WO2021093551A1 - Cd81 aptamer and application thereof - Google Patents

Cd81 aptamer and application thereof Download PDF

Info

Publication number
WO2021093551A1
WO2021093551A1 PCT/CN2020/123119 CN2020123119W WO2021093551A1 WO 2021093551 A1 WO2021093551 A1 WO 2021093551A1 CN 2020123119 W CN2020123119 W CN 2020123119W WO 2021093551 A1 WO2021093551 A1 WO 2021093551A1
Authority
WO
WIPO (PCT)
Prior art keywords
exosomes
aptamer
nucleotide sequence
nucleic acid
human
Prior art date
Application number
PCT/CN2020/123119
Other languages
French (fr)
Chinese (zh)
Inventor
段维
张佩琢
Original Assignee
苏州吉玛基因股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州吉玛基因股份有限公司 filed Critical 苏州吉玛基因股份有限公司
Publication of WO2021093551A1 publication Critical patent/WO2021093551A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57419Specifically defined cancers of colon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57492Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70596Molecules with a "CD"-designation not provided for elsewhere in G01N2333/705

Definitions

  • the present invention belongs to the field of biotechnology, and specifically relates to CD81 aptamers and applications thereof.
  • An aptamer is a small piece of single-stranded oligonucleotide sequence (DNA/RNA) obtained after screening, which can bind with the corresponding ligand with high affinity and strong specificity.
  • Aptamers can be combined with large molecules such as proteins and cells; they can also be combined with a small number of peptides, small molecule drugs, carbohydrate compounds and ions. Aptamers can be rapidly synthesized, identified and modified, and have the advantages of high reproducibility, high purity and low price, making aptamers an important role in the early diagnosis, monitoring and treatment of diseases, especially those based on exosomes. diagnosis.
  • Exosomes are a type of vesicle structure (30-150nm) that contains small RNA, DNA and protein. Exosomes are widely found in biological fluids, including blood, saliva, urine, cerebrospinal fluid, and milk, and most of the cultured cells can secrete exosomes. Exosomes have always been regarded as specifically secreted membrane vesicles, which can participate in the regulation of many biological functions such as cell-to-cell communication and cell microenvironment regulation, including immune response, neurotransmitter transmission, tumor growth and metastasis. More and more studies have shown that a large number of exosomes exist in the circulatory system of organisms, which is very suitable for the diagnosis and development of related diseases. Public studies have shown that GPC1 on exosomes can be used for the early diagnosis of pancreatic ductal carcinoma; and the EGFR T790M mutation on plasma exosomes can be used as a companion diagnostic marker for non-small cell lung cancer.
  • CD81 is a member of the four-span membrane protein family with a molecular weight of 26kD.
  • CD81 has a highly conserved amino acid sequence in the intracellular and across cell membrane regions, while the extracellular region is volatile, and the extracellular amino acid sequence is different in different species.
  • a large number of studies have shown that CD81 is related to many biological functions, including cell transfer, cell adhesion, cell proliferation and differentiation.
  • Recent public reports have confirmed that CD81 is also abundant in exosomes, especially in serum exosomes related to various tumors, including breast cancer, colorectal cancer, liver cancer, and lung cancer.
  • CD81 is a broader spectrum of exosomes markers. Therefore, aptamers targeting CD81 are very suitable for the extraction and purification of exosomes and subsequent molecular diagnosis based on exosomes.
  • the current exosomes separation and purification kits are mainly based on particle size, density gradient and special exosomal surface markers, including density gradient centrifugation, ultracentrifugation, chromatography, and antibody immunobinding methods.
  • density gradient centrifugation including density gradient centrifugation, ultracentrifugation, chromatography, and antibody immunobinding methods.
  • the purity, completeness and process maturity of the exosomes obtained by these methods are not perfect, and the disadvantages such as time-consuming and high price are unavoidable.
  • the purpose of the present invention is to provide a DNA aptamer for CD81 and its application.
  • a nucleic acid aptamer which is any of the following single-stranded oligonucleotide molecules:
  • the nucleotide sequence is the single-stranded oligonucleotide molecule of SEQ ID NO.1 in the sequence list,
  • nucleotide sequence shown in SEQ ID NO.1 in the sequence list is substituted and/or deleted and/or added to the single-stranded oligonucleotide molecule shown in A1).
  • the identity of more than 90% may be at least 91%, 92%, 95%, 96%, 98%, 99% or 100% identity.
  • the nucleic acid aptamer is directed against the human CD81 protein and can specifically bind to the human CD81 protein.
  • the deleted or substituted nucleotide sequence in (A2) has the nucleotide sequence described in SEQ ID NO.2.
  • the deleted or substituted nucleotide sequence in (A2) has the nucleotide sequence described in SEQ ID NO.3.
  • the deleted or substituted nucleotide sequence in (A2) has the nucleotide sequence described in SEQ ID NO.4.
  • the deleted or substituted nucleotide sequence in (A2) has the nucleotide sequence described in SEQ ID NO.5.
  • the deleted or substituted nucleotide sequence in (A2) has the nucleotide sequence described in SEQ ID NO.6.
  • the CD81 is human CD81 protein.
  • the exosomes are human exosomes.
  • the human exosomes are exosomes containing human CD81.
  • the diagnostic marker of cancer includes human CD81.
  • the cancer is a solid cancer, such as breast cancer, colorectal cancer, liver cancer and/or lung cancer.
  • cross-linked product obtained by cross-linking any of the above-mentioned nucleic acid aptamers to the solid carrier should also fall within the protection scope of the present invention.
  • the solid phase carrier is magnetic beads.
  • CD81 DNA aptamers are screened, and their binding to CD81 has extremely high selectivity and specificity. It is conducive to the advancement and clinical application of follow-up CD81-related research.
  • Figure 1 shows the SELEX technology of the CD81 recombinant protein and CD81 positive expression cell line of the present invention
  • Figure 2 is a schematic diagram of the secondary structure of 6 subcloned sequences of CD81-2 of the present invention.
  • Figure 3 is a comparison diagram of HepG2 cells expressing CD81 and HEK293T cells expressing CD81 of the present invention
  • Figure 4 is a comparison diagram of the binding ability of the CD81-2 aptamer of the present invention with CD81-positive HEK293T and HepG2;
  • Figure 5 is a comparison of the binding ability of the full-length CD81-2 aptamer of the present invention to CD81 overexpressing HEK293T cells and negative control HepG2 cells.
  • Fig. 7 is a comparison diagram of the binding ability of 8 subtypes of CD81-2 aptamer and CD81 when the concentration of CD81 aptamer of the present invention is 600nM; wherein, the concentration of CD81 aptamer is 600nM, obtained by flow cytometry
  • Figure 12 is a two-dimensional structure diagram of the CD81-2J-1 of the present invention.
  • Figure 13 is a two-dimensional structure diagram of the CD81-2J-6 of the present invention.
  • Figure 14 is a two-dimensional structure diagram of the CD81-2F-2 of the present invention.
  • Figure 15 is a comparison diagram of the affinity of CD81-2J-1 of the present invention and HEK293T cells overexpressing CD81 or HEK293T cells that interfere with down-regulation of CD81 expression;
  • Figure 16 is a comparison diagram of the affinity of CD81-2J-2 of the present invention and HEK293T cells overexpressing CD81 or HEK293T cells that interfere with down-regulation of CD81 expression;
  • Figure 17 is a comparison diagram of the affinity of the CD81-2F-2 of the present invention and HEK293T cells that overexpress CD81 or HEK293T cells that interfere with down-regulation of CD81 expression;
  • Figure 18 is a Western blot analysis of the CD81 overexpressed HEK293T and other transmembrane protein overexpressed HEK293T cells of the present invention, using an anti-histidine tag antibody;
  • Figure 19 is a graph showing the specific affinity of CD81-2J-1 to HEK293T cells overexpressing CD81 and the non-binding of other transmembrane proteins to HEK293T cells;
  • Figure 20 is a graph showing the specific affinity of CD81-2J-6 to HEK293T cells overexpressing CD81 and the non-binding of other transmembrane proteins to HEK293T cells;
  • Figure 21 is a graph showing the specific affinity of CD81-2F-2 of the present invention to HEK293T cells overexpressing CD81 and the non-binding of other transmembrane proteins to HEK293T cells;
  • Figure 22 is the best way for CD81 nucleic acid aptamer to incubate with serum when using CD81-2F-2, CD81-2J-1 and CD81-2J-6 of the present invention to capture human exosomes from human serum Experimental verification in the shortest time;
  • Figure 23 shows the time required for incubation with Agilent Technologies Co., Ltd. 2.7 micron magnetic beads when capturing human exosomes from human serum with the biotin-labeled CD81-2J-1 nucleic acid aptamer of the present invention Experimental verification;
  • FIG. 24 shows that CD81-2F-2, CD81-2J-1 and CD81-2J-6 of the present invention can effectively capture human exosomes from human serum;
  • Figure 25 shows that the CD81 nucleic acid aptamers of CD81-2F-2, CD81-2J-1 and CD81-2J-6 of the present invention only recognize human exosomes and do not bind to bovine exosomes;
  • Figure 26 shows that the CD81 nucleic acid aptamers of CD81-2F-2, CD81-2J-1 and CD81-2J-6 of the present invention capture human serum in comparison with three other commercial sources of biotin-labeled CD81 antibodies.
  • the obtained exosomes contain less blood-borne contaminating proteins;
  • Figure 27 shows that the CD81-2F-2, CD81-2J-1 and CD81-2J-6 CD81 nucleic acid aptamers of the present invention are used to capture human serum in comparison with products that have been captured by affinity coupling with other commercial sources of exosomes.
  • the obtained exosomes contain less blood-borne contaminating proteins;
  • Figure 28 shows that compared with other widely used mainstream exosomes purification methods, the CD81 nucleic acid aptamer of the present invention can obtain relatively pure exosomes when capturing exosomes in human serum;
  • Figure 29 is a comparison with other widely used mainstream exosomes purification methods.
  • the CD81 nucleic acid aptamer of the present invention is used to capture exosomes in human serum with a narrower size fraction;
  • Figure 30 is a graph of test results based on the nanoparticle tracking analyzer in Figure 29,
  • Figure 30A is the total number of extracellular vesicles/exosomes captured from 500 microliters of human serum by various methods as shown in the figure;
  • Figure 30B is The average number of particle sizes (nm) of extracellular vesicles/exosomes captured from 500 microliters of human serum by various methods as shown in the figure;
  • Figure 31 shows that the ratio of real extracellular vesicles excluded from non-vesicles in human serum captured by the CD81 nucleic acid aptamer of the present invention is comparable to the current gold standard preparation method (ultracentrifugation);
  • Figure 32 shows that most of the extracellular vesicles captured by the CD81 nucleic acid ligand of the present invention are larger exosomes in human serum; as shown in the figure, the extracellular vesicles captured from 500 microliters of human serum After the particles, count them with a nanoparticle tracking analyzer;
  • Figure 33 shows that most of the extracellular nanoparticles captured by the CD81 nucleic acid aptamer of the present invention in human serum are biofilm-encapsulated exosomes;
  • Figure 34 shows that most of the extracellular nanoparticles captured by the CD81 nucleic acid aptamer of the present invention in human serum are large exosomes wrapped in biofilms;
  • Fig. 35 shows that the exosomes captured by the CD81 nucleic acid aptamer of the present invention maintain the original biological activity and can promote the cell proliferation of human-derived cells in vitro;
  • Fig. 36 shows the detection of ultra-sensitive epithelial cell adhesion molecule-positive exosomes according to the present invention
  • Figure 37 shows that the CD81 nucleic acid aptamer of the present invention can detect a single epithelial cell adhesion molecule-positive exosomes in the background of 2000 exosomes that do not express epithelial cell adhesion molecules in a simulated liquid biopsy;
  • Figure 38 shows the biophysical thermodynamic determination of the binding of the CD81 nucleic acid aptamer of the present invention to the human CD81 recombinant protein.
  • CD81 aptamer screening is based on the SELEX technology of CD81 recombinant protein and CD81 positive expression cell line (the schematic diagram is shown in Figure 1), and the specific method is: target in a library of about 10 14 aptamers-single-stranded DNA Screening for CD81 aptamers.
  • the DNA in the library contains the following core sequence (86nt, where N is any other base): 5'-TAG GGA AGA GAA GGA CAT ATG AT-40N-TTG ACT AGT ACA TGA CCA CTT GA-3'.
  • the library contained 671 DNA sequences shown in Table 12. Aptamers bound to CD81 recombinant protein or CD81-positive cell lines are eluted and amplified by PCR.
  • the sequences of the upstream and downstream primers for PCR amplification are: FITC-5'-TA GGG AAG AGA AGG ACA TAT GAT-3' and 5'-TTT TTT TTT TTT TTT TTT TT/iSp9/T CAA GTG GTC ATG TAC TAG TCA A-3'.
  • the amplified DNA was then identified by high-throughput sequencing. Among them, 6 aptamers that bind best to CD81 were obtained.
  • the aptamers were CD81-2, CD81-2F, and CD81-2F-2, respectively.
  • the corresponding sequences of CD81-2J, CD81-2J-1 and CD81-2J-6 are shown in SEQ ID NOs. 1-6; the schematic diagrams of the above-mentioned six CD81 aptamers are shown in Figure 2.
  • the above-mentioned aptamers all have the ability to bind to human CD81 protein.
  • CD81-2 40 TCATTTAGCCGACATCCGGTTGGTTTATGGTTTCCCTAAA CD81-2F 32 CCGACATCCGGTTGGTTTATGGTTTCCCTAAA CD81-2F-2 twenty four CCGACATCCGGGGTTGGTTTCCCA CD81-2J 28 CATTTAGCCGACATCCGGTTGGTTTATG CD81-2J-1 28 CGTTTAGCCGCCATCCGGGCGGCTTACG CD81-2J-6 twenty two CATTTGACCATCCGGGTCTATG
  • the specific construction method of the recombinant animal cell overexpressing CD81 (named the cell 293T/CD81) is as follows: The KpnI and XbaI of the plasmid pCMV3-C-His (Beijing Yiqiao Shenzhou Technology Co., Ltd., a product of Sino Biological Inc.) The sequence between the recognition sites is replaced with the cDNA sequence of human CD81, and other partial sequences of pCMV3-C-His remain unchanged, and the recombinant expression vector is named pCMV3-CD81.
  • PCMV3-CD81 was introduced into HEK293T cells to obtain recombinant cells, which were named 293T/CD81.
  • the nucleotide sequence of the human CD81 cDNA is the nucleotide sequence shown in SEQ ID NO. 7 in the sequence listing, and the encoded amino acid sequence is the his tag protein shown in SEQ ID NO. 8 in the sequence listing .
  • CD81-2 aptamer was transformed into the 8 subtypes shown in Table 4, and the binding ability of these 8 subtypes to CD81 was verified by the above methods.
  • the HepG2 cell content in each treatment group was the same, 293T/
  • the content of CD81 is the same, and the content of FAM-labeled aptamers is the same.
  • CD81-2J and CD81-2F we constructed 8 more subclones, whose sequences are shown in Table 5 and Table 6.
  • Table 5 and Table 6 The results proved that the binding capacity of subtypes CD81-2J-1, CD81-2J-6 and CD81-2F-2 to CD81 overexpressing HEK293T cells (293T/CD81) was significantly higher than that of the negative control HepG2 cells (without CD81) (* *p ⁇ 0.1, ***p ⁇ 0.01), indicating that the above three subtypes have stronger binding ability to CD81 with a natural conformation. Therefore, CD81-2J-1, CD81-2J-6 and CD81-2F-2 were selected for follow-up verification and testing experiments.
  • CD81 overexpressing HEK293T cells (293T/CD81) down-regulated the expression of CD81 by siRNA.
  • siRNA-CD81-1 and siRNA-CD81-2 two siRNAs that down-regulate the expression of CD81 were selected, siRNA-CD81-1 and siRNA-CD81-2, and their corresponding sequences were: siRNA-CD81-1: 5'-GAACUUUCCUGUUACCUUUdTdT-3' (sense strand ), 5'-AAAGGUAACAGGAAAGUUCdTdT-3' (antisense strand); siRNA-CD81-2: 5'-CACCU UCUAU GUAGG CAUCU A dTdT-3' (sense strand), 5'-U AGAUG CCUAC AUAGA AGGUG dTdT-3' (Antisense strand).
  • the siRNA control sequence is: 5'-UUCUCCGAACGUGUCACGUdTdT-3' (sense strand), 5'-ACGUGACACGUUCGGAGAAdTdT-3' (antisense strand).
  • Transfection method When HEK293T cells are pooled to 60% density in a 6-well plate, first transfect pCMV3-CD81 (4 ⁇ g/well) with lipofectamine 2000 to overexpress CD81 protein; 24 hours later, transfect siRNA to down-regulate intracellular CD81 Protein expression level: Take 8 ⁇ L of lipofectamine 2000 plus 192 ⁇ L of serum-free DMEM and place it at room temperature for 5 minutes as solution A; at the same time, add 5 ⁇ L of 20 ⁇ M siRNA (100pmol) to 195 ⁇ L of serum-free DMEM and mix it into solution B; , B solution mixed, placed at room temperature for 20 minutes, then added to the HEK293T medium containing 600 ⁇ L serum-free DMEM; 6 hours later, replaced
  • CD81-2J-1, CD81-2J-6 and CD81-2F-2 were transfected with cells (HEK293T cells, HEK293T overexpressing CD81, HEK293T overexpressing CD81 and transfected with siRNA-CD81-1 and HEK293T overexpressing CD81 after transfection Any cell of siRNA-CD81-1) was incubated, and the affinity of the aptamer was tested according to the CD81 aptamer-cell affinity experiment in Example 2. The results showed that after interference with down-regulation of CD81 expression, the affinity of the three CD81-2 aptamer subtypes CD81-2J-1, CD81-2J-6 and CD81-2F-2 were significantly reduced (***p ⁇ 0.01, ** **p ⁇ 0.001) (Figure 15-17).
  • CD81-2J-1, CD81-2J-6 and CD81-2F-2 are aptamers that selectively and specifically bind to CD81.
  • 293T/WT are wild-type HEK293 cells; 293T/CD81 control is HEK293 overexpressing CD81; 293T/CD81 scrambled is HEK293 overexpressing CD81 with random sequence siRNA transfection; 293T/CD81 siRNA-1 is HEK293 After overexpressing CD81, it was transfected with siRNA-CD81-1; 293T/CD81 siRNA-2 was HEK293 after overexpressing CD81 and transfected with siRNA-CD81-1.
  • test results show that the k'd values of CD81-2J-1, CD81-2J-6 and CD81-2F-2 are shown in Table 7-9, respectively, and the two-dimensional structure is shown in Figure 12-14, respectively.
  • the histidine tag was detected by western blot experiment, and the results proved that HEK293T cells overexpressing CD81 and HEK293T cells overexpressing other transmembrane proteins have been successfully established (as shown in Figure 18).
  • the CD81 aptamer-cell affinity experiment in Example 2 was performed using the above-mentioned cells.
  • the results showed that the three CD81-2 aptamer subtypes CD81-2J-1, CD81-2J-6 and CD81-2F-2 all have extremely high affinity for CD81 overexpressing HEK293T cells (***p ⁇ 0.01, ****p ⁇ 0.001); there is no significant change in the affinity of HEK293T cells overexpressing other transmembrane proteins (as shown in Figure 19-21).
  • the above results reveal that the binding of the three CD81-2 aptamer subtypes to CD81 has extremely high selectivity and specificity.
  • biotin (biotin; Gemma gene synthesis, catalog number: F01001) was used to label CD81-2F-2, CD81-2J-1 and CD81-2J- 6.
  • biotin Gemma gene synthesis, catalog number: F01001
  • the biotin-CD81 aptamer-exosomal complex was captured by streptavidin-coated magnetic beads, and then the anti-human CD81 antibody was used for Western detection.
  • the CD81-2F-2 aptamer can capture a large number of exosomes within 30 minutes, while extending the incubation time to 4 hours only slightly increases the capture volume.
  • CD81-2J-1 and CD81-2J-6 aptamers can effectively capture exosomes after 30 minutes of incubation, and further incubation for 1 hour or 4 hours will not significantly increase the amount of captured exosomes.
  • Figure 22 shows the CD81 nucleic acid aptamer and serum when human exosomes are captured from human serum with biotin-labeled CD81-2F-2, CD81-2J-1 and CD81-2J-6 Experimental verification of the best and shortest time required for incubation.
  • Figure 22A shows CD81 Western blots of exosomes captured with different incubation times.
  • Figure 22B shows the semi-quantitative CD81 protein derived from exosomes obtained after the nucleic acid ligand and serum are incubated for different periods of time according to CD81 western blot analysis. The result in the figure is the mean ⁇ standard deviation, and the experiment is repeated 3 times. The results show that CD81-2J-1 and CD81-2J-6 aptamers can effectively bind to exosomes in human serum within 30 minutes.
  • the optimal time for CD81-2J-1 and CD81-2J-6 aptamers to capture human serum exosomes is determined to be 30 minutes, while CD81-2F-2 aptamers require a longer incubation time to reach the maximum The amount of exosomes captured.
  • Example 6 The ability of a CD81 aptamer-magnetic bead-based system to isolate exosomes during incubation
  • the biotin-labeled CD81-2J-1 aptamer (indicated by CD81 in Figure 23) and The human serum was incubated for 1 minute, 20 minutes and 1 hour. Then, the above-mentioned CD81 aptamer exosome complex was captured by streptavidin-coated magnetic beads for 1 minute (bead 1 min) and 5 minutes (bead 5 min). Finally, the exosomes captured by CD81 aptamer-magnetic beads were lysed, and the classical marker CD81 of exosomes was detected by Western blotting. The results are shown in Figure 23.
  • Figure 23 shows the difference between using the biotin-labeled CD81-2J-1 nucleic acid aptamer of the present invention to capture human exosomes from human serum. Experimental verification of the time required for bead incubation.
  • Figure 23A is a CD81 Western blot of exosomes captured after incubation with 2.7 micron magnetic beads from Agilent Technologies Co., Ltd. for different times.
  • FIG. 23B is a semi-quantitative result of CD81 protein derived from exosomes captured after incubation with 2.7 micron magnetic beads of Agilent Technologies Co., Ltd. after different times of incubation based on CD81 Western blot analysis. The result in the figure is the mean ⁇ standard deviation, and the experiment is repeated 3 times.
  • CD81 protein can be detected in exosomal samples captured after one minute of incubation with CD81 aptamer, and this signal increases with the incubation time of CD81 aptamer and serum ( Figure 23B) .
  • the above results show that the CD81 aptamer of the present invention can capture human serum exosomes within two minutes: a CD81 aptamer-exosomal complex is formed in one minute, and the other minute is used for streptavidin magnetic beads. Take the CD81 aptamer-exosomal complex. The effective separation of exosomes from serum within 2 minutes is the fastest method for separating exosomes reported so far.
  • Example 7 The ability of CD81 aptamer to capture human serum exosomes was detected by flow cytometry.
  • CD81-2F-2, CD81-2J-1 and CD81-2J-6 were simultaneously labeled with biotin and CY5 fluorescent label (Q670, purchased from Suzhou Gemma Gene) to obtain CD81 aptamers labeled with biotin and Q670.
  • the CD81 aptamer labeled with Q670 was incubated with human serum, and then the biotin-CD81 aptamer-exocrine was captured using streptavidin-coated magnetic beads with a size of 2.7 ⁇ m (from Agilent Technologies Co., Ltd.) ⁇ conjugates. After staining with phycoerythrin (PE) labeled CD9 antibody, the exosomes immobilized on magnetic beads were detected by flow cytometry.
  • PE phycoerythrin
  • Figure 24 is a diagram of the results of verifying the ability of CD81-2F-2, CD81-2J-1 and CD81-2J-6 of the present invention to capture human exosomes from human serum.
  • Figure 24A shows The invented nucleic acid aptamer is double-labeled with Q670 and biotin, and is detected by APC channel in a flow cytometer to prove that the nucleic acid aptamer is indeed bound to the streptavidin-coated magnetic beads.
  • Figure 24B shows that only the CD81-2F-2, CD81-2J-1 and CD81-2J-6 CD81 nucleic acid aptamers of the present invention can be captured by PE-labeled CD9 antibody (for detecting exosomes) and flow cytometry Exosomes in human serum, other negative controls (magnetic beads themselves, represented by magnetic beads in the figure; random DNA fragments, represented by DNA in the figure; or control antibodies, immunoglobulin G1 control in the figure) have no effect.
  • the streptavidin-coated magnetic beads can capture bovine exosomes after incubation with biotin-labeled anti-bovine CD81 antibody and bovine serum.
  • the complex of biotin-labeled anti-bovine CD81 antibody and bovine exosomes was incubated with streptavidin-coated magnetic beads, and then anti-bovine CD81 or CD9 antibodies were used for Western and flow cytometry detection.
  • the expected results indicate that the magnetic bead system of the present invention can effectively capture bovine exosomes through the mediation of anti-bovine CD81 antibodies.
  • CD81-2F-2, CD81-2J-1 and CD81-2J-6 aptamers recognize and specifically bind to human exosomes and do not cross-react with bovine exosomes.
  • Figure 25A used anti-bovine CD9 antibody and Western blot experiment to show that biotin-labeled anti-bovine CD81 antibody can be captured from calf serum by streptavidin-coated magnetic beads, but with biotin-labeled CD81-2F- 2.
  • the CD81 nucleic acid aptamers of CD81-2J-1 and CD81-2J-6 cannot capture bovine exosomes.
  • Figure 25 Ba double-labeled CD81 nucleic acid aptamer with Q670 and biotin was detected by APC channel in a flow cytometer to prove that the nucleic acid aptamer did indeed bind to the streptavidin-coated magnetic beads.
  • Figure 25Bb shows that the combination of biotin-labeled anti-calf-derived CD81 antibody (detection of exosomes) and streptavidin-coated magnetic beads can obtain exosomes in calf serum.
  • biotin-labeled CD81-2F-2, CD81-2J-1 and CD81-2J-6 CD81 nucleic acid aptamers or magnetic beads of the present invention cannot capture exosomes in calf serum.
  • the obtained exosomes contain less blood-borne contaminating proteins.
  • Figure 26B is a semi-quantitative analysis.
  • the abundances of five different blood-derived proteins are all compared using the abundance of CD81 protein bands in their Western blots as a benchmark.
  • the result in the figure is the mean ⁇ standard deviation, and the experiment is repeated 3 times.
  • the exosomal population captured by the CD81 aptamer of the present invention is slightly different from the three commercial CD81 antibodies.
  • the ratio of the signal of serum protein in Western to the signal of CD81 was used as an index to judge the degree of contamination.
  • the ratio of IgG/CD81 in the antibody-2 (P ⁇ 0.01) group was significantly lower than that in the CD81 antibody-1- and CD81 antibody-3 groups.
  • the ratio of IgG/CD81 in exosomes captured by CD81-2F-2 (P ⁇ 0.05) and CD81-2J-6 (P ⁇ 0.05) aptamers was significantly reduced (e.g. Figure 26B-b). Therefore, the exosomes isolated using CD81-2F-2 and CD81-2J-6 aptamers have lower serum protein contamination (IgG) than those obtained with three CD81 antibodies.
  • the content of serum albumin in the exosome separation solution is an excellent indicator of the specificity and purity of the exosome separation method.
  • Figure 21B-c compared with CD81 antibody-2 and CD81 antibody-3, the ratio of serum albumin/CD81 in the exosomal separation solution of the three CD81 aptamers and CD81 antibody-1 was significantly reduced.
  • the amount of serum albumin in the exosomal separation solution of CD81-2F-2 and CD81-2J-6 aptamers was reduced by 12 times and 3 times compared with the use of CD81 antibody-2 or CD81 antibody-3, respectively.
  • Lipoprotein is the main contaminant in the exosomal separation solution. As many as 70% of the particles in the exosomal fraction separated by various methods are lipoproteins, not real exosomes. In most exosomes prepared from serum/plasma, apolipoprotein B (ApoB) is the main component in contaminating lipoprotein particles. Therefore, the present invention analyzes the content of ApoB in the exosomal separation liquid to assess the degree of lipoprotein contamination in the exosomes.
  • ApoB apolipoprotein B
  • exocrine prepared with aptamers CD81-2F-2 (P ⁇ 0.001), CD81-2J-1 (P ⁇ 0.01) and CD81-2J-6 (P ⁇ 0.0001) The proportion of ApoB in the exosomes separated by the three anti-CD81 antibodies was 2 times lower. Therefore, an obvious advantage of the CD81 aptamers of the present invention is that they provide very rapid exosomes preparation, and compared with the use of CD81 antibody isolation methods, significantly reduce the content of contaminants, including serum proteins and non-exocrine ⁇ Body particles.
  • CD81 aptamer of the present invention has high specificity in capturing CD81-positive exosomes in human serum, and can better reduce the contamination of serum albumin and lipoprotein particles.
  • CD81 aptamers can produce higher purity exosomes
  • the present invention compares the extraction of exosomes based on the CD81 aptamer-magnetic beads with two commonly used commercial affinity-coupled magnetic
  • the performance of the bead exosome extraction kit are as follows: (1) MagCapture TM exosome isolation kit based on phosphatidylserine affinity (Novachem, Cat#293-77601), (2) exosome-human CD81 isolation kit (Life Technologies, Cat#) 10616D).
  • Figure 27 shows the CD81 nucleic acid of CD81-2F-2, CD81-2J-1 and CD81-2J-6 of the present invention in comparison with other commercial exosomes captured by affinity coupling.
  • the commercial source affinity capture products used in this experiment are MagCapture TM Exosome Isolation Kit PS (FUJIFILM Wako Chemicals, Cat No: 293-77601) and Exosome-Human CD81 Isolation Reagent (ThermoFisher Scientific, Cat. No. 10616D) .
  • CD81 aptamers Compared with the two commercial kits, the contamination of serum proteins (immunoglobulin G (IgG), albumin, IgM and ApoB) in exosomes prepared from the three CD81 aptamers was significantly reduced.
  • IgG immunoglobulin G
  • albumin albumin
  • ApoB ApoB
  • CD81 aptamer-mediated exosome isolation contains less serum protein contamination
  • the present invention uses ultracentrifugation, ultrafiltration, cross-linked dextran G50 column, Exoquick kit (System Biosciences, Cat#EXOQ5A-1) and CD81 aptamer to separate exosomes from human serum. Then, through the experimental methods described in Figure 21 and Figure 22 above, the amount of serum protein contamination in the exosomes obtained by different methods was detected. The results are shown in Figure 28, which shows that compared with other widely used mainstream exosomes purification methods, the CD81 nucleic acid aptamer of the present invention can obtain relatively pure exosomes when capturing exosomes in human serum. body. Among them, the exosomes are made with 500 microliters of human serum.
  • Figure 28A is a Western blot analysis of exosomes obtained by various methods.
  • the antibodies used are IgG, serum albumin (corresponding to serum albumin in Figure 28), Haptoglobin, IgM, ApoB, CD81 and CD9.
  • the exosomes isolated from the three CD81 aptamers have the least albumin contamination, and the CD81-2F-2 aptamer is the most excellent.
  • the aptamer CD81-2F-2 captures the least amount of serum albumin ( Figure 28B-d).
  • the relative content of ApoB in the exosomes separated from the three CD81 aptamers also decreased significantly (P ⁇ 0.0001, Figure 28B-f).
  • ApoB is used to detect the contamination of prepared exosomes from blood apolipoproteins (low density apolipoprotein, very low density apolipoprotein and chylomicrons).
  • the exosomes isolated by the CD81 aptamer-magnetic bead method have higher purity and lower protein contamination (including serum Albumin and apolipoprotein, etc.).
  • Exosomes isolated using CD81 aptamers have a narrow size distribution that is significantly close to exosomes
  • the exosomes released by human cells are a heterogeneous population of membrane-coated vesicles, ranging in size from 30nm to 150nm.
  • the size of exosomes is between 30 nm and 150 nm.
  • the present invention further analyzes the yield and size distribution of the isolated serum exosomes.
  • Nanoparticle tracking analysis (NTA) is a widely used method for characterizing the concentration and size of exosomes in aqueous media.
  • Figure 29 shows the use of conventional physical methods (ultracentrifugation, ultrafiltration, dextran G50 column, Exoquick kit), other commercially available affinity-based exosome separation kits, including targeted exosome membrane surface Lipid (MagCapture TM Exosome Isolation Kit, FUJIFILM Wako Chemicals, Cat#293-77601) and a separation kit targeting CD81 (CD81 Exo-Flow, System Biosciences, Cat#EXOFLOW400A-1) on the surface of the exosomal membrane , And the NTA curve of the exosomal size distribution obtained by the CD81 aptamer separation method of the present invention.
  • targeted exosome membrane surface Lipid MagneticCapture TM Exosome Isolation Kit, FUJIFILM Wako Chemicals, Cat#293-77601
  • CD81 CD81 Exo-Flow, System Biosciences, Cat#EXOFLOW400A-1
  • exosomes separated by affinity-based purification methods have a narrower size distribution (Figure 29E-I).
  • the size of exosomes isolated using commercial affinity methods (Figure 29E-F) ranged from 20 nm to 1000 nm.
  • exosomes isolated from CD81 aptamers showed a very narrow size range of 50 nm to 150 nm.
  • CD81-2F-2, CD81-2J-1 and CD81-2J-6 aptamers the most abundant exosomes populations are centered at 113nm, 89nm and 106nm, respectively.
  • the total number of exosomes obtained by the current CD81 aptamer separation system of the present invention (determined by NTA) is lower than the ultracentrifugation method.
  • the total exosomal particle yields of CD81-2F-2 aptamer, CD81-2J-1 aptamer and CD81-2J-6 aptamer were 67%, 44% and 88% of the ultracentrifugation method, respectively.
  • Figure 30A the average particle size of exosomes separated by CD81 aptamer was 130nm-147nm slightly smaller than the ultracentrifugation method (154nm) ( Figure 30B).
  • NTA N-(external vesicle particles) separated from serum by the current general method are lipoprotein particles, not real exosomes. Therefore, the present invention first treats the sample with 0.5% Triton X-100 at room temperature for 15 minutes to lyse all the vesicle particles in the exosomes obtained by different extraction methods. During this process, the non-vesicle particles always maintain their integrity. .
  • the percentage of true exosomes in the exosomes isolated by CD81 aptamer is similar (CD81-2J-6 aptamer) Or significantly increased (CD81-2F-2 and CD81-2J-1 aptamers) ( Figure 31B). All in all, compared with the gold standard ultracentrifugation method, the serum exosomes separated by the CD81 aptamer affinity purification method have a narrower particle size distribution, the yield is the same order of magnitude, and the real exosomes are similar.
  • the CD81 aptamer-magnetic bead-based system is currently the only one-step rapid exosome separation method, and the size of the exosomes captured by it is closest to the size range of the defined exosomes.
  • Figure 29 shows that compared with other widely used mainstream exosomes purification methods, the CD81 nucleic acid aptamer of the present invention has a narrower size fraction of exosomes captured in human serum.
  • the extracellular vesicles/exosomes in human serum are respectively adapted for ultracentrifugation, ultrafiltration, G-50 dextran gel filtration, ExoQuick, MagCapture TM CD81 Exo-Flow kit and the three CD81 nucleic acids of the present invention Body capture.
  • Figure 30 is a test based on the nanoparticle tracking analyzer in Figure 29, showing the total number of extracellular vesicles/exosomes captured from 500 microliters of human serum by various methods as shown in the figure ( Figure 30A) and particle size ( Nanometers) ( Figure 30B).
  • Figure 31 shows that the ratio of the CD81 nucleic acid aptamer of the present invention in capturing real extracellular vesicles in human serum excluding non-vesicles is comparable to the current gold standard preparation method (ultracentrifugation).
  • the total particle concentration was obtained by the counting of the nanoparticle tracking analyzer ( Figure 31A).
  • the sample was then treated with 0.5% polyethylene glycol octyl phenyl ether (Triton X-100) to dissolve the biofilm, and then counted with a nanoparticle tracking analyzer to obtain the concentration of non-vesicle particles.
  • the total particle concentration of each sample minus its non-vesicle particle concentration is the concentration of true extracellular vesicles.
  • Figure 31B shows the ratio of true extracellular vesicles to the total number of particles obtained by various capture/purification methods. The results in Figures 30 and 31 are mean ⁇ standard deviation, and the number of experiment repetitions is 3 times. *,P ⁇ 0.05; **,P ⁇ 0.01 compared with ultracentrifugation samples; # ,P ⁇ 0.05; ## ,P ⁇ 0.01 compared with two kits on the market for affinity separation with CD81 antibody Compare.
  • CD81 aptamer can highly enrich and isolate exosomes within the size range of exosomes
  • exosomes Based on their biophysical properties, exosomes have recently been classified into small exosomes (Exo-S, 60-80nm) and large exosomes (Exo-L, 90-120nm). It has been determined that the CD81 aptamer affinity purification method can isolate exosomes with a narrow size distribution matching the characteristic size range of exosomes. We continue to study the exosomes in each subgroup of exosomes captured by the CD81 aptamer The abundance of the body.
  • Figure 32 shows that most of the extracellular vesicles captured in human serum with the CD81 nucleic acid aptamer of the present invention are larger exosomes. After the extracellular particles are captured from 500 microliters of human serum by various methods as shown in the figure, they are counted with a nanoparticle tracking analyzer.
  • Figure 32A shows the ratio of extracellular particles to total particles in the size range of 50-80 microns.
  • Figure 32B shows the ratio of extracellular particles to total particles in the size range of 80-100 microns.
  • Figure 32C shows the ratio of extracellular particles to total particles in the size range of 120-150 microns.
  • Figure 32D shows the ratio of extracellular particles with a size greater than 150 microns to the total particles.
  • FIG. 33 shows that most of the extracellular nanoparticles captured in human serum with the CD81 nucleic acid aptamer of the present invention are biofilm-encapsulated exosomes. After displaying the extracellular particles captured from 500 microliters of human serum by various methods as shown in the figure, the total particle concentration is obtained by the counting of the nanoparticle tracking analyzer.
  • Figure 33A shows the ratio of extracellular particles and non-vesicular particles with a particle size of 50-80 microns in the total particles, respectively.
  • Figure 33B shows the ratio of extracellular particles and non-vesicular particles with a particle size of 80-120 microns in the total particles, respectively.
  • Figure 33C shows the ratio of extracellular particles and non-vesicular particles with a particle size of 120-150 microns in the total particles, respectively.
  • Figure 32D shows the ratios of extracellular particles and non-vesicular particles with a particle size larger than 150 microns in the total particles, respectively.
  • Figure 34 shows that most of the extracellular nanoparticles captured in human serum with the CD81 nucleic acid aptamer of the present invention are large exosomes encapsulated by biofilms.
  • the total particle concentration is obtained by the counting of the nanoparticle tracking analyzer. Then the sample was treated with 0.5% polyethylene glycol octyl phenyl ether (Triton X-100) to dissolve the biofilm, and then counted by the nanoparticle tracking analyzer to obtain the concentration of non-vesicle particles to calculate the true extracellular The yield of vesicles.
  • Figure 34A shows the ratio of extracellular vesicles (small exosomes) with a particle size of 50-80 microns obtained by various methods in the total extracellular vesicles obtained by that method.
  • Figure 34B shows the ratio of extracellular vesicles (large exosomes) with a particle size of 80-120 microns obtained by various methods in the total extracellular vesicles obtained by that method.
  • Figure 34 shows the ratio of extracellular vesicles (large exosomes) with a particle size of 120-150 microns obtained by various methods in the total extracellular vesicles obtained by that method.
  • Figure 34D shows the particles obtained by various methods. The ratio of extracellular vesicles (microvesicles) with a diameter greater than 150 microns in the total extracellular vesicles obtained by that method.
  • Exosomes isolated from CD81 aptamers have the function of promoting cell proliferation
  • Exosomes can complete the intercellular communication function through the mediation of their intracellular substances, such as proteins, lipids and RNA (miRNA, lnRNA and snRNA).
  • miRNA, lnRNA and snRNA proteins, lipids and RNA
  • the above experiments have confirmed that the exosomes prepared by CD81 aptamers have the characteristics of high purity and narrow size distribution. This example will further determine whether the isolated exosomes still have cellular functions.
  • human colon cancer HT29 cells were used as the donor of exosomes, 0.5% exosome-removed serum (EDS) was added to the culture medium, and then cultured in a carbon dioxide cell incubator at 37°C for 48 hours . Then use the biotin-labeled CD81 aptamer-magnetic bead system to separate the HT29 exosomes in the cell culture medium (CCM).
  • EDS exosome-removed serum
  • the aptamer contains a built-in disulfide bond (SS in Figure 35B), which can be cleaved very gently using a reducing agent (100mM tris(2-carboxyethyl)phosphine hydrochloride/TCEP, incubated at 37°C for 5 minutes) And release the exosomes captured by CD81 aptamer-magnetic beads.
  • a reducing agent 100mM tris(2-carboxyethyl)phosphine hydrochloride/TCEP, incubated at 37°C for 5 minutes
  • CD81 aptamer-magnetic beads As a parallel experiment, the present invention also uses a commercial CD81 Exo-Flow kit based on CD81 antibody affinity to separate and release HT29 exosomes.
  • One of the above factors restricting cell proliferation may be related to the buffer that releases exosomes.
  • the TCEP used to release the exosomes captured by the CD81 aptamer-magnetic beads is likely to be milder than the elution buffer provided in the CD81 Exo-Flow kit. Therefore, exosomes isolated from CD81 aptamers preserve their original cellular functions better than antibody-based affinity separation methods.
  • CD81 aptamer-based exosome isolation is more effective and economical (see Table 10). Therefore, the CD81 aptamer-based exosome isolation kit will become a very potential substitute for other exosome isolation kits on the market.
  • Figure 35 shows that the exosomes captured by the CD81 nucleic acid aptamer of the present invention maintain the original biological activity and can promote the cell proliferation of human-derived cells in vitro.
  • Figure 35A the flow chart of the entire experiment.
  • Figure 35B shows that there is a disulfide bond in the link between the base of the CD81 aptamer and the magnetic beads. After capturing the exosomes, adding a reducing agent (tris(2-carbonylethyl)phosphorus hydrochloride), the disulfide bond is opened, and the exosomes can be gently released from the magnetic beads.
  • a reducing agent tris(2-carbonylethyl)phosphorus hydrochloride
  • FIG. 35C in vitro cell proliferation experiment (using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, MTT).
  • the CD81 aptamer can detect one EpCAM-positive exosome in the background of 2000 epithelial cell adhesion molecule (EpCAM)-negative exosomes
  • exosomes in cancer medicine are their application in liquid biopsy.
  • one of the key challenges facing exosomal liquid biopsy is the detection of very small amounts of cancer-derived exosomes in a broad background of exosomes produced by blood cells.
  • the total vesicle count in human blood is 7.3-9.4 ⁇ 10 10 /mL, of which 93.9% of vesicles are derived from platelets, 4.5% are derived from white blood cells, 1.8% are derived from red blood cells, 1% are derived from endothelial cells, and 0.7% It is derived from hematopoietic stem cells (PLoS One.13(12):e0207950,2018).
  • the plasma exosomes concentration of cancer patients and healthy donors of different individuals can fluctuate by 40 to 50 times, and the average plasma exosomes concentration of cancer patients is (0.9 ⁇ 1.2 ⁇ 10 9 )/mL ) And healthy controls (1.2 ⁇ 1.2 ⁇ 10 9 /mL) have no significant difference.
  • the concentration of exosomes in plasma from lung cancer donors was 1.41 ⁇ 0.31 ⁇ 10 10 /mL, while the concentration of exosomes in healthy donors was 3.37 ⁇ 0.39 ⁇ 10 9 /mL, that is, exosomes in the blood of lung cancer patients The concentration was 3.4 times higher than that of healthy controls.
  • exosomes derived from tumor cells account for only a small proportion of the total exosomes in the blood. Therefore, trying to detect tumor cell-derived exosomes in the extensive exosomal background of a patient's blood sample is like "finding a needle in a haystack.”
  • EpCAM is overexpressed in many types of solid cancers.
  • the first and only FDA-approved liquid biopsy CellSearch uses a monoclonal antibody against EpCAM to detect circulating tumor cells (CTC) for the diagnosis of metastatic breast cancer and other solid tumors.
  • CTC circulating tumor cells
  • This embodiment hopes to establish the detection limit of the CD81 aptamer-based exosome detection system in the context of liquid biopsy.
  • this example extracts exosomes from the human colon cancer HT29 cell line that highly expresses EpCAM ( ⁇ 1.2 ⁇ 10 6 /cell) and the human embryonic kidney HEK293T cell line that does not express EpCAM.
  • the present invention establishes an aptamer-based sandwich flow analysis system to determine the detection limit of EpCAM-positive exosomes in the background of EpCAM-negative exosomes.
  • EpCAM-positive cells or EpCAM-negative exosomes are almost undetectable.
  • a sample with a total exosome concentration of 4 ⁇ 10 10 /ml was prepared in this example to simulate the count of exosomes in the patient's blood.
  • a mixture of EpCAM-positive and EpCAM-negative exosomes in different ratios ranging from 1:000 to 1:8000 was first prepared.
  • the CD81 aptamer double-labeled with fluorescein isothiocyanate and biotin is used to capture all exosomes in the mixture of exosomes, and magnetic beads are used to fix the aptamer-exosomal complex.
  • the captured EpCAM-positive exosomes in each group were stained with phycocyanin-labeled anti-human EpCAM antibody or Q670-labeled EpCAM aptamer, respectively.
  • the magnetic beads-CD81 aptamer-exosomes complexes were detected and analyzed by flow cytometry. When the percentage of fluorescently positive magnetic beads exceeds 1%, it is considered positive.
  • Figure 36 shows that the present invention can be used for the detection of ultra-sensitive epithelial cell adhesion molecule-positive exosomes.
  • Figure 36A shows the flow of this test based on flow cytometry.
  • Figure 36B the exosomes produced by the HT29 cells captured by the CD81 nucleic acid aptamer of the present invention were incubated with 100 microliters of 8.33 nM allophycocyanin-labeled epithelial cell adhesion molecule antibody.
  • Figure 36C the exosomes produced by the HT29 cells captured by the CD81 nucleic acid aptamer of the present invention and the epithelial cell adhesion molecule nucleic acid aptamer labeled with the same concentration of stellar body 670 (Quasar 670 phosphoramidite) and HT29 cells are produced The exosomes are incubated.
  • Figure 37 The CD81 nucleic acid aptamer of the present invention can detect a single epithelial cell adhesion molecule-positive exosomes in the background of 2000 exosomes that do not express epithelial cell adhesion molecules in a simulated liquid biopsy.
  • Flow cytometry detects the fluorescence of fluorescein isothiocyanate (FITC) to confirm that the CD81 nucleic acid aptamer labeled with fluorescein isothiocyanate is indeed immobilized on magnetic beads (2.7 microns).
  • FITC fluorescein isothiocyanate
  • APC allophycocyanin
  • the experimental group consisted of magnetic beads, a negative control of isotype matching antibodies or nucleic acid aptamers with random sequences, as well as exosomes secreted by HT29 cells with positive epithelial cell adhesion molecules and HEK293T with negative epithelial cell adhesion molecules.
  • a series of limiting dilutions of exosomes secreted by cells 1:8000, 1:5000, 1:2000 and 1:1000.
  • Flow cytometry detected 1% allophycocyanin fluorescence-positive events in the total samples as epithelium The detection threshold for cell adhesion molecule positive.
  • Figure 37A shows the isosulfide detected on the flow cytometer after the exosomes captured by the CD81 nucleic acid aptamer and immobilized on the magnetic beads are incubated with the epithelial cell adhesion molecule monoclonal antibody Double change point plot of fluorescence of fluorescein cyanide and allophycocyanin.
  • Figure 37B shows the detection of fluorescein isothiocyanate and allophycocyanin on a flow cytometer after the exosomes captured by the CD81 nucleic acid aptamer and immobilized on magnetic beads are incubated with the epithelial cell adhesion molecule DNA aptamer Double change point plot of protein fluorescence.
  • the percentage of positive signals from the phycocyanin-labeled EpCAM antibody (Q2) reaches 1% when the ratio of HT29 EpCAM positive exosomes to HEK293T EpCAM negative exosomes is 1:1000.
  • the signal from the Q670 EpCAM aptamer (Q2) was 1% at 1:2000 ( Figure 37B).
  • the above data shows that the detection limits of EpCAM antibody and EpCAM aptamer in the system of this embodiment are 1:1000 and 1:2000, respectively.
  • the detection limit of 1 EpCAM-positive exosome from the background of 2000 EpCAM-negative exosomes is unprecedented. That is to say, the present invention further improves the liquid biopsy system based on CD81 aptamer-magnetic beads to achieve Higher sensitivity.
  • thermodynamics and kinetics of the interaction In order to use aptamers as diagnostic tools, we first studied the thermodynamics and interactions between CD81 extracellular macrocycles (LEL) and two different CD81 aptamers (ie CD81-2J-6 and CD81-2F-2). Kinetic characteristics. Second, explore the molecular mechanism and binding site of the aptamer-CD81 protein interaction.
  • the ITC experiment was performed with a Microcal PEAQ-ITC instrument (Malvern Instruments Limited, United Kingdom) at 25°C.
  • the aptamer and CD81 extracellular macrocyclic protein were prepared in ITC buffer containing PBS pH 7.4, 2.5mM MgCl 2 , 1.33% trehalose, 1.33% mannitol, and 0.0027% Tween 80.
  • the aptamer solution (68 ⁇ M) in the syringe was injected into the dimer CD81 outer macrocyclic protein solution (3.33 ⁇ M) [7-10]. Except for the first injection (0.4 ⁇ L), the volume of the aptamer solution for each injection is 2 ⁇ L.
  • R is the universal gas constant
  • T is the temperature in Kelvin.
  • the kinetic curve was obtained from the AFFIINImeter software (Software 4 Science Developments S.L., Spain).
  • Each binding parameter is represented by the mean ⁇ standard deviation of three independent measurements.
  • Figure 38 The biophysical thermodynamic determination of the CD81 nucleic acid aptamer of the present invention in binding to the human CD81 recombinant protein.
  • Figure 38A shows the isothermal titration calorimetry (upper figure) and thermogram (lower figure) of the binding of human-derived CD81 large extracellular domain recombinant protein to the CD81-2J-6 nucleic acid aptamer.
  • Figure 38A shows the isothermal titration calorimetry (upper figure) and thermogram (lower figure) of the binding of human-derived CD81 large extracellular domain recombinant protein to the CD81-2F-2 nucleic acid aptamer.
  • Figure 38 is a representative ITC thermal analysis diagram, where Figure 38A is the binding isotherm of the D81 LEL-2J-6 interaction, and Figure 38B is the binding isotherm of the CD81 LEL-2F-2 interaction line.
  • the interaction between CD81 LEL and 2J-6 is exothermic, but the interaction with 2F-2 absorbs heat.
  • the comprehensive data from the heat of binding between 2F-2 and CD81 LEL can be well fitted to a 1:1 binding model, but 2J-6 is suitable for a sequential binding model with two stepwise binding sites. This sequential nature is also clearly shown in the two isothermal lines of the interaction (Figure 38A).
  • the reason is that CD81 LEL exists as an inseparable homodimer in the solution.
  • the results of this study are consistent with the report of the binding site of CD81 LEL by Kong et al.
  • Table 11 shows the thermodynamic and kinetic parameters of the two aptamers.
  • the first binding makes the second 2J-6 aptamer bind more tightly to the CD81 protein (dissociation constant 1 >> dissociation constant 2 ), and this phenomenon is essentially positively synergistic.
  • the affinity of the two CD81 aptamers to the CD81 protein is about 70 nM.
  • the experimental results of isothermal titration calorimetry show that the two aptamers have completely different thermodynamic properties.
  • the 2F-2 aptamer interacts with soluble CD81 LEL through a 1:1 binding model, and has a very low binding site and weak binding affinity.
  • the 2J-6 aptamer interacts with CD81 through a sequential binding model with 2 stepwise binding sites. Among them, the first binding was weak, with a binding affinity of 5.19 ⁇ 1.56 ⁇ M, but the second binding was much stronger, with a 42-fold increase in binding affinity.
  • the two interactions between 2J-6 aptamer and CD81 protein are driven by enthalpy, indicating that 2J-6 aptamer has extremely high specificity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Disclosed in the present invention are a CD81 aptamer and an application thereof, the CD81 aptamer having (a) the nucleotide sequence shown in SEQ ID NO. 1 or (b) a sequence after deletion or replacement of one or more bases in the nucleotide sequence shown in SEQ ID NO. 1. The CD81 aptamer of the present invention can be used for preparing a reagent or reagent kit for the detection and/or diagnosis of cancer.

Description

一种CD81的适配体及其应用A CD81 aptamer and its application 技术领域Technical field
本发明属于生物技术领域,具体涉及CD81的适配体及其应用。The present invention belongs to the field of biotechnology, and specifically relates to CD81 aptamers and applications thereof.
背景技术Background technique
适配体(aptamer)是一小段经过筛选得到的单链寡核甘酸序列(DNA/RNA),能与相应的配体进行高亲和力和强特异性的结合。适配体可以与大分子如蛋白、细胞进行结合;也可以与一小段多肽、小分子药物、糖类化合物及离子进行结合。适配体可以被快速合成、鉴定及修饰,并且具有高重复性、高纯度及价格低廉等优势,使得适配体在疾病早期诊断、监测与治疗方面具有重要作用,尤其是基于外泌体的诊断。An aptamer is a small piece of single-stranded oligonucleotide sequence (DNA/RNA) obtained after screening, which can bind with the corresponding ligand with high affinity and strong specificity. Aptamers can be combined with large molecules such as proteins and cells; they can also be combined with a small number of peptides, small molecule drugs, carbohydrate compounds and ions. Aptamers can be rapidly synthesized, identified and modified, and have the advantages of high reproducibility, high purity and low price, making aptamers an important role in the early diagnosis, monitoring and treatment of diseases, especially those based on exosomes. diagnosis.
外泌体是一类包含了小RNA,DNA和蛋白质的膜泡结构(30-150nm)。外泌体广泛存在于生物体液中,包括血液、唾液、尿液、脑脊液和乳汁等,并且绝大多数培养的细胞均可分泌外泌体。外泌体一直被视为特异性分泌的膜泡,能够参与细胞间通讯,细胞微环境调节等众多生物学功能调控,包括免疫反应、神经递质传递、肿瘤生长及转移等。越来越多的研究表明,外泌体大量存在生物体的循环系统,非常适宜于相关疾病的诊断开发。已经有公开研究表明,外泌体上的GPC1可以用作胰腺导管癌的早期诊断;而血浆外泌体上的EGFR T790M突变可以用作非小细胞肺癌的伴随诊断标志物。Exosomes are a type of vesicle structure (30-150nm) that contains small RNA, DNA and protein. Exosomes are widely found in biological fluids, including blood, saliva, urine, cerebrospinal fluid, and milk, and most of the cultured cells can secrete exosomes. Exosomes have always been regarded as specifically secreted membrane vesicles, which can participate in the regulation of many biological functions such as cell-to-cell communication and cell microenvironment regulation, including immune response, neurotransmitter transmission, tumor growth and metastasis. More and more studies have shown that a large number of exosomes exist in the circulatory system of organisms, which is very suitable for the diagnosis and development of related diseases. Public studies have shown that GPC1 on exosomes can be used for the early diagnosis of pancreatic ductal carcinoma; and the EGFR T790M mutation on plasma exosomes can be used as a companion diagnostic marker for non-small cell lung cancer.
CD81是四跨膜蛋白家族成员之一,其分子量为26kD。CD81在细胞内和跨细胞膜的区域具有高度保守的氨基酸序列,而在细胞外的区域则具有易变性,不同种属中胞外的氨基酸序列不同。已经有大量的研究表明CD81与众多生物功能相关,包括细胞转移、细胞黏附,细胞增殖和分化等。近期的公开报道证实CD81在外泌体上也大量存在,尤其在各种肿瘤相关的血清外泌体上丰度较高,包括乳腺癌、结直肠癌、肝癌和肺癌等。此外,相比于外泌体的其他标志物,如CD63,TSG101,Rab-5b等,CD81是一种更广谱的外泌体标志物。因此,靶向CD81的适配体非常适合于外泌体的提取、纯化及后续基于外泌体的分子诊断。CD81 is a member of the four-span membrane protein family with a molecular weight of 26kD. CD81 has a highly conserved amino acid sequence in the intracellular and across cell membrane regions, while the extracellular region is volatile, and the extracellular amino acid sequence is different in different species. A large number of studies have shown that CD81 is related to many biological functions, including cell transfer, cell adhesion, cell proliferation and differentiation. Recent public reports have confirmed that CD81 is also abundant in exosomes, especially in serum exosomes related to various tumors, including breast cancer, colorectal cancer, liver cancer, and lung cancer. In addition, compared to other markers of exosomes, such as CD63, TSG101, Rab-5b, etc., CD81 is a broader spectrum of exosomes markers. Therefore, aptamers targeting CD81 are very suitable for the extraction and purification of exosomes and subsequent molecular diagnosis based on exosomes.
目前的外泌体分离纯化试剂盒主要基于粒径、密度梯度及特殊的外泌体表面标志物,包括密度梯度离心法、超速离心法、色谱分析法及抗体免疫结合法等方式。但是这些方法得到的外泌体在纯度、完整性及工艺成熟度都不够完善,耗时、价格高等缺点难以避免。The current exosomes separation and purification kits are mainly based on particle size, density gradient and special exosomal surface markers, including density gradient centrifugation, ultracentrifugation, chromatography, and antibody immunobinding methods. However, the purity, completeness and process maturity of the exosomes obtained by these methods are not perfect, and the disadvantages such as time-consuming and high price are unavoidable.
发明内容Summary of the invention
本发明的目的是提供CD81的DNA适配体及其应用。The purpose of the present invention is to provide a DNA aptamer for CD81 and its application.
一种核酸适配体,所述核酸适配体为下述任一种单链寡核甘酸分子:A nucleic acid aptamer, which is any of the following single-stranded oligonucleotide molecules:
A1、核苷酸序列是序列表中SEQ ID NO.1的单链寡核甘酸分子,A1. The nucleotide sequence is the single-stranded oligonucleotide molecule of SEQ ID NO.1 in the sequence list,
A2、将序列表中SEQ ID NO.1所示的核苷酸序列经过一个或几个核苷酸的取代和/或缺失和/或添加得到的与A1)所示的单链寡核甘酸分子具有50%以上的同一性且与CD81特异结合的单链寡核甘酸分子;A2. The nucleotide sequence shown in SEQ ID NO.1 in the sequence list is substituted and/or deleted and/or added to the single-stranded oligonucleotide molecule shown in A1). Single-stranded oligonucleotide molecules with more than 50% identity and specific binding to CD81;
上述核苷酸序列中,所述90%以上的同一性可为至少91%、92%、95%、96%、98%、99%或100%的同一性。In the above-mentioned nucleotide sequence, the identity of more than 90% may be at least 91%, 92%, 95%, 96%, 98%, 99% or 100% identity.
其中,所述核酸适配体针对人的CD81蛋白,可与人的CD81蛋白特异性结合。Wherein, the nucleic acid aptamer is directed against the human CD81 protein and can specifically bind to the human CD81 protein.
进一步,(A2)中所述缺失或者替换后的核苷酸序列具有如SEQ ID NO.2所述的核苷酸序列。Further, the deleted or substituted nucleotide sequence in (A2) has the nucleotide sequence described in SEQ ID NO.2.
进一步,(A2)中所述缺失或者替换后的核苷酸序列具有如SEQ ID NO.3所述的核苷酸序列。Further, the deleted or substituted nucleotide sequence in (A2) has the nucleotide sequence described in SEQ ID NO.3.
进一步,(A2)中所述缺失或者替换后的核苷酸序列具有如SEQ ID NO.4所述的核苷酸序列。Further, the deleted or substituted nucleotide sequence in (A2) has the nucleotide sequence described in SEQ ID NO.4.
进一步,(A2)中所述缺失或者替换后的核苷酸序列具有如SEQ ID NO.5所述的核苷酸序列。Further, the deleted or substituted nucleotide sequence in (A2) has the nucleotide sequence described in SEQ ID NO.5.
进一步,(A2)中所述缺失或者替换后的核苷酸序列具有如SEQ ID NO.6所述的核苷酸序列。Further, the deleted or substituted nucleotide sequence in (A2) has the nucleotide sequence described in SEQ ID NO.6.
上述任一种适配体在制备检测CD81的试剂或试剂盒中的应用也应在本发明的保护范围之内。The application of any of the above-mentioned aptamers in the preparation of reagents or kits for detecting CD81 should also fall within the protection scope of the present invention.
上述任一种适配体在制备提取CD81的试剂或试剂盒中的应用也应在本发明的保护范围之内。The application of any of the above-mentioned aptamers in the preparation of reagents or kits for extracting CD81 should also fall within the protection scope of the present invention.
其中,所述的CD81为人CD81蛋白。Wherein, the CD81 is human CD81 protein.
上述任一种适配体在制备检测外泌体的试剂或试剂盒中的应用也应在本发明的保护范围之内。The application of any of the above-mentioned aptamers in the preparation of reagents or kits for detecting exosomes should also fall within the protection scope of the present invention.
上述任一种适配体在制备提取外泌体的试剂盒中的应用也应在本发明的保护范围之内。The application of any of the above-mentioned aptamers in the preparation of a kit for extracting exosomes should also fall within the protection scope of the present invention.
其中,所述外泌体为人外泌体。Wherein, the exosomes are human exosomes.
其中,所述人外泌体为含有人CD81的外泌体。Wherein, the human exosomes are exosomes containing human CD81.
上述任一种适配体在制备检测和/或诊断癌症的试剂或试剂盒中的应用也应在本发明的保护范围之内。The application of any of the above-mentioned aptamers in the preparation of reagents or kits for detecting and/or diagnosing cancer should also fall within the protection scope of the present invention.
其中,所述癌症的诊断标志物包括人CD81。Wherein, the diagnostic marker of cancer includes human CD81.
其中,所述癌症为实体癌症,如乳腺癌、结直肠癌、肝癌和/或肺癌。Wherein, the cancer is a solid cancer, such as breast cancer, colorectal cancer, liver cancer and/or lung cancer.
上述任一种核酸适配体偶联到固相载体上得到的偶联物也应在本发明的保护范围之内。The conjugate obtained by coupling any of the aforementioned nucleic acid aptamers to the solid support should also fall within the protection scope of the present invention.
上述任一种的核酸适配体交联到固相载体上得到的交联物也应在本发明的保护范围之内。The cross-linked product obtained by cross-linking any of the above-mentioned nucleic acid aptamers to the solid carrier should also fall within the protection scope of the present invention.
其中,所述的固相载体为磁珠。Wherein, the solid phase carrier is magnetic beads.
本发明中筛选出6种CD81的DNA适配体,其与CD81的结合具有极高的选择性和特异性。有利于与后续CD81相关研究的推进及临床应用。In the present invention, 6 kinds of CD81 DNA aptamers are screened, and their binding to CD81 has extremely high selectivity and specificity. It is conducive to the advancement and clinical application of follow-up CD81-related research.
附图说明Description of the drawings
图1为本发明的CD81重组蛋白和CD81阳性表达细胞系的SELEX技术;Figure 1 shows the SELEX technology of the CD81 recombinant protein and CD81 positive expression cell line of the present invention;
图2为本发明的CD81-2的6个亚克隆序列的二级结构示意图;Figure 2 is a schematic diagram of the secondary structure of 6 subcloned sequences of CD81-2 of the present invention;
图3为本发明的HepG2细胞表达CD81和HEK293T细胞表达CD81的对照图;Figure 3 is a comparison diagram of HepG2 cells expressing CD81 and HEK293T cells expressing CD81 of the present invention;
图4为本发明的CD81-2适配体与CD81阳性的HEK293T及HepG2的结合能力的对比图;Figure 4 is a comparison diagram of the binding ability of the CD81-2 aptamer of the present invention with CD81-positive HEK293T and HepG2;
图5为本发明的全长CD81-2适配体对CD81过表达HEK293T细胞和阴性对照HepG2细胞的结合能力对比。Figure 5 is a comparison of the binding ability of the full-length CD81-2 aptamer of the present invention to CD81 overexpressing HEK293T cells and negative control HepG2 cells.
图6为CD81适配体使用浓度为200nM时,CD81-2适配体的8个亚型与CD81的结合能力对比图;其中,CD81适配体使用浓度为200nM,流式检测得到的FAM荧光强度数值以均值±标准差(Mean±SD)表示,实验次数为3次(n=3),**p<0.1,***p<0.01;Figure 6 is a comparison diagram of the binding ability of the 8 subtypes of CD81-2 aptamer and CD81 when the CD81 aptamer is used at a concentration of 200nM; among them, the CD81 aptamer is used at a concentration of 200nM and the FAM fluorescence obtained by flow cytometry The intensity value is expressed as mean±standard deviation (Mean±SD), the number of experiments is 3 (n=3), **p<0.1,***p<0.01;
图7为本发明的CD81适配体使用浓度为600nM时,CD81-2适配体的8个亚型与CD81的结合能力对比图;其中,CD81适配体使用浓度为600nM,流式检测得到的FAM荧光强度数值以均值±标准差(Mean±SD)表示,实验次数为3次(n=3),*p<0.5,**p<0.1;Fig. 7 is a comparison diagram of the binding ability of 8 subtypes of CD81-2 aptamer and CD81 when the concentration of CD81 aptamer of the present invention is 600nM; wherein, the concentration of CD81 aptamer is 600nM, obtained by flow cytometry The FAM fluorescence intensity value of FAM is expressed as mean±standard deviation (Mean±SD), the number of experiments is 3 (n=3), *p<0.5, **p<0.1;
图8和图9分别为本发明的CD81-2J的几个亚型的结合力强弱示意图;其中,CD81适配体使用浓度分别为200nM和600nM,流式检测得到的FAM荧光强度数值以均值±标准差(Mean±SD)表示,实验次数为3次(n=3),**p<0.1,***p<0.01;Figures 8 and 9 are schematic diagrams of the binding power of several subtypes of CD81-2J of the present invention; among them, the concentration of CD81 aptamer is 200nM and 600nM respectively, and the FAM fluorescence intensity values obtained by flow cytometry are averaged ±standard deviation (Mean±SD) means that the number of experiments is 3 (n=3), **p<0.1,***p<0.01;
图10和图11分别为本发明的CD81-2F的几个亚型的结合力强弱示意图;其中,CD81适配体使用浓度分别为200nM和600nM,流式检测得到的FAM荧光强度数值以均值±标准差(Mean±SD)表示,实验次数为3次(n=3),**p<0.1;Figures 10 and 11 are schematic diagrams of the binding power of several subtypes of CD81-2F of the present invention; among them, the concentration of CD81 aptamer is 200nM and 600nM, and the FAM fluorescence intensity values obtained by flow cytometry are averaged ±standard deviation (Mean±SD) means that the number of experiments is 3 (n=3), **p<0.1;
图12为本发明的CD81-2J-1的二维结构图;Figure 12 is a two-dimensional structure diagram of the CD81-2J-1 of the present invention;
图13为本发明的CD81-2J-6的二维结构图;Figure 13 is a two-dimensional structure diagram of the CD81-2J-6 of the present invention;
图14为本发明的CD81-2F-2的二维结构图;Figure 14 is a two-dimensional structure diagram of the CD81-2F-2 of the present invention;
图15为本发明的CD81-2J-1与过表达CD81的HEK293T细胞或干扰下调CD81表达的HEK293T细胞亲和力对比图;Figure 15 is a comparison diagram of the affinity of CD81-2J-1 of the present invention and HEK293T cells overexpressing CD81 or HEK293T cells that interfere with down-regulation of CD81 expression;
图16为本发明的CD81-2J-2与过表达CD81的HEK293T细胞或干扰下调CD81表达的HEK293T细胞亲和力对比图;Figure 16 is a comparison diagram of the affinity of CD81-2J-2 of the present invention and HEK293T cells overexpressing CD81 or HEK293T cells that interfere with down-regulation of CD81 expression;
图17为本发明的CD81-2F-2与过表达CD81的HEK293T细胞或干扰下调CD81表达的HEK293T细胞亲和力对比图;Figure 17 is a comparison diagram of the affinity of the CD81-2F-2 of the present invention and HEK293T cells that overexpress CD81 or HEK293T cells that interfere with down-regulation of CD81 expression;
图18为本发明的CD81过表达的HEK293T及其他跨膜蛋白过表达的HEK293T细胞的蛋白印迹分析,使用抗组氨酸标签抗体;Figure 18 is a Western blot analysis of the CD81 overexpressed HEK293T and other transmembrane protein overexpressed HEK293T cells of the present invention, using an anti-histidine tag antibody;
图19为本发明的CD81-2J-1对CD81过表达的HEK293T细胞的特异性的亲和力以及其它跨膜蛋白的HEK293T细胞的不结合的图;Figure 19 is a graph showing the specific affinity of CD81-2J-1 to HEK293T cells overexpressing CD81 and the non-binding of other transmembrane proteins to HEK293T cells;
图20为本发明的CD81-2J-6对CD81过表达的HEK293T细胞的特异性的亲和力以及其它跨膜蛋白的HEK293T细胞的不结合的图;Figure 20 is a graph showing the specific affinity of CD81-2J-6 to HEK293T cells overexpressing CD81 and the non-binding of other transmembrane proteins to HEK293T cells;
图21为本发明的CD81-2F-2对CD81过表达的HEK293T细胞的特异性的亲和力以及其它跨膜蛋白的HEK293T细胞的不结合的图;Figure 21 is a graph showing the specific affinity of CD81-2F-2 of the present invention to HEK293T cells overexpressing CD81 and the non-binding of other transmembrane proteins to HEK293T cells;
图22为用本发明的CD81-2F-2,CD81-2J-1和CD81-2J-6从人血清里捕获人的外泌体时CD81核酸配适体与血清孵育所需的最佳同时还是最短的时间的实验验证;Figure 22 is the best way for CD81 nucleic acid aptamer to incubate with serum when using CD81-2F-2, CD81-2J-1 and CD81-2J-6 of the present invention to capture human exosomes from human serum Experimental verification in the shortest time;
图23为用本发明的生物素标记的CD81-2J-1核酸配适体从人血清里来捕获人的外泌体时与用安捷伦科技有限公司的2.7微米的磁珠孵育所需的时间的实验验证;Figure 23 shows the time required for incubation with Agilent Technologies Co., Ltd. 2.7 micron magnetic beads when capturing human exosomes from human serum with the biotin-labeled CD81-2J-1 nucleic acid aptamer of the present invention Experimental verification;
图24为验证本发明的CD81-2F-2,CD81-2J-1和CD81-2J-6能够有效地从人血清里捕获人的外泌体;Figure 24 shows that CD81-2F-2, CD81-2J-1 and CD81-2J-6 of the present invention can effectively capture human exosomes from human serum;
图25为本发明的CD81-2F-2,CD81-2J-1和CD81-2J-6的CD81核酸配适体只识别人源的外泌体而不于牛的外泌体结合;Figure 25 shows that the CD81 nucleic acid aptamers of CD81-2F-2, CD81-2J-1 and CD81-2J-6 of the present invention only recognize human exosomes and do not bind to bovine exosomes;
图26为证明与其他三个商业来源的生物素标记的CD81抗体来对比,本发明的CD81-2F-2,CD81-2J-1和CD81-2J-6的CD81核酸配适体在捕获人血清里的外泌体时,得到的外泌体含有较少的血源性的污染蛋白质;Figure 26 shows that the CD81 nucleic acid aptamers of CD81-2F-2, CD81-2J-1 and CD81-2J-6 of the present invention capture human serum in comparison with three other commercial sources of biotin-labeled CD81 antibodies. In the case of exosomes, the obtained exosomes contain less blood-borne contaminating proteins;
图27为证明与其他商业来源外泌体亲和偶联捕获的产品对比,本发明的CD81-2F-2,CD81-2J-1和CD81-2J-6的CD81核酸配适体在捕获人血清里的外泌体时,得到的外泌体含有较少的血源性的污染蛋白质;Figure 27 shows that the CD81-2F-2, CD81-2J-1 and CD81-2J-6 CD81 nucleic acid aptamers of the present invention are used to capture human serum in comparison with products that have been captured by affinity coupling with other commercial sources of exosomes. In the case of exosomes, the obtained exosomes contain less blood-borne contaminating proteins;
图28为证明与其他广泛应用的主流外泌体纯化方法对比,本发明的CD81核酸配适体在捕获人血清里的外泌体时,得到相对更纯的外泌体;Figure 28 shows that compared with other widely used mainstream exosomes purification methods, the CD81 nucleic acid aptamer of the present invention can obtain relatively pure exosomes when capturing exosomes in human serum;
图29为与其他广泛应用的主流外泌体纯化方法对比,用本发明的CD81核酸配适体在捕获人血清里的外泌体具有更狭窄的大小分部;Figure 29 is a comparison with other widely used mainstream exosomes purification methods. The CD81 nucleic acid aptamer of the present invention is used to capture exosomes in human serum with a narrower size fraction;
图30是基于图29纳米粒子跟踪分析仪的测试结果图,图30A为如图示的各种方法从500微升人血清中捕获的细胞外囊泡/外泌体的颗粒总数;图30B为如图示的各种方法从500微升人血清中捕获的细胞外囊泡/外泌体的颗粒大小(纳米)的平均数;Figure 30 is a graph of test results based on the nanoparticle tracking analyzer in Figure 29, Figure 30A is the total number of extracellular vesicles/exosomes captured from 500 microliters of human serum by various methods as shown in the figure; Figure 30B is The average number of particle sizes (nm) of extracellular vesicles/exosomes captured from 500 microliters of human serum by various methods as shown in the figure;
图31显示用本发明的CD81核酸配适体在捕获人血清里的排除了非囊泡外的真正细胞外囊泡的比列可与与目前的金标准制备方法(超速离心)媲美;Figure 31 shows that the ratio of real extracellular vesicles excluded from non-vesicles in human serum captured by the CD81 nucleic acid aptamer of the present invention is comparable to the current gold standard preparation method (ultracentrifugation);
图32为本发明的CD81核酸配适体在人血清里捕获的细胞外囊泡里大部分是较大的外泌体;如图示的各种方法从500微升人血清中捕获的细胞外颗粒后,用纳米粒子跟踪分析仪计数;Figure 32 shows that most of the extracellular vesicles captured by the CD81 nucleic acid ligand of the present invention are larger exosomes in human serum; as shown in the figure, the extracellular vesicles captured from 500 microliters of human serum After the particles, count them with a nanoparticle tracking analyzer;
图33为本发明的CD81核酸配适体在人血清里捕获的细胞外纳米颗粒里大部分是生物膜包裹的外泌体;Figure 33 shows that most of the extracellular nanoparticles captured by the CD81 nucleic acid aptamer of the present invention in human serum are biofilm-encapsulated exosomes;
图34为本发明的CD81核酸配适体在人血清里捕获的细胞外纳米颗粒大部分是生物膜包裹的大型外泌体;Figure 34 shows that most of the extracellular nanoparticles captured by the CD81 nucleic acid aptamer of the present invention in human serum are large exosomes wrapped in biofilms;
图35为本发明的CD81核酸配适体捕获的外泌体保持了原有的生物活性能够促进人源细胞在体外的细胞增殖;Fig. 35 shows that the exosomes captured by the CD81 nucleic acid aptamer of the present invention maintain the original biological activity and can promote the cell proliferation of human-derived cells in vitro;
图36为本发明的能够用于超灵敏的上皮细胞粘附分子阳性的外泌体的检测;Fig. 36 shows the detection of ultra-sensitive epithelial cell adhesion molecule-positive exosomes according to the present invention;
图37为本发明的CD81核酸配适体在模拟液体活检中能够在2000个不表达上皮细胞粘附分子的外泌体的背景里检测到单个上皮细胞粘附分子阳性的外泌体;Figure 37 shows that the CD81 nucleic acid aptamer of the present invention can detect a single epithelial cell adhesion molecule-positive exosomes in the background of 2000 exosomes that do not express epithelial cell adhesion molecules in a simulated liquid biopsy;
图38为本发明的CD81核酸配适体在与人源CD81重组蛋白结合的生物物理热力学测定。Figure 38 shows the biophysical thermodynamic determination of the binding of the CD81 nucleic acid aptamer of the present invention to the human CD81 recombinant protein.
具体实施方式Detailed ways
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。Unless otherwise specified, the experimental methods used in the following examples are all conventional methods.
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The materials, reagents, etc. used in the following examples can be obtained from commercial sources unless otherwise specified.
下述非限制性实施例可以使本领域的技术人员更好的理解本发明。The following non-limiting examples may enable those skilled in the art to better understand the present invention.
任何熟悉本领域的技术人员在本发明的纰漏范围内,根据本发明的技术方案及构思进行替换或改变均属于本发明的保护范畴。Any person skilled in the art who makes substitutions or changes according to the technical solutions and concepts of the present invention within the scope of the flaws of the present invention belongs to the protection category of the present invention.
实施例1.靶向CD81的适配体筛选Example 1. Screening of aptamers targeting CD81
CD81的适配体筛选基于CD81重组蛋白和CD81阳性表达细胞系的SELEX技术(其示意图如图1所示),具体方式为:在约10 14个适配体-单链DNA的文库内进行靶向CD81适配体的筛选。该文库内的DNA都含有以下核心序列(86nt,其中N为任意其它碱基):5’-TAG GGA AGA GAA GGA CAT ATG AT-40N-TTG ACT AGT ACA TGA CCA CTT GA-3’。所述文库内包含表12中所示的671个DNA序列。与CD81重组蛋白或CD81阳性表达细胞系结合的适配体被洗脱下来,并用PCR的方式进行扩增。PCR扩增的上、下游引物序列分别为:FITC-5’-TA GGG AAG AGA AGG ACA TAT GAT-3’和5’-TTT TTT TTT TTT TTT TTT TT/iSp9/T CAA GTG GTC ATG TAC TAG TCA A-3’。扩增后的DNA再通过高通量测序的方式进行鉴定,其中得到6个与CD81结合最好的适配体,所述适配体分别为CD81-2、CD81-2F、CD81-2F-2、CD81-2J、CD81-2J-1和CD81-2J-6,其对应的序列如SEQ ID NOs.1-6所示;上述6个CD81适配体的结构示意图如图2所示。上述适配体均具有能与人的CD81蛋白结合的能力。 CD81 aptamer screening is based on the SELEX technology of CD81 recombinant protein and CD81 positive expression cell line (the schematic diagram is shown in Figure 1), and the specific method is: target in a library of about 10 14 aptamers-single-stranded DNA Screening for CD81 aptamers. The DNA in the library contains the following core sequence (86nt, where N is any other base): 5'-TAG GGA AGA GAA GGA CAT ATG AT-40N-TTG ACT AGT ACA TGA CCA CTT GA-3'. The library contained 671 DNA sequences shown in Table 12. Aptamers bound to CD81 recombinant protein or CD81-positive cell lines are eluted and amplified by PCR. The sequences of the upstream and downstream primers for PCR amplification are: FITC-5'-TA GGG AAG AGA AGG ACA TAT GAT-3' and 5'-TTT TTT TTT TTT TTT TTT TT/iSp9/T CAA GTG GTC ATG TAC TAG TCA A-3'. The amplified DNA was then identified by high-throughput sequencing. Among them, 6 aptamers that bind best to CD81 were obtained. The aptamers were CD81-2, CD81-2F, and CD81-2F-2, respectively. The corresponding sequences of CD81-2J, CD81-2J-1 and CD81-2J-6 are shown in SEQ ID NOs. 1-6; the schematic diagrams of the above-mentioned six CD81 aptamers are shown in Figure 2. The above-mentioned aptamers all have the ability to bind to human CD81 protein.
表1. 6个CD81-2的亚克隆序列Table 1. Subclone sequence of 6 CD81-2
适配体名称Aptamer name 碱基数Number of bases 序列(5’-3’)Sequence (5’-3’)
CD81-2CD81-2 4040 TCATTTAGCCGACATCCGGTTGGTTTATGGTTTCCCTAAATCATTTAGCCGACATCCGGTTGGTTTATGGTTTCCCTAAA
CD81-2FCD81-2F 3232 CCGACATCCGGTTGGTTTATGGTTTCCCTAAACCGACATCCGGTTGGTTTATGGTTTCCCTAAA
CD81-2F-2CD81-2F-2 24twenty four CCGACATCCGGGGTTGGTTTCCCACCGACATCCGGGGTTGGTTTCCCA
CD81-2JCD81-2J 2828 CATTTAGCCGACATCCGGTTGGTTTATGCATTTAGCCGACATCCGGTTGGTTTATG
CD81-2J-1CD81-2J-1 2828 CGTTTAGCCGCCATCCGGGCGGCTTACGCGTTTAGCCGCCATCCGGGCGGCTTACG
CD81-2J-6CD81-2J-6 22twenty two CATTTGACCATCCGGGTCTATGCATTTGACCATCCGGGTCTATG
实施例2.细胞水平鉴定CD81适配体和CD81的结合能力Example 2. Identification of the binding ability of CD81 aptamer and CD81 at the cellular level
1、构建CD81过表达的重组动物细胞1. Construction of recombinant animal cells overexpressing CD81
CD81过表达的重组动物细胞(将该细胞命名为293T/CD81)的具体构建方法如下:将质粒pCMV3-C-His(北京义翘神州科技有限公司,Sino Biological Inc.的产品)的KpnI和XbaI识别位点之间的序列替换为人CD81的cDNA序列,并保持pCMV3-C-His其他部分序列不变的重组表达载体,将所述重组表达载体命名为pCMV3-CD81。将pCMV3-CD81导入HEK293T细胞,得到重组细胞,将其命名293T/CD81。所述人CD81的cDNA的核苷酸序列为序列表中SEQ ID NO.7所示的核苷酸序列,其编码氨基酸序列为序列表中SEQ ID NO.8所示的带有his标签的蛋白。The specific construction method of the recombinant animal cell overexpressing CD81 (named the cell 293T/CD81) is as follows: The KpnI and XbaI of the plasmid pCMV3-C-His (Beijing Yiqiao Shenzhou Technology Co., Ltd., a product of Sino Biological Inc.) The sequence between the recognition sites is replaced with the cDNA sequence of human CD81, and other partial sequences of pCMV3-C-His remain unchanged, and the recombinant expression vector is named pCMV3-CD81. PCMV3-CD81 was introduced into HEK293T cells to obtain recombinant cells, which were named 293T/CD81. The nucleotide sequence of the human CD81 cDNA is the nucleotide sequence shown in SEQ ID NO. 7 in the sequence listing, and the encoded amino acid sequence is the his tag protein shown in SEQ ID NO. 8 in the sequence listing .
2、为了选择用于CD81适配体-细胞结合测定的合适细胞系,使用不表达CD81的HepG2细胞株和293T/CD81进行CD81抗体染色的流式细胞术测定。2. In order to select a suitable cell line for CD81 aptamer-cell binding assay, use HepG2 cell line that does not express CD81 and 293T/CD81 for CD81 antibody staining by flow cytometry.
在本实验中,设计了三个实验组,包括空白对照(图3中以对照表示,即不加CD81一抗和荧光二抗的处理),仅Brilliant Violet510标记的荧光二抗(流式检测荧光通道为AmCyan)以及同时加入CD81一抗和荧光二抗。其测定结果如表2和图3所示,结果证实仅有0.13%(小于1%)的HepG2细胞表达CD81;相反,98.4%的293T/CD81表达CD81。因此,HepG2是良好的阴性对照,而CD81过表达的HEK293T是适合于针对具有天然构象的人CD81的阳性选择细胞系。In this experiment, three experimental groups were designed, including a blank control (shown as a control in Figure 3, that is, without the treatment of CD81 primary antibody and fluorescent secondary antibody), and only Brilliant Violet510 labeled fluorescent secondary antibody (flow cytometry fluorescence detection The channel is AmCyan) and the CD81 primary antibody and fluorescent secondary antibody were added at the same time. The measurement results are shown in Table 2 and Figure 3. The results confirm that only 0.13% (less than 1%) of HepG2 cells express CD81; on the contrary, 98.4% of 293T/CD81 express CD81. Therefore, HepG2 is a good negative control, and CD81 overexpressing HEK293T is suitable for positive selection of cell lines for human CD81 with natural conformation.
表2.使用HepG2和过表达CD81的HEK293T细胞(293T/CD81)进行CD81抗体染色的流式细胞术测定的结果对照表Table 2. Comparison table of results of flow cytometry determination of CD81 antibody staining using HepG2 and CD81-overexpressing HEK293T cells (293T/CD81)
HepG2HepG2 阳性细胞%Positive cell% 中位荧光强度Median fluorescence intensity 净中位荧光强度Net median fluorescence intensity
对照Control 0.0920.092 10461046 00
二抗Secondary Antibodies 0.0320.032 10341034 -12-12
一抗+二抗Primary antibody + secondary antibody 0.130.13 10971097 5151
293T/CD81293T/CD81 阳性细胞%Positive cell% 中位荧光强度Median fluorescence intensity 净中位荧光强度Net median fluorescence intensity
对照Control 0.040.04 780780 00
二抗Secondary Antibodies 0.050.05 765765 -15-15
一抗+二抗Primary antibody + secondary antibody 98.4098.40 30613061 22812281
然后,采用600nM的FAM标记的CD81-2适配体测试其与具有天然构象的CD81的结合能力。通过将FAM标记的CD81-2适配体跟293T/CD81(表达CD81)或阴性对照HepG2细胞(不表达CD81)进行充分结合,洗脱掉未结合的CD81-2后,通过流式细胞仪检测FAM荧光强度和FAM阳性的细胞数目。结果如图4所示,结果表明,CD81-2适配体与293T/CD81结合能力显著高于阴性对照HepG2(*p<0.5)。也就是说,CD81-2适配体与具有天然构象的CD81具有一定的特异结合能力。为了评估全长CD81-2适配体分别针对HepG2和293T/CD81细胞的平衡解离常数(K'd),使用不同浓度的FAM标记的CD81-2适配体(0μM,0.1μM,0.25μM,0.5μM,1μM,2μM和5μM)应用于适配体-细胞结合亲和力测定,测定结果如表3和图5所示。结果表明CD81-2适配体与HepG2细胞的结合K'd为1072.3±141.0nM,而与293T/CD81的结合K'd为520.8±4.0nM。上述结果显示,全长CD81-2适配体对293T/CD81细胞的结合能力显著高于对阴性对照HepG2细胞的结合能力,这进一步证实CD81-2适配体是CD81的结合物。Then, 600 nM FAM-labeled CD81-2 aptamer was used to test its binding ability to CD81 in its natural conformation. By fully binding the FAM-labeled CD81-2 aptamer with 293T/CD81 (expressing CD81) or negative control HepG2 cells (not expressing CD81), the unbound CD81-2 is eluted and detected by flow cytometry FAM fluorescence intensity and number of FAM-positive cells. The results are shown in Figure 4. The results show that the binding ability of CD81-2 aptamer to 293T/CD81 is significantly higher than that of the negative control HepG2 (*p<0.5). In other words, the CD81-2 aptamer has a certain specific binding ability with CD81 in its natural conformation. In order to evaluate the equilibrium dissociation constants (K'd) of the full-length CD81-2 aptamers against HepG2 and 293T/CD81 cells, different concentrations of FAM-labeled CD81-2 aptamers (0μM, 0.1μM, 0.25μM) , 0.5μM, 1μM, 2μM and 5μM) were applied to the determination of aptamer-cell binding affinity. The results are shown in Table 3 and Figure 5. The results showed that the binding K'd of CD81-2 aptamer to HepG2 cells was 1072.3±141.0nM, and the binding K'd of 293T/CD81 was 520.8±4.0nM. The above results show that the binding ability of the full-length CD81-2 aptamer to 293T/CD81 cells is significantly higher than that of the negative control HepG2 cells, which further confirms that the CD81-2 aptamer is a CD81 conjugate.
表3table 3
Figure PCTCN2020123119-appb-000001
Figure PCTCN2020123119-appb-000001
此外,将CD81-2适配体改造成表4中所示的8个亚型,并通过上述手段验证这8个亚型与CD81的结合能力,各个处理组中的HepG2细胞含量相同,293T/CD81含量相同,FAM标记的适配体含量相同。In addition, the CD81-2 aptamer was transformed into the 8 subtypes shown in Table 4, and the binding ability of these 8 subtypes to CD81 was verified by the above methods. The HepG2 cell content in each treatment group was the same, 293T/ The content of CD81 is the same, and the content of FAM-labeled aptamers is the same.
测试结果如图6和图7所示,从结果中可以明显看出CD81-2F和CD81-2J对CD81过表达HEK293T细胞的结合能力显著高于阴性对照HepG2细胞(**p<0.1,***p<0.01)。The test results are shown in Figure 6 and Figure 7. It can be clearly seen from the results that the binding ability of CD81-2F and CD81-2J to CD81 overexpressing HEK293T cells is significantly higher than that of the negative control HepG2 cells (**p<0.1,** *p<0.01).
表4.适配体CD81-2的8个亚型序列Table 4. Sequences of 8 subtypes of aptamer CD81-2
适配体名称Aptamer name 碱基数Number of bases 序列(5’-3’)Sequence (5’-3’)
CD81-2CCD81-2C 2828 CCGACATCCGGTTGGTTTATGGTTTCCCCCGACATCCGGTTGGTTTATGGTTTCCC
CD81-2DCD81-2D 1111 CCGACATCCGGCCGACATCCGG
CD81-2ECD81-2E 1717 TTTATGGTTTCCCTAAATTTATGGTTTCCCTAAA
CD81-2FCD81-2F 3232 CCGACATCCGGTTGGTTTATGGTTTCCCTAAACCGACATCCGGTTGGTTTATGGTTTCCCTAAA
CD81-2HCD81-2H 2727 CCGACATCCGGTTGGTTTATGGTTTCCCCGACATCCGGTTGGTTTATGGTTTCC
CD81-2JCD81-2J 2828 CATTTAGCCGACATCCGGTTGGTTTATGCATTTAGCCGACATCCGGTTGGTTTATG
CD81-2MCD81-2M 2525 TTTAGCCGACATCCGGTTGCCTAAATTTAGCCGACATCCGGTTGCCTAAA
CD81-2NCD81-2N 2828 TTTAGCGTTGGTTTATGGTTTCCCTAAATTTAGCGTTGGTTTATGGTTTCCCTAAA
具体测试方法:收集HEK293T-CD81阳性和阴性对照HepG2细胞,分别将200nM和600nM的CD81适配体在95℃折叠和孵育5分钟,然后放置冰上5分钟,37℃放置15分钟;将折叠好的CD81适配体与细胞在冰上孵育30分钟,再用PBS洗涤3次,随后将细胞与CD81适配体的复合物用于流式细胞仪检测。Specific test method: Collect HEK293T-CD81 positive and negative control HepG2 cells, respectively fold and incubate 200nM and 600nM CD81 aptamers at 95°C for 5 minutes, then place on ice for 5 minutes and 37°C for 15 minutes; fold it well The CD81 aptamer and the cells were incubated on ice for 30 minutes, and then washed with PBS three times, and then the complex of the cells and the CD81 aptamer was used for flow cytometry detection.
实施例3.CD81-2J和CD81-2F亚型的结合能力鉴定Example 3. Identification of the binding ability of CD81-2J and CD81-2F subtypes
针对CD81-2J和CD81-2F,我们分别再构建了8个亚克隆,序列如表5和表6所示。通过实施例2中的测试方法,比较CD81-2J和CD81-2F的亚型的结合力强弱如图8-11所示。结果证明,亚型CD81-2J-1,CD81-2J-6和CD81-2F-2对CD81过表达HEK293T细胞(293T/CD81)的结合能力显著高于阴性对照HepG2细胞(不含CD81)(**p<0.1,***p<0.01),表明以上三个亚型对具有天然构象的CD81具有更强的结合能力。所以,选取CD81-2J-1,CD81-2J-6和CD81-2F-2用于后续验证及检测实验。For CD81-2J and CD81-2F, we constructed 8 more subclones, whose sequences are shown in Table 5 and Table 6. Through the test method in Example 2, the comparison of the binding strength of the subtypes of CD81-2J and CD81-2F is shown in Figure 8-11. The results proved that the binding capacity of subtypes CD81-2J-1, CD81-2J-6 and CD81-2F-2 to CD81 overexpressing HEK293T cells (293T/CD81) was significantly higher than that of the negative control HepG2 cells (without CD81) (* *p<0.1, ***p<0.01), indicating that the above three subtypes have stronger binding ability to CD81 with a natural conformation. Therefore, CD81-2J-1, CD81-2J-6 and CD81-2F-2 were selected for follow-up verification and testing experiments.
表5适配体CD81-2J的8个亚型序列Table 5 Sequences of 8 subtypes of aptamer CD81-2J
Figure PCTCN2020123119-appb-000002
Figure PCTCN2020123119-appb-000002
Figure PCTCN2020123119-appb-000003
Figure PCTCN2020123119-appb-000003
表6适配体CD81-2J的8个亚型序列Table 6 Sequences of 8 subtypes of aptamer CD81-2J
Figure PCTCN2020123119-appb-000004
Figure PCTCN2020123119-appb-000004
实施例4.CD81-2J-1,CD81-2J-6和CD81-2F-2结合的选择性和特异性检测Example 4. Selective and specific detection of CD81-2J-1, CD81-2J-6 and CD81-2F-2 binding
将CD81过表达HEK293T细胞(293T/CD81)通过siRNA下调CD81的表达。CD81 overexpressing HEK293T cells (293T/CD81) down-regulated the expression of CD81 by siRNA.
本实施例选用了两种下调CD81表达的siRNA,分别为siRNA-CD81-1和siRNA-CD81-2,其对应的序列分别为:siRNA-CD81-1:5’-GAACUUUCCUGUUACCUUUdTdT-3’(正义链),5’-AAAGGUAACAGGAAAGUUCdTdT-3’(反义链);siRNA-CD81-2:5’-CACCU UCUAU GUAGG CAUCU A dTdT-3’(正义链),5’-U AGAUG CCUAC AUAGA AGGUG dTdT-3’(反义链)。siRNA对照序列为:5’-UUCUCCGAACGUGUCACGUdTdT-3’(正义链),5’-ACGUGACACGUUCGGAGAAdTdT-3’(反义链)。转染方法:HEK293T细胞在6孔板中汇集到60%密度时,先用lipofectamine 2000转染pCMV3-CD81(4μg/孔)以过表达CD81蛋白质;24小时后,再转染siRNA下调细胞内CD81蛋白质的表达水平:取8μL的lipofectamine 2000加192μL的无血清DMEM,室温放置5分钟为A液;同时将5μL 20μM的siRNA(100pmol)加入195μL的无血清DMEM中,混匀成B液;将A,B液混匀,室温放置20分钟后加入到含有600μL无血清DMEM的HEK293T培养液中;6小时后,更换为含10%血清的DMEM培养液;48小时后,得到重组细胞,将转染siRNA-CD81-1的细胞命名为293T/CD81siRNA-1(CD81下调的细胞);将转染siRNA-CD81-2的细胞命名为293T/CD81siRNA-2(CD81下调的细胞)。In this example, two siRNAs that down-regulate the expression of CD81 were selected, siRNA-CD81-1 and siRNA-CD81-2, and their corresponding sequences were: siRNA-CD81-1: 5'-GAACUUUCCUGUUACCUUUdTdT-3' (sense strand ), 5'-AAAGGUAACAGGAAAGUUCdTdT-3' (antisense strand); siRNA-CD81-2: 5'-CACCU UCUAU GUAGG CAUCU A dTdT-3' (sense strand), 5'-U AGAUG CCUAC AUAGA AGGUG dTdT-3' (Antisense strand). The siRNA control sequence is: 5'-UUCUCCGAACGUGUCACGUdTdT-3' (sense strand), 5'-ACGUGACACGUUCGGAGAAdTdT-3' (antisense strand). Transfection method: When HEK293T cells are pooled to 60% density in a 6-well plate, first transfect pCMV3-CD81 (4μg/well) with lipofectamine 2000 to overexpress CD81 protein; 24 hours later, transfect siRNA to down-regulate intracellular CD81 Protein expression level: Take 8μL of lipofectamine 2000 plus 192μL of serum-free DMEM and place it at room temperature for 5 minutes as solution A; at the same time, add 5μL of 20μM siRNA (100pmol) to 195μL of serum-free DMEM and mix it into solution B; , B solution mixed, placed at room temperature for 20 minutes, then added to the HEK293T medium containing 600μL serum-free DMEM; 6 hours later, replaced with 10% serum-containing DMEM medium; 48 hours later, the recombinant cells will be transfected siRNA-CD81-1 cells were named 293T/CD81siRNA-1 (CD81 down-regulated cells); cells transfected with siRNA-CD81-2 were named 293T/CD81siRNA-2 (CD81 down-regulated cells).
分别将CD81-2J-1,CD81-2J-6和CD81-2F-2与细胞(HEK293T细胞、HEK293T过表达CD81、HEK293T过表达CD81后转染siRNA-CD81-1和HEK293T过表达CD81后转染siRNA-CD81-1中的任一种细胞)进行孵育,按照实施例2中的CD81适配体-细胞亲和力实验检测适配体的亲和力。结果表明干扰下调CD81表达后,三种CD81-2适配体亚型CD81-2J-1,CD81-2J-6和CD81-2F-2的亲和力均显著降低(***p<0.01,****p<0.001)(图15-17)。以上结果表明,CD81-2J-1,CD81-2J-6和CD81-2F-2是与CD81选择性和特异性结合的适配体。图15-17中,293T/WT为野生型HEK293细胞;293T/CD81 control为HEK293过表达CD81;293T/CD81 scrambled为HEK293过表达CD81用随机序列的siRNA转染;293T/CD81 siRNA-1为HEK293过表达CD81后用siRNA-CD81-1转染;293T/CD81 siRNA-2为HEK293过表达CD81后用siRNA-CD81-1转染。图中结果为均数±标准差,实验重复次数=3。***,P≤0.001。CD81-2J-1, CD81-2J-6 and CD81-2F-2 were transfected with cells (HEK293T cells, HEK293T overexpressing CD81, HEK293T overexpressing CD81 and transfected with siRNA-CD81-1 and HEK293T overexpressing CD81 after transfection Any cell of siRNA-CD81-1) was incubated, and the affinity of the aptamer was tested according to the CD81 aptamer-cell affinity experiment in Example 2. The results showed that after interference with down-regulation of CD81 expression, the affinity of the three CD81-2 aptamer subtypes CD81-2J-1, CD81-2J-6 and CD81-2F-2 were significantly reduced (***p<0.01, ** **p<0.001) (Figure 15-17). The above results indicate that CD81-2J-1, CD81-2J-6 and CD81-2F-2 are aptamers that selectively and specifically bind to CD81. In Figure 15-17, 293T/WT are wild-type HEK293 cells; 293T/CD81 control is HEK293 overexpressing CD81; 293T/CD81 scrambled is HEK293 overexpressing CD81 with random sequence siRNA transfection; 293T/CD81 siRNA-1 is HEK293 After overexpressing CD81, it was transfected with siRNA-CD81-1; 293T/CD81 siRNA-2 was HEK293 after overexpressing CD81 and transfected with siRNA-CD81-1. The result in the figure is the mean±standard deviation, and the number of experiment repetitions=3. ***, P≤0.001.
测试结果表示CD81-2J-1,CD81-2J-6和CD81-2F-2的k’d值分别如表7-表9所示,二维结构分别如图12-14所示。The test results show that the k'd values of CD81-2J-1, CD81-2J-6 and CD81-2F-2 are shown in Table 7-9, respectively, and the two-dimensional structure is shown in Figure 12-14, respectively.
表7.CD81-2J与CD81-2J-1的k’d值对比表Table 7. Comparison table of k’d values between CD81-2J and CD81-2J-1
Figure PCTCN2020123119-appb-000005
Figure PCTCN2020123119-appb-000005
Figure PCTCN2020123119-appb-000006
Figure PCTCN2020123119-appb-000006
表8.CD81-2J与CD81-2J-6的k’d值对比表Table 8. Comparison table of k’d values of CD81-2J and CD81-2J-6
Figure PCTCN2020123119-appb-000007
Figure PCTCN2020123119-appb-000007
表9.CD81-2 F与CD81-2F-2的k’d值对比表Table 9. Comparison table of k’d values of CD81-2 F and CD81-2F-2
Figure PCTCN2020123119-appb-000008
Figure PCTCN2020123119-appb-000008
分别将CD81-2J-1,CD81-2J-6和CD81-2F-2与上述过表达CD81的HEK293T细胞或干扰下调CD81表达的HEK293T细胞进行孵育,再通过流式细胞仪检测适配体的亲和力。Incubate CD81-2J-1, CD81-2J-6 and CD81-2F-2 with the above-mentioned HEK293T cells that overexpress CD81 or HEK293T cells that interfere with down-regulation of CD81 expression, and then detect the affinity of the aptamer by flow cytometry .
另外,通过在HEK293T细胞中过表达其它具有组氨酸(-His)标记的跨膜蛋白来检测适配体CD81-2J-1,CD81-2J-6,CD81-2F-2与CD81结合的选择性和特异性。具体方法:分别制备HEK293T,CD81过表达的HEK293T,CD9过表达的HEK293T,CD63过表达的HEK293T,CDH13过表达的HEK293T,CD40过表达的HEK293T和Her2过表达的HEK293T细胞(制备方法参考实施例1中制备方法,其中CD9:Genebank Accession Number:NM_001769;CD63:Genebank Accession Number:NM_001257390;CDH13:Genebank Accession Number:NM_001220490;CD40:Genebank Accession Number:NM_001250;Her2:Genebank Accession Number:NM_004448.2);每500000个细胞为一组。将200nM FAM标记的CD81适配体在95℃折叠和孵育5分钟,然后放置冰上5分钟,37℃放置15分钟;将折叠好的CD81适配体与细胞在冰上孵育30分钟,再用PBS洗涤3次,随后将上述细胞与CD81适配体的复合物用于流式细胞仪检测。In addition, by overexpressing other transmembrane proteins labeled with histidine (-His) in HEK293T cells to detect the selection of aptamers CD81-2J-1, CD81-2J-6, CD81-2F-2 and CD81 binding Sex and specificity. Specific method: Prepare HEK293T, CD81 overexpressed HEK293T, CD9 overexpressed HEK293T, CD63 overexpressed HEK293T, CDH13 overexpressed HEK293T, CD40 overexpressed HEK293T and Her2 overexpressed HEK293T cells (see Example 1 for the preparation method) CD9: Genebank Accession Number: NM_001769; CD63: Genebank Accession Number: NM_001257390; CDH13: Genebank Accession Number: NM_001220490; CD40: Genebank Accession Number: NM_001250; Her2: Genebank Accession Number: NM_004448.2); Every 50000 Each cell is a group. Fold and incubate the 200nM FAM-labeled CD81 aptamer at 95°C for 5 minutes, then place it on ice for 5 minutes and 37°C for 15 minutes; incubate the folded CD81 aptamer with the cells on ice for 30 minutes, and then use After washing with PBS three times, the complex of the above-mentioned cells and CD81 aptamer was used for flow cytometry detection.
经蛋白免疫印迹实验检测组氨酸标记,结果证明,CD81过表达的HEK293T及其他跨膜蛋白过表达的HEK293T细胞均已成功建立(如图18所示)。使用上述细胞进行实施例2中的CD81适配体-细胞亲和力实验。结果表明,三种CD81-2的适配体亚型CD81-2J-1,CD81-2J-6和CD81-2F-2对CD81过表达的HEK293T细胞均具有极高的亲和力(***p<0.01,****p<0.001);对过表达其它跨膜蛋白的HEK293T细胞亲和力无显著性改变(如图19-21所示)。以上结果揭示,三种CD81-2的适配体亚型与CD81的结合具有极高的选择性和特异性。The histidine tag was detected by western blot experiment, and the results proved that HEK293T cells overexpressing CD81 and HEK293T cells overexpressing other transmembrane proteins have been successfully established (as shown in Figure 18). The CD81 aptamer-cell affinity experiment in Example 2 was performed using the above-mentioned cells. The results showed that the three CD81-2 aptamer subtypes CD81-2J-1, CD81-2J-6 and CD81-2F-2 all have extremely high affinity for CD81 overexpressing HEK293T cells (***p< 0.01, ****p<0.001); there is no significant change in the affinity of HEK293T cells overexpressing other transmembrane proteins (as shown in Figure 19-21). The above results reveal that the binding of the three CD81-2 aptamer subtypes to CD81 has extremely high selectivity and specificity.
实施例5、CD81适配体捕获人血清外泌体的能力Example 5. Ability of CD81 aptamer to capture human serum exosomes
为了评估单个CD81适配体捕获人血清外泌体的最佳时间,使用生物素(biotin;吉玛基因合成,货号:F01001)标记CD81-2F-2、CD81-2J-1和CD81-2J-6,将生物素标记的CD81适配体CD81-2F-2、CD81-2J-1和CD81-2J-6与人血清分别孵育30分钟,1小时和4小时。通过链霉亲和素包被的磁珠捕获生物素-CD81适配体-外泌体复合物,然后使用抗人CD81抗体进行Western检测。如图22所示,CD81-2F-2适配体在30分钟内能捕获大量外泌体,而延长孵育时间至4小时仅略微增加捕获量。CD81-2J-1和CD81-2J-6适配体在孵育30分钟后都能有效捕获外泌体,进一步孵育1小时或4小时不会显著增加捕获外泌体的量。结果如图22所示,图22为用生物素标记的CD81-2F-2,CD81-2J-1和CD81-2J-6从人血清里捕获人的外泌体时CD81核酸配适体与血清孵育所需的最佳同时还是最短的时间的实验验证。图22A为对用不同孵育时间所捕获的外泌体的CD81蛋白印迹。图22B为根据CD81蛋白印迹分析得到的在核酸配适体与血清孵育不同时间后得到的外泌体来源的CD81蛋白半定量。图中结果为均数±标准差,实验重复次数为3次。结果表明CD81-2J-1和CD81-2J-6适配体可在30分钟内有效结合人血清中的外泌体。因此,CD81-2J-1和CD81-2J-6适配体捕获人血清外泌体的最佳时间确定为30分钟,而CD81-2F-2适配体则需要更长的孵育时间以达到最高的外泌体捕获量。In order to evaluate the best time for a single CD81 aptamer to capture human serum exosomes, biotin (biotin; Gemma gene synthesis, catalog number: F01001) was used to label CD81-2F-2, CD81-2J-1 and CD81-2J- 6. Incubate the biotin-labeled CD81 aptamers CD81-2F-2, CD81-2J-1 and CD81-2J-6 with human serum for 30 minutes, 1 hour and 4 hours, respectively. The biotin-CD81 aptamer-exosomal complex was captured by streptavidin-coated magnetic beads, and then the anti-human CD81 antibody was used for Western detection. As shown in Figure 22, the CD81-2F-2 aptamer can capture a large number of exosomes within 30 minutes, while extending the incubation time to 4 hours only slightly increases the capture volume. CD81-2J-1 and CD81-2J-6 aptamers can effectively capture exosomes after 30 minutes of incubation, and further incubation for 1 hour or 4 hours will not significantly increase the amount of captured exosomes. The results are shown in Figure 22. Figure 22 shows the CD81 nucleic acid aptamer and serum when human exosomes are captured from human serum with biotin-labeled CD81-2F-2, CD81-2J-1 and CD81-2J-6 Experimental verification of the best and shortest time required for incubation. Figure 22A shows CD81 Western blots of exosomes captured with different incubation times. Figure 22B shows the semi-quantitative CD81 protein derived from exosomes obtained after the nucleic acid ligand and serum are incubated for different periods of time according to CD81 western blot analysis. The result in the figure is the mean ± standard deviation, and the experiment is repeated 3 times. The results show that CD81-2J-1 and CD81-2J-6 aptamers can effectively bind to exosomes in human serum within 30 minutes. Therefore, the optimal time for CD81-2J-1 and CD81-2J-6 aptamers to capture human serum exosomes is determined to be 30 minutes, while CD81-2F-2 aptamers require a longer incubation time to reach the maximum The amount of exosomes captured.
实施例6、基于CD81适配体-磁珠的系统能够在孵育分离外泌体的能力Example 6. The ability of a CD81 aptamer-magnetic bead-based system to isolate exosomes during incubation
为了验证基于CD81适配体–磁珠的系统捕获人血清外泌体的最短时间,分别将实施例5中的生物素标记的CD81-2J-1适配体(图23中用CD81表示)和人血清孵育1分钟,20分钟和1小时。然后再通过链霉亲和素包被的磁珠分别捕获上述CD81适配体外泌体复合物1分钟(bead 1min)和5分钟(bead 5min)。最后,裂解由CD81适配体-磁珠捕获的外泌体,通过Western印迹对外泌体的经典标记物CD81进行检测。结果如图23所示,图23为用本发明的生物素标记的CD81-2J-1核酸配适体从人血清里来捕获人的外泌体时与用安捷伦科技有限公司的2.7微米的磁珠孵育所需的时间的实验验证。图23A为用安捷伦科技有限公司的2.7微米的磁珠孵育不同时间后所捕获的外泌体的CD81蛋白印迹。图23B为根据CD81蛋白印迹分析得到的在安捷伦科技有限公司的2.7微米的磁珠孵育不同时间后所捕获的外泌体的来源的CD81蛋白半定量结果。图中结果为均数±标准差,实验重复次数为3次。如图23A所示,与CD81适配体孵育一分钟后捕获的外泌体样品即可检测到CD81蛋白,该信号随着CD81适配体与血清孵育时间的增加而增加(图23B所示)。以上结果表明,本发明的CD81适配体可以在两分钟内捕获人血清外泌体:一分钟形成CD81适配体-外泌体复合物,另一分钟用于链霉亲和素磁珠抓取CD81适配体-外泌体复合物。2分钟即可从血清中有效分离外泌体是迄今为止报道的最快的外泌体分离方法。In order to verify the shortest time for the CD81 aptamer-magnetic bead-based system to capture human serum exosomes, the biotin-labeled CD81-2J-1 aptamer (indicated by CD81 in Figure 23) and The human serum was incubated for 1 minute, 20 minutes and 1 hour. Then, the above-mentioned CD81 aptamer exosome complex was captured by streptavidin-coated magnetic beads for 1 minute (bead 1 min) and 5 minutes (bead 5 min). Finally, the exosomes captured by CD81 aptamer-magnetic beads were lysed, and the classical marker CD81 of exosomes was detected by Western blotting. The results are shown in Figure 23. Figure 23 shows the difference between using the biotin-labeled CD81-2J-1 nucleic acid aptamer of the present invention to capture human exosomes from human serum. Experimental verification of the time required for bead incubation. Figure 23A is a CD81 Western blot of exosomes captured after incubation with 2.7 micron magnetic beads from Agilent Technologies Co., Ltd. for different times. FIG. 23B is a semi-quantitative result of CD81 protein derived from exosomes captured after incubation with 2.7 micron magnetic beads of Agilent Technologies Co., Ltd. after different times of incubation based on CD81 Western blot analysis. The result in the figure is the mean ± standard deviation, and the experiment is repeated 3 times. As shown in Figure 23A, CD81 protein can be detected in exosomal samples captured after one minute of incubation with CD81 aptamer, and this signal increases with the incubation time of CD81 aptamer and serum (Figure 23B) . The above results show that the CD81 aptamer of the present invention can capture human serum exosomes within two minutes: a CD81 aptamer-exosomal complex is formed in one minute, and the other minute is used for streptavidin magnetic beads. Take the CD81 aptamer-exosomal complex. The effective separation of exosomes from serum within 2 minutes is the fastest method for separating exosomes reported so far.
实施例7、通过流式细胞术检测CD81适配体捕获人血清外泌体的能力。Example 7. The ability of CD81 aptamer to capture human serum exosomes was detected by flow cytometry.
使用生物素和CY5荧光标记(Q670,购自苏州吉玛基因)同时标记CD81-2F-2,CD81-2J-1和CD81-2J-6得到生物素和Q670标记的CD81适配体,将生物素Q670标记的CD81适配体与人血清一起孵育,然后使用尺寸为2.7μm的链霉亲和素包被的磁珠(来之安捷伦科技有限公司)捕获生物素-CD81适配体-外泌体结合物。在用藻红蛋白(PE)标记的CD9抗体染色后,通过流式细胞术检测固定在磁珠上的外泌体。以CY5荧光标记(Q670)和生物素共同标记的乱序DNA用作CD81 DNA适配体的阴性对照。以PE标记的小鼠IgG1作为PE标记的CD9抗体的阴性对照。结果如图24所示,图24为验证本发明的CD81-2F-2,CD81-2J-1和CD81-2J-6从人血清里捕获人的外泌体能力的结果图,图24A为本发明的核酸配适体是用Q670和生物素双标记的,在流式细胞仪里用APC通道来检测以证明核酸配适体的确与链酶亲和素包被的磁珠结合。图24B为用PE标记的CD9抗体(检测外泌体)和流式细胞仪来证明只有本发明的CD81-2F-2,CD81-2J-1和CD81-2J-6的CD81核酸配适体能捕获人血清里的外泌体,其他的阴性对照(磁珠本身,图中用磁珠表示;随机DNA片段,图中用DNA表示;或对照抗体,图中免疫球蛋白G1对照)均无作用。如图24A所示,与仅含人血清的磁珠形成鲜明对比,Q670标记的CD81-适配体组或Q670标记的乱序DNA组中99.9%链霉亲和素磁珠表面覆盖有Q670标记的CD81-适配体或乱序DNA。如图24B所示,与三个对照组相比,CD81适配体组中至少有55.4%的磁珠复合物呈PE(CD9标记)阳性。上述证据表明,在99.9%Q670标记的生物素-CD81适配体包被的磁珠复合物中,约有55.4%呈血清外泌体阳性。因此,与Western印迹结果高度一致,流式细胞术研究结果进一步证实了所有三种CD81适配体都能有效捕获人血清外泌体。CD81-2F-2, CD81-2J-1 and CD81-2J-6 were simultaneously labeled with biotin and CY5 fluorescent label (Q670, purchased from Suzhou Gemma Gene) to obtain CD81 aptamers labeled with biotin and Q670. The CD81 aptamer labeled with Q670 was incubated with human serum, and then the biotin-CD81 aptamer-exocrine was captured using streptavidin-coated magnetic beads with a size of 2.7 μm (from Agilent Technologies Co., Ltd.)体conjugates. After staining with phycoerythrin (PE) labeled CD9 antibody, the exosomes immobilized on magnetic beads were detected by flow cytometry. The scrambled DNA co-labeled with CY5 fluorescent label (Q670) and biotin was used as a negative control for the CD81 DNA aptamer. PE-labeled mouse IgG1 was used as a negative control for PE-labeled CD9 antibody. The results are shown in Figure 24. Figure 24 is a diagram of the results of verifying the ability of CD81-2F-2, CD81-2J-1 and CD81-2J-6 of the present invention to capture human exosomes from human serum. Figure 24A shows The invented nucleic acid aptamer is double-labeled with Q670 and biotin, and is detected by APC channel in a flow cytometer to prove that the nucleic acid aptamer is indeed bound to the streptavidin-coated magnetic beads. Figure 24B shows that only the CD81-2F-2, CD81-2J-1 and CD81-2J-6 CD81 nucleic acid aptamers of the present invention can be captured by PE-labeled CD9 antibody (for detecting exosomes) and flow cytometry Exosomes in human serum, other negative controls (magnetic beads themselves, represented by magnetic beads in the figure; random DNA fragments, represented by DNA in the figure; or control antibodies, immunoglobulin G1 control in the figure) have no effect. As shown in Figure 24A, in sharp contrast to magnetic beads containing only human serum, 99.9% of streptavidin magnetic beads in the Q670-labeled CD81-aptamer group or Q670-labeled scrambled DNA group are covered with Q670 label CD81-aptamers or scrambled DNA. As shown in Figure 24B, compared with the three control groups, at least 55.4% of the magnetic bead complexes in the CD81 aptamer group were PE (CD9 labeled) positive. The above evidence shows that about 55.4% of 99.9% Q670-labeled biotin-CD81 aptamer-coated magnetic bead complexes are positive for serum exosomes. Therefore, consistent with the results of Western blotting, the results of flow cytometry further confirmed that all three CD81 aptamers can effectively capture human serum exosomes.
实施例8、CD81适配体的特异性验证Example 8. Specificity verification of CD81 aptamer
为了确定本发明的适配体的物种特异性,首先确定链霉亲和素包被的磁珠是否能够在生物素标记的抗牛CD81抗体与牛血清孵育后捕获牛外泌体。为此,将生物素标记的抗牛CD81抗体和牛外泌体的复合物与链霉亲和素包被的磁珠一起孵育,然后使用抗牛CD81或CD9抗体进行Western和流式细胞术检测。意料之中结果表明,本发明的磁珠系统可以通过抗牛CD81抗体的介导有效地捕获牛源外泌体。In order to determine the species specificity of the aptamer of the present invention, it is first determined whether the streptavidin-coated magnetic beads can capture bovine exosomes after incubation with biotin-labeled anti-bovine CD81 antibody and bovine serum. For this purpose, the complex of biotin-labeled anti-bovine CD81 antibody and bovine exosomes was incubated with streptavidin-coated magnetic beads, and then anti-bovine CD81 or CD9 antibodies were used for Western and flow cytometry detection. The expected results indicate that the magnetic bead system of the present invention can effectively capture bovine exosomes through the mediation of anti-bovine CD81 antibodies.
利用这些可以与人和牛来源的CD81/CD9结合的抗体作为阳性对照,来证明基于CD81适配体-磁珠系统捕获外泌体的特异性。如图25A所示,用生物素标记的抗牛CD81抗体孵育组可以清楚地检测到牛CD81和CD9,但用生物素标记的CD81适配体孵育组没有检测到牛CD81和CD9,表明CD81适配体不与来自牛的外泌体结合。These antibodies that can bind to CD81/CD9 from human and bovine are used as positive controls to prove the specificity of capturing exosomes based on the CD81 aptamer-magnetic bead system. As shown in Figure 25A, the incubation group with biotin-labeled anti-bovine CD81 antibody can clearly detect bovine CD81 and CD9, but the biotin-labeled CD81 aptamer incubation group does not detect bovine CD81 and CD9, indicating that CD81 is suitable. The ligand does not bind to bovine exosomes.
为了进一步证实CD81适配体不与牛外泌体相互作用,进一步利用流式细胞仪分析,其灵敏度比western检测高几个数量级。如图25B所示,与仅含牛血清的磁珠组相比,三种CD81适配体CD81-2F-2,CD81-2J-1和CD81-2J-6中PE-CD9的荧光强度没有显著差异,表明我们的CD81适配体不捕获牛血清外泌体。相反,用抗牛CD81抗体处理的样品中PE-CD9的荧光强度显著向右移动(49.0%阳性磁珠),与仅含牛血清的磁珠和三种CD81适配体组相比有显著阳性。因此,CD81-2F-2,CD81-2J-1和CD81-2J-6适配体识别并特异性结合人外泌体,与牛外泌体无交叉反应。In order to further confirm that the CD81 aptamer does not interact with bovine exosomes, flow cytometry analysis was further used, and its sensitivity was several orders of magnitude higher than that of western detection. As shown in Figure 25B, compared with the magnetic bead group containing only bovine serum, the fluorescence intensity of PE-CD9 in the three CD81 aptamers CD81-2F-2, CD81-2J-1 and CD81-2J-6 was not significant The difference indicates that our CD81 aptamer does not capture bovine serum exosomes. On the contrary, the fluorescence intensity of PE-CD9 in the samples treated with anti-bovine CD81 antibody shifted significantly to the right (49.0% positive magnetic beads), which was significantly positive compared with the magnetic beads containing only bovine serum and the three CD81 aptamer groups . Therefore, CD81-2F-2, CD81-2J-1 and CD81-2J-6 aptamers recognize and specifically bind to human exosomes and do not cross-react with bovine exosomes.
结果如图25所示,图25证明本发明的CD81-2F-2,CD81-2J-1和CD81-2J-6的CD81核酸配适体只识别人源的外泌体而不于牛的外泌体结合。生物素标记的215nM的核酸配适体与小牛血清共孵育4小时用链酶亲和素包被的磁珠捕获。然后用抗牛的CD81的抗体来检测发明的CD81-2F-2,CD81-2J-1和CD81-2J-6是否能够捕获牛的外泌体。图25A用抗牛CD9抗体和蛋白印迹实验来显示生物素标记的抗牛的CD81抗体能够从小牛血清中通过链酶亲和素包被的磁珠捕获,但是用生物素标记的CD81-2F-2,CD81-2J-1和CD81-2J-6的CD81核酸配适体不能够捕获牛的外泌体。图25Ba用Q670和生物素双标记的CD81核酸配适体在流式细胞仪里用APC通道来检测以证明核酸配适体的确与链酶亲和素包被的磁珠结合。图25Bb显示用生物素标记的抗小牛来源的CD81抗体(检测外泌体)与链酶亲和素包被的磁珠合用可以获小牛血清里的外泌体。但是,同样生物素标记的本发明的CD81-2F-2,CD81-2J-1和CD81-2J-6的CD81核酸配适体或磁珠本身不能捕获小牛血清里的外泌体。The results are shown in Figure 25, which proves that the CD81 nucleic acid aptamers of CD81-2F-2, CD81-2J-1 and CD81-2J-6 of the present invention only recognize human exosomes and not bovine exosomes. Exosomes binding. The biotin-labeled 215 nM nucleic acid aptamer was incubated with calf serum for 4 hours and captured with streptavidin-coated magnetic beads. Then use the anti-bovine CD81 antibody to detect whether the invention CD81-2F-2, CD81-2J-1 and CD81-2J-6 can capture bovine exosomes. Figure 25A used anti-bovine CD9 antibody and Western blot experiment to show that biotin-labeled anti-bovine CD81 antibody can be captured from calf serum by streptavidin-coated magnetic beads, but with biotin-labeled CD81-2F- 2. The CD81 nucleic acid aptamers of CD81-2J-1 and CD81-2J-6 cannot capture bovine exosomes. Figure 25 Ba double-labeled CD81 nucleic acid aptamer with Q670 and biotin was detected by APC channel in a flow cytometer to prove that the nucleic acid aptamer did indeed bind to the streptavidin-coated magnetic beads. Figure 25Bb shows that the combination of biotin-labeled anti-calf-derived CD81 antibody (detection of exosomes) and streptavidin-coated magnetic beads can obtain exosomes in calf serum. However, the same biotin-labeled CD81-2F-2, CD81-2J-1 and CD81-2J-6 CD81 nucleic acid aptamers or magnetic beads of the present invention cannot capture exosomes in calf serum.
实施例9、CD81抗体与CD81适配体分离的外泌体中含有血清蛋白含量的比较Example 9. Comparison of serum protein content in exosomes separated from CD81 antibody and CD81 aptamer
普通的亲和力外泌体分离试剂盒都使用各种抗体。为了评估生物素标记的CD81适配体捕获的外泌体的纯度,比较化学抗体(CD81适配体)和CD81抗体分别捕获的外泌体中血清蛋白的含量。购买三种生物素标记的抗人CD81单克隆抗体,分别为抗体-1(BioLegend,Cat#349514)(对应图26中的CD81 Ab-1),抗体-2(R&D,Cat#RDSMAB4615)(对应图26中的CD81 Ab-2)和抗体-3(MyBioSource,Cat#MBS666563)(对应图26中的CD81 Ab-3)。实验中所有CD81适配体和抗体均含有生物素标记,并使用相同的链霉亲和素包被的磁珠(Agilent,Cat#PL6827-1030)分离CD81适配体-外泌体和CD81抗体-外泌体复合物。磁珠捕获的外泌体裂解后,使用针对外泌体标记物的抗体(CD81和CD9)以及针对常见的与外泌体共同分离出的血清蛋白污染物抗体(IgG,血清白蛋白,IgM和ApoB)进行免疫印迹分析。结果如图26所示,图26显示证明与其他三个商业来源的生物素标记的CD81抗体来对比,本发明的CD81-2F-2,CD81-2J-1和CD81-2J-6的CD81核酸配适体在捕获人血清里的外泌体时,得到的外泌体含有较少的血源性的污染蛋白质。将215nM的生物素标记的抗体或核酸配适体与500微升的人血清混合后孵育30分钟后再与链酶亲和素包被的磁珠孵育20分钟然后用PBS清洗后,分别用抗体IgG、血清白蛋白(对应图26中的serum albumin)、IgM、ApoB、CD81和CD9进行蛋白印迹分析,结果如图26A所示。图26B为半定量分析,五种不同的血源蛋白的丰度皆是用各自蛋白印迹中CD81蛋白带的丰度做基准来比较的。图中结果为均数±标准差,实验重复次数为3次。如图26A和图26B-a所示,通过Western检测的CD9/CD81比例分析,本发明的CD81适配体捕获的外泌体群体与三种商业化CD81抗体略微不同。为了比较不同方式分离外泌体时血清蛋白的污染程度,采用Western中的血清蛋白信号与CD81(作为加载对照)信号的比例作为判断污染程度的指标。如图21B-b所示,CD81-2F-2-(P≤0.001),CD81-2J-1-(P≤0.01),CD81-2J-6-(P≤0.0001)适配体组)和CD81抗体-2(P≤0.01)组IgG/CD81的比例显著低于CD81抗体-1-和CD81抗体-3组。此外,与CD81抗体-2组相比,CD81-2F-2(P≤0.05)和CD81-2J-6(P≤0.05)适配体捕获的外泌体中IgG/CD81的比例显著降低(如图26B-b)。因此,使用CD81-2F-2和CD81-2J-6适配体分离得到的外泌体与用三种CD81抗体获得的外泌体相比,有着更低的血清蛋白的污染(IgG)。Common affinity exosome isolation kits use various antibodies. In order to evaluate the purity of the exosomes captured by the biotin-labeled CD81 aptamer, the serum protein content in the exosomes captured by the chemical antibody (CD81 aptamer) and the CD81 antibody were compared. Purchase three biotin-labeled anti-human CD81 monoclonal antibodies, namely antibody-1 (BioLegend, Cat#349514) (corresponding to CD81 Ab-1 in Figure 26), antibody-2 (R&D, Cat#RDSMAB4615) (corresponding to CD81 Ab-2 in Figure 26 and Antibody-3 (MyBioSource, Cat#MBS666563) (corresponding to CD81 Ab-3 in Figure 26). In the experiment, all CD81 aptamers and antibodies contained biotin label, and the same streptavidin-coated magnetic beads (Agilent, Cat#PL6827-1030) were used to separate CD81 aptamers-exosomes and CD81 antibodies -Exosomal complexes. After the exosomes captured by the magnetic beads are lysed, antibodies against exosomal markers (CD81 and CD9) and antibodies against common serum protein contaminants (IgG, serum albumin, IgM and ApoB) Western blot analysis. The results are shown in Figure 26. Figure 26 shows the CD81 nucleic acid of CD81-2F-2, CD81-2J-1 and CD81-2J-6 of the present invention in comparison with three other commercial sources of biotin-labeled CD81 antibodies. When the aptamer captures exosomes in human serum, the obtained exosomes contain less blood-borne contaminating proteins. Mix 215nM of biotin-labeled antibody or nucleic acid aptamer with 500 microliters of human serum and incubate for 30 minutes, then incubate with streptavidin-coated magnetic beads for 20 minutes and wash with PBS, then use antibodies respectively IgG, serum albumin (corresponding to serum albumin in Figure 26), IgM, ApoB, CD81 and CD9 were subjected to Western blot analysis, and the results are shown in Figure 26A. Figure 26B is a semi-quantitative analysis. The abundances of five different blood-derived proteins are all compared using the abundance of CD81 protein bands in their Western blots as a benchmark. The result in the figure is the mean ± standard deviation, and the experiment is repeated 3 times. As shown in Fig. 26A and Fig. 26B-a, through the analysis of the CD9/CD81 ratio detected by Western, the exosomal population captured by the CD81 aptamer of the present invention is slightly different from the three commercial CD81 antibodies. In order to compare the degree of contamination of serum protein when separating exosomes in different ways, the ratio of the signal of serum protein in Western to the signal of CD81 (as a loading control) was used as an index to judge the degree of contamination. As shown in Figure 21B-b, CD81-2F-2-(P≤0.001), CD81-2J-1-(P≤0.01), CD81-2J-6-(P≤0.0001) aptamer group) and CD81 The ratio of IgG/CD81 in the antibody-2 (P≤0.01) group was significantly lower than that in the CD81 antibody-1- and CD81 antibody-3 groups. In addition, compared with the CD81 antibody-2 group, the ratio of IgG/CD81 in exosomes captured by CD81-2F-2 (P≤0.05) and CD81-2J-6 (P≤0.05) aptamers was significantly reduced (e.g. Figure 26B-b). Therefore, the exosomes isolated using CD81-2F-2 and CD81-2J-6 aptamers have lower serum protein contamination (IgG) than those obtained with three CD81 antibodies.
由于白蛋白是最丰富的血清蛋白之一,外泌体分离液中的血清白蛋白含量是衡量外泌体分离方法的特 异性和纯度的极好指标。如图21B-c所示,与CD81抗体-2和CD81抗体-3相比,三种CD81适配体及CD81抗体-1的外泌体分离液中血清白蛋白/CD81的比例显著降低。具体而言,CD81-2F-2和CD81-2J-6适配体的外泌体分离液中血清白蛋白的量分别比使用CD81抗体-2或CD81抗体-3降低12倍和3倍。As albumin is one of the most abundant serum proteins, the content of serum albumin in the exosome separation solution is an excellent indicator of the specificity and purity of the exosome separation method. As shown in Figure 21B-c, compared with CD81 antibody-2 and CD81 antibody-3, the ratio of serum albumin/CD81 in the exosomal separation solution of the three CD81 aptamers and CD81 antibody-1 was significantly reduced. Specifically, the amount of serum albumin in the exosomal separation solution of CD81-2F-2 and CD81-2J-6 aptamers was reduced by 12 times and 3 times compared with the use of CD81 antibody-2 or CD81 antibody-3, respectively.
脂蛋白是外泌体分离液中的主要污染物,通过多种方法分离的外泌体组分中有多达70%的颗粒是脂蛋白,而不是真正的外泌体。在血清/血浆制备的大多数外泌体中,载脂蛋白B(ApoB)是污染性脂蛋白颗粒中的主要成分。因此,本发明分析了外泌体分离液中ApoB的含量,以评估外泌体中脂蛋白污染程度。如图26A和26B-d所示,使用适配体CD81-2F-2(P≤0.001),CD81-2J-1(P≤0.01)和CD81-2J-6(P≤0.0001)制备的外泌体分离物中ApoB的比例比三种抗CD81抗体分离的外泌体低2倍。因此,本发明的CD81适配体的一个明显优势是它们提供了非常快速的外泌体制备,并且与使用CD81抗体分离方法相比,显著减少了污染物的含量,包括血清蛋白和非外泌体颗粒。Lipoprotein is the main contaminant in the exosomal separation solution. As many as 70% of the particles in the exosomal fraction separated by various methods are lipoproteins, not real exosomes. In most exosomes prepared from serum/plasma, apolipoprotein B (ApoB) is the main component in contaminating lipoprotein particles. Therefore, the present invention analyzes the content of ApoB in the exosomal separation liquid to assess the degree of lipoprotein contamination in the exosomes. As shown in Figure 26A and 26B-d, exocrine prepared with aptamers CD81-2F-2 (P≤0.001), CD81-2J-1 (P≤0.01) and CD81-2J-6 (P≤0.0001) The proportion of ApoB in the exosomes separated by the three anti-CD81 antibodies was 2 times lower. Therefore, an obvious advantage of the CD81 aptamers of the present invention is that they provide very rapid exosomes preparation, and compared with the use of CD81 antibody isolation methods, significantly reduce the content of contaminants, including serum proteins and non-exocrine体粒。 Body particles.
但是,与使用CD81抗体方法分离得到的外泌体相比,CD81适配体分离的外泌体中存在更多的免疫球蛋白M(IgM)污染(图26A和26B-e)。However, compared with the exosomes isolated using the CD81 antibody method, there is more immunoglobulin M (IgM) contamination in the exosomes isolated from the CD81 aptamer (Figure 26A and 26B-e).
实验结果表明,本发明的CD81适配体在捕获人血清中CD81阳性的外泌体具有很高的特异性,并且更好的降低血清白蛋白和脂蛋白颗粒的污染。Experimental results show that the CD81 aptamer of the present invention has high specificity in capturing CD81-positive exosomes in human serum, and can better reduce the contamination of serum albumin and lipoprotein particles.
实施例10Example 10
与商业化的基于亲和力的外泌体分离试剂盒相比,CD81适配体能够制备更高纯度的外泌体Compared with commercial affinity-based exosomes isolation kits, CD81 aptamers can produce higher purity exosomes
为了进一步评估生物素-CD81适配体捕获的外泌体的纯度,本发明通过Western检测比较了基于CD81适配体-磁珠的外泌体提取与两种商业常用的基于亲和偶联磁珠的外泌体提取试剂盒的性能。所用试剂盒如下:(1)基于磷脂酰丝氨酸亲和力的MagCapture TM外泌体分离试剂盒(Novachem,Cat#293-77601),(2)外泌体-人CD81分离试剂盒(Life Technologies,Cat#10616D)。 In order to further evaluate the purity of the exosomes captured by the biotin-CD81 aptamer, the present invention compares the extraction of exosomes based on the CD81 aptamer-magnetic beads with two commonly used commercial affinity-coupled magnetic The performance of the bead exosome extraction kit. The kits used are as follows: (1) MagCapture TM exosome isolation kit based on phosphatidylserine affinity (Novachem, Cat#293-77601), (2) exosome-human CD81 isolation kit (Life Technologies, Cat#) 10616D).
结果如图27所示,图27显示证明与其他商业来源外泌体亲和偶联捕获的产品对比,本发明的CD81-2F-2,CD81-2J-1和CD81-2J-6的CD81核酸配适体在捕获人血清里的外泌体时,得到的外泌体含有较少的血源性的污染蛋白质。本实验里使用的商业来源亲和偶联捕获的产品为MagCapture TM Exosome Isolation Kit PS(FUJIFILM Wako Chemicals,Cat No:293-77601)and Exosome-Human CD81 Isolation Reagent(ThermoFisher Scientific,Cat.No.10616D)。500微升的430nM的核酸配适体与500微升的人血清混合后孵育30分钟后再与链酶亲和素包被的磁珠孵育20分钟然后用图27A左边所示的抗体对捕获的外泌体进行蛋白印迹分析。图27B的半定量分析里,五种不同的血源蛋白的丰度皆是用各自蛋白印迹中CD81蛋白带的丰度做基准来比较的。图中结果为均数±标准差,实验重复次数为3次。*,P≤0.05;**,P≤0.01;***,P≤0.001;****,P≤0.0001与5个实验组中的MagCapture TM试剂盒相比。#,P≤0.05;##,P≤0.01;###,P≤0.001与MagCapture TM试剂盒实验组中的免疫球蛋白G组和白蛋白组相比。与实施例9中得到的结果类似,通过不同外泌体制备方法中CD9与CD81的比例来看,本发明的CD81适配体分离的外泌体群体与两种商业化亲和分离试剂盒稍有差异(如图27A和27B-a)。与两种商业试剂盒相比,由三种CD81适配体制备的外泌体中血清蛋白(免疫球蛋白G(IgG),白蛋白,IgM和ApoB)污染均显著降低。以上结果表明,作为高纯度人血清外泌体的有效亲和分离工具,CD81适配体显然具有更高的优越性(如图27A和27B-b至27B-e所示)。 The results are shown in Figure 27. Figure 27 shows the CD81 nucleic acid of CD81-2F-2, CD81-2J-1 and CD81-2J-6 of the present invention in comparison with other commercial exosomes captured by affinity coupling. When the aptamer captures exosomes in human serum, the obtained exosomes contain less blood-borne contaminating proteins. The commercial source affinity capture products used in this experiment are MagCapture TM Exosome Isolation Kit PS (FUJIFILM Wako Chemicals, Cat No: 293-77601) and Exosome-Human CD81 Isolation Reagent (ThermoFisher Scientific, Cat. No. 10616D) . 500 microliters of 430nM nucleic acid aptamer was mixed with 500 microliters of human serum, incubated for 30 minutes, then incubated with streptavidin-coated magnetic beads for 20 minutes, and then captured by the antibody pair shown on the left of Figure 27A Western blot analysis of exosomes was performed. In the semi-quantitative analysis shown in Figure 27B, the abundances of five different blood-derived proteins were compared using the abundance of CD81 protein bands in the respective Western blots as a benchmark. The result in the figure is the mean ± standard deviation, and the experiment is repeated 3 times. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001 compared with MagCapture TM kits in 5 experimental groups. #,P≤0.05;##,P≤0.01;###,P≤0.001 compared with the immunoglobulin G group and the albumin group in the MagCapture TM kit experimental group. Similar to the results obtained in Example 9, judging from the ratio of CD9 to CD81 in different exosomes preparation methods, the exosomes isolated by the CD81 aptamer population of the present invention are slightly different from the two commercial affinity separation kits. There are differences (Figure 27A and 27B-a). Compared with the two commercial kits, the contamination of serum proteins (immunoglobulin G (IgG), albumin, IgM and ApoB) in exosomes prepared from the three CD81 aptamers was significantly reduced. The above results indicate that, as an effective affinity separation tool for high-purity human serum exosomes, CD81 aptamers obviously have higher advantages (as shown in Figures 27A and 27B-b to 27B-e).
实施例11Example 11
与外泌体分离金标准方法相比,CD81适配体介导的外泌体分离含有更少的血清蛋白污染Compared with the gold standard method for exosome isolation, CD81 aptamer-mediated exosome isolation contains less serum protein contamination
在用于分离外泌体的许多方法中,超速离心仍然是金标准,且在外泌体领域中使用该方法发表的论文超过50%。加之超滤,色谱和基于聚合物的沉淀(例如Exoquick)等分离外泌体的物理方式,构成了目前所有外泌体分离方法的约90%。因此,将CD81适配体与现行主流制备外泌体方法的纯度进行比较势在必 行。Among the many methods used to isolate exosomes, ultracentrifugation is still the gold standard, and more than 50% of the published papers in the field of exosomes use this method. In addition, physical methods such as ultrafiltration, chromatography and polymer-based precipitation (such as Exoquick) to separate exosomes constitute about 90% of all current exosomes separation methods. Therefore, it is imperative to compare the purity of CD81 aptamers with the current mainstream methods for preparing exosomes.
为此,本发明分别使用超速离心,超滤,交联葡聚糖G50柱,Exoquick试剂盒(System Biosciences,Cat#EXOQ5A-1)和CD81适配体从人血清中分离外泌体。然后通过如上图21和图22中所述的实验方法,检测不同方法得到的外泌体中血清蛋白的污染量。结果如图28所示,图28显示证明与其他广泛应用的主流外泌体纯化方法对比,本发明的CD81核酸配适体在捕获人血清里的外泌体时,得到相对更纯的外泌体。其中,外泌体用500微升的人血清来制作。使用的方法为超速离心,超滤,G-50葡聚糖凝胶过滤以及ExoQuick试剂盒。核酸配适体组里用磁珠本身和随机序列的DNA作为阴性对照。图28A是对各种不同方法得到的外泌体的蛋白印迹分析,所用抗体为IgG、血清白蛋白(对应图28中的serum albumin)、Haptoglobin、IgM、ApoB、CD81和CD9。图28B的半定量分析里,六种不同的血源蛋白的丰度皆是用各自蛋白印迹中CD81蛋白带的丰度做基准来比较的。图中结果为均数±标准差,实验重复次数=3。*,P≤0.05;**,P≤0.01;***,P≤0.001;****,P≤0.0001与毎个实验组中的超速离心的样本相比。 #,P≤0.05与血清白蛋白组(28ABd)中的Exoquik试剂盒制备的外泌体样品相比。通过Western分析CD9与CD81的比例发现:四种常规方法以及三种CD81适配体分离的外泌体群体均有差异。 To this end, the present invention uses ultracentrifugation, ultrafiltration, cross-linked dextran G50 column, Exoquick kit (System Biosciences, Cat#EXOQ5A-1) and CD81 aptamer to separate exosomes from human serum. Then, through the experimental methods described in Figure 21 and Figure 22 above, the amount of serum protein contamination in the exosomes obtained by different methods was detected. The results are shown in Figure 28, which shows that compared with other widely used mainstream exosomes purification methods, the CD81 nucleic acid aptamer of the present invention can obtain relatively pure exosomes when capturing exosomes in human serum. body. Among them, the exosomes are made with 500 microliters of human serum. The methods used are ultracentrifugation, ultrafiltration, G-50 dextran gel filtration and ExoQuick kit. In the nucleic acid aptamer group, the magnetic beads and random sequence DNA were used as negative controls. Figure 28A is a Western blot analysis of exosomes obtained by various methods. The antibodies used are IgG, serum albumin (corresponding to serum albumin in Figure 28), Haptoglobin, IgM, ApoB, CD81 and CD9. In the semi-quantitative analysis of Figure 28B, the abundances of six different blood-derived proteins were compared using the abundance of the CD81 protein band in the respective western blots as a benchmark. The result in the figure is the mean±standard deviation, and the number of experiment repetitions=3. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001 compared with ultracentrifugation samples in each experimental group. # , P≤0.05 compared with the exosome samples prepared by the Exoquik kit in the serum albumin group (28ABd). By Western analysis of the ratio of CD9 to CD81, it was found that the exosomes separated by four conventional methods and three CD81 aptamers were different.
跟超滤分离方法相反,本发明的CD81适配体分离出的外泌体并未检测到触珠蛋白的存在(图28A)。此外,与超速离心和交联葡聚糖G50柱制备外泌体方法相比,CD81适配体分离的外泌体中IgG污染显著降低(图28B-c)。In contrast to the ultrafiltration separation method, the exosomes separated from the CD81 aptamer of the present invention did not detect the presence of haptoglobin (Figure 28A). In addition, compared with the method of preparing exosomes by ultracentrifugation and cross-linked dextran G50 column, IgG contamination in exosomes separated by CD81 aptamer was significantly reduced (Figure 28B-c).
就血清中最丰富的血清蛋白而言,三种CD81适配体分离的外泌体具有最少的白蛋白污染,其中,CD81-2F-2适配体最为优异。与适配体CD81-2J-1,CD81-2J-6以及其他四种常规方法相比,适配体CD81-2F-2捕获最少量的血清白蛋白(图28B-d)。In terms of the most abundant serum protein in the serum, the exosomes isolated from the three CD81 aptamers have the least albumin contamination, and the CD81-2F-2 aptamer is the most excellent. Compared with the aptamers CD81-2J-1, CD81-2J-6 and the other four conventional methods, the aptamer CD81-2F-2 captures the least amount of serum albumin (Figure 28B-d).
另外,与金标准超速离心法相比,三种CD81适配体分离的外泌体中IgM相对含量均显著下降(图28B-e)。In addition, compared with the gold standard ultracentrifugation method, the relative content of IgM in the exosomes separated from the three CD81 aptamers was significantly reduced (Figure 28B-e).
其次,与金标准超速离心法相比,三种CD81适配体分离的外泌体中ApoB相对含量亦显著下降(P<0.0001,图28B-f)。ApoB是用来检测从血的载脂蛋白(低密度载脂蛋白,极低密度载脂蛋白和乳糜微粒)来的对制备的外泌体的污染。Secondly, compared with the gold standard ultracentrifugation method, the relative content of ApoB in the exosomes separated from the three CD81 aptamers also decreased significantly (P<0.0001, Figure 28B-f). ApoB is used to detect the contamination of prepared exosomes from blood apolipoproteins (low density apolipoprotein, very low density apolipoprotein and chylomicrons).
总之,与目前大多数研究人员采用的主流外泌体分离纯化方法相比,以基于CD81适配体-磁珠方法分离得到的外泌体具有更高的纯度,更低的蛋白污染(包括血清白蛋白和载脂蛋白等)。In short, compared with the mainstream exosomes separation and purification methods used by most researchers, the exosomes isolated by the CD81 aptamer-magnetic bead method have higher purity and lower protein contamination (including serum Albumin and apolipoprotein, etc.).
实施例12Example 12
使用CD81适配体分离的外泌体具有明显接近外泌体的狭窄大小分布Exosomes isolated using CD81 aptamers have a narrow size distribution that is significantly close to exosomes
人细胞释放的外泌体是膜包被囊泡的异质群体,大小为30nm至150nm。在各种类型的外泌体中,外泌体的大小在30nm至150nm之间。本发明已证明CD81适配体分离的外泌体具有更少的血清蛋白污染后,本发明进一步分析其分离的血清外泌体的产量和大小分布。纳米粒子追踪分析(NTA)是用于表征水介质中外泌体的浓度和大小的广泛使用的方法。图29显示了使用常规物理方法(超速离心,超滤,交联葡聚糖G50柱,Exoquick试剂盒),其他市售的基于亲和力的外泌体分离试剂盒,包括靶向外泌体膜表面脂质(MagCapture TM外泌体分离试剂盒,FUJIFILM Wako Chemicals,Cat#293-77601)和靶向外泌体膜表面CD81(CD81 Exo-Flow,System Biosciences,Cat#EXOFLOW400A-1)的分离试剂盒,以及本发明的CD81适配体分离方法分别获得的外泌体尺寸分布NTA曲线。 The exosomes released by human cells are a heterogeneous population of membrane-coated vesicles, ranging in size from 30nm to 150nm. Among various types of exosomes, the size of exosomes is between 30 nm and 150 nm. After the present invention has proved that the exosomes isolated from the CD81 aptamer have less serum protein contamination, the present invention further analyzes the yield and size distribution of the isolated serum exosomes. Nanoparticle tracking analysis (NTA) is a widely used method for characterizing the concentration and size of exosomes in aqueous media. Figure 29 shows the use of conventional physical methods (ultracentrifugation, ultrafiltration, dextran G50 column, Exoquick kit), other commercially available affinity-based exosome separation kits, including targeted exosome membrane surface Lipid (MagCapture TM Exosome Isolation Kit, FUJIFILM Wako Chemicals, Cat#293-77601) and a separation kit targeting CD81 (CD81 Exo-Flow, System Biosciences, Cat#EXOFLOW400A-1) on the surface of the exosomal membrane , And the NTA curve of the exosomal size distribution obtained by the CD81 aptamer separation method of the present invention.
目前流行的外泌体分离方法相比(图29A-D),基于亲和力的纯化方法分离的外泌体具有更为狭窄的尺寸分布(图29E-I)。使用商业亲和力方法分离的外泌体(图29E-F)大小范围是20nm至1000nm。然而,CD81适配体分离的外泌体显示出非常狭窄的50nm至150nm的大小范围。对于CD81-2F-2,CD81-2J-1和CD81-2J-6适配体,最丰富的外泌体群体分别以113nm,89nm和106nm为中心。Compared with the currently popular exosomes isolation methods (Figure 29A-D), the exosomes separated by affinity-based purification methods have a narrower size distribution (Figure 29E-I). The size of exosomes isolated using commercial affinity methods (Figure 29E-F) ranged from 20 nm to 1000 nm. However, exosomes isolated from CD81 aptamers showed a very narrow size range of 50 nm to 150 nm. For CD81-2F-2, CD81-2J-1 and CD81-2J-6 aptamers, the most abundant exosomes populations are centered at 113nm, 89nm and 106nm, respectively.
就产量而言,本发明目前的CD81适配体分离系统获得的总外泌体颗粒数(由NTA测定)低于超速离心法。具体地,CD81-2F-2适配体,CD81-2J-1适配体和CD81-2J-6适配体的总外泌体颗粒产量分别为超速离心法的67%,44%和88%(图30A)。另外,CD81适配体分离的外泌体的平均粒径为130nm-147nm略小于超速离心方法(154nm)(图30B)。In terms of yield, the total number of exosomes obtained by the current CD81 aptamer separation system of the present invention (determined by NTA) is lower than the ultracentrifugation method. Specifically, the total exosomal particle yields of CD81-2F-2 aptamer, CD81-2J-1 aptamer and CD81-2J-6 aptamer were 67%, 44% and 88% of the ultracentrifugation method, respectively. (Figure 30A). In addition, the average particle size of exosomes separated by CD81 aptamer was 130nm-147nm slightly smaller than the ultracentrifugation method (154nm) (Figure 30B).
至关重要的是NTA测量所有粒子数而不代表真实的细胞外囊泡数目。实际上,文献有明确记载,用目前通用的方法从血清中分离出的“外囊泡颗粒”中约30%-70%是脂蛋白颗粒,而不是真正的外泌体。因此,本发明首先在室温下用0.5%Triton X-100处理样品15分钟来裂解不同提取方法获得的外泌体中的所有囊泡颗粒,在这一过程中非囊泡颗粒始终保持其完整性。其次,通过NTA分析0.5%Triton X-100处理前后样品中颗粒数变化,确定了CD81适配体和其他方法制备的外泌体中真实外泌体的数目和百分比。如图31A所示,使用CD81-2J-6适配体分离的总囊泡的产量仅略微低于超速离心法。而使用CD81-2F-2和CD81-2J-1适配体分离的总囊泡数分别为超速离心法的73%和48%。但是,与以上四种目前常用方法和两种基于亲和分离的试剂盒相比,CD81适配体分离的外泌体中真实外泌体的百分比是相似(CD81-2J-6适配体)或显著升高(CD81-2F-2和CD81-2J-1适配体)的(图31B)。总而言之,与金标准超速离心方法相比,CD81适配体亲和纯化方法分离的血清外泌体粒径分布更狭窄,产量在同一数量级,真实的外泌体相似。需要特别指出的是,基于CD81适配体-磁珠的系统是目前唯一的一步法快速外泌体分离方法,由其捕获的外泌体群体的大小最接近定义外泌体的大小范围。图29表示与其他广泛应用的主流外泌体纯化方法对比,用本发明的CD81核酸配适体在捕获人血清里的外泌体具有更狭窄的大小分部。人血清里的细胞外囊泡/外泌体分别使用超速离心,超滤,G-50葡聚糖凝胶过滤,ExoQuick,MagCapture TM CD81 Exo-Flow试剂盒以及本发明的3个CD81核酸配适体捕获。游离的细胞外囊泡/外泌体用纳米粒子跟踪分析仪来分析每种方法捕获的细胞外囊泡/外泌体的大小,分布和浓度。图中的垂直虚线标志着150纳米的位置。图30是基于图29纳米粒子跟踪分析仪的测试,显示如图示的各种方法从500微升人血清中捕获的细胞外囊泡/外泌体的颗粒总数(图30A)以及颗粒大小(纳米)的平均数(图30B)。图31显示用本发明的CD81核酸配适体在捕获人血清里的排除了非囊泡外的真正细胞外囊泡的比列可与与目前的金标准制备方法(超速离心)媲美。显示如图示的各种方法从500微升人血清中捕获的细胞外颗粒后,用纳米粒子跟踪分析仪的计数,得出总颗粒浓度(图31A)。然后样品用0.5%聚乙二醇辛基苯基醚(Triton X-100)处理把生物膜溶解,再用纳米粒子跟踪分析仪的计数得出非囊泡的颗粒浓度。毎个样品的总颗粒浓度减去其非囊泡的颗粒浓度,即为真正细胞外囊泡的浓度。图31B显示各种捕获/纯化方法得到的真正细胞外囊泡在总颗粒数中的比率。图30和31中结果为均数±标准差,实验重复次数为3次。*,P≤0.05;**,P≤0.01与超速离心的样本相比; #,P≤0.05; ##,P≤0.01与二个市场上卖的用CD81抗体的亲和分离的试剂盒相比较。 It is crucial that NTA measures the number of all particles and does not represent the actual number of extracellular vesicles. In fact, the literature clearly records that about 30%-70% of the "external vesicle particles" separated from serum by the current general method are lipoprotein particles, not real exosomes. Therefore, the present invention first treats the sample with 0.5% Triton X-100 at room temperature for 15 minutes to lyse all the vesicle particles in the exosomes obtained by different extraction methods. During this process, the non-vesicle particles always maintain their integrity. . Secondly, by NTA analysis of the changes in the number of particles in the samples before and after 0.5% Triton X-100 treatment, the number and percentage of real exosomes in CD81 aptamers and exosomes prepared by other methods were determined. As shown in Figure 31A, the yield of total vesicles isolated using CD81-2J-6 aptamer was only slightly lower than that of ultracentrifugation. The total number of vesicles separated using CD81-2F-2 and CD81-2J-1 aptamers were 73% and 48% of the ultracentrifugation method, respectively. However, compared with the above four commonly used methods and two affinity separation-based kits, the percentage of true exosomes in the exosomes isolated by CD81 aptamer is similar (CD81-2J-6 aptamer) Or significantly increased (CD81-2F-2 and CD81-2J-1 aptamers) (Figure 31B). All in all, compared with the gold standard ultracentrifugation method, the serum exosomes separated by the CD81 aptamer affinity purification method have a narrower particle size distribution, the yield is the same order of magnitude, and the real exosomes are similar. It needs to be pointed out that the CD81 aptamer-magnetic bead-based system is currently the only one-step rapid exosome separation method, and the size of the exosomes captured by it is closest to the size range of the defined exosomes. Figure 29 shows that compared with other widely used mainstream exosomes purification methods, the CD81 nucleic acid aptamer of the present invention has a narrower size fraction of exosomes captured in human serum. The extracellular vesicles/exosomes in human serum are respectively adapted for ultracentrifugation, ultrafiltration, G-50 dextran gel filtration, ExoQuick, MagCapture TM CD81 Exo-Flow kit and the three CD81 nucleic acids of the present invention Body capture. Free extracellular vesicles/exosomes are analyzed by the Nanoparticle Tracking Analyzer to analyze the size, distribution and concentration of extracellular vesicles/exosomes captured by each method. The vertical dashed line in the figure marks the position of 150 nanometers. Figure 30 is a test based on the nanoparticle tracking analyzer in Figure 29, showing the total number of extracellular vesicles/exosomes captured from 500 microliters of human serum by various methods as shown in the figure (Figure 30A) and particle size ( Nanometers) (Figure 30B). Figure 31 shows that the ratio of the CD81 nucleic acid aptamer of the present invention in capturing real extracellular vesicles in human serum excluding non-vesicles is comparable to the current gold standard preparation method (ultracentrifugation). After displaying the extracellular particles captured from 500 microliters of human serum by various methods as shown in the figure, the total particle concentration was obtained by the counting of the nanoparticle tracking analyzer (Figure 31A). The sample was then treated with 0.5% polyethylene glycol octyl phenyl ether (Triton X-100) to dissolve the biofilm, and then counted with a nanoparticle tracking analyzer to obtain the concentration of non-vesicle particles. The total particle concentration of each sample minus its non-vesicle particle concentration is the concentration of true extracellular vesicles. Figure 31B shows the ratio of true extracellular vesicles to the total number of particles obtained by various capture/purification methods. The results in Figures 30 and 31 are mean ± standard deviation, and the number of experiment repetitions is 3 times. *,P≤0.05; **,P≤0.01 compared with ultracentrifugation samples; # ,P≤0.05; ## ,P≤0.01 compared with two kits on the market for affinity separation with CD81 antibody Compare.
实施例13Example 13
CD81适配体能够高度富集和分离外泌体大小范围内的外泌体群体CD81 aptamer can highly enrich and isolate exosomes within the size range of exosomes
基于它们的生物物理特性,外泌体最近被分类为小外泌体(Exo-S,60-80nm)和大外泌体(Exo-L,90-120nm)。已经确定CD81适配体亲和纯化方法能够分离具有与外泌体的特征尺寸范围相匹配的狭窄尺寸分布的外泌体,我们继续研究CD81适配体所捕获外泌体的各个亚组中外泌体的丰度。将研究集中在四种尺寸范围,50-80nm(小外泌体,Exo-S),80-120nm(大外泌体,Exo-L),120-150nm(大外泌体,Exo-L)和>150nm(对于微泡)。如图32B所示,与使用其他物理或亲和分离方法相比,CD81适配体分离的总颗粒中大外泌体(80-120nm)的大小范围的占比最高。此外,当用0.5%Triton X-100处理分离的外泌体悬浮液以去除囊泡后,NTA分析显示:通过CD81适配体分离的外泌体在80-120nm和120-150nm的大小范围内的总颗粒中,外泌体的百分比较超速离心获得的更高或相似(图33B-C)。具体地,使用CD81-2J-1分离的80-120nm的总颗粒中有82%的外泌体(图33B),并且使用CD81-2F-2适配体分离的120-150nm 总颗粒中有79%的外泌体(图33C),与超速离心相比以上两种尺寸的外泌体比例更高或相当(相应值为23%和79%)。值得注意的是,对于使用CD81适配体分离的所有真正外泌体,大约48%-57%在80-120nm(大外泌体)大小范围(图34B),23%-30%在120-150nm(大外泌体)大小范围(图34C)。因此,使用CD81适配体分离的大多数(71%-87%)真实囊泡(外泌体)是大外泌体(80-150nm)。Based on their biophysical properties, exosomes have recently been classified into small exosomes (Exo-S, 60-80nm) and large exosomes (Exo-L, 90-120nm). It has been determined that the CD81 aptamer affinity purification method can isolate exosomes with a narrow size distribution matching the characteristic size range of exosomes. We continue to study the exosomes in each subgroup of exosomes captured by the CD81 aptamer The abundance of the body. Focus the research on four size ranges, 50-80nm (small exosomes, Exo-S), 80-120nm (large exosomes, Exo-L), 120-150nm (large exosomes, Exo-L) And >150nm (for microbubbles). As shown in Figure 32B, compared with other physical or affinity separation methods, the size range of large exosomes (80-120 nm) in the total particles separated by CD81 aptamer is the highest. In addition, when the isolated exosomal suspension was treated with 0.5% Triton X-100 to remove vesicles, NTA analysis showed that the exosomes isolated by CD81 aptamers were in the size range of 80-120nm and 120-150nm Among the total particles, the percentage of exosomes was higher or similar to that obtained by ultracentrifugation (Figure 33B-C). Specifically, 82% of the total 80-120nm particles separated using CD81-2J-1 had exosomes (Figure 33B), and 79% of the total 120-150nm particles separated using CD81-2F-2 aptamer % Of exosomes (Figure 33C), compared with ultracentrifugation, the proportion of exosomes of the above two sizes is higher or comparable (corresponding values are 23% and 79%). It is worth noting that for all true exosomes isolated using CD81 aptamers, approximately 48%-57% are in the 80-120nm (large exosomes) size range (Figure 34B), and 23%-30% are in the 120-nm range (Figure 34B). 150nm (large exosomes) size range (Figure 34C). Therefore, most (71%-87%) true vesicles (exosomes) isolated using CD81 aptamers are large exosomes (80-150nm).
其中,图32显示用本发明的CD81核酸配适体在人血清里捕获的细胞外囊泡里大部分是较大的外泌体。如图示的各种方法从500微升人血清中捕获的细胞外颗粒后,用纳米粒子跟踪分析仪计数。图32A展示粒径在50-80微米之间细胞外颗粒占总颗粒的比列。图32B展示粒径在80-100微米之间细胞外颗粒占总颗粒的比率。图32C展示粒径在120-150微米之间细胞外颗粒占总颗粒的比率。图32D展示粒径在大于150微米的细胞外颗粒占总颗粒的比率。图中结果为均数±标准差,实验重复次数为3次。*,P≤0.05;**,P≤0.01;***,P≤0.001;****,P≤0.0001与超速离心的样本相比; #,P≤0.05; ##,P≤0.01; ###,P≤0.001与二个市场上卖的用CD81抗体的亲和分离的试剂盒相比较。图33显示用本发明的CD81核酸配适体在人血清里捕获的细胞外纳米颗粒里大部分是生物膜包裹的外泌体。显示如图示的各种方法从500微升人血清中捕获的细胞外颗粒后,用纳米粒子跟踪分析仪的计数,得出总颗粒浓度。然后样品用0.5%聚乙二醇辛基苯基醚(Triton X-100)处理把生物膜溶解,再用纳米粒子跟踪分析仪的计数得出非囊泡的颗粒浓度。图33A展示粒径为50-80微米细胞外颗粒和非囊泡的颗粒分别在总颗粒中的比率。图33B展示粒径为80-120微米细胞外颗粒和非囊泡的颗粒分别在总颗粒中的比率。图33C展示粒径为120-150微米细胞外颗粒和非囊泡的颗粒分别在总颗粒中的比率。图32D展示粒径大于150微米细胞外颗粒和非囊泡的颗粒分别在总颗粒中的比率。图中结果为均数±标准差,实验重复次数=3。P≤0.05;**,P≤0.01;***,P≤0.001与在特定的颗粒大小的组内用0.5%聚乙二醇辛基苯基醚(Triton X-100)处理过的样品比较。图34显示用本发明的CD81核酸配适体在人血清里捕获的细胞外纳米颗粒大部分是生物膜包裹的大型外泌体。显示如图示的各种方法从500微升人血清中捕获的细胞外颗粒后,用纳米粒子跟踪分析仪的计数,得出总颗粒浓度。然后样品用0.5%聚乙二醇辛基苯基醚(Triton X-100)处理把生物膜溶解,再用纳米粒子跟踪分析仪的计数得出非囊泡的颗粒浓度进而计算出真正的细胞外囊泡的得率。图34A展示各种方法得到的粒径为50-80微米细胞外囊泡(小型外泌体)在那种方法得到的总的细胞外囊泡中的比率。图34B展示各种方法得到的粒径为80-120微米细胞外囊泡(大型外泌体)在那种方法得到的总的细胞外囊泡中的比率。图34展示各种方法得到的粒径为120-150微米细胞外囊泡(大型外泌体)在那种方法得到的总的细胞外囊泡中的比率.图34D展示各种方法得到的粒径大于150微米细胞外囊泡(微囊泡体)在那种方法得到的总的细胞外囊泡中的比率。图中结果为均数±标准差,实验重复次数=3。*,P≤0.05;**,P≤0.01与本组内超速离心的样本相比。 #,P≤0.05; ##,P≤0.01与本组内用超滤,G-50葡聚糖凝胶过滤或与二个市场上卖的用CD81抗体的亲和分离的试剂盒提纯的样品比较。 Among them, Figure 32 shows that most of the extracellular vesicles captured in human serum with the CD81 nucleic acid aptamer of the present invention are larger exosomes. After the extracellular particles are captured from 500 microliters of human serum by various methods as shown in the figure, they are counted with a nanoparticle tracking analyzer. Figure 32A shows the ratio of extracellular particles to total particles in the size range of 50-80 microns. Figure 32B shows the ratio of extracellular particles to total particles in the size range of 80-100 microns. Figure 32C shows the ratio of extracellular particles to total particles in the size range of 120-150 microns. Figure 32D shows the ratio of extracellular particles with a size greater than 150 microns to the total particles. The result in the figure is the mean ± standard deviation, and the experiment is repeated 3 times. *,P≤0.05; **,P≤0.01; ***,P≤0.001; ****,P≤0.0001 compared with ultracentrifugation samples; # ,P≤0.05; ## ,P≤0.01; ### , P≤0.001 compared with two commercially available kits for affinity separation with CD81 antibody. Figure 33 shows that most of the extracellular nanoparticles captured in human serum with the CD81 nucleic acid aptamer of the present invention are biofilm-encapsulated exosomes. After displaying the extracellular particles captured from 500 microliters of human serum by various methods as shown in the figure, the total particle concentration is obtained by the counting of the nanoparticle tracking analyzer. The sample was then treated with 0.5% polyethylene glycol octyl phenyl ether (Triton X-100) to dissolve the biofilm, and then counted with a nanoparticle tracking analyzer to obtain the concentration of non-vesicle particles. Figure 33A shows the ratio of extracellular particles and non-vesicular particles with a particle size of 50-80 microns in the total particles, respectively. Figure 33B shows the ratio of extracellular particles and non-vesicular particles with a particle size of 80-120 microns in the total particles, respectively. Figure 33C shows the ratio of extracellular particles and non-vesicular particles with a particle size of 120-150 microns in the total particles, respectively. Figure 32D shows the ratios of extracellular particles and non-vesicular particles with a particle size larger than 150 microns in the total particles, respectively. The result in the figure is the mean±standard deviation, and the number of experiment repetitions=3. P≤0.05; **,P≤0.01; ***,P≤0.001 compared with samples treated with 0.5% polyethylene glycol octyl phenyl ether (Triton X-100) in a specific particle size group . Figure 34 shows that most of the extracellular nanoparticles captured in human serum with the CD81 nucleic acid aptamer of the present invention are large exosomes encapsulated by biofilms. After displaying the extracellular particles captured from 500 microliters of human serum by various methods as shown in the figure, the total particle concentration is obtained by the counting of the nanoparticle tracking analyzer. Then the sample was treated with 0.5% polyethylene glycol octyl phenyl ether (Triton X-100) to dissolve the biofilm, and then counted by the nanoparticle tracking analyzer to obtain the concentration of non-vesicle particles to calculate the true extracellular The yield of vesicles. Figure 34A shows the ratio of extracellular vesicles (small exosomes) with a particle size of 50-80 microns obtained by various methods in the total extracellular vesicles obtained by that method. Figure 34B shows the ratio of extracellular vesicles (large exosomes) with a particle size of 80-120 microns obtained by various methods in the total extracellular vesicles obtained by that method. Figure 34 shows the ratio of extracellular vesicles (large exosomes) with a particle size of 120-150 microns obtained by various methods in the total extracellular vesicles obtained by that method. Figure 34D shows the particles obtained by various methods. The ratio of extracellular vesicles (microvesicles) with a diameter greater than 150 microns in the total extracellular vesicles obtained by that method. The result in the figure is the mean±standard deviation, and the number of experiment repetitions=3. *,P≤0.05; **,P≤0.01 compared with ultracentrifugation samples in this group. # ,P≤0.05; ## ,P≤0.01 and the samples in this group purified by ultrafiltration, G-50 dextran gel filtration or with two commercially available CD81 antibody affinity separation kits Compare.
实施例14Example 14
由CD81适配体分离的外泌体具有促进细胞增殖方面的功能Exosomes isolated from CD81 aptamers have the function of promoting cell proliferation
外泌体可以通过其胞内物质,如蛋白质,脂质和RNA(miRNA,lnRNA和snRNA),的介导来完成细胞间通讯功能。上述实验已证实,CD81适配体制备的外泌体具有高纯度和狭窄尺寸分布等特点,本实施例将进一步确定其所分离的外泌体是否仍具有细胞功能。Exosomes can complete the intercellular communication function through the mediation of their intracellular substances, such as proteins, lipids and RNA (miRNA, lnRNA and snRNA). The above experiments have confirmed that the exosomes prepared by CD81 aptamers have the characteristics of high purity and narrow size distribution. This example will further determine whether the isolated exosomes still have cellular functions.
为此,本实施例采用人结肠癌HT29细胞作为外泌体的供体,在其培养基中加入0.5%去除外泌体的血清(EDS),再在37℃二氧化碳细胞孵育箱中培养48小时。然后使用基于生物素标记的CD81适配体–磁珠系统分离上述细胞培养基(CCM)中的HT29外泌体。适配体包含有内置二硫键(如图35B中的S-S),可以使用还原剂(100mM的三(2-羧乙基)膦盐酸盐/TCEP,37℃孵育5分钟)非常温和地裂解并释放CD81适配体-磁珠所捕获的外泌体。作为平行实验,本发明同时使用基于CD81抗体亲和力的商业CD81 Exo-Flow 试剂盒分离并释放HT29外泌体。使用NTA分析每个样品的颗粒数和囊泡数后,将真正的囊泡而非颗粒(5×10 8囊泡/孔)加入事先培养在96孔板中仅在DMEM中培养的HEK293T细胞。孵育48小时后,通过MTT细胞活力测定法评估每个孔中细胞增殖情况(如图35A)。如图35C所示,CD81适配体或抗体分离的外泌体均显著促进HEK293T细胞增殖。然而,CD81适配体分离的外泌体较CD81抗体分离的外泌体促进细胞增殖的效果更为显著(P≤0.05)(如图35C)。以上限制细胞增殖的因素之一可能与释放外泌体的缓冲液有关。或者说,用于释放CD81适配体-磁珠所捕获外泌体的TCEP很可能比CD81 Exo-Flow试剂盒中提供的洗脱缓冲液更温和。因此,CD81适配体分离的外泌体较基于抗体的亲和分离方法更好的保存了其原有的细胞功能。 For this reason, in this example, human colon cancer HT29 cells were used as the donor of exosomes, 0.5% exosome-removed serum (EDS) was added to the culture medium, and then cultured in a carbon dioxide cell incubator at 37°C for 48 hours . Then use the biotin-labeled CD81 aptamer-magnetic bead system to separate the HT29 exosomes in the cell culture medium (CCM). The aptamer contains a built-in disulfide bond (SS in Figure 35B), which can be cleaved very gently using a reducing agent (100mM tris(2-carboxyethyl)phosphine hydrochloride/TCEP, incubated at 37°C for 5 minutes) And release the exosomes captured by CD81 aptamer-magnetic beads. As a parallel experiment, the present invention also uses a commercial CD81 Exo-Flow kit based on CD81 antibody affinity to separate and release HT29 exosomes. After analyzing the number of particles and vesicles of each sample using NTA, real vesicles instead of particles (5×10 8 vesicles/well) were added to HEK293T cells that were previously cultured in 96-well plates and only cultured in DMEM. After 48 hours of incubation, the cell proliferation in each well was evaluated by MTT cell viability assay (Figure 35A). As shown in Figure 35C, the exosomes isolated from CD81 aptamer or antibody significantly promoted the proliferation of HEK293T cells. However, the exosomes isolated from CD81 aptamers have a more significant effect on promoting cell proliferation than exosomes isolated from CD81 antibodies (P≤0.05) (Figure 35C). One of the above factors restricting cell proliferation may be related to the buffer that releases exosomes. In other words, the TCEP used to release the exosomes captured by the CD81 aptamer-magnetic beads is likely to be milder than the elution buffer provided in the CD81 Exo-Flow kit. Therefore, exosomes isolated from CD81 aptamers preserve their original cellular functions better than antibody-based affinity separation methods.
此外,与基于抗体的CD81 Exo-Flow相比,基于CD81适配体的外泌体分离更有效且更经济(如表10)。因此,基于CD81适配体的外泌体分离试剂盒将成为市场上其他外泌体分离试剂盒极具潜力的替代品。In addition, compared with antibody-based CD81 Exo-Flow, CD81 aptamer-based exosome isolation is more effective and economical (see Table 10). Therefore, the CD81 aptamer-based exosome isolation kit will become a very potential substitute for other exosome isolation kits on the market.
图35显示用本发明的CD81核酸配适体捕获的外泌体保持了原有的生物活性能够促进人源细胞在体外的细胞增殖.图35A,整个实验的流程图。图35B,显示CD81的配适体的基底部与磁珠结合的链接中带有一个二硫键。捕获到外泌体以后,加入还原剂(三(2-羰基乙基)磷盐酸盐),二硫键被打开,外泌体就可温和地从磁珠上释放出来。图35C,体外的细胞增殖实验(用3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物方法,MTT)。用本发明的CD81核酸配适体从HT29细胞培养上清液中捕获外泌体。在毎2000个HEK293T细胞培养孔中,加入5×10 8的HT29外泌体48小时后检测MTT。以HEK293T细胞加MTT试剂作基准度数。图中结果为均数±标准差,实验重复次数=3。P≤0.01;***,P≤0.001与基准相比. #,P≤0.05与用CD81 Exo-Flow试剂盒提取的外泌体组比。 Figure 35 shows that the exosomes captured by the CD81 nucleic acid aptamer of the present invention maintain the original biological activity and can promote the cell proliferation of human-derived cells in vitro. Figure 35A, the flow chart of the entire experiment. Figure 35B shows that there is a disulfide bond in the link between the base of the CD81 aptamer and the magnetic beads. After capturing the exosomes, adding a reducing agent (tris(2-carbonylethyl)phosphorus hydrochloride), the disulfide bond is opened, and the exosomes can be gently released from the magnetic beads. Figure 35C, in vitro cell proliferation experiment (using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, MTT). The CD81 nucleic acid aptamer of the present invention is used to capture exosomes from the HT29 cell culture supernatant. In every 2000 HEK293T cell culture wells, 5×10 8 HT29 exosomes were added 48 hours later to detect MTT. Use HEK293T cells plus MTT reagent as the reference degree. The result in the figure is the mean±standard deviation, and the number of experiment repetitions=3. P ≤ 0.01; ***, P ≤ 0.001 compared with the benchmark. # , P ≤ 0.05 compared with the group of exosomes extracted with CD81 Exo-Flow kit.
表10.CD81 Exo-Flow试剂盒and CD81适配体对比(请给出此表的中文翻译)Table 10. Comparison of CD81 Exo-Flow kit and CD81 aptamer (please give the Chinese translation of this table)
Figure PCTCN2020123119-appb-000009
Figure PCTCN2020123119-appb-000009
实施例15Example 15
CD81适配体能够在2000个上皮细胞粘附分子(EpCAM)阴性外泌体的背景中检测出一个EpCAM阳性外泌体The CD81 aptamer can detect one EpCAM-positive exosome in the background of 2000 epithelial cell adhesion molecule (EpCAM)-negative exosomes
外泌体在癌症医学中最有前景的应用之一是其在液体活检中的应用。然而,外泌体液体活检面临的关键挑战之一是在由血细胞产生的外泌体的广泛背景中检测非常少量的癌症衍生的外泌体。例如,人血液中的总囊泡计数为7.3-9.4×10 10/mL,其中93.9%囊泡来源于血小板,4.5%来自于白细胞,1.8%来自与红细胞,1%来自于内皮细胞,0.7%来源于造血干细胞(PLoS One.13(12):e0207950,2018)。现有技术中已知的,不同个体的癌症患者和健康供者的血浆外泌体浓度可以上下浮动40至50倍,并且癌症患者血浆外泌体平均浓度(0.9±1.2×10 9)/mL)和健康对照者(1.2±1.2×10 9/mL)没有显著差异。另一方面,来自肺癌供体的血浆中外泌体浓度为1.41±0.31×10 10/mL,而健康供体的外泌体浓度为3.37±0.39×10 9/mL,即肺癌患者血液中外泌体浓度比健康对照者高3.4倍。已确定所有200种左右的人源细胞可以释放外泌体,其中大多数外泌体可能进入血液循环。因此,来自肿瘤细胞的外泌体仅占血液中总外泌体及小的比例。所以,想在患者血液样本广阔的外泌体背景中检测肿瘤细胞来源的外泌体就像“在大海捞针”。 One of the most promising applications of exosomes in cancer medicine is their application in liquid biopsy. However, one of the key challenges facing exosomal liquid biopsy is the detection of very small amounts of cancer-derived exosomes in a broad background of exosomes produced by blood cells. For example, the total vesicle count in human blood is 7.3-9.4×10 10 /mL, of which 93.9% of vesicles are derived from platelets, 4.5% are derived from white blood cells, 1.8% are derived from red blood cells, 1% are derived from endothelial cells, and 0.7% It is derived from hematopoietic stem cells (PLoS One.13(12):e0207950,2018). It is known in the prior art that the plasma exosomes concentration of cancer patients and healthy donors of different individuals can fluctuate by 40 to 50 times, and the average plasma exosomes concentration of cancer patients is (0.9±1.2×10 9 )/mL ) And healthy controls (1.2±1.2×10 9 /mL) have no significant difference. On the other hand, the concentration of exosomes in plasma from lung cancer donors was 1.41±0.31×10 10 /mL, while the concentration of exosomes in healthy donors was 3.37±0.39×10 9 /mL, that is, exosomes in the blood of lung cancer patients The concentration was 3.4 times higher than that of healthy controls. It has been determined that all 200 or so human-derived cells can release exosomes, most of which may enter the blood circulation. Therefore, exosomes derived from tumor cells account for only a small proportion of the total exosomes in the blood. Therefore, trying to detect tumor cell-derived exosomes in the extensive exosomal background of a patient's blood sample is like "finding a needle in a haystack."
EpCAM在许多类型的实体癌中过表达。事实上,第一个也是唯一一个FDA批准的液体活检CellSearch, 就是使用针对EpCAM的单克隆抗体来检测循环肿瘤细胞(CTC)以实现转移性乳腺癌和其他实体肿瘤的诊断。EpCAM is overexpressed in many types of solid cancers. In fact, the first and only FDA-approved liquid biopsy CellSearch uses a monoclonal antibody against EpCAM to detect circulating tumor cells (CTC) for the diagnosis of metastatic breast cancer and other solid tumors.
本实施例希望在液体活检的背景下建立基于CD81适配体的外泌体检测系统的检测限。为此,本实施例从高表达EpCAM(~1.2×10 6/细胞)的人结肠癌HT29细胞系和不表达EpCAM的人胚肾HEK293T细胞系中分别提取外泌体。对于初始测试,本发明建立了基于适配体的夹心流式分析系统,以确定在EpCAM阴性外泌体背景中EpCAM阳性外泌体的检测限。 This embodiment hopes to establish the detection limit of the CD81 aptamer-based exosome detection system in the context of liquid biopsy. To this end, this example extracts exosomes from the human colon cancer HT29 cell line that highly expresses EpCAM (~1.2×10 6 /cell) and the human embryonic kidney HEK293T cell line that does not express EpCAM. For the initial test, the present invention establishes an aptamer-based sandwich flow analysis system to determine the detection limit of EpCAM-positive exosomes in the background of EpCAM-negative exosomes.
在健康者的血液中,EpCAM阳性细胞或EpCAM阴性外泌体几乎检测不到。为了建立类似于临床的测定条件,本实施例制备了总外泌体浓度为4×10 10/ml的样品,以模拟患者血液中的外泌体计数。对于检测限的测定,首先制备了范围为1:000至1:8000不同比例的EpCAM阳性与EpCAM阴性外泌体的混合液。对于该4×10 10/ml的外泌体溶液,具有连续滴定的EpCAM阳性与EpCAM阴性外泌体的比例。其次,通过异硫氰酸荧光素和生物素双标记的CD81适配体捕获外泌体的混合液中的所有外泌体,并使用磁珠固定适配体-外泌体复合物。随后,分别用藻蓝蛋白标记的抗人EpCAM抗体或Q670标记的EpCAM适配体对每组中捕获的EpCAM阳性的外泌体进行染色。最后,将磁珠-CD81适配体-外泌体复合物进行流式细胞检测和分析。呈荧光阳性的磁珠百分比超过1%时被认为是阳性。结果如图36和37所示,图36显示本发明的能够用于超灵敏的上皮细胞粘附分子阳性的外泌体的检测。图36A,展示基于流式细胞仪的本检测的流程。图36B,本发明的CD81核酸配适体捕获的HT29细胞产生的外泌体与100微升8.33nM的别藻蓝蛋白标记的上皮细胞粘附分子抗体孵育。图36C,本发明的CD81核酸配适体捕获的HT29细胞产生的外泌体与同样浓度的类星球体670(Quasar 670亚磷酰胺)标记的上皮细胞粘附分子核酸配适体与HT29细胞产生的外泌体孵育。图37本发明的CD81核酸配适体在模拟液体活检中能够在2000个不表达上皮细胞粘附分子的外泌体的背景里检测到单个上皮细胞粘附分子阳性的外泌体。流式细胞仪检测异硫氰酸荧光素(FITC)的荧光以确认异硫氰酸荧光素标记的CD81核酸配适体确实是被固定在磁珠(2.7微米)上。流式细胞仪检测别藻蓝蛋白(APC)的荧光以确认别藻蓝蛋白标记的抗上皮细胞粘附分子的抗体或核酸配适体是与被本发明的CD81核酸配适体捕获的外泌体结合。实验组为磁珠本身,同型匹配抗体或随机序列的核酸配适体的阴性对照,以及源与上皮细胞粘附分子阳性的HT29细胞分泌的外泌体与源与上皮细胞粘附分子阴性的HEK293T细胞分泌的外泌体的系列有限稀释,1:8000,1:5000,1:2000和1:1000.流式细胞仪检测到在总的样品里有1%别藻蓝蛋白荧光阳性事件作为上皮细胞粘附分子阳性的检测阈.图37A展示被CD81核酸配适体捕获并固定在磁珠上的外泌体与上皮细胞粘附分子单克隆抗体孵育后在流式细胞仪上检测的异硫氰酸荧光素和别藻蓝蛋白荧光的双变点图。图37B展示被CD81核酸配适体捕获并固定在磁珠上的外泌体与上皮细胞粘附分子DNA配适体孵育后在流式细胞仪上检测的异硫氰酸荧光素和别藻蓝蛋白荧光的双变点图。 In the blood of healthy people, EpCAM-positive cells or EpCAM-negative exosomes are almost undetectable. In order to establish a measurement condition similar to the clinic, a sample with a total exosome concentration of 4×10 10 /ml was prepared in this example to simulate the count of exosomes in the patient's blood. For the determination of the detection limit, a mixture of EpCAM-positive and EpCAM-negative exosomes in different ratios ranging from 1:000 to 1:8000 was first prepared. For this 4×10 10 /ml exosomal solution, there is a continuous titration of EpCAM-positive and EpCAM-negative exosomes. Second, the CD81 aptamer double-labeled with fluorescein isothiocyanate and biotin is used to capture all exosomes in the mixture of exosomes, and magnetic beads are used to fix the aptamer-exosomal complex. Subsequently, the captured EpCAM-positive exosomes in each group were stained with phycocyanin-labeled anti-human EpCAM antibody or Q670-labeled EpCAM aptamer, respectively. Finally, the magnetic beads-CD81 aptamer-exosomes complexes were detected and analyzed by flow cytometry. When the percentage of fluorescently positive magnetic beads exceeds 1%, it is considered positive. The results are shown in Figures 36 and 37, and Figure 36 shows that the present invention can be used for the detection of ultra-sensitive epithelial cell adhesion molecule-positive exosomes. Figure 36A shows the flow of this test based on flow cytometry. Figure 36B, the exosomes produced by the HT29 cells captured by the CD81 nucleic acid aptamer of the present invention were incubated with 100 microliters of 8.33 nM allophycocyanin-labeled epithelial cell adhesion molecule antibody. Figure 36C, the exosomes produced by the HT29 cells captured by the CD81 nucleic acid aptamer of the present invention and the epithelial cell adhesion molecule nucleic acid aptamer labeled with the same concentration of stellar body 670 (Quasar 670 phosphoramidite) and HT29 cells are produced The exosomes are incubated. Figure 37 The CD81 nucleic acid aptamer of the present invention can detect a single epithelial cell adhesion molecule-positive exosomes in the background of 2000 exosomes that do not express epithelial cell adhesion molecules in a simulated liquid biopsy. Flow cytometry detects the fluorescence of fluorescein isothiocyanate (FITC) to confirm that the CD81 nucleic acid aptamer labeled with fluorescein isothiocyanate is indeed immobilized on magnetic beads (2.7 microns). Flow cytometry detects the fluorescence of allophycocyanin (APC) to confirm that the allophycocyanin-labeled anti-epithelial cell adhesion molecule antibody or nucleic acid aptamer is the exocytosis captured by the CD81 nucleic acid aptamer of the present invention体合。 Body combination. The experimental group consisted of magnetic beads, a negative control of isotype matching antibodies or nucleic acid aptamers with random sequences, as well as exosomes secreted by HT29 cells with positive epithelial cell adhesion molecules and HEK293T with negative epithelial cell adhesion molecules. A series of limiting dilutions of exosomes secreted by cells, 1:8000, 1:5000, 1:2000 and 1:1000. Flow cytometry detected 1% allophycocyanin fluorescence-positive events in the total samples as epithelium The detection threshold for cell adhesion molecule positive. Figure 37A shows the isosulfide detected on the flow cytometer after the exosomes captured by the CD81 nucleic acid aptamer and immobilized on the magnetic beads are incubated with the epithelial cell adhesion molecule monoclonal antibody Double change point plot of fluorescence of fluorescein cyanide and allophycocyanin. Figure 37B shows the detection of fluorescein isothiocyanate and allophycocyanin on a flow cytometer after the exosomes captured by the CD81 nucleic acid aptamer and immobilized on magnetic beads are incubated with the epithelial cell adhesion molecule DNA aptamer Double change point plot of protein fluorescence.
如图37A所示,来自藻蓝蛋白标记的EpCAM抗体(Q2)的阳性信号的百分比在HT29 EpCAM阳性外泌体与HEK293T EpCAM阴性外泌体的比例为1:1000时达到1%。相比之下,来自Q670 EpCAM适配体(Q2)的信号在1:2000时为1%(图37B)。以上数据表明,在本实施例的系统中EpCAM抗体和EpCAM适配体的检测限分别为1:1000和1:2000。而从2000个EpCAM阴性外泌体背景中检测到1个EpCAM阳性外泌体的检测限是前所未有的,也就是说本发明进一步完善了基于CD81适配体-磁珠的液体活检系统,以实现更高的灵敏度。As shown in Figure 37A, the percentage of positive signals from the phycocyanin-labeled EpCAM antibody (Q2) reaches 1% when the ratio of HT29 EpCAM positive exosomes to HEK293T EpCAM negative exosomes is 1:1000. In contrast, the signal from the Q670 EpCAM aptamer (Q2) was 1% at 1:2000 (Figure 37B). The above data shows that the detection limits of EpCAM antibody and EpCAM aptamer in the system of this embodiment are 1:1000 and 1:2000, respectively. The detection limit of 1 EpCAM-positive exosome from the background of 2000 EpCAM-negative exosomes is unprecedented. That is to say, the present invention further improves the liquid biopsy system based on CD81 aptamer-magnetic beads to achieve Higher sensitivity.
实施例16Example 16
使用等温滴定法研究CD81胞外大环结构与两种不同CD81适配体(即2J-6和2F-2)之间相互作用的热力学和动力学曲线:Use isothermal titration to study the thermodynamic and kinetic curves of the interaction between the CD81 extracellular macrocyclic structure and two different CD81 aptamers (ie 2J-6 and 2F-2):
虽然蛋白质-适配体结合的知识对于评估适配体性能至关重要,但是探索相互作用的热力学和动力学方 面的研究仍然很少。为了使用适配体作为诊断工具,我们首先研究了CD81胞外大环(LEL)与两种不同CD81适配体(即CD81-2J-6和CD81-2F-2)之间相互作用的热力学和动力学特征。其次,探索适配体-CD81蛋白相互作用的分子机制以及结合位点。Although the knowledge of protein-aptamer binding is essential to assess the performance of aptamers, there are still few studies exploring the thermodynamics and kinetics of the interaction. In order to use aptamers as diagnostic tools, we first studied the thermodynamics and interactions between CD81 extracellular macrocycles (LEL) and two different CD81 aptamers (ie CD81-2J-6 and CD81-2F-2). Kinetic characteristics. Second, explore the molecular mechanism and binding site of the aptamer-CD81 protein interaction.
首先,在含有2.5mM MgCl 2的PBS中溶解两个适配体。然后,在95℃变性5分钟,再在冰上冷却5分钟。最后,在37℃孵育15分钟进行折叠。实验中,使用NanoDrop TM 2000(Thermo Scientific TM,United States)测量适体的浓度。 First, dissolve two aptamers in PBS containing 2.5 mM MgCl 2. Then, it was denatured at 95°C for 5 minutes, and then cooled on ice for 5 minutes. Finally, incubate at 37°C for 15 minutes for folding. In the experiment, NanoDrop 2000 (Thermo Scientific , United States) was used to measure the concentration of the aptamer.
ITC实验在25℃条件下用Microcal PEAQ-ITC仪器(Malvern Instruments Limited,United Kingdom)进行检测。在包含PBS pH 7.4,2.5mM MgCl 2,1.33%海藻糖,1.33%甘露醇,and 0.0027%吐温80的ITC缓冲液中制备适配体和CD81细胞外大环蛋白。将注射器中的适配体溶液(68μM)注入二聚体CD81包外大环蛋白溶液中(3.33μM)[7-10]。除第一次注射(0.4μL)外,每次注射的适配体溶液体积均为2μL。所有实验均在以下条件下进行:每次注射间隔为250秒,共进行19次注射,注射器搅拌速度为750rpm,参考功率为10.0μcal s -1。从Micro PEAQ-ITC分析软件获得结合参数(N),结合亲和力(K D)和热力学参数(ΔH)等化学计量。然后使用以下等式[11]计算自由能(ΔG)和熵(ΔS): The ITC experiment was performed with a Microcal PEAQ-ITC instrument (Malvern Instruments Limited, United Kingdom) at 25°C. The aptamer and CD81 extracellular macrocyclic protein were prepared in ITC buffer containing PBS pH 7.4, 2.5mM MgCl 2 , 1.33% trehalose, 1.33% mannitol, and 0.0027% Tween 80. The aptamer solution (68 μM) in the syringe was injected into the dimer CD81 outer macrocyclic protein solution (3.33 μM) [7-10]. Except for the first injection (0.4 μL), the volume of the aptamer solution for each injection is 2 μL. All experiments were performed under the following conditions: each injection interval was 250 seconds, a total of 19 injections were performed, the syringe stirring speed was 750 rpm, and the reference power was 10.0 μcal s -1 . The stoichiometry of binding parameters (N), binding affinity (K D ) and thermodynamic parameters (ΔH) were obtained from Micro PEAQ-ITC analysis software. Then use the following equations [11] to calculate free energy (ΔG) and entropy (ΔS):
ΔG=RTlnK D ΔG=RTlnK D
ΔG=ΔH–TΔSΔG=ΔH-TΔS
其中,R是通用气体常数,T是以开尔文为单位的温度。Among them, R is the universal gas constant, and T is the temperature in Kelvin.
动力学曲线获自AFFIINImeter软件(Software 4 Science Developments S.L.,Spain)。The kinetic curve was obtained from the AFFIINImeter software (Software 4 Science Developments S.L., Spain).
每个结合参数由三次独立测量的平均值±标准差表示。Each binding parameter is represented by the mean ± standard deviation of three independent measurements.
图38本发明的CD81核酸配适体在与人源CD81重组蛋白结合的生物物理热力学测定。图38A展示人源CD81大细胞外结构域重组蛋白与CD81-2J-6核酸配适体结合的等温滴定量热法(上图)和温谱图(下图)。图38A展示人源CD81大细胞外结构域重组蛋白与CD81-2F-2核酸配适体结合的等温滴定量热法(上图)和温谱图(下图)。Figure 38 The biophysical thermodynamic determination of the CD81 nucleic acid aptamer of the present invention in binding to the human CD81 recombinant protein. Figure 38A shows the isothermal titration calorimetry (upper figure) and thermogram (lower figure) of the binding of human-derived CD81 large extracellular domain recombinant protein to the CD81-2J-6 nucleic acid aptamer. Figure 38A shows the isothermal titration calorimetry (upper figure) and thermogram (lower figure) of the binding of human-derived CD81 large extracellular domain recombinant protein to the CD81-2F-2 nucleic acid aptamer.
结果如图38所示,图38为代表性的ITC热分析图,其中图38A为D81 LEL-2J-6相互作用的结合等温线,其中图38B为CD81 LEL-2F-2相互作用的结合等温线。其中CD81 LEL与2J-6的相互作用是放热的,但与2F-2的相互作用吸收了热量。此外,来自2F-2和CD81 LEL之间结合的热量的综合数据可以很好地拟合到1:1结合模型,但是2J-6适合具有2个逐步结合位点的顺序结合模型。这种顺序性质也在相互作用的两相等温线中清楚地显示(图38A)。其原因是,在溶液中CD81 LEL是以不可分离的同型二聚体形式存在。该研究结果与Kong等对CD81 LEL的结合位点的报道一致。The results are shown in Figure 38, Figure 38 is a representative ITC thermal analysis diagram, where Figure 38A is the binding isotherm of the D81 LEL-2J-6 interaction, and Figure 38B is the binding isotherm of the CD81 LEL-2F-2 interaction line. The interaction between CD81 LEL and 2J-6 is exothermic, but the interaction with 2F-2 absorbs heat. In addition, the comprehensive data from the heat of binding between 2F-2 and CD81 LEL can be well fitted to a 1:1 binding model, but 2J-6 is suitable for a sequential binding model with two stepwise binding sites. This sequential nature is also clearly shown in the two isothermal lines of the interaction (Figure 38A). The reason is that CD81 LEL exists as an inseparable homodimer in the solution. The results of this study are consistent with the report of the binding site of CD81 LEL by Kong et al.
表11.两种适配体与CD81 LEL之间的结合参数Table 11. Binding parameters between the two aptamers and CD81 LEL
Figure PCTCN2020123119-appb-000010
Figure PCTCN2020123119-appb-000010
Figure PCTCN2020123119-appb-000011
Figure PCTCN2020123119-appb-000011
表11表示两个适配体的热力学和动力学参数,2J-6适配体与CD81蛋白的第一次结合是由艰难的熵变(焓变 1of-9.30±1.02kcal/mol and–(焓变-吉布斯自由能) 1of 2.08±0.83kcal/mol)驱动的,并且具有较弱的结合亲和力(解离常数 1=5.19±1.56μM)。然而,第一次的结合使得第二个2J-6适配体与CD81蛋白结合的更加紧密(解离常数 1>>解离常数 2),而且这一现象本质上是正协同的。2F-2适配体与CD81蛋白的结合也是在熵变的驱动下完成,且具有较弱的结合亲和力(解离常数=4.28±1.10μM)和较低的结合位点(N of 0.13±0.04)。动力学曲线进一步证明,2F-2适配体与CD81蛋白间的相互作用具有一般的结合常数(结合速率常数=2.32×10 4M -1s -1),但其解离常数相对较高(解离速率常数=2.63×10 -1s -1),表明2F-2适配体与CD81蛋白的相互作用可能较弱。 Table 11 shows the thermodynamic and kinetic parameters of the two aptamers. The first binding of the 2J-6 aptamer to the CD81 protein is caused by a difficult entropy change (enthalpy change 1 of-9.30±1.02kcal/mol and–( Enthalpy change-Gibbs free energy) 1 of 2.08±0.83kcal/mol) and has a weak binding affinity (dissociation constant 1 = 5.19±1.56μM). However, the first binding makes the second 2J-6 aptamer bind more tightly to the CD81 protein (dissociation constant 1 >> dissociation constant 2 ), and this phenomenon is essentially positively synergistic. The binding of 2F-2 aptamer to CD81 protein is also driven by entropy change, and it has a weak binding affinity (dissociation constant = 4.28±1.10μM) and a low binding site (N of 0.13±0.04). ). The kinetic curve further proves that the interaction between 2F-2 aptamer and CD81 protein has a general binding constant (association rate constant = 2.32×10 4 M -1 s -1 ), but its dissociation constant is relatively high ( Dissociation rate constant = 2.63×10 -1 s -1 ), indicating that the interaction between 2F-2 aptamer and CD81 protein may be weak.
与流式细胞术测量相似,两种CD81适配体与CD81蛋白的亲和力约为70nM。然而,等温滴定量热法实验结果表明,两种适配体具有完全不同的热力学性质。具体而言,2F-2适配体通过1:1结合模型与可溶性CD81 LEL相互作用,且具有非常低的结合位点和弱的结合亲和力。2J-6适配体通过具有2个逐步结合位点的顺序结合模型与CD81相互作用。其中,第一次结合较弱,结合亲和力为5.19±1.56μM,但第二次结合强得多,结合亲和力增加42倍。然而,2J-6适配体与CD81蛋白的两种相互作用都是由焓驱动的,表明2J-6适配体具有极高的特异性。Similar to the flow cytometry measurement, the affinity of the two CD81 aptamers to the CD81 protein is about 70 nM. However, the experimental results of isothermal titration calorimetry show that the two aptamers have completely different thermodynamic properties. Specifically, the 2F-2 aptamer interacts with soluble CD81 LEL through a 1:1 binding model, and has a very low binding site and weak binding affinity. The 2J-6 aptamer interacts with CD81 through a sequential binding model with 2 stepwise binding sites. Among them, the first binding was weak, with a binding affinity of 5.19±1.56μM, but the second binding was much stronger, with a 42-fold increase in binding affinity. However, the two interactions between 2J-6 aptamer and CD81 protein are driven by enthalpy, indicating that 2J-6 aptamer has extremely high specificity.
表12.文库内包含的部分DNA序列列表Table 12. List of partial DNA sequences contained in the library
编号Numbering DNA序列DNA sequence
S1S1 GTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATGGTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S2S2 TCATTTAGCCGACATCCGGTTGGTTTATGGTTTCCCTAAATCATTTAGCCGACATCCGGTTGGTTTATGGTTTCCCTAAA
S3S3 GACGCACCGATCGCAGGTTCACTCACAAACACTCTTCCCCGACGCACCGATCGCAGGTTCACTCACAAACACTCTTCCCC
S4S4 AACATATATGCTGTATTAGACAACGCACCTGGCGCAAGGTAACATATATGCTGTATTAGACAACGCACCTGGCGCAAGGT
S5S5 ACTCGCGGTTGTTAAACGTTGCTCCCCGACGCAGGGGCGTACTCGCGGTTGTTAAACGTTGCTCCCCGACGCAGGGGCGT
S6S6 ACTCGCGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGTACTCGCGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGT
S7S7 TAAGGTTTCCCCACTAACAATTAATTTGGCTTGTGGCATATAAGGTTTCCCCACTAACAATTAATTTGGCTTGTGGCATA
S8S8 GAGCTCGGTCTTTGGACCAAGAATAAGGTTTCCCTCACATGAGCTCGGTCTTTGGACCAAGAATAAGGTTTCCCTCACAT
S9S9 CCTGGCTTCACTTTGAGATTAAGGTTTCCCCAGGATCTACCCTGGCTTCACTTTGAGATTAAGGTTTCCCCAGGATCTAC
S10S10 GGATTAAGGTTTCCCCGTCCTGCCGGGACGGCCACGCATAGGATTAAGGTTTCCCCGTCCTGCCGGGACGGCCACGCATA
S11S11 CATTAAAATTGAGATTGCCACCCGCCGCAGGGTTCGCGATCATTAAAATTGAGATTGCCACCCGCCGCAGGGTTCGCGAT
S12S12 TTATGGACGGTTTGTTAAATGCCCTTTAGATAGCCTTCCCTTATGGACGGTTTGTTAAATGCCCTTTAGATAGCCTTCCC
S13S13 TAAGGTTTCCCTGCGGCGACGTCCATGCAGCGTATGGCCATAAGGTTTCCCTGCGGCGACGTCCATGCAGCGTATGGCCA
S14S14 GACGCACCGGTCGCAGGTTCAGTGTACGACCTTCTTTTCCGACGCACCGGTCGCAGGTTCAGTGTACGACCTTCTTTTCC
S15S15 ATGACGCCATCGGATTAAGGTTTCCCGTTATATTATGCTAATGACGCCATCGGATTAAGGTTTCCCGTTATATTATGCTA
S16S16 TAAGGTTTCCCTGCGGCTACGTCCATGCAGCGTATGGCCATAAGGTTTCCCTGCGGCTACGTCCATGCAGCGTATGGCCA
S17S17 GCAGGCACCGCTGATCGCCGCAGATCTGACTGATCATTATGCAGGCACCGCTGATCGCCGCAGATCTGACTGATCATTAT
S18S18 ACTCTCGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGTACTCTCGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGT
S19S19 TCATGGACGGTTTGTTAAATGCCCTTTAGATAGCCTTCCCTCATGGACGGTTTGTTAAATGCCCTTTAGATAGCCTTCCC
S20S20 ACTCGCTGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGTACTCGCTGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGT
S21S21 GTACCGCTTCTCCTCTTGGGTTGCTCTCAATCGCCGGATGGTACCGCTTCTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S22S22 TCCAATATAGCGACTTGGCTCGTTTATGGTTTCCCTATAATCCAATATAGCGACTTGGCTCGTTTATGGTTTCCCTATAA
S23S23 GTACCTCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATGGTACCTCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S24S24 GTACCGCGTCTCCTCTTTGGTTGCTCTCAATCGCCGGATGGTACCGCGTCTCCTCTTTGGTTGCTCTCAATCGCCGGATG
S25S25 TTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATGTTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S26S26 CATTAAAATTGAGATTGCCCCCCGCCGCAGGGTTCGCGATCATTAAAATTGAGATTGCCCCCCGCCGCAGGGTTCGCGAT
S27S27 ACCGCTTTCTTCCCCATTGGACCCTCTTAATCGGCGGAGTACCGCTTTCTTCCCCATTGGACCCTCTTAATCGGCGGAGT
S28S28 GACGCACCGGTCGCAGGTTCACTCACAAACACTCTTCCCCGACGCACCGGTCGCAGGTTCACTCACAAACACTCTTCCCC
S29S29 TGTGAGTACCACAGGGACGCGGGCGACGCAGCCCTCACTGTGTGAGTACCACAGGGACGCGGGCGACGCAGCCCTCACTG
S30S30 TAAGGTTTCCCTGGGCCACTCAGCATCTCGTTGTTTCGATTAAGGTTTCCCTGGGCCACTCAGCATCTCGTTGTTTCGAT
S31S31 ACTCACGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGTACTCACGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGT
S32S32 ATCACCCCACCAATTTCTACCACGCCACACCTCATTCGATATCACCCCACCAATTTCTACCACGCCACACCTCATTCGAT
S33S33 AACATATATTCTGTATTAGACAACGCACCTGGCGCAAGGTAACATATATTCTGTATTAGACAACGCACCTGGCGCAAGGT
S34S34 TAAGGTTTCCCTGCGGCGACGTCCATGCAGCATATGGCCATAAGGTTTCCCTGCGGCGACGTCCATGCAGCATATGGCCA
S35S35 ACTCGCGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCCTACTCGCGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCCT
S36S36 GACGCACCGATCGCAGGTTCAGTGTACGACCTTCTTTTCCGACGCACCGATCGCAGGTTCAGTGTACGACCTTCTTTTCC
S37S37 CCACCACCTACAACACTCTCGAACTCCCACATTCCTCTTTCCACCACCTACAACACTCTCGAACTCCCACATTCCTCTTT
S38S38 AACATATATGCTGTATTAGACAACGCACCTGGCTCAAGGTAACATATATGCTGTATTAGACAACGCACCTGGCTCAAGGT
S39S39 TAAGGTTTCCCCGTCTACGGCATATGTACGGCCCGTCTACTAAGGTTTCCCCGTCTACGGCATATGTACGGCCCGTCTAC
S40S40 GACGCACCGATCGCAGGTTCACTCATAAACACTCTTCCCCGACGCACCGATCGCAGGTTCACTCATAAACACTCTTCCCC
S41S41 TCATTTAGCCGACATCCTGTTGGTTTATGGTTTCCCTAAATCATTTAGCCGACATCCTGTTGGTTTATGGTTTCCCTAAA
S42S42 GTACCGCGTCTCCTCTTGGGTTTCTCTCAATCGCCGGATGGTACCGCGTCTCCTCTTGGGTTTCTCTCAATCGCCGGATG
S43S43 TAAGGTTTCCCCCGCATTTTTATGTGGCATTAGCCCTTCTTAAGGTTTCCCCCGCATTTTTATGTGGCATTAGCCCTTCT
S44S44 AACATATATGCTGTATTAGACAACGCACCTGGCGCAAGGCAACATATATGCTGTATTAGACAACGCACCTGGCGCAAGGC
S45S45 ACTCGCGTTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGTACTCGCGTTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGT
S46S46 AACATATATGCTGTATTATACAACGCACCTGGCGCAAGGTAACATATATGCTGTATTATACAACGCACCTGGCGCAAGGT
S47S47 ACTCGCTGTTGTTAAACGTTGCTCCCCGACGCAGGGGCGTACTCGCTGTTGTTAAACGTTGCTCCCCGACGCAGGGGCGT
S48S48 CGACCACCCCCAACCCATTCACACGTTCTACCCACTCTCCCGACCACCCCCAACCCATTCACACGTTCTACCCACTCTCC
S49S49 TCATTTAGTCGACATCCGGTTGGTTTATGGTTTCCCTAAATCATTTAGTCGACATCCGGTTGGTTTATGGTTTCCCTAAA
S50S50 GAGCTCGGTCTTTTGACCAAGAATAAGGTTTCCCTCACATGAGCTCGGTCTTTTGACCAAGAATAAGGTTTCCCTCACAT
S51S51 CATAAAAATTGAGATTGCCACCCGCCGCAGGGTTCGCGATCATAAAAATTGAGATTGCCACCCGCCGCAGGGTTCGCGAT
S52S52 ACTCTCGGTTGTTAAACGTTGCTCCCCGACGCAGGGGCGTACTCTCGGTTGTTAAACGTTGCTCCCCGACGCAGGGGCGT
S53S53 GTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCTGGATGGTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCTGGATG
S54S54 GTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGCTGGTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGCTG
S55S55 CATTAAAATTGAGATTCCCACCCGCCGCAGGGTTCGCGATCATTAAAATTGAGATTCCCACCCGCCGCAGGGTTCGCGAT
S56S56 CATTAAAATTGAGATTCCCCCCCGCCGCAGGGTTCGCGATCATTAAAATTGAGATTCCCCCCCGCCGCAGGGTTCGCGAT
S57S57 CCACAACACAACCCAAGCCCAACTACAGTTTCCCTCTTTTCCACAACACAACCCAAGCCCAACTACAGTTTCCCTCTTTT
S58S58 AACATATATGCTTTATTAGACAACGCACCTGGCGCAAGGTAACATATATGCTTTATTAGACAACGCACCTGGCGCAAGGT
S59S59 TCATTTAGCCGACATCCGGTTGGCTTATGGTTTCCCTAAATCATTTAGCCGACATCCGGTTGGCTTATGGTTTCCCTAAA
S60S60 GAGCTCTGTCTTTGGACCAAGAATAAGGTTTCCCTCACATGAGCTCTGTCTTTGGACCAAGAATAAGGTTTCCCTCACAT
S61S61 GTACCGCGTCTCCTCTTGGGCTGCTCTCAATCGCCGGATGGTACCGCGTCTCCTCTTGGGCTGCTCTCAATCGCCGGATG
S62S62 ACCACCTACACACCTACTTTTTTTTCGATCCAACCTGCTTACCACCTACACACCTACTTTTTTTTCGATCCAACCTGCTT
S63S63 ACTCGCGGTTGTCAAAGGTTGCTCCCCGACGCAGGGGCGTACTCGCGGTTGTCAAAGGTTGCTCCCCGACGCAGGGGCGT
S64S64 CGACTACCACCACTACTGACAGCGCCCACCACTTTTTTTTCGACTACCACCACTACTGACAGCGCCCACCACTTTTTTTT
S65S65 CAACCTACCTCACTGACACCACCCCAGCCTTTCTCCTCTTCAACCTACCTCACTGACACCACCCCAGCCTTTCTCCTCTT
S66S66 GTATCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATGGTATCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S67S67 CTGACCACTACCGCTCCCCATCCTCACCGAACACCTTGCTCTGACCACTACCGCTCCCCATCCTCACCGAACACCTTGCT
S68S68 GTACCGCGTCTCCTCTTGTGTTGCTCTCAATCGCCGGATGGTACCGCGTCTCCTCTTGTGTTGCTCTCAATCGCCGGATG
S69S69 CACCATCCACACCCATAAATTTCACACCAACATTTTCCTACACCATCCACACCCATAAATTTCACACCAACATTTTCCTA
S70S70 TGATCCTCCCGCACCATCCTCGTTCTACCTCATCAATCATTGATCCTCCCGCACCATCCTCGTTCTACCTCATCAATCAT
S71S71 TCATTTAGCCGACATCCGGTTGTTTTATGGTTTCCCTAAATCATTTAGCCGACATCCGGTTGTTTTATGGTTTCCCTAAA
S72S72 TCATTTAGCCGACATCCGGTTGGTTTATGGCTTCCCTAAATCATTTAGCCGACATCCGGTTGGTTTATGGCTTCCCTAAA
S73S73 CTGACCAACCCCCCGTAATCGCTTTTCTCCAGCCACTCACCTGACCAACCCCCCGTAATCGCTTTTCTCCAGCCACTCAC
S74S74 CGATCCCCACCAACTCTCTCCGAACCCTCCTAACTCTCGCCGATCCCCACCAACTCTCTCCGAACCCTCCTAACTCTCGC
S75S75 CGACCCGCTTTTCCGCTCCTGCCTCCATCCTCTCCAACCACGACCCGCTTTTCCGCTCCTGCCTCCATCCTCTCCAACCA
S76S76 CACATCACACTACCACCAACCATACACGCTATTTCTCCTTCACATCACACTACCACCAACCATACACGCTATTTCTCCTT
S77S77 ACTCGCGTTTGTTAAACGTTGCTCCCCGACGCAGGGGCGTACTCGCGTTTGTTAAACGTTGCTCCCCGACGCAGGGGCGT
S78S78 AACCACACCACACAACTACAGACACCCATCTACACAACGAAACCACACCACACAACTACAGACACCCATCTACACAACGA
S79S79 CACCCCCAACCACTCTCTCTCTCCAGCCTCCTAATTCTAACACCCCCAACCACTCTCTCTCTCCAGCCTCCTAATTCTAA
S80S80 TCCCCCTTTCAGCGTTCCCCCCACAGCTCCTCGACACTCCTCCCCCTTTCAGCGTTCCCCCCACAGCTCCTCGACACTCC
S81S81 AAACATCCCACGTACAAAAAAAAAACCACCTCACACTCCTAAACATCCCACGTACAAAAAAAAAAAAACCACCTCACACTCCT
S82S82 TAAACACACCACACTACCCAGATCCCACACCGACTTTATTTAAACACACCACACTACCCAGATCCCACACCGACTTTATT
S83S83 GTACTGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATGGTACTGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S84S84 CATTAAAATTGAGATTGCCACCCGCCGCAGGGCTCGCGATCATTAAAATTGAGATTGCCACCCGCCGCAGGGCTCGCGAT
S85S85 AACACACCACCTCCACAACTTACAACCCCCTCACCTTTCTAACACACCACCTCCACAACTTACAACCCCCTCACCTTTCT
S86S86 CCAAGACCAACAACACTACACCACACTAACCCCATTCTGACCAAGACCAACAACACTACACCACACTAACCCCATTCTGA
S87S87 GTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATTGTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATT
S88S88 CTTAGCCACAACCTCCACACCTCTACTGCTCCACATAACCCTTAGCCACAACCTCCACACCTCTACTGCTCCACATAACC
S89S89 GACGCACCGATCGCAGGCTCACTCACAAACACTCTTCCCCGACGCACCGATCGCAGGCTCACTCACAAACACTCTTCCCC
S90S90 CGATCCAAAACCCCCCTCTCTGCGTTAGCCATCTCTCTCTCGATCCAAAACCCCCCTCTCTGCGTTAGCCATCTCTCTCT
S91S91 GTCCCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATGGTCCCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S92S92 GTACCGCGTCTCCTCTTGGGTTGCTCTCAATCTCCGGATGGTACCGCGTCTCCTCTTGGGTTGCTCTCAATCTCCGGATG
S93S93 CTCACACAACCCCCAACATCTCTCAGCTACCCCCTCGATTCTCACACAACCCCCAACATCTCTCAGCTACCCCCTCGATT
S94S94 AACATATATGCTGTATTAGACAACGCACCTGGCGCAAGGAAACATATATGCTGTATTAGACAACGCACCTGGCGCAAGGA
S95S95 TTACAACCCGCCAGGCTCACCACCCCCCACCGTTTTATTTTTACAACCCGCCAGGCTCACCACCCCCCACCGTTTTATTT
S96S96 ACACACAGCAACCACACCACCAGCCACTCACTCTCTTTTTACACACAGCAACCACACCACCAGCCACTCACTCTCTTTTT
S97S97 GACTCACCGATCGCAGGTTCACTCACAAACACTCTTCCCCGACTCACCGATCGCAGGTTCACTCACAAACACTCTTCCCC
S98S98 AACATATATGCTGTATTAGACAACGCCCCTGGCGCAAGGTAACATATATGCTGTATTAGACAACGCCCCTGGCGCAAGGT
S99S99 TCTCCCGCAACTCTCTCTCTCTCTCCGATCTATCTCTCGTTCTCCCGCAACTCTCTCTCTCTCTCTCCGATCTATCTCTCGT
S100S100 ATAAACCCACCAACACCTCCACCTCAACACAACTGATTTTATAAACCCACCAACACCTCCACCTCAACACAACTGATTTT
S101S101 CACAACACACACAATCCCCCTTTTTATCCACCAACTCTATCACAACACACACAATCCCCCTTTTTATCCACCAACTCTAT
S102S102 CAACACCAACCTCCAGCCAGCTACCGCCCACCTCACCTCTCAACACCAACCTCCAGCCAGCTACCGCCCACCTCACCTCT
S103S103 CGCCCCCCCTCAACCACACTATTTCGCCCTCCATCCTCCTCGCCCCCCCTCAACCACACTATTTCGCCCTCCATCCTCCT
S104S104 CGACCCGAATTCAACCTCACCCCTCTTTCGATCTCTCACTCGACCCGAATTCAACCTCACCCCTCTTTCGATCTCTCACT
S105S105 ACTCGCGGTTTTTAAAGGTTGCTCCCCGACGCAGGGGCGTACTCGCGGTTTTTAAAGGTTGCTCCCCGACGCAGGGGCGT
S106S106 CGGACCGGACTCCATCCCCCCTCCAAACTCTCGCTCCATCCGGACCGGACTCCATCCCCCCTCCAAACTCTCGCTCCATC
S107S107 CACACAATACCACACCACCTCCATCACCCCCTCGTTAGCTCACACAATACCACACCACCTCCATCACCCCCTCGTTAGCT
S108S108 ATTCCCCATGCTCACACTCCCGTTCCCCTCACCTCTCTTTATTCCCCATGCTCACACTCCCGTTCCCCTCACCTCTCTTT
S109S109 GTGCCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATGGTGCCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S110S110 AACATATATGCTGTATTAGACAACGCGCCTGGCGCAAGGTAACATATATGCTGTATTAGACAACGCGCCTGGCGCAAGGT
S111S111 CTGACCAACGACACACACACATTCTTATACCCCCAGCTTTCTGACCAACGACACACACACATTCTTATACCCCCAGCTTT
S112S112 ACTCGCGGTTGTTAAATGTTGCTCCCCGACGCAGGGGCGTACTCGCGGTTGTTAAATGTTGCTCCCCGACGCAGGGGCGT
S113S113 CATAAAAATTGAGATTGCCCCCCGCCGCAGGGTTCGCGATCATAAAAATTGAGATTGCCCCCCGCCGCAGGGTTCGCGAT
S114S114 TAAGGTTTCCCCAGCATTTTTATGTGGCATTAGCCCTTCTTAAGGTTTCCCCAGCATTTTTATGTGGCATTAGCCCTTCT
S115S115 ACTCGCGGTTGTTAAACTTTGCTCCCCGACGCAGGGGCGTACTCGCGGTTGTTAAACTTTGCTCCCCGACGCAGGGGCGT
S116S116 CGACCACCATTCCACACCTCCACCTCCATCTCGCCGACACCGACCACCATTCCACACCTCCACCTCCATCTCGCCGACAC
S117S117 TAACTCCAACACCAACTACAACCCCCACTCCACGCTCGATTAACTCCAACACCAACTACAACCCCCACTCCACGCTCGAT
S118S118 GTACCGCGTCTCCTCTTGGTTTGCTCTCAATCGCCGGATGGTACCGCGTCTCCTCTTGGTTTGCTCTCAATCGCCGGATG
S119S119 ACTCGCGGTTGTTAAACGTTTCTCCCCGACGCAGGGGCGTACTCGCGGTTGTTAAACGTTTCTCCCCGACGCAGGGGCGT
S120S120 GGATTAAGGTTTCCCCGTCCTTCCGGGACGGCCACGCATAGGATTAAGGTTTCCCCGTCCTTCCGGGACGGCCACGCATA
S121S121 TACAATAACTCCACCACCGATACACACAGCGACACCCTTCTACAATAACTCCACCACCGATACACACAGCGACACCCTTC
S122S122 CGTAACCTCTCCACAACCCCTCTTATCCTCCTCGCTTTTTCGTAACCTCTCCACAACCCCTCTTATCCTCCTCGCTTTTT
S123S123 CACACCCACCCTGCCTCCACCAACCACCATCCTCTCTCTCCACACCCACCCTGCCTCCACCAACCACCATCCTCTCTCTC
S124S124 AATTAAAATTGAGATTGCCACCCGCCGCAGGGTTCGCGATAATTAAAATTGAGATTGCCACCCGCCGCAGGGTTCGCGAT
S125S125 CTTTCCCCCTCCGCTCGTTGATCCGACCCCTGATTTCTTTCTTTCCCCCTCCGCTCGTTGATCCGACCCCTGATTTCTTT
S126S126 TCATTTAGCCGACATCCGGTTTGTTTATGGTTTCCCTAAATCATTTAGCCGACATCCGGTTTGTTTATGGTTTCCCTAAA
S127S127 CTGATCCGTCACCTCCGCAATACCTCTCGACTCTCTCCTCCTGATCCGTCACCTCCGCAATACCTCTCGACTCTCTCCTC
S128S128 CGACCAACCCCCCTCAACACCGACCACCCTCTACCTCTCCCGACCAACCCCCCTCAACACCGACCACCCTCTACCTCTCC
S129S129 CGCTTAAACACATTCACCCCCACGTACACCACCCCTCTACCGCTTAAACACATTCACCCCCACGTACACCACCCCTCTAC
S130S130 TAAGGTTTCCCTGCGGCCACGTCCATGCAGCGTATGGCCATAAGGTTTCCCTGCGGCCACGTCCATGCAGCGTATGGCCA
S131S131 AACACCCCGACTAACGCAACTCACCACCCCTCTCAGCTTTAACACCCCGACTAACGCAACTCACCACCCCTCTCAGCTTT
S132S132 AACATATATGCTGTATTAGACAACGCTCCTGGCGCAAGGTAACATATATGCTGTATTAGACAACGCTCCTGGCGCAAGGT
S133S133 AATCCACCACAACGCATCACACTCACCAGCACCTCCTAATAATCCACCACAACGCATCACACTCACCAGCACCTCCTAAT
S134S134 AATTCGGCCTCATTTACTTCCTAATTATCTTCGCTTGCGTAATTCGGCCTCATTTACTTCCTAATTATCTTCGCTTGCGT
S135S135 TAATTTAGCCGACATCCGGTTGGTTTATGGTTTCCCTAAATAATTTAGCCGACATCCGGTTGGTTTATGGTTTCCCTAAA
S136S136 TTACCACCCCCCCACTACCAGCTACACCGACACCTCATTATTACCACCCCCCCACTACCAGCTACACCGACACCTCATTA
S137S137 TTACAGCACCCACACCTCCACACCGCGAACGACTCCGATTTTACAGCACCCACACCTCCACACCGCGAACGACTCCGATT
S138S138 TACACCACAACCACCTACAACTAACTTTATCCCTCTTTTATACACCACAACCACCTACAACTAACTTTATCCCTCTTTTA
S139S139 ACACAACAACACCAAACTCAAACAACGCCAACTCTACTTCACACAACAACACCAAACTCAAACAACGCCAACTCTACTTC
S140S140 CGACTAACCCCACCACGCCTTACTGCCTACCCCAACACACCGACTAACCCCACCACGCCTTACTGCCTACCCCAACACAC
S141S141 AAACCACCACCACCCCAACAACATCTCCACGACCGACACTAAACCACCACCACCCCAACAACATCTCCACGACCGACACT
S142S142 CAACCCCAACTCTAGACTACTCCACTCTCTCGCACATTTCCAACCCCAACTCTAGACTACTCCACTCTCTCGCACATTTC
S143S143 CGACCGCCTTGACTCTCTCTCTGCTAACCTCCCCGTTTTACGACCGCCTTGACTCTCTCTCTCTGCTAACCTCCCCGTTTTA
S144S144 CAACACACACCCACACACAATAACCTCAAGCCTACCCTTTCAACACACACCCACACACAATAACCTCAAGCCTACCCTTT
S145S145 AACCACCACACCACCCACATACTCACCACTCCAGCTTTTTAACCACCACACCACCCACATACTCACCACTCCAGCTTTTT
S146S146 CGAACCGTGCCTCACCGCCTTTACCATCTACATCCACGCCCGAACCGTGCCTCACCGCCTTTACCATCTACATCCACGCC
S147S147 ACCACCCCCACACCTCAACACCTCTGAACACCACCACTTTACCACCCCCACACCTCAACACCTCTGAACACCACCACTTT
S148S148 TAACACCACCACCAACCCTCCGATCAACACACACACCACTTAACACCACCACCAACCCTCCGATCAACACACACACCACT
S149S149 TTCCCTCCACATCTCCAGCCCAACTTTCTCGCTTTCTCTCTTCCCTCCACATCTCCAGCCCAACTTTCTCGCTTTCTCTC
S150S150 GGATTAAGGTTTCCCCGTCCTGCCGGGACGGCCACTCATAGGATTAAGGTTTCCCCGTCCTGCCGGGACGGCCACTCATA
S151S151 CATCCCCACTTTCGTTACATTTCCACCCCCTCTCTCGACTCATCCCCACTTTCGTTACATTTCCACCCCCTCTCTCGACT
S152S152 TACACCCCACCACACCCTGCCACACTTTCACCTTCTGCTTTACACCCCACCACACCCTGCCACACTTTCACCTTCTGCTT
S153S153 GACGCACCGATCTCAGGTTCACTCACAAACACTCTTCCCCGACGCACCGATCTCAGGTTCACTCACAAACACTCTTCCCC
S154S154 TCATTTAGCCGACATCCGTTTGGTTTATGGTTTCCCTAAATCATTTAGCCGACATCCGTTTGGTTTATGGTTTCCCTAAA
S155S155 ATTTTACCGCAGACACCCCAGACACCGATCCACCCACTTTATTTTACCGCAGACACCCCAGACACCGATCCACCCACTTT
S156S156 CTCGCCCCCCTCTCCTGTTTTGCCCCTCTATCGCTCTTTTCTCGCCCCCCTCTCCTGTTTTGCCCCTCTATCGCTCTTTT
S157S157 CCAGAAAAAAAACAATGCATACCCCCTCACCACAGCTCTACCAGAAAAAAAACAATGCATACCCCCTCACCACAGCTCTA
S158S158 CCTGGCTCCACTTTGAGATTAAGGTTTCCCCAGGATCTACCCTGGCTCCACTTTGAGATTAAGGTTTCCCCAGGATCTAC
S159S159 ACTCGCGGTTGTTAAACGTTGCTCCCCGACGCAGGGGCGCACTCGCGGTTGTTAAACGTTGCTCCCCGACGCAGGGGCGC
S160S160 ATGACGCCATCGGATTAAGGTTTCCCGTTATATTATTCTAATGACGCCATCGGATTAAGGTTTCCCGTTATATTATTCTA
S161S161 TACACCCAACACAAAACACCACCCGCACATTAACCCTTAATACACCCAACACAAAACACCACCCGCACATTAACCCTTAA
S162S162 CGATCCCACACTACCTCTTTACCTCACCTGCAACACCCCTCGATCCCACACTACCTCTTTACCTCACCTGCAACACCCCT
S163S163 ACACACACAGCTAACCCCCATTTTACTACCCACACATTTCACACACACAGCTAACCCCCATTTTACTACCCACACATTTC
S164S164 ACACCCCACTTACAACACCACGATTAAATTCACCACCCTTACACCCCACTTACAACACCACGATTAAATTCACCACCCTT
S165S165 TTTTACACCCCCACTACAGACACCACACTGCACCACCAAATTTTACACCCCCACTACAGACACCACACTGCACCACCAAA
S166S166 CGGACCACCTACACCCCCTCTTTCGCTACTCCACTCCACCCGGACCACCTACACCCCCTCTTTCGCTACTCCACTCCACC
S167S167 GTACCGCGTCTCCTCTTGGGTTGCTCTCAATCCCCGGATGGTACCGCGTCTCCTCTTGGGTTGCTCTCAATCCCCGGATG
S168S168 CATTAAAATGGAGATTGCCACCCGCCGCAGGGTTCGCGATCATTAAAATGGAGATTGCCACCCGCCGCAGGGTTCGCGAT
S169S169 GTACCGCGTCTCCTATTGGGTTGCTCTCAATCGCCGGATGGTACCGCGTCTCCTATTGGGTTGCTCTCAATCGCCGGATG
S170S170 CTGACCCCCCATGCCCCTCACTCTCTACACTCCACTCCCACTGACCCCCCATGCCCCTCACTCTCTACACTCCACTCCCA
S171S171 CAGAACCACCACCCACTCTACAACTCCTCTCCAACGACTTCAGAACCACCACCCACTCTACAACTCCTCTCCAACGACTT
S172S172 CACCTAGCACTACAATTACACCCACAACTCTACTCTCTCCCACCTAGCACTACAATTACACCCACAACTCTACTCTCTCC
S173S173 CGACACCACTCTCTAGCTCTCTGTTTACCCCACCCCACCTCGACACCACTCTCTAGCTCTCTGTTTACCCCACCCCACCT
S174S174 ACAAAACAAAAAACCCGACACACAGCTAACCCTCTACTTAACAAAACAAAAAACCCGACACACAGCTAACCCTCTACTTA
S175S175 CACCCCACCAACGTCTCCAGCCCACCACCTGCCTCCGCCTCACCCCACCAACGTCTCCAGCCCACCACCTGCCTCCGCCT
S176S176 AACCACACCACATCACACAAAACACCATCCACACACATACAACCACACCACATCACACAAAACACCATCCACACACATAC
S177S177 TTCAACCCAGCCACACCTTTACAGACTCCACCTCCACACCTTCAACCCAGCCACACCTTTACAGACTCCACCTCCACACC
S178S178 GTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCTGATGGTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCTGATG
S179S179 CGAACCTAGCAACTCCACCCCTAACTCACTCTCCGCTCACCGAACCTAGCAACTCCACCCCTAACTCACTCTCCGCTCAC
S180S180 TCCCCCACCCTCTACTTTCGACTCAATCTCTCCAACCCATTCCCCCACCCTCTACTTTCGACTCAATCTCTCCAACCCAT
S181S181 AACTAAACCCCAACACTCTCTCCGACCACCTCCGTTTGCTAACTAAACCCCAACACTCTCTCCGACCACCTCCGTTTGCT
S182S182 TAACACACACAACAACACCTACCGAAAATAGCTCTCTCCATAACACACACAACAACACCTACCGAAAATAGCTCTCTCCA
S183S183 TCTTCCTGCAGTCTCGCCCACCGTTCCTCCACCTATCCTCTCTTCCTGCAGTCTCGCCCACCGTTCCTCCACCTATCCTC
S184S184 TCTAATACAACCCAGCACACCACCACACGGATCCACCTAATCTAATACAACCCAGCACACCACCACACGGATCCACCTAA
S185S185 AGATACCCACAAACACAACTTCAGACACACAACACCCAACAGATACCCACAAACACAACTTCAGACACACAACACCCAAC
S186S186 AATAACACCCACACCTCACACAACATCCACCTTCCATTTTAATAACACCCACACCTCACACAACATCCACCTTCCATTTT
S187S187 TACACCAACCCACAACTCGACAACTCCACCGCTCCAAAACTACACCAACCCACAACTCGACAACTCCACCGCTCCAAAAC
S188S188 CGACCACCATCCCAATCACCTCCACACAATCCCCTCACACCGACCACCATCCCAATCACCTCCACACAATCCCCTCACAC
S189S189 TCATTTAGCCTACATCCGGTTGGTTTATGGTTTCCCTAAATCATTTAGCCTACATCCGGTTGGTTTATGGTTTCCCTAAA
S190S190 CCCACCACCTCACACATCCACATACCACAGCCGTTTTCCTCCCACCACCTCACACATCCACATACCACAGCCGTTTTCCT
S191S191 GTACCGAGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATGGTACCGAGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S192S192 CGACCTCCCATCTCTCACCCCCTTTTACTCTCCCATCCGACGACCTCCCATCTCTCACCCCCTTTTACTCTCCCATCCGA
S193S193 CACACTACAATTTTATACAACCCCCAACTACACAACCCTTCACACTACAATTTTATACAACCCCCAACTACACAACCCTT
S194S194 ACACTACCACCGCACACACTTTACAGTTCTTTAGCTTTTTACACTACCACCGCACACACTTTACAGTTCTTTAGCTTTTT
S195S195 TAGCTCGGTCTTTGGACCAAGAATAAGGTTTCCCTCACATTAGCTCGGTCTTTGGACCAAGAATAAGGTTTCCCTCACAT
S196S196 AACACCACCCAGCACACACAACATCCCCTTTGAGATATTCAACACCACCCAGCACACACAACATCCCCTTTGAGATATTC
S197S197 ACAAAACAGAAGATAACCCACAAAAAAAAGCACACTCCCAACAAAACAGAAGATAACCCACAAAAAAAAGCACACTCCCA
S198S198 CTGAACGGCACCCACGCAACTCTCACTCCTCCGCCTTTTGCTGAACGGCACCCACGCAACTCTCACTCCTCCGCCTTTTG
S199S199 CAACCGCTCCATCCCCCTCTTACACACCTATCCTCTACCACAACCGCTCCATCCCCCTCTTACACACCTATCCTCTACCA
S200S200 CACCACACCCCAGTTACTGTAACCACCACCCCATTATTCTCACCACACCCCAGTTACTGTAACCACCACCCCATTATTCT
S201S201 ACACTAAACACACAAACCCACACCTATCCACACCGATTAAACACTAAACACACAAACCCACACCTATCCACACCGATTAA
S202S202 ACAACACACACAACCCATACCTCGTTAGCACCTCCACTTTACAACACACACAACCCATACCTCGTTAGCACCTCCACTTT
S203S203 ACCAACCCCACCACCGATACCACAACCTCCACCGTTATTTACCAACCCCACCACCGATACCACAACCTCCACCGTTATTT
S204S204 TACGCACCGATCGCAGGTTCACTCACAAACACTCTTCCCCTACGCACCGATCGCAGGTTCACTCACAAACACTCTTCCCC
S205S205 CGACACACTACACCCACGCTCTACGCAACTCCTACACCGCCGACACACTACACCCACGCTCTACGCAACTCCTACACCGC
S206S206 ATACAACTACCCCCCAACTCCACCCCATCGATCTCACTCTATACAACTACCCCCCAACTCCACCCCATCGATCTCACTCT
S207S207 CGACCGCAACTCCGCTTACTCACCTCTGCCGAACCTCTCCCGACCGCAACTCCGCTTACTCACCTCTGCCGAACCTCTCC
S208S208 TCCCCATCCCTCTCTCTGTCTCCATCCTCTCCTCCGATTTTCCCCATCCCTCTCTCTGTCTCCATCCTCTCCTCCGATTT
S209S209 ACCCCCTGCACACTCTGCGATACACACCTACCCCTCCTTTACCCCCTGCACACTCTGCGATACACACCTACCCCTCCTTT
S210S210 AAAAAAAACACTACCCCACACCCACCACGCGTATCACTAAAAAAAAAACACTACCCCACACCCACCACGCGTATCACTAA
S211S211 ACCCACACCCACTAGACTCTCCGATTTACTCCATCCCCACACCCACACCCACTAGACTCTCCGATTTACTCCATCCCCAC
S212S212 TAAATTTCGATACACACAACACCCCACACGTTCACCTCCTTAAATTTCGATACACACAACACCCCACACGTTCACCTCCT
S213S213 ATTACTCCCACCATCCTGCACCACCACTCCGTTTCCAGCTATTACTCCCACCATCCTGCACCACCACTCCGTTTCCAGCT
S214S214 AAACCACAACTAACACCCTCGACAGCGACAACTCCACACTAAACCACAACTAACACCCTCGACAGCGACAACTCCACACT
S215S215 CACGCCAACAATTTACCACCTCAGCAATCTCTCACTCCCACACGCCAACAATTTACCACCTCAGCAATCTCTCACTCCCA
S216S216 CACACAACCCCATCGGATACACACCCACCTGCAGCTCTACCACACAACCCCATCGGATACACACCCACCTGCAGCTCTAC
S217S217 CAACCCACCACAGCTCCCCCCTTGACCTCTTTTTTGCAACCAACCCACCACAGCTCCCCCCTTGACCTCTTTTTTGCAAC
S218S218 ACACCCCACCACACCTCCACTACCTTGTGAATAACCGAATACACCCCACCACACCTCCACTACCTTGTGAATAACCGAAT
S219S219 AACATATATGCTGTATTAGACAACGCACCTGGCGCAAGGGAACATATATGCTGTATTAGACAACGCACCTGGCGCAAGGG
S220S220 GTACAGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATGGTACAGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S221S221 CGACACCCACAACTGCTCCAACCCCCTCCTCAACCACACTCGACACCCACAACTGCTCCAACCCCCTCCTCAACCACACT
S222S222 CGACACAACCTCACACCCCATCTCCACTCTCCTAACACTTCGACACAACCTCACACCCCATCTCCACTCTCCTAACACTT
S223S223 GCACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATGGCACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S224S224 CCACCACAAAAACCCAACTCCACCTCCGATACTCCACAGTCCACCACAAAAACCCAACTCCACCTCCGATACTCCACAGT
S225S225 AACATATATGCTGTATTAGACAACGCACCTGGCCCAAGGTAACATATATGCTGTATTAGACAACGCACCTGGCCCAAGGT
S226S226 GTACCGCGTATCCTCTTGGGTTGCTCTCAATCGCCGGATGGTACCGCGTATCCTCTTGGGTTGCTCTCAATCGCCGGATG
S227S227 ACCAATCCCAACACACTGCAACACTACACATTTTCCACCTACCAATCCCAACACACTGCAACACTACACATTTTCCACCT
S228S228 CGCACCCAGTAACACTCCCATCCCACGCATCTTTCTCGCTCGCACCCAGTAACACTCCCATCCCACGCATCTTTCTCGCT
S229S229 CATTGCGCAAACCCACCACCGTTCCACCTCCATCTACCACCATTGCGCAAACCCACCACCGTTCCACCTCCATCTACCAC
S230S230 CTTTCCTCCCATTCTCACCGCTGACTCCCTCCTCCGATTTCTTTCCTCCCATTCTCACCGCTGACTCCCTCCTCCGATTT
S231S231 TTTTTACACCCACCAACCCCAACCCAAGCTGCATCCGCAATTTTTACACCCACCAACCCCAACCCAAGCTGCATCCGCAA
S232S232 CACCACCACCCAAACGTAACATCTCAACTACACCCCAATCCACCACCACCCAAACGTAACATCTCAACTACACCCCAATC
S233S233 CATCCACCATTCACCTCACCAACCTCCCCCTCCTCTCTTTCATCCACCATTCACCTCACCAACCTCCCCCTCCTCTCTTT
S234S234 CGACCAACTTTAAGCCATCCGCTCTCACCAGCCCCCATTTCGACCAACTTTAAGCCATCCGCTCTCACCAGCCCCCATTT
S235S235 CACCACACCAAACACAACACCTATCCACACAGATTTCTCCCACCACACCAAACACAACACCTATCCACACAGATTTCTCC
S236S236 CAACACTACACCACTCTAACTCCACACTACCTCTCCTGTTCAACACTACACCACTCTAACTCCACACTACCTCTCCTGTT
S237S237 ATAACACGCTAAAAGACCACCCCACCTCCACACTACCGATATAACACGCTAAAAGACCACCCCACCTCCACACTACCGAT
S238S238 TCCCCCTACAACTACCTCTACTTAACTCTACCCCTCTCTGTCCCCCTACAACTACCTCTACTTAACTCTACCCCTCTCTG
S239S239 CACCTACCCTCTACGTTTTCCACCTGCGCACCTCCACATCCACCTACCCTCTACGTTTTCCACCTGCGCACCTCCACATC
S240S240 CTACTAACCACTCCATTCACCCTCGCACAGTTTCTCTCCTCTACTAACCACTCCATTCACCCTCGCACAGTTTCTCTCCT
S241S241 TCACCCCCCACATCTCACTCACCCTCACTCTCTGTTTCGATCACCCCCCACATCTCACTCACCCTCACTCTCTGTTTCGA
S242S242 GTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGTATGGTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGTATG
S243S243 ACTCGCGATTGTTAAAGGTTGCTCCCCGACGCAGGGGCGTACTCGCGATTGTTAAAGGTTGCTCCCCGACGCAGGGGCGT
S244S244 CGAACCTACCAGCCTCTACTACCGCTTACATACCACCCACCGAACCTACCAGCCTCTACTACCGCTTACATACCACCCAC
S245S245 CACAACCAATACACACACCATCCATCTACCTCCATCATACCACAACCAATACACACACCATCCATCTACCTCCATCATAC
S246S246 CACGAAAAAAAACCACCACCACACACACCCTCGAATTTGCCACGAAAAAAAACCACCACCACACACACACCCTCGAATTTGC
S247S247 TTAACCATCCAGACACACCCCCTTTCACTCCATCGCTCACTTAACCATCCAGACACACCCCCTTTCACTCCATCGCTCAC
S248S248 GACGCACCGATCGCAGTTTCACTCACAAACACTCTTCCCCGACGCACCGATCGCAGTTTCACTCACAAACACTCTTCCCC
S249S249 AACCACCCACGCTAAAGACCCCAACTACCTATCACACTCTAACCACCCACGCTAAAGACCCCAACTACCTATCACACTCT
S250S250 TCATTTATCCGACATCCGGTTGGTTTATGGTTTCCCTAAATCATTTATCCGACATCCGGTTGGTTTATGGTTTCCCTAAA
S251S251 CGAACCACCCCCCGCTCCACCTCTCGCAGACCCACTCCACCGAACCACCCCCCGCTCCACCTCTCGCAGACCCACTCCAC
S252S252 CACACCCACCCCACGCCTGTTACACCACCACACAACATCCCACACCCACCCCACGCCTGTTACACCACCACACAACATCC
S253S253 TACAACCCACACCAACAGACTCCACTTTCTTTATAACCACTACAACCCACACCAACAGACTCCACTTTCTTTATAACCAC
S254S254 TTAACCAGCTACCACCCCCACATTCACACAGCATCTGAACTTAACCAGCTACCACCCCCACATTCACACAGCATCTGAAC
S255S255 CAACACAACACCAGCACCCCACTGCCTACACTACACCAATCAACACAACACCAGCACCCCACTGCCTACACTACACCAAT
S256S256 CGACCGTGCTACCCCTCCATCCCTCGGCCCAACACACCCTCGACCGTGCTACCCCTCCATCCCTCGGCCCAACACACCCT
S257S257 GCTCGCGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGTGCTCGCGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGT
S258S258 GCTCGCGGTTGTTAAACGTTGCTCCCCGACGCAGGGGCGTGCTCGCGGTTGTTAAACGTTGCTCCCCGACGCAGGGGCGT
S259S259 ACACGCTACACCCCCAAGAACCACCGCTCTCTCTCTTTAAACACGCTACACCCCCAAGAACCACCGCTCTCTCTCTTTAA
S260S260 CACATCCACCACACCACCCACATCACCTACTGCTACGATACACATCCACCACACCACCCACATCACCTACTGCTACGATA
S261S261 AACATATATGCTGTATTAGACAACTCACCTGGCGCAAGGTAACATATATGCTGTATTAGACAACTCACCTGGCGCAAGGT
S262S262 CCACACCATCCACCCCGCTATACCACCATCTCCTATGACCCCACACCATCCACCCCGCTATACCACCATCTCCTATGACC
S263S263 ACTCGCGGTTTTTAAACGTTGCTCCCCGACGCAGGGGCGTACTCGCGGTTTTTAAACGTTGCTCCCCGACGCAGGGGCGT
S264S264 CCACCTAAAACACTCACCGATGCACCACCCCAGCTCTTTTCCACCTAAAACACTCACCGATGCACCACCCCAGCTCTTTT
S265S265 TTGTTCATAGAACTTAACTAGGCACGCATCTGCCGCAAGATTGTTCATAGAACTTAACTAGGCACGCATCTGCCGCAAGA
S266S266 TACCACCACCACCCACTCCTACCAACAACTCCCCTCCATTTACCACCACCACCCACTCCTACCAACAACTCCCCTCCATT
S267S267 TTCAAACCCACCACCACAACACCAGCCAGCAGCATCCACCTTCAAACCCACCACCACAACACCAGCCAGCAGCATCCACC
S268S268 CGCTAACCCTCATTCCCCCCAACCGCTTTACCTCTCTCTACGCTAACCCTCATTCCCCCCAACCGCTTTACCTCTCTCTA
S269S269 TAACCCACGACACACACCAGCAGCTACACATACCCAACATTAACCCACGACACACACCAGCAGCTACACATACCCAACAT
S270S270 AAACCCACACGACAATTTCCACCCACACAAACCCCTACTTAAACCCACACGACAATTTCCACCCACACAAACCCCTACTT
S271S271 CACCACACACCACACACATCCAAGATCCCCCTCCGCTATTCACCACACACCACACACATCCAAGATCCCCCTCCGCTATT
S272S272 ACTCGATCCACCCCCCGCTACCGCTCTCTCTATCTCCTTTACTCGATCCACCCCCCGCTACCGCTCTCTCTATCTCCTTT
S273S273 ACTCGCGGTTGTTAAACGTTGCTCCCCGACGCAGGGGCTTACTCGCGGTTGTTAAACGTTGCTCCCCGACGCAGGGGCTT
S274S274 TTTATCCAGACACACACAACACTCCACCCAACGCTCTCACTTTATCCAGACACACACAACACTCCACCCAACGCTCTCAC
S275S275 CGCCTCCAATCCATTCACCCCAGCCTAACACGCTCTACTTCGCCTCCAATCCATTCACCCCAGCCTAACACGCTCTACTT
S276S276 CGCTACCGTTAACCTCCCCTGTTTTCCTCCACTCTCCTACCGCTACCGTTAACCTCCCCTGTTTTCCTCCACTCTCCTAC
S277S277 TCCCCCCCTCCTACATGCTCACCTCCACCACTCTCTATATTCCCCCCCTCCTACATGCTCACCTCCACCACTCTCTATAT
S278S278 GGATTAAGGTTTCCCCGTCCTGCCGTGACGGCCACGCATAGGATTAAGGTTTCCCCGTCCTGCCGTGACGGCCACGCATA
S279S279 ACAACCAACTCCATCCACACCTCACACTGCTATCCCATTCACAACCAACTCCATCCACACCTCACACTGCTATCCCATTC
S280S280 GAGCTCGGTCTTTGGACCAAGAATAAGGCTTCCCTCACATGAGCTCGGTCTTTGGACCAAGAATAAGGCTTCCCTCACAT
S281S281 CGACCAGCCACTCCTCACATCATCTCAATATATATCCCCTCGACCAGCCACTCCTCACATCATCTCAATATATATCCCCT
S282S282 CCAACACCCACCACTACCTAGACACACCTCCGATCTCTTTCCAACACCCACCACTACCTAGACACACCTCCGATCTCTTT
S283S283 CACCATCCACTACCACCTGTATACACCGCCCAACATCTCCCACCATCCACTACCACCTGTATACACCGCCCAACATCTCC
S284S284 CATCCACCCAAACACGCGCTATCCCACACTCCTCCAATCTCATCCACCCAAACACGCGCTATCCCACACTCCTCCAATCT
S285S285 CACTTAAAAACAAAACACACCCACATAACACTTACCCTGACACTTAAAAACAAAACACACCCACATAACACTTACCCTGA
S286S286 TCCCACACCAAAACTACCTCCCCAACTCACCTCCCGCTTTTCCCACACCAAAACTACCTCCCCAACTCACCTCCCGCTTT
S287S287 TAAATCCACCCCACAGCTACAACTCGACTTTACCCCTACCTAAATCCACCCCACAGCTACAACTCGACTTTACCCCTACC
S288S288 CGACCACACTCCACTCACCTCCCTGCCGTAGACCCATCCGCGACCACACTCCACTCACCTCCCTGCCGTAGACCCATCCG
S289S289 ACACTCCACAACTCAACACCTCACCACTTTACCCTCTCGCACACTCCACAACTCAACACCTCACCACTTTACCCTCTCGC
S290S290 CGAACCGTAGAAATCTCACTCCCACCAACTCTCTCTCTCCCGAACCGTAGAAATCTCACTCCCACCAACTCTCTCTCTCC
S291S291 GTACCGCATCTCCTCTTGGGTTGCTCTCAATCGCCGGATGGTACCGCATCTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S292S292 TTTCCCCCTGTACAACCCCTCTACCTCTCTCTTTTTCATCTTTCCCCCTGTACAACCCCTCTACCTCTCTCTTTTTCATC
S293S293 GGATTAAGGTTTCCACGTCCTGCCGGGACGGCCACGCATAGGATTAAGGTTTCCACGTCCTGCCGGGACGGCCACGCATA
S294S294 TCCCCCCTTTCTCCACCTCTCGCTCTTTACACACCCCACTTCCCCCCTTTCTCCACCTCTCGCTCTTTACACACCCCACT
S295S295 ACTCGCGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCTTACTCGCGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCTT
S296S296 ACTCGCGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGCACTCGCGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGC
S297S297 ACACAACATCCATACCACCATACAACACATAATTCTACCTACACAACATCCATACCACCATACAACACATAATTCTACCT
S298S298 CACACAACGACACCACCCCCGTACACACCGAACCCCTTTTCACACAACGACACCACCCCCGTACACACCGAACCCCTTTT
S299S299 CAATAAAAACACCCAATACTACTGCAACTCCACCCACTTTCAATAAAAACACCCAATACTACTGCAACTCCACCCACTTT
S300S300 ACAACTCCACACCAACACCTTGCTCCACACCACCTCGACCACAACTCCACACCAACACCTTGCTCCACACCACCTCGACC
S301S301 CAACACCACACACAACTTGCGCCTCAACCACCACCCAACTCAACACCACACACAACTTGCGCCTCAACCACCACCCAACT
S302S302 CCCCCACTTAGACGCAACACCCATTACACCCTCCGCTCGTCCCCCACTTAGACGCAACACCCATTACACCCTCCGCTCGT
S303S303 CTGACACACCACTCCACCACCACACTCCCATCCTGCCCTTCTGACACACCACTCCACCACCACACTCCCATCCTGCCCTT
S304S304 TCAACCCCACATTCGCCCAAACCGATCCACCACTCTCCTCTCAACCCCACATTCGCCCAAACCGATCCACCACTCTCCTC
S305S305 ACCACCAACACAACCAAACTCTTTAAACACCCAACACTTTACCACCAACACAACCAAACTCTTTAAACACCCAACACTTT
S306S306 GTACCGCGTCTCCTTTTGGGTTGCTCTCAATCGCCGGATGGTACCGCGTCTCCTTTTGGGTTGCTCTCAATCGCCGGATG
S307S307 GTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGTTGGTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGTTG
S308S308 TCCCCCCACGCCTCTCACCTCGCTTTCACTTTTTCCCTGCTCCCCCCACGCCTCTCACCTCGCTTTCACTTTTTCCCTGC
S309S309 CTGATACCCCACTCCCACCTTTCGCTCTCACCTCTCTCGCCTGATACCCCACTCCCACCTTTCGCTCTCACCTCTCTCGC
S310S310 AAAAACAACAACACACCCAGACACCACTCCTCTCACTCGAAAAAACAACAACACACCCAGACACCACTCCTCTCACTCGA
S311S311 TACACCAACTCCACCACACATCGAACCATCCCTTGATCCTTACACCAACTCCACCACACATCGAACCATCCCTTGATCCT
S312S312 ACACCCCCAACACCAATCTCACCACCTGCCGCTCTATAATACACCCCCAACACCAATCTCACCACCTGCCGCTCTATAAT
S313S313 TTTACACCACCCCACCATCGGCACATAACCCCACTTTACCTTTACACCACCCCACCATCGGCACATAACCCCACTTTACC
S314S314 TACCACCTACCACTCCATCCAGACATCACCTTTTATCGACTACCACCTACCACTCCATCCAGACATCACCTTTTATCGAC
S315S315 CCTGGCTTCACTTTGAGATTAAGGCTTCCCCAGGATCTACCCTGGCTTCACTTTGAGATTAAGGCTTCCCCAGGATCTAC
S316S316 AACGACAAACTACAACCACCACACTCCAACCACCCAATTCAACGACAAACTACAACCACCACACTCCAACCACCCAATTC
S317S317 CGACCCCATCCCTCCATCTCCGGAAACTTGCTCCTCCACCCGACCCCATCCCTCCATCTCCGGAAACTTGCTCCTCCACC
S318S318 TCACACACACATCCAACACAGCCACCCCACTCCGAACTTTTCACACACACATCCAACACAGCCACCCCACTCCGAACTTT
S319S319 TTAACCCACACACCCAGCACTATCTGTATACACCACCCCCTTAACCCACACACCCAGCACTATCTGTATACACCACCCCC
S320S320 ACACCCCCACACTCTCCAGAAACTCTCAGCTCCACCCTGTACACCCCCACACTCTCCAGAAACTCTCAGCTCCACCCTGT
S321S321 AACTCAACACACACAATTTACACCCCTACCACCGCCTTACAACTCAACACACACAATTTACACCCCTACCACCGCCTTAC
S322S322 AACATATATGCTGTATTAGACAACGCACCTGGCGCAAGTTAACATATATGCTGTATTAGACAACGCACCTGGCGCAAGTT
S323S323 CATCCACACCAACTCCACTTACATCCAAGATCCCCTCCACCATCCACACCAACTCCACTTACATCCAAGATCCCCTCCAC
S324S324 CACGAACACAGAACCACCTACCACACTTTCCACTCCGATACACGAACACAGAACCACCTACCACACTTTCCACTCCGATA
S325S325 ACACCACCCTCACCACAACCATCCCTCTGATTCTCACGTTACACCACCCTCACCACAACCATCCCTCTGATTCTCACGTT
S326S326 CTACCTCTACTACTTTTACTCCTCACCTCTCTTTCTCCGTCTACCTCTACTACTTTTACTCCTCACCTCTCTTTCTCCGT
S327S327 CTCCCCCACTACCACCGCTTACGTCTCCACCGAACCATTTCTCCCCCACTACCACCGCTTACGTCTCCACCGAACCATTT
S328S328 GTACCGCGTCTCCTCTTGGGTTCCTCTCAATCGCCGGATGGTACCGCGTCTCCTCTTGGGTTCCTCTCAATCGCCGGATG
S329S329 CCATCCACTCCACCTCCTTTCTGGCCTTCTTCCATCTTTTCCATCCACTCCACCTCCTTTCTGGCCTTCTTCCATCTTTT
S330S330 GACGCACCGATCGCAGGTTCACTCACAAACGCTCTTCCCCGACGCACCGATCGCAGGTTCACTCACAAACGCTCTTCCCC
S331S331 TTTACACACCTACCACCACACACTGATACACATTCTCCACTTTACACACCTACCACCACACACTGATACACATTCTCCAC
S332S332 TCATTTAGCCGACATCCGGTTGGTTTATGGTTTCCCTATATCATTTAGCCGACATCCGGTTGGTTTATGGTTTCCCTATA
S333S333 CTGACCTCGACACCACTCTCTCGCTCTACCCCTTCCTCTGCTGACCTCGACACCACTCTCTCGCTCTACCCCTTCCTCTG
S334S334 CTGACCTCCGCCCCGCGTATTACCCCTCCTCTCGCATATCCTGACCTCCGCCCCGCGTATTACCCCTCCTCTCGCATATC
S335S335 ACCACCCACACACTCCAGACGAACATACCCATAACTCCATACCACCCACACACTCCAGACGAACATACCCATAACTCCAT
S336S336 CACTACACCACCACACACCCAACTCTACGATCCCCCGATTCACTACACCACCACACACCCAACTCTACGATCCCCCGATT
S337S337 CGACCCCTGTTATCCCATTATTTTTCGCCGGTTTTTTTTTCGACCCCTGTTATCCCATTATTTTTCGCCGGTTTTTTTTT
S338S338 TTAACCCATCCACCACAACGCCATCCAACCCAACATTGATTTAACCCATCCACCACAACGCCATCCAACCCAACATTGAT
S339S339 ACACCACCACAGCACCTCACCCAACCTTGATTTTTCCACTACACCACCACAGCACCTCACCCAACCTTGATTTTTCCACT
S340S340 CTGACCACCATCCCACGCGAACTCCCTCCTCCTGTCCATTCTGACCACCATCCCACGCGAACTCCCTCCTCCTGTCCATT
S341S341 CACCTCACCGCAACACCAATACCCCCTCCACCCACTGACTCACCTCACCGCAACACCAATACCCCCTCCACCCACTGACT
S342S342 CAACACCCGACGCGCACAACTCACCCCCATCCCGCTCTTTCAACACCCGACGCGCACAACTCACCCCCATCCCGCTCTTT
S343S343 TCATTTAGCCGACATCCGGCTGGTTTATGGTTTCCCTAAATCATTTAGCCGACATCCGGCTGGTTTATGGTTTCCCTAAA
S344S344 CGCACCAAACCACCTCCTTCAGCTCAACCTCTGCCTCTCCCGCACCAAACCACCTCCTTCAGCTCAACCTCTGCCTCTCC
S345S345 AATTCCCCGACCAGTTCTGCCATCCACCATCCCCTACCGTAATTCCCCGACCAGTTCTGCCATCCACCATCCCCTACCGT
S346S346 CGACCGGAAACACTCCCCCCACACTCTCCTCGCCCTCCCTCGACCGGAAACACTCCCCCCACACTCTCCTCGCCCTCCCT
S347S347 AATCCACCACAGAAACACACAATATAACCCCACAATACACAATCCACCACAGAAACACACAATATAACCCCACAATACAC
S348S348 ACTCGCGGTTGTTAAACGTTGCTCCCCGACTCAGGGGCGTACTCGCGGTTGTTAAACGTTGCTCCCCGACTCAGGGGCGT
S349S349 ACCACCACCACACAAACTCTATACAGCATCCCCATCAGCTACCACCACCACACAAACTCTATACAGCATCCCCATCAGCT
S350S350 CACCCAACCAAATCCCACCGACTTTCTACACTCCTCCACTCACCCAACCAAATCCCACCGACTTTCTACACTCCTCCACT
S351S351 CACCACAACCAACACATACGCAATACCCACCCAACCCTGCCACCACAACCAACACATACGCAATACCCACCCAACCCTGC
S352S352 CACAACAAAAATACACGGACACCCACCAACACACACCTCCCACAACAAAAATACACGGACACCCACCAACACACACACCTCC
S353S353 CTCTCCAGCATCCCCCTCACCATCCACCCTGTATCCACACCTCTCCAGCATCCCCCTCACCATCCACCCTGTATCCACAC
S354S354 CACAACAACCCCCAGACCACTATAATATCACCACACCACCCACAACAACCCCCAGACCACTATAATATCACCACACCACC
S355S355 ACCAACCACAACACACCCCAATTCTTTTTTGCCACCATTAACCAACCACAACACACCCCAATTCTTTTTTGCCACCATTA
S356S356 CGAACAAACAACCCCTCTCACTCTGCGACTGCCCCCGACTCGAACAAACAACCCCTCTCACTCTGCGACTGCCCCCGACT
S357S357 ACAACAACCTCAACCACTCTGCTCACTCCAACACTCCCACACAACAACCTCAACCACTCTGCTCACTCCAACACTCCCAC
S358S358 ACAAACACACGATATAACCCCATCCACACTCCAACACTTTACAAACACACGATATAACCCCATCCACACTCCAACACTTT
S359S359 TACACACAACCCACCCACACCATCCAACTATATCTCAACCTACACACAACCCACCCACACCATCCAACTATATCTCAACC
S360S360 AACCCTACCGCACTCCACAACACAACTCCACCAGTTCCCTAACCCTACCGCACTCCACAACACAACTCCACCAGTTCCCT
S361S361 AAAAACCCAACACACAAAACATCCCCTCACATCTACCACTAAAAACCCAACACACAAAACATCCCCTCACATCTACCACT
S362S362 TAATACACTAAACACCTCCACAAACACACCTCGACTTTTTTAATACACTAAACACCTCCACAAACACACCTCGACTTTTT
S363S363 CGCACACGTCTGCTACCCACCACCGACACCCAACCCTTTACGCACACGTCTGCTACCCACCACCGACACCCAACCCTTTA
S364S364 CGTACCCCTCACACCTGTCTCTATCCATCCTCTCCTCGCTCGTACCCCTCACACCTGTCTCTATCCATCCTCTCCTCGCT
S365S365 CACACTACCACACACCCTCACCACTACCTCTCCTTTCTTACACACTACCACACACCCTCACCACTACCTCTCCTTTCTTA
S366S366 CAACACCACTACTACCTCACCACACACGAGCTGCTTCCAACAACACCACTACTACCTCACCACACACGAGCTGCTTCCAA
S367S367 AAAACCCCACACACAGAACTACACCTTACACACCAGCTCCAAAACCCCACACACAGAACTACACCTTACACACCAGCTCC
S368S368 CACAAAAGCGACACAATTAACCCACCCCCACACACACTTCCACAAAAGCGACACAATTAACCCACCCCCACACACACTTC
S369S369 AATTAAAATTGAGATTGCCCCCCGCCGCAGGGTTCGCGATAATTAAAATTGAGATTGCCCCCCGCCGCAGGGTTCGCGAT
S370S370 TACACCACCACAACCCATCCCCAGATCACCTCACCAACCTTACACCACCACAACCCATCCCCAGATCACCTCACCAACCT
S371S371 CACACACACAACACAAACTCTCCGACACCACCTGCTTTCCCACACACACAACACAAACTCTCCGACACCACCTGCTTTCC
S372S372 CACCATGACAACAACAACACCCATTCCACTCCACCTGCATCACCATGACAACAACAACACCCATTCCACTCCACCTGCAT
S373S373 CGACCTAACCTTTTTTAGCACACCTCTTACACCACCCAGCCGACCTAACCTTTTTTAGCACACCTCTTACACCACCCAGC
S374S374 GTATTAAGGTTTCCCCGTCCTGCCGGGACGGCCACGCATAGTATTAAGGTTTCCCCGTCCTGCCGGGACGGCCACGCATA
S375S375 ACAACACCACCACATCTCACAAACCAGCATCCAAATCACCACAACACCACCACATCTCACAAACCAGCATCCAAATCACC
S376S376 TACACCCACACCAACACCTGCAGACAGACACACACTCTACTACACCCACACCAACACCTGCAGACAGACACACACTCTAC
S377S377 CAACTACCACCATTCACAGCTCCACCACCACGATTTTACCCAACTACCACCATTCACAGCTCCACCACCACGATTTTACC
S378S378 TATCCACCCACTCCATCTGACACACCCCTCAACTTTATCCTATCCACCCACTCCATCTGACACACCCCTCAACTTTATCC
S379S379 CATTAAAATTGAGATTGCCACCCGCCGCAGGGGTCGCGATCATTAAAATTGAGATTGCCACCCGCCGCAGGGGTCGCGAT
S380S380 GACGCACCGATCGCAGGATCACTCACAAACACTCTTCCCCGACGCACCGATCGCAGGATCACTCACAAACACTCTTCCCC
S381S381 GACGCACCGATCGCAGGTTCACTCACAAACCCTCTTCCCCGACGCACCGATCGCAGGTTCACTCACAAACCCTCTTCCCC
S382S382 TAACACACCACCAACCCACACGACTTTACCACCAACTTATTAACACACCACCAACCCACACGACTTTACCACCAACTTAT
S383S383 ACTCGCGGTTGTTAAAGGCTGCTCCCCGACGCAGGGGCGTACTCGCGGTTGTTAAAGGCTGCTCCCCGACGCAGGGGCGT
S384S384 TTAACCCCCAGACCACCCACCTTTTTTCACACAAAACCTGTTAACCCCCAGACCACCCACCTTTTTTCACACAAAACCTG
S385S385 TAACCACACGCAACACCTCAACTCACTCCATCACACACTCTAACCACACGCAACACCTCAACTCACTCCATCACACACTC
S386S386 CCCCACCACACTCAACACCACACTCCTTGCTCTCTGAAATCCCCACCACACTCAACACCACACTCCTTGCTCTCTGAAAT
S387S387 ATTCCCACCCGCCTACCTCTCACACCTCTCCTCGATCTTTATTCCCACCCGCCTACCTCTCACACCTCTCCTCGATCTTT
S388S388 CGGCAACACAACCCACAATTTCTTTACAAACCACCACAACCGGCAACACAACCCACAATTTCTTTACAAACCACCACAAC
S389S389 CAGCAGACACACACAGACACCACCACTACCTTTTTTTTATCAGCAGACACACACAGACACCACCACTACCTTTTTTTTAT
S390S390 AACACAACAACCTACCACCAAAACTCTAAATCGATCCTCCAACACAACAACCTACCACCAAAACTCTAAATCGATCCTCC
S391S391 CCAACAGCTCCACACACACAACCCCACCCAATCCGAAATTCCAACAGCTCCACACACACAACCCCACCCAATCCGAAATT
S392S392 ATCGACACACACAAATACCTCAACAACACCTCCCACATTCATCGACACACACAAATACCTCAACAACACCTCCCACATTC
S393S393 CGAAATACACCACCCAACCCCACCTACAACACCACTCTGCCGAAATACACCACCCAACCCCACCTACAACACCACTCTGC
S394S394 CACCTACAACCCCTCGACGAACTCCGCAACACACACTTCTCACCTACAACCCCTCGACGAACTCCGCAACACACACTTCT
S395S395 CACCTACAGACCCACACGTTTCACCTCCAGCCTCCATTTTCACCTACAGACCCACACGTTTCACCTCCAGCCTCCATTTT
S396S396 TTAAGCCACACCCAGCACACACAACTACACACACACTTTTTTAAGCCACACCCAGCACACACAACTACACACACACTTTT
S397S397 ACAAAAACACAACTAACAACACACCACCCAAACTACGAAAACAAAAACACAACTAACAACACACACCACCCAAACTACGAAA
S398S398 TTGCGACTACCGCTCTACGTTACACCCCCCCTGCACCACCTTGCGACTACCGCTCTACGTTACACCCCCCCTGCACCACC
S399S399 TACAACACAACCAACGACACCACCTGAAACCCAACTCTCTTACAACACAACCAACGACACCACCTGAAACCCAACTCTCT
S400S400 CCACCACACCTAACCACCCAATTTCCACTACATTTTGCTTCCACCACACCTAACCACCCAATTTCCACTACATTTTGCTT
S401S401 GTACCGCCTCTCCTCTTGGGTTGCTCTCAATCGCCGGATGGTACCGCCTCTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S402S402 GACGCCCCGATCGCAGGTTCACTCACAAACACTCTTCCCCGACGCCCCGATCGCAGGTTCACTCACAAACACTCTTCCCC
S403S403 TCTCGCGGTTGTTAAACGTTGCTCCCCGACGCAGGGGCGTTCTCGCGGTTGTTAAACGTTGCTCCCCGACGCAGGGGCGT
S404S404 AACCACAATGCAACCCTCCCAGCTATACCACTCCCCGTTCAACCACAATGCAACCCTCCCAGCTATACCACTCCCCGTTC
S405S405 CACAACACAACCCCCCCACCATCTTCGACCCAGTTAGCTACACAACACAACCCCCCCACCATCTTCGACCCAGTTAGCTA
S406S406 CACCTCCACCAACCTCCACGCCAGCATCTCACTCTCCATACACCTCCACCAACCTCCACGCCAGCATCTCACTCTCCATA
S407S407 AACCACCCACTACATCACCAGCCCCAAACACAACACATTAAACCACCCACTACATCACCAGCCCCAAACACAACACATTA
S408S408 CGACCGGTAAACCACGCTCCCAAACTCTCTCCACACACTCCGACCGGTAAACCACGCTCCCAAACTCTCTCCACACACTC
S409S409 CCTCAACCGGAAACCCTCGAACCTCCACTCTCCTGCTTTTCCTCAACCGGAAACCCTCGAACCTCCACTCTCCTGCTTTT
S410S410 ACCACTACACCACCTCACCATCCTCCAACCTCCGATCACTACCACTACACCACCTCACCATCCTCCAACCTCCGATCACT
S411S411 ACCCACCACACACGCAACTACCACCAGTACCCATCTTACAACCCACCACACACGCAACTACCACCAGTACCCATCTTACA
S412S412 GGATTAAGGTTTCCCCTTCCTGCCGGGACGGCCACGCATAGGATTAAGGTTTCCCCTTCCTGCCGGGACGGCCACGCATA
S413S413 CCCAAACCAACACTCCACCACACCTCCTGCACCCTCCTCGCCCAAACCAACACTCCACCACACCTCCTGCACCCTCCTCG
S414S414 CACCACCACCCCCTCCAATACTCTATCCACCGCTTACTCACACCACCACCCCCTCCAATACTCTATCCACCGCTTACTCA
S415S415 TCATTTAGCCAACATCCGGTTGGTTTATGGTTTCCCTAAATCATTTAGCCAACATCCGGTTGGTTTATGGTTTCCCTAAA
S416S416 ACTCGCGGCTGTTAAACGTTGCTCCCCGACGCAGGGGCGTACTCGCGGCTGTTAAACGTTGCTCCCCGACGCAGGGGCGT
S417S417 TTTACACCCCACCCTCACAACGCCTTTCACCGCTCCATCTTTTACACCCCACCCTCACAACGCCTTTCACCGCTCCATCT
S418S418 TTCCCCACAGCTCTCTCGGTACACTCCCCCACTCTCTCGCTTCCCCACAGCTCTCTCGGTACACTCCCCCACTCTCTCGC
S419S419 CGAACAACCACACTCACTCTCCATTTCGCTCCTCTACTTACGAACAACCACACTCACTCTCCATTTCGCTCCTCTACTTA
S420S420 CATCAACACCACCCCTCCGCCGAATATACATCTACCACCTCATCAACACCACCCCTCCGCCGAATATACATCTACCACCT
S421S421 AACACCAACTCCACAGCAGCAACAAACCTCCACACACTATAACACCAACTCCACAGCAGCAACAAACCTCCACACACTAT
S422S422 TCCCGTGCACCCCCTCTCTCACTCTCACTCCCCCAACTTATCCCGTGCACCCCCTCTCTCACTCTCACTCCCCCAACTTA
S423S423 TCCCCAACCCTCAACTTCGAACCTCCACCATCTCCCACTATCCCCAACCCTCAACTTCGAACCTCCACCATCTCCCACTA
S424S424 CATACCGCACCTCCCATCTCTCTCGATCTCTCACCCCCGTCATACCGCACCTCCCATCTCTCTCGATCTCTCACCCCCGT
S425S425 AAACAGCAACAACCCCCACCATAGACATCACCCAACACTAAAACAGCAACAACCCCCACCATAGACATCACCCAACACTA
S426S426 CAGAATACAAAACCCCCCATCCGCAACACTCTCGCCAGCTCAGAATACAAAACCCCCCATCCGCAACACTCTCGCCAGCT
S427S427 CGACTAAACCCCACTCCGCCTACCCAGCCTCCCACCATCTCGACTAAACCCCACTCCGCCTACCCAGCCTCCCACCATCT
S428S428 TACTACTCCCGAAGACCCACCCGTTTCCTTTTTACCATTTTACTACTCCCGAAGACCCACCCGTTTCCTTTTTACCATTT
S429S429 GATCTCGGTCTTTGGACCAAGAATAAGGTTTCCCTCACATGATCTCGGTCTTTGGACCAAGAATAAGGTTTCCCTCACAT
S430S430 CTGACCGAGCCTCCAAGCCCACACTCCCTCTCTCTCTCTCCTGACCGAGCCTCCAAGCCCACACTCCCTCTCTCTCTCTC
S431S431 ATCACCATCAACACACACACACACCAATTACAGCACCCATATCACCATCAACACACACACACACACCAATTACAGCACCCAT
S432S432 TCCCCCTCACTCTCAGCTCTCACCCCCGGATACACCCTCCTCCCCCTCACTCTCAGCTCTCACCCCCGGATACACCCTCC
S433S433 AAGAACCACCGCAACACCACACCACCCCACACATTATGAAAAGAACCACCGCAACACCACACCACCCCACACATTATGAA
S434S434 ATACACCCACCACCCGAACTACCAACTCTTGACCCCCTTTATACACCCACCACCCGAACTACCAACTCTTGACCCCCTTT
S435S435 AATTAACACCACCAACCACAACGCAATACCCTCCAACTCTAATTAACACCACCAACCACAACGCAATACCCTCCAACTCT
S436S436 TTCACACACACAAAAGACACACTCTCCATCCACCTTACTTTTCACACACACAAAAGACACACTCTCCATCCACCTTACTT
S437S437 GTACCGCGTTTCCTCTTGGGTTGCTCTCAATCGCCGGATGGTACCGCGTTTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S438S438 TCAACTACACTCCACCACCACGCTCCAACCGACTTACACTTCAACTACACTCCACCACCACGCTCCAACCGACTTACACT
S439S439 ACCACACAAAACAGCACACCCACATTACCCGACACATCTAACCACACAAAACAGCACACCCACATTACCCGACACATCTA
S440S440 CAACCCAAACTGCAACCCTCCGACTACACCACATTACACCCAACCCAAACTGCAACCCTCCGACTACACCACATTACACC
S441S441 CTCCACCTCCGCACACACAATCCCACTTTCTCCCTCGTTTCTCCACCTCCGCACACACAATCCCACTTTCTCCCTCGTTT
S442S442 GAGCTCGGTCTTTGGACCAAGAATAAGGATTCCCTCACATGAGCTCGGTCTTTGGACCAAGAATAAGGATTCCCTCACAT
S443S443 TACCTCCAACACACACTGCCTACCCAGCCTCTCTCTCAGTTACCTCCAACACACACTGCCTACCCAGCCTCTCTCTCAGT
S444S444 CCCCATCACGCATCGCCATCCACACAAGCACCTCCGATTTCCCCATCACGCATCGCCATCCACACAAGCACCTCCGATTT
S445S445 ACCAATTGCAACTCACACACCAGCCCATCCACCACAATCCACCAATTGCAACTCACACACCAGCCCATCCACCACAATCC
S446S446 CACAACACCAGCCACCCATCAGCCTCTATAAAACACAAACCACAACACCAGCCACCCATCAGCCTCTATAAAACACAAAC
S447S447 AACACCCACATCCAACTCCCAACTTAACTCCAACGATTTTAACACCCACATCCAACTCCCAACTTAACTCCAACGATTTT
S448S448 CGCAACCAACTCACCACACATCACGCCCACCCCCAGAATTCGCAACCAACTCACCACACATCACGCCCACCCCCAGAATT
S449S449 GAAAAAAAAACCACCCTCCGAGACACCAACCCCCGAACCCGAAAAAAAAACCACCCTCCGAGACACCAACCCCCGAACCC
S450S450 GTACCGCGTCTCCTCTTGGGTTGATCTCAATCGCCGGATGGTACCGCGTCTCCTCTTGGGTTGATCTCAATCGCCGGATG
S451S451 TACACCACACACACTTACAACACATCACCCAATATACCCATACACCACACACACTTACAACACATCACCCAATATACCCA
S452S452 CGCAAATACCACCAACCACCCACACTTACAACCTCACCCACGCAAATACCACCAACCACCCACACTTACAACCTCACCCA
S453S453 GTACCGCGTCTACTCTTGGGTTGCTCTCAATCGCCGGATGGTACCGCGTCTACTCTTGGGTTGCTCTCAATCGCCGGATG
S454S454 CACACCGTCTCCACATCACCAGCAACACCCCAATTCCTCCCACACCGTCTCCACATCACCAGCAACACCCCAATTCCTCC
S455S455 TCCCTCCCTGATCTCTCCAACTCGCTCTCTCCATCACCCTTCCCTCCCTGATCTCTCCAACTCGCTCTCTCCATCACCCT
S456S456 CACAACACCACCACCCCCCACGTCCAACAACGACTATAACCACAACACCACCACCCCCCACGTCCAACAACGACTATAAC
S457S457 GACTGAGCGCCTTTCCACCTCCGACAGCCCGATTCCACCTGACTGAGCGCCTTTCCACCTCCGACAGCCCGATTCCACCT
S458S458 ACCCCCAACACTTTCAACACCACCACCATTCCCCGTTACCACCCCCAACACTTTCAACACCACCACCATTCCCCGTTACC
S459S459 AAACACAATACCAACCACACAACACTGACCCCATCCATGCAAACACAATACCAACCACACAACACTGACCCCATCCATGC
S460S460 ACCACCAACCCACCCAGCACGACTTTACACATACGACCCAACCACCAACCCACCCAGCACGACTTTACACATACGACCCA
S461S461 CCCCACCAAACTCGCACTCAACGCAACACCTCACCCACTTCCCCACCAAACTCGCACTCAACGCAACACCTCACCCACTT
S462S462 AACCACCAACCACCACAGAAACACCTCGAGCGCTAACTCCAACCACCAACCACCACAGAAACACCTCGAGCGCTAACTCC
S463S463 CCTGGCTTCACTTTGAGATTAAGGTTTCCCCAGTATCTACCCTGGCTTCACTTTGAGATTAAGGTTTCCCCAGTATCTAC
S464S464 AACATATATGCTGTATTAGACAACGCACCTGTCGCAAGGTAACATATATGCTGTATTAGACAACGCACCTGTCGCAAGGT
S465S465 CTGACCACTCCTTACCATCTCTATCTCTCCACCCGAAATCCTGACCACTCCTTACCATCTCTATCTCTCCACCCGAAATC
S466S466 TCCCCCCCGACTCGCTGCACACTCCACCACCTGCTTTACATCCCCCCCGACTCGCTGCACACTCCACCACCTGCTTTACA
S467S467 TAACAACACAACCACACAGCACACCCGGTACACCCTATTTTAACAACACAACCACACAGCACACCCGGTACACCCTATTT
S468S468 CGAACCACCTCCACTTTCTACCGCTGACACCCCACCACAACGAACCACCTCCACTTTCTACCGCTGACACCCCACCACAA
S469S469 CACCACAATTATCGCTAAACATCACCACACCCATCACCTTCACCACAATTATCGCTAAACATCACCACACCCATCACCTT
S470S470 CACCACACCCACCACTTTGCAACTCCGAAACCACCAGACTCACCACACCCACCACTTTGCAACTCCGAAACCACCAGACT
S471S471 ACACAAACCACGACACGCCAACCAACCATTCCGCTACCTAACACAAACCACGACACGCCAACCAACCATTCCGCTACCTA
S472S472 ACACACCAATCCACAACACAACTCAGCATCCACCATATATACACACCAATCCACAACACAACTCAGCATCCACCATATAT
S473S473 AATAAAAATTGAGATTGCCACCCGCCGCAGGGTTCGCGATAATAAAAATTGAGATTGCCACCCGCCGCAGGGTTCGCGAT
S474S474 CACCAACAGACACCCCCGCAGACACCAATTTCCAATCACTCACCAACAGACACCCCCGCAGACACCAATTTCCAATCACT
S475S475 GACGCACCGGTCGCAGGTTCATTGTACGACCTTCTTTTCCGACGCACCGGTCGCAGGTTCATTGTACGACCTTCTTTTCC
S476S476 AACTGATAACACTCCCACCTACCACTCGCTCGCTCTCCTTAACTGATAACACTCCCACCTACCACTCGCTCGCTCTCCTT
S477S477 TCCCCATCCACACATCCTCCAACCACATCTGCAGACCCCATCCCCATCCACACATCCTCCAACCACATCTGCAGACCCCA
S478S478 GTACCGCGTCTCCTCTTGGGGTGCTCTCAATCGCCGGATGGTACCGCGTCTCCTCTTGGGGTGCTCTCAATCGCCGGATG
S479S479 ACCACCGAACAATACACCCCCAAACTGTCTCTCCACAACCACCACCGAACAATACACCCCCAAACTGTCTCTCCACAACC
S480S480 GACGCACCGATCGCAGGTTCACTCACAAACACGCTTCCCCGACGCACCGATCGCAGGTTCACTCACAAACACGCTTCCCC
S481S481 TACCACCAGCCACACACCCCCCCACTCCCTCCTTTTTGAATACCACCAGCCACACACCCCCCCACTCCCTCCTTTTTGAA
S482S482 CCATCCAACACACACACATACCCCTCCGCTATATCGACGACCATCCAACACACACACATACCCCTCCGCTATATCGACGA
S483S483 TTTTCCCCCGATCTACCACCCTCCGACACACCTCCGCTTTTTTTCCCCCGATCTACCACCCTCCGACACACCTCCGCTTT
S484S484 CACCACCAAACGCAAACCCGAGTACCCACCACCCCATACCCACCACCAAACGCAAACCCGAGTACCCACCACCCCATACC
S485S485 AACCACACCACTTTAGACCCACCCATAACCACCGCTTTTAAACCACACCACTTTAGACCCACCCATAACCACCGCTTTTA
S486S486 CTAAAACCAACACAGCACCCCTCACCACTCCAACCTCACTCTAAAACCAACACAGCACCCCTCACCACTCCAACCTCACT
S487S487 CTGACACAACTTTTCTCATTAGCCCACACCCAAACACACCCTGACACAACTTTTCTCATTAGCCCACACCCAAACACACC
S488S488 TACAGCACCCACCACCAGCACTCACCTCACAACGCTCTTTTACAGCACCCACCACCAGCACTCACCTCACAACGCTCTTT
S489S489 ACAACATTCAACCCACCCACCACTCAACTCCATCCGTTTTACAACATTCAACCCACCCACCACTCAACTCCATCCGTTTT
S490S490 TCCCCCACTGCTACTATTTCTCCACTAACCCACTCTCCTCTCCCCCACTGCTACTATTTCTCCACTAACCCACTCTCCTC
S491S491 AAACCACTAACCACGCAAGATACCACACATACCCCACTTAAAACCACTAACCACGCAAGATACCACACATACCCCACTTA
S492S492 CGACCGAGACCTCAGCCCCGCCACCCCTACAATCCCAACTCGACCGAGACCTCAGCCCCGCCACCCCTACAATCCCAACT
S493S493 AACTCCACACACAAAACCAAACCTCTCCATCCACTCCGACAACTCCACACACAAAACCAAACCTCTCCATCCACTCCGAC
S494S494 TCACACCCACGCACACACCCATCTCCCACACTCCGCTTCTTCACACCCACGCACACACCCATCTCCCACACTCCGCTTCT
S495S495 TTACACACACCCACATCCTACCACATTATCACACTCATCTTTACACACACCCACATCCTACCACATTATCACACTCATCT
S496S496 CGTAATCCCACACACCACCACAACACTGCCTCCCCCCTTACGTAATCCCACACACCACCACAACACTGCCTCCCCCCTTA
S497S497 GTACCGCGTCGCCTCTTGGGTTGCTCTCAATCGCCGGATGGTACCGCGTCGCCTCTTGGGTTGCTCTCAATCGCCGGATG
S498S498 CACACAAAACAGACACACACCAACCCAGCACATTATCACCCACACAAAACAGACACACACCAACCCAGCACATTATCACC
S499S499 TTACACCACCAACCAACAAACACCAATACTCAACCTCTCCTTACACCACCAACCAACAAACACCAATACTCAACCTCTCC
S500S500 AACAGACGCTCAAAACACCACCCAACACAACTCCACCTTCAACAGACGCTCAAAACACCACCCAACACAACTCCACCTTC
S501S501 AACCCCACACACTTTACACACAGCCCACCCGACTACTTTTAACCCCACACACTTTACACACAGCCCACCCGACTACTTTT
S502S502 CATCCATTCAACACCACCATCACCTACATCTCCATCTACCCATCCATTCAACACCACCATCACCTACATCTCCATCTACC
S503S503 GTACCGCGTCTCCTCTTGGGTTGCTTTCAATCGCCGGATGGTACCGCGTCTCCTCTTGGGTTGCTTTCAATCGCCGGATG
S504S504 TAAACCCCACTCACTGACACCACCATCCGCTGAACAATTTTAAACCCCACTCACTGACACCACCATCCGCTGAACAATTT
S505S505 ACCACCCCAACGAACACCCAACGATCCGCTCACCTCGCCTACCACCCCAACGAACACCCAACGATCCGCTCACCTCGCCT
S506S506 CGACCGACCCACTCAACATCCCACTCCCCCTCTCCACCGTCGACCGACCCACTCAACATCCCACTCCCCCTCTCCACCGT
S507S507 CTGACCACACTGAAACTCTCTCCGGCCCACCCTCCCACGACTGACCACACTGAAACTCTCTCTCCGGCCCACCCTCCCACGA
S508S508 CACAACACACACACAAAACACACACCCCCTTATCCCATTTCACAACACACACACACAAAACACACACCCCCTTATCCCATTT
S509S509 GACGCACCGATCGAAGGTTCACTCACAAACACTCTTCCCCGACGCACCGATCGAAGGTTCACTCACAAACACTCTTCCCC
S510S510 CAAGCTGACACTCCCAACATACTCTCACCCCCTCTTCTTTCAAGCTGACACTCCCAACATACTCTCACCCCCTCTTCTTT
S511S511 ATTTAACACCACACCAACACCCTCCGACAGCTCCACCCCAATTTAACACCACACCAACACCCTCCGACAGCTCCACCCCA
S512S512 CCACACACAATTTTAACCACACTACACCCACTTGACTTTTCCACACACAATTTTAACCACACTACACCCACTTGACTTTT
S513S513 CTACCGCCTATCCACCTCCTATCCAATCTCTCTGCTCTCTCTACCGCCTATCCACCTCCTATCCAATCTCTCTGCTCTCT
S514S514 ACAACACCCACACCAGCACTCCACGACACAATCTCCTTTAACAACACCCACACCAGCACTCCACGACACAATCTCCTTTA
S515S515 ATGACGCCATCGGATTAAGGCTTCCCGTTATATTATGCTAATGACGCCATCGGATTAAGGCTTCCCGTTATATTATGCTA
S516S516 ACACCCCCCACTACCGACAACTCCACATCTAATTCGACAAACACCCCCCACTACCGACAACTCCACATCTAATTCGACAA
S517S517 CACCACTACACACAATACAGAATCCCGACCCCACCGACACCACCACTACACACAATACAGAATCCCGACCCCACCGACAC
S518S518 GTACCCCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATGGTACCCCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S519S519 CACCCACCCCCCTCTCAACTCGCTGACTTCCACTCACTCCCACCCACCCCCCTCTCAACTCGCTGACTTCCACTCACTCC
S520S520 CACCACCAGCCTACACACTCAACTCAAACCTCACCCATCCCACCACCAGCCTACACACTCAACTCAAACCTCACCCATCC
S521S521 ACTCGAGGTTGTTAAACGTTGCTCCCCGACGCAGGGGCGTACTCGAGGTTGTTAAACGTTGCTCCCCGACGCAGGGGCGT
S522S522 ACACCTAACCACCCAACTACCAATCCTCTCCATCCTCGATACACCTAACCACCCAACTACCAATCCTCTCCATCCTCGAT
S523S523 GGATTAAGGTTTCCCCGTCCTGCCGGTACGGCCACGCATAGGATTAAGGTTTCCCCGTCCTGCCGGTACGGCCACGCATA
S524S524 CCCCTGCAACTCTACTCTTATCCCCACGTTCACCCTGCTTCCCCTGCAACTCTACTCTTATCCCCACGTTCACCCTGCTT
S525S525 GACGCACCGATCGCAGGTTCACTCACAAACACTCTTCCCAGACGCACCGATCGCAGGTTCACTCACAAACACTCTTCCCA
S526S526 ACACCCAACCAACAACACTCCTTTCACATGCAGACCCCAAACACCCAACCAACAACACTCCTTTCACATGCAGACCCCAA
S527S527 TAAGGTTTCCCTGCGGCGACGTCCATGCAGCGTATGTCCATAAGGTTTCCCTGCGGCGACGTCCATGCAGCGTATGTCCA
S528S528 CAAAGCCCACCCAACACATCCTAACCACCACACCGACTACCAAAGCCCACCCAACACATCCTAACCACCACACCGACTAC
S529S529 CGAACACTACAACACCTCACACCTCGTCCCCTCCGCTACCCGAACACTACAACACCTCACACCTCGTCCCCTCCGCTACC
S530S530 TTAAGACACACCAACCAAAAAACCCACCAACACCAACCCCTTAAGACACACCAACCAAAAAACCCACCAACACCAACCCC
S531S531 ACACCATCCACACTAACTACCAACTGCATACCCCACCACCACACCATCCACACTAACTACCAACTGCATACCCCACCACC
S532S532 CACCTATTTAACCACACACTCCACCCCGGAATCCCCTCTACACCTATTTAACCACACACTCCACCCCGGAATCCCCTCTA
S533S533 AAACACCCAAAGCCACACACCACAACCTCGCATCTCTTATAAACACCCAAAGCCACACACCACAACCTCGCATCTCTTAT
S534S534 CGACCTATCTCACCAACTCCCCATCCACATCACCTCCATCCGACCTATCTCACCAACTCCCCATCCACATCACCTCCATC
S535S535 GGCGCACCGATCGCAGGTTCACTCACAAACACTCTTCCCCGGCGCACCGATCGCAGGTTCACTCACAAACACTCTTCCCC
S536S536 TAACCCACCCACGCTCAACGAACACCAACATTTAACACACTAACCCACCCACGCTCAACGAACACCAACATTTAACACAC
S537S537 GTACCGCGTCTCCTCTTGGGATGCTCTCAATCGCCGGATGGTACCGCGTCTCCTCTTGGGATGCTCTCAATCGCCGGATG
S538S538 CCCACACAACCCATCCACCTCCATCCACATCCACCCATTCCCCACACAACCCATCCACCTCCATCCACATCCACCCATTC
S539S539 CACCTCCAAGCCGCACACGCAATAACCTCCCACCGCCTGACACCTCCAAGCCGCACACGCAATAACCTCCCACCGCCTGA
S540S540 GTACCGCGTCTCCTCTTGGGTTGCTCTCAAGCGCCGGATGGTACCGCGTCTCCTCTTGGGTTGCTCTCAAGCGCCGGATG
S541S541 CACCCACCCAAGTTCCCAGCTACACTCTCTCCATCTCCACCACCCACCCAAGTTCCCAGCTACACTCTCTCCATCTCCAC
S542S542 CGGACCATGCTACCCCCCTTCTAACTCTCTCCACTATCTCCGGACCATGCTACCCCCCTTCTAACTCTCTCCACTATCTC
S543S543 GTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGACGGTACCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGACG
S544S544 ACACCACACTACACTAGATTCTACCCCTGTTATCCTCTTTACACCACACTACACTAGATTCTACCCCTGTTATCCTCTTT
S545S545 TATACACCACCACATCAACTCCAGCACATTATCACCACAATATACACCACCACATCAACTCCAGCACATTATCACCACAA
S546S546 CAACCAAGCCATCCCACCAACTACCTCCCACTGCCTCCCCCAACCAAGCCATCCCACCAACTACCTCCCACTGCCTCCCC
S547S547 TTACCCAACCGCCAACCACTGACTCCGTTCCGCCACCACTTTACCCAACCGCCAACCACTGACTCCGTTCCGCCACCACT
S548S548 AACACCAACACACAAGAACAGCCACCACCTTAGATAACACAACACCAACACACAAGAACAGCCACCACCTTAGATAACAC
S549S549 ATCAATATAGCGACTTGGCTCGTTTATGGTTTCCCTATAAATCAATATAGCGACTTGGCTCGTTTATGGTTTCCCTATAA
S550S550 CACCCACCTACCTCCAACACCCAGCCACTTCCTCCACGTTCACCCACCTACCTCCAACACCCAGCCACTTCCTCCACGTT
S551S551 TTAACCACACCAAAGACCCACCATCACCTCAGCGCTCCAATTAACCACACCAAAGACCCACCATCACCTCAGCGCTCCAA
S552S552 CGACTAACACCCCCAGCCTCCCCGCACATCCTAATTCCACCGACTAACACCCCCAGCCTCCCCGCACATCCTAATTCCAC
S553S553 AACCAACCCACAACACCACAGCCCTTGCAACCTCTTCGAAAACCAACCCACAACACCACAGCCCTTGCAACCTCTTCGAA
S554S554 ACCACCCACCAACATTTTTCACACCACCATTCCAGCTACCACCACCCACCAACATTTTTCACACCACCATTCCAGCTACC
S555S555 ACACTAACCACTCCGCCAGCATCCTCCGAACCACATCTCCACACTAACCACTCCGCCAGCATCCTCCGAACCACATCTCC
S556S556 AAACACCACACAGAACCACGCAAAATAACAAACACATCGCAAACACCACACAGAACCACGCAAAATAACAAACACATCGC
S557S557 AACATATATGCTGTATTAGACAACGCACCTTGCGCAAGGTAACATATATGCTGTATTAGACAACGCACCTTGCGCAAGGT
S558S558 CTCCACAACCATCTACACCCCACTTACGGATACACACAACCTCCACAACCATCTACACCCCACTTACGGATACACACAAC
S559S559 GACGCGCCGATCGCAGGTTCACTCACAAACACTCTTCCCCGACGCGCCGATCGCAGGTTCACTCACAAACACTCTTCCCC
S560S560 CACCCCAGCACTCTCACTATCGACACCACCACTTTATTTACACCCCAGCACTCTCACTATCGACACCACCACTTTATTTA
S561S561 ACATAACAAACAACACAATTACACCCCACACCTTACGCTAACATAACAAACAACACAATTACACCCCACACCTTACGCTA
S562S562 CAACCCAACCTCCTCACACAGCTATCCCACGCTCCACACTCAACCCAACCTCCTCACACAGCTATCCCACGCTCCACACT
S563S563 TCATTTAGCCGACATCCGGTTGGTTTATGTTTTCCCTAAATCATTTAGCCGACATCCGGTTGGTTTATGTTTTCCCTAAA
S564S564 CACCACTCTACAACACACACCATCTACAACCCTTTTTACTCACCACTCTACAACACACACACCATCTACAACCCTTTTTACT
S565S565 CGAACTGTTAACCAACTCCCACTCCCTCTCCTATTTCTTTCGAACTGTTAACCAACTCCCACTCCCTCTCCTATTTCTTT
S566S566 ACCACCTAACTATAAAAAAACACATTCACCATCAGCACCAACCACCTAACTATAAAAAAACACATTCACCATCAGCACCA
S567S567 CATAAAAATTGAGATTCCCACCCGCCGCAGGGTTCGCGATCATAAAAATTGAGATTCCCACCCGCCGCAGGGTTCGCGAT
S568S568 TTTTTACACCACCCCCGAGATACTCTATACTACATCCACTTTTTTACACCACCCCCGAGATACTCTATACTACATCCACT
S569S569 ACTCGCGGTTGTTAAACGTTGCTCCCCGACGCCGGGGCGTACTCGCGGTTGTTAAACGTTGCTCCCCGACGCCGGGGCGT
S570S570 ACACCACAACACCACACAACCATACAGCTCCCCATTACGTACACCACAACACCACACAACCATACAGCTCCCCATTACGT
S571S571 ACTCGCGGTTGTTAAAGGTTTCTCCCCGACGCAGGGGCGTACTCGCGGTTGTTAAAGGTTTCTCCCCGACGCAGGGGCGT
S572S572 CAGACACCCACCCAACTCCGCTTTCAGACCCAACTCACCGCAGACACCCACCCAACTCCGCTTTCAGACCCAACTCACCG
S573S573 CAACAACCCACCACAAACATAACACCATTCCCATTTGCTTCAACAACCCACCACAAACATAACACCATTCCCATTTGCTT
S574S574 CCCGTAACCAGCCTCCACCTACCACACAGACTTGATCCCCCCCGTAACCAGCCTCCACCTACCACACAGACTTGATCCCC
S575S575 TACCACAACCCCAGCACCACGCCAACACTCACCCCCATCTTACCACAACCCCAGCACCACGCCAACACTCACCCCCATCT
S576S576 ACAACTACCACACCACCACCGACACATAACGCGCATTTTTACAACTACCACACCACCACCGACACATAACGCGCATTTTT
S577S577 ACACCAACACAAGACCACCACACACAACGCATCTCCTATTACACCAACACAAGACCACCACACACAACGCATCTCCTATT
S578S578 CAACCCGGACTCCACCACTGCTATACCTCCGCCCCACTTACAACCCGGACTCCACCACTGCTATACCTCCGCCCCACTTA
S579S579 ATATACCACTAAATACACACCAGCCCCACACAACCATCTTATATACCACTAAATACACACCAGCCCCACACAACCATCTT
S580S580 ACAGAACAACACCACACACAAACTCCAACAATACACCAATACAGAACAACACCACACACAAACTCCAACAATACACCAAT
S581S581 GACGCACCGATCGCAGGTTCACTCACAAACACTCTGCCCCGACGCACCGATCGCAGGTTCACTCACAAACACTCTGCCCC
S582S582 CACCCTACCAACTCTCTCTCACTCGCTTTCCCAATCTCACCACCCTACCAACTCTCTCTCACTCGCTTTCCCAATCTCAC
S583S583 AACTGACCAACTACACAGCACACCCTCCACCCCGCGCCTTAACTGACCAACTACACAGCACACCCTCCACCCCGCGCCTT
S584S584 CAACCGTCGACACGCTACACCCTCCCACTACCTCTCCTCTCAACCGTCGACACGCTACACCCTCCCACTACCTCTCCTCT
S585S585 AATACCCACTGCATCCACTCACACACCACCCCCTGCCTTTAATACCCACTGCATCCACTCACACACCACCCCCTGCCTTT
S586S586 TCAACCAACCCTCTATACACTCACCCCCACACTCTATCTCTCAACCAACCCTCTATACACTCACCCCCACACTCTATCTC
S587S587 ACATTAAACCACATCCACATTCACATTTTTATCCACCATTACATTAAACCACATCCACATTCACATTTTTATCCACCATT
S588S588 ACCACCACTACGCTCAACCACACCTCCACTGATATCTCTTACCACCACTACGCTCAACCACACCTCCACTGATATCTCTT
S589S589 GTACCGCGTCTCCGCTTGGGTTGCTCTCAATCGCCGGATGGTACCGCGTCTCCGCTTGGGTTGCTCTCAATCGCCGGATG
S590S590 TCCACACTACCACCAACTCCGACTAACGCTCTCCACTACTTCCACACTACCACCAACTCCGACTAACGCTCTCCACTACT
S591S591 ACTCGCGGTTGTTAAACGTTGCTCCCCGCCGCAGGGGCGTACTCGCGGTTGTTAAACGTTGCTCCCCGCCGCAGGGGCGT
S592S592 ACACCCCCACCTACACCTACAGCCGATCCATCATCTCACTACACCCCCACCTACACCTACAGCCGATCCATCATCTCACT
S593S593 CATGCCAACACACACAACACTCACCTCCACACCAATCCTCCATGCCAACACACACAACACTCACCTCCACACCAATCCTC
S594S594 ACTCGAGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGTACTCGAGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGT
S595S595 ATAACCCAGCACCAAGAGACTCACCTCCATACCTCTCCAAATAACCCAGCACCAAGAGACTCACCTCCATACCTCTCCAA
S596S596 CACCAACACCTACAAATACGACACCCACCCCCACATTCTTCACCAACACCTACAAATACGACACCCACCCCCACATTCTT
S597S597 AAACAACACAAACACTCACCGCGATACTACCCCCACCTTAAAACAACACAAACACTCACCGCGATACTACCCCCACCTTA
S598S598 CTGACCACCTGACGACTCGACTATCTCGCTCTCCATACCCCTGACCACCTGACGACTCGACTATCTCGCTCTCCATACCC
S599S599 ACTCGCGGCTGTTAAAGGTTGCTCCCCGACGCAGGGGCGTACTCGCGGCTGTTAAAGGTTGCTCCCCGACGCAGGGGCGT
S600S600 GAGCTCGGTCTTTGGACCAATAATAAGGTTTCCCTCACATGAGCTCGGTCTTTGGACCAATAATAAGGTTTCCCTCACAT
S601S601 AACCACTCCAGCAAACCATCCCCACACCGAATCCACACTTAACCACTCCAGCAAACCATCCCCACACCGAATCCACACTT
S602S602 TTAACCACCCATCACCACCACATCAGACTTTTATATATCTTTAACCACCCATCACCACCACATCAGACTTTTATATATCT
S603S603 CCACCCAACTCCATTCTACCAGCACTCCCCTCTCCTACCGCCACCCAACTCCATTCTACCAGCACTCCCCTCTCCTACCG
S604S604 TCAACCCAACACCAGCACCTCTACCTACACCGCATCTTTTTCAACCCAACACCAGCACCTCTACCTACACCGCATCTTTT
S605S605 GTACCGCGTCCCCTCTTGGGTTGCTCTCAATCGCCGGATGGTACCGCGTCCCCTCTTGGGTTGCTCTCAATCGCCGGATG
S606S606 AACAACAACCCCCACACGATCACCATACATCACATCCACAAACAACAACCCCCACACGATCACCATACATCACATCCACA
S607S607 ACACACAACACACGACTTAACCCAACTTTACACACCCTCCACACACAACACACGACTTAACCCAACTTTACACACCCTCC
S608S608 CACCACACTACAGACTCACCACCACACCACCCATCTAATACACCACACTACAGACTCACCACCACACCACCCATCTAATA
S609S609 CACACACGCACAACACACACCAGACACCCCCTACCCAGCCCACACACGCACAACACACACACCAGACACCCCCTACCCAGCC
S610S610 TAAGGTTTCCCCGCTAACAATTAATTTGGCTTGTGGCATATAAGGTTTCCCCGCTAACAATTAATTTGGCTTGTGGCATA
S611S611 ACCACACACACCTACACAGACAAAATCCTCTCTCTCTAGCACCACACACACCTACACAGACAAAATCCTCTCTCTCTAGC
S612S612 CACCATCCAACACCGCTAAAATACTCCCCGATTCACCTCTCACCATCCAACACCGCTAAAATACTCCCCGATTCACCTCT
S613S613 CAACACACACCACCCAACAAATTTTCACCGCCCCCGTATTCAACACACACCACCCAACAAATTTTCACCGCCCCCGTATT
S614S614 AAAACCACCAACACACTCCAACTCACACCAGAACCTCGCTAAAACCACCAACACACTCCAACTCACACCAGAACCTCGCT
S615S615 CACCAACAATCCACCTGCATGCAAAACACCAACACTCCACCACCAACAATCCACCTGCATGCAAAACACCAACACTCCAC
S616S616 CACAACACACACCACCACCAACATACCGACACAACACACTCACAACACACACCACCACCAACATACCGACACAACACACT
S617S617 ACATCACACCCAACACCACATCACCCATCAGCAGACCAACACATCACACCCAACACCACATCACCCATCAGCAGACCAAC
S618S618 GTTCCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATGGTTCCGCGTCTCCTCTTGGGTTGCTCTCAATCGCCGGATG
S619S619 CATATAACACACAACACACACCAACACCCTTCACATATTACATATAACACACAACACACACACCAACACCCTTCACATATTA
S620S620 AACAAAAAAAACCCGACACAATGCTCCCAACGTCTCCAACAACAAAAAAAACCCGACACAATGCTCCCAACGTCTCCAAC
S621S621 CGACCGTTTCCACCGCCTCTCGCTCTAATACCTCTCCGAACGACCGTTTCCACCGCCTCTCGCTCTAATACCTCTCCGAA
S622S622 ACCACACCACCCCGCACACACAACCAAGATCCCCCCATTTACCACACCACCCCGCACACACACAACCAAGATCCCCCCATTT
S623S623 TACACCACAACAGCTCTCGGCAACACCACACCAATCTATCTACACCACAACAGCTCTCGGCAACACCACACCAATCTATC
S624S624 ACACACAACTACAACACAACATCTGTTACACCCACCGCTTACACACAACTACAACACAACATCTGTTACACCCACCGCTT
S625S625 CCTTGCTTCACTTTGAGATTAAGGTTTCCCCAGGATCTACCCTTGCTTCACTTTGAGATTAAGGTTTCCCCAGGATCTAC
S626S626 TCACACACTTTACACGTTACACCCATTCCCCACGCCGATTTCACACACTTTACACGTTACACCCATTCCCCACGCCGATT
S627S627 AAATCCACCCACCACCAGCAACTCCACACACTACTACACAAAATCCACCCACCACCAGCAACTCCACACACTACTACACA
S628S628 TCCCCCCTCCACACTCTCCAGTTACGCTTTCCCCTCGACTTCCCCCCTCCACACTCTCCAGTTACGCTTTCCCCTCGACT
S629S629 CATTAAAACCCACCCTCCACCACATTCCTACTGCTCCTTTCATTAAAACCCACCCTCCACCACATTCCTACTGCTCCTTT
S630S630 ACCCACGCCACACACACACTCCCCCCTACACGCTCTTATTACCCACGCCACACACACACTCCCCCCTACACGCTCTTATT
S631S631 CAAACCTCACCACCACAGCTACTAACCCCTTATATCTACCCAAACCTCACCACCACAGCTACTAACCCCTTATATCTACC
S632S632 CATAAAAATTGAGATTCCCCCCCGCCGCAGGGTTCGCGATCATAAAAATTGAGATTCCCCCCCGCCGCAGGGTTCGCGAT
S633S633 CTGACCTCTCCACCTCTCTACTCTCCCACCTCCGCTCCTACTGACCTCTCCACCTCTCTACTCTCCCACCTCCGCTCCTA
S634S634 TATACACACACCAGACACCGCACATTTATACCCCACTTTATATACACACACCAGACACCGCACATTTATACCCCACTTTA
S635S635 GACGCAACGATCGCAGGTTCACTCACAAACACTCTTCCCCGACGCAACGATCGCAGGTTCACTCACAAACACTCTTCCCC
S636S636 TAAACACTCACCACACCCCATCCTCACAGCACCATAATTCTAAACACTCACCACACCCCATCCTCACAGCACCATAATTC
S637S637 CGCTCCCCAAACCACACCCACCTCACTGCAGTTCCATCCTCGCTCCCCAAACCACACCCACCTCACTGCAGTTCCATCCT
S638S638 CACAGCACACCAACCACACAGTACACCCCCGCGCCACACCCACAGCACACCAACCACACAGTACACCCCCGCGCCACACC
S639S639 CTTCCCGATTCGCCAACTCTATTCGCCACACCTCCCTCCTCTTCCCGATTCGCCAACTCTATTCGCCACACCTCCCTCCT
S640S640 TTTTAGCCCCCCAGACACTCCTACCACTCCACAACCAACTTTTTAGCCCCCCAGACACTCCTACCACTCCACAACCAACT
S641S641 AACCCACCACACCACTCTCTCGCGCTGCCTCCAACCTGATAACCCACCACACCACTCTCTCTCGCGCTGCCTCCAACCTGAT
S642S642 CACAACCAAGCAACCTCACCTCCAGCCTGCCACACCCACACACAACCAAGCAACCTCACCTCCAGCCTGCCACACCCACA
S643S643 CGACCCATCCACACATCCACTCTCCATACACACTCCGATTCGACCCATCCACACATCCACTCTCCATACACACTCCGATT
S644S644 TCGACCAACACCACTCTACCCCCTCCATCCTCACCGACTTTCGACCAACACCACTCTACCCCCTCCATCCTCACCGACTT
S645S645 CGACCGCTGAACTCACCTCACCACACTCCTCCTATCCGATCGACCGCTGAACTCACCTCACCACACTCCTCCTATCCGAT
S646S646 AACCACCACCAACCACCGCTATAACGCAATACACTCCTCCAACCACCACCAACCACCGCTATAACGCAATACACTCCTCC
S647S647 CGCTAACCACACACACCACACTACACCCCTCCAAACCCTACGCTAACCACACACACCACACTACACCCCTCCAAACCCTA
S648S648 TACCCACCAGACTTACACCCACACTTACACCCACTCATTTTACCCACCAGACTTACACCCACACTTACACCCACTCATTT
S649S649 TTAAAGAACCACCCACCAACCCACTCCTTTTGCAACATCCTTAAAGAACCACCCACCAACCCACTCCTTTTGCAACATCC
S650S650 CCCCACCACTCCAGCGACAATTACCACACCGCCTCCATCTCCCCACCACTCCAGCGACAATTACCACACCGCCTCCATCT
S651S651 TAACGTTACAACACCACCTCCCACCACTTCAGCCTGCCTTTAACGTTACAACACCACCTCCCACCACTTCAGCCTGCCTT
S652S652 ACGCGCGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGTACGCGCGGTTGTTAAAGGTTGCTCCCCGACGCAGGGGCGT
S653S653 AACCACCACACACTGCAACTACACCACCTACTTACATCACAACCACCACACACTGCAACTACACCACCTACTTACATCAC
S654S654 CCTGTCTTCACTTTGAGATTAAGGTTTCCCCAGGATCTACCCTGTCTTCACTTTGAGATTAAGGTTTCCCCAGGATCTAC
S655S655 TAACACACCGGATCCATTTTAGATTTACACCACACACCCATAACACACCGGATCCATTTTAGATTTACACCACACACCCA
S656S656 CGACCGTTCACACAACTACCCCTCGCACGAACTGCACATCCGACCGTTCACACAACTACCCCTCGCACGAACTGCACATC
S657S657 GACGCACCGATCGCAGGGTCACTCACAAACACTCTTCCCCGACGCACCGATCGCAGGGTCACTCACAAACACTCTTCCCC
S658S658 TACCCCCTACCTCACTACTCTAGCTCTCTCGCATCTCCATTACCCCCTACCTCACTACTCTAGCTCTCTCGCATCTCCAT
S659S659 CCACAAACACCAAAGCAACCCCACGATACACACTACATCTCCACAAACACCAAAGCAACCCCACGATACACACTACATCT
S660S660 CGAAACGAACGCACTCAAGCACACTCCCACACCCTCCTTACGAAACGAACGCACTCAAGCACACTCCCACACCCTCCTTA
S661S661 TTCACACCACGCGACACAACCTGTTTACCACACCCATCTTTTCACACCACGCGACACAACCTGTTTACCACACCCATCTT
S662S662 ACGACCCATTACATCCACCCAACGATCACCACCTCCACGCACGACCCATTACATCCACCCAACGATCACCACCTCCACGC
S663S663 ACACACACCCAGACCAGCCAGCCTCCACCACACGTTTCTTACACACACCCAGACCAGCCAGCCTCCACCACACGTTTCTT
S664S664 AAACTAACCCTCAATACTCACACACACACCCCATCTTCCTAAACTAACCCTCAATACTCACACACACACCCCATCTTCCT
S665S665 CGATACACCACCTCCCACCATCCCATAGCTCTGTTCCACCCGATACACCACCTCCCACCATCCCATAGCTCTGTTCCACC
S666S666 CACCAACCCTCCACCCACAAAACACCGACCCATCTCGACACACCAACCCTCCACCCACAAAACACCGACCCATCTCGACA
S667S667 CACCCACTATATTGCACCCCCGCTACATCTCACCTCTACCCACCCACTATATTGCACCCCCGCTACATCTCACCTCTACC
S668S668 TACTCCCACCCACCGACTAACGCTTTTCGATCTCTCAACTTACTCCCACCCACCGACTAACGCTTTTCGATCTCTCAACT
S669S669 TACTATCCCACCAAACCAACGACCACCGCCAACTCTCTCCTACTATCCCACCAAACCAACGACCACCGCCAACTCTCTCC
S670S670 TCAATCCTCCAACAACAGCACCACCCTCCAGCACATCTCCTCAATCCTCCAACAACAGCACCACCCTCCAGCACATCTCC
S671S671 AACATTCCACCCCCCCCTCCGATACACTCCTCCTCCGTTTAACATTCCACCCCCCCCTCCGATACACTCCTCCTCCGTTT

Claims (20)

  1. 一种核酸适配体,其特征在于,所述核酸适配体为下述任一种单链寡核甘酸分子:A nucleic acid aptamer, characterized in that the nucleic acid aptamer is any of the following single-stranded oligonucleotide molecules:
    A1、核苷酸序列是序列表中SEQ ID NO.1的单链寡核甘酸分子,A1. The nucleotide sequence is the single-stranded oligonucleotide molecule of SEQ ID NO.1 in the sequence list,
    A2、将序列表中SEQ ID NO.1所示的核苷酸序列经过一个或几个核苷酸的取代和/或缺失和/或添加得到的与A1)所示的单链寡核甘酸分子具有50%以上的同一性且与CD81特异结合的单链寡核甘酸分子。A2. The nucleotide sequence shown in SEQ ID NO. 1 in the sequence table is substituted and/or deleted and/or added to obtain the same single-stranded oligonucleotide molecule shown in A1) A single-stranded oligonucleotide molecule that has more than 50% identity and specifically binds to CD81.
  2. 根据权利要求1所述的核酸适配体,其特征在于,所述核酸适配体与人的CD81蛋白结合。The nucleic acid aptamer of claim 1, wherein the nucleic acid aptamer binds to human CD81 protein.
  3. 根据权利要求1或2所述的适配体,其特征在于,(A2)中所述缺失或者替换后的核苷酸序列具有如SEQ ID NO.2所述的核苷酸序列。The aptamer according to claim 1 or 2, wherein the deleted or substituted nucleotide sequence in (A2) has the nucleotide sequence described in SEQ ID NO.2.
  4. 根据权利要求1或2所述的适配体,其特征在于,(A2)中所述缺失或者替换后的核苷酸序列具有如SEQ ID NO.3所述的核苷酸序列。The aptamer according to claim 1 or 2, wherein the deleted or replaced nucleotide sequence in (A2) has the nucleotide sequence described in SEQ ID NO.3.
  5. 根据权利要求1或2所述的适配体,其特征在于,(A2)中所述缺失或者替换后的核苷酸序列具有如SEQ ID NO.4所述的核苷酸序列。The aptamer according to claim 1 or 2, wherein the deleted or substituted nucleotide sequence in (A2) has the nucleotide sequence described in SEQ ID NO.4.
  6. 根据权利要求1或2所述的适配体,其特征在于,(A2)中所述缺失或者替换后的核苷酸序列具有如SEQ ID NO.5所述的核苷酸序列。The aptamer according to claim 1 or 2, wherein the deleted or substituted nucleotide sequence in (A2) has the nucleotide sequence described in SEQ ID NO.5.
  7. 根据权利要求1或2所述的适配体,其特征在于,(A2)中所述缺失或者替换后的核苷酸序列具有如SEQ ID NO.6所述的核苷酸序列。The aptamer according to claim 1 or 2, wherein the deleted or substituted nucleotide sequence in (A2) has the nucleotide sequence described in SEQ ID NO.6.
  8. 权利要求1-7任一所述的适配体在制备检测CD81的试剂或试剂盒中的应用。Use of the aptamer of any one of claims 1-7 in the preparation of reagents or kits for detecting CD81.
  9. 权利要求1-7任一所述的适配体在制备提取CD81的试剂或试剂盒中的应用。Use of the aptamer of any one of claims 1-7 in the preparation of reagents or kits for extracting CD81.
  10. 根据权利要求8所述的应用或权利要求9所述的应用,其特征在于,所述的CD81为人CD81。The application according to claim 8 or the application according to claim 9, wherein the CD81 is a human CD81.
  11. 权利要求1-7任一所述的适配体在制备检测外泌体的试剂或试剂盒中的应用。The use of the aptamer of any one of claims 1-7 in the preparation of reagents or kits for detecting exosomes.
  12. 权利要求1-7任一所述的适配体在制备提取外泌体的试剂盒中的应用。The use of the aptamer of any one of claims 1-7 in the preparation of a kit for extracting exosomes.
  13. 根据权利要求11所述的应用或权利要求12所述的应用,其特征在于,所述外泌体为人外泌体。The application according to claim 11 or the application according to claim 12, wherein the exosomes are human exosomes.
  14. 根据权利要求13中所述的外泌体,其特征在于,所述人外泌体为含有人CD81的外泌体。The exosomes according to claim 13, wherein the human exosomes are exosomes containing human CD81.
  15. 权利要求1-7任一所述的适配体在制备检测和/或诊断癌症的试剂或试剂盒中的应用。Use of the aptamer of any one of claims 1-7 in the preparation of reagents or kits for detecting and/or diagnosing cancer.
  16. 根据权利要求15所述的应用,其特征在于,所述癌症的诊断标志物包括人CD81。The application according to claim 15, wherein the diagnostic marker of cancer comprises human CD81.
  17. 根据权利要求15所述的应用,其特征在于,所述癌症为乳腺癌、结直肠癌、肝癌和/或肺癌。The application according to claim 15, wherein the cancer is breast cancer, colorectal cancer, liver cancer and/or lung cancer.
  18. 权利要求1-7中任一所述的核酸适配体偶联到固相载体上得到的偶联物。A conjugate obtained by coupling the nucleic acid aptamer of any one of claims 1-7 to a solid support.
  19. 权利要求1-7中任一所述的核酸适配体交联到固相载体上得到的交联物。A cross-linked product obtained by cross-linking the nucleic acid aptamer of any one of claims 1-7 to a solid support.
  20. 根据权利要求19所述的偶联物或者权利要求19所述的交联物,其特征在于,所述的固相载体为磁珠。The conjugate according to claim 19 or the cross-linked product according to claim 19, wherein the solid phase carrier is a magnetic bead.
PCT/CN2020/123119 2019-11-12 2020-10-23 Cd81 aptamer and application thereof WO2021093551A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911098597.7A CN112852821B (en) 2019-11-12 2019-11-12 CD81 aptamer and application thereof
CN201911098597.7 2019-11-12

Publications (1)

Publication Number Publication Date
WO2021093551A1 true WO2021093551A1 (en) 2021-05-20

Family

ID=75911950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123119 WO2021093551A1 (en) 2019-11-12 2020-10-23 Cd81 aptamer and application thereof

Country Status (2)

Country Link
CN (1) CN112852821B (en)
WO (1) WO2021093551A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129890A1 (en) * 2015-02-10 2016-08-18 Ewha University - Industry Collaboration Foundation A biomarker for diagnosing vascular diseases and the uses thereof
CN107893101A (en) * 2017-12-22 2018-04-10 郑州大学 A kind of kit, method and application for tumor disease early diagnosis

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109266599A (en) * 2018-10-16 2019-01-25 郑州大学 A kind of excretion body separation method that efficient pattern is lossless

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129890A1 (en) * 2015-02-10 2016-08-18 Ewha University - Industry Collaboration Foundation A biomarker for diagnosing vascular diseases and the uses thereof
CN107893101A (en) * 2017-12-22 2018-04-10 郑州大学 A kind of kit, method and application for tumor disease early diagnosis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIN QIAO, HONGFEI CHEN, HUI ZHANG , CHENXIN CAI: "Analysis and Detection of Tumor Exosomes", PROGRESS IN CHEMISTRY, vol. 31, no. 6, 26 April 2019 (2019-04-26), pages 847 - 857, XP055812616, ISSN: 1005-281X, DOI: 10.7536/pc181027 *
JALALIAN SEYED HAMID, RAMEZANI MOHAMMAD, ABNOUS KHALIL, TAGHDISI SEYED MOHAMMAD: "Exosomes, new biomarkers in early cancer detection", ANALYTICAL BIOCHEMISTRY, vol. 571, 15 April 2019 (2019-04-15), pages 1 - 13, XP055812621, ISSN: 0003-2697, DOI: 10.1016/j.ab.2019.02.013 *

Also Published As

Publication number Publication date
CN112852821A (en) 2021-05-28
CN112852821B (en) 2022-11-01

Similar Documents

Publication Publication Date Title
Labernadie et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion
Kindt et al. Langerhans cell number is a strong and independent prognostic factor for head and neck squamous cell carcinomas
Wu et al. Immunodetection of human telomerase reverse-transcriptase (hTERT) re-appraised: nucleolin and telomerase cross paths
JP6921809B2 (en) Multiple phenotyping method for nanovesicles
US20220236281A1 (en) Method, structures and system for nucleic acid sequence topology assembly for multiplexed profiling of proteins
Wang et al. Evaluation of serum extracellular vesicles as noninvasive diagnostic markers of glioma
Artym et al. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function
Sundah et al. Barcoded DNA nanostructures for the multiplexed profiling of subcellular protein distribution
Kaur et al. Cadherin-11, a marker of the mesenchymal phenotype, regulates glioblastoma cell migration and survival in vivo
Finlay et al. Novel noncatalytic role for caspase-8 in promoting SRC-mediated adhesion and Erk signaling in neuroblastoma cells
MX2010010136A (en) Method for detection of liver cancer cell using anti-glypican-3 antibody.
JP2014513293A (en) Method for determining ligand binding to a target protein using a thermal shift assay
JP4948728B2 (en) Antibodies for cancer diagnosis
US20190242882A1 (en) Dry-down processes for dye-conjugated reagents
WO2022095141A1 (en) Gpc1 dna aptamer and use thereof
Tang et al. Proteomic alterations in salivary exosomes derived from human papillomavirus-driven oropharyngeal cancer
Wang et al. Quantitative detection of the tumor-associated antigen large external antigen in colorectal cancer tissues and cells using quantum dot probe
Villaronga et al. Immunohistochemical expression of cortactin and focal adhesion kinase predicts recurrence risk and laryngeal cancer risk beyond histologic grading
CN104313139A (en) Monomolecular cell detection method and application thereof as well as monomolecular cell detection kit
Liu et al. C4. 4A as a biomarker of head and neck squamous cell carcinoma and correlated with epithelial mesenchymal transition
CN104844704B (en) Ub Nanoluc, Ub Ub GS Nanoluc Reporter Systems and its structure and application
Li et al. Identification of the target protein of the metastatic colorectal cancer-specific aptamer W3 as a biomarker by aptamer-based target cells sorting and functional characterization
WO2021093551A1 (en) Cd81 aptamer and application thereof
Mortezaee et al. Extracellular vesicle isolation, purification and evaluation in cancer diagnosis
WO2018107930A1 (en) Peripheral-blood circulating tumor cell detection system and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888598

Country of ref document: EP

Kind code of ref document: A1