WO2021093119A1 - 一种耳机佩戴检测方法、装置、耳机及可读存储介质 - Google Patents

一种耳机佩戴检测方法、装置、耳机及可读存储介质 Download PDF

Info

Publication number
WO2021093119A1
WO2021093119A1 PCT/CN2019/129590 CN2019129590W WO2021093119A1 WO 2021093119 A1 WO2021093119 A1 WO 2021093119A1 CN 2019129590 W CN2019129590 W CN 2019129590W WO 2021093119 A1 WO2021093119 A1 WO 2021093119A1
Authority
WO
WIPO (PCT)
Prior art keywords
environmental noise
noise intensity
mic
earphone
headset
Prior art date
Application number
PCT/CN2019/129590
Other languages
English (en)
French (fr)
Inventor
王承谦
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2021093119A1 publication Critical patent/WO2021093119A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17825Error signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1081Earphones, e.g. for telephones, ear protectors or headsets

Definitions

  • This application relates to the technical field of earphone use, and in particular to a method, device, earphone and readable storage medium for detecting earphone wearing.
  • earphones As an indispensable device for transmitting audio signals of various smart electronic devices, earphones are widely used by people. In the trend of compactness and portability, various wireless earphones and sports earphones are more popular among people.
  • This type of headset based on Bluetooth transmission of audio signals is driven by its built-in battery, and is subject to the design idea of miniaturization and lightness of the headset, how to reduce the operating power consumption of this type of headset as much as possible and extend its use time as much as possible , Is the key research object of those skilled in the art.
  • One of the research directions is to reduce the operating power consumption by turning off some energy-consuming components when the headset is judged to be in the unworn state, but the existing scheme is used to determine whether the headset is in the unworn state IR infrared distance detection or capacitance detection mechanism, and there is a module
  • the problem of large size and weight is contrary to the design ideas of compactness, and the operation of these additional functional components will also bring additional operating power consumption, which is not completely consistent with the idea of low power consumption, and the actual user experience is poor.
  • the purpose of this application is to provide a headset wearing detection method, device, headset and readable storage medium, aiming to better detect whether the headset is in a wearing state without adding additional functional components.
  • this application provides a method for detecting earphone wearing, which includes:
  • control the feedback type MIC on the headset When receiving a voice incoming instruction, control the feedback type MIC on the headset to be in an on state, and pick up the actual environmental noise intensity through the feedback type MIC;
  • the preset environmental noise intensity is determined according to the environmental noise intensity picked up by the feedback MIC when the headset is worn and when the headset is not worn;
  • the call MIC and the feedforward MIC on the earphone are controlled to be in an on state.
  • the method further includes:
  • the headset is in an unworn state, and the call MIC and the feedforward MIC are controlled to be in a closed state.
  • the method further includes:
  • the prompt message that the earphone is not worn is returned to the sender of the voice incoming instruction.
  • the preset environmental noise intensity is determined according to the environmental noise intensity picked up by the feedback MIC when the headset is worn and when the headset is not worn, including:
  • the average value of the first environmental noise intensity and the second environmental noise intensity is used as the preset environmental noise intensity.
  • the feedback type MIC specifically includes a left ear feedback type MIC and a right ear feedback type MIC
  • the actual environmental noise intensity specifically includes the actual environmental noise intensity of the left ear
  • determining whether the actual environmental noise intensity is greater than the preset environmental noise intensity includes:
  • the actual environmental noise intensity is not greater than the preset environmental noise intensity, determining that the headset is in the wearing state, and controlling the call MIC and the feedforward MIC on the headset to be in the on state, including:
  • the actual environmental noise intensity of the left ear and the actual environmental noise intensity of the right ear are not greater than the preset environmental noise intensity, it is determined that both the left-ear earphone and the right-ear earphone are in the wearing state, and all of them are controlled.
  • the call MIC and the feed-forward MIC on the left-ear headset and the right-ear headset are both in an on state.
  • the earphone wearing detection method further includes:
  • the earphone wearing detection method further includes:
  • the magnitude of the preset environmental noise intensity is adjusted according to the type of environment.
  • the present application also provides a headset wearing detection device, which includes:
  • the actual environmental noise intensity pickup module is used to control the feedback type MIC on the earphone to be in the on state when receiving a sound incoming instruction, and pick up the actual environmental noise intensity through the feedback type MIC;
  • the environmental noise intensity determination module is used to determine whether the actual environmental noise intensity is greater than the preset environmental noise intensity; wherein the preset environmental noise intensity is based on the environment picked up by the feedback MIC when the headset is worn and when the headset is not worn. Noise intensity determination;
  • the wearing state determination and processing module is used to determine that the headset is in the wearing state when the actual environmental noise intensity is not greater than the preset environmental noise intensity, and control the call MIC and the feedforward MIC on the headset to be in the Open state.
  • the headset wearing detection device further includes:
  • the unworn state determination and processing module is configured to determine that the earphone is in an unworn state when the environmental noise intensity is greater than the preset environmental noise intensity, and control the call MIC and the feedforward MIC to be in the off state.
  • the headset wearing detection device further includes:
  • the unworn prompt information return module is used to return prompt information that the headset is not worn to the sender of the voice incoming instruction after controlling the call MIC and the feedforward MIC to be in the closed state.
  • the headset wearing detection device further includes a preset environmental noise mildness determination module, and the preset environmental noise mildness determination module includes:
  • the first environmental noise intensity pickup sub-module is configured to pick up the first environmental noise intensity when the earphone is in a wearing state through the feedback type MIC;
  • the second environmental noise intensity picking sub-module is configured to pick up the second environmental noise intensity when the earphone is in an unworn state through the feedback type MIC;
  • the mean value obtaining sub-module is configured to use the mean value of the first environmental noise intensity and the second environmental noise intensity as the preset environmental noise intensity.
  • the feedback type MIC specifically includes a left ear feedback type MIC and a right ear feedback type MIC
  • the actual environmental noise intensity specifically includes the actual environmental noise intensity of the left ear
  • the environmental noise intensity judgment module includes:
  • the left ear environmental noise intensity judgment sub-module is used to judge whether the actual environmental noise intensity of the left ear is greater than the preset environmental noise intensity
  • the right ear environmental noise intensity judgment sub-module is used to judge whether the actual environmental noise intensity of the right ear is greater than the preset environmental noise intensity
  • the wearing state determination and processing module includes:
  • the left-ear earphone wearing and processing sub-module is used to determine that only the left-ear earphone is in the wearing state and control the left-ear earphone when only the actual environmental noise intensity of the left ear is not greater than the preset environmental noise intensity
  • the call MIC and feedforward MIC on the phone are in the on state;
  • the right-ear earphone wearing and processing sub-module is used to determine that only the right-ear earphone is in the wearing state and control the right-ear earphone when the actual environmental noise intensity of only the right ear is not greater than the preset environmental noise intensity
  • the call MIC and feedforward MIC on the phone are in the on state;
  • Both the binaural headsets are worn and the processing module is used to determine when the actual environmental noise intensity of the left ear and the actual environmental noise intensity of the right ear are not greater than the preset environmental noise intensity.
  • the right-ear earphones are all in a wearing state, and the call MIC and the feed-forward MIC on the left-ear earphone and the right-ear earphone are controlled to be in an on state.
  • the headset wearing detection device further includes:
  • the shutdown module of other energy-consuming components is used to control the other energy-consuming components on the unworn headset to be in a low-power standby or off state; among them, other energy-consuming components include vibration units, sound units, and display units. At least one of them.
  • the headset wearing detection device further includes:
  • the preset environmental noise intensity adjustment module is used to adjust the magnitude of the preset environmental noise intensity according to the type of environment.
  • this application also provides a headset, including:
  • Memory used to store computer programs
  • the processor is configured to implement the steps of the earphone wearing detection method described in the above content when the computer program is executed.
  • this application also provides a readable storage medium having a computer program stored on the readable storage medium, and when the computer program is executed by a processor, the method for detecting earphone wearing as described in the above content is implemented. The steps.
  • the method for detecting earphone wearing includes: when a sound incoming instruction is received, controlling the feedback type MIC on the earphone to be in an on state, and picking up the actual environmental noise intensity through the feedback type MIC; Whether the environmental noise intensity is greater than the preset environmental noise intensity; wherein the preset environmental noise intensity is determined according to the environmental noise intensity picked up by the feedback MIC when the headset is worn and when the headset is not worn; if the actual environmental noise intensity is not If it is greater than the preset environmental noise intensity, it is determined that the headset is in a wearing state, and the call MIC and the feedforward MIC on the headset are controlled to be in an on state.
  • this application makes full use of the feedback type MIC provided on the earphone for realizing active noise reduction, which is based on the feedback type MIC.
  • the setting position of the earphone can distinguish whether the earphone is in the wearing state according to the intensity of the environmental noise it picks up. Therefore, the application of the solution provided by this application eliminates the need to add additional functional components to the headset, which conforms to the design idea of compactness and lightness, and does not cause additional operating power consumption due to additional functional components, and due to the full use of feedback
  • the setting position of the MIC can obtain better wearing detection results.
  • the present application also provides an earphone wearing detection device, earphone and readable storage medium, which have the above-mentioned beneficial effects, and will not be repeated here.
  • Figure 1 is a schematic cross-sectional structure diagram of the headset
  • FIG. 2 is a flowchart of a method for detecting earphone wearing provided by an embodiment of the application
  • FIG. 3 is a flowchart of a method for selecting a preset environmental noise intensity in a method for detecting earphone wearing provided by an embodiment of the application;
  • FIG. 4 is a flowchart of a method for detecting earphone wearing for binaural earphones according to an embodiment of the application
  • FIG. 5 is a structural block diagram of a headset wearing detection device adopted by an embodiment of this application.
  • the purpose of this application is to provide a headset wearing detection method, device, headset and readable storage medium, aiming to better detect whether the headset is in a wearing state without adding additional functional components.
  • Figure 1 includes: earphone housing 101, feedforward MIC102, battery 103, call MIC104, circuit board 105, speaker 201, speaker diaphragm 202, sound pipe head 203, earplug silicone sleeve 204, sound pipe end 205, and Feedback type MIC206.
  • the feedforward MIC102 is usually referred to as FF MIC (Feed Forward MIC)
  • the feedback MIC206 is usually referred to as FB MIC (Feed Back MIC).
  • the feedforward MIC and the feedback MIC appear together on a headset as part of the active noise cancellation (ANC, Active Noise Cancellation) solution of the headset.
  • ANC Active Noise Cancellation
  • the feed-forward MIC is set on the side of the whole earphone far away from the ear canal of the user, while the feedback MIC is set on the side of the whole earphone close to the ear canal of the user.
  • the feedback type MIC206 is set on the earphone speaker. 201 near the head end 203 of the sound pipe.
  • FIG. 2 is a flowchart of a method for detecting wearing of a headset according to an embodiment of the application. Each step shown in FIG. 2 is executed by a headset, which includes the following steps:
  • the sound incoming instruction here indicates that an audio signal is about to be transmitted to the earphone, in other words, the sound incoming instruction here indicates that the earphone is about to be in a working state or in a use state.
  • it can include receiving when there is a data connection (wireless connection including Bluetooth and wired connection including data cable) with terminals (smart mobile terminals such as smart phones and fixed terminals such as PCs) through various methods.
  • a data connection wireless connection including Bluetooth and wired connection including data cable
  • terminals smart mobile terminals such as smart phones and fixed terminals such as PCs
  • To call instructions including incoming and outgoing calls
  • various playback instructions for applications with audio signals such as video playback instructions, audio playback instructions, etc.
  • the end of the sound pipe 205 will be in a closed state because it penetrates into the user’s ear canal, and the closed state also indicates the external environment.
  • the noise will not be easily picked up by the feedback MIC206 through the opening at the end of the sound pipe 205.
  • the sound channel end 205 will be in an open state and directly communicate with the external environment, and ambient noise will be easily picked up by the feedback MIC 206 through the sound channel end 205. Therefore, whether the earphone is in the wearing state will cause a significant difference in the environmental noise intensity picked up by the feedback MIC206 due to physical reasons.
  • This application also makes full use of the setting position of the feedback type MIC on the earphone to realize the purpose of judging whether the earphone is in the wearing state.
  • the feedback MIC on the earphone is controlled to be in the on state, so that the feedback MIC in the on state can effectively pick up the actual environmental noise intensity.
  • the preset environmental noise intensity is calculated according to the environmental noise intensity picked up by the feedback MIC when the earphone is in the wearing state and the unworn state, respectively. That is, the preset environmental noise intensity calculated according to the environmental noise intensity picked up when the headset is in the wearing state and the unworn state will be used as a measure of the actual environmental noise intensity in this application, so as to determine whether the headset is in the wearing state. value. Due to the complexity of the actual application scenario, the ambient noise intensity picked up in the worn state and the unworn state used to calculate the critical value is usually obtained in a laboratory environment, so as to avoid as much as possible based on a certain The preset environmental noise intensity calculated from the environmental noise intensity obtained in the environment is not suitable for problems in other application scenarios.
  • the preset environmental noise intensity is used to measure the level of the actual environmental noise, and determine whether the headset is in the wearing state according to the size comparison result, and play the role of the critical value, then according to the feedback type MIC, the headset is in the wearing state.
  • S203 Use an average value of the first environmental noise intensity and the second environmental noise intensity as the preset environmental noise intensity.
  • the present application uses the average value of the first environmental noise intensity and the second environmental noise intensity as the preset environmental noise intensity, and therefore picks up all actual values that are not greater than the preset environmental noise intensity.
  • the earphones with the environmental noise intensity are all judged to be in the worn state, otherwise, all earphones that pick up the actual environmental noise intensity greater than the preset environmental noise intensity are judged to be in the unworn state.
  • the preset environmental noise intensity which is the intermediate value of the first environmental noise intensity and the second environmental noise intensity, has a better degree of redundancy, which can reduce the misjudgment rate.
  • the method of using the mean value as the critical discriminant value may not be fully applicable. Therefore, the calculation formula can be fine-tuned according to the actual situation of the discriminant result.
  • the first environmental noise intensity and the first environmental noise intensity can be used to adjust the calculation formula. 2.
  • the environmental noise intensity is assigned weights, and the respective weights are adjusted according to different application scenarios, so as to calculate a more reasonable and more accurate preset environmental noise intensity (ie, critical discriminant value) through a weighted calculation method.
  • multiple preset environmental noise intensities corresponding to different application scenarios can also be directly preset in the earphone, so that when the earphone can learn the type of the current application scenario, the corresponding preset environmental noise intensity can be flexibly selected for judgment.
  • S103 Determine that the headset is in a wearing state, and control the call MIC and the feedforward MIC on the headset to be in an on state.
  • This step is based on the judgment result of S102 that the actual environmental noise intensity is not greater than the preset environmental noise intensity. Therefore, it indicates that the environmental noise intensity picked up by the feedback MIC is too small. Deep into the ear canal of the user, and the external environment noise cannot be easily picked up by the feedback MIC through the end 205 of the sound pipe due to the penetration into the ear canal of the user. Therefore, it can be determined that the headset where the feedback MIC is located is in the wearing state. On the premise of receiving the voice incoming command, the call MIC and the feedforward MIC on the headset will be controlled to be in the on state, so that the headset can be used by the user normally.
  • the environmental noise intensity is greater than the preset environmental noise intensity, it means that the environmental noise intensity picked up by the feedback MIC is too large, and then the fact that the earphone sound pipe end 205 is currently exposed to the external environment can be deduced.
  • the noise in the external environment caused by the external environment can be easily picked up by the feedback type MIC through the end of the sound pipe 205. Therefore, it can be determined that the headset where the feedback type MIC is located is in an unworn state.
  • the earphone should be in a normal working state according to the received sound input, so that the received sound signal can be transmitted to the user through the earphone or the sound signal collected by the user is transmitted back to the connected device, but it is not The wearing state makes this operation very well realized. Therefore, after the control call MIC and the feedforward MIC are in the closed state, the prompt message that the headset is not worn can also be returned to the sender of the voice incoming instruction, so as to remind the user to wear the headset in time through the prompt information. Furthermore, other energy-consuming components on the unworn earphone can be controlled to be in a low-power standby or off state, so as to further save the power of the unworn earphone. Wherein, the other energy-consuming components include but are not limited to at least one of a vibration unit, a display unit, and a sound unit on the earphone.
  • this application makes full use of the feedback type MIC provided on the earphone for realizing active noise reduction.
  • the setting position of the MIC can distinguish whether the earphone is in the wearing state according to the intensity of the ambient noise it picks up. (Once the earphone is in the wearing state, the end of the sound pipe will be closed because it goes deep into the ear canal).
  • the application of the solution provided by this application eliminates the need to add additional functional components to the headset, which conforms to the design idea of compactness and lightness, and does not cause additional operating power consumption due to additional functional components, and due to the full use of feedback
  • the setting position of the MIC can obtain better wearing detection results.
  • this application also provides a corresponding earphone wearing detection method for binaural earphones in actual application scenarios. Please refer to the flowchart shown in FIG. 4, which includes the following steps:
  • S302 Determine whether the actual environmental noise intensity of the left ear is greater than the preset environmental noise intensity, if so, perform S304, otherwise perform S305;
  • S304 Determine that the left-ear headset is in an unworn state, and control the call MIC and the feed-forward MIC on the left-ear headset to be in the off state;
  • S305 Determine that the left-ear headset is in the wearing state, and control the call MIC and the feed-forward MIC on the left-ear headset to be in the on state;
  • S306 Determine that the right ear headset is in the wearing state, and control the call MIC and the feedforward MIC on the right ear headset to be in the on state;
  • S307 Determine that the right-ear headset is in an unworn state, and control the call MIC and the feed-forward MIC on the right-ear headset to be in a closed state.
  • this embodiment provides a way to return the sound input instruction to the sender of the sound input to the end of the sound input to return that the earphone is not worn for the case where the binaural earphones are not worn. Prompt information program.
  • This embodiment takes the scenario of the headset to synchronize the phone access or dial-out of the mobile phone as an example. :
  • the headset device Under normal circumstances, to save power for the low power consumption of the headset device, all MICs are turned off.
  • the headset device When the headset is connected to the Bluetooth of the mobile phone, and the mobile phone is connected or dialed out, the headset device synchronously receives the instruction (phone access instruction or dial-out instruction) from the mobile phone through the Bluetooth connection link, and the headset device MCU (refers to the headset
  • the micro control unit in the DSP sends instructions to the DSP (refers to the digital signal processor set on the earphone, similar to the CPU in the PC), executes the algorithm program command, and automatically turns on the left and right ear feedback MIC.
  • the environmental noise intensity picked up by the feedback MIC is LxdB (decibel)
  • the environmental noise intensity picked up by the feedback MIC of the left earphone is L_LxdB (decibel)
  • the ambient noise intensity picked up by the feedback MIC of the right earphone is R_LxdB (decibel).
  • the DSP in the headset compares the values of L_LxdB and R_LxdB with L0dB respectively. There are several comparison results as follows:
  • Case 1 When L_LxdB ⁇ L0dB and R_LxdB ⁇ L0dB, it is judged that the left and right ears are in the ear-wearing state; at the same time, the headset MCU sends instructions to turn on the call MIC and feedforward MIC on the left ear headset, or turn on the right ear call MIC and feed-forward MIC, or turn on all MICs of the left and right ears (these three situations correspond to some earphones that only have MIC on one of the two earphones on the left and right ears); after connecting/dialing the call , You can use the headset worn in the ear to make a call (MCU sends instructions to the DSP to execute the algorithm program command to open, using the multi-channel analog switch);
  • Case 2 When L_LxdB ⁇ L0dB, R_LxdB>L0dB, it is judged that the left ear headset is in the wearing state; at the same time, the headset MCU sends instructions to turn on the call MIC and feedforward MIC, or turn on all the MICs of the left and right ears; connect/dial After talking on the phone, you can use the left ear headset worn in your ear to make a call;
  • Case 3 When L_LxdB>L0dB, R_LxdB ⁇ L0dB, it is judged that the right ear headset is in the wearing state; at the same time, the headset MCU sends instructions to turn on the right ear call MIC and feedforward MIC, or turn on all the MICs of the left and right ears; /After dialing the phone, you can use the right ear headset worn in your ear to make a call;
  • the actual test of the simulated noise environment in the laboratory confirmed that: when the earphone is normally worn on the human ear, due to the coupling between the earplug sleeve and the human ear canal, only a small amount of external environmental noise leaks into the end of the sound pipe 205, and then passes through the end of the sound pipe.
  • the sound pipe enters the feedback type MIC, and the environmental noise intensity picked up by the feedback type MIC in this state is determined to be L1dB (decibel). Then, remove the earphone from the human ear and place the earphone in a free state.
  • L2dB decibel
  • FIG. 5 is a structural block diagram of a headset wearing detection device adopted in an embodiment of the application, and the device may include:
  • the actual environmental noise intensity pickup module 100 is used to control the feedback MIC on the earphone to be in the on state when receiving a voice incoming instruction, and pick up the actual environmental noise intensity through the feedback MIC;
  • the environmental noise intensity determination module 200 is used to determine whether the actual environmental noise intensity is greater than the preset environmental noise intensity; wherein the preset environmental noise intensity is determined according to the environmental noise intensity picked up by the feedback MIC when the headset is worn and when the headset is not worn;
  • the wearing state determination and processing module 300 is used for determining that the headset is in the wearing state when the actual environmental noise intensity is not greater than the preset environmental noise intensity, and controlling the call MIC and the feedforward MIC on the headset to be in the on state.
  • the headset wearing detection device may further include:
  • the unworn state determination and processing module is used to determine that the headset is in the unworn state when the environmental noise intensity is greater than the preset environmental noise intensity, and control the call MIC and the feedforward MIC to be in the off state.
  • the headset wearing detection device may further include:
  • the non-wearing prompt information return module is used to return prompt information that the headset is not worn to the sender of the voice incoming command after the control call MIC and the feedforward MIC are in the closed state.
  • the earphone wearing detection device further includes a preset environmental noise mildness determination module, and the preset environmental noise mildness determination module may include:
  • the first environmental noise intensity pickup sub-module is used to pick up the first environmental noise intensity when the earphone is in the wearing state through the feedback type MIC;
  • the second environmental noise intensity pickup sub-module is used to pick up the second environmental noise intensity when the earphone is in the unworn state through the feedback type MIC;
  • the average value obtaining sub-module is configured to use the average value of the first environmental noise intensity and the second environmental noise intensity as the preset environmental noise intensity.
  • the feedback type MIC specifically includes the left ear feedback type MIC and the right ear feedback type MIC.
  • the actual environmental noise intensity specifically includes the actual environmental noise intensity of the left ear and the actual environmental noise intensity of the right ear.
  • the environmental noise intensity judgment module 200 may include:
  • the left ear environmental noise intensity judging sub-module is used to determine whether the actual environmental noise intensity of the left ear is greater than the preset environmental noise intensity
  • the right ear environmental noise intensity judgment sub-module is used to judge whether the actual environmental noise intensity of the right ear is greater than the preset environmental noise intensity
  • the wearing state determination and processing module 300 may include:
  • the left-ear earphone wearing and processing sub-module is used to determine that only the left ear earphone is in the wearing state when the actual environmental noise intensity of the left ear only is not greater than the preset environmental noise intensity, and to control the call MIC and front of the left ear earphone.
  • the feed MIC is in the on state;
  • the right ear headset wearing and processing sub-module is used to determine that only the right ear headset is in the wearing state when the actual environmental noise intensity of the right ear only is not greater than the preset ambient noise intensity, and to control the call MIC and front of the right ear headset The feed MIC is in the on state;
  • Binaural headsets are both wearing and processing modules, which are used to determine that both the left ear headset and the right ear headset are in the wearing state when the actual environmental noise intensity of the left ear and the actual environmental noise intensity of the right ear are not greater than the preset environmental noise intensity, and control
  • the call MIC and feed-forward MIC on the left-ear headset and the right-ear headset are both turned on.
  • the headset wearing detection device may further include:
  • the shutdown module of other energy-consuming components is used to control the other energy-consuming components on the unworn headset to be in a low-power standby or off state; among them, other energy-consuming components include vibration units, sound units, and display units. At least one of them.
  • the headset wearing detection device may further include:
  • the preset environmental noise intensity adjustment module is used to adjust the size of the preset environmental noise intensity according to the type of environment.
  • This embodiment exists as a device embodiment corresponding to the foregoing method embodiment, and has all the beneficial effects of the method embodiment, and will not be repeated here.
  • the present application also provides a headset.
  • the headset may include a memory and a processor.
  • the memory stores a computer program.
  • the processor calls the computer program in the memory, the foregoing embodiment can be implemented.
  • the headset can also include various necessary network interfaces, power supplies, and other components.
  • the present application also provides a readable storage medium on which a computer program is stored.
  • the storage medium may include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other various media that can store program code.
  • the steps of the method or algorithm described in combination with the embodiments disclosed in this document can be directly implemented by hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disks, removable disks, CD-ROMs, or all areas in the technical field. Any other known storage media.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Headphones And Earphones (AREA)
  • Telephone Function (AREA)

Abstract

一种耳机佩戴检测方法、耳机佩戴检测装置、耳机及可读存储介质,区别于现有技术通过额外功能组件的检测方式,充分利用了耳机上设置的用于实现主动降噪的反馈式MIC(206),基于反馈式MIC(206)的设置位置,能够很好的根据其拾取到的环境噪声强度区分出耳机是否处于佩戴状态(一旦耳机处于佩戴状态,出声管道末端(205)将因深入耳道处于被封闭状态)。无需在耳机上增设额外功能组件,符合小巧化、轻便化的设计思路,且也不会因为额外功能组件带来额外的运行功耗,由于充分利用了反馈式MIC(206)的设置位置,可得到准确度更佳的佩戴检测结果。

Description

一种耳机佩戴检测方法、装置、耳机及可读存储介质
本申请要求于2019年11月15日提交中国专利局、申请号为201911121597.4、发明名称为“一种耳机佩戴检测方法、装置、耳机及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及耳机使用技术领域,特别涉及一种耳机佩戴检测方法、装置、耳机及可读存储介质。
背景技术
科技的发展日新月异,特别是消费类电子产品更是得到了极大的发展。在当前快节奏的日常生活和工作中,人们不再仅满足于对产品的功能化追求,而是越来越多的对产品的小巧化、轻便化提出了更高的要求。
耳机作为当前各式智能电子设备传输音频信号不可或缺的设备,广泛被人们使用。在小巧化、轻便化的趋势下,各种无线耳机、运动耳机更加受到人们的青睐。这类基于蓝牙传输音频信号的耳机由其内置的电池驱动,而受制于耳机小巧化、轻便化的设计思路,如何尽可能的减小这类耳机的运行功耗、尽可能的延长其使用时间,是本领域技术人员的重点研究对象。
其中一个研究方向通过在判断出耳机处于未佩戴状态时关闭一些耗能元器件来减低运行功耗,但现有方案用于确定是否处于未佩戴状态的IR红外距离检测或电容检测机制,存在模块体积和重量较大的问题,与小巧化设计思路相悖,且这部分额外功能组件运行也会带来额外的运行功耗,与低功耗思路也不完全吻合,用户实际使用体验较差。
因此,如何提供一种既能够满足小巧化、又能够满足低功耗思路的耳机佩戴检测方法,是本领域技术人员亟待解决的问题。
发明内容
本申请的目的是提供一种耳机佩戴检测方法、装置、耳机及可读存储介质,旨在无需增加额外功能组件的前提下更好的检测耳机是否处于佩戴状态。
为实现上述目的,本申请提供了一种耳机佩戴检测方法,该方法包括:
当接收到声音传入指令时,控制耳机上的反馈式MIC处于开启状态,并通过所述反馈式MIC拾取实际环境噪声强度;
判断所述实际环境噪声强度是否大于预设环境噪声强度;其中,所述预设环境噪声强度根据所述反馈式MIC在耳机佩戴和未佩戴时分别拾取到的环境噪声强度确定;
若所述实际环境噪声强度不大于所述预设环境噪声强度,则判定所述耳机处于佩戴状态,并控制所述耳机上的通话MIC和前馈式MIC处于开启状态。
可选的,当所述环境噪声强度大于所述预设环境噪声强度时,还包括:
判定所述耳机处于未佩戴状态,并控制所述通话MIC和前馈式MIC处于关闭状态。
可选的,在控制所述通话MIC和前馈式MIC处于关闭状态之后,还包括:
向所述声音传入指令的发出端返回耳机未佩戴的提示信息。
可选的,所述预设环境噪声强度根据所述反馈式MIC在耳机佩戴和未佩戴时分别拾取到的环境噪声强度确定,包括:
通过所述反馈式MIC拾取耳机处于佩戴状态时的第一环境噪声强度;
通过所述反馈式MIC拾取耳机处于未佩戴状态时的第二环境噪声强度;
将所述第一环境噪声强度和所述第二环境噪声强度的均值作为所述预设环境噪声强度。
可选的,当所述耳机为双耳耳机时,所述反馈式MIC具体包括左耳反馈式MIC和右耳反馈式MIC,对应的,所述实际环境噪声强度具体包括左耳实际环境噪声强度和右耳实际环境噪声强度,
对应的,判断所述实际环境噪声强度是否大于预设环境噪声强度,包括:
判断所述左耳实际环境噪声强度是否大于所述预设环境噪声强度;
判断所述右耳实际环境噪声强度是否大于所述预设环境噪声强度;
对应的,所述实际环境噪声强度不大于所述预设环境噪声强度,判定所述耳机处于佩戴状态,并控制所述耳机上的通话MIC和前馈式MIC处于开启状态,包括:
若仅所述左耳实际环境噪声强度不大于所述预设环境噪声强度,则判定仅有左耳耳机处于佩戴状态,并控制所述左耳耳机上的通话MIC和前馈式MIC处于开启状态;
若仅所述右耳实际环境噪声强度不大于所述预设环境噪声强度,则判定 仅有右耳耳机处于佩戴状态,并控制所述右耳耳机上的通话MIC和前馈式MIC处于开启状态;
若所述左耳实际环境噪声强度和所述右耳实际环境噪声强度均不大于所述预设环境噪声强度,则判定所述左耳耳机和所述右耳耳机均处于佩戴状态,并控制所述左耳耳机和所述右耳耳机上的通话MIC和前馈式MIC均处于开启状态。
可选的,该耳机佩戴检测方法还包括:
控制处于未佩戴状态的耳机上的其它耗能元器件处于低功耗待机或关闭状态;其中,其它耗能元器件包括振动单元、发声单元、显示单元中的至少一个。
可选的,该耳机佩戴检测方法还包括:
根据所处环境的类型调整所述预设环境噪声强度的大小。
为实现上述目的,本申请还提供了一种耳机佩戴检测装置,该装置包括:
实际环境噪声强度拾取模块,用于当接收到声音传入指令时,控制耳机上的反馈式MIC处于开启状态,并通过所述反馈式MIC拾取实际环境噪声强度;
环境噪声强度判断模块,用于判断所述实际环境噪声强度是否大于预设环境噪声强度;其中,所述预设环境噪声强度根据所述反馈式MIC在耳机佩戴和未佩戴时分别拾取到的环境噪声强度确定;
佩戴状态判定及处理模块,用于当所述实际环境噪声强度不大于所述预设环境噪声强度时,判定所述耳机处于佩戴状态,并控制所述耳机上的通话MIC和前馈式MIC处于开启状态。
可选的,该耳机佩戴检测装置还包括:
未佩戴状态判定及处理模块,用于当所述环境噪声强度大于所述预设环境噪声强度时,判定所述耳机处于未佩戴状态,并控制所述通话MIC和前馈式MIC处于关闭状态。
可选的,该耳机佩戴检测装置还包括:
未佩戴提示信息返回模块,用于在控制所述通话MIC和前馈式MIC处于关闭状态之后,向所述声音传入指令的发出端返回耳机未佩戴的提示信息。
可选的,该耳机佩戴检测装置还包括预设环境噪声轻度确定模块,所述预设环境噪声轻度确定模块包括:
第一环境噪声强度拾取子模块,用于通过所述反馈式MIC拾取耳机处于佩戴状态时的第一环境噪声强度;
第二环境噪声强度拾取子模块,用于通过所述反馈式MIC拾取耳机处于未佩戴状态时的第二环境噪声强度;
均值求取子模块,用于将所述第一环境噪声强度和所述第二环境噪声强度的均值作为所述预设环境噪声强度。
可选的,当所述耳机为双耳耳机时,所述反馈式MIC具体包括左耳反馈式MIC和右耳反馈式MIC,对应的,所述实际环境噪声强度具体包括左耳实际环境噪声强度和右耳实际环境噪声强度,对应的,所述环境噪声强度判断模块包括:
左耳环境噪声强度判断子模块,用于判断所述左耳实际环境噪声强度是否大于所述预设环境噪声强度;
右耳环境噪声强度判断子模块,用于判断所述右耳实际环境噪声强度是否大于所述预设环境噪声强度;
对应的,所述佩戴状态判定及处理模块包括:
仅左耳耳机佩戴及处理子模块,用于当仅所述左耳实际环境噪声强度不大于所述预设环境噪声强度时,判定仅有左耳耳机处于佩戴状态,并控制所述左耳耳机上的通话MIC和前馈式MIC处于开启状态;
仅右耳耳机佩戴及处理子模块,用于当仅所述右耳实际环境噪声强度不大于所述预设环境噪声强度时,判定仅有右耳耳机处于佩戴状态,并控制所述右耳耳机上的通话MIC和前馈式MIC处于开启状态;
双耳耳机均佩戴及处理模块,用于当所述左耳实际环境噪声强度和所述右耳实际环境噪声强度均不大于所述预设环境噪声强度时,判定所述左耳耳机和所述右耳耳机均处于佩戴状态,并控制所述左耳耳机和所述右耳耳机上的通话MIC和前馈式MIC均处于开启状态。
可选的,该耳机佩戴检测装置还包括:
其它耗能元器件关闭模块,用于控制处于未佩戴状态的耳机上的其它耗能元器件处于低功耗待机或关闭状态;其中,其它耗能元器件包括振动单元、发声单元、显示单元中的至少一个。
可选的,该耳机佩戴检测装置还包括:
预设环境噪声强度调整模块,用于根据所处环境的类型调整所述预设环 境噪声强度的大小。
为实现上述目的,本申请还提供了一种耳机,包括:
存储器,用于存储计算机程序;
处理器,用于在执行所述计算机程序时实现如上述内容所描述的耳机佩戴检测方法的各步骤。
为实现上述目的,本申请还提供了一种可读存储介质,所述可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上述内容所描述的耳机佩戴检测方法的各步骤。
本申请提供的一种耳机佩戴检测方法,包括:当接收到声音传入指令时,控制耳机上的反馈式MIC处于开启状态,并通过所述反馈式MIC拾取实际环境噪声强度;判断所述实际环境噪声强度是否大于预设环境噪声强度;其中,所述预设环境噪声强度根据所述反馈式MIC在耳机佩戴和未佩戴时分别拾取到的环境噪声强度确定;若所述实际环境噪声强度不大于所述预设环境噪声强度,则判定所述耳机处于佩戴状态,并控制所述耳机上的通话MIC和前馈式MIC处于开启状态。
根据本申请提供的耳机佩戴检测方法可以看出,区别于现有技术通过额外功能组件的检测方式,本申请充分利用了耳机上设置的用于实现主动降噪的反馈式MIC,基于反馈式MIC的设置位置,能够很好的根据其拾取到的环境噪声强度区分出耳机是否处于佩戴状态(一旦耳机处于佩戴状态,出声管道末端将因深入耳道处于被封闭状态)。因此应用本申请所提供的方案,无需在耳机上增设额外功能组件,符合小巧化、轻便化的设计思路,且也不会因为额外功能组件带来额外的运行功耗,且由于充分利用了反馈式MIC的设置位置,可得到准确度更佳的佩戴检测结果。
本申请同时还提供了一种耳机佩戴检测装置、耳机及可读存储介质,具有上述有益效果,在此不再赘述。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为耳机的剖面结构示意图;
图2为本申请实施例提供的一种耳机佩戴检测方法的流程图;
图3为本申请实施例提供的耳机佩戴检测方法中一种预设环境噪声强度的选取方法的流程图;
图4为本申请实施例提供的一种针对双耳耳机的耳机佩戴检测方法的流程图;
图5为本申请实施例通过的一种耳机佩戴检测装置的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的目的是提供一种耳机佩戴检测方法、装置、耳机及可读存储介质,旨在无需增加额外功能组件的前提下更好的检测耳机是否处于佩戴状态。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
为便于理解本方案,本申请首先通过图1对本申请下述所提供的方案适用的耳机进行介绍:
图1中包括:耳机外壳101、前馈式MIC102、电池103、通话MIC104、电路板105、喇叭201、喇叭振膜202、出声管道首端203、耳塞硅胶套204、出声管道末端205以及反馈式MIC206。
其中,前馈式MIC102通常被简称为FF MIC(Feed Forward MIC),反馈式MIC206则通常为称为FB MIC(Feed Back MIC)。而前馈式MIC和反馈式MIC通过作为构成耳机主动降噪(ANC,Active Noise Cancellation)解决方案中一部分共同出现在一个耳机上。
可以看出,前馈式MIC设置在整个耳机远离深入用户耳道的一侧,而反馈 式MIC则设置在整个耳机靠近深入用户耳道的一侧,具体的,该反馈式MIC206设置在耳机喇叭201的出声管道首端203的附近。
也存在某些拥有主动降噪功能的耳机其未设置有反馈式MIC或者反馈式MIC设置位置不像图1所示的位置,针对此类耳机,可按照图1所示的结构对其进行反馈式MIC的增加或者位置调整。
请参见图2,图2为本申请实施例提供的一种耳机佩戴检测方法的流程图,图2所示的各步骤的执行主体均为耳机,其包括以下步骤:
S101:当接收到声音传入指令时,控制耳机上的反馈式MIC处于开启状态,并通过反馈式MIC拾取实际环境噪声强度;
声音传入指令在此处表示即将有音频信号传入耳机,换句话说,该声音传入指令在此处表示耳机即将要处于工作状态或使用状态。具体可包括通过各种方式与终端(诸如智能手机等智能移动终端和诸如PC机等固定终端)建立有数据连接时(包括蓝牙在内的无线连接和包括数据线在内的有线连接),接收到通话指令(包括呼入和呼出)、各式存在音频信号的应用程序的播放指令(例如视频播放指令、音频播放指令等)。
根据上述对图1所示耳机结构的说明,可以发现,一旦耳机处于佩戴状态,出声管道末端205将因深入用户耳道而处于被封闭状态,而处于被封闭状态也就表明了外界的环境噪声将无法轻易的通过出声管道末端205的开口被反馈式MIC206拾取到。相反,一旦耳机处于未佩戴状态,出声管道末端205则将处于开放状态,与外界环境直接连通,环境噪声也将能够轻易的通过出声管道末端205被反馈式MIC206拾取到。因此,耳机是否处于佩戴状态,将由于物理原因导致反馈式MIC206拾取到的环境噪声强度存在明显区别。本申请也正是充分利用了反馈式MIC在耳机上的设置位置来实现判断出耳机是否处于佩戴状态的目的。
因此,在接收到该声音传入信号之后,控制耳机上的反馈式MIC处于开启状态,以使处于开启状态的反馈式MIC才能够有效的拾取到该实际环境噪声强度。
S102:判断实际环境噪声强度是否大于预设环境噪声强度,若否,执行S103;
其中,该预设环境噪声强度是根据反馈式MIC分别在耳机处于佩戴状态和 未佩戴状态时拾取到的环境噪声强度计算得到的。即根据耳机处于佩戴状态和未佩戴状态时分别拾取到的环境噪声强度计算得到的预设环境噪声强度在本申请中将作为一个衡量实际环境噪声强度大小,从而确定出耳机是否处于佩戴状态的临界值。而由于实际应用场景的复杂性,用于计算得到该临界值的佩戴状态和未佩戴状态时拾取到的环境噪声强度通常都是在实验室环境下得到的,从而尽可能的避免基于在某个环境下获取到的环境噪声强度计算得到的预设环境噪声强度不适用于其它应用场景的问题。
既然该预设环境噪声强度的作用是用于衡量实际环境噪声轻度的大小,并根据大小比较结果确定耳机是否处于佩戴状态,起到临界值的作用,那么根据反馈式MIC分别在耳机处于佩戴状态和未佩戴状态时拾取到的环境噪声强度计算得到的预设环境噪声强度,只要能够实现这一目的,本申请不限定具体的计算方式。
极端的,若仅基于单一的反馈式MIC在耳机处于佩戴状态下拾取到的第一环境噪声强度,并将所有数值大于该第一环境噪声强度的实际环境噪声强度都可以判定得到耳机处于未佩戴状态的正确结论,或者若仅基于单一的反馈式MIC在耳机处于未佩戴状态下拾取到的第二环境噪声强度,并将所有数据小于该第二环境噪声强度的实际环境噪声强度都可以判定得到耳机处于佩戴状态的正确结论,也可以作为可实现方案使用。应当理解的是,由于实际应用场景下的复杂性,往往基于单一阈值的判别方式往往存在较高的结果出错率,因此同时根据第一环境噪声强度和第二环境噪声强度计算得到一个折中的预设环境噪声强度将是一个较为理想的方案。
一种包括但不限于的实现方式可以参见如图2所示的流程图:
S201:通过反馈式MIC拾取耳机处于佩戴状态时的第一环境噪声强度;
S202:通过反馈式MIC拾取耳机处于未佩戴状态时的第二环境噪声强度;
S203:将第一环境噪声强度和第二环境噪声强度的均值作为预设环境噪声强度。
如图2所示,本申请在此处将第一环境噪声强度和第二环境噪声强度的均值作为该预设环境噪声强度,并由此将所有拾取到不大于该预设环境噪声强度的实际环境噪声强度的耳机均判定为处于佩戴状态,反之,将所有拾取到大于该预设环境噪声强度的实际环境噪声强度的耳机均判定为处于未佩戴状态。此处通过求取均值的计算方式,使得作为第一环境噪声强度和第二环境 噪声强度中间值的预设环境噪声强度拥有更好的冗余程度,可以减少误判率。
当然,某些特殊应用场景下,将均值作为临界判别值的方式可能并不完全适用,因此可以根据实际情况对判别结果的偏向,微调计算公式,例如可通过分别为第一环境噪声强度和第二环境噪声强度分配权值,并根据应用场景的不同调整各自的权值,以通过加权计算法计算出一个更加合理、判别更准确的预设环境噪声强度(即临界判别值)。
当然,也可以直接在耳机中预置对应不同应用场景的多个预设环境噪声强度,以使在耳机能够获知当前应用场景的类型时,灵活选用相应的预设环境噪声强度用于判别。
S103:判定耳机处于佩戴状态,并控制耳机上的通话MIC和前馈式MIC处于开启状态。
本步骤建立在S102的判断结果为实际环境噪声强度不大于该预设环境噪声强度的基础上,因此说明反馈式MIC拾取到的环境噪声强度偏小,继而推导出耳机出声管道末端205当前已经深入用户耳道,并因深入用户耳道而导致外界环境噪声无法轻易的通过出声管道末端205被反馈式MIC拾取到。因此可判定该反馈式MIC所在的耳机处于佩戴状态。在接收到声音传入指令的前提下,将控制耳机上的通话MIC和前馈式MIC处于开启状态,从而使得耳机可被用户正常使用。
相反,当环境噪声强度大于预设环境噪声强度时,则说明反馈式MIC拾取到的环境噪声强度偏大,继而可推导出耳机出声管道末端205当前暴露在外界环境中的事实,并因暴露在外界环境中而导致外界环境噪声可以轻易的通过出声管道末端205被反馈式MIC拾取到。因此可判定该反馈式MIC所在的耳机处于未佩戴状态。即使根据接收到的声音传入说明该耳机应该处于正常工作状态,但因未被用户佩戴,即使控制其通话MIC和前馈式MIC处于开启状态也只不过白白浪费电量,所以本申请在判定耳机处于未佩戴状态时,控制通话MIC和前馈式MIC处于关闭状态,以尽可能降低其功耗,节省电量,延长正常使用时间。
进一步的,由于根据接收到的声音传入说明该耳机应该处于正常工作状态,以便通过耳机将接收到的声音信号传给用户或者采集用户的声音信号回传给相连接的设备,但因处于未佩戴状态使得这一操作很好的实现。因此在控制通话MIC和前馈式MIC处于关闭状态之后,还可以向声音传入指令的发 出端返回耳机未佩戴的提示信息,以通过该提示信息来提醒用户及时佩戴耳机。更进一步的,还可以控制处于未佩戴状态的耳机上的其它耗能元器件处于低功耗待机或关闭状态,以进一步的节省处于未佩戴状态的耳机的电量。其中,该其它耗能元器件包括但不限于耳机上的振动单元、显示单元、发声单元中的至少一种。
根据本实施例提供的耳机佩戴检测方法可以看出,区别于现有技术通过额外功能组件的检测方式,本申请充分利用了耳机上设置的用于实现主动降噪的反馈式MIC,基于反馈式MIC的设置位置,能够很好的根据其拾取到的环境噪声强度区分出耳机是否处于佩戴状态(一旦耳机处于佩戴状态,出声管道末端将因深入耳道处于被封闭状态)。因此应用本申请所提供的方案,无需在耳机上增设额外功能组件,符合小巧化、轻便化的设计思路,且也不会因为额外功能组件带来额外的运行功耗,且由于充分利用了反馈式MIC的设置位置,可得到准确度更佳的佩戴检测结果。
在上述实施例的基础上,本申请还针对实际应用场景下的双耳耳机给出了一种相应的耳机佩戴检测方法,请参见图4所示的流程图,包括如下步骤:
S301:当接收到声音传入指令时,控制左耳反馈式MIC和右耳反馈式MIC均处于开启状态,并分别通过左耳反馈式MIC和右耳反馈式MIC拾取左耳实际环境噪声强度和右耳实际环境噪声强度;
S302:判断左耳实际环境噪声强度是否大于预设环境噪声强度,若是,执行S304,否则执行S305;
S303:判断右耳实际环境噪声强度是否大于预设环境噪声强度,若是,执行S307,否则执行S306;
S304:判定左耳耳机处于未佩戴状态,并控制左耳耳机上的通话MIC和前馈式MIC处于关闭状态;
S305:判定左耳耳机处于佩戴状态,并控制左耳耳机上的通话MIC和前馈式MIC处于开启状态;
S306:判定右耳耳机处于佩戴状态,并控制右耳耳机上的通话MIC和前馈式MIC处于开启状态;
S307:判定右耳耳机处于未佩戴状态,并控制右耳耳机上的通话MIC和前馈式MIC处于关闭状态。
其中,S305和S306的累加将得到左右双耳耳机均处于佩戴状态的结论,相反,S304和S307的累加将得到左右双耳耳机均处于未佩戴状态的结论,在耳机接收到声音传入信号的前提下,为保证用户可及时获取到有效的声音信息,本实施例针对双耳耳机均处于未佩戴的情况,还通过S308给出了一种向该声音传入指令的发出端返回耳机未佩戴的提示信息的方案。
另外,除上述两种结果的累加之外,其它的累加方式都将得到仅有其中一个耳机处于佩戴状态、另一个耳机处于未佩戴状态的结论,由于声音信息仍能够通过处于佩戴状态的耳机传达给用户,只需要控制另一个未佩戴的耳机的通话MIC和前馈式MIC处于关闭即可实现节省电量的目的。
可以看出,针对双耳耳机,判别过程是对左耳耳机和右耳耳机分别进行的,两者并不存在依赖关系,因此即使是双耳耳机,在单耳佩戴的情况下也完全可以实现相同的目的。
为加深对本申请所提供的方案的理解,此处还结合具体应用场景给出了一种具体的实现和判别过程,该实施例以耳机要同步手机的电话接入或拨出这一情景为例:
通常情况下,为耳机设备低功耗而省电,而将所有的MIC关闭掉。当耳机与手机蓝牙处于连接状态,手机在有电话接入或者拨出时,耳机设备同步通过蓝牙连接链路接收到手机端的指令(电话接入指令或者拨出指令),耳机设备MCU(指耳机中的微控制单元)发送指令至DSP(指设置在耳机上的数字信号处理器,类似于PC中的CPU),执行算法程序命令,自动打开左右两耳反馈式MIC。
在左右耳耳机的两个反馈式MIC开启后,假定反馈式MIC拾取到的环境噪音强度为LxdB(分贝),其中,左耳耳机的反馈式MIC拾取到的环境噪音强度为L_LxdB(分贝),右耳耳机的反馈式MIC拾取到的环境噪音强度为R_LxdB(分贝)。耳机内的DSP将L_LxdB、R_LxdB数值分别与L0dB进行比较,有如下几种对比结果:
情况一:当L_LxdB<L0dB、R_LxdB<L0dB时,即判断为左右耳均为在耳佩戴状态;同时,耳机MCU发送指令打开左耳耳机上的通话MIC和前馈式MIC,或者打开右耳通话MIC和前馈式MIC,或者打开左右耳所有的MIC(这三种情况分别对应与某些只在左右耳两个耳机上的某一个上设置有MIC 的耳机);接通/拨通电话后,即可使用在耳佩戴的耳机进行通话(MCU发送指令至DSP执行算法程序命令打开,利用多通道模拟开关);
情况二:当L_LxdB<L0dB、R_LxdB>L0dB时,即判断为左耳耳机处于佩戴状态;同时,耳机MCU发送指令打开通话MIC和前馈式MIC,或者打开左右耳所有的MIC;接通/拨通电话后,即可使用在耳佩戴的左耳耳机进行通话;
情况三:当L_LxdB>L0dB、R_LxdB<L0dB时,即判断为右耳耳机处于佩戴状态;同时,耳机MCU发送指令打开右耳通话MIC和前馈式MIC,或者打开左右耳所有的MIC;接通/拨通电话后,即可使用在耳佩戴的右耳耳机进行通话;
情况四:当L_LxdB>L0dB、R_LxdB>L0dB时,即判断为左右耳耳机均处于未佩戴状态;同时,耳机MCU发送指令,通过蓝牙连接链路传输至手机,手机屏幕显示“请您佩戴好耳机!”。当耳机佩戴者根据提示,将耳机佩戴好后,再进行上述的判断流程。
其中,L0dB的获取过程为:
在实验室模拟噪音环境实际测试确定:在耳机正常佩戴于人耳时,由于耳塞套与人耳耳道的耦合性,仅有少量的外界环境噪音泄露进入到出声管道末端205,再通过出声管道进入反馈式MIC,测定此状态下被反馈式MIC拾取的环境噪音强度为L1dB(分贝)。然后,将耳机从人耳取下,将耳机处于自由状态而放置,由于出声管道末端205处于自由的开放环境之中,外界环境噪音“轻松”由出声管道末端205进入,再通过出声管道而进入反馈式MIC,测定此状态下被反馈式MIC拾取的环境噪音强度为L2dB(分贝)。由理论和实际测定的数据可知,L2dB必定大于L1dB,进一步的,将L0dB=(L1dB+L2dB)/2设定为阈值。
因为情况复杂,无法一一列举进行阐述,本领域技术人员应能意识到根据本申请提供的基本方法原理结合实际情况可以存在很多的例子,在不付出足够的创造性劳动下,应均在本申请的保护范围内。
下面请参见图5,图5为本申请实施例通过的一种耳机佩戴检测装置的结构框图,该装置可以包括:
实际环境噪声强度拾取模块100,用于当接收到声音传入指令时,控制耳 机上的反馈式MIC处于开启状态,并通过反馈式MIC拾取实际环境噪声强度;
环境噪声强度判断模块200,用于判断实际环境噪声强度是否大于预设环境噪声强度;其中,预设环境噪声强度根据反馈式MIC在耳机佩戴和未佩戴时分别拾取到的环境噪声强度确定;
佩戴状态判定及处理模块300,用于当实际环境噪声强度不大于预设环境噪声强度时,判定耳机处于佩戴状态,并控制耳机上的通话MIC和前馈式MIC处于开启状态。
进一步的,该耳机佩戴检测装置还可以包括:
未佩戴状态判定及处理模块,用于当环境噪声强度大于预设环境噪声强度时,判定耳机处于未佩戴状态,并控制通话MIC和前馈式MIC处于关闭状态。
更进一步的,该耳机佩戴检测装置还可以包括:
未佩戴提示信息返回模块,用于在控制通话MIC和前馈式MIC处于关闭状态之后,向声音传入指令的发出端返回耳机未佩戴的提示信息。
其中,该耳机佩戴检测装置还包括预设环境噪声轻度确定模块,该预设环境噪声轻度确定模块可以包括:
第一环境噪声强度拾取子模块,用于通过反馈式MIC拾取耳机处于佩戴状态时的第一环境噪声强度;
第二环境噪声强度拾取子模块,用于通过反馈式MIC拾取耳机处于未佩戴状态时的第二环境噪声强度;
均值求取子模块,用于将第一环境噪声强度和第二环境噪声强度的均值作为预设环境噪声强度。
其中,当耳机为双耳耳机时,反馈式MIC具体包括左耳反馈式MIC和右耳反馈式MIC,对应的,实际环境噪声强度具体包括左耳实际环境噪声强度和右耳实际环境噪声强度,对应的,环境噪声强度判断模块200可以包括:
左耳环境噪声强度判断子模块,用于判断左耳实际环境噪声强度是否大于预设环境噪声强度;
右耳环境噪声强度判断子模块,用于判断右耳实际环境噪声强度是否大于预设环境噪声强度;
对应的,佩戴状态判定及处理模块300可以包括:
仅左耳耳机佩戴及处理子模块,用于当仅左耳实际环境噪声强度不大于 预设环境噪声强度时,判定仅有左耳耳机处于佩戴状态,并控制左耳耳机上的通话MIC和前馈式MIC处于开启状态;
仅右耳耳机佩戴及处理子模块,用于当仅右耳实际环境噪声强度不大于预设环境噪声强度时,判定仅有右耳耳机处于佩戴状态,并控制右耳耳机上的通话MIC和前馈式MIC处于开启状态;
双耳耳机均佩戴及处理模块,用于当左耳实际环境噪声强度和右耳实际环境噪声强度均不大于预设环境噪声强度时,判定左耳耳机和右耳耳机均处于佩戴状态,并控制左耳耳机和右耳耳机上的通话MIC和前馈式MIC均处于开启状态。
进一步的,该耳机佩戴检测装置还可以包括:
其它耗能元器件关闭模块,用于控制处于未佩戴状态的耳机上的其它耗能元器件处于低功耗待机或关闭状态;其中,其它耗能元器件包括振动单元、发声单元、显示单元中的至少一个。
更进一步的,该耳机佩戴检测装置还可以包括:
预设环境噪声强度调整模块,用于根据所处环境的类型调整预设环境噪声强度的大小。
本实施例作为对应上述方法实施例的装置实施例存在,具有方法实施例的全部有益效果,此处不再一一赘述。
基于上述实施例,本申请还提供了一种耳机,该耳机可以包括存储器和处理器,其中,该存储器中存有计算机程序,该处理器调用该存储器中的计算机程序时,可以实现上述实施例所提供的步骤。当然,该耳机还可以包括各种必要的网络接口、电源以及其它零部件等。
本申请还提供了一种可读存储介质,其上存有计算机程序,该计算机程序被执行终端或处理器执行时可以实现上述实施例所提供的步骤。该存储介质可以包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的 比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。
本说明书中各个实施例采用并列或者递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处可参见方法部分说明。
本领域普通技术人员还可以理解,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包 括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (10)

  1. 一种耳机佩戴检测方法,其特征在于,包括:
    当接收到声音传入指令时,控制耳机上的反馈式MIC处于开启状态,并通过所述反馈式MIC拾取实际环境噪声强度;
    判断所述实际环境噪声强度是否大于预设环境噪声强度;其中,所述预设环境噪声强度根据所述反馈式MIC在耳机佩戴和未佩戴时分别拾取到的环境噪声强度确定;
    若所述实际环境噪声强度不大于所述预设环境噪声强度,则判定所述耳机处于佩戴状态,并控制所述耳机上的通话MIC和前馈式MIC处于开启状态。
  2. 根据权利要求1所述的耳机佩戴检测方法,其特征在于,当所述环境噪声强度大于所述预设环境噪声强度时,还包括:
    判定所述耳机处于未佩戴状态,并控制所述通话MIC和前馈式MIC处于关闭状态。
  3. 根据权利要求2所述的耳机佩戴检测方法,其特征在于,在控制所述通话MIC和前馈式MIC处于关闭状态之后,还包括:
    向所述声音传入指令的发出端返回耳机未佩戴的提示信息。
  4. 根据权利要求1所述的耳机佩戴检测方法,其特征在于,所述预设环境噪声强度根据所述反馈式MIC在耳机佩戴和未佩戴时分别拾取到的环境噪声强度确定,包括:
    通过所述反馈式MIC拾取耳机处于佩戴状态时的第一环境噪声强度;
    通过所述反馈式MIC拾取耳机处于未佩戴状态时的第二环境噪声强度;
    将所述第一环境噪声强度和所述第二环境噪声强度的均值作为所述预设环境噪声强度。
  5. 根据权利要求1所述的耳机佩戴检测方法,其特征在于,当所述耳机为双耳耳机时,所述反馈式MIC具体包括左耳反馈式MIC和右耳反馈式MIC,对应的,所述实际环境噪声强度具体包括左耳实际环境噪声强度和右耳实际环境噪声强度,
    对应的,判断所述实际环境噪声强度是否大于预设环境噪声强度,包括:
    判断所述左耳实际环境噪声强度是否大于所述预设环境噪声强度;
    判断所述右耳实际环境噪声强度是否大于所述预设环境噪声强度;
    对应的,所述实际环境噪声强度不大于所述预设环境噪声强度,判定所述耳机处于佩戴状态,并控制所述耳机上的通话MIC和前馈式MIC处于开启状态,包括:
    若仅所述左耳实际环境噪声强度不大于所述预设环境噪声强度,则判定仅有左耳耳机处于佩戴状态,并控制所述左耳耳机上的通话MIC和前馈式MIC处于开启状态;
    若仅所述右耳实际环境噪声强度不大于所述预设环境噪声强度,则判定仅有右耳耳机处于佩戴状态,并控制所述右耳耳机上的通话MIC和前馈式MIC处于开启状态;
    若所述左耳实际环境噪声强度和所述右耳实际环境噪声强度均不大于所述预设环境噪声强度,则判定所述左耳耳机和所述右耳耳机均处于佩戴状态,并控制所述左耳耳机和所述右耳耳机上的通话MIC和前馈式MIC均处于开启状态。
  6. 根据权利要求1至5所述的耳机佩戴检测方法,其特征在于,还包括:
    控制处于未佩戴状态的耳机上的其它耗能元器件处于低功耗待机或关闭状态;其中,其它耗能元器件包括振动单元、发声单元、显示单元中的至少一个。
  7. 根据权利要求6所述的耳机佩戴检测方法,其特征在于,还包括:
    根据所处环境的类型调整所述预设环境噪声强度的大小。
  8. 一种耳机佩戴检测装置,其特征在于,包括:
    实际环境噪声强度拾取模块,用于当接收到声音传入指令时,控制耳机上的反馈式MIC处于开启状态,并通过所述反馈式MIC拾取实际环境噪声强度;
    环境噪声强度判断模块,用于判断所述实际环境噪声强度是否大于预设环境噪声强度;其中,所述预设环境噪声强度根据所述反馈式MIC在耳机佩戴和未佩戴时分别拾取到的环境噪声强度确定;
    佩戴状态判定及处理模块,用于当所述实际环境噪声强度不大于所述预设环境噪声强度时,判定所述耳机处于佩戴状态,并控制所述耳机上的通话 MIC和前馈式MIC处于开启状态。
  9. 一种耳机,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序时实现如权利要求1至7任一项所述的耳机佩戴检测方法的各步骤。
  10. 一种可读存储介质,其特征在于,所述可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述的耳机佩戴检测方法的各步骤。
PCT/CN2019/129590 2019-11-15 2019-12-28 一种耳机佩戴检测方法、装置、耳机及可读存储介质 WO2021093119A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911121597.4 2019-11-15
CN201911121597.4A CN110839190B (zh) 2019-11-15 2019-11-15 一种耳机佩戴检测方法、装置、耳机及可读存储介质

Publications (1)

Publication Number Publication Date
WO2021093119A1 true WO2021093119A1 (zh) 2021-05-20

Family

ID=69576516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129590 WO2021093119A1 (zh) 2019-11-15 2019-12-28 一种耳机佩戴检测方法、装置、耳机及可读存储介质

Country Status (2)

Country Link
CN (1) CN110839190B (zh)
WO (1) WO2021093119A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040297A (zh) * 2021-11-30 2022-02-11 歌尔科技有限公司 耳机开关控制方法、装置、设备及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111491249B (zh) * 2020-04-07 2022-09-30 江苏紫米电子技术有限公司 一种耳机入耳状态的检测方法、装置、耳机及存储介质
CN111629297B (zh) * 2020-05-27 2022-03-29 歌尔科技有限公司 一种耳机佩戴状态检测方法、装置、耳机及存储介质
CN111988692B (zh) * 2020-08-07 2022-11-15 歌尔科技有限公司 耳机佩戴状态检测方法、装置、耳机及存储介质
CN112866890B (zh) * 2021-01-14 2022-08-16 厦门新声科技有限公司 一种入耳检测方法及系统
CN114157975A (zh) * 2021-12-01 2022-03-08 思必驰科技股份有限公司 耳机佩戴检测方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110077056A1 (en) * 2009-09-25 2011-03-31 Samsung Electronics Co., Ltd. Method and apparatus for controlling of bluetooth headset
CN107920298A (zh) * 2018-01-03 2018-04-17 京东方科技集团股份有限公司 一种耳机、耳机控制方法及装置
CN109151648A (zh) * 2018-10-30 2019-01-04 歌尔科技有限公司 一种耳机音量的动态调节方法、装置及无线耳机
CN109327757A (zh) * 2018-09-30 2019-02-12 歌尔科技有限公司 一种双麦克风降噪耳机及其声音处理方法、装置
CN110337054A (zh) * 2019-06-28 2019-10-15 Oppo广东移动通信有限公司 检测耳机佩戴状态的方法、装置、设备和计算机存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8705784B2 (en) * 2009-01-23 2014-04-22 Sony Corporation Acoustic in-ear detection for earpiece
EP2790182B1 (en) * 2009-04-28 2017-01-11 Bose Corporation Sound-dependent ANR signal processing adjustment
JP5880340B2 (ja) * 2012-08-02 2016-03-09 ソニー株式会社 ヘッドホン装置、装着状態検出装置、装着状態検出方法
US9967682B2 (en) * 2016-01-05 2018-05-08 Bose Corporation Binaural hearing assistance operation
CN105704321B (zh) * 2016-03-21 2019-02-22 Oppo广东移动通信有限公司 利用降噪麦克风动态调节通话音量的方法和系统
CN106851459A (zh) * 2017-03-22 2017-06-13 广州三星通信技术研究有限公司 入耳式耳机
CN108718467B (zh) * 2018-06-06 2020-03-13 歌尔科技有限公司 一种语音数据的传输方法、无线耳机及tws耳机
CN108882087A (zh) * 2018-06-12 2018-11-23 歌尔科技有限公司 一种智能语音检测方法、无线耳机、tws耳机及终端
CN109195045B (zh) * 2018-08-16 2020-08-25 歌尔科技有限公司 检测耳机佩戴状态的方法、装置及耳机
CN109246742B (zh) * 2018-11-13 2022-05-27 广东小天才科技有限公司 一种来电寻呼的自动接听方法及移动终端
CN110337052A (zh) * 2019-06-19 2019-10-15 Oppo广东移动通信有限公司 调节声音强度的方法、装置、电子设备和计算机存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110077056A1 (en) * 2009-09-25 2011-03-31 Samsung Electronics Co., Ltd. Method and apparatus for controlling of bluetooth headset
CN107920298A (zh) * 2018-01-03 2018-04-17 京东方科技集团股份有限公司 一种耳机、耳机控制方法及装置
CN109327757A (zh) * 2018-09-30 2019-02-12 歌尔科技有限公司 一种双麦克风降噪耳机及其声音处理方法、装置
CN109151648A (zh) * 2018-10-30 2019-01-04 歌尔科技有限公司 一种耳机音量的动态调节方法、装置及无线耳机
CN110337054A (zh) * 2019-06-28 2019-10-15 Oppo广东移动通信有限公司 检测耳机佩戴状态的方法、装置、设备和计算机存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040297A (zh) * 2021-11-30 2022-02-11 歌尔科技有限公司 耳机开关控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN110839190B (zh) 2022-01-07
CN110839190A (zh) 2020-02-25

Similar Documents

Publication Publication Date Title
WO2021093119A1 (zh) 一种耳机佩戴检测方法、装置、耳机及可读存储介质
CN110691294B (zh) 一种音频控制方法、充电盒及无线耳机设备
RU2454019C2 (ru) Способ и устройство для беспроводной генерации звука в ушной раковине
US10805708B2 (en) Headset sound channel control method and system, and related device
CN105049977A (zh) 一种耳机音量自动调节方法及装置
WO2020019820A1 (zh) 麦克风堵孔检测方法及相关产品
US20100184488A1 (en) Sound signal adjuster adjusting the sound volume of a distal end voice signal responsively to proximal background noise
EP2663059A1 (en) Electronic terminal and ring prompt method of the electronic terminal
WO2020107604A1 (zh) 一种无线播放设备及其播放控制方法和装置
US20180288214A1 (en) Method for outputting multimedia data and control device thereof
CN106375573B (zh) 一种切换通话模式的方法及装置
US20140254832A1 (en) Volume adjusting system and method
WO2011153779A1 (zh) 使用双麦克抑制噪声的方法及终端
US8577421B2 (en) Mobile terminal, control method of mobile terminal, and recording medium
US9100821B2 (en) Anti-eavesdropping communication system and method
WO2022022423A1 (zh) 无线耳机的低功耗方法、装置、无线耳机及可读存储介质
CN113207056B (zh) 一种无线耳机及其透传方法、装置及系统
CN107659723A (zh) 一种用于控制声音播放的计算机可读存储介质及移动终端
WO2020042491A9 (zh) 一种耳机远场交互方法、耳机远场交互配件及无线耳机
WO2023000748A1 (zh) 音频模块检测方法、电子设备及计算机存储介质
CN108605067B (zh) 播放音频的方法和移动终端
EP3941027A1 (en) Adaptive method and apparatus for intelligent terminal, and terminal
CN209823845U (zh) 触摸fpc的安装结构
CN113115164A (zh) 一种基于anc降噪的通话蓝牙耳机
CN106791095A (zh) 一种自动改善通话音质的实现方法及实现系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952889

Country of ref document: EP

Kind code of ref document: A1