WO2021093193A1 - Timeline information for aperiodic semi-persistent scheduling transmissions - Google Patents

Timeline information for aperiodic semi-persistent scheduling transmissions Download PDF

Info

Publication number
WO2021093193A1
WO2021093193A1 PCT/CN2020/074629 CN2020074629W WO2021093193A1 WO 2021093193 A1 WO2021093193 A1 WO 2021093193A1 CN 2020074629 W CN2020074629 W CN 2020074629W WO 2021093193 A1 WO2021093193 A1 WO 2021093193A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
domain
csi
user device
domain offset
Prior art date
Application number
PCT/CN2020/074629
Other languages
French (fr)
Inventor
Wei Gou
Peng Hao
Xianghui HAN
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2020/074629 priority Critical patent/WO2021093193A1/en
Priority to CN202080092880.3A priority patent/CN114930734A/en
Publication of WO2021093193A1 publication Critical patent/WO2021093193A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0643Feedback on request
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This patent document is directed generally to wireless communications.
  • This patent document describes, among other things, techniques that provide timeline information associated with receiving of a reference signal for channel state measurements to reduce and/or eliminate timing delay of uplink reporting.
  • a wireless communication method includes transmitting, by a base station to a user device, a control message on a first control channel triggering a transmission of a channel state information (CSI) report from the user device to the base station on a second control channel.
  • the method also includes transmitting, by the base station, a reference signal to the user device; and receiving the CSI report by the base station on the second control channel according to a timeline information associated with a reception of the reference signal by the user device.
  • the timeline information indicates a time-domain start position of the transmission of the CSI report on the second control channel.
  • a wireless communication method includes receiving, by a user device from a base station, a control message on a first control channel triggering a transmission of a CSI report from the user device to the base station on a second control channel.
  • the method also includes receiving, by the user device, a reference signal from the base station; and transmitting, by the user device, the CSI report on the second control channel according to a timeline information associated with the receiving of the reference signal, the timeline information indicating a time-domain start position of the transmission of the CSI report.
  • a communication apparatus in another example aspect, includes a processor that is configured to implement an above-described method.
  • a computer-program storage medium includes code stored thereon.
  • the code when executed by a processor, causes the processor to implement a described method.
  • FIG. 1 is a flowchart representation of a wireless communication method in accordance with the present technology.
  • FIG. 2 is a flowchart representation of another wireless communication method in accordance with the present technology.
  • FIG. 3 illustrates an example timeline information in accordance with the present technology.
  • FIG. 4 illustrates another example timeline information in accordance with the present technology.
  • FIG. 5A illustrates another example timeline information in accordance with the present technology.
  • FIG. 5B illustrates another example timeline information in accordance with the present technology.
  • FIG. 6A illustrates another example timeline information in accordance with the present technology.
  • FIG. 6B illustrates yet another example timeline information in accordance with the present technology.
  • FIG. 7 shows an example of a wireless communication system where techniques in accordance with one or more embodiments of the present technology can be applied.
  • FIG. 8 is a block diagram representation of a portion of a radio station in accordance with one or more embodiments of the present technology can be applied.
  • Section headings are used in the present document only to improve readability and do not limit scope of the disclosed embodiments and techniques in each section to only that section. Certain features are described using the example of Fifth Generation (5G) wireless protocol. However, applicability of the disclosed techniques is not limited to only 5G wireless systems.
  • 5G Fifth Generation
  • the 5G New Radio (NR) communication systems support high-reliability and low-latency (URLLC) services.
  • URLLC channel state information
  • One of the key aspects to support URLLC services is to provide the latest channel state information (CSI) efficiently and reliably.
  • CSI channel state information
  • aperiodic CSI (A-CSI) can be triggered by scheduling an uplink (UL) grant on the physical uplink shared channel (PUSCH) .
  • the A-CSI reporting is then transmitted through the UL grant.
  • PUSCH physical uplink shared channel
  • DCI Downlink Control Information
  • the gap can be large, resulting a delay (e.g., 2 to 4 m) in A-CSI feedback.
  • triggering A-CSI through UL grant can cause congestions in the Physical Downlink Control Channel (PDCCH) .
  • PDCCH Physical Downlink Control Channel
  • additional DCI signaling triggering A-CSI reporting can cause congestions on the PDCCH.
  • FIG. 1 is a flowchart representation of a wireless communication method 100 in accordance with the present technology.
  • the method 100 includes, at operation 110, transmitting, by a base station to a user device, a control message on a first control channel triggering a transmission of a channel state information (CSI) report from the user device to the base station on a second control channel.
  • the method includes, at operation 120, transmitting, by the base station, a reference signal to the user device.
  • CSI channel state information
  • the method also includes, at operation 130, receiving the CSI report by the base station on the second control channel according to a timeline information associated with a reception of the reference signal by the user device.
  • the timeline information indicates a time-domain start position of the transmission of the CSI report on the second control channel.
  • the timeline information comprises a first indicator indicating a first time-domain offset from a completion of receiving the reference signal by the user device. In some embodiments, the timeline information comprises a second indicator indicating a second time-domain offset from a completion of receiving the message by the user device. In some embodiments, the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a second time-domain positioned determined by the second time-domain offset.
  • the timeline information comprises a third indicator indicting a third time-domain offset from a completion of decoding the control message on the control channel.
  • the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a third time-domain positioned determined by the third time-domain offset.
  • the method includes receiving an acknowledgement of a data transmission together with the CSI report according to the timeline information. In some embodiments, the method includes performing a data transmission to the user device according to the control message. In some embodiments, the timeline information comprises a fourth indicator indicating a fourth time-domain offset from a completion of receiving the data transmission by the user device. In some embodiments, the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a fourth time-domain positioned determined by the fourth time-domain offset.
  • the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, (2) a third time-domain positioned determined by the third time-domain offset, and (3) a fourth time-domain positioned determined by the fourth time-domain offset.
  • the timeline information indicates a resource to be used for the CSI report.
  • the resource comprises a time-domain slot for the CSI report.
  • the resource comprises a Physical Uplink Control Channel (PUCCH) resource.
  • PUCCH Physical Uplink Control Channel
  • at least one of the first, second, third, or fourth time-domain offset is specified in a protocol suite, such as the Third Generation Partnership Project (3GPP) standard.
  • FIG. 2 is a flowchart representation of a wireless communication method 200 in accordance with the present technology.
  • the method 200 includes, at operation 210, receiving, by a user device from a base station, a control message on a first control channel triggering a transmission of a Channel State Information (CSI) report from the user device to the base station on a second control channel.
  • the method 200 includes, at operation 220, receiving, by the user device, a reference signal from the base station.
  • the method also includes, at operation 230, transmitting the CSI report on the second control channel according to a timeline information associated with the receiving of the reference signal.
  • the timeline information indicating a time-domain start position of the transmission of the CSI report.
  • Both the base station and the user device are aware of the position of the A-CSI location, thereby reducing and/or eliminating delays in CSI reporting and processing.
  • the timeline information comprises a first indicator indicating a first time-domain offset from a completion of receiving the reference signal by the user device. In some embodiments, the timeline information comprises a second indicator indicating a second time-domain offset from a completion of receiving the message by the user device. In some embodiments, the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a second time-domain positioned determined by the second time-domain offset. In some embodiments, the timeline information comprises a third indicator indicting a third time-domain offset from a completion of decoding the control message on the control channel. In some embodiments, the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a third time-domain positioned determined by the third time-domain offset.
  • the method includes receiving an acknowledgement of a data transmission together with the CSI report according to the timeline information. In some embodiments, the method includes performing a data transmission to the user device according to the control message. In some embodiments, the timeline information comprises a fourth indicator indicating a fourth time-domain offset from a completion of receiving the data transmission by the user device. In some embodiments, the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a fourth time-domain positioned determined by the fourth time-domain offset.
  • the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, (2) a third time-domain positioned determined by the third time-domain offset, and (3) a fourth time-domain positioned determined by the fourth time-domain offset.
  • the timeline information indicates a resource to be used for the CSI report.
  • the resource comprises a time-domain slot for the CSI report.
  • the resource comprises a Physical Uplink Control Channel (PUCCH) resource.
  • PUCCH Physical Uplink Control Channel
  • at least one of the first, second, third, or fourth time-domain offset is specified in a protocol suite, such as the 3GPP standard.
  • timeline information can be associated with a reception of a physical layer control message (e.g., DCI) .
  • the control message can include information to schedule downlink transmission on another channel (e.g., PDSCH) .
  • the time-domain start position of A-CSI reporting can be determined according to a set of predefined rules and when the control message is received.
  • FIG. 3 illustrates an example timeline information in accordance with the present technology.
  • the timeline information includes at least a first time-domain offset J1 and/or a second time-domain offset M2.
  • the start position of PUCCH for A-CSI reporting needs to satisfy at least one of the following conditions:
  • a first time-domain position G1 is determined by adding the first time-domain offset J1 to the end symbol of the control message on PDCCH.
  • the first time-domain offset J1 ensures that the UE can have sufficient time to decode PDCCH with the control message.
  • a second time-domain position F2 is determined by adding the second time-domain offset M2 to the end symbol of one or more reference signal (s) (RSs) used for CSI measurements.
  • the second time-domain offset M2 ensures that the UE can have sufficient time to measure the reference signal (s) , calculate CSI accordingly, and encoding the A-CSI reporting.
  • the start symbol of PUCCH for A-CSI reporting is no earlier than or after position G1 and F2, whichever is later.
  • R is a positive integer.
  • the uplink slot is positioned on the carrier of the PUCCH for A-CSI reporting. Further, the PUCCH resource for A-CSI reporting in the uplink slot can be determined according to the PRI in the control message.
  • E is a positive integer.
  • the one or more reference signals include one or more of the following: CSI-RS, CSI Interference Measurement (CSI-IM) , non-zero-power (NZP) CSI-RS, Demodulation Reference Signal (DMRS) , or other signals. If the UE needs to measure multiple reference signals, the second time-domain position F2 can be determined based on the end symbol of each reference signal to ensure that the UE has sufficient time to measure and calculate A-CSI for all reference signals.
  • CSI-RS CSI Interference Measurement
  • NZP non-zero-power
  • DMRS Demodulation Reference Signal
  • the value of the first time-domain offset J1 can be one of the following: N as defined in 3GPP TS38.213, or N pdsch as defined in TS38.214.
  • the value of the second time-domain offset M2 can be one of the following: N1, N2, T proc, 1 , T proc, 2 , or T proc, CSI as defined in TS38.213.
  • the value of M2 can also be one of the following: Z, Z ', T proc, CSI as defined in in TS38.214.
  • either J1 or M2 can be one of the following: T proc, 1 , N, N1, T proc, 2 , N2, Z, Z ', T proc, CSI , or N3 as defined in TS38.214 or TS38.213.
  • T proc, 1 , d 1, 1 can be set to 0 in T proc, 1 .
  • d 2 can be set to 0 in T proc, 2 .
  • J1 and/or M2 can also be set to other predetermined values.
  • J1 and M2 are based on the smallest subcarrier spacing from the associated signals or channels related to the A-CSI reporting. For example, if the subcarrier spacing of the carrier for transmitting the control message on PDCCH is 15Khz, the subcarrier spacing of the carrier for transmitting the one or more reference signal (s) (RSs) used for CSI measurements are 30Khz, and the subcarrier spacing of the carrier for carrying the PUCCH for A-CSI reporting is 30Khz, then values of J1 and M2 are determined based on the smallest subcarrier spacing, which is 15Khz.
  • RSs reference signal
  • the physical layer control message that triggers A-CSI can simultaneously schedule PDSCH transmissions.
  • the HARQ-ACK feedback corresponding to PDSCH transmissions can be transmitted together with the A-CSI report in the same PUCCH.
  • FIG. 4 illustrates another example timeline information in accordance with the present technology.
  • the timeline information includes at least a first time-domain offset M1 and/or a second time-domain offset M2.
  • the start position of PUCCH for A-CSI reporting needs to satisfy at least one of the following conditions:
  • a first time-domain position P1 is determined by adding the first time-domain offset M1 to the end symbol of the PDSCH transmission.
  • the first time-domain offset M1 ensures that the UE can have sufficient time to decode the PDSCH transmission and form HARQ-ACK feedback.
  • a second time-domain position P2 is determined by adding the second time-domain offset M2 to the end symbol of one or more reference signal (s) (RSs) used for CSI measurements.
  • the second time-domain offset M2 ensures that the UE can have sufficient time to measure the reference signal (s) , calculate CSI accordingly, and encoding the A-CSI reporting.
  • the start symbol of PUCCH for A-CSI reporting is no earlier than or after position P1 and P2, whichever is later.
  • R is a positive integer.
  • the uplink slot is positioned on the carrier of the PUCCH for A-CSI reporting. Further, the PUCCH resource for A-CSI reporting in the uplink slot can be obtained according to the PRI in the control message.
  • E is a positive integer.
  • the control message also includes a PDSCH-to-HARQ feedback timing indicator (e.g., k1) and PRI.
  • the k1 can be used to determine a slot and the PRI can be used to determine a PUCCH resource within the slot for transmitting A-CSI and HARQ- ACK.
  • the HARQ-ACK can be the acknowledgement for the PDSCH transmission scheduled by the control message or other PDSCH transmissions. Further details about determining PUCCH resource based in k1 and/or PRI can be found in Embodiment 5.
  • the one or more reference signals include one or more of the following: CSI-RS, CSI Interference Measurement (CSI-IM) , non-zero-power (NZP) CSI-RS, Demodulation Reference Signal (DMRS) , or other signals. If the UE needs to measure multiple reference signals, the second time-domain position P2 can be determined based on the end symbol of each reference signal to ensure that the UE has sufficient time to measure and calculate A-CSI for all reference signals.
  • CSI-RS CSI Interference Measurement
  • NZP non-zero-power
  • DMRS Demodulation Reference Signal
  • the value of the first time-domain offset M1 can be one of the following: N1 or T proc, 1 as defined in 3GPP TS38.213.
  • the value of the second time-domain offset M2 can be one of the following: N1, N2, T proc, 1 , T proc, 2 , or T proc, CSI as defined in TS38.213.
  • the value of M2 can also be one of the following: Z, Z ', T proc, CSI as defined in in TS38.214.
  • M1 and/or M2 can be one of the following: T proc, 1 , N, N1, T proc, 2 , N2, Z, Z ', T proc, CSI , or N3 as defined in TS38.214 or TS38.213.
  • T proc, 1 , d 1, 1 can be set to 0 in T proc, 1 .
  • M1 and/or M2 are equal to T proc, 2 , d 2, 1 can be set to 0 in T proc, 2 .
  • M1 and/or M2 can also be set to other predetermined values.
  • M1 and M2 are based on the smallest subcarrier space from the associated signals or channels related to the A-CSI reporting. For example, if the subcarrier spacing of the carrier for transmitting the control message on PDCCH is 30Khz, the subcarrier spacing of the carrier for transmitting the one or more reference signal (s) (RSs) used for CSI measurements are 30Khz , the subcarrier spacing of the carrier for transmitting the PDSCH are 60Khz, and the subcarrier spacing of the carrier carrying the PUCCH for A-CSI reporting is 60Khz, then values of M1 and M2 are determined based on the smallest subcarrier spacing, which is 30Khz.
  • RSs reference signal
  • the timeline information indicates at least a first time-domain offset W21.
  • FIG. 5A illustrates an example timeline information in accordance with the present technology.
  • the reference signal (s) for CSI measurements are positioned after the time required for the UE to decode PDCCH with the control message, which is denoted as W1.
  • a time-domain position A21 is determined by adding the time-domain offset W21 to the end symbol of one or more reference signal (s) (RSs) used for CSI measurements.
  • the time-domain offset W21 ensures that the UE can have sufficient time to measure the reference signal (s) , calculate CSI accordingly, and encoding the A-CSI reporting.
  • the start position of PUCCH for A-CSI reporting is no earlier than or after position A21.
  • the timeline information indicates at least a second time-domain offset W22.
  • FIG. 5B illustrates another example timeline information in accordance with the present technology.
  • the reference signal (s) for CSI measurements are positioned before the time required for the UE to decode PDCCH with the control message. Because the UE can only perform RS measurements after decoding the control message, a time-domain position A22 is determined by adding the time-domain offset W22 to the amount of time required for the UE to decode PDCCH with the control message.
  • the time-domain offset W22 ensures that the UE can have sufficient time to measure the reference signal (s) , calculate CSI accordingly, and encoding the A-CSI reporting after the signaling is decoded properly.
  • the start position of PUCCH for A-CSI reporting is no earlier than or after position A22.
  • the one or more reference signals include one or more of the following: CSI-RS, CSI Interference Measurement (CSI-IM) , non-zero-power (NZP) CSI-RS, Demodulation Reference Signal (DMRS) , or other signals. If the UE needs to measure multiple reference signals, the second time-domain position A22 can be determined based on the end symbol of each reference signal to ensure that the UE has sufficient time to measure and calculate A-CSI for all reference signals.
  • CSI-RS CSI Interference Measurement
  • NZP non-zero-power
  • DMRS Demodulation Reference Signal
  • the value of W1 can be one of the following: N as defined in 3GPP TS38.213, or N pdsch as defined in TS38.214.
  • the value of the first time-domain offset W21 and/or the second time-domain offset W22 can be one of the following: N1, N2, T proc, 1 , T proc, 2 , or T proc, CSI as defined in TS38.213.
  • the value of W21 and W22 can also be one of the following: Z, Z ', T proc, CSI as defined in in TS38.214.
  • W1, W21, and/or W22 can be one of the following: T proc, 1 , N, N1, T proc, 2 , N2, Z, Z ', T proc, CSI , or N3 as defined in TS38.214 or TS38.213.
  • d 1 can be set to 0 in T proc, 1 .
  • W1, W21, and/or W22 are equal to T proc, 2 , d 2, 1 can be set to 0 in T proc, 2 .
  • W1, W21, and/or W22 can also be set to other predetermined values.
  • the W1 and W21 are based on the smallest subcarrier space from the associated signals or channels related to the A-CSI reporting. For example, if the subcarrier spacing of the carrier for transmitting the control message on PDCCH is 30Khz, the subcarrier spacing of the carrier for transmitting the one or more reference signal (s) (RSs) used for CSI measurements are 30Khz, and the subcarrier spacing of the carrier for carrying the PUCCH for A-CSI reporting is 60Khz, then values of W1 and W21 (or W22) are determined based on the smallest subcarrier spacing, which is 30Khz.
  • RSs reference signal
  • the position of the PUCCH for A-CSI reporting can be determined accordingly.
  • R is a positive integer.
  • the uplink slot is positioned on the carrier of the PUCCH for A-CSI reporting. Further, the PUCCH resource for A-CSI reporting in the uplink slot can be determined according to the PRI in the control message.
  • E is a positive integer.
  • the control message also includes a PDSCH-to-HARQ feedback timing indicator (e.g., k1) and PRI.
  • the k1 can be used to determine a slot and the PRI can be used to determine a PUCCH resource within the slot for transmitting A-CSI and HARQ-ACK.
  • the HARQ-ACK can be the acknowledgement for the PDSCH transmission scheduled by the control message or other PDSCH transmissions. Further details about determining PUCCH resource based in k1 and/or PRI can be found in Embodiment 5.
  • the physical layer control message that triggers A-CSI can simultaneously schedule PDSCH transmissions.
  • the HARQ-ACK feedback corresponding to PDSCH transmissions can be transmitted together with the A-CSI report in the same PUCCH.
  • the timeline information indicates at least a first time-domain offset H21.
  • FIG. 6A illustrates an example timeline information in accordance with the present technology.
  • the reference signal (s) for CSI measurements are positioned after the time required for the UE to decode PDCCH with the control message, which is denoted as H1.
  • a time-domain position B21 is determined based on:
  • H3 represents the amount of time required for the UE to decode the data.
  • a time-domain position B21 by adding the time-domain offset H21 to the end symbol of one or more reference signal (s) (RSs) used for CSI measurements.
  • the time-domain offset H21 ensures that the UE can have sufficient time to measure the reference signal (s) , calculate CSI accordingly, and encoding the A-CSI reporting.
  • the start symbol of PUCCH for A-CSI reporting is no earlier than or after the last time-domain position among B1, B3, and B21. In some embodiments, the start symbol of PUCCH for A-CSI reporting is no earlier than or after position B3 and B21, whichever is later.
  • the timeline information indicates at least a second time-domain offset H22.
  • FIG. 6B illustrates another example timeline information in accordance with the present technology.
  • the reference signal (s) for CSI measurements are positioned before the time required for the UE to decode PDCCH with the control message. Because the UE can only perform RS measurements after decoding the control message, a time-domain position B22 is determined based on the following:
  • H3 represents the amount of time required for the UE to decode the data.
  • Determining a time-domain position B22 by adding the time-domain offset H22 to the time-domain position B1.
  • the time-domain offset H22 ensures that the UE can have sufficient time to measure the reference signal (s) , calculate CSI accordingly, and encoding the A-CSI reporting.
  • the start symbol of PUCCH for A-CSI reporting is no earlier than or after the last time-domain position among B1, B3, and B22. In some embodiments, the start symbol of PUCCH for A-CSI reporting is no earlier than or after position B3 and B22, whichever is later.
  • the one or more reference signals include one or more of the following: CSI-RS, CSI Interference Measurement (CSI-IM) , non-zero-power (NZP) CSI-RS, Demodulation Reference Signal (DMRS) , or other signals. If the UE needs to measure multiple reference signals, the second time-domain position B21 or B22 can be determined based on the end symbol of each reference signal to ensure that the UE has sufficient time to measure and calculate A-CSI for all reference signals.
  • CSI-RS CSI Interference Measurement
  • NZP non-zero-power
  • DMRS Demodulation Reference Signal
  • the value of H1 can be one of the following: N as defined in 3GPP TS38.213, or N pdsch as defined in TS38.214.
  • the value of H3 can be one of the following: N1, N2, T proc, 1 , T proc, 2 , or T proc, CSI as defined in TS38.213.
  • the value of H21 or H22 can be one of the following: N1, N2, T proc, 1 , T proc, 2 , or T proc, CSI as defined in TS38.213.
  • the value of H21 or H22 can also be one of the following: Z, Z ', T proc, CSI as defined in in TS38.214.
  • H1, H3, H21 and/or H22 can be one of the following: T proc, 1 , N, N1, T proc, 2 , N2, Z, Z ', T proc, CSI , or N3 as defined in TS38.214 or TS38.213.
  • T proc, 1 N, N1, T proc, 2 , N2, Z, Z ', T proc, CSI , or N3 as defined in TS38.214 or TS38.213.
  • d 1 can be set to 0 in T proc, 1 .
  • H1, H3, H21 and/or H22 are equal to T proc, 2
  • d 2 1 can be set to 0 in T proc, 2 .
  • H1, H3, H21 and/or H22 can also be set to other predetermined values.
  • the H1, H3 and H21 are based on the smallest subcarrier spacing from the associated signals or channels related to the A-CSI reporting. For example, if the subcarrier spacing of the carrier for transmitting the control message on PDCCH is 30Khz, the subcarrier spacing of the carrier for transmitting the one or more reference signal (s) (RSs) used for CSI measurements are 30Khz , the subcarrier spacing of the carrier for transmitting the PDSCH are 60Khz, and the subcarrier spacing of the carrier for carrying the PUCCH for A-CSI reporting is 60Khz, then values of H1, H3 and H21 (or H22) are determined based on the smallest subcarrier spacing, which is 30Khz.
  • RSs reference signal
  • the PUCCH for A-CSI reporting can be determined accordingly.
  • B21 is located later than B1 and B3 in the time domain.
  • B22 is located later than B3 in the time domain.
  • R is a positive integer.
  • the control message also includes a PDSCH-to-HARQ feedback timing indicator (e.g., k1) and PRI.
  • the k1 can be used to determine a slot and the PRI can be used to determine a PUCCH resource within the slot for transmitting A-CSI and HARQ-ACK.
  • the HARQ-ACK can be the acknowledgement for the PDSCH transmission scheduled by the control message or other PDSCH transmissions. Further details about determining PUCCH resource based in k1 and/or PRI can be found in Embodiment 5.
  • a time-domain slot and a uplink channel resource for transmitting A-CSI can be determined based on at least one of the following:
  • the uplink channel resource can be determined according to k1 (for the time-domain slot) and PRI (for the PUCCH resource) in the last downlink control message (e.g., DCI) that corresponds to the HARQ-ACK codebook.
  • the HARQ-ACK codebook and the triggered A-CSI can be transmitted separately and/or potentially be multiplexed to the same uplink resources according to the following examples:
  • Example (1) The uplink channel resources for the A-CSI can be determined according to PRI in the control message (e.g., DCI) .
  • the time-domain slot for transmitting the A-CSI can be determined according to details described in Embodiment 1 or 3.
  • Example (2) If the triggering downlink control message is the last one corresponding to the HARQ-ACK codebook and the slot location of A-CSI according to details described in Embodiment 1 or 3 is same as slot location indicated by k1 in the control message, the A-CSI and the HARQ-ACK codebook can be multiplexed in the same uplink resource (e.g., a PUCCH) indicated by PRI in the control message.
  • the same uplink resource e.g., a PUCCH
  • Example (3) Alternatively, if the triggering downlink control message is the last one corresponding to the HARQ-ACK codebook, the A-CSI and the HARQ-ACK codebook can be multiplexed in the same uplink resource (e.g., a PUCCH) indicated by k1 (for the time-domain slot) and PRI (for the PUCCH resource) in the control message.
  • a PUCCH Physical Uplink Control Channel
  • FIG. 7 shows an example of a wireless communication system 700 where techniques in accordance with one or more embodiments of the present technology can be applied.
  • a wireless communication system 700 can include one or more base stations (BSs) 705a, 705b, one or more wireless devices 710a, 710b, 710c, 710d, and a core network 725.
  • a base station 705a, 705b can provide wireless service to wireless devices 710a, 710b, 710c and 710d in one or more wireless sectors.
  • a base station 705a, 705b includes directional antennas to produce two or more directional beams to provide wireless coverage in different sectors.
  • the core network 725 can communicate with one or more base stations 705a, 705b.
  • the core network 725 provides connectivity with other wireless communication systems and wired communication systems.
  • the core network may include one or more service subscription databases to store information related to the subscribed wireless devices 710a, 710b, 710c, and 710d.
  • a first base station 705a can provide wireless service based on a first radio access technology
  • a second base station 705b can provide wireless service based on a second radio access technology.
  • the base stations 705a and 705b may be co-located or may be separately installed in the field according to the deployment scenario.
  • the wireless devices 710a, 710b, 710c, and 710d can support multiple different radio access technologies.
  • the techniques and embodiments described in the present document may be implemented by the base stations of wireless devices described in the present document.
  • FIG. 8 is a block diagram representation of a portion of a radio station in accordance with one or more embodiments of the present technology can be applied.
  • a radio station 805 such as a base station or a wireless device (or UE) can include processor electronics 810 such as a microprocessor that implements one or more of the wireless techniques presented in this document.
  • the radio station 605 can include transceiver electronics 815 to send and/or receive wireless signals over one or more communication interfaces such as antenna 820.
  • the radio station 805 can include other communication interfaces for transmitting and receiving data.
  • Radio station 805 can include one or more memories (not explicitly shown) configured to store information such as data and/or instructions.
  • the processor electronics 810 can include at least a portion of the transceiver electronics 815.
  • at least some of the disclosed techniques, modules or functions are implemented using the radio station 805.
  • the radio station 805 may be configured to perform the methods described herein.
  • the present document discloses techniques that can be embodied in various embodiments to provide timeline information to reduce and/or eliminate timing delay of A-CSI reporting.
  • the disclosed and other embodiments, modules and the functional operations described in this document can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them.
  • the disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus.
  • the computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them.
  • data processing apparatus encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers.
  • the apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.
  • a propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.
  • a computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • a computer program does not necessarily correspond to a file in a file system.
  • a program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document) , in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code) .
  • a computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
  • the processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
  • the processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit) .
  • processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.
  • a processor will receive instructions and data from a read only memory or a random-access memory or both.
  • the essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data.
  • a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • a computer need not have such devices.
  • Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks.
  • semiconductor memory devices e.g., EPROM, EEPROM, and flash memory devices
  • magnetic disks e.g., internal hard disks or removable disks
  • magneto optical disks e.g., CD ROM and DVD-ROM disks.
  • the processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.

Abstract

Methods, apparatus, and systems for providing timeline information associated with physical layer signaling to reduce and/or eliminate timing delay of uplink reporting are disclosed. In one example aspect, a wireless communication method includes transmitting, by a base station to a user device, a control message on a first control channel triggering a transmission of a channel state information (CSI) report from the user device to the base station on a second control channel. The method also includes transmitting, by the base station, a reference signal to the user device; and receiving the CSI report by the base station on the second control channel according to a timeline information associated with a reception of the reference signal by the user device. The timeline information indicates a time-domain start position of the transmission of the CSI report on the second control channel.

Description

TIMELINE INFORMATION FOR APERIODIC SEMI-PERSISTENT SCHEDULING TRANSMISSIONS TECHNICAL FIELD
This patent document is directed generally to wireless communications.
BACKGROUND
Mobile communication technologies are moving the world toward an increasingly connected and networked society. The rapid growth of mobile communications and advances in technology have led to greater demand for capacity and connectivity. Other aspects, such as energy consumption, device cost, spectral efficiency, and latency are also important to meeting the needs of various communication scenarios. Various techniques, including new ways to provide higher quality of service, longer battery life, and improved performance are being discussed.
SUMMARY
This patent document describes, among other things, techniques that provide timeline information associated with receiving of a reference signal for channel state measurements to reduce and/or eliminate timing delay of uplink reporting.
In one example aspect, a wireless communication method. The method includes transmitting, by a base station to a user device, a control message on a first control channel triggering a transmission of a channel state information (CSI) report from the user device to the base station on a second control channel. The method also includes transmitting, by the base station, a reference signal to the user device; and receiving the CSI report by the base station on the second control channel according to a timeline information associated with a reception of the reference signal by the user device. The timeline information indicates a time-domain start position of the transmission of the CSI report on the second control channel.
In another example aspect, a wireless communication method. The method includes receiving, by a user device from a base station, a control message on a first control channel triggering a transmission of a CSI report from the user device to the base station on a second control channel. The method also includes receiving, by the user device, a reference signal from  the base station; and transmitting, by the user device, the CSI report on the second control channel according to a timeline information associated with the receiving of the reference signal, the timeline information indicating a time-domain start position of the transmission of the CSI report.
In another example aspect, a communication apparatus is disclosed. The apparatus includes a processor that is configured to implement an above-described method.
In yet another example aspect, a computer-program storage medium is disclosed. The computer-program storage medium includes code stored thereon. The code, when executed by a processor, causes the processor to implement a described method.
These, and other, aspects are described in the present document.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a flowchart representation of a wireless communication method in accordance with the present technology.
FIG. 2 is a flowchart representation of another wireless communication method in accordance with the present technology.
FIG. 3 illustrates an example timeline information in accordance with the present technology.
FIG. 4 illustrates another example timeline information in accordance with the present technology.
FIG. 5A illustrates another example timeline information in accordance with the present technology.
FIG. 5B illustrates another example timeline information in accordance with the present technology.
FIG. 6A illustrates another example timeline information in accordance with the present technology.
FIG. 6B illustrates yet another example timeline information in accordance with the present technology.
FIG. 7 shows an example of a wireless communication system where techniques in accordance with one or more embodiments of the present technology can be applied.
FIG. 8 is a block diagram representation of a portion of a radio station in accordance  with one or more embodiments of the present technology can be applied.
DETAILED DESCRIPTION
Section headings are used in the present document only to improve readability and do not limit scope of the disclosed embodiments and techniques in each section to only that section. Certain features are described using the example of Fifth Generation (5G) wireless protocol. However, applicability of the disclosed techniques is not limited to only 5G wireless systems.
The 5G New Radio (NR) communication systems support high-reliability and low-latency (URLLC) services. One of the key aspects to support URLLC services is to provide the latest channel state information (CSI) efficiently and reliably. Currently, aperiodic CSI (A-CSI) can be triggered by scheduling an uplink (UL) grant on the physical uplink shared channel (PUSCH) . The A-CSI reporting is then transmitted through the UL grant. However, a time-domain gap exists between the Downlink Control Information (DCI) control message that triggers the A-CSI and the transmission of A-CSI over PUSCH. The gap can be large, resulting a delay (e.g., 2 to 4 m) in A-CSI feedback. As a result, the base station cannot obtain the latest CSI in time. In addition, triggering A-CSI through UL grant can cause congestions in the Physical Downlink Control Channel (PDCCH) . For example, when there are many DCI messages on the PDCCH to schedule Physical Downlink Shared Channel (PDSCH) transmissions, additional DCI signaling triggering A-CSI reporting can cause congestions on the PDCCH.
This patent document discloses techniques that can be implemented various embodiments to provide timeline information associated with reference signal reception and measurement to reduce and/or eliminate timing delay of A-CSI reporting. FIG. 1 is a flowchart representation of a wireless communication method 100 in accordance with the present technology. The method 100 includes, at operation 110, transmitting, by a base station to a user device, a control message on a first control channel triggering a transmission of a channel state information (CSI) report from the user device to the base station on a second control channel. The method includes, at operation 120, transmitting, by the base station, a reference signal to the user device. The method also includes, at operation 130, receiving the CSI report by the base station on the second control channel according to a timeline information associated with a reception of the reference signal by the user device. The timeline information indicates a time-domain start position of the transmission of the CSI report on the second control channel. Both  the base station and the user device are aware of the position of the A-CSI location, thereby reducing and/or eliminating delays in CSI reporting and processing.
In some embodiments, the timeline information comprises a first indicator indicating a first time-domain offset from a completion of receiving the reference signal by the user device. In some embodiments, the timeline information comprises a second indicator indicating a second time-domain offset from a completion of receiving the message by the user device. In some embodiments, the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a second time-domain positioned determined by the second time-domain offset.
In some embodiments, the timeline information comprises a third indicator indicting a third time-domain offset from a completion of decoding the control message on the control channel. In some embodiments, the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a third time-domain positioned determined by the third time-domain offset.
In some embodiments, the method includes receiving an acknowledgement of a data transmission together with the CSI report according to the timeline information. In some embodiments, the method includes performing a data transmission to the user device according to the control message. In some embodiments, the timeline information comprises a fourth indicator indicating a fourth time-domain offset from a completion of receiving the data transmission by the user device. In some embodiments, the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a fourth time-domain positioned determined by the fourth time-domain offset. In some embodiments, the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, (2) a third time-domain positioned determined by the third time-domain offset, and (3) a fourth time-domain positioned determined by the fourth time-domain offset.
In some embodiments, the timeline information indicates a resource to be used for the CSI report. In some embodiments, the resource comprises a time-domain slot for the CSI report. In some embodiments, the resource comprises a Physical Uplink Control Channel (PUCCH) resource. In some embodiments, at least one of the first, second, third, or fourth time-domain offset is specified in a protocol suite, such as the Third Generation Partnership Project (3GPP)  standard.
FIG. 2 is a flowchart representation of a wireless communication method 200 in accordance with the present technology. The method 200 includes, at operation 210, receiving, by a user device from a base station, a control message on a first control channel triggering a transmission of a Channel State Information (CSI) report from the user device to the base station on a second control channel. The method 200 includes, at operation 220, receiving, by the user device, a reference signal from the base station. The method also includes, at operation 230, transmitting the CSI report on the second control channel according to a timeline information associated with the receiving of the reference signal. The timeline information indicating a time-domain start position of the transmission of the CSI report. Both the base station and the user device are aware of the position of the A-CSI location, thereby reducing and/or eliminating delays in CSI reporting and processing.
In some embodiments, the timeline information comprises a first indicator indicating a first time-domain offset from a completion of receiving the reference signal by the user device. In some embodiments, the timeline information comprises a second indicator indicating a second time-domain offset from a completion of receiving the message by the user device. In some embodiments, the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a second time-domain positioned determined by the second time-domain offset. In some embodiments, the timeline information comprises a third indicator indicting a third time-domain offset from a completion of decoding the control message on the control channel. In some embodiments, the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a third time-domain positioned determined by the third time-domain offset.
In some embodiments, the method includes receiving an acknowledgement of a data transmission together with the CSI report according to the timeline information. In some embodiments, the method includes performing a data transmission to the user device according to the control message. In some embodiments, the timeline information comprises a fourth indicator indicating a fourth time-domain offset from a completion of receiving the data transmission by the user device. In some embodiments, the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by  the first time-domain offset, and (2) a fourth time-domain positioned determined by the fourth time-domain offset. In some embodiments, the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, (2) a third time-domain positioned determined by the third time-domain offset, and (3) a fourth time-domain positioned determined by the fourth time-domain offset.
In some embodiments, the timeline information indicates a resource to be used for the CSI report. In some embodiments, the resource comprises a time-domain slot for the CSI report. In some embodiments, the resource comprises a Physical Uplink Control Channel (PUCCH) resource. In some embodiments, at least one of the first, second, third, or fourth time-domain offset is specified in a protocol suite, such as the 3GPP standard.
As further described in the present document, the above-described methods XX. Some examples of the disclosed techniques are described in the following example embodiments.
Embodiment 1
In some embodiments, timeline information can be associated with a reception of a physical layer control message (e.g., DCI) . The control message can include information to schedule downlink transmission on another channel (e.g., PDSCH) . The time-domain start position of A-CSI reporting can be determined according to a set of predefined rules and when the control message is received. FIG. 3 illustrates an example timeline information in accordance with the present technology. The timeline information includes at least a first time-domain offset J1 and/or a second time-domain offset M2. The start position of PUCCH for A-CSI reporting needs to satisfy at least one of the following conditions:
1. A first time-domain position G1 is determined by adding the first time-domain offset J1 to the end symbol of the control message on PDCCH. The first time-domain offset J1 ensures that the UE can have sufficient time to decode PDCCH with the control message.
2. A second time-domain position F2 is determined by adding the second time-domain offset M2 to the end symbol of one or more reference signal (s) (RSs) used for CSI measurements. The second time-domain offset M2 ensures that the UE can have sufficient time to measure the reference signal (s) , calculate CSI accordingly, and encoding the A-CSI reporting.
The start symbol of PUCCH for A-CSI reporting is no earlier than or after position G1 and F2, whichever is later.
After ascertaining G1 and F2, the PUCCH for A-CSI reporting can be determined  accordingly. Referring back to FIG. 3 as a specific example, F2 is located later than G1 in the time domain. The uplink slot carrying the PUCCH for A-CSI reporting can be the R th (e.g. R = 1) uplink slot at or after F2 that meet the requirements for transmitting A-CSI (e.g., having the required PUCCH format and enough payload) . R is a positive integer. The uplink slot is positioned on the carrier of the PUCCH for A-CSI reporting. Further, the PUCCH resource for A-CSI reporting in the uplink slot can be determined according to the PRI in the control message. In some embodiments, the PUCCH resource for A-CSI reporting can be the E th (e.g., E=1) PUCCH resource at or after F2 that meet the requirements for transmitting A-CSI report (e.g., having the required format and enough payload) . E is a positive integer.
In some embodiments, the one or more reference signals include one or more of the following: CSI-RS, CSI Interference Measurement (CSI-IM) , non-zero-power (NZP) CSI-RS, Demodulation Reference Signal (DMRS) , or other signals. If the UE needs to measure multiple reference signals, the second time-domain position F2 can be determined based on the end symbol of each reference signal to ensure that the UE has sufficient time to measure and calculate A-CSI for all reference signals.
In some embodiments, the value of the first time-domain offset J1 can be one of the following: N as defined in 3GPP TS38.213, or N pdsch as defined in TS38.214. In some embodiments, the value of the second time-domain offset M2 can be one of the following: N1, N2, T proc,  1, T proc,  2, or T proc,  CSI as defined in TS38.213. The value of M2 can also be one of the following: Z, Z ', T proc,  CSI as defined in in TS38.214.
In some embodiments, either J1 or M2 can be one of the following: T proc,  1, N, N1, T proc,  2, N2, Z, Z ', T proc,  CSI, or N3 as defined in TS38.214 or TS38.213. When J1 and/or M2 are equal to T proc,  1, d 1,  1 can be set to 0 in T proc,  1. When J1 and/or M2 are equal to T proc,  2, d 2,  1 can be set to 0 in T proc,  2. J1 and/or M2 can also be set to other predetermined values.
In some embodiments, J1 and M2 are based on the smallest subcarrier spacing from the associated signals or channels related to the A-CSI reporting. For example, if the subcarrier spacing of the carrier for transmitting the control message on PDCCH is 15Khz, the subcarrier spacing of the carrier for transmitting the one or more reference signal (s) (RSs) used for CSI measurements are 30Khz, and the subcarrier spacing of the carrier for carrying the PUCCH for A-CSI reporting is 30Khz, then values of J1 and M2 are determined based on the smallest subcarrier spacing, which is 15Khz.
Embodiment 2
As mentioned above, the physical layer control message that triggers A-CSI can simultaneously schedule PDSCH transmissions. In some embodiments, the HARQ-ACK feedback corresponding to PDSCH transmissions can be transmitted together with the A-CSI report in the same PUCCH. FIG. 4 illustrates another example timeline information in accordance with the present technology. The timeline information includes at least a first time-domain offset M1 and/or a second time-domain offset M2. The start position of PUCCH for A-CSI reporting needs to satisfy at least one of the following conditions:
1. A first time-domain position P1 is determined by adding the first time-domain offset M1 to the end symbol of the PDSCH transmission. The first time-domain offset M1 ensures that the UE can have sufficient time to decode the PDSCH transmission and form HARQ-ACK feedback.
2. A second time-domain position P2 is determined by adding the second time-domain offset M2 to the end symbol of one or more reference signal (s) (RSs) used for CSI measurements. The second time-domain offset M2 ensures that the UE can have sufficient time to measure the reference signal (s) , calculate CSI accordingly, and encoding the A-CSI reporting.
The start symbol of PUCCH for A-CSI reporting is no earlier than or after position P1 and P2, whichever is later.
After ascertaining P1 and P2, the PUCCH for A-CSI reporting can be determined accordingly. Referring back to FIG. 4 as a specific example, P2 is located later than P1 in the time domain. The uplink slot carrying the PUCCH for A-CSI reporting can be the R th (e.g. R = 1) uplink slot at or after P2 that meet the requirements for transmitting A-CSI (e.g., having the required PUCCH format and enough payload) . R is a positive integer. The uplink slot is positioned on the carrier of the PUCCH for A-CSI reporting. Further, the PUCCH resource for A-CSI reporting in the uplink slot can be obtained according to the PRI in the control message. In some embodiments, the PUCCH resource for A-CSI reporting can be the E th (e.g., E=1) PUCCH resource at or after P2 that meet the requirements for transmitting A-CSI report (e.g., having the required format and enough payload) . E is a positive integer.
In some embodiments, the control message also includes a PDSCH-to-HARQ feedback timing indicator (e.g., k1) and PRI. The k1 can be used to determine a slot and the PRI can be used to determine a PUCCH resource within the slot for transmitting A-CSI and HARQ- ACK. Note that the HARQ-ACK can be the acknowledgement for the PDSCH transmission scheduled by the control message or other PDSCH transmissions. Further details about determining PUCCH resource based in k1 and/or PRI can be found in Embodiment 5.
In some embodiments, the one or more reference signals include one or more of the following: CSI-RS, CSI Interference Measurement (CSI-IM) , non-zero-power (NZP) CSI-RS, Demodulation Reference Signal (DMRS) , or other signals. If the UE needs to measure multiple reference signals, the second time-domain position P2 can be determined based on the end symbol of each reference signal to ensure that the UE has sufficient time to measure and calculate A-CSI for all reference signals.
In some embodiments, the value of the first time-domain offset M1 can be one of the following: N1 or T proc,  1 as defined in 3GPP TS38.213. In some embodiments, the value of the second time-domain offset M2 can be one of the following: N1, N2, T proc,  1, T proc,  2, or T proc,  CSI as defined in TS38.213. The value of M2 can also be one of the following: Z, Z ', T proc,  CSI as defined in in TS38.214.
In some embodiments, M1 and/or M2 can be one of the following: T proc,  1, N, N1, T proc,  2, N2, Z, Z ', T proc,  CSI, or N3 as defined in TS38.214 or TS38.213. When M1 and/or M2 are equal to T proc,  1, d 1,  1 can be set to 0 in T proc,  1. When M1 and/or M2 are equal to T proc,  2, d 2,  1 can be set to 0 in T proc,  2. M1 and/or M2 can also be set to other predetermined values.
In some embodiments, M1 and M2 are based on the smallest subcarrier space from the associated signals or channels related to the A-CSI reporting. For example, if the subcarrier spacing of the carrier for transmitting the control message on PDCCH is 30Khz, the subcarrier spacing of the carrier for transmitting the one or more reference signal (s) (RSs) used for CSI measurements are 30Khz , the subcarrier spacing of the carrier for transmitting the PDSCH are 60Khz, and the subcarrier spacing of the carrier carrying the PUCCH for A-CSI reporting is 60Khz, then values of M1 and M2 are determined based on the smallest subcarrier spacing, which is 30Khz.
Embodiment 3
In some embodiments, the timeline information indicates at least a first time-domain offset W21. FIG. 5A illustrates an example timeline information in accordance with the present technology. Here, the reference signal (s) for CSI measurements are positioned after the time required for the UE to decode PDCCH with the control message, which is denoted as W1. A  time-domain position A21 is determined by adding the time-domain offset W21 to the end symbol of one or more reference signal (s) (RSs) used for CSI measurements. The time-domain offset W21 ensures that the UE can have sufficient time to measure the reference signal (s) , calculate CSI accordingly, and encoding the A-CSI reporting. The start position of PUCCH for A-CSI reporting is no earlier than or after position A21.
In some embodiments, the timeline information indicates at least a second time-domain offset W22. FIG. 5B illustrates another example timeline information in accordance with the present technology. Here, the reference signal (s) for CSI measurements are positioned before the time required for the UE to decode PDCCH with the control message. Because the UE can only perform RS measurements after decoding the control message, a time-domain position A22 is determined by adding the time-domain offset W22 to the amount of time required for the UE to decode PDCCH with the control message. The time-domain offset W22 ensures that the UE can have sufficient time to measure the reference signal (s) , calculate CSI accordingly, and encoding the A-CSI reporting after the signaling is decoded properly. The start position of PUCCH for A-CSI reporting is no earlier than or after position A22.
In some embodiments, the one or more reference signals include one or more of the following: CSI-RS, CSI Interference Measurement (CSI-IM) , non-zero-power (NZP) CSI-RS, Demodulation Reference Signal (DMRS) , or other signals. If the UE needs to measure multiple reference signals, the second time-domain position A22 can be determined based on the end symbol of each reference signal to ensure that the UE has sufficient time to measure and calculate A-CSI for all reference signals.
In some embodiments, the value of W1 can be one of the following: N as defined in 3GPP TS38.213, or N pdsch as defined in TS38.214. In some embodiments, the value of the first time-domain offset W21 and/or the second time-domain offset W22 can be one of the following: N1, N2, T proc,  1, T proc,  2, or T proc,  CSI as defined in TS38.213. The value of W21 and W22 can also be one of the following: Z, Z ', T proc,  CSI as defined in in TS38.214.
In some embodiments, W1, W21, and/or W22 can be one of the following: T proc,  1, N, N1, T proc,  2, N2, Z, Z ', T proc,  CSI, or N3 as defined in TS38.214 or TS38.213. When W1, W21, and/or W22 are equal to T proc,  1, d 1,  1 can be set to 0 in T proc,  1. When W1, W21, and/or W22 are equal to T proc,  2, d 2,  1 can be set to 0 in T proc,  2. W1, W21, and/or W22 can also be set to other predetermined values.
In some embodiments, the W1 and W21 (or W22) are based on the smallest subcarrier space from the associated signals or channels related to the A-CSI reporting. For example, if the subcarrier spacing of the carrier for transmitting the control message on PDCCH is 30Khz, the subcarrier spacing of the carrier for transmitting the one or more reference signal (s) (RSs) used for CSI measurements are 30Khz, and the subcarrier spacing of the carrier for carrying the PUCCH for A-CSI reporting is 60Khz, then values of W1 and W21 (or W22) are determined based on the smallest subcarrier spacing, which is 30Khz.
After ascertaining A21 (as shown in FIG. 5A) and/or A22 (as shown in FIG. 5B) , the position of the PUCCH for A-CSI reporting can be determined accordingly. In some embodiments, the uplink slot carrying the PUCCH for A-CSI reporting is the R th (e.g., R = 1) uplink slot on or after A21 or A22 that meet the requirements (e.g., having the required PUCCH format and enough payload) . R is a positive integer. The uplink slot is positioned on the carrier of the PUCCH for A-CSI reporting. Further, the PUCCH resource for A-CSI reporting in the uplink slot can be determined according to the PRI in the control message. In some embodiments, the PUCCH resource for A-CSI reporting is the E th (e.g., E=1) PUCCH resource at or after A21 or A22 that meet the requirements (e.g., having the required format and enough payload) . E is a positive integer.
In some embodiments, the control message also includes a PDSCH-to-HARQ feedback timing indicator (e.g., k1) and PRI. The k1 can be used to determine a slot and the PRI can be used to determine a PUCCH resource within the slot for transmitting A-CSI and HARQ-ACK. Note that the HARQ-ACK can be the acknowledgement for the PDSCH transmission scheduled by the control message or other PDSCH transmissions. Further details about determining PUCCH resource based in k1 and/or PRI can be found in Embodiment 5.
Embodiment 4
As discussed in Embodiment 2, the physical layer control message that triggers A-CSI can simultaneously schedule PDSCH transmissions. In some embodiments, the HARQ-ACK feedback corresponding to PDSCH transmissions can be transmitted together with the A-CSI report in the same PUCCH.
In some embodiments, the timeline information indicates at least a first time-domain offset H21. FIG. 6A illustrates an example timeline information in accordance with the present technology. Here, the reference signal (s) for CSI measurements are positioned after the time  required for the UE to decode PDCCH with the control message, which is denoted as H1. A time-domain position B21 is determined based on:
1. Determining a time-domain position B1 by adding the time-domain offset H1 to the end symbol of PDCCH with the control message.
2. Determining a time-domain position B3 by adding a time-domain offset H3 to the end symbol of PDSCH for the data. H3 represents the amount of time required for the UE to decode the data.
3. Determining a time-domain position B21 by adding the time-domain offset H21 to the end symbol of one or more reference signal (s) (RSs) used for CSI measurements. The time-domain offset H21 ensures that the UE can have sufficient time to measure the reference signal (s) , calculate CSI accordingly, and encoding the A-CSI reporting.
In some embodiments, the start symbol of PUCCH for A-CSI reporting is no earlier than or after the last time-domain position among B1, B3, and B21. In some embodiments, the start symbol of PUCCH for A-CSI reporting is no earlier than or after position B3 and B21, whichever is later.
In some embodiments, the timeline information indicates at least a second time-domain offset H22. FIG. 6B illustrates another example timeline information in accordance with the present technology. Here, the reference signal (s) for CSI measurements are positioned before the time required for the UE to decode PDCCH with the control message. Because the UE can only perform RS measurements after decoding the control message, a time-domain position B22 is determined based on the following:
1. Determining a time-domain position B3 by adding a time-domain offset H3 to the end symbol of PDSCH for the data. H3 represents the amount of time required for the UE to decode the data.
2. Determining a time-domain position B1 by adding the time-domain offset H1 to the end symbol of PDCCH with the control message.
3. Determining a time-domain position B22 by adding the time-domain offset H22 to the time-domain position B1. The time-domain offset H22 ensures that the UE can have sufficient time to measure the reference signal (s) , calculate CSI accordingly, and encoding the A-CSI reporting.
In some embodiments, the start symbol of PUCCH for A-CSI reporting is no earlier  than or after the last time-domain position among B1, B3, and B22. In some embodiments, the start symbol of PUCCH for A-CSI reporting is no earlier than or after position B3 and B22, whichever is later.
In some embodiments, the one or more reference signals include one or more of the following: CSI-RS, CSI Interference Measurement (CSI-IM) , non-zero-power (NZP) CSI-RS, Demodulation Reference Signal (DMRS) , or other signals. If the UE needs to measure multiple reference signals, the second time-domain position B21 or B22 can be determined based on the end symbol of each reference signal to ensure that the UE has sufficient time to measure and calculate A-CSI for all reference signals.
In some embodiments, the value of H1 can be one of the following: N as defined in 3GPP TS38.213, or N pdsch as defined in TS38.214. In some embodiments, the value of H3 can be one of the following: N1, N2, T proc,  1, T proc,  2, or T proc,  CSI as defined in TS38.213. In some embodiments, the value of H21 or H22 can be one of the following: N1, N2, T proc,  1, T proc,  2, or T proc,  CSI as defined in TS38.213. The value of H21 or H22 can also be one of the following: Z, Z ', T proc,  CSI as defined in in TS38.214.
In some embodiments, H1, H3, H21 and/or H22 can be one of the following: T proc,  1, N, N1, T proc,  2, N2, Z, Z ', T proc,  CSI, or N3 as defined in TS38.214 or TS38.213. When H1, H3, H21 and/or H22 are equal to T proc,  1, d 1,  1 can be set to 0 in T proc,  1. When H1, H3, H21 and/or H22 are equal to T proc,  2, d 2,  1 can be set to 0 in T proc,  2. H1, H3, H21 and/or H22 can also be set to other predetermined values.
In some embodiments, the H1, H3 and H21 (or H22) are based on the smallest subcarrier spacing from the associated signals or channels related to the A-CSI reporting. For example, if the subcarrier spacing of the carrier for transmitting the control message on PDCCH is 30Khz, the subcarrier spacing of the carrier for transmitting the one or more reference signal (s) (RSs) used for CSI measurements are 30Khz , the subcarrier spacing of the carrier for transmitting the PDSCH are 60Khz, and the subcarrier spacing of the carrier for carrying the PUCCH for A-CSI reporting is 60Khz, then values of H1, H3 and H21 (or H22) are determined based on the smallest subcarrier spacing, which is 30Khz.
After ascertaining B1, B3 and B21 as shown in FIG. 6A (or alternatively, B3 and B22 as shown in FIG. 6B) , the PUCCH for A-CSI reporting can be determined accordingly. In some embodiments, Referring back to FIG. 6A, B21 is located later than B1 and B3 in the time domain.  Similarly as shown in FIG. 6B, B22 is located later than B3 in the time domain. The uplink slot carrying the PUCCH for A-CSI reporting can be the R th (e.g., R = 1) uplink slot at or after B21 (or B22) that meet the requirements (e.g., having the required PUCCH format and enough payload) . R is a positive integer. The uplink slot is positioned on the carrier of the PUCCH for A-CSI reporting. Further, the PUCCH resource for A-CSI reporting in the uplink slot can be obtained according to the PRI in the control message. In some embodiments, the PUCCH resource for A-CSI reporting can be the E th (e.g., E=1) PUCCH resource at or after B21 (or B22) that meet the requirements for transmitting A-CSI report (e.g., having the required format and enough payload) . E is a positive integer.
In some embodiments, the control message also includes a PDSCH-to-HARQ feedback timing indicator (e.g., k1) and PRI. The k1 can be used to determine a slot and the PRI can be used to determine a PUCCH resource within the slot for transmitting A-CSI and HARQ-ACK. Note that the HARQ-ACK can be the acknowledgement for the PDSCH transmission scheduled by the control message or other PDSCH transmissions. Further details about determining PUCCH resource based in k1 and/or PRI can be found in Embodiment 5.
Embodiment 5
For scenarios described above, a time-domain slot and a uplink channel resource for transmitting A-CSI can be determined based on at least one of the following:
Option 1: When the HARQ-ACK codebook and the triggered A-CSI are transmitted in the same the uplink channel (e.g., a PUCCH) in the same time-domain slot, the uplink channel resource can be determined according to k1 (for the time-domain slot) and PRI (for the PUCCH resource) in the last downlink control message (e.g., DCI) that corresponds to the HARQ-ACK codebook.
Option 2: The HARQ-ACK codebook and the triggered A-CSI can be transmitted separately and/or potentially be multiplexed to the same uplink resources according to the following examples:
Example (1) : The uplink channel resources for the A-CSI can be determined according to PRI in the control message (e.g., DCI) . The time-domain slot for transmitting the A-CSI can be determined according to details described in Embodiment 1 or 3.
Example (2) : If the triggering downlink control message is the last one corresponding to the HARQ-ACK codebook and the slot location of A-CSI according to details described in  Embodiment 1 or 3 is same as slot location indicated by k1 in the control message, the A-CSI and the HARQ-ACK codebook can be multiplexed in the same uplink resource (e.g., a PUCCH) indicated by PRI in the control message.
Example (3) : Alternatively, if the triggering downlink control message is the last one corresponding to the HARQ-ACK codebook, the A-CSI and the HARQ-ACK codebook can be multiplexed in the same uplink resource (e.g., a PUCCH) indicated by k1 (for the time-domain slot) and PRI (for the PUCCH resource) in the control message.
FIG. 7 shows an example of a wireless communication system 700 where techniques in accordance with one or more embodiments of the present technology can be applied. A wireless communication system 700 can include one or more base stations (BSs) 705a, 705b, one or  more wireless devices  710a, 710b, 710c, 710d, and a core network 725. A  base station  705a, 705b can provide wireless service to  wireless devices  710a, 710b, 710c and 710d in one or more wireless sectors. In some implementations, a  base station  705a, 705b includes directional antennas to produce two or more directional beams to provide wireless coverage in different sectors.
The core network 725 can communicate with one or  more base stations  705a, 705b. The core network 725 provides connectivity with other wireless communication systems and wired communication systems. The core network may include one or more service subscription databases to store information related to the subscribed  wireless devices  710a, 710b, 710c, and 710d. A first base station 705a can provide wireless service based on a first radio access technology, whereas a second base station 705b can provide wireless service based on a second radio access technology. The  base stations  705a and 705b may be co-located or may be separately installed in the field according to the deployment scenario. The  wireless devices  710a, 710b, 710c, and 710d can support multiple different radio access technologies. The techniques and embodiments described in the present document may be implemented by the base stations of wireless devices described in the present document.
FIG. 8 is a block diagram representation of a portion of a radio station in accordance with one or more embodiments of the present technology can be applied. A radio station 805 such as a base station or a wireless device (or UE) can include processor electronics 810 such as a microprocessor that implements one or more of the wireless techniques presented in this document. The radio station 605 can include transceiver electronics 815 to send and/or receive  wireless signals over one or more communication interfaces such as antenna 820. The radio station 805 can include other communication interfaces for transmitting and receiving data. Radio station 805 can include one or more memories (not explicitly shown) configured to store information such as data and/or instructions. In some implementations, the processor electronics 810 can include at least a portion of the transceiver electronics 815. In some embodiments, at least some of the disclosed techniques, modules or functions are implemented using the radio station 805. In some embodiments, the radio station 805 may be configured to perform the methods described herein.
It will be appreciated that the present document discloses techniques that can be embodied in various embodiments to provide timeline information to reduce and/or eliminate timing delay of A-CSI reporting. The disclosed and other embodiments, modules and the functional operations described in this document can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them. The disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus. The computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them. The term “data processing apparatus” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them. A propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.
A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a  module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document) , in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code) . A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
The processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit) .
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random-access memory or both. The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
While this patent document contains many specifics, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this patent document in the context of separate embodiments can also be  implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Moreover, the separation of various system components in the embodiments described in this patent document should not be understood as requiring such separation in all embodiments.
Only a few implementations and examples are described, and other implementations, enhancements and variations can be made based on what is described and illustrated in this patent document.

Claims (32)

  1. A wireless communication method, comprising:
    transmitting, by a base station to a user device, a control message on a first control channel triggering a transmission of a channel state information (CSI) report from the user device to the base station on a second control channel;
    transmitting, by the base station, a reference signal to the user device; and
    receiving the CSI report by the base station on the second control channel according to a timeline information associated with a reception of the reference signal by the user device, the timeline information indicating a time-domain start position of the transmission of the CSI report on the second control channel.
  2. The method of claim 1, wherein the timeline information comprises a first indicator indicating a first time-domain offset from a completion of receiving the reference signal by the user device.
  3. The method of claim 2, wherein the timeline information comprises a second indicator indicating a second time-domain offset from a completion of receiving the message by the user device.
  4. The method of claim 3, wherein the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a second time-domain positioned determined by the second time-domain offset.
  5. The method of claim 2, wherein the timeline information comprises a third indicator indicting a third time-domain offset from a completion of decoding the control message on the first control channel.
  6. The method of claim 5, wherein the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a third time-domain positioned determined by the third time-domain offset.
  7. The method of any one or more of claims 1 to 6, comprising:
    receiving an acknowledgement of a data transmission together with the CSI report according to the timeline information.
  8. The method of any one or more of claims 1 to 7, comprising:
    performing, by the base station, a data transmission to the user device according to the control message.
  9. The method of claim 8, wherein the timeline information comprises a fourth indicator indicating a fourth time-domain offset from a completion of receiving the data transmission by the user device.
  10. The method of claim 9, wherein the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a fourth time-domain positioned determined by the fourth time-domain offset.
  11. The method of claim 9, wherein the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, (2) a third time-domain positioned determined by the third time-domain offset, and (3) a fourth time-domain positioned determined by the fourth time-domain offset.
  12. The method of any one or more of claims 1 to 11, wherein the timeline information indicates a resource to be used for the CSI report.
  13. The method of claim 12, wherein the resource comprises a time-domain slot for the CSI report.
  14. The method of claim 12, wherein the resource comprises a Physical Uplink Control Channel (PUCCH) resource.
  15. The method of any one or more of claims 1 to 14, wherein at least one of the first, second, third, or fourth time-domain offset is specified in a protocol suite.
  16. A wireless communication method, comprising:
    receiving, by a user device from a base station, a control message on a first control channel triggering a transmission of a Channel State Information (CSI) report from the user device to the base station on a second control channel;
    receiving, by the user device, a reference signal from the base station; and
    transmitting, by the user device, the CSI report on the second control channel according to a timeline information associated with the receiving of the reference signal, the timeline information indicating a time-domain start position of the transmission of the CSI report.
  17. The method of claim 16, wherein the timeline information comprises a first indicator indicating a first time-domain offset from a completion of receiving the reference signal by the user device.
  18. The method of claim 17, wherein the timeline information comprises a second indicator indicating a second time-domain offset from a completion of receiving the message by the user device.
  19. The method of claim 18, wherein the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a second time-domain positioned determined by the second time-domain offset.
  20. The method of claim 17, wherein the timeline information comprises a third indicator indicting a third time-domain offset from a completion of decoding the control message on the first control channel.
  21. The method of claim 20, wherein the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a third time-domain positioned determined by the third time-domain offset.
  22. The method of any one or more of claims 16 to 21, comprising:
    transmitting an acknowledgement of a data transmission together with the CSI report according to the timeline information.
  23. The method of any one or more of claims 16 to 22, comprising:
    receiving, by the user device, a data transmission from the base station according to the control message.
  24. The method of claim 23, wherein the timeline information comprises a fourth indicator indicating a fourth time-domain offset from a completion of receiving the data transmission by the user device.
  25. The method of claim 24, wherein the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, and (2) a fourth time-domain positioned determined by the fourth time-domain offset.
  26. The method of claim 24, wherein the time-domain start position of the transmission of the CSI report is no earlier than (1) a first time-domain positioned determined by the first time-domain offset, (2) a third time-domain positioned determined by the third time-domain offset, and (3) a fourth time-domain positioned determined by the fourth time-domain offset.
  27. The method of any one or more of claims 16 to 26, wherein the timeline information indicates a resource to be used for the CSI report.
  28. The method of claim 27, wherein the resource comprises a time-domain slot for the CSI report.
  29. The method of claim 27, wherein the resource comprises a Physical Uplink Control Channel (PUCCH) resource.
  30. The method of any one or more of claims 16 to 29, wherein at least one of the first, second, third, or fourth time-domain offset is specified in a protocol suite.
  31. A communication apparatus, comprising a processor configured to implement a method recited in any one or more of claims 1 to 30.
  32. A computer program product having code stored thereon, the code, when executed by a processor, causing the processor to implement a method recited in any one or more of claims 1 to 30.
PCT/CN2020/074629 2020-02-10 2020-02-10 Timeline information for aperiodic semi-persistent scheduling transmissions WO2021093193A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/074629 WO2021093193A1 (en) 2020-02-10 2020-02-10 Timeline information for aperiodic semi-persistent scheduling transmissions
CN202080092880.3A CN114930734A (en) 2020-02-10 2020-02-10 Timeline information for aperiodic semi-persistent scheduling transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074629 WO2021093193A1 (en) 2020-02-10 2020-02-10 Timeline information for aperiodic semi-persistent scheduling transmissions

Publications (1)

Publication Number Publication Date
WO2021093193A1 true WO2021093193A1 (en) 2021-05-20

Family

ID=75911765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074629 WO2021093193A1 (en) 2020-02-10 2020-02-10 Timeline information for aperiodic semi-persistent scheduling transmissions

Country Status (2)

Country Link
CN (1) CN114930734A (en)
WO (1) WO2021093193A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105706481A (en) * 2013-08-15 2016-06-22 瑞典爱立信有限公司 Method and radio node for handling CSI reporting
CN109417416A (en) * 2016-07-07 2019-03-01 高通股份有限公司 Processing for aperiodicity CSI-RS is relaxed
CN110035427A (en) * 2018-01-12 2019-07-19 维沃移动通信有限公司 UE capability reporting, slot offset determine method and apparatus
US20200021347A1 (en) * 2017-11-28 2020-01-16 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and apparatus for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105706481A (en) * 2013-08-15 2016-06-22 瑞典爱立信有限公司 Method and radio node for handling CSI reporting
CN109417416A (en) * 2016-07-07 2019-03-01 高通股份有限公司 Processing for aperiodicity CSI-RS is relaxed
US20200021347A1 (en) * 2017-11-28 2020-01-16 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and apparatus for the same
CN110035427A (en) * 2018-01-12 2019-07-19 维沃移动通信有限公司 UE capability reporting, slot offset determine method and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Maintenance for CSI Reporting", 3GPP TSG RAN WG1 MEETING #92 R1-1802822, 17 February 2018 (2018-02-17), XP051398235 *

Also Published As

Publication number Publication date
CN114930734A (en) 2022-08-19

Similar Documents

Publication Publication Date Title
US11678212B2 (en) Methods executed by user equipment and user equipment
KR20220082867A (en) Transmission method, apparatus, first communication node, second communication node, and medium
JP7141467B2 (en) Wireless communication method, communication device, chip and system
US20140211767A1 (en) Scheduling Communications
RU2762683C1 (en) Method and devices for information transmission
EP3627932A1 (en) Communication method, terminal device and network device
CN111757518B (en) Information transmission method and communication device
CN110100395A (en) A kind of method for transmitting signals and the network equipment and terminal device
CN113543199B (en) Method for transmitting beam report, mobile terminal and network equipment
CN113517967A (en) Method for determining Channel State Information (CSI) report and communication equipment
WO2021032029A1 (en) Method for transmitting sidelink channel state information, and communication apparatus
US20220360399A1 (en) Reference signaling design and configuration
CN111670600B (en) Method, user equipment and computer readable medium for providing multiple PUCCH resources for UCI reporting
US20200036469A1 (en) Data Transmission Method and Apparatus
US20240072976A1 (en) Determination of Feedback Timing
US20230179346A1 (en) Codebook design for multimedia broadcast multicast services (mbms)
CN111107633B (en) CSI reporting method, obtaining method and equipment
WO2021093193A1 (en) Timeline information for aperiodic semi-persistent scheduling transmissions
AU2016417122B2 (en) Determination of feedback timing
WO2022083012A1 (en) Measurement reporting method and apparatus
US20230299929A1 (en) Dynamic signaling of feedback modes
WO2024065752A1 (en) Channel state information reporting techniques
WO2023206302A1 (en) Signal sending apparatus and method, and signal receiving apparatus and method
WO2021093192A1 (en) Tracking semi-persistent scheduling transmissions
CN116325893A (en) Communication method and related equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886379

Country of ref document: EP

Kind code of ref document: A1