WO2021093085A1 - 直流海缆 - Google Patents
直流海缆 Download PDFInfo
- Publication number
- WO2021093085A1 WO2021093085A1 PCT/CN2019/126418 CN2019126418W WO2021093085A1 WO 2021093085 A1 WO2021093085 A1 WO 2021093085A1 CN 2019126418 W CN2019126418 W CN 2019126418W WO 2021093085 A1 WO2021093085 A1 WO 2021093085A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- submarine cable
- layer
- return
- conductor
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims abstract description 76
- 229910052751 metal Inorganic materials 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 20
- 238000009413 insulation Methods 0.000 claims abstract description 13
- 230000000903 blocking effect Effects 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000013307 optical fiber Substances 0.000 claims description 28
- 239000000835 fiber Substances 0.000 claims description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- 230000002787 reinforcement Effects 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 abstract description 19
- 239000010410 layer Substances 0.000 abstract 1
- 239000011241 protective layer Substances 0.000 abstract 1
- 229920000728 polyester Polymers 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B9/00—Power cables
- H01B9/005—Power cables including optical transmission elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/14—Submarine cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/0009—Details relating to the conductive cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/02—Disposition of insulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/28—Protection against damage caused by moisture, corrosion, chemical attack or weather
- H01B7/282—Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
- H01B7/2825—Preventing penetration of fluid, e.g. water or humidity, into conductor or cable using a water impermeable sheath
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B9/00—Power cables
- H01B9/006—Constructional features relating to the conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B9/00—Power cables
- H01B9/02—Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/14—Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables
Definitions
- the invention relates to the technical field of submarine cable design, in particular to a direct current submarine cable.
- the DC submarine cable is suitable for connecting the converter equipment at both ends of the DC transmission system, and supporting the submarine cable accessories to build a complete underwater or land transmission line system.
- the DC submarine cable power transmission system consists of two polar DC submarine cables to form a loop. Compared with the AC submarine cable system, three submarine cables are required to form the loop. There is a submarine cable itself cost advantage. In the true bipolar DC transmission system, in the event of a single-polarity submarine cable failure, the system has the ability to support the transmission line to continue working at a level that retains 50% of the original transmission capacity.
- the role of the polar submarine cable in the case of non-faulty is only to balance the differential current between the two polar submarine cables.
- the insulation level requirement is lower than that of the polar submarine cable, but the current-carrying capacity requirement is the same as that of the polar submarine cable. Therefore, considering the manufacturing cost and laying cost of the submarine cable, there is a significant investment waste; if seawater is used as the return solution , In the process of long-distance current transmission, it will cause electrical corrosion of underwater pipelines and facilities along the line, and will have a certain impact on the marine ecological environment. Therefore, it is very important to find a more economical and safe return method for the DC transmission system.
- the current conventional static DC submarine cables will have mechanical and fatigue effects on the internal electrical insulation components and optical communication components of the submarine cable under the condition of frequent movement of external forces.
- the long-term accumulation will cause external force damage to the submarine cable electrical units and optical units, which will cause damage to the sea.
- the electrical performance and service life of the cable have a negative impact.
- a direct current submarine cable includes a conductor unit, an insulation unit and a protection unit arranged in order from the inside to the outside.
- the protection unit comprises a water blocking tape, a metal sheath and an outer sheath arranged in order from the inside to the outside.
- a recirculation unit is also provided in the cable, and the current carrying capacity of the recirculation unit and the conductor unit are the same.
- the reflow unit is arranged on the outer periphery of the metal sheath, and the reflow unit includes an insulating sheath and a reflow conductor layer arranged in order from the inside to the outside.
- the protection unit includes a plurality of optical fiber units and return conductors arranged in an array, and the optical fiber units are embedded in the return conductor layer and arranged in a circumferential array.
- the outer circumference of the return conductor is covered with an insulating component.
- an inner sheath is provided on the outer circumference of the return conductor layer, and the inner sheath is arranged in close contact with the outer circumference of the return unit.
- the protection unit further includes a fiber layer and an armor layer, and the fiber layer and the armor layer are disposed between the outer sheath and the return unit.
- a plurality of optical fiber units in a circular array are arranged on the outer periphery of the insulation unit, the optical fiber units are arranged inside the metal sheath, and both sides of the optical fiber unit in the circumferential direction are respectively provided with optical fiber unit reinforcements.
- the recirculation unit is an armor layer arranged inside the outer sheath.
- the reflow unit is arranged on the inner side of the metal sheath, and the reflow unit includes a plurality of twisted copper wires, and the twisted copper wires are arranged in a circumferential array and embedded between adjacent optical fiber units.
- the insulating unit includes a shielding layer and an insulating layer, the shielding layer is provided in two layers, and the two shielding layers are respectively attached to the inner and outer sides of the insulating layer.
- the aforementioned direct current submarine cable is provided with a return unit in the submarine cable, and the return unit is designed to have the same current carrying capacity as the conductor unit.
- the return conductor layer in the other intact DC submarine cable can be used as a return path to form a loop with its own conductor to continue working to ensure a complete dynamic
- the DC submarine cable has 50% of the power transmission capacity of the original power transmission circuit.
- Fig. 1 is a schematic cross-sectional view of a DC submarine cable in an embodiment of the present invention.
- Fig. 2 is a schematic cross-sectional view of a DC submarine cable in the second embodiment of the present invention.
- FIG 3 is a schematic cross-sectional view of a return conductor in the second embodiment of the present invention.
- FIG. 4 is a schematic cross-sectional view of the DC submarine cable in the third embodiment of the present invention.
- Fig. 5 is a schematic cross-sectional view of a DC submarine cable in the fourth embodiment of the present invention.
- Fig. 6 is a schematic cross-sectional view of a DC submarine cable in the fifth embodiment of the present invention.
- Current-carrying capacity in this article refers to the maximum current that can pass without causing the conductor or its insulating layer to melt.
- a DC submarine cable 100 includes a conductor unit 10, an insulation unit 30, a return unit 50, and a protection unit 70.
- the conductor unit 10, the insulation unit 30, and the protection unit 70 are sequentially arranged from the inside to the outside.
- the unit 50 is embedded in the protection unit 70.
- the conductor unit 10 is a water-blocking conductor.
- the insulating unit 30 includes a shielding layer 31 and an insulating layer 33, wherein the shielding layer 31 is provided in two layers, and the two shielding layers 31 are an inner shielding layer 311 and an outer shielding layer 313, respectively.
- the inner shielding layer 311 and the outer shielding layer 313 are respectively disposed on the inner and outer sides of the insulating layer 33.
- the protection unit 70 includes a water blocking tape 71, a metal sheath 73, a number of optical fiber units 74, a fiber layer 75, an armor layer 77, and an outer sheath 79, wherein the water blocking tape 71 is arranged at The outer periphery of the outer shielding layer 313 is arranged to be attached to each other, the water blocking tape 71, the metal sheath 73, a number of optical fiber units 74, the armor layer 77 and the outer sheath 79 are arranged in sequence from the inside to the outside.
- the optical fiber unit 74 is arranged in a circumferential array on the outer periphery of the metal sheath 73, the fiber layer 75 is provided with two layers, and the two fiber layers 75 are respectively an inner polyester fiber wrap 751 and an outer polyester fiber wrap 753 The inner polyester fiber wrapping tape 751 and the outer polyester fiber wrapping tape 753 are respectively disposed on the inner and outer sides of the armor layer 77.
- the optical fiber unit 74 includes four groups, and the four groups of optical fiber units 74 are arranged in a 90° circular array in the return unit 50.
- the submarine cable operates normally or the return conductor
- the temperature data of the return unit 50 can be directly collected when the layer is carrying current, which can effectively monitor the operating status of the submarine cable and the temperature rise of the surrounding environment.
- the optical unit 74 is arranged at a 90-degree interval to ensure that the fiber unit is caused by external force in a certain direction. In the case of 74 damage, the optical fiber unit 74 in the vertical direction can still continue to work, avoiding loss of all communication and monitoring functions at one time, resulting in system monitoring failure or waste of maintenance costs.
- the reflow unit 50 includes an insulating sheath 51, a return conductor layer 53, and an inner sheath 55 that are sequentially arranged from the inside to the outside, wherein the insulating sheath 51 is arranged on the outer periphery of the metal sheath 73
- the return conductor layer 53 has the same diameter as the circle formed by the array of optical fiber units 74, and the return conductor layer 53 includes a plurality of return conductors 531, and the plurality of return conductors 531 are embedded between the optical fiber units 74.
- the conductor part of the return conductor 531 has the same current carrying capacity as the conductor unit 10.
- the conductor part of the return conductor 531 has the same material as the conductor unit 10, and the conductor part of the return conductor 531 The sum of the cross-sectional area of is equal to the cross-sectional area of the conductor unit 10.
- the inner sheath 55 is arranged between the inner polyester fiber wrapping tape 751 and the armor layer 77.
- a plurality of return conductors 531 are arranged in the DC submarine cable 100 to form the return conductor layer 53, and the return conductor 531 is made of the same material as the conductor unit 10, and the return conductor 531 has the same current carrying capacity as the conductor unit 10.
- a layer of insulating sheath 51 and an inner sheath 55 are arranged inside and outside the return conductor to meet the voltage insulation needs of the system during return.
- FIG. 2 This embodiment is basically the same as Embodiment 1, except that: the fiber layer 75 in the protection unit 70 is provided with only one layer, and the fiber layer 75 is provided on the armor layer. 77 and the optical fiber unit 74.
- the return conductor layer 53 includes an insulating sheath 51 and a return conductor layer 53, wherein the insulating sheath 51 is disposed on the outer periphery of the metal sheath 73, and the return conductor layer 53 includes a plurality of return conductors 531, and a plurality of The return conductor 531 is embedded between the optical fiber units 74 to realize that the conductor part of the return conductor 531 has the same current-carrying capacity as the conductor unit 10. In one embodiment, the conductor part of the return conductor 531 has the same current carrying capacity as that of the conductor unit 10. The conductor unit 10 has the same current-carrying capacity.
- the conductor part of the return conductor 531 uses the same material as the conductor unit 10, and the sum of the cross-sectional area of the conductor part of the return conductor 531 is equal to the cross-sectional area of the conductor unit 10.
- the cross-sectional area is the same.
- the outer circumference of the return conductor 531 is covered with an insulating member 5313.
- the armor layer 77 located inside the outer sheath 79 can be removed, so that the DC submarine cable 100 can be applied to the construction of terrestrial DC cable lines.
- this embodiment is basically the same as Embodiment 1, and the difference is that: the protection unit 70 includes a water blocking tape 71, a metal sheath 73, an insulating sheath 51, and an armor that are sequentially arranged from the inside to the outside. Layer 77 and outer sheath 79.
- the reflow unit 50 is the armor layer 77 in the protection unit 70, and the cross-sectional area of the armor layer 77 should be the same as that of the conductor unit 10. The current carrying capacity.
- a number of optical fiber units 74 arranged in an array are arranged between the water blocking tape 71 and the metal sheath 73, and fiber unit reinforcements 741 are respectively arranged on both sides of the circumferential direction of the optical fiber unit 74 to ensure The optical fiber unit 74 is in good condition during production, transportation, installation and operation.
- another intact dynamic DC submarine cable 100 uses the armor layer 77 as the return path.
- the armor layer 77 uses steel wire as the armor material.
- the armor layer 77 may also be made of copper, aluminum, or aluminum alloy as the armor material.
- the return conductor layer 53 includes a plurality of twisted copper wires 57, and the twisted copper wires 57 are arranged between the adjacent optical fiber units 74.
- the combination of the wire 57 and the metal sheath 73 has the same current-carrying capacity as the conductor unit 10.
- the two The cross-sectional area determines that the combination of the two has the same current-carrying capacity as the conductor unit 10.
- the other intact dynamic DC submarine cable 100 uses the metal sheath 73 and the stranded copper wire 57 as the return path together, so no additional addition is required
- the thickness of the lead sheath meets the current-carrying capacity, which can reduce the overall weight and cost of the submarine cable.
Landscapes
- Insulated Conductors (AREA)
Abstract
本发明提供的一种直流海缆,其包括由内向外依次设置的导体单元、绝缘单元及保护单元,所述保护单元包括由内向外依次设置的阻水带、金属护层及外护套,所述直流海缆内还设置有回流单元,所述回流单元与所述导体单元载流能力相同。当同一直流输电回路中的某一根直流海缆出现故障时,完好的另一根直流海缆中的回流导体层可作为回流路径,与自身的导体构成回路继续工作,保障完好的一根动态直流海缆具备原有输电回路50%的电能输送能力。
Description
本发明涉及海缆设计技术领域,特别是指一种直流海缆。
直流海缆适用于连接直流输电系统两端换流设备,配套海缆附件搭建完整的水下或陆地输电线路系统。直流海缆输电系统由两根极性直流海缆即可构成回路,对比交流海缆系统需要三根海缆才可构成回路存在海缆本体成本优势。真双极直流输电系统中,在单根极性海缆故障情况下,系统具备支持输电线路在保有50%原输电容量的水平下继续工作的能力。
针对目前在真双极直流输电系统中额外搭建回流海缆的方案,在极性海缆非故障情况下起到的作用仅为平衡两根极性海缆间的差异电流,系统对回流海缆绝缘水平要求较极性海缆有所降低,但是载流能力要求与极性海缆持平,因此考虑海缆的制造成本和敷设成本,存在较明显的投资浪费;若采用以海水作为回流的方案,在长距离的电流输送过程中会造成沿线水下管路、设施的电腐蚀,并且会对海洋生态环境造成一定影响。因此,为直流输电系统寻求更为经济和安全的回流方式至关重要。且目前常规静态直流海缆在受外力频繁移动的情况下会对海缆内部电气绝缘组件及光通信组件产生机械及疲劳作用,长期累积会造成海缆电单元及光单元的外力损伤,对海缆电气性能及使用寿命产生负面影响。
发明内容
鉴于以上内容,有必要提供一种改进的直流海缆。
本发明提供的技术方案为:
一种直流海缆,其包括由内向外依次设置的导体单元、绝缘单元 及保护单元,所述保护单元包括由内向外依次设置的阻水带、金属护层及外护套,所述直流海缆内还设置有回流单元,所述回流单元与所述导体单元载流能力相同。
优选的,所述回流单元设置在所述金属护层的外周,所述回流单元包括由内向外依次设置的绝缘护套及回流导体层。
优选的,所述保护单元包括若干光纤单元及阵列设置的回流导体,所述光纤单元嵌设在所述回流导体层内并圆周阵列设置。
优选的,所述回流导体外周包覆有绝缘部件。
优选的,所述回流导体层的外周设置有内护套,所述内护套与所述回流单元的外周贴合设置。
优选的,所述保护单元还包括纤维层及铠装层,所述纤维层与所述铠装层设置在所述外护套及所述回流单元之间。
优选的,所述绝缘单元外周设置有若干圆周阵列的光纤单元,所述光纤单元设置在所述金属护层的内侧,所述光纤单元圆周方向的两侧分别设置有光纤单元加强件。
优选的,所述回流单元为设置在所述外护套内侧的铠装层。
优选的,所述回流单元设置在所述金属护层的内侧,所述回流单元包括若干绞合铜丝,所述绞合铜丝圆周阵列并嵌设在相邻所述光纤单元之间。
优选的,所述绝缘单元包括屏蔽层及绝缘层,所述屏蔽层设置为两层,两层所述屏蔽层分别贴合设置在所述绝缘层的内外两侧。
与现有技术相比,上述的直流海缆,通过在海缆中设置回流单元,并通过将回流单元设计成与导体单元载流能力相同。当同一直流输电回路中的某一根直流海缆出现故障时,完好的另一根直流海缆中的回流导体层可作为回流路径,与自身的导体构成回路继续工作,保障完好的一根动态直流海缆具备原有输电回路50%的电能输送能力。
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明一实施方式中直流海缆的截面示意图。
图2为本发明第二实施方式中直流海缆的截面示意图。
图3为本发明第二实施方式中回流导体的截面示意图。
图4为本发明第三实施方式中直流海缆的截面示意图。
图5为本发明第四实施方式中直流海缆的截面示意图。
图6为本发明第五实施方式中直流海缆的截面示意图。
附图标记说明:
直流海缆 | 100 |
导体单元 | 10 |
绝缘单元 | 30 |
屏蔽层 | 31 |
内屏蔽层 | 311 |
外屏蔽层 | 313 |
绝缘层 | 33 |
回流单元 | 50 |
绝缘护套 | 51 |
回流导体层 | 53 |
回流导体 | 531 |
绝缘部件 | 5313 |
内护套 | 55 |
绞合铜丝 | 57 |
保护单元 | 70 |
阻水带 | 71 |
金属护层 | 73 |
光纤单元 | 74 |
光纤单元加强件 | 741 |
纤维层 | 75 |
内聚酯纤维包带 | 751 |
外聚酯纤维包带 | 753 |
铠装层 | 77 |
外护套 | 79 |
如下具体实施方式将结合上述附图进一步说明本发明实施例。
为了能够更清楚地理解本发明实施例的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明实施例,所描述的实施方式仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明实施例保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明实施例的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明实施例。
本文中的载流能力:指不导致导体或其绝缘层融化的可通过的最大电流。
实施例1:
请参阅图1,一种直流海缆100包括导体单元10、绝缘单元30、回流单元50及保护单元70,所述导体单元10、绝缘单元30及保护单元70由内向外依次设置,所述回流单元50嵌设在所述保护单元70内。在一实施方式中,所述导体单元10为阻水导体。
在一实施方式中,所述绝缘单元30包括屏蔽层31及绝缘层33,其中所述屏蔽层31设置为两层,两层所述屏蔽层31分别为内屏蔽层311及外屏蔽层313,且所述内屏蔽层311及所述外屏蔽层313分别设置在所述绝缘层33的内外两侧。
在一实施方式中,所述保护单元70包括阻水带71、金属护层73、若干光纤单元74、纤维层75、铠装层77及外护套79,其中所述阻水带71设置在所述外屏蔽层313的外周并与之相互贴合设置,所述 阻水带71、金属护层73、若干光纤单元74、铠装层77及外护套79由内向外依次设置,所述光纤单元74圆周阵列设置在所述金属护层73的外周,所述纤维层75设置有两层,两层所述纤维层75分别为内聚酯纤维包带751及外聚酯纤维包带753,所述内聚酯纤维包带751及外聚酯纤维包带753分别设置在所述铠装层77的内外两侧。
在一实施方式中,所述光纤单元74包括四组,四组所述光纤单元74呈90°圆周阵列设置在所述回流单元50中,在实现光纤通信基础上,海缆正常运行或者回流导体层载流时可直接采集回流单元50温度数据,有效监控海缆运行状态及对周围环境产生温升,此外光单元74呈90度的间隔设置有利于保证在某一方向上由于受外力导致光纤单元74损伤的情况下,与其相垂直方向上的光纤单元74仍可继续工作,避免一次性损失全部通信和监测功能,造成系统监控失灵或维修成本浪费。
在一实施方式中,所述回流单元50包括由内向外依次设置的绝缘护套51、回流导体层53及内护套55,其中所述绝缘护套51设置在所述金属护层73的外周,所述回流导体层53与所述光纤单元74阵列形成的圆周直径相同,所述回流导体层53包括若干回流导体531,若干所述回流导体531嵌设在所述光纤单元74之间并且所述回流导体531的导体部分与所述导体单元10具有相同的载流能力,在一实施方式中,所述回流导体531的导体部分与所述导体单元10材质相同并且所述回流导体531导体部分的横截面积的总和与所述导体单元10的横截面积相等。所述内护套55设置在所述内聚酯纤维包带751与所述铠装层77之间。
本发明在直流海缆100中设置若干根回流导体531组成回流导体层53,并且所述回流导体531采用与导体单元10相同材质,且回流导体531与所述导体单元10载流能力相同。在回流导体内外设置一层绝缘护套51及内护套55,满足回流时系统产生的电压绝缘需要。当在直流输电回路某一极海缆发生故障时,另一极海缆可借助自身结 构中的回流导体层53持续工作,与系统配合实现50%额定容量的电能输送。
实施例2:
请参阅图2,本实施例与实施例1基本相同,其不同之处在于:所述保护单元70中所述纤维层75仅设置有一层,且所述纤维层75设置在所述铠装层77与所述光纤单元74之间。
所述回流导体层53包括绝缘护套51及回流导体层53,其中所述绝缘护套51设置在所述金属护层73的外周,所述回流导体层53包括若干回流导体531,若干所述回流导体531嵌设在所述光纤单元74之间以实现所述回流导体531的导体部分与所述导体单元10具有相同的载流能力,在一实施方式中,回流导体531的导体部分与所述导体单元10具有相同的载流能力通过所述回流导体531导体部分采用了与所述导体单元10相同的材质及所述回流导体531导体部分的横截面积总和与所述导体单元10的横截面积相同来实现。在一实施方式中,请参阅图3,所述回流导体531外周包覆有绝缘部件5313。在其他实施方式中,请参阅图4,位于外护套79内侧的铠装层77可以去除,从而使得直流海缆100可以应用于陆地直流电缆线路建设。
实施例3:
请参阅图5,本实施例与实施例1基本相同,其不同之处在于:所述保护单元70包括由内向外依次设置的阻水带71、金属护层73、绝缘护套51、铠装层77及外护套79,本实施方式中,所述回流单元50为所述保护单元70中的铠装层77,所述铠装层77的截面积在选取时应具备与导体单元10相同的载流能力。且在所述阻水带71与所述金属护层73之间还设置有若干阵列设置的光纤单元74,所述光纤单元74圆周方向的两侧分别设置有光纤单元加强件741,用于保证光纤单元74在生产、运输、安装及运行过程中的完好。本实施方式中,若同一直流输电回路中的某一根动态直流海缆100出现故障时,完好的另一根动态直流海缆100采用铠装层77作为回流路径,在一 实施方式中,所述铠装层77使用钢丝作为铠装材料,在其他实施方式中,所述铠装层77还可以选择铜、铝或铝合金等材质作为铠装材料。
在另一实施方式中,请参阅图6,所述回流导体层53包括若干绞合铜丝57,所述绞合铜丝57设置在相邻所述光纤单元74之间,所述绞合铜丝57及所述金属护层73两者结合与所述导体单元10具有相同的载流能力,在一实施方式中,在对绞合铜丝57及金属护层74选取时,通过选取两者截面积来确定两者结合具备与导体单元10具有相同的载流能力。当同一直流输电回路中的某一根动态直流海缆100出现故障时,完好的另一根动态直流海缆100采用金属护层73和绞合铜丝57共同作为回流路径,从而不需额外增加铅套厚度来满足载流能力,可减少海缆整体重量及成本。
以上实施方式仅用以说明本发明实施例的技术方案而非限制,尽管参照以上较佳实施方式对本发明实施例进行了详细说明,本领域的普通技术人员应当理解,可以对本发明实施例的技术方案进行修改或等同替换都不应脱离本发明实施例的技术方案的精神和范围。
Claims (10)
- 一种直流海缆,其包括由内向外依次设置的导体单元、绝缘单元及保护单元,其特征在于:所述保护单元包括由内向外依次设置的阻水带、金属护层及外护套,所述直流海缆内还设置有回流单元,所述回流单元与所述导体单元载流能力相同。
- 根据权利要求1所述的直流海缆,其特征在于:所述回流单元设置在所述金属护层的外周,所述回流单元包括由内向外依次设置的绝缘护套及回流导体层。
- 根据权利要求2所述的直流海缆,其特征在于:所述保护单元包括若干光纤单元及阵列设置的回流导体,所述光纤单元嵌设在所述回流导体层内并圆周阵列设置。
- 根据权利要求3所述的直流海缆,其特征在于:所述回流导体外周包覆有绝缘部件。
- 根据权利要求4所述的直流海缆,其特征在于:所述回流导体层的外周设置有内护套,所述内护套与所述回流单元的外周贴合设置。
- 根据权利要求3所述的直流海缆,其特征在于:所述保护单元还包括纤维层及铠装层,所述纤维层与所述铠装层设置在所述外护套及所述回流单元之间。
- 根据权利要求1所述的直流海缆,其特征在于:所述绝缘单元外周设置有若干圆周阵列的光纤单元,所述光纤单元设置在所述金属护层的内侧,所述光纤单元圆周方向的两侧分别设置有光纤单元加强件。
- 根据权利要求7所述的直流海缆,其特征在于:所述回流单元为设置在所述外护套内侧的铠装层。
- 根据权利要求7所述的直流海缆,其特征在于:所述回流单元设置在所述金属护层的内侧,所述回流单元包括若干绞合铜丝,所述绞合铜丝圆周阵列并嵌设在相邻所述光纤单元之间。
- 根据权利要求1所述的直流海缆,其特征在于:所述绝缘单元包括屏蔽层及绝缘层,所述屏蔽层设置为两层,两层所述屏蔽层分别贴合设置在所述绝缘层的内外两侧。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19952337.4A EP4060685A4 (en) | 2019-11-15 | 2019-12-18 | SUBMARINE DIRECT CURRENT CABLE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911122420.6A CN110828052A (zh) | 2019-11-15 | 2019-11-15 | 直流海缆 |
CN201911122420.6 | 2019-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021093085A1 true WO2021093085A1 (zh) | 2021-05-20 |
Family
ID=69556056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/126418 WO2021093085A1 (zh) | 2019-11-15 | 2019-12-18 | 直流海缆 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4060685A4 (zh) |
CN (1) | CN110828052A (zh) |
WO (1) | WO2021093085A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111681828B (zh) * | 2020-04-29 | 2022-05-03 | 江苏亨通海洋光网系统有限公司 | 复合海缆 |
CN111477400A (zh) * | 2020-05-18 | 2020-07-31 | 江苏东强股份有限公司 | 分布式光纤测温电力电缆 |
CN116259440A (zh) * | 2023-04-23 | 2023-06-13 | 江苏亨通电力电缆有限公司 | 一种电磁感应自抑制接触网馈电回流复合电缆及制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101069247A (zh) * | 2004-12-02 | 2007-11-07 | 住友电气工业株式会社 | 超导电缆 |
CN101211680A (zh) * | 2006-12-26 | 2008-07-02 | 上海电缆厂有限公司 | 一种光纤复合电力海底充油电缆 |
CN201681655U (zh) * | 2010-03-19 | 2010-12-22 | 上海浦东电线电缆(集团)有限公司 | 多用途超高压直流屏蔽电缆 |
CN202307273U (zh) * | 2011-09-29 | 2012-07-04 | 宜昌联邦电缆有限公司 | 用于超高压交流输电的交联聚乙烯绝缘单芯海底电力电缆 |
CN209487212U (zh) * | 2019-05-13 | 2019-10-11 | 远东电缆有限公司 | 轨道交通用智能监控环网电缆 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO310388B1 (no) * | 1998-02-19 | 2001-06-25 | Cit Alcatel | Höyspenningskabel og undersjöisk kabelinstallasjon |
JP3107302B2 (ja) * | 1999-03-15 | 2000-11-06 | 住友電気工業株式会社 | 直流ソリッド電力ケーブルおよび直流ソリッド電力ケーブル線路ならびに直流ソリッド電力ケーブル線路の監視方法 |
CN204296141U (zh) * | 2014-11-27 | 2015-04-29 | 苏州华达彩印包装有限公司 | 防腐屏蔽膜及其海底电缆 |
GB201521160D0 (en) * | 2015-12-01 | 2016-01-13 | Zytech Ltd | Cable |
CN105405497A (zh) * | 2015-12-16 | 2016-03-16 | 中天科技海缆有限公司 | 城市配网系统用正负极合一光纤复合柔性直流中压电缆 |
CN205542057U (zh) * | 2016-02-19 | 2016-08-31 | 富士康(昆山)电脑接插件有限公司 | 线缆 |
CN106128625A (zh) * | 2016-08-29 | 2016-11-16 | 中天科技海缆有限公司 | ±500kV SZ形型线导体铜丝屏蔽光纤复合直流电缆 |
CN207517430U (zh) * | 2017-11-14 | 2018-06-19 | 江苏亨通电力电缆有限公司 | 云轨交通用高温高可靠柔性直流电缆 |
CN109215857A (zh) * | 2018-08-31 | 2019-01-15 | 江苏艾立可电子科技有限公司 | 一种高性能水下焊接电缆 |
-
2019
- 2019-11-15 CN CN201911122420.6A patent/CN110828052A/zh active Pending
- 2019-12-18 EP EP19952337.4A patent/EP4060685A4/en active Pending
- 2019-12-18 WO PCT/CN2019/126418 patent/WO2021093085A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101069247A (zh) * | 2004-12-02 | 2007-11-07 | 住友电气工业株式会社 | 超导电缆 |
CN101211680A (zh) * | 2006-12-26 | 2008-07-02 | 上海电缆厂有限公司 | 一种光纤复合电力海底充油电缆 |
CN201681655U (zh) * | 2010-03-19 | 2010-12-22 | 上海浦东电线电缆(集团)有限公司 | 多用途超高压直流屏蔽电缆 |
CN202307273U (zh) * | 2011-09-29 | 2012-07-04 | 宜昌联邦电缆有限公司 | 用于超高压交流输电的交联聚乙烯绝缘单芯海底电力电缆 |
CN209487212U (zh) * | 2019-05-13 | 2019-10-11 | 远东电缆有限公司 | 轨道交通用智能监控环网电缆 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4060685A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP4060685A4 (en) | 2023-12-06 |
CN110828052A (zh) | 2020-02-21 |
EP4060685A1 (en) | 2022-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021093085A1 (zh) | 直流海缆 | |
EP4163931A1 (en) | High-voltage dynamic submarine cable | |
US10580552B2 (en) | Electric power transmission cables | |
RU113863U1 (ru) | Симметричный низкочастотный кабель связи | |
WO2021027220A1 (zh) | 海底光电复合缆 | |
EP3564970A1 (en) | Single-core submarine cable | |
JP4668003B2 (ja) | 双極直流送電用同軸ケーブル | |
CN111968780A (zh) | 一种中低压海缆 | |
CN212380158U (zh) | 一种复合电缆 | |
JP3107302B2 (ja) | 直流ソリッド電力ケーブルおよび直流ソリッド電力ケーブル線路ならびに直流ソリッド電力ケーブル線路の監視方法 | |
CN213635499U (zh) | 一种新型耐腐蚀防白蚁高压电缆 | |
CN210052553U (zh) | 海底光电复合缆 | |
CN209880223U (zh) | 一种自承重电力电缆 | |
CN210575190U (zh) | 一种隔离型耐腐蚀电缆 | |
CN209766061U (zh) | 一种硅橡胶绝缘耐火电缆 | |
CN206134332U (zh) | 耐高温控制电缆 | |
CN206471135U (zh) | 耐高温控制软电缆 | |
CN109273164A (zh) | 耐高温光纤复合电力电缆 | |
AU2015101716A4 (en) | Electrical cable for ships | |
CN219591142U (zh) | 一种电气工程用高强度且多层防护的架空绝缘电缆 | |
CN215645350U (zh) | 一种加强型防火电缆 | |
CN221427432U (zh) | 一种舰船用乙丙橡皮绝缘无卤低烟低毒阻燃中压电缆 | |
CN209747208U (zh) | 新型抗干扰、抗冲击高阻燃通信电缆 | |
CN217506976U (zh) | 一种高导电性耐腐蚀效果好的新型电缆 | |
US20230018984A1 (en) | Automatic Leakage Detection Line |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19952337 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019952337 Country of ref document: EP Effective date: 20220615 |