网络设备的安全状态信息包括去使能忽略错误更新消息的功能时,网络设备切断与对等体的BGP会话,可能会引起网络震荡的风险,第一设备可以向网络设备发送使能指令,该使能指令用于指示网络设备使能忽略错误更新 消息的功能该功能,或者,第一设备可以执行网络震荡的防护措施。
当网络设备的安全状态信息包括是否使能与地址族信息对应的忽略错误更新消息的功能,第一设备执行的动作与网络设备的安全状态信息包括使能忽略错误更新消息的功能时的动作类似,此处不再赘述。
当网络设备的安全状态信息包括未使能检查EBGP对等体向所述网络设备发送的更新消息中自治系统路径AS_Path属性的第一个自治系统AS号的功能时,第一设备可以判断网络设备的所有对等体是否都为路由服务器(Route Server),如果否,则可以向网络设备发送使能指令,该使能指令用于使能该检查EBGP对等体向所述网络设备发送的更新消息中自治系统路径AS_Path属性的第一个自治系统AS号的功能。
当网络设备的安全状态信息包括未使能针对第一EBGP对等体检查来自该第一EBGP对等体发来的更新消息中AS_Path列表的第一个AS号的功能时,第一设备可以判断该EBGP对等体是否为路由服务器,如果否,则可以向网络设备发送使能指令,该使能指令用于使能检查该EBGP对等体向所述网络设备发送的更新消息中自治系统路径AS_Path属性的第一个自治系统AS号的功能。第一EBGP对等体为网络设备所有EBGP对等体中的任意一个。
当网络设备的安全状态信息包括允许本地AS号重复出现多次时,第一设备可以判断网络设备和对等体是否属于同一个网络运营商,如果否,则网络设备出现路由环路的风险较大,第一设备可以向网络设备发送去使能指令,该去使能指令用于指示网络设备去使能允许本地AS号重复出现多次的功能。
当网络设备的安全状态信息包括未为地址族配置对应的入口策略时,第一设备可以判断网络设备和对等体是否属于同一个网络运营商,如果否,则网络设备收到非法路由的可能性较大,第一设备可以向网络设备发送配置指令,该配置指令用于指示网络设备为该地址族配置入口策略。例如图35中,Sub-Type字段的值指示该Sub-TLV为BGP No Inbound-Policy Sub-TLV时,第一设备可以向网络设备发送配置指令,该配置指令用于指示网络设备为与AFI字段和SAFI字段对应的地址族信息配置入口策略。
当网络设备的安全状态信息包括未为地址族配置对应的出口策略时,第一设备可以判断网络设备和对等体是否属于同一个网络运营商,如果否,则网络被冲击的可能性较大,第一设备可以向网络设备发送配置指令,该配置指令用于指示网络设备为该地址族配置出口策略。例如图36中,Sub-Type字段的值指示该Sub-TLV为BGP No Outbound-Policy Sub-TLV时,第一设备可以向网络设备发送配置指令,该配置指令用于指示网络设备为与AFI字段和SAFI字段对应的地址族信息配置出口策略。
当网络设备的安全状态信息包括使能安全套接层SSL认证时,说明网络设备的BGP会话安全性较高,在第一设备接收到携带相同的路由前缀的不同的BGP会话的情况下,第一设备优先采用使能SSL认证的网络设备的BGP会话。
可以理解的是,上述对安全状态信息的处理方式并不构成对本申请的限定,本领域技术人员可以根据具体情况自行设计。
相应的,参见图38,本申请实施例还提供了一种网络设备800,该网络设备800可以实现上述图2所示实施例中网络设备的功能。网络设备800包括存储器801、处 理器802和通信接口803。
所述存储器801用于存储计算机程序或指令;
所述处理器802用于调用存储器中存储的计算机程序或指令,使得所述网络管理设备执行上述图2所示实施例中网络设备的信息上报方法。
通信接口803,用于与第一设备进行通信。
存储器801、处理器802和通信接口803通过总线804相互连接;总线804可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在具体实施例中,处理器801用于获取BGP信息,以及将BGP信息携带在BMP通知消息中。该处理器801的详细处理过程请参考上述图2所示实施例中S102这里不再赘述。
通信接口803用于向第一设备发送BMP消息。具体的过程请参考上述图2所示实施例中S102,这里不再赘述
相应的,参见图39,本申请实施例提供了一种网络管理设备900,网络管理设备900可以实现上述图2所示实施例中第一设备的功能。网络管理设备900包括包括存储器901、处理器902和通信接口903。
所述存储器901用于存储计算机程序或指令。
所述处理器902用于调用存储器中存储的计算机程序或指令,使得所述网络管理设备执行上述图2所示实施例中第一设备的信息处理方法。
通信接口803,用于与网络设备进行通信。
存储器901、处理器902和通信接口903通过总线904相互连接;总线904可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在具体实施例中,通信接口903用于接收来自网络设备的BMP通知消息,具体的过程请参考上述图2所示实施例中S103的详细描述,这里不再赘述。
处理器901用于从BMP通知消息中获取BGP信息,并根据BGP信息进行相应的处理。该处理器901的详细处理过程请参考上述图2所示实施例中S104详细描述,这里不再赘述。
上述存储器801和存储器901可以是随机存取存储器(random-access memory,RAM)、闪存(flash)、只读存储器(read only memory,ROM)、可擦写可编程只读存储器(erasable programmable read only memory,EPROM)、电可擦除可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、寄存器(register)、硬盘、移动硬盘、CD-ROM或者本领域技术人员知晓的任何其他形式的 存储介质。
上述处理器802和处理器902例如可以是中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
上述通信接口803和通信接口903例如可以是接口卡等,可以为以太(ethernet)接口或异步传输模式(asynchronous transfer mode,ATM)接口。
本申请实施例还提供了一种监控系统,包括上述网络设备800和网络管理设备900。
本申请实施例提供了一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行上述信息上报方法和信息处理方法。
本申请实施例还提供了一种芯片,芯片设置在网络设备中,芯片包括处理器和接口电路。
接口电路用于接收代码指令并传输至处理器。
处理器用于运行代码指令以执行上述应用于图2所示实施例中网络设备的信息上报方法。
在具体实施例中,处理器用于获取网络设备的BGP信息,并向第一设备发送BMP通知消息,所述BMP通知消息携带所述网络设备的BGP信息。该处理器的详细处理过程请参考上述图2所示实施例中S101和S102,这里不再赘述。
本申请实施例还提供了一种芯片,芯片设置在网络管理设备中,芯片包括处理器和接口电路。
接口电路用于接收代码指令并传输至处理器;
处理器用于运行代码指令以执行上述应用于图2所示实施例中第一设备的信息处理方法。
在具体实施例中,处理器用于获取来自网络设备的BMP通知消息,所述BMP通知消息包括网络设备的BGP信息,并根据所述网络设备的BGP信息进行相应的处理。该处理器的详细处理过程请参考上述图2所示实施例中S103和S104,这里不再赘述。
本申请中“至少一项(个)”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。本申请中认为“A和/或B”包含单独A,单独B,和A+B。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的 过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑模块划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要获取其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各模块单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件模块单元的形式实现。
所述集成的单元如果以软件模块单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (40)

  1. 一种信息上报方法,其特征在于,所述方法包括:
    网络设备获取所述网络设备的边界网关协议BGP信息;
    所述网络设备向第一设备发送BGP监控协议BMP通知消息,所述BMP通知消息携带所述网络设备的BGP信息。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备的BGP信息包括地址族信息和第一指示,所述第一指示用于指示是否对所述地址族信息对应的地址族使能监控。
  3. 根据权利要求2所述的方法,其特征在于,所述网络设备的BGP信息还包括所述地址族信息对应的配置状态,所述配置状态为所述网络设备和/或所述网络设备的对等体对所述地址族信息配置与否的状态。
  4. 根据权利要求3所述的方法,其特征在于,所述配置状态为第一配置状态、第二配置状态或第三配置状态;
    所述第一配置状态指示所述网络设备和所述网络设备的对等体均已配置所述地址族信息;
    所述第二配置状态是指所述网络设备已配置所述地址族信息,且所述网络设备的对等体未配置所述地址族信息;
    所述第三配置状态是指所述网络设备未配置所述地址族信息。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述网络设备的BGP信息还包括路由信息类型,所述路由信息类型为所述地址族信息对应的路由信息的类型。
  6. 根据权利要求5所述的方法,其特征在于,所述路由信息类型包括策略前pre-policy路由信息和/或策略后post-policy路由信息。
  7. 根据权利要求1所述的方法,其特征在于,所述网络设备的BGP信息包括所述网络设备的资源信息。
  8. 根据权利要求7所述的方法,其特征在于,所述网络设备的资源信息包括以下其中至少一项或多项:
    所述网络设备已使用的BGP会话的数目和/或所述网络设备支持的BGP会话的总数;
    所述网络设备已使用的BGP实例的数目和/或所述网络设备支持的BGP实例的总数;
    所述网络设备已使用的BGP路由表项的数目和/或所述网络设备支持的BGP路由表项的总数;
    所述网络设备配置的地址族信息对应的路由表项的数目;
    所述网络设备中转发表项的数目和/或所述网络设备支持的转发表项的总数;
    所述网络设备配置的地址族信息对应的转发表项的数目;
    所述网络设备已使用的内存大小和/或所述网络设备的内存总大小;以及
    所述网络设备配置的地址族信息对应的已使用内存大小。
  9. 根据权利要求1所述的方法,其特征在于,所述网络设备的BGP信息包括所述网络设备的健康状态信息。
  10. 根据权利要求9所述的方法,其特征在于,所述网络设备的健康状态信息包括以下其中至少一项或多项:
    所述网络设备的消息队列的消息积压信息和所述网络设备配置的地址族信息对应的慢对等体的信息,所述消息积压信息表示所述消息队列中的消息积压的情况。
  11. 根据权利要求10所述的方法,其特征在于,所述消息积压信息包括所述消息队列中消息的数目和/或所述消息队列所允许的最大消息数目。
  12. 根据权利要求10所述的方法,其特征在于,所述慢对等体的信息包括以下其中至少一项或多项:
    所述慢对等体的地址、所述地址族信息对应的对等体被识别为慢对等体的次数、所述地址族信息对应的对等体被识别为慢对等体的开始时间和所述地址族信息对应的对等体被识别为慢对等体的结束时间。
  13. 根据权利要求1所述的方法,其特征在于,所述网络设备的BGP信息包括所述网络设备的安全状态信息。
  14. 根据权利要求13所述的方法,其特征在于,所述网络设备的安全状态信息包括以下至少一项或多项:
    所述网络设备的BGP会话是否使能通用生存时间安全保护机制GTSM;
    所述网络设备的BGP会话使能GTSM,则所述网络设备的安全状态信息还包括有效生存时间TTL跳数;
    所述网络设备的BGP会话是否使能安全认证;
    所述网络设备的BGP会话使能安全认证,则所述网络设备的安全状态信息还包括所述安全认证的认证模式、认证算法和/或认证结果;
    所述网络设备的BGP会话是否使能起源认证;
    所述网络设备的BGP会话使能起源认证,则所述网络设备的安全状态信息还包括非法路由前缀信息;
    所述网络设备已接收的路由前缀数目和/或所述网络设备允许接收的路由前缀阈值;
    地址族信息对应的路由前缀数目和/或所述地址族信息对应的路由前缀阈值;
    所述网络设备的未设置路由前缀阈值的地址族信息;
    所述网络设备是否使能忽略错误更新消息的功能;
    所述网络设备是否使能与地址族信息对应的忽略错误更新消息的功能;
    所述网络设备是否使能检查EBGP对等体向所述网络设备发送的更新消息中自治系统路径AS_Path属性的第一个自治系统AS号的功能;
    所述网络设备是否允许本地自治系统号重复出现多次;
    所述网络设备是否为地址族配置对应的入口策略和/或出口策略;以及
    所述网络设备是否使能安全套接层SSL认证。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,所述网络设备的BGP信息携带在所述BMP通知消息的类型-长度-值TLV字段中。
  16. 一种信息处理方法,其特征在于,所述方法包括:
    第一设备接收来自网络设备的边界网关协议BGP监控协议BMP通知消息,所述 BMP通知消息包括所述网络设备的BGP信息;
    所述第一设备根据所述网络设备的BGP信息进行相应的处理。
  17. 根据权利要求16所述的方法,其特征在于,所述网络设备的BGP信息包括地址族信息和第一指示,所述第一指示用于指示是否对所述地址族信息对应的地址族使能监控。
  18. 根据权利要求17所述的方法,其特征在于,所述网络设备的BGP信息还包括所述地址族信息对应的配置状态,所述配置状态为所述网络设备和/或所述网络设备的对等体对所述地址族信息配置与否的状态。
  19. 根据权利要求18所述的方法,其特征在于,所述配置状态为第一配置状态、第二配置状态或第三配置状态;
    所述第一配置状态指示所述网络设备和所述网络设备的对等体均已配置所述地址族信息;
    所述第二配置状态是指所述网络设备已配置所述地址族信息,且所述网络设备的对等体未配置所述地址族信息;
    所述第三配置状态是指所述网络设备未配置所述地址族信息。
  20. 根据权利要求19所述的方法,其特征在于,当所述配置状态为第二配置状态时,所述第一设备根据所述网络设备的BGP信息进行相应的处理包括:
    所述第一设备向所述网络设备发送删除指令,所述删除指令用于对所述网络设备配置的所述地址族信息进行删除。
  21. 根据权利要求19所述的方法,其特征在于,当所述配置状态为第三配置状态时,所述第一设备根据所述网络设备的BGP信息进行相应的处理包括:
    所述第一设备向所述网络设备发送配置指令,所述配置指令用于在所述网络设备中配置所述地址族信息。
  22. 根据权利要求19所述的方法,其特征在于,当所述配置状态为第三配置状态时,所述第一设备根据所述网络设备的BGP信息进行相应的处理包括:
    所述第一设备向所述网络设备发送删除指令,所述删除指令用于删除所述第一指示。
  23. 根据权利要求16-22任一项所述的方法,其特征在于,所述网络设备的BGP信息还包括路由信息类型,所述路由信息类型为所述地址族信息对应的路由信息的类型。
  24. 根据权利要求23所述的方法,其特征在于,所述路由信息类型包括策略前pre-policy路由信息或策略后post-policy路由信息。
  25. 根据权利要求16所述的方法,其特征在于,所述网络设备的BGP信息包括所述网络设备的资源使用信息,所述网络设备的资源使用信息表示所述网络设备的资源使用情况;
    所述第一设备根据所述网络设备的BGP信息进行相应的处理包括:
    当所述网络设备的资源使用信息满足预设条件时,所述第一设备对所述资源使用信息对应的业务流进行调整或进行告警。
  26. 根据权利要求25所述的方法,其特征在于,所述网络设备的资源使用信息包 括以下至少一项或多项:
    所述网络设备已使用的BGP会话的数目;
    所述网络设备已使用的BGP实例的数目;
    所述网络设备已使用的BGP路由表项的数目;
    所述网络设备配置的地址族信息对应的路由表项的数目;
    所述网络设备中转发表项的数目;
    所述网络设备配置的地址族信息对应的转发表项的数目;
    所述网络设备已使用的内存大小;以及
    所述网络设备配置的地址族信息对应的已使用内存大小。
  27. 根据权利要求16所述的方法,其特征在于,所述网络设备的BGP信息包括所述网络设备的健康状态信息,所述网络设备的健康状态信息表示所述网络设备的健康状态。
  28. 根据权利要求27所述的方法,其特征在于,所述网络设备的健康状态信息包括所述网络设备的消息队列的消息积压信息,所述消息积压信息表示所述消息队列中的消息积压的情况。
  29. 根据权利要求28所述的方法,其特征在于,所述消息积压信息包括所述消息队列中消息的数目;
    所述第一设备根据所述网络设备的BGP信息进行相应的处理包括:
    当所述消息队列中消息的数目大于或等于阈值时,所述第一设备调整所述消息队列对应的业务流或进行告警。
  30. 根据权利要求27所述的方法,其特征在于,所述网络设备的健康状态信息包括所述网络设备配置的地址族信息对应的慢对等体的信息;
    所述第一设备根据所述网络设备的BGP信息进行相应的处理包括:
    所述第一设备根据所述慢对等体的信息确认所述对等体是否出现故障或所述网络设备和所述对等体之间的链路是否出现故障。
  31. 根据权利要求16所述的方法,其特征在于,所述网络设备的BGP信息包括所述网络设备的安全状态信息,所述网络设备的安全状态信息表示所述网络设备的安全状态。
  32. 根据权利要求31所述的方法,其特征在于,所述网络设备的安全状态信息包括所述网络设备的BGP会话是否使能通用生存时间安全保护机制GTSM;
    当所述网络设备的安全状态信息包括所述网络设备的BGP会话使能GTSM,则所述网络设备的安全状态信息还包括有效生存时间TTL跳数;
    所述第一设备根据所述网络设备的BGP信息进行相应的处理包括:
    所述第一设备确认所述有效生存时间TTL跳数是否合理。
  33. 根据权利要求31所述的方法,其特征在于,所述网络设备的安全状态信息包括所述网络设备的BGP会话是否使能安全认证;
    当所述网络设备的安全状态信息包括所述网络设备的BGP会话使能安全认证,则所述网络设备的安全状态信息还包括所述安全认证的认证模式和/或认证算法;
    所述第一设备根据所述网络设备的BGP信息进行相应的处理包括:
    所述第一设备根据所述安全认证的认证模式和/或认证算法确认所述安全认证是否符合安全要求。
  34. 根据权利要求31所述的方法,其特征在于,所述网络设备的安全状态信息包括所述网络设备的BGP会话是否使能起源认证;
    当所述网络设备的安全状态信息包括所述网络设备的BGP会话使能起源认证,则所述网络设备的安全状态信息还包括非法路由前缀信息;
    所述第一设备根据所述网络设备的BGP信息进行相应的处理包括:
    所述第一设备确认所述非法路由前缀信息是否误判。
  35. 根据权利要求31所述的方法,其特征在于,所述网络设备的安全状态信息包括所述网络设备已接收的路由前缀数目;
    所述第一设备根据所述网络设备的BGP信息进行相应的处理包括:
    所述第一设备确认所述路由前缀数目是否超过阈值,当是,则调整所述路由前缀对应的业务流。
  36. 根据权利要求31所述的方法,其特征在于,所述网络设备的安全状态信息包括所述网络设备的未设置路由前缀阈值的地址族信息;
    所述第一设备根据所述网络设备的BGP信息进行相应的处理包括:
    所述第一设备向网络设备发送设置指令,所述设置指令用于指示所述网络设备设置与所述地址族信息对应的路由前缀阈值。
  37. 根据权利要求16-36任一项所述的方法,其特征在于,所述网络设备的BGP信息携带在所述BMP通知消息的类型-长度-值TLV字段中。
  38. 一种网络设备,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序或指令,所述处理器用于调用存储器中存储的计算机程序或指令,使得所述网络管理设备执行如权利要求1-15中任一项的所述方法。
  39. 一种网络管理设备,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序或指令,所述处理器用于调用存储器中存储的计算机程序或指令,使得所述网络管理设备执行如权利要求16-37中任一项的所述方法。
  40. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1-38任意一项所述的方法。
PCT/CN2020/128260 2019-11-15 2020-11-12 一种信息上报方法和信息处理方法及设备 WO2021093797A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20887621.9A EP4047886A4 (en) 2019-11-15 2020-11-12 INFORMATION REPORTING METHOD AND INFORMATION PROCESSING METHOD AND DEVICE
US17/744,098 US20220272025A1 (en) 2019-11-15 2022-05-13 Information Reporting Method, Information Processing Method, and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911120618.0A CN112822103B (zh) 2019-11-15 2019-11-15 一种信息上报方法和信息处理方法及设备
CN201911120618.0 2019-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/744,098 Continuation US20220272025A1 (en) 2019-11-15 2022-05-13 Information Reporting Method, Information Processing Method, and Device

Publications (1)

Publication Number Publication Date
WO2021093797A1 true WO2021093797A1 (zh) 2021-05-20

Family

ID=75852877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128260 WO2021093797A1 (zh) 2019-11-15 2020-11-12 一种信息上报方法和信息处理方法及设备

Country Status (4)

Country Link
US (1) US20220272025A1 (zh)
EP (1) EP4047886A4 (zh)
CN (2) CN112822103B (zh)
WO (1) WO2021093797A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113783748A (zh) * 2016-12-01 2021-12-10 华为技术有限公司 一种路由检测的方法及网络设备
CN113285879B (zh) * 2021-05-19 2022-11-25 郑州埃文计算机科技有限公司 一种绕过指定地理区域进行网络安全传输的方法
CN117997814A (zh) * 2022-11-03 2024-05-07 中国移动通信有限公司研究院 信息传输方法、装置、相关设备及存储介质
CN116760830B (zh) * 2023-08-14 2024-03-01 腾讯科技(深圳)有限公司 路由信息的处理方法、装置、计算机可读介质及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120263049A1 (en) * 2011-04-18 2012-10-18 Cisco Technology, Inc. Bgp slow peer detection
CN105281942A (zh) * 2014-07-23 2016-01-27 华为技术有限公司 一种发送bgp信息的网络设备和方法
CN106470187A (zh) * 2015-08-17 2017-03-01 中兴通讯股份有限公司 防止dos攻击方法、装置和系统
CN108123848A (zh) * 2017-12-19 2018-06-05 新华三技术有限公司 设备监控方法及装置
CN108134707A (zh) * 2016-12-01 2018-06-08 华为技术有限公司 一种路由检测的方法及网络设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050198269A1 (en) * 2004-02-13 2005-09-08 Champagne Andrew F. Method and system for monitoring border gateway protocol (BGP) data in a distributed computer network
US7688714B2 (en) * 2004-04-28 2010-03-30 Cisco Technology, Inc. Network routing apparatus that performs soft graceful restart
US7633874B1 (en) * 2004-04-28 2009-12-15 Cisco Technology, Inc. Soft notification messaging for a routing protocol
US7688819B2 (en) * 2006-03-06 2010-03-30 Cisco Technology, Inc. Faster routing protocol convergence using efficient message markup
US9137116B1 (en) * 2012-07-12 2015-09-15 Juniper Networks, Inc. Routing protocol interface for generalized data distribution
US9106530B1 (en) * 2013-03-27 2015-08-11 Juniper Networks, Inc. Constrained route distribution for multiple virtual private network services
US10841172B2 (en) * 2018-05-30 2020-11-17 Cisco Technology, Inc. Network fabric visualization and management
CN110191059B (zh) * 2019-07-29 2019-12-13 华为技术有限公司 一种路由信息监控方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120263049A1 (en) * 2011-04-18 2012-10-18 Cisco Technology, Inc. Bgp slow peer detection
CN105281942A (zh) * 2014-07-23 2016-01-27 华为技术有限公司 一种发送bgp信息的网络设备和方法
CN106470187A (zh) * 2015-08-17 2017-03-01 中兴通讯股份有限公司 防止dos攻击方法、装置和系统
CN108134707A (zh) * 2016-12-01 2018-06-08 华为技术有限公司 一种路由检测的方法及网络设备
CN108123848A (zh) * 2017-12-19 2018-06-05 新华三技术有限公司 设备监控方法及装置

Also Published As

Publication number Publication date
CN112822103B (zh) 2022-09-23
EP4047886A4 (en) 2022-11-16
US20220272025A1 (en) 2022-08-25
EP4047886A1 (en) 2022-08-24
CN112822103A (zh) 2021-05-18
CN116094978A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2021093797A1 (zh) 一种信息上报方法和信息处理方法及设备
CN107682284B (zh) 发送报文的方法和网络设备
US20190116183A1 (en) Fast heartbeat liveness between packet processing engines using media access control security (macsec) communication
US11115391B2 (en) Securing end-to-end virtual machine traffic
EP2959659B1 (en) Mechanism for co-ordinated authentication key transition for is-is protocol
WO2008080314A1 (fr) Procédé, moteur de retransmission et dispositif de communication pour la commande d'accès aux messages
WO2016172926A1 (zh) 通信系统中的通信方法和设备及系统
WO2015070383A1 (zh) 一种链路聚合的方法、装置和系统
CN101227287B (zh) 一种数据报文处理方法及数据报文处理装置
US11038898B2 (en) Slow protocol packet processing method and related apparatus
CN110784436B (zh) 用于维持互联网协议安全隧道的方法和设备
WO2021184862A1 (zh) 一种报文发送方法、第一网络设备及网络系统
EP4117242A1 (en) Message detection method, device and system
WO2015024523A1 (zh) 确定ip承载网故障的方法和系统
WO2021219049A1 (zh) 一种信息上报方法、信息处理方法、装置及设备
WO2016095750A1 (zh) 虚拟交换集群中通信的方法及装置
CN102821051B (zh) 通用路由封装隧道中路径最大传输单元更改方法
WO2015051696A1 (zh) 一种传输oam报文的方法及装置
US11757784B2 (en) Packet processing method and system, and network device
EP4391457A1 (en) Communication method and apparatus
CN113286012B (zh) 一种arp表项维护方法及装置
WO2023221742A1 (zh) 一种路由选择方法、网络设备及系统
WO2017020287A1 (zh) 链路检测的方法和装置
CN102546431A (zh) 一种路由器公告安全接入方法、系统及装置
Senevirathne et al. Transparent Interconnection of Lots of Links (TRILL): Fault Management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020887621

Country of ref document: EP

Effective date: 20220518

NENP Non-entry into the national phase

Ref country code: DE