WO2021093613A1 - 一种模拟评价回灌对地层伤害性的装置 - Google Patents

一种模拟评价回灌对地层伤害性的装置 Download PDF

Info

Publication number
WO2021093613A1
WO2021093613A1 PCT/CN2020/125520 CN2020125520W WO2021093613A1 WO 2021093613 A1 WO2021093613 A1 WO 2021093613A1 CN 2020125520 W CN2020125520 W CN 2020125520W WO 2021093613 A1 WO2021093613 A1 WO 2021093613A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
recharge
conduit
metal plate
core sample
Prior art date
Application number
PCT/CN2020/125520
Other languages
English (en)
French (fr)
Inventor
荆铁亚
赵文韬
张健
郜时旺
王金意
Original Assignee
中国华能集团有限公司
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团有限公司, 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团有限公司
Publication of WO2021093613A1 publication Critical patent/WO2021093613A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes

Definitions

  • the invention belongs to the technical field of geothermal exploration and development, and relates to a device for simulating and evaluating the damage of recharge to the formation.
  • Geothermal resources are a kind of renewable energy with large resource reserves and good stability. It is of great significance for energy saving, emission reduction, and air pollution control. It has a significant effect on clean energy heating and improving heating quality in North China.
  • geothermal development needs to carry out geothermal tail water recharge to ensure the efficient and environmentally friendly development of geothermal resources.
  • geothermal tail water recharge clogging, dissolution and other phenomena often damage the stratum recharge, resulting in slow recharge of geothermal tail water and insufficient recharge, which directly affects the sustainable development of geothermal, and requires geothermal development.
  • Recharge evaluation of the reservoir compile a recharge plan based on the recharge characteristics of the thermal storage.
  • the current geothermal tail water recharge evaluation device and system use quantitative recharge water to evaluate at a certain rate under normal temperature and pressure, and test the core before and after recharge on other experimental equipment to evaluate the performance of the recharge water. Damage to the recharged reservoir at this recharge rate.
  • the temperature and pressure of the geothermal recharge layer are relatively high, and the laboratory's conventional simulation evaluation method under normal temperature and pressure is quite different from the actual situation in the underground; the current equipment cannot carry out different recharge fluid composition, variable recharge rate, etc.
  • the impact on the recharged geothermal formation cannot be affected by multiple continuous reservoir damage evaluations on the equipment.
  • the purpose of the present invention is to overcome the above shortcomings of the prior art and provide a device for simulating and evaluating the damage of recharge to the formation, which can simulate and evaluate the damage of the recharge to the formation.
  • the device for simulating and evaluating the damage of recharge to the formation of the present invention includes a gas cylinder, a suction pump, a stabilizer, a constant current device, a buffer chamber, a liquid storage tank, a first suction pump, and a mixing barrel.
  • the outlet of the gas cylinder is connected with the inlet of the buffer chamber through the suction pump, the stabilizer and the constant current device, the outlet of the liquid storage tank is connected with the inlet of the mixing tank through the first suction pump, and the outlet of the mixing tank is connected through the first valve ,
  • the second pump and the sterilization device are connected with the inlet of the buffer chamber, the outlet of the buffer chamber is connected with one end of the core sample through the first flow meter and the first pressure gauge, and the other end of the core sample is connected with the second pressure gauge
  • the second flow meter is connected to one end of the drain pipe, and the other end of the drain pipe is inserted into the waste liquid tank;
  • the outlet of the salt adding device is connected to the inlet of the mixing tank, and a stirring rod is installed in the mixing tank;
  • the core sample is located in the incubator, and the outer wall of the core sample is wrapped with a film, and the sample holder is clamped on the core sample.
  • the outlet of the gas cylinder is in turn connected with the inlet of the buffer chamber through the second valve, the first pipe, the air pump, the second pipe, the voltage stabilizer, the third pipe, the constant current device and the fourth pipe.
  • the outlet of the liquid storage tank is communicated with the inlet of the mixing barrel through the third valve, the third flow meter, the first pump and the fifth pipe.
  • the salt adding device is connected with the inlet of the mixing tank through the fourth valve.
  • the outlet of the mixing barrel is communicated with the inlet of the buffer chamber through the first valve, the sixth conduit, the second pump, the fourth flow meter and the sterilization device.
  • the outlet of the buffer chamber is communicated with the core sample through the seventh pipe, the first flow meter, the eighth pipe, the first pressure gauge and the ninth pipe.
  • the core sample is connected to the drain pipe through the tenth pipe, the second pressure gauge, the eleventh pipe, the second flow meter, the twelfth pipe and the fifth valve.
  • the sample holder includes a limit box, a first metal plate, a second metal plate, a third metal plate, a first metal rod, a second metal rod, a third metal rod, a first pressure pump, and a second metal rod.
  • the pressure pump and the third pressure pump wherein the core sample is placed in the limit box, the first metal plate is facing the front side of the core sample, the second metal plate is facing the upper side of the core sample, and the third metal plate is facing the top side of the core sample.
  • the first metal plate, the second metal plate and the third metal plate are all located in the limit box.
  • the first pressurizing pump passes through the first metal rod and the first metal rod.
  • the metal plates are connected, the second pressure pump is connected to the second metal plate through a second metal rod, and the third pressure pump is connected to the third metal plate through a third metal rod.
  • the device for simulating and evaluating the damage of recharge to the formation in the laboratory of the present invention applies pressure to the core sample through the sample holder and simulates the true underground temperature through the incubator during specific operation. Add salt to the mixing tank through the salt adding device, and adjust the state of the second liquid pump and the air pump to simulate fluids of different states, different components, different concentrations, and different rates, and then truly simulate the core sample underground In order to simulate and evaluate the damage of the recharge to the formation by measuring the permeability of the sample under the temperature and pressure conditions, it has a good promotion significance in the development and design field of the geothermal tail water recharge stage.
  • Figure 1 is a schematic diagram of the structure of the present invention.
  • 1 is the gas cylinder
  • 2 is the second valve
  • 3 is the first conduit
  • 4 is the air pump
  • 5 is the second conduit
  • 6 is the regulator
  • 7 is the third conduit
  • 8 is the constant current regulator
  • 9 is the The fourth conduit
  • 10 is the liquid storage tank
  • 11 is the third valve
  • 12 is the third flow meter
  • 13 is the first pump
  • 14 is the fifth conduit
  • 15 is the mixing barrel
  • 16 is the stirring rod
  • 17 is the addition Salt device
  • 18 is the fourth valve
  • 19 is the first valve
  • 20 is the sixth conduit
  • 21 is the second pump
  • 22 is the fourth flow meter
  • 23 is the sterilization device
  • 24 is the buffer chamber
  • 25 is the seventh Conduit
  • 26 is the first flow meter
  • 27 is the eighth conduit
  • 28 is the first pressure gauge
  • 29 is the ninth conduit
  • 30 is the thermostat
  • 31 is the sample holder
  • 32 is the thin film
  • 33 is the first metal plate
  • 34 is the first metal rod
  • the device for simulating and evaluating the damage of recharge to the formation includes a gas cylinder 1, an air pump 4, a voltage stabilizer 6, a constant current device 8, a buffer chamber 24, a liquid storage tank 10, and a first pump Liquid pump 13, mixing barrel 15, first valve 19, second suction pump 21, sterilization device 23, first flow meter 26, first pressure meter 28, second pressure meter 43, second flow meter 45, drainage Tube 48, waste liquid barrel 49, salt adding device 17 and sample holder 31;
  • the outlet of the gas cylinder 1 is connected to the inlet of the buffer chamber 24 via the air pump 4, the stabilizer 6 and the constant current device 8, and the liquid storage tank
  • the outlet of 10 is communicated with the inlet of the mixing tank 15 through the first suction pump 13, and the outlet of the mixing tank 15 is connected with the inlet of the buffer chamber 24 through the first valve 19, the second suction pump 21 and the sterilization device 23.
  • the outlet of the chamber 24 communicates with one end of the core sample through the first flow meter 26 and the first pressure gauge 28, and the other end of the core sample communicates with one end of the drain pipe 48 through the second pressure gauge 43 and the second flow meter 45 ,
  • the other end of the drain pipe 48 is inserted into the waste liquid tank 49;
  • the outlet of the salt adding device 17 is connected to the inlet of the mixing tank 15, and a stirring rod 16 is installed in the mixing tank 15;
  • the core sample is located in the incubator 30, and
  • the outer wall of the core sample is wrapped with a film 32, and the sample holder 31 is clamped on the core sample.
  • the outlet of the gas cylinder 1 passes through the second valve 2, the first conduit 3, the air pump 4, the second conduit 5, the stabilizer 6, the third conduit 7, the constant current device 8 and the fourth conduit 9 and buffers in sequence.
  • the inlet of the chamber 24 is connected; the outlet of the liquid storage tank 10 is communicated with the inlet of the mixing barrel 15 through the third valve 11, the third flow meter 12, the first pump 13 and the fifth conduit 14;
  • the fourth valve 18 is connected to the inlet of the mixing barrel 15; the outlet of the mixing barrel 15 is connected to the buffer chamber 24 through the first valve 19, the sixth conduit 20, the second pump 21, the fourth flow meter 22, and the sterilization device 23.
  • the inlet is connected; the outlet of the buffer chamber 24 is communicated with the core sample through the seventh conduit 25, the first flow meter 26, the eighth conduit 27, the first pressure gauge 28 and the ninth conduit 29; the core sample is communicated with the core sample through the tenth conduit 42,
  • the second pressure gauge 43, the eleventh pipe 44, the second flow meter 45, the twelfth pipe 46 and the fifth valve 47 are in communication with the drain pipe 48.
  • the sample holder 31 includes a limit box, a first metal plate 33, a second metal plate 36, a third metal plate 39, a first metal rod 34, a second metal rod 37, and a third metal rod.
  • the first metal plate 33, the second metal plate 36 and the third metal plate 39 are all located in the limit box, the first pressure pump 35 is connected to the first metal plate 33 through a first metal rod 34, and the second pressure pump 38 is connected to the second metal plate 36 through a second metal rod 37, The third pressure pump 41 is connected to the third metal plate 39 through a third metal rod 40.
  • the gas cylinder 1 can contain N 2 or air according to the experimental design; the liquid storage tank 10 contains distilled water, and the salt adding device 17 can adjust the liquid concentration by adding different components and different qualities of salt according to the needs of the experiment.
  • the range of the gauge is 1000ml/min, the accuracy is 0.1ml/min, and the pressure resistance is 50MPa; the range of each pressure gauge is 0-50MPa, and the measurement accuracy is 1MPa; the drain pipe 48 extends into the bottom of the waste liquid bucket 49 to prevent The waste liquid is spilled and polluted.
  • K is the gas permeability
  • p 0 is the atmospheric pressure
  • q 0 is the gas flow at the outlet
  • L is the length of the rock sample
  • A is the cross-sectional area of the rock sample
  • p 1 is the inlet pressure of the rock sample
  • p 2 is the rock sample Pressure at the outlet
  • is the gas viscosity at the experimental temperature.
  • the present invention overcomes the current shortcomings of unable to quickly and conveniently analyze the recharge under laboratory conditions, and can use laboratory methods to truly simulate the temperature and pressure conditions of the core sample underground, and it can be conveniently and quickly measured in the laboratory.
  • the permeability of the sample can be used to simulate and evaluate the damage of the recharge to the formation.
  • the present invention innovatively simulates the damage of fluids of different states, different components, different concentrations, and different rates to the formation by conveniently measuring the permeability of the sample.
  • the present invention utilizes a relatively simple system, which can easily and quickly analyze the damage of recharge to the stratum, and has good promotion significance in the development and design field of the geothermal tail water recharge stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Remote Sensing (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种模拟评价回灌对地层伤害性的装置,包括气瓶(1)、抽气泵(4)、稳压器(6)、恒流器(8)、缓冲室(24)、储液罐(10)、第一抽液泵(13)、搅拌桶(15)、第一阀门(19)、第二抽液泵(21)、杀菌装置(23)、第一流量计(26)、第一压力计(28)、第二压力计(43)、第二流量计(45)、排液管(48)、废液桶(49)、加盐装置(17)及样品夹持器(31),该装置能够模拟评价回灌对地层的危害性。

Description

一种模拟评价回灌对地层伤害性的装置 技术领域
本发明属于地热勘探开发技术领域,涉及一种模拟评价回灌对地层伤害性的装置。
背景技术
地热资源是一种资源储量大、稳定性好的可再生能源,对于节能减排、治理大气污染等方面具有重大意义,对我国华北地区的清洁能源供暖、提高供热品质具有显著的效果。
然而,随着地热资源的不断开发,部分地区地下水位下降明显,严重影响了地下水资源的有效供给和平衡,导致地热开发不具有可持续性,制约了地热资源的进一步开采。为了促进地热资源的可循环使用,符合环保要求,地热开发需开展地热尾水回灌,保障地热资源的高效环保开发。然而,在地热尾水回灌过程中,常常发生堵塞、溶蚀等破坏地层回灌量的现象,造成地热尾水回灌缓慢、回灌量不足,直接影响了地热的可持续开发,需要开展地热储层回灌评价,依据热储的回灌特征编制回灌方案。目前的地热尾水回灌评价装置和系统是在常温常压下,采用定量回灌水在一定速率下进行评价,并对回灌前后的岩心放在其他实验设备上进行测试,评价该回灌水在该回灌速率下对回灌储层的伤害。但是地热回灌层温度较高、压力较大,实验室在常温常压下的常规模拟评价方法,与地下实际情况差别较大;目前设备不能开展不同回灌的流体成分、变回灌速率等对回灌地热地层的影响,不能在设备上开展多次连续 性储层伤害评价的影响。
因此,有必要形成一种模拟评价回灌对地层伤害性的装置,以解决地热回灌过程中,不同尾水组成速率在地下真实温压条件下对地层伤害性的问题。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种模拟评价回灌对地层伤害性的装置,该装置能够模拟评价回灌对地层的危害性。
为达到上述目的,本发明所述的模拟评价回灌对地层伤害性的装置包括气瓶、抽气泵、稳压器、恒流器、缓冲室、储液罐、第一抽液泵、搅拌桶、第一阀门、第二抽液泵、杀菌装置、第一流量计、第一压力计、第二压力计、第二流量计、排液管、废液桶、加盐装置及样品夹持器;
气瓶的出口经抽气泵、稳压器及恒流器与缓冲室的入口相连通,储液罐的出口经第一抽液泵与搅拌桶的入口相连通,搅拌桶的出口经第一阀门、第二抽液泵及杀菌装置与缓冲室的入口相连通,缓冲室的出口经第一流量计及第一压力计与岩心样品的一端相连通,岩心样品的另一端经第二压力计及第二流量计与排液管的一端相连通,排液管的另一端插入于废液桶内;加盐装置的出口与搅拌桶的入口相连通,搅拌桶内安装有搅拌棒;
岩心样品位于恒温箱内,且岩心样品的外壁上包裹有薄膜,样品夹持器夹持于岩心样品上。
气瓶的出口依次经第二阀门、第一导管、抽气泵、第二导管、稳压器、第三导管、恒流器及第四导管与缓冲室的入口相连通。
储液罐的出口经第三阀门、第三流量计、第一抽液泵及第五导管与搅拌桶的入口相连通。
加盐装置经第四阀门与搅拌桶的入口相连通。
搅拌桶的出口经第一阀门、第六导管、第二抽液泵、第四流量计及杀菌装置与缓冲室的入口相连通。
缓冲室的出口经第七导管、第一流量计、第八导管、第一压力计及第九导管与岩心样品相连通。
岩心样品经第十导管、第二压力计、第十一导管、第二流量计、第十二导管及第五阀门与排液管相连通。
所述样品夹持器包括限位箱体、第一金属板、第二金属板、第三金属板、第一金属杆、第二金属杆、第三金属杆、第一加压泵、第二加压泵及第三加压泵,其中,岩心样品放置于限位箱体内,第一金属板正对岩心样品的前侧面,第二金属板正对岩心样品的上侧面,第三金属板正对岩心样品的端面,且限位箱体内填充有沙粒,第一金属板、第二金属板及第三金属板均位于限位箱体内,第一加压泵通过第一金属杆与第一金属板相连接,第二加压泵通过第二金属杆与第二金属板相连接,第三加压泵通过第三金属杆与第三金属板相连接。
本发明具有以下有益效果:
本发明所述的在实验室分析回灌对地层伤害性的模拟评价回灌对地层伤害性的装置在具体操作时,通过样品夹持器对岩心样品施加压力,通过恒温箱模拟地下的真实温度,通过加盐装置向搅拌桶中加入盐,通过调节第二抽液泵及抽气泵的状态,以模拟不同状态、不同组分、不同 浓度、不同速率的流体,继而真实地模拟岩心样品在地下的温压条件,再通过测量样品的渗透率,从而模拟评价回灌对地层的伤害性,在地热尾水回灌阶段的开发设计领域具有较好的推广意义。
附图说明
图1为本发明的结构示意图。
其中,1为气瓶、2为第二阀门、3为第一导管、4为抽气泵、5为第二导管、6为稳压器、7为第三导管、8为恒流器、9为第四导管、10为储液罐、11为第三阀门、12为第三流量计、13为第一抽液泵、14为第五导管、15为搅拌桶、16为搅拌棒、17为加盐装置、18为第四阀门、19为第一阀门、20为第六导管、21为第二抽液泵、22为第四流量计、23为杀菌装置、24为缓冲室、25为第七导管、26为第一流量计、27为第八导管、28为第一压力计、29为第九导管、30为恒温箱、31为样品夹持器、32为薄膜、33为第一金属板、34为第一金属杆、35为第一加压泵、36为第二金属板、37为第二金属杆、38为第二加压泵、39为第三金属板、40为第三金属杆、41为第三加压泵、42为第十导管、43为第二压力计、44为第十一导管、45为第二流量计、46为第十二导管、47为第五阀门、48为排液管、49为废液桶。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图1,本发明所述的模拟评价回灌对地层伤害性的装置包括气瓶1、抽气泵4、稳压器6、恒流器8、缓冲室24、储液罐10、第一抽液泵13、搅拌桶15、第一阀门19、第二抽液泵21、杀菌装置23、第一流 量计26、第一压力计28、第二压力计43、第二流量计45、排液管48、废液桶49、加盐装置17及样品夹持器31;气瓶1的出口经抽气泵4、稳压器6及恒流器8与缓冲室24的入口相连通,储液罐10的出口经第一抽液泵13与搅拌桶15的入口相连通,搅拌桶15的出口经第一阀门19、第二抽液泵21及杀菌装置23与缓冲室24的入口相连通,缓冲室24的出口经第一流量计26及第一压力计28与岩心样品的一端相连通,岩心样品的另一端经第二压力计43及第二流量计45与排液管48的一端相连通,排液管48的另一端插入于废液桶49内;加盐装置17的出口与搅拌桶15的入口相连通,搅拌桶15内安装有搅拌棒16;岩心样品位于恒温箱30内,且岩心样品的外壁上包裹有薄膜32,样品夹持器31夹持于岩心样品上。
具体的,气瓶1的出口依次经第二阀门2、第一导管3、抽气泵4、第二导管5、稳压器6、第三导管7、恒流器8及第四导管9与缓冲室24的入口相连通;储液罐10的出口经第三阀门11、第三流量计12、第一抽液泵13及第五导管14与搅拌桶15的入口相连通;加盐装置17经第四阀门18与搅拌桶15的入口相连通;搅拌桶15的出口经第一阀门19、第六导管20、第二抽液泵21、第四流量计22及杀菌装置23与缓冲室24的入口相连通;缓冲室24的出口经第七导管25、第一流量计26、第八导管27、第一压力计28及第九导管29与岩心样品相连通;岩心样品经第十导管42、第二压力计43、第十一导管44、第二流量计45、第十二导管46及第五阀门47与排液管48相连通。
需要说明的是,所述样品夹持器31包括限位箱体、第一金属板33、 第二金属板36、第三金属板39、第一金属杆34、第二金属杆37、第三金属杆40、第一加压泵35、第二加压泵38及第三加压泵41,其中,岩心样品放置于限位箱体内,第一金属板33正对岩心样品的前侧面,第二金属板36正对岩心样品的上侧面,第三金属板39正对岩心样品的端面,且限位箱体内填充有沙粒,第一金属板33、第二金属板36及第三金属板39均位于限位箱体内,第一加压泵35通过第一金属杆34与第一金属板33相连接,第二加压泵38通过第二金属杆37与第二金属板36相连接,第三加压泵41通过第三金属杆40与第三金属板39相连接。
所述气瓶1中可以根据实验设计盛有N 2或空气;储液罐10内盛有蒸馏水,加盐装置17可以根据实验需要加入不同组分和不同质量的盐来调节液体浓度,各流量计的量程为1000ml/min,精度为0.1ml/min,耐压50MPa;各压力计的量程均为0-50MPa,测量精度为1MPa;所述排液管48伸入废液桶49底部,防止废液溅出污染。
本发明的具体操作步骤为:
1)检测系统各部件是否完好无损,获取实测数据:岩样长度L、岩样横截面积A、大气压p 0、实验温度及大气压下N 2的粘度μ;
2)将岩心样品裹满薄膜32,向样品夹持器31与薄膜32之间填满沙粒;
3)通过第一加压泵35、第二加压泵38及第三加压泵41调节加持压力,通过恒温箱30设置温度,以模拟地下的真实温度和压力;
4)打开第二阀门2,读取第一压力计28、第二压力计43和第二流量计45的读数,根据以下公式计算渗透率;
Figure PCTCN2020125520-appb-000001
其中,K为气测渗透率;p 0为大气压;q 0为出口端气体流量;L为岩样长度;A为岩样横截面积;p 1为岩样进口端压力;p 2为岩样出口端压力;μ为实验温度下的气体粘度。
5)根据实验需要加入不同状态、不同组分、不同浓度、不同速率的流体,即根据实验设计通过加盐装置17向搅拌桶15中加入不同组分、不同质量的盐,并通过搅拌棒16搅拌使盐与蒸馏水混合均匀;
6)待流体均匀连续地流入废液桶49一段时间后,按顺序关闭第二抽液泵21、第一阀门19、第一抽液泵13及第三阀门11;
7)读取第一压力计28、第二压力计43和第二流量计45的读数,并用上述公式计算样品的渗透率;
8)对比前后两次渗透率的变化,分析回灌对地层的伤害性;
9)重复上述步骤,评价不同阶段对储层的伤害,形成评价的连续性;
10)实验后处理,拆卸系统各实验仪器,清洗管路与设备。
本发明克服了目前无法在实验室条件下快捷、方便地分析回灌的缺点,能够利用实验室手段,真实地模拟岩心样品在地下的温压条件,在实验室内即可方便快捷地测出样品的渗透率,从而模拟评价回灌对地层的伤害性。同时,本发明创新性地通过便捷地测出样品的渗透率来模拟不同状态、不同成分、不同浓度、不同速率的流体对地层的伤害性。另外,本发明利用相对简易的系统,可方便、快捷地分析回灌对地层的伤害,在地热尾水回灌阶段的开发设计领域具有较好的推广意义。
以上所述,仅为本发明的具体实施例,不能以其限定发明的实施范 围,所以其等同组件的置换,或依本发明保护范围所作的等同变化与修饰,都应仍属于本发明涵盖的范畴。

Claims (8)

  1. 一种模拟评价回灌对地层伤害性的装置,其特征在于,包括气瓶(1)、抽气泵(4)、稳压器(6)、恒流器(8)、缓冲室(24)、储液罐(10)、第一抽液泵(13)、搅拌桶(15)、第一阀门(19)、第二抽液泵(21)、杀菌装置(23)、第一流量计(26)、第一压力计(28)、第二压力计(43)、第二流量计(45)、排液管(48)、废液桶(49)、加盐装置(17)及样品夹持器(31);
    气瓶(1)的出口经抽气泵(4)、稳压器(6)及恒流器(8)与缓冲室(24)的入口相连通,储液罐(10)的出口经第一抽液泵(13)与搅拌桶(15)的入口相连通,搅拌桶(15)的出口经第一阀门(19)、第二抽液泵(21)及杀菌装置(23)与缓冲室(24)的入口相连通,缓冲室(24)的出口经第一流量计(26)及第一压力计(28)与岩心样品的一端相连通,岩心样品的另一端经第二压力计(43)及第二流量计(45)与排液管(48)的一端相连通,排液管(48)的另一端插入于废液桶(49)内;加盐装置(17)的出口与搅拌桶(15)的入口相连通,搅拌桶(15)内安装有搅拌棒(16);
    岩心样品位于恒温箱(30)内,且岩心样品的外壁上包裹有薄膜(32),样品夹持器(31)夹持于岩心样品上。
  2. 根据权利要求1所述的模拟评价回灌对地层伤害性的装置,其特征在于,气瓶(1)的出口依次经第二阀门(2)、第一导管(3)、抽气泵(4)、第二导管(5)、稳压器(6)、第三导管(7)、恒流器(8)及第四导管(9)与缓冲室(24)的入口相连通。
  3. 根据权利要求2所述的模拟评价回灌对地层伤害性的装置,其特征在于,储液罐(10)的出口经第三阀门(11)、第三流量计(12)、第一 抽液泵(13)及第五导管(14)与搅拌桶(15)的入口相连通。
  4. 根据权利要求3所述的模拟评价回灌对地层伤害性的装置,其特征在于,加盐装置(17)经第四阀门(18)与搅拌桶(15)的入口相连通。
  5. 根据权利要求4所述的模拟评价回灌对地层伤害性的装置,其特征在于,搅拌桶(15)的出口经第一阀门(19)、第六导管(20)、第二抽液泵(21)、第四流量计(22)及杀菌装置(23)与缓冲室(24)的入口相连通。
  6. 根据权利要求5所述的模拟评价回灌对地层伤害性的装置,其特征在于,缓冲室(24)的出口经第七导管(25)、第一流量计(26)、第八导管(27)、第一压力计(28)及第九导管(29)与岩心样品相连通。
  7. 根据权利要求6所述的模拟评价回灌对地层伤害性的装置,其特征在于,岩心样品经第十导管(42)、第二压力计(43)、第十一导管(44)、第二流量计(45)、第十二导管(46)及第五阀门(47)与排液管(48)相连通。
  8. 根据权利要求1所述的模拟评价回灌对地层伤害性的装置,其特征在于,所述样品夹持器(31)包括限位箱体、第一金属板(33)、第二金属板(36)、第三金属板(39)、第一金属杆(34)、第二金属杆(37)、第三金属杆(40)、第一加压泵(35)、第二加压泵(38)及第三加压泵(41),其中,岩心样品放置于限位箱体内,第一金属板(33)正对岩心样品的前侧面,第二金属板(36)正对岩心样品的上侧面,第三金属板(39)正对岩心样品的端面,且限位箱体内填充有沙粒,第一金属板(33)、第二金属板(36)及第三金属板(39)均位于限位箱体内,第一加压泵(35)通过第一金属杆(34)与第一金属板(33)相连接,第二加压泵(38)通过 第二金属杆(37)与第二金属板(36)相连接,第三加压泵(41)通过第三金属杆(40)与第三金属板(39)相连接。
PCT/CN2020/125520 2019-11-15 2020-10-30 一种模拟评价回灌对地层伤害性的装置 WO2021093613A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911121292.3A CN110702884A (zh) 2019-11-15 2019-11-15 一种模拟评价回灌对地层伤害性的装置
CN201911121292.3 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021093613A1 true WO2021093613A1 (zh) 2021-05-20

Family

ID=69206335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125520 WO2021093613A1 (zh) 2019-11-15 2020-10-30 一种模拟评价回灌对地层伤害性的装置

Country Status (2)

Country Link
CN (1) CN110702884A (zh)
WO (1) WO2021093613A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702884A (zh) * 2019-11-15 2020-01-17 中国华能集团有限公司 一种模拟评价回灌对地层伤害性的装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487056A (en) * 1982-09-28 1984-12-11 Phillips Petroleum Company Determination of the imbibition characteristics of a rock formation
CN106018751A (zh) * 2016-07-01 2016-10-12 山东科技大学 碳酸盐矿物白云石化作用模拟研究系统及其使用方法
CN107202875A (zh) * 2017-04-25 2017-09-26 中国石油天然气股份有限公司 确定待测气体对地层岩石影响的系统和方法
CN107762482A (zh) * 2017-09-04 2018-03-06 中国石油大学(华东) 一种岩石裂隙渗流地热开采模拟系统
CN208060509U (zh) * 2017-12-28 2018-11-06 中国华能集团公司 一种多功能反应釜实验系统
CN108896741A (zh) * 2018-08-01 2018-11-27 中国华能集团有限公司 一种分析流体速率与性质对页岩储层伤害性的系统及其使用方法
CN108982142A (zh) * 2018-09-29 2018-12-11 吉林大学 高温高压条件下动态水岩相互作用实验装置与方法
KR101957106B1 (ko) * 2018-10-01 2019-06-24 전남대학교산학협력단 고온, 고압형 암체 산처리 시스템 및 그 방법
CN110702884A (zh) * 2019-11-15 2020-01-17 中国华能集团有限公司 一种模拟评价回灌对地层伤害性的装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487056A (en) * 1982-09-28 1984-12-11 Phillips Petroleum Company Determination of the imbibition characteristics of a rock formation
CN106018751A (zh) * 2016-07-01 2016-10-12 山东科技大学 碳酸盐矿物白云石化作用模拟研究系统及其使用方法
CN107202875A (zh) * 2017-04-25 2017-09-26 中国石油天然气股份有限公司 确定待测气体对地层岩石影响的系统和方法
CN107762482A (zh) * 2017-09-04 2018-03-06 中国石油大学(华东) 一种岩石裂隙渗流地热开采模拟系统
CN208060509U (zh) * 2017-12-28 2018-11-06 中国华能集团公司 一种多功能反应釜实验系统
CN108896741A (zh) * 2018-08-01 2018-11-27 中国华能集团有限公司 一种分析流体速率与性质对页岩储层伤害性的系统及其使用方法
CN108982142A (zh) * 2018-09-29 2018-12-11 吉林大学 高温高压条件下动态水岩相互作用实验装置与方法
KR101957106B1 (ko) * 2018-10-01 2019-06-24 전남대학교산학협력단 고온, 고압형 암체 산처리 시스템 및 그 방법
CN110702884A (zh) * 2019-11-15 2020-01-17 中国华能集团有限公司 一种模拟评价回灌对地层伤害性的装置

Also Published As

Publication number Publication date
CN110702884A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
CN206035473U (zh) 一种压裂液返排裂缝模拟装置
CN206339523U (zh) 混凝土三向应力‑高温‑化学腐蚀耦合作用的试验装置
CN207499866U (zh) 一种用于评价水平井堵漏效果的实验装置
CN202256109U (zh) 模拟地层条件的岩心自吸实验装置
CN106644385B (zh) 一种地表水与地下水潜流交换自循环试验装置及使用方法
CN104990906A (zh) 一种压裂液携砂能力测试系统及测试方法
CN106706492A (zh) 一种研究多孔介质全区域渗流机制的渗透装置
CN203191284U (zh) 一种多孔隙材料渗透系数测定仪
CN105388254A (zh) 高温高压泡沫压裂液滤失伤害实验系统
CN110685660B (zh) 实现支撑剂输送实验携砂液浓度精确控制的装置及方法
CN106204304A (zh) 一种砾岩油藏聚驱相对渗透率曲线的确定方法
WO2021093613A1 (zh) 一种模拟评价回灌对地层伤害性的装置
CN206161492U (zh) 一种可实现变水压力作用的渗透装置
CN107246262A (zh) 一种模拟抽油泵工作环境的漏失量检测装置及方法
CN202066847U (zh) 疏松砂岩储层应力敏感模拟测试装置及其专用岩心夹持器
CN203420706U (zh) 一种变角度水平井模拟实验装置
CN113866069A (zh) 一种页岩岩心渗透率实验装置和方法
CN111287715A (zh) 一种实验模拟二氧化碳置换驱替油气的系统
CN204419149U (zh) 一种支撑剂及酸蚀导流能力评价装置
CN204964391U (zh) 一种压裂液携砂能力测试装置
CN102322247B (zh) 一种评价高温高压下岩石润湿相驱替能力的装置及方法
CN207829870U (zh) 一种油田注水结垢实验装置
CN211043383U (zh) 一种模拟评价回灌对地层伤害性的装置
CN106153677B (zh) 一种堵漏凝胶抗稀释能力评价装置及方法
CN107976392B (zh) 多功能网络裂缝导流能力测试系统及其检测方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886353

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20886353

Country of ref document: EP

Kind code of ref document: A1