WO2021092876A1 - Associating a repetition level for an uplink message with a transmission power differential - Google Patents

Associating a repetition level for an uplink message with a transmission power differential Download PDF

Info

Publication number
WO2021092876A1
WO2021092876A1 PCT/CN2019/118686 CN2019118686W WO2021092876A1 WO 2021092876 A1 WO2021092876 A1 WO 2021092876A1 CN 2019118686 W CN2019118686 W CN 2019118686W WO 2021092876 A1 WO2021092876 A1 WO 2021092876A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
uplink message
power
group
preamble
Prior art date
Application number
PCT/CN2019/118686
Other languages
French (fr)
Inventor
Qiaoyu Li
Chao Wei
Ruiming Zheng
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/118686 priority Critical patent/WO2021092876A1/en
Publication of WO2021092876A1 publication Critical patent/WO2021092876A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment

Definitions

  • aspects of the disclosure relate generally to wireless communications and to techniques and apparatuses related to associating a repetition level for an uplink message with a transmission power differential.
  • Wireless communication systems have developed through various generations, including a first-generation analog wireless phone service (1G) , a second-generation (2G) digital wireless phone service (including interim 2.5G networks) , a third-generation (3G) high speed data, Internet-capable wireless service, and a fourth-generation (4G) service (e.g., Long-Term Evolution (LTE) , WiMax) .
  • 1G first-generation analog wireless phone service
  • 2G second-generation
  • 3G third-generation
  • 4G fourth-generation
  • LTE Long-Term Evolution
  • WiMax Worldwide Interoperability for Microwave Access
  • Examples of known cellular systems include the cellular Analog Advanced Mobile Phone System (AMPS) , and digital cellular systems based on code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , the Global System for Mobile access (GSM) variation of TDMA, etc.
  • AMPS cellular Analog Advanced Mobile Phone System
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • GSM Global System for Mobile access
  • a fifth generation (5G) mobile standard calls for higher data transfer speeds, greater numbers of connections, and better coverage, among other improvements.
  • the 5G standard also referred to as “New Radio” or “NR”
  • NR Next Generation Mobile Networks Alliance
  • NR Next Generation Mobile Networks Alliance
  • 5G mobile communications should be significantly enhanced compared to the current 4G /LTE standard.
  • signaling efficiencies should be enhanced and latency should be substantially reduced compared to current standards.
  • NR-Light a number of UE types are being allocated a new UE classification denoted as ‘NR-Light’ .
  • UE types that fall under the NR-Light classification include wearable devices (e.g., smart watches, etc. ) , industrial sensors, video cameras (e.g., surveillance cameras, etc. ) , and so on.
  • the UE types grouped under the NR-Light classification are associated with lower communicative capacity. For example, relative to ‘normal’ UEs (e.g., UEs not classified as NR-Light) , NR-Light UEs may be limited in terms of maximum bandwidth (e.g., 5 MHz, 10 MHz, 20 MHz, etc.
  • NR-Light UEs may also be sensitive in terms of power consumption (e.g., requiring a long battery life, such as several years) and may be highly mobile. Moreover, in some designs, it is generally desirable for NR-Light UEs to co-exist with UEs implementing protocols such as eMBB, URLLC, LTE NB-IoT/MTC, and so on.
  • protocols such as eMBB, URLLC, LTE NB-IoT/MTC, and so on.
  • Some UEs such as NR-Light UEs, have a lower maximum transmission power than other UE types, which may result in transmission failure for a Msg-3 of a 4-Step PRACH procedure.
  • Conventional systems do not permit a Msg-3 repetition level to be indicated via Msg-1.
  • Embodiments of the disclosure are directed associating a repetition level for at least one uplink message (e.g., Msg-3 PUSCH and/or Msg-3 PUCCH) with a differential between an identified transmission power for the at least one uplink message (e.g., a desired transmission level that does not factor the actual transmission power capacity of a respective UE) and a maximum transmission power of the respective UE.
  • a preamble e.g., Msg-1 preceding the at least one uplink message can be transmitted to the base station in a manner that indicates the Msg-3 repetition level (e.g., via a preamble sequence group used on a particular RO for transmission of Msg-1) .
  • the various embodiments described below are implemented with respect to UEs that belong to a particular UE class (e.g., power-constrained UEs such as NR-Light UEs) .
  • the apparatus may be a UE.
  • the UE may identify a transmission power for transmission of at least one uplink message associated with a random access channel (RACH) procedure.
  • the UE may further determine that the identified transmission power for the at least one uplink message exceeds a maximum transmission power associated with the UE.
  • the UE may further determine a repetition level for transmission of the at least one uplink message at the maximum transmission power based on a difference between the identified transmission power and the maximum transmission power.
  • the UE may further transmit the at least one uplink message at the maximum transmission power in accordance with the determined repetition level
  • the apparatus may be a base station.
  • the base station may transmit information indicative of an association between a plurality of repetition levels for transmission of at least one uplink message associated with a random access channel (RACH) procedure and a respective plurality of power differential ranges, each of the plurality of power differential ranges associated with a different range of differences between an identified transmission power for transmission of the at least one uplink message by a respective UE and a maximum transmission power associated with the respective UE.
  • the base station may further receive, from a UE in response to the transmitted information, the at least one uplink message in accordance with one of the plurality of repetition levels.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, cIoT user equipment, base station, wireless communication device, and/or processing system as substantially described with reference to and as illustrated by the drawings, and specification.
  • FIG. 1 is diagram illustrating an example of a wireless communication network.
  • FIG. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless communication network.
  • FIG. 3 illustrates a 4-Step Physical Random Access Channel (PRACH) procedure in accordance with an embodiment of the disclosure.
  • PRACH Physical Random Access Channel
  • FIG. 4A illustrates examples of preamble transmission schemes that are characterized as long preambles in accordance with an embodiment of the disclosure.
  • FIG. 4B illustrates examples of preamble transmission schemes that are characterized as short preambles in accordance with an embodiment of the disclosure.
  • FIG. 5 illustrates an exemplary process of wireless communications according to an aspect of the disclosure.
  • FIG. 6 illustrates an exemplary process of wireless communications according to an aspect of the disclosure.
  • FIG. 7 illustrates an example implementation of the processes of FIGS. 5-6 in accordance with an embodiment of the disclosure.
  • FIG. 8 illustrates Reverse Access Channel (RACH) opportunity (RO) configurations in accordance with an embodiment of the disclosure.
  • FIG. 9 is a conceptual data flow diagram illustrating data flow between different means/components according to an aspect of the disclosure.
  • FIG. 10 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system according to an aspect of the disclosure.
  • FIG. 11 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system according to another aspect of the disclosure.
  • processors include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • PLDs programmable logic devices
  • state machines gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • One or more processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , compact disk ROM (CD-ROM) or other optical disk storage, magnetic disk storage or other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • CD-ROM compact disk ROM
  • magnetic disk storage magnetic disk storage or other magnetic storage devices
  • FIG. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a 5G BS, a Node B, a gNB, a 5G NB, an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • 5G BS base station
  • gNB gNB
  • TRP AP
  • AP node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC machine-type communication
  • eMTC evolved or enhanced machine-type communication
  • MTC may refer to MTC or eMTC.
  • MTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT UEs, eMTC UEs, coverage enhancement (CE) mode UEs, bandwidth-limited (BL) UEs, and other types of UEs that operate using diminished power consumption relative to a baseline UE may be referred to herein as cellular IoT (cIoT) UEs.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • 5G RAT networks may be deployed.
  • a scheduling entity e.g., a base station
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Access to the air interface may be controlled, for example, using a unified access control (UAC) system in which UEs are associated with an access identity (e.g., an access class and/or the like) , which may aim to ensure that certain high-priority UEs (e.g., emergency response UEs, mission critical UEs, and/or the like) can access the air interface even in congested conditions.
  • UAC unified access control
  • Updates to the UAC parameters e.g., priority levels associated with access identities, which access identities are permitted to access the air interface, and/or the like
  • a message such as a paging message or a direct indication information, which may conserve battery power of cIoT UEs.
  • Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (e.g., one or more other UEs) . In this example, the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
  • P2P peer-to-peer
  • mesh network UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
  • a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
  • FIG. 1 is provided merely as an example. Other examples may differ from what is described with regard to FIG. 1.
  • FIG. 2 shows a block diagram 200 of a design of base station 110 and UE 120, which may be one of the base stations and one of the UEs in FIG. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, may select a modulation and coding scheme (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) , and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding scheme
  • CQIs channel quality indicators
  • Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) , and/or the like) and control information (e.g., CQI requests, grants, upper layer
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for orthogonal frequency divisional multiplexing (OFDM) and/or the like) to obtain an output sample stream.
  • OFDM orthogonal frequency divisional multiplexing
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive (RX) processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , a reference signal received quality (RSRQ) , a channel quality indicator (CQI) , and/or the like.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of FIG. 2 may perform one or more techniques associated with UAC parameter updating, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of FIG. 2 may perform or direct operations of, for example, process 500 of FIG. 5, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for BS 110 and UE 120, respectively.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • FIG. 2 is provided merely as an example. Other examples may differ from what is described with regard to FIG. 2.
  • UEs various device types may be characterized as UEs. Starting in 3GPP Rel. 17, a number of these UE types are being allocated a new UE classification denoted as ‘NR-Light’ . Examples of UE types that fall under the NR-Light classification include wearable devices (e.g., smart watches, etc. ) , industrial sensors, video cameras (e.g., surveillance cameras, etc. ) , and so on. Generally, the UE types grouped under the NR-Light classification are associated with lower communicative capacity.
  • wearable devices e.g., smart watches, etc.
  • video cameras e.g., surveillance cameras, etc.
  • NR-Light UEs may be limited in terms of maximum bandwidth (e.g., 5 MHz, 10 MHz, 20 MHz, etc. ) , maximum transmission power (e.g., 20 dBm, 14 dBm, etc. ) , number of receive antennas (e.g., 1 receive antenna, 2 receive antennas, etc. ) , and so on.
  • Some NR-Light UEs may also be sensitive in terms of power consumption (e.g., requiring a long battery life, such as several years) and may be highly mobile.
  • FIG. 3 illustrates a 4-Step Physical Random Access Channel (PRACH) procedure 300 in accordance with an embodiment of the disclosure.
  • the 4-Step PRACH procedure 300 is an initial access procedure by which a UE (e.g., UE 120) can initiate communication with a BS (e.g., BS 110) .
  • a UE e.g., UE 120
  • BS e.g., BS 110
  • a Message 1 ( “Msg-1” ) of the 4-Step PRACH procedure 300 is transmitted by UE 120 to BS 110.
  • the Msg-1 of 302 may be characterized herein as a PRACH preamble.
  • the Msg-1 of 302 may be implemented a Zadoff-Chu sequence which indicates the presence of a random access attempt and allows BS 110 to estimate between BS 110 and UE 120.
  • a Message 2 ( “Msg-2” ) of the 4-Step PRACH procedure 300 is transmitted by BS 110 to UE 120.
  • the Msg-2 of 304 may be characterized herein as a random access response (RAR) .
  • RAR random access response
  • BS 110 may transmit the Msg-2 of 304 on a downlink (DL) shared channel (SCH) comprising:
  • TC-RNTI Temporary Cell Radio Network Temporary Identifier
  • the Msg-2 of 304 may be scheduled on the SL SCH and indicated on a Physical Downlink Control Channel (PDCCH) using an identity (e.g., a Random Access RNTI (RA-RNTI) which is indicated by the time and frequency resource (s) upon which the PRACH preamble (or Msg-1) from 302 is transmitted.
  • RA-RNTI Random Access RNTI
  • a Message 3 ( “Msg-3” ) comprising at least a UE identifier (ID) of UE 120 is transmitted by UE 120 to BS 110.
  • the Msg-3 is transmitted over Physical Uplink Shared Channel (PUSCH) and may be referred to as a Msg-3 PUSCH.
  • the Msg-3 transmitted at 306 may be transmitted via the UL SCH resource (s) indicated by the Msg-2 from 304.
  • device scrambling is used for the transmission of Msg-3 at 306 (e.g., scrambling based on the TC-RNTI assigned via the Msg-2 from 304) .
  • the C-RNTI may be used as the UE-ID in the Msg-3 at 306.
  • a core network device identifier such as a 40-bit Serving Temporary Mobile Subscriber Identity (S-TMSI) can be used as the UE-ID in the Msg-3 at 306.
  • another Msg-3 is optionally transmitted as a hybrid automatic repeat request (HARQ) acknowledgment (ACK) to the Msg-2 from 304.
  • the Msg-3 is transmitted via PUCCH and may be referred to as a Msg-3 PUCCH.
  • whether or not the Msg-3 PUCCH is transmitted at 308 may be configured via RRC signaling or via one or more information elements (IEs) in a system information block (SIB) .
  • IEs information elements
  • a Message 4 ( “Msg-4” ) of the 4-Step PRACH procedure 300 is transmitted by BS 110 to UE 120.
  • the Msg-4 of 308 comprises a downlink message for contention resolution as there is some probability of contention associated with the Msg-3 transmissions at 306-308. For example, if multiple UEs transmit the same Msg-1 (302) at the same time, then the multiple UEs may react to the same Msg-2 (304) such that a collision occurs.
  • contention resolution may be handled by addressing UE 120 on the PDCCH using the C-RNTI.
  • Msg-4 contention resolution may be handled by addressing UE 120 on the PDCCH using the TC-RNTI, with UE 120 comparing (i) the UE-ID received within a PDSCH scheduled by the PDCCH of Msg-4 with (ii) the UE-ID transmitted in the Msg-3 PUSCH at 306, so as to determine the 4-Step PRACH procedure 300 successful if a match is observed, after which the TC-RNTI is confirmed as C-RNTI.
  • the PRACH preamble (e.g., Msg-1 at 302 of FIG. 3) may be configured in accordance with any of a variety of preamble transmission schemes, which are generally classified as either long preambles or short preambles. In some designs, a total of 13 preamble transmission schemes are defined.
  • FIG. 4A illustrates examples of preamble transmission schemes 400A that are characterized as long preambles in accordance with an embodiment of the disclosure.
  • FIG. 4B illustrates examples of preamble transmission schemes 400B that are characterized as short preambles in accordance with an embodiment of the disclosure.
  • the various preamble transmission schemes 400A-400B may differ in terms of various parameters, including by way of example one or more of:
  • Sequence length (e.g., denoted as “L” in FIGS. 4A-4B)
  • Msg-1 at 302 is successfully received at BS 110, but Msg-3 at 306 (e.g., and/or the optional Msg-3 PUCCH at 308) is not successfully received at BS 110.
  • Msg-1 at 302 may be based on relatively long preamble sequences which can be received reliably at BS 110, whereas Msg-3 at 306 (e.g., and/or the optional Msg-3 PUCCH at 308) can be based on OFDM signals and may comprise a larger payload than the Msg-1 at 302 which requires more transmission power to reliably transmit.
  • some UEs such as NR-Light UEs, have a lower maximum transmission power than other UE types, which may result in transmission failure for the Msg-3 at 306 (e.g., and/or the optional Msg-3 PUCCH at 308) .
  • the Msg-3 at 306 e.g., and/or the optional Msg-3 PUCCH at 308
  • conventional systems do not permit a Msg-3 repetition level to be indicated via Msg-1.
  • Embodiments of the disclosure are directed associating a repetition level for at least one uplink message (e.g., Msg-3 PUSCH and/or Msg-3 PUCCH) with a differential between an identified transmission power for the at least one uplink message (e.g., a desired transmission level that does not factor the actual transmission power capacity of a respective UE) and a maximum transmission power of the respective UE.
  • a preamble e.g., Msg-1 preceding the at least one uplink message can be transmitted to the base station in a manner that indicates the Msg-3 repetition level (e.g., via a preamble sequence group used on a particular RO for transmission of Msg-1) .
  • a “group” of ROs refers to a grouping of one or more ROs.
  • FIG. 5 illustrates an exemplary process 500 of wireless communications according to an aspect of the disclosure.
  • the process 500 of FIG. 5 is performed by UE 120.
  • UE 120 e.g., antenna (s) 252a ... 252r, demodulators (s) 254a ... 254r, MIMO detector 256, RX processor 258) optionally receives, from a base station, information indicative of an association between a plurality of repetition levels and a plurality of power differential ranges.
  • 502 is optional because this information may alternatively be pre-defined (e.g., via the relevant 3GPP standard) .
  • UE 120 may identify (e.g., calculate) a differential between an identified transmission power for Msg-3 (e.g., a desired transmission level that does not factor the actual transmission power capacity of UE 120) and a maximum transmission power of UE 120, with the repetition level scaling higher at higher power differential ranges.
  • the received information at 502 may be received from the base station via one or more SIBs (e.g., SIB1) or via RRC signaling.
  • UE 120 e.g., antenna (s) 252a ... 252r, demodulators (s) 254a ... 254r, MIMO detector 256, RX processor 258) optionally receives, from the base station, information indicative of a power offset that is specific to a group of RACH opportunities (ROs) (e.g., a group of ROs dedicated to a UE class that is power-constrained, such as NR-Light UEs) .
  • ROs RACH opportunities
  • the identified power level at 508 may be calculated as a function of a pathloss parameter, a transmission power associated with a preamble of the RACH procedure, and an offset from the transmission power associated with the preamble of the RACH procedure.
  • the RO-group-specific-power may be configured to bias the transmission power calculation at 508.
  • at least one other group of ROs e.g., a group of ROs that is not dedicated to a UE class that is power-constrained
  • the received RO-group-specific power offset at 504 may be received from the base station via one or more SIBs (e.g., SIB1) or via RRC signaling.
  • UE 120 optionally performs one or more signal reception quality measurements associated with a downlink signal on a downlink channel.
  • the downlink signal may be a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • the one or more signal reception quality measurements comprise at least an RSRP of the downlink signal.
  • the one or more signal reception quality measurements may be used to facilitate RO group selection, Msg-3 repetition level identification, etc.
  • UE 120 e.g., controller/processor 240 identifies a transmission power for transmission of at least one uplink message (e.g., Msg-3 PUSCH and/or Msg-3 PUCCH) associated with a RACH procedure.
  • the identified power level at 508 may be calculated as a function of a pathloss parameter, a transmission power associated with a preamble (e.g., Msg-1) of the RACH procedure, and an offset (e.g., a pre-defined offset per the relevant 3GPP standard) from the transmission power associated with the preamble of the RACH procedure.
  • the identified power level at 508 may further optionally be biased by the RO-group-specific power offset of 504.
  • UE 120 determines that the identified transmission power for the at least one uplink message exceeds a maximum transmission power associated with the UE.
  • the maximum transmission power for the UE can be a preset value stored locally on the UE.
  • the determination of 510 further determines a difference between the identified transmission power and the maximum transmission power.
  • UE 120 determines a repetition level for transmission of the at least one uplink message at the maximum transmission power based on a difference between the identified transmission power and the maximum transmission power.
  • the determined repetition level corresponds to the repetition level associated with a power differential range that includes the difference between the identified transmission power and the maximum transmission power.
  • an association between the plurality of repetition levels and the plurality of power differential ranges is pre-defined (e.g., in the relevant 3GPP standard) .
  • 502 may be performed so as to dynamically configure UE 120 with the association (e.g., via a SIB such as SIB1 or via RRC signaling) .
  • UE 120 e.g., controller/processor 240
  • UE 120 optionally identifies a group of ROs over which to transmit a preamble (e.g., Msg-1) associated with a RACH procedure.
  • the identification of 514 may comprise a selection of a group of ROs among the plurality of groups of RACH ROs based on the one or more signal reception quality measurements (e.g., from 506) .
  • the plurality of groups of ROs may comprise a first group of ROs dedicated to a first UE class (e.g., power-constrained UEs such as NR-Light UEs) and a second group of ROs shared between the first UE class and a second UE class (e.g., UEs that do not have the power constraints associated with the first UE class) .
  • the selection of 514 may be based on a relationship between the one or more signal reception quality measurements and at least one signal reception quality measurement threshold.
  • the first group of ROs may be selected if the one or more signal reception quality measurements are less than the at least one signal reception quality measurement threshold, and the second group of ROs may be selected if the one or more signal reception quality measurements are not less than the at least one signal reception quality measurement threshold.
  • lower-performing UEs of the first UE class may select the first group of ROs
  • higher-performing UEs of the first UE class may select the second group of ROs (which may also be used by UEs of the second UE class without requiring execution of the process 500 of FIG. 5 thereon) .
  • the at least one signal reception quality measurement threshold is pre-defined (e.g., in the relevant 3GPP standard) , while in other designs the at least one signal reception quality measurement threshold is configured dynamically (e.g., via a SIB such as SIB1 or via RRC signaling) .
  • the group of ROs can be identified at 514 in some other manner and need not be based upon the one or more signal reception quality measurements optionally performed at 514.
  • UE 120 optionally selects between a plurality of preamble sequence groups associated with the identified group of ROs based on the determined repetition level from 512 (e.g., for repetitive transmissions of Msg-3 PUSCH (s) , Msg-3 PUCCH (s) , etc. ) associated with the RACH procedure and subsequent to the preamble transmission, each of the plurality of preamble sequence groups associated with a different repetition level for the at least one uplink message.
  • the association between each of the plurality of preamble sequence groups and its respective repetition level for the at least one uplink message is pre-defined (e.g., in the relevant 3GPP standard) .
  • information indicative of the association between each of the plurality of preamble sequence groups and its respective repetition level for the at least one uplink message is received from a base station (e.g., via SIB or RRC signaling) .
  • the UE 120 optionally transmits the preamble on the identified group of ROs in association with the selected preamble sequence group.
  • the preamble transmitted at 518 may correspond to a Msg-1 of a 4-Step PRACH procedure.
  • the preamble of 518 may be configured to indicate to the base station that subsequent Msg-3 PUSCH (and/or the optional Msg-3 PUCCH) will be transmitted with repetitions, as will be described below in more detail.
  • the UE 120 transmits the at least one uplink message at the maximum transmission power in accordance with the determined repetition level.
  • the at least one uplink message transmitted at 512 may comprise Msg-3 PUSCH (s) (and/or the optional Msg-3 PUCCH (s) ) .
  • FIG. 6 illustrates an exemplary process 600 of wireless communications according to an aspect of the disclosure.
  • the process 600 of FIG. 6 is performed by BS 110.
  • BS 110 transmits, to a UE, information indicative of an association between a plurality of repetition levels for transmission of at least one uplink message (e.g., Msg-3 PUSCH and/or Msg-3 PUCCH) associated with a RACH procedure and a respective plurality of power differential ranges, each of the plurality of power differential ranges associated with a different range of differences between an identified transmission power for transmission of the at least one uplink message by a respective UE and a maximum transmission power associated with the respective UE.
  • uplink message e.g., Msg-3 PUSCH and/or Msg-3 PUCCH
  • the information transmitted at 602 may correspond to the information optionally received by UE 120 at 502 of FIG. 5.
  • the transmitted information at 602 may be transmitted by BS 110 via one or more SIBs (e.g., SIB1) or via RRC signaling.
  • BS 110 e.g., antenna (s) 234a ... 234t, modulators (s) 232a ... 232a, TX MIMO processor 230, TX processor 220
  • BS 110 optionally transmits information indicative of a power offset that is specific to a group of ROs (e.g., a group of ROs dedicated to a UE class that is power-constrained, such as NR-Light UEs) .
  • the RO-group-specific power offset optionally transmitted at 604 may correspond to the RO-group-specific power offset optionally received by UE 120 at 504 of FIG. 5, which is subsequently optionally used to calculate the identified transmission power at 508 of FIG. 5.
  • At least one other group of ROs may have a different RO-group-specific power offset or no RO-group-specific power offset.
  • the transmitted RO-group-specific power offset at 604 may be transmitted by BS 110 via one or more SIBs (e.g., SIB1) or via RRC signaling.
  • BS 110 receives a preamble associated with a RACH procedure over one a plurality of groups of ROs in association with one of a plurality of preamble sequence groups, each of the plurality of preamble sequence groups being associated with a different repetition level for at least one uplink message associated with the RACH procedure.
  • the preamble optionally received at 606 may correspond to a Msg-1 of a 4-Step PRACH procedure.
  • the preamble optionally received at 606 may correspond to the preamble optionally transmitted by UE 120 at 518 of FIG. 5.
  • BS 110 e.g., controller/processor 240
  • BS 110 optionally identifies a repetition level for the at least one uplink message based on the preamble sequence group associated with the group of ROs over which the preamble is received.
  • preamble sequence groups or particular combinations of preamble sequence groups and RO group
  • BS 110 receives, from a UE in response to the transmitted information, the at least one uplink message in accordance with one of the plurality of repetition levels.
  • each repetition of the at least one uplink message received at 610 is transmitted by the UE at its respective maximum transmission power level.
  • the at least one uplink message received at 610 may comprise Msg-3 PUSCH (s) (and/or the optional Msg-3 PUCCH (s) ) .
  • the optional measurement (s) at 506 of FIG. 5 may be used by UE 120 to identify the group of ROs at 514 via selection of a group of ROs among a plurality of groups of ROs based on the one or more signal reception quality measurements, whereby each group of ROs among the plurality of groups of ROs is associated with a different respective range of signal reception quality measurements.
  • the plurality of groups of ROs may comprise a first group of ROs associated with a first range of signal reception quality measurements and a second group of ROs associated with a second range of signal reception quality measurements that is higher than the first range of signal reception quality measurements
  • the first group of ROs may be associated with a first preamble transmission scheme
  • the second RO group may be associated with a second preamble transmission scheme.
  • the first preamble transmission scheme may be associated with a longer preamble sequence than the second preamble transmission scheme
  • the first preamble transmission scheme may be associated with a longer time-domain duration than the second preamble transmission scheme, or a combination thereof.
  • a particular combination of preamble sequence group and RO group may further optionally be associated with a particular PUCCH format for the (optional) Msg-3 PUCCH.
  • PUCCH formats are defined:
  • one of the five (5) PUCCH formats shown in Table 1 (above) for the (optional) Msg-3 PUCCH may be associated with a particular combination of RO group and preamble resource group.
  • a particular combination of preamble sequence group and RO group may further optionally be associated with one or more parameters for a downlink message, such as Msg-2.
  • the one or more parameters may comprise a particular set of Random Access Radio Network Temporary Identifier (RA-RNTI) candidates for the downlink message, a Random Access Response (RAR) window for the downlink message, a transmission bandwidth for the downlink message, or any combination thereof.
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • RAR Random Access Response
  • an RRC parameter (denoted as preambleReceivedTargetPower) is provided in SIB1 to indicate a target power level for Msg-1 as received at BS 110.
  • another RRC parameter (denoted as powerRampingStep) is provided in SIB1 to indicate a power ramping increment for Msg-1.
  • another RRC parameter (denoted as msg3-DeltaPreamble) is provided in SIB1 to indicate a power offset between the Msg-1 preamble and Msg-3 PUSCH (e.g., in Rel. 15, power offset options range from -2 dB to 12 dB in increments of 2 dB) .
  • the difference between the identified transmission power and the maximum transmission power described above with respect to 508-510 can be calculated by the UE as follows:
  • ULTxPowerShortfall P_cmax –Pathloss_in_dB –msg3-DeltaPreamble –Msg1TxPower – (optional) RO_specific_Offset,
  • RO_specific_Offset is a power offset specific to a particular group of ROs (e.g., pre-defined, configured via SIB or RRC signaling, see 504 of FIG. 5 and 604 of FIG. 6)
  • Msg1TxPower is transmission power of a Msg-1 as power is ramping up, as follows:
  • Msg1TxPower preambleReceivedTargetPower + Applied_RampingPower
  • the preambleReceivedTargetPower may also be specific to a particular group of ROs.
  • ULTxPowerShortfall ⁇ 0 dB if ULTxPowerShortfall ⁇ 0 dB, then the UE has sufficient transmission power to transmit Msg-3 at the identified transmission power, such that no repetitions are needed. However, if ULTxPowerShortfall ⁇ 0 dB, then there is a power shortfall. The degree of the power shortfall may be used to establish a repetition level preference for the Msg-3 transmission at 512. In one particular example:
  • FIG. 7 illustrates an example implementation 700 of the processes 500-600 of FIGS. 5-6 in accordance with an embodiment of the disclosure.
  • the process 700 constitutes a modified version of the 4-Step PRACH procedure 300 of FIG 3.
  • BS 110 transmits RO group information to UE 120 (e.g., via SIB or RRC signaling) .
  • the RO group information may alternative be pre-defined, in which case 702 can be omitted.
  • 704 e.g., as in 502 of FIG. 5 or 602 of FIG.
  • BS 110 optionally transmits a power offset specific to a particular group of ROs to UE 120 (e.g., via SIB or RRC signaling) .
  • BS 110 optionally transmits a downlink signal (e.g., PSS/SSS)
  • UE 120 optionally receives and measures the downlink signal.
  • UE 120 identifies an Msg-3 transmission power level.
  • UE 120 identifies an Msg-3 transmission power level.
  • 712 e.g., as in 510 of FIG.
  • UE 120 determines a transmission power shortfall (e.g., for convenience of explanation, it is assumed that there is an actual shortfall determined in the transmission power at 712) .
  • UE 120 determines a Msg-3 repetition level based on a degree of the transmission power shortfall.
  • UE 120 identifies a group of ROs (e.g., via selection based on the downlink signal measurement (s) from 708) .
  • UE 120 selects a preamble sequence group to be used on the selected RO group in association with the determined repetition level from 714.
  • UE 120 optionally transmits Msg-1 (or PRACH preamble) to BS 110.
  • Msg-1 or PRACH preamble
  • BS 110 optionally identifies the Msg-3 repetition level from the Msg-1 of 720 (e.g., based on which preamble sequence group was used, etc. ) .
  • BS 110 transmits Msg-2 to UE 120 (e.g., optionally modified in response to the Msg-1 from 720) .
  • UE 120 transmits Msg-3 PUSCH (s) to BS 110 (e.g., in accordance with the Msg-3 repetition level indicated by Msg-1 at 720) .
  • UE 120 optionally transmits Msg-3 PUCCH (s) to BS 110 (e.g., in accordance with the Msg-3 repetition level indicated by Msg-1 and/or a PUCCH format as indicated by Msg-1) .
  • BS 110 transmits Msg-4 to UE 120.
  • FIG. 8 illustrates RO configurations 800 in accordance with an embodiment of the disclosure.
  • ROs 802 and 804 are wide in terms of bandwidth and thin in terms of time relative to ROs 806, 808 and 810.
  • RO 806 may be FDMed while ROs 808-810 are TDMed.
  • ROs 812 and 814 may correspond to separate RO segments that are used in association with a time-domain OCC preamble transmission.
  • ROs 802-804 may form part of a group of ROs that are shared between UEs of the first and second UE classes, while ROs 806-814 may form part of a group of ROs that are dedicated to the first UE class (e.g., power-constrained UEs such as NR-Light UEs) .
  • first UE class e.g., power-constrained UEs such as NR-Light UEs
  • FIG. 9 is a conceptual data flow diagram 900 illustrating the data flow between different means/components in exemplary apparatuses 902 and 980 in accordance with an embodiment of the disclosure.
  • the apparatus 902 may be a UE (e.g., UE 120) in communication with an apparatus 980, which may be a base station (e.g., base station 110) .
  • UE e.g., UE 120
  • base station e.g., base station 110
  • the apparatus 902 includes a transmission component 904, which may correspond to transmitter circuitry in UE 120 as depicted in FIG. 2, including controller/processor 280, antenna (s) 252a ... 252r, modulators (s) 254a ... 254r, TX MIMO processor 266, TX processor 264.
  • the apparatus 902 further includes a transmission repetition manager 905, which may correspond to processor circuitry in UE 120 as depicted in FIG. 2, including controller/processor 280, etc.
  • the apparatus 902 further includes a transmission power manager 906, which may correspond to processor circuitry in UE 120 as depicted in FIG. 2, including controller/processor 280, etc.
  • the apparatus 902 further includes a reception component 908, which may correspond to receiver circuitry in UE 120 as depicted in FIG. 2, including controller/processor 280, antenna (s) 252a ... 252r, demodulators (s) 254a ... 254r, MIMO detector 256, RX processor 258.
  • the apparatus 980 includes a reception component 982, which may correspond to receiver circuitry in BS 110 as depicted in FIG. 2, including controller/processor 240, antenna (s) 234a ... 234r, demodulators (s) 232a ... 232r, MIMO detector 236, RX processor 238, communication unit 244.
  • the apparatus 980 further optionally includes an RO group information component 984, which may correspond to processor circuitry in BS 110 as depicted in FIG. 2, including controller/processor 240.
  • the apparatus 980 further includes an uplink transmission controller 985, which may correspond to processor circuitry in BS 110 as depicted in FIG. 2, including controller/processor 240.
  • the apparatus 980 further includes a transmission component 986, which may correspond to transmission circuitry in BS 110 as depicted in FIG. 2, including e.g., controller/processor 240, antenna (s) 234a ... 234r, modulators (s) 232a ... 232r, Tx MIMO processor 230, TX processor 220, communication unit 244.
  • a transmission component 986 which may correspond to transmission circuitry in BS 110 as depicted in FIG. 2, including e.g., controller/processor 240, antenna (s) 234a ... 234r, modulators (s) 232a ... 232r, Tx MIMO processor 230, TX processor 220, communication unit 244.
  • the RO group information component 984 optionally sends RO group information to the transmission component 986, which optionally transmits the RO group information to the reception component 908 (e.g., via SIB or RRC signaling) .
  • the transmission component 986 optionally transmits a downlink signal, which is measured at the reception component 908. These measurement (s) of the downlink signal may be used to facilitate selection of a group of ROs and/or preamble sequence group to use for Msg-1 transmission as described above.
  • the transmission power manager 906 determines a power level for transmission of Msg-3 PUSCH (s) , and (optionally) Msg-3 PUCCH (s) , and the transmission repetition manager 905 determines a repetition level for the Msg-3 transmissions based on the determined power level.
  • the transmission component 904 transmits Msg-1 (PRACH preamble) , Msg-3 PUSCH (s) , and (optionally) Msg-3 PUCCH (s) to the reception component 982, and the transmission component 986 transmits Msg-2 and Msg-4 to the reception component 908.
  • the uplink transmission controller 985 may inspect Msg-1 to determine a repetition level for Msg-3 (e.g., Msg-3 PUSCH (s) , Msg-3 PUCCH (s) , etc. ) .
  • One or more components of the apparatus 902 and apparatus 980 may perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGS. 5-6. As such, each block in the aforementioned flowcharts of FIGS. 5-6 may be performed by a component and the apparatus 902 and apparatus 980 may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • FIG. 10 is a diagram 1000 illustrating an example of a hardware implementation for an apparatus 902 employing a processing system 1014.
  • the processing system 1014 may be implemented with a bus architecture, represented generally by the bus 1024.
  • the bus 1024 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1014 and the overall design constraints.
  • the bus 1024 links together various circuits including one or more processors and/or hardware components, represented by the processor 1004, the components 904, 905, 906 and 908, and the computer-readable medium /memory 1006.
  • the bus 1024 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the processing system 1014 may be coupled to a transceiver 1010.
  • the transceiver 1010 is coupled to one or more antennas 1020.
  • the transceiver 1010 provides a means for communicating with various other apparatus over a transmission medium.
  • the transceiver 1010 receives a signal from the one or more antennas 1020, extracts information from the received signal, and provides the extracted information to the processing system 1014, specifically the reception component 908.
  • the transceiver 1010 receives information from the processing system 1014, specifically the transmission component 904, and based on the received information, generates a signal to be applied to the one or more antennas 1020.
  • the processing system 1014 includes a processor 1004 coupled to a computer-readable medium /memory 1006.
  • the processor 1004 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1006.
  • the software when executed by the processor 1004, causes the processing system 1014 to perform the various functions described supra for any particular apparatus.
  • the computer-readable medium /memory 1006 may also be used for storing data that is manipulated by the processor 1004 when executing software.
  • the processing system 1014 further includes at least one of the components 904, 905, 906 and 908.
  • the components may be software components running in the processor 1004, resident/stored in the computer readable medium /memory 1006, one or more hardware components coupled to the processor 1004, or some combination thereof.
  • the processing system 1014 may be a component of the UE 120 of FIG. 2 and may include the memory 282, and/or at least one of the TX processor 264, the RX processor 258, and the controller/processor 280.
  • the apparatus 902 (e.g., a UE) for wireless communication includes means for identifying a transmission power for transmission of at least one uplink message associated with a RACH procedure, means for determining that the identified transmission power for the at least one uplink message exceeds a maximum transmission power associated with the UE, means for determining a repetition level for transmission of the at least one uplink message at the maximum transmission power based on a difference between the identified transmission power and the maximum transmission power, and means for transmitting the at least one uplink message at the maximum transmission power in accordance with the determined repetition level.
  • the apparatus 902 may further include means for identifying a group of RACH opportunities (ROs) over which to transmit a preamble associated with the RACH procedure.
  • the apparatus 902 may further include means for selecting among a plurality of preamble sequence groups associated with the identified group of ROs based on the determined repetition level, each of the plurality of preamble sequence groups associated with a different repetition level for the at least one uplink message.
  • the apparatus 902 may further include means for transmitting the preamble on the identified group of ROs in association with the selected preamble sequence group.
  • the apparatus 902 may further include means for performing one or more signal reception quality measurements associated with a downlink signal on a downlink channel.
  • the apparatus 902 may further include means for receiving, from a base station, information indicative of the association between the plurality of repetition levels and the plurality of power differential ranges.
  • the apparatus 902 may further include means for receiving information indicative of a RO-group-specific power offset.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 902 and/or the processing system 1014 of the apparatus 902 configured to perform the functions recited by the aforementioned means.
  • the processing system 1014 may include the TX processor 264, the RX processor 258, and the controller/processor 280.
  • FIG. 11 is a diagram 1100 illustrating an example of a hardware implementation for an apparatus 980 employing a processing system 1114.
  • the processing system 1114 may be implemented with a bus architecture, represented generally by the bus 1124.
  • the bus 1124 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1114 and the overall design constraints.
  • the bus 1124 links together various circuits including one or more processors and/or hardware components, represented by the processor 1104, the components 982, 984, 985 and 986, and the computer-readable medium /memory 1106.
  • the bus 1124 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the processing system 1114 may be coupled to a transceiver 1110.
  • the transceiver 1110 is coupled to one or more antennas 1120.
  • the transceiver 1110 provides a means for communicating with various other apparatus over a transmission medium.
  • the transceiver 1110 receives a signal from the one or more antennas 1120, extracts information from the received signal, and provides the extracted information to the processing system 1114, specifically the reception component 982.
  • the transceiver 1110 receives information from the processing system 1114, specifically the transmission component 986, and based on the received information, generates a signal to be applied to the one or more antennas 1120.
  • the processing system 1114 includes a processor 1104 coupled to a computer-readable medium /memory 1106.
  • the processor 1104 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1106.
  • the software when executed by the processor 1104, causes the processing system 1114 to perform the various functions described supra for any particular apparatus.
  • the computer-readable medium /memory 1106 may also be used for storing data that is manipulated by the processor 1104 when executing software.
  • the processing system 1114 further includes at least one of the components 982, 984, 985 and 986.
  • the components may be software components running in the processor 1104, resident/stored in the computer readable medium /memory 1106, one or more hardware components coupled to the processor 1104, or some combination thereof.
  • the processing system 1114 may be a component of the BS 110 of FIG. 2 and may include the memory 242, and/or at least one of the TX processor 220, the RX processor 238, and the controller/processor 240.
  • the apparatus 980 (e.g., a BS) for wireless communication includes means for transmitting information indicative of an association between a plurality of repetition levels for transmission of at least one uplink message associated with a RACH procedure and a respective plurality of power differential ranges, each of the plurality of power differential ranges associated with a different range of differences between an identified transmission power for transmission of the at least one uplink message by a respective UE and a maximum transmission power associated with the respective UE, and means for receiving, from a UE in response to the transmitted information, the at least one uplink message in accordance with one of the plurality of repetition levels.
  • the apparatus 980 may further include means for receiving, from the UE, a preamble associated with the RACH procedure over one of a plurality of groups of ROs in association with one of a plurality of preamble sequence groups, each of the plurality of preamble sequence groups being associated with a different one of the plurality of repetition levels, and means for identifying the repetition level associated with the at least one uplink message based on the preamble sequence group associated with the group of ROs over which the preamble is received.
  • the apparatus 980 may further include means for transmitting information indicative of the RO-group-specific power offset.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 980 and/or the processing system 1114 of the apparatus 980 configured to perform the functions recited by the aforementioned means.
  • the processing system 1114 may include the TX processor 220, the RX processor 238, and the controller/processor 240.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Abstract

In an aspect, a UE may determine that an identified transmission power for transmission of at least one uplink message associated with a RACH procedure exceeds a maximum transmission power associated with the UE. The UE may determine a repetition level for transmission of the at least one uplink message at the maximum transmission power based on a difference between the identified transmission power and the maximum transmission power. The UE may transmit the at least one uplink message in accordance with the determined repetition level. In a further aspect, the determined repetition level may be based upon information, received from a BS, indicative of an association between a plurality of repetition levels a respective plurality of power differential ranges.

Description

ASSOCIATING A REPETITION LEVEL FOR AN UPLINK MESSAGE WITH A TRANSMISSION POWER DIFFERENTIAL
BACKGROUND OF THE DISCLOSURE
1. Field of the Disclosure
Aspects of the disclosure relate generally to wireless communications and to techniques and apparatuses related to associating a repetition level for an uplink message with a transmission power differential.
2. Description of the Related Art
Wireless communication systems have developed through various generations, including a first-generation analog wireless phone service (1G) , a second-generation (2G) digital wireless phone service (including interim 2.5G networks) , a third-generation (3G) high speed data, Internet-capable wireless service, and a fourth-generation (4G) service (e.g., Long-Term Evolution (LTE) , WiMax) . There are presently many different types of wireless communication systems in use, including cellular and personal communications service (PCS) systems. Examples of known cellular systems include the cellular Analog Advanced Mobile Phone System (AMPS) , and digital cellular systems based on code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , the Global System for Mobile access (GSM) variation of TDMA, etc.
A fifth generation (5G) mobile standard calls for higher data transfer speeds, greater numbers of connections, and better coverage, among other improvements. The 5G standard (also referred to as “New Radio” or “NR” ) , according to the Next Generation Mobile Networks Alliance, is designed to provide data rates of several tens of megabits per second to each of tens of thousands of users, with 1 gigabit per second to tens of workers on an office floor. Several hundreds of thousands of simultaneous connections should be supported in order to support large sensor deployments. Consequently, the spectral efficiency of 5G mobile communications should be significantly enhanced compared to the current 4G /LTE standard. Furthermore, signaling efficiencies should be enhanced and latency should be substantially reduced compared to current standards.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
Starting in 3GPP Rel. 17, a number of UE types are being allocated a new UE classification denoted as ‘NR-Light’ . Examples of UE types that fall under the NR-Light classification include wearable devices (e.g., smart watches, etc. ) , industrial sensors, video cameras (e.g., surveillance cameras, etc. ) , and so on. Generally, the UE types grouped under the NR-Light classification are associated with lower communicative capacity. For example, relative to ‘normal’ UEs (e.g., UEs not classified as NR-Light) , NR-Light UEs may be limited in terms of maximum bandwidth (e.g., 5 MHz, 10 MHz, 20 MHz, etc. ) , maximum transmission power (e.g., 20 dBm, 14 dBm, etc. ) , number of receive antennas (e.g., 1 receive antenna, 2 receive antennas, etc. ) , and so on. Some NR-Light UEs may also be sensitive in terms of power consumption (e.g., requiring a long battery life, such as several years) and may be highly mobile. Moreover, in some designs, it is generally desirable for NR-Light UEs to co-exist with UEs implementing protocols such as eMBB, URLLC, LTE NB-IoT/MTC, and so on.
Some UEs, such as NR-Light UEs, have a lower maximum transmission power than other UE types, which may result in transmission failure for a Msg-3 of a 4-Step PRACH procedure. Conventional systems do not permit a Msg-3 repetition level to be indicated via Msg-1.
Embodiments of the disclosure are directed associating a repetition level for at least one uplink message (e.g., Msg-3 PUSCH and/or Msg-3 PUCCH) with a differential between an identified transmission power for the at least one uplink message (e.g., a desired transmission level that does not factor the actual transmission power capacity of a respective UE) and a maximum transmission power of the respective UE. In some designs, once the repetition level is determined, a preamble (e.g., Msg-1) preceding the at least one uplink message can be transmitted to the base station in a manner that indicates the Msg-3 repetition level (e.g., via a preamble sequence group  used on a particular RO for transmission of Msg-1) . In some designs, the various embodiments described below are implemented with respect to UEs that belong to a particular UE class (e.g., power-constrained UEs such as NR-Light UEs) .
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE. The UE may identify a transmission power for transmission of at least one uplink message associated with a random access channel (RACH) procedure. The UE may further determine that the identified transmission power for the at least one uplink message exceeds a maximum transmission power associated with the UE. The UE may further determine a repetition level for transmission of the at least one uplink message at the maximum transmission power based on a difference between the identified transmission power and the maximum transmission power. The UE may further transmit the at least one uplink message at the maximum transmission power in accordance with the determined repetition level
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a base station. The base station may transmit information indicative of an association between a plurality of repetition levels for transmission of at least one uplink message associated with a random access channel (RACH) procedure and a respective plurality of power differential ranges, each of the plurality of power differential ranges associated with a different range of differences between an identified transmission power for transmission of the at least one uplink message by a respective UE and a maximum transmission power associated with the respective UE. The base station may further receive, from a UE in response to the transmitted information, the at least one uplink message in accordance with one of the plurality of repetition levels.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, cIoT user equipment, base station, wireless communication device, and/or processing system as substantially described with reference to and as illustrated by the drawings, and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described  hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is diagram illustrating an example of a wireless communication network.
FIG. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless communication network.
FIG. 3 illustrates a 4-Step Physical Random Access Channel (PRACH) procedure in accordance with an embodiment of the disclosure.
FIG. 4A illustrates examples of preamble transmission schemes that are characterized as long preambles in accordance with an embodiment of the disclosure.
FIG. 4B illustrates examples of preamble transmission schemes that are characterized as short preambles in accordance with an embodiment of the disclosure.
FIG. 5 illustrates an exemplary process of wireless communications according to an aspect of the disclosure.
FIG. 6 illustrates an exemplary process of wireless communications according to an aspect of the disclosure.
FIG. 7 illustrates an example implementation of the processes of FIGS. 5-6 in accordance with an embodiment of the disclosure.
FIG. 8 illustrates Reverse Access Channel (RACH) opportunity (RO) configurations in accordance with an embodiment of the disclosure.
FIG. 9 is a conceptual data flow diagram illustrating data flow between different means/components according to an aspect of the disclosure.
FIG. 10 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system according to an aspect of the disclosure.
FIG. 11 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system according to another aspect of the  disclosure.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purposes of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented with a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may  be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , compact disk ROM (CD-ROM) or other optical disk storage, magnetic disk storage or other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including 5G technologies.
FIG. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a 5G BS, a Node B, a gNB, a 5G NB, an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell  may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in FIG. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “5G BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some examples, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in FIG. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an  access terminal, a terminal, a mobile station, a subscriber unit, a station, etc. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. “MTC” may refer to MTC or eMTC. MTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. IoT UEs, eMTC UEs, coverage enhancement (CE) mode UEs, bandwidth-limited (BL) UEs, and other types of UEs that operate using diminished power consumption relative to a baseline UE may be referred to herein as cellular IoT (cIoT) UEs. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, 5G RAT networks may be deployed.
In some examples, access to the air interface may be scheduled, wherein a  scheduling entity (e.g., a base station) allocates resources for communication among some or all devices and equipment within the scheduling entity’s service area or cell. Within the present disclosure, as discussed further below, the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. Access to the air interface may be controlled, for example, using a unified access control (UAC) system in which UEs are associated with an access identity (e.g., an access class and/or the like) , which may aim to ensure that certain high-priority UEs (e.g., emergency response UEs, mission critical UEs, and/or the like) can access the air interface even in congested conditions. Updates to the UAC parameters (e.g., priority levels associated with access identities, which access identities are permitted to access the air interface, and/or the like) may be provided for cIoT UEs using a message, such as a paging message or a direct indication information, which may conserve battery power of cIoT UEs.
Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (e.g., one or more other UEs) . In this example, the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication. A UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
Thus, in a wireless communication network with a scheduled access to time–frequency resources and having a cellular configuration, a P2P configuration, and a mesh configuration, a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
As indicated above, FIG. 1 is provided merely as an example. Other examples may differ from what is described with regard to FIG. 1.
FIG. 2 shows a block diagram 200 of a design of base station 110 and UE 120, which may be one of the base stations and one of the UEs in FIG. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data  source 212 for one or more UEs, may select a modulation and coding scheme (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) , and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for orthogonal frequency divisional multiplexing (OFDM) and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive (RX) processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may  determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , a reference signal received quality (RSRQ) , a channel quality indicator (CQI) , and/or the like.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of FIG. 2 may perform one or more techniques associated with UAC parameter updating, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of FIG. 2 may perform or direct operations of, for example, process 500 of FIG. 5, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for BS 110 and UE 120, respectively. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
As indicated above, FIG. 2 is provided merely as an example. Other examples may differ from what is described with regard to FIG. 2.
As noted above, various device types may be characterized as UEs. Starting in 3GPP Rel. 17, a number of these UE types are being allocated a new UE classification denoted as ‘NR-Light’ . Examples of UE types that fall under the NR-Light classification include wearable devices (e.g., smart watches, etc. ) , industrial sensors,  video cameras (e.g., surveillance cameras, etc. ) , and so on. Generally, the UE types grouped under the NR-Light classification are associated with lower communicative capacity. For example, relative to ‘normal’ UEs (e.g., UEs not classified as NR-Light) , NR-Light UEs may be limited in terms of maximum bandwidth (e.g., 5 MHz, 10 MHz, 20 MHz, etc. ) , maximum transmission power (e.g., 20 dBm, 14 dBm, etc. ) , number of receive antennas (e.g., 1 receive antenna, 2 receive antennas, etc. ) , and so on. Some NR-Light UEs may also be sensitive in terms of power consumption (e.g., requiring a long battery life, such as several years) and may be highly mobile. Moreover, in some designs, it is generally desirable for NR-Light UEs to co-exist with UEs implementing protocols such as eMBB, URLLC, LTE NB-IoT/MTC, and so on.
FIG. 3 illustrates a 4-Step Physical Random Access Channel (PRACH) procedure 300 in accordance with an embodiment of the disclosure. The 4-Step PRACH procedure 300 is an initial access procedure by which a UE (e.g., UE 120) can initiate communication with a BS (e.g., BS 110) .
Referring to FIG. 3, at 302, a Message 1 ( “Msg-1” ) of the 4-Step PRACH procedure 300 is transmitted by UE 120 to BS 110. The Msg-1 of 302 may be characterized herein as a PRACH preamble. In an example, the Msg-1 of 302 may be implemented a Zadoff-Chu sequence which indicates the presence of a random access attempt and allows BS 110 to estimate between BS 110 and UE 120.
Referring to FIG. 3, at 304, a Message 2 ( “Msg-2” ) of the 4-Step PRACH procedure 300 is transmitted by BS 110 to UE 120. The Msg-2 of 304 may be characterized herein as a random access response (RAR) . For example, in response to the detected PRACH preamble (or Msg-1) at 302, BS 110 may transmit the Msg-2 of 304 on a downlink (DL) shared channel (SCH) comprising:
· An index of the detected PRACH preamble (or Msg-1) from 302,
· An uplink timing correction for UE 120,
· A scheduling grant indicating what resource (s) UE 120 should use for transmission of Message 3 ( “Msg-3” ) of the 4-Step PRACH procedure 300, and
· A Temporary Cell Radio Network Temporary Identifier (TC-RNTI) used for further communication between UE 120 and BS 110.
In an example, the Msg-2 of 304 may be scheduled on the SL SCH and indicated on a Physical Downlink Control Channel (PDCCH) using an identity (e.g., a Random Access RNTI (RA-RNTI) which is indicated by the time and frequency  resource (s) upon which the PRACH preamble (or Msg-1) from 302 is transmitted.
Referring to FIG. 3, at 306, a Message 3 ( “Msg-3” ) comprising at least a UE identifier (ID) of UE 120 is transmitted by UE 120 to BS 110. In some designs, the Msg-3 is transmitted over Physical Uplink Shared Channel (PUSCH) and may be referred to as a Msg-3 PUSCH. In an example, the Msg-3 transmitted at 306 may be transmitted via the UL SCH resource (s) indicated by the Msg-2 from 304. In some designs, device scrambling is used for the transmission of Msg-3 at 306 (e.g., scrambling based on the TC-RNTI assigned via the Msg-2 from 304) . In some designs, if UE 120 is in a radio resource control (RRC) -Connected state with a C-RNTI already assigned thereto, the C-RNTI may be used as the UE-ID in the Msg-3 at 306. In some designs, if UE 120 is not in a RRC-Connected state, a core network device identifier such as a 40-bit Serving Temporary Mobile Subscriber Identity (S-TMSI) can be used as the UE-ID in the Msg-3 at 306.
Referring to FIG. 3, at 308, another Msg-3 is optionally transmitted as a hybrid automatic repeat request (HARQ) acknowledgment (ACK) to the Msg-2 from 304. In some designs, the Msg-3 is transmitted via PUCCH and may be referred to as a Msg-3 PUCCH. In some designs, whether or not the Msg-3 PUCCH is transmitted at 308 may be configured via RRC signaling or via one or more information elements (IEs) in a system information block (SIB) .
Referring to FIG. 3, at 308, a Message 4 ( “Msg-4” ) of the 4-Step PRACH procedure 300 is transmitted by BS 110 to UE 120. In some designs, the Msg-4 of 308 comprises a downlink message for contention resolution as there is some probability of contention associated with the Msg-3 transmissions at 306-308. For example, if multiple UEs transmit the same Msg-1 (302) at the same time, then the multiple UEs may react to the same Msg-2 (304) such that a collision occurs. In some designs, if UE 120 already has a C-RNTI assigned, contention resolution may be handled by addressing UE 120 on the PDCCH using the C-RNTI. In some designs, if UE 120 does not have a valid C-RNTI (e.g., UE 120 is RRC-Idle prior to 302) , Msg-4 contention resolution may be handled by addressing UE 120 on the PDCCH using the TC-RNTI, with UE 120 comparing (i) the UE-ID received within a PDSCH scheduled by the PDCCH of Msg-4 with (ii) the UE-ID transmitted in the Msg-3 PUSCH at 306, so as to determine the 4-Step PRACH procedure 300 successful if a match is observed, after which the TC-RNTI is confirmed as C-RNTI.
The PRACH preamble (e.g., Msg-1 at 302 of FIG. 3) may be configured in accordance with any of a variety of preamble transmission schemes, which are generally classified as either long preambles or short preambles. In some designs, a total of 13 preamble transmission schemes are defined. FIG. 4A illustrates examples of preamble transmission schemes 400A that are characterized as long preambles in accordance with an embodiment of the disclosure. FIG. 4B illustrates examples of preamble transmission schemes 400B that are characterized as short preambles in accordance with an embodiment of the disclosure. As shown with respect to FIGS. 4A-4B, the various preamble transmission schemes 400A-400B may differ in terms of various parameters, including by way of example one or more of:
· Preamble format,
· Sequence length (e.g., denoted as “L” in FIGS. 4A-4B) ,
· Numerology or sub-carrier spacing (SCS) ,
· Bandwidth,
· Cycling Prefix (CP) duration,
· Guard Time (GT) duration,
· Total length, and/or
· Number of OFDM symbols.
In a scenario where UE 120 corresponds to a particular class of UE, such as an NR-Light UE, it is possible that the Msg-1 at 302 is successfully received at BS 110, but Msg-3 at 306 (e.g., and/or the optional Msg-3 PUCCH at 308) is not successfully received at BS 110. For example, Msg-1 at 302 may be based on relatively long preamble sequences which can be received reliably at BS 110, whereas Msg-3 at 306 (e.g., and/or the optional Msg-3 PUCCH at 308) can be based on OFDM signals and may comprise a larger payload than the Msg-1 at 302 which requires more transmission power to reliably transmit. However, some UEs, such as NR-Light UEs, have a lower maximum transmission power than other UE types, which may result in transmission failure for the Msg-3 at 306 (e.g., and/or the optional Msg-3 PUCCH at 308) . For power-constrained UEs, the Msg-3 at 306 (e.g., and/or the optional Msg-3 PUCCH at 308) could be transported more reliability via the use of one or more transmission repetitions. However, conventional systems do not permit a Msg-3 repetition level to be indicated via Msg-1.
Embodiments of the disclosure are directed associating a repetition level for at  least one uplink message (e.g., Msg-3 PUSCH and/or Msg-3 PUCCH) with a differential between an identified transmission power for the at least one uplink message (e.g., a desired transmission level that does not factor the actual transmission power capacity of a respective UE) and a maximum transmission power of the respective UE. In some designs, once the repetition level is determined, a preamble (e.g., Msg-1) preceding the at least one uplink message can be transmitted to the base station in a manner that indicates the Msg-3 repetition level (e.g., via a preamble sequence group used on a particular RO for transmission of Msg-1) . In some designs, the various embodiments described below are implemented with respect to UEs that belong to a particular UE class (e.g., power-constrained UEs such as NR-Light UEs) . As used herein, a “group” of ROs refers to a grouping of one or more ROs.
FIG. 5 illustrates an exemplary process 500 of wireless communications according to an aspect of the disclosure. The process 500 of FIG. 5 is performed by UE 120.
At 502, UE 120 (e.g., antenna (s) 252a ... 252r, demodulators (s) 254a ... 254r, MIMO detector 256, RX processor 258) optionally receives, from a base station, information indicative of an association between a plurality of repetition levels and a plurality of power differential ranges. In some designs, 502 is optional because this information may alternatively be pre-defined (e.g., via the relevant 3GPP standard) . As will be described below in more detail, in an example, UE 120 may identify (e.g., calculate) a differential between an identified transmission power for Msg-3 (e.g., a desired transmission level that does not factor the actual transmission power capacity of UE 120) and a maximum transmission power of UE 120, with the repetition level scaling higher at higher power differential ranges. In some designs, the received information at 502 may be received from the base station via one or more SIBs (e.g., SIB1) or via RRC signaling.
At 504, UE 120 (e.g., antenna (s) 252a ... 252r, demodulators (s) 254a ... 254r, MIMO detector 256, RX processor 258) optionally receives, from the base station, information indicative of a power offset that is specific to a group of RACH opportunities (ROs) (e.g., a group of ROs dedicated to a UE class that is power-constrained, such as NR-Light UEs) . For example, the identified power level at 508 (described below in more detail) may be calculated as a function of a pathloss parameter, a transmission power associated with a preamble of the RACH procedure,  and an offset from the transmission power associated with the preamble of the RACH procedure. In case of 504, as an example, the RO-group-specific-power may be configured to bias the transmission power calculation at 508. In some designs, at least one other group of ROs (e.g., a group of ROs that is not dedicated to a UE class that is power-constrained) may have a different RO-group-specific power offset or no RO-group-specific power offset. In some designs, the received RO-group-specific power offset at 504 may be received from the base station via one or more SIBs (e.g., SIB1) or via RRC signaling.
At 506, UE 120 (e.g., antenna (s) 252a ... 252r, demodulators (s) 254a ... 254r, MIMO detector 256, RX processor 258) optionally performs one or more signal reception quality measurements associated with a downlink signal on a downlink channel. In some designs, the downlink signal may be a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) , and the one or more signal reception quality measurements comprise at least an RSRP of the downlink signal. In some designs, the one or more signal reception quality measurements may be used to facilitate RO group selection, Msg-3 repetition level identification, etc.
At 508, UE 120 (e.g., controller/processor 240) identifies a transmission power for transmission of at least one uplink message (e.g., Msg-3 PUSCH and/or Msg-3 PUCCH) associated with a RACH procedure. In an example, the identified power level at 508 may be calculated as a function of a pathloss parameter, a transmission power associated with a preamble (e.g., Msg-1) of the RACH procedure, and an offset (e.g., a pre-defined offset per the relevant 3GPP standard) from the transmission power associated with the preamble of the RACH procedure. In some designs, the identified power level at 508 may further optionally be biased by the RO-group-specific power offset of 504.
At 510, UE 120 (e.g., controller/processor 240) determines that the identified transmission power for the at least one uplink message exceeds a maximum transmission power associated with the UE. As an example, the maximum transmission power for the UE can be a preset value stored locally on the UE. In some designs, the determination of 510 further determines a difference between the identified transmission power and the maximum transmission power.
At 512, UE 120 (e.g., controller/processor 240) determines a repetition level for transmission of the at least one uplink message at the maximum transmission power  based on a difference between the identified transmission power and the maximum transmission power. In some designs, the determined repetition level corresponds to the repetition level associated with a power differential range that includes the difference between the identified transmission power and the maximum transmission power. For example, an association between the plurality of repetition levels and the plurality of power differential ranges is pre-defined (e.g., in the relevant 3GPP standard) . In an alternative example, 502 may be performed so as to dynamically configure UE 120 with the association (e.g., via a SIB such as SIB1 or via RRC signaling) .
At 514, UE 120 (e.g., controller/processor 240) optionally identifies a group of ROs over which to transmit a preamble (e.g., Msg-1) associated with a RACH procedure. In an example, the identification of 514 may comprise a selection of a group of ROs among the plurality of groups of RACH ROs based on the one or more signal reception quality measurements (e.g., from 506) . For example, the plurality of groups of ROs may comprise a first group of ROs dedicated to a first UE class (e.g., power-constrained UEs such as NR-Light UEs) and a second group of ROs shared between the first UE class and a second UE class (e.g., UEs that do not have the power constraints associated with the first UE class) . In an example, the selection of 514 may be based on a relationship between the one or more signal reception quality measurements and at least one signal reception quality measurement threshold. For example, at 514, the first group of ROs may be selected if the one or more signal reception quality measurements are less than the at least one signal reception quality measurement threshold, and the second group of ROs may be selected if the one or more signal reception quality measurements are not less than the at least one signal reception quality measurement threshold. In this case, in an example, lower-performing UEs of the first UE class may select the first group of ROs, while higher-performing UEs of the first UE class may select the second group of ROs (which may also be used by UEs of the second UE class without requiring execution of the process 500 of FIG. 5 thereon) . In some designs, the at least one signal reception quality measurement threshold is pre-defined (e.g., in the relevant 3GPP standard) , while in other designs the at least one signal reception quality measurement threshold is configured dynamically (e.g., via a SIB such as SIB1 or via RRC signaling) . In other designs, the group of ROs can be identified at 514 in some other manner and need not be based upon the one or more signal reception quality measurements optionally performed at 514.
At 516, UE 120 (e.g., controller/processor 280) optionally selects between a plurality of preamble sequence groups associated with the identified group of ROs based on the determined repetition level from 512 (e.g., for repetitive transmissions of Msg-3 PUSCH (s) , Msg-3 PUCCH (s) , etc. ) associated with the RACH procedure and subsequent to the preamble transmission, each of the plurality of preamble sequence groups associated with a different repetition level for the at least one uplink message. In some designs, the association between each of the plurality of preamble sequence groups and its respective repetition level for the at least one uplink message is pre-defined (e.g., in the relevant 3GPP standard) . In other designs, information indicative of the association between each of the plurality of preamble sequence groups and its respective repetition level for the at least one uplink message is received from a base station (e.g., via SIB or RRC signaling) .
At 518, the UE 120 (e.g., antenna (s) 252a ... 252r, TX MIMO processor 266, modulators (s) 254a ... 254r, TX processor 264) optionally transmits the preamble on the identified group of ROs in association with the selected preamble sequence group. In an example, the preamble transmitted at 518 may correspond to a Msg-1 of a 4-Step PRACH procedure. In some designs, the preamble of 518 may be configured to indicate to the base station that subsequent Msg-3 PUSCH (and/or the optional Msg-3 PUCCH) will be transmitted with repetitions, as will be described below in more detail.
At 520, the UE 120 (e.g., antenna (s) 252a ... 252r, TX MIMO processor 266, modulators (s) 254a ... 254r, TX processor 264) transmits the at least one uplink message at the maximum transmission power in accordance with the determined repetition level. In an example, the at least one uplink message transmitted at 512 may comprise Msg-3 PUSCH (s) (and/or the optional Msg-3 PUCCH (s) ) .
FIG. 6 illustrates an exemplary process 600 of wireless communications according to an aspect of the disclosure. The process 600 of FIG. 6 is performed by BS 110.
At 602, BS 110 (e.g., antenna (s) 234a ... 234t, modulators (s) 232a ... 232a, TX MIMO processor 230, TX processor 220) transmits, to a UE, information indicative of an association between a plurality of repetition levels for transmission of at least one uplink message (e.g., Msg-3 PUSCH and/or Msg-3 PUCCH) associated with a RACH procedure and a respective plurality of power differential ranges, each of the plurality of power differential ranges associated with a different range of differences between an  identified transmission power for transmission of the at least one uplink message by a respective UE and a maximum transmission power associated with the respective UE. In an example, the information transmitted at 602 may correspond to the information optionally received by UE 120 at 502 of FIG. 5. In some designs, the transmitted information at 602 may be transmitted by BS 110 via one or more SIBs (e.g., SIB1) or via RRC signaling.
At 604, BS 110 (e.g., antenna (s) 234a ... 234t, modulators (s) 232a ... 232a, TX MIMO processor 230, TX processor 220) optionally transmits information indicative of a power offset that is specific to a group of ROs (e.g., a group of ROs dedicated to a UE class that is power-constrained, such as NR-Light UEs) . For example, the RO-group-specific power offset optionally transmitted at 604 may correspond to the RO-group-specific power offset optionally received by UE 120 at 504 of FIG. 5, which is subsequently optionally used to calculate the identified transmission power at 508 of FIG. 5. In some designs, at least one other group of ROs (e.g., a group of ROs that is not dedicated to a UE class that is power-constrained) may have a different RO-group-specific power offset or no RO-group-specific power offset. In some designs, the transmitted RO-group-specific power offset at 604 may be transmitted by BS 110 via one or more SIBs (e.g., SIB1) or via RRC signaling.
At 606, BS 110 (e.g., antenna (s) 234a ... 234t, demodulators (s) 232a ... 232a, MIMO detector 236, RX processor 238) receives a preamble associated with a RACH procedure over one a plurality of groups of ROs in association with one of a plurality of preamble sequence groups, each of the plurality of preamble sequence groups being associated with a different repetition level for at least one uplink message associated with the RACH procedure. In an example, the preamble optionally received at 606 may correspond to a Msg-1 of a 4-Step PRACH procedure. In an example, the preamble optionally received at 606 may correspond to the preamble optionally transmitted by UE 120 at 518 of FIG. 5.
At 608, BS 110 (e.g., controller/processor 240) optionally identifies a repetition level for the at least one uplink message based on the preamble sequence group associated with the group of ROs over which the preamble is received. For example particular preamble sequence groups (or particular combinations of preamble sequence groups and RO group) may each be associated with a particular repetition level that can be looked up by BS 110.
At 610, BS 110 (e.g., antenna (s) 234a ... 234t, demodulators (s) 232a ... 232a, MIMO detector 236, RX processor 238) receives, from a UE in response to the transmitted information, the at least one uplink message in accordance with one of the plurality of repetition levels. In some designs, each repetition of the at least one uplink message received at 610 is transmitted by the UE at its respective maximum transmission power level. In an example, the at least one uplink message received at 610 may comprise Msg-3 PUSCH (s) (and/or the optional Msg-3 PUCCH (s) ) .
Referring to FIGS. 5-6, in some designs, the optional measurement (s) at 506 of FIG. 5 may be used by UE 120 to identify the group of ROs at 514 via selection of a group of ROs among a plurality of groups of ROs based on the one or more signal reception quality measurements, whereby each group of ROs among the plurality of groups of ROs is associated with a different respective range of signal reception quality measurements. For example, the plurality of groups of ROs may comprise a first group of ROs associated with a first range of signal reception quality measurements and a second group of ROs associated with a second range of signal reception quality measurements that is higher than the first range of signal reception quality measurements, the first group of ROs may be associated with a first preamble transmission scheme and the second RO group may be associated with a second preamble transmission scheme. In this case, the first preamble transmission scheme may be associated with a longer preamble sequence than the second preamble transmission scheme, the first preamble transmission scheme may be associated with a longer time-domain duration than the second preamble transmission scheme, or a combination thereof.
Referring to FIGS. 5-6, a particular combination of preamble sequence group and RO group may further optionally be associated with a particular PUCCH format for the (optional) Msg-3 PUCCH. For example, in one particular design, five (5) PUCCH formats are defined:
Figure PCTCN2019118686-appb-000001
Figure PCTCN2019118686-appb-000002
Table 1: PUCCH Format Examples
In an example, one of the five (5) PUCCH formats shown in Table 1 (above) for the (optional) Msg-3 PUCCH may be associated with a particular combination of RO group and preamble resource group.
Referring to FIGS. 5-6, a particular combination of preamble sequence group and RO group may further optionally be associated with one or more parameters for a downlink message, such as Msg-2. In an example, the one or more parameters may comprise a particular set of Random Access Radio Network Temporary Identifier (RA-RNTI) candidates for the downlink message, a Random Access Response (RAR) window for the downlink message, a transmission bandwidth for the downlink message, or any combination thereof.
Referring to FIGS. 5-6, in some standards, an RRC parameter (denoted as preambleReceivedTargetPower) is provided in SIB1 to indicate a target power level for Msg-1 as received at BS 110. In some standards, another RRC parameter (denoted as powerRampingStep) is provided in SIB1 to indicate a power ramping increment for Msg-1. In some standards, another RRC parameter (denoted as msg3-DeltaPreamble) is provided in SIB1 to indicate a power offset between the Msg-1 preamble and Msg-3 PUSCH (e.g., in Rel. 15, power offset options range from -2 dB to 12 dB in increments of 2 dB) . In some designs, the difference between the identified transmission power and the maximum transmission power described above with respect to 508-510 can be calculated by the UE as follows:
ULTxPowerShortfall = P_cmax –Pathloss_in_dB –msg3-DeltaPreamble –Msg1TxPower – (optional) RO_specific_Offset,
                                                   Equation 1
whereby P_cmax is the UE’s maximum transmission power, RO_specific_Offset is a power offset specific to a particular group of ROs (e.g., pre-defined, configured via SIB  or RRC signaling, see 504 of FIG. 5 and 604 of FIG. 6) , and Msg1TxPower is transmission power of a Msg-1 as power is ramping up, as follows:
Msg1TxPower = preambleReceivedTargetPower + Applied_RampingPower
                                               Equation 2
In some designs, the preambleReceivedTargetPower may also be specific to a particular group of ROs.
In some designs, if ULTxPowerShortfall ≥ 0 dB, then the UE has sufficient transmission power to transmit Msg-3 at the identified transmission power, such that no repetitions are needed. However, if ULTxPowerShortfall < 0 dB, then there is a power shortfall. The degree of the power shortfall may be used to establish a repetition level preference for the Msg-3 transmission at 512. In one particular example:
· 0 dB> ULTxPowerShortfall> 3 dB, Msg-3 repetition level = 2,
· -3 dB >ULTxPowerShortfall>> 6 dB, Msg-3 repetition level = 4,
· -6 dB >ULTxPowerShortfall> 9 dB, Msg-3 repetition level = 8,
· Etc.
FIG. 7 illustrates an example implementation 700 of the processes 500-600 of FIGS. 5-6 in accordance with an embodiment of the disclosure. The process 700 constitutes a modified version of the 4-Step PRACH procedure 300 of FIG 3. At 702 (e.g., as in 502 of FIG. 5 or 602 of FIG. 6) , BS 110 transmits RO group information to UE 120 (e.g., via SIB or RRC signaling) . As noted above, the RO group information may alternative be pre-defined, in which case 702 can be omitted. At 704 (e.g., as in 502 of FIG. 5 or 602 of FIG. 6) , BS 110 optionally transmits a power offset specific to a particular group of ROs to UE 120 (e.g., via SIB or RRC signaling) . At 706, BS 110 optionally transmits a downlink signal (e.g., PSS/SSS) , and at 708 (e.g., as in 506 of FIG. 5) UE 120 optionally receives and measures the downlink signal. At 710 (e.g., as in 508 of FIG. 5) , UE 120 identifies an Msg-3 transmission power level. At 712 (e.g., as in 510 of FIG. 5) , UE 120 determines a transmission power shortfall (e.g., for convenience of explanation, it is assumed that there is an actual shortfall determined in the transmission power at 712) . At 714 (e.g., as in 512 of FIG. 5) , UE 120 determines a Msg-3 repetition level based on a degree of the transmission power shortfall.
Referring to FIG. 7, at 716 (e.g., as in 514 of FIG. 5) , UE 120 identifies a group of ROs (e.g., via selection based on the downlink signal measurement (s) from 708) . At 718 (e.g., as in 516 of FIG. 5) , UE 120 selects a preamble sequence group to be used on  the selected RO group in association with the determined repetition level from 714. At 720 (e.g., as in 518 of FIG. 5 or 606 of FIG. 6) , UE 120 optionally transmits Msg-1 (or PRACH preamble) to BS 110. At 722 (e.g., as in 608 of FIG. 6) , BS 110 optionally identifies the Msg-3 repetition level from the Msg-1 of 720 (e.g., based on which preamble sequence group was used, etc. ) . At 724, BS 110 transmits Msg-2 to UE 120 (e.g., optionally modified in response to the Msg-1 from 720) . At 726, UE 120 transmits Msg-3 PUSCH (s) to BS 110 (e.g., in accordance with the Msg-3 repetition level indicated by Msg-1 at 720) . At 728, UE 120 optionally transmits Msg-3 PUCCH (s) to BS 110 (e.g., in accordance with the Msg-3 repetition level indicated by Msg-1 and/or a PUCCH format as indicated by Msg-1) . At 730, BS 110 transmits Msg-4 to UE 120.
FIG. 8 illustrates RO configurations 800 in accordance with an embodiment of the disclosure. Referring to FIG. 8,  ROs  802 and 804 are wide in terms of bandwidth and thin in terms of time relative to  ROs  806, 808 and 810. In an example, RO 806 may be FDMed while ROs 808-810 are TDMed.  ROs  812 and 814 may correspond to separate RO segments that are used in association with a time-domain OCC preamble transmission. In FIG. 8, ROs 802-804 may form part of a group of ROs that are shared between UEs of the first and second UE classes, while ROs 806-814 may form part of a group of ROs that are dedicated to the first UE class (e.g., power-constrained UEs such as NR-Light UEs) .
FIG. 9 is a conceptual data flow diagram 900 illustrating the data flow between different means/components in  exemplary apparatuses  902 and 980 in accordance with an embodiment of the disclosure. The apparatus 902 may be a UE (e.g., UE 120) in communication with an apparatus 980, which may be a base station (e.g., base station 110) .
The apparatus 902 includes a transmission component 904, which may correspond to transmitter circuitry in UE 120 as depicted in FIG. 2, including controller/processor 280, antenna (s) 252a ... 252r, modulators (s) 254a ... 254r, TX MIMO processor 266, TX processor 264. The apparatus 902 further includes a transmission repetition manager 905, which may correspond to processor circuitry in UE 120 as depicted in FIG. 2, including controller/processor 280, etc. The apparatus 902 further includes a transmission power manager 906, which may correspond to processor circuitry in UE 120 as depicted in FIG. 2, including controller/processor 280, etc. The apparatus 902 further includes a reception component 908, which may  correspond to receiver circuitry in UE 120 as depicted in FIG. 2, including controller/processor 280, antenna (s) 252a ... 252r, demodulators (s) 254a ... 254r, MIMO detector 256, RX processor 258.
The apparatus 980 includes a reception component 982, which may correspond to receiver circuitry in BS 110 as depicted in FIG. 2, including controller/processor 240, antenna (s) 234a ... 234r, demodulators (s) 232a ... 232r, MIMO detector 236, RX processor 238, communication unit 244. The apparatus 980 further optionally includes an RO group information component 984, which may correspond to processor circuitry in BS 110 as depicted in FIG. 2, including controller/processor 240. The apparatus 980 further includes an uplink transmission controller 985, which may correspond to processor circuitry in BS 110 as depicted in FIG. 2, including controller/processor 240. The apparatus 980 further includes a transmission component 986, which may correspond to transmission circuitry in BS 110 as depicted in FIG. 2, including e.g., controller/processor 240, antenna (s) 234a ... 234r, modulators (s) 232a ... 232r, Tx MIMO processor 230, TX processor 220, communication unit 244.
Referring to FIG. 9, the RO group information component 984 optionally sends RO group information to the transmission component 986, which optionally transmits the RO group information to the reception component 908 (e.g., via SIB or RRC signaling) . The transmission component 986 optionally transmits a downlink signal, which is measured at the reception component 908. These measurement (s) of the downlink signal may be used to facilitate selection of a group of ROs and/or preamble sequence group to use for Msg-1 transmission as described above. The transmission power manager 906 determines a power level for transmission of Msg-3 PUSCH (s) , and (optionally) Msg-3 PUCCH (s) , and the transmission repetition manager 905 determines a repetition level for the Msg-3 transmissions based on the determined power level. The transmission component 904 transmits Msg-1 (PRACH preamble) , Msg-3 PUSCH (s) , and (optionally) Msg-3 PUCCH (s) to the reception component 982, and the transmission component 986 transmits Msg-2 and Msg-4 to the reception component 908. The uplink transmission controller 985 may inspect Msg-1 to determine a repetition level for Msg-3 (e.g., Msg-3 PUSCH (s) , Msg-3 PUCCH (s) , etc. ) .
One or more components of the apparatus 902 and apparatus 980 may perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGS. 5-6. As such, each block in the aforementioned flowcharts of FIGS. 5-6 may be performed by a  component and the apparatus 902 and apparatus 980 may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
FIG. 10 is a diagram 1000 illustrating an example of a hardware implementation for an apparatus 902 employing a processing system 1014. The processing system 1014 may be implemented with a bus architecture, represented generally by the bus 1024. The bus 1024 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1014 and the overall design constraints. The bus 1024 links together various circuits including one or more processors and/or hardware components, represented by the processor 1004, the  components  904, 905, 906 and 908, and the computer-readable medium /memory 1006. The bus 1024 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
The processing system 1014 may be coupled to a transceiver 1010. The transceiver 1010 is coupled to one or more antennas 1020. The transceiver 1010 provides a means for communicating with various other apparatus over a transmission medium. The transceiver 1010 receives a signal from the one or more antennas 1020, extracts information from the received signal, and provides the extracted information to the processing system 1014, specifically the reception component 908. In addition, the transceiver 1010 receives information from the processing system 1014, specifically the transmission component 904, and based on the received information, generates a signal to be applied to the one or more antennas 1020. The processing system 1014 includes a processor 1004 coupled to a computer-readable medium /memory 1006. The processor 1004 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1006. The software, when executed by the processor 1004, causes the processing system 1014 to perform the various functions described supra for any particular apparatus. The computer-readable medium /memory 1006 may also be used for storing data that is manipulated by the processor 1004 when executing software. The processing system 1014 further includes at least one of the  components  904, 905, 906 and 908. The components may be software components  running in the processor 1004, resident/stored in the computer readable medium /memory 1006, one or more hardware components coupled to the processor 1004, or some combination thereof. The processing system 1014 may be a component of the UE 120 of FIG. 2 and may include the memory 282, and/or at least one of the TX processor 264, the RX processor 258, and the controller/processor 280.
In one configuration, the apparatus 902 (e.g., a UE) for wireless communication includes means for identifying a transmission power for transmission of at least one uplink message associated with a RACH procedure, means for determining that the identified transmission power for the at least one uplink message exceeds a maximum transmission power associated with the UE, means for determining a repetition level for transmission of the at least one uplink message at the maximum transmission power based on a difference between the identified transmission power and the maximum transmission power, and means for transmitting the at least one uplink message at the maximum transmission power in accordance with the determined repetition level.
The apparatus 902 may further include means for identifying a group of RACH opportunities (ROs) over which to transmit a preamble associated with the RACH procedure. The apparatus 902 may further include means for selecting among a plurality of preamble sequence groups associated with the identified group of ROs based on the determined repetition level, each of the plurality of preamble sequence groups associated with a different repetition level for the at least one uplink message. The apparatus 902 may further include means for transmitting the preamble on the identified group of ROs in association with the selected preamble sequence group. The apparatus 902 may further include means for performing one or more signal reception quality measurements associated with a downlink signal on a downlink channel. The apparatus 902 may further include means for receiving, from a base station, information indicative of the association between the plurality of repetition levels and the plurality of power differential ranges. The apparatus 902 may further include means for receiving information indicative of a RO-group-specific power offset. The aforementioned means may be one or more of the aforementioned components of the apparatus 902 and/or the processing system 1014 of the apparatus 902 configured to perform the functions recited by the aforementioned means. As described supra, the processing system 1014 may include the TX processor 264, the RX processor 258, and the controller/processor 280.
FIG. 11 is a diagram 1100 illustrating an example of a hardware implementation  for an apparatus 980 employing a processing system 1114. The processing system 1114 may be implemented with a bus architecture, represented generally by the bus 1124. The bus 1124 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1114 and the overall design constraints. The bus 1124 links together various circuits including one or more processors and/or hardware components, represented by the processor 1104, the  components  982, 984, 985 and 986, and the computer-readable medium /memory 1106. The bus 1124 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
The processing system 1114 may be coupled to a transceiver 1110. The transceiver 1110 is coupled to one or more antennas 1120. The transceiver 1110 provides a means for communicating with various other apparatus over a transmission medium. The transceiver 1110 receives a signal from the one or more antennas 1120, extracts information from the received signal, and provides the extracted information to the processing system 1114, specifically the reception component 982. In addition, the transceiver 1110 receives information from the processing system 1114, specifically the transmission component 986, and based on the received information, generates a signal to be applied to the one or more antennas 1120. The processing system 1114 includes a processor 1104 coupled to a computer-readable medium /memory 1106. The processor 1104 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1106. The software, when executed by the processor 1104, causes the processing system 1114 to perform the various functions described supra for any particular apparatus. The computer-readable medium /memory 1106 may also be used for storing data that is manipulated by the processor 1104 when executing software. The processing system 1114 further includes at least one of the  components  982, 984, 985 and 986. The components may be software components running in the processor 1104, resident/stored in the computer readable medium /memory 1106, one or more hardware components coupled to the processor 1104, or some combination thereof. The processing system 1114 may be a component of the BS 110 of FIG. 2 and may include the memory 242, and/or at least one of the TX processor 220, the RX processor 238, and the controller/processor 240.
In one configuration, the apparatus 980 (e.g., a BS) for wireless communication  includes means for transmitting information indicative of an association between a plurality of repetition levels for transmission of at least one uplink message associated with a RACH procedure and a respective plurality of power differential ranges, each of the plurality of power differential ranges associated with a different range of differences between an identified transmission power for transmission of the at least one uplink message by a respective UE and a maximum transmission power associated with the respective UE, and means for receiving, from a UE in response to the transmitted information, the at least one uplink message in accordance with one of the plurality of repetition levels. The apparatus 980 may further include means for receiving, from the UE, a preamble associated with the RACH procedure over one of a plurality of groups of ROs in association with one of a plurality of preamble sequence groups, each of the plurality of preamble sequence groups being associated with a different one of the plurality of repetition levels, and means for identifying the repetition level associated with the at least one uplink message based on the preamble sequence group associated with the group of ROs over which the preamble is received. The apparatus 980 may further include means for transmitting information indicative of the RO-group-specific power offset. The aforementioned means may be one or more of the aforementioned components of the apparatus 980 and/or the processing system 1114 of the apparatus 980 configured to perform the functions recited by the aforementioned means. As described supra, the processing system 1114 may include the TX processor 220, the RX processor 238, and the controller/processor 240.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the  operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (31)

  1. A method of operating a user equipment (UE) , comprising:
    identifying a transmission power for transmission of at least one uplink message associated with a random access channel (RACH) procedure;
    determining that the identified transmission power for the at least one uplink message exceeds a maximum transmission power associated with the UE;
    determining a repetition level for transmission of the at least one uplink message at the maximum transmission power based on a difference between the identified transmission power and the maximum transmission power; and
    transmitting the at least one uplink message at the maximum transmission power in accordance with the determined repetition level.
  2. The method of claim 1, further comprising:
    identifying a group of RACH opportunities (ROs) over which to transmit a preamble associated with the RACH procedure;
    selecting among a plurality of preamble sequence groups associated with the identified group of ROs based on the determined repetition level, each of the plurality of preamble sequence groups associated with a different repetition level for the at least one uplink message; and
    transmitting the preamble on the identified group of ROs in association with the selected preamble sequence group.
  3. The method of claim 2,
    wherein the RACH procedure is a 4-Step PRACH procedure, and
    wherein the preamble is a Msg-1 preamble of the 4-Step PRACH procedure.
  4. The method of claim 2, further comprising:
    performing one or more signal reception quality measurements associated with a downlink signal on a downlink channel;
    wherein the identifying comprises selection of group of ROs among a plurality of groups of ROs based on the one or more signal reception quality measurements,
    wherein each group of ROs among the plurality of groups of ROs is associated with a different respective range of signal reception quality measurements.
  5. The method of claim 4,
    wherein the downlink signal is a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) , and
    wherein the one or more signal reception quality measurements comprise a reference signal received power (RSRP) of the downlink signal.
  6. The method of claim 1,
    wherein the RACH procedure is a 4-Step PRACH procedure, and
    wherein the at least one uplink message comprises (i) a Msg-3 physical uplink shared channel (PUSCH) communication of the 4-Step PRACH procedure, (ii) a Msg-3 physical uplink control channel (PUCCH) communication that acknowledges a Msg-2 of the 4-Step PRACH procedure, or (iii) a combination thereof.
  7. The method of claim 1,
    wherein a plurality of repetition levels for transmission of the at least one uplink message are associated with a respective plurality of power differential ranges, and
    wherein the determined repetition level corresponds to the repetition level associated with the power differential range that includes the difference between the identified transmission power and the maximum transmission power.
  8. The method of claim 7, wherein the association between the plurality of repetition levels and the plurality of power differential ranges is pre-defined.
  9. The method of claim 7, further comprising:
    receiving, from a base station, information indicative of the association between the plurality of repetition levels and the plurality of power differential ranges.
  10. The method of claim 9, wherein the received information is received via one or more system information blocks (SIBs) or via radio resource control (RRC) signaling.
  11. The method of claim 1, wherein the identified power level is calculated as a function of:
    a pathloss parameter,
    a transmission power associated with a preamble of the RACH procedure,
    an offset from the transmission power associated with the preamble of the RACH procedure, and
    a power offset that is specific to a group of RACH opportunities (ROs) over which the preamble is transmitted by the UE.
  12. The method of claim 11, wherein a different RO-group-specific power offset or no RO-group-specific power offset is associated with at least one other group of ROs.
  13. The method of claim 11, wherein the RO-group-specific power offset is pre-defined.
  14. The method of claim 11, further comprising:
    receiving information indicative of the RO-group-specific power offset.
  15. The method of claim 14, wherein the received information is received via one or more system information blocks (SIBs) or via radio resource control (RRC) signaling.
  16. A method of operating a base station, comprising:
    transmitting information indicative of an association between a plurality of repetition levels for transmission of at least one uplink message associated with a random access channel (RACH) procedure and a respective plurality of power differential ranges, each of the plurality of power differential ranges associated with a different range of differences between an identified transmission power for transmission of the at least one uplink message by a respective UE and a maximum transmission power associated with the respective UE; and
    receiving, from a UE in response to the transmitted information, the at least one uplink message in accordance with one of the plurality of repetition levels.
  17. The method of claim 16,
    wherein the RACH procedure is a 4-Step PRACH procedure, and
    wherein the at least one uplink message comprises (i) a Msg-3 physical uplink shared channel (PUSCH) communication of the 4-Step PRACH procedure, (ii) a Msg-3 physical uplink control channel (PUCCH) communication that acknowledges a Msg-2 of the 4-Step PRACH procedure, or (iii) a combination thereof.
  18. The method of claim 16,
    receiving, from the UE, a preamble associated with the RACH procedure over one of a plurality of groups of RACH opportunities (ROs) in association with one of a plurality of preamble sequence groups, each of the plurality of preamble sequence groups being associated with a different one of the plurality of repetition levels; and
    identifying the repetition level associated with the at least one uplink message based on the preamble sequence group associated with the group of ROs over which the preamble is received.
  19. The method of claim 18,
    wherein the RACH procedure is a 4-Step PRACH procedure, and
    wherein the preamble is a Msg-1 preamble of the 4-Step PRACH procedure.
  20. The method of claim 16, wherein the transmitted information is transmitted via one or more system information blocks (SIBs) or via radio resource control (RRC) signaling.
  21. The method of claim 16, wherein the identified power level is configured to be calculated as a function of:
    a pathloss parameter,
    a transmission power associated with a preamble of the RACH procedure,
    an offset from the transmission power associated with the preamble of the RACH procedure, and
    a power offset that is specific to a group of RACH opportunities (ROs) over which the preamble is transmitted by the UE.
  22. The method of claim 21, wherein a different RO-group-specific power offset or no RO-group-specific power offset is associated with at least one other group of ROs.
  23. The method of claim 21, further comprising:
    transmitting information indicative of the RO-group-specific power offset.
  24. The method of claim 23, wherein the transmitted information is transmitted via one or more system information blocks (SIBs) or via radio resource control (RRC) signaling.
  25. The method of claim 16, wherein the at least one uplink message is transmitted by the UE at its respective maximum transmission power level at each repetition.
  26. A user equipment (UE) , comprising:
    means for identifying a transmission power for transmission of at least one uplink message associated with a random access channel (RACH) procedure;
    means for determining that the identified transmission power for the at least one uplink message exceeds a maximum transmission power associated with the UE;
    means for determining a repetition level for transmission of the at least one uplink message at the maximum transmission power based on a difference between the identified transmission power and the maximum transmission power; and
    means for transmitting the at least one uplink message at the maximum transmission power in accordance with the determined repetition level.
  27. A base station, comprising:
    means for transmitting information indicative of an association between a plurality of repetition levels for transmission of at least one uplink message associated with a random access channel (RACH) procedure and a respective plurality of power differential ranges, each of the plurality of power differential ranges associated with a different range of differences between an identified transmission power for transmission of the at least one uplink message by a respective UE and a maximum transmission power associated with the respective UE; and
    means for receiving, from a UE in response to the transmitted information, the at least one uplink message in accordance with one of the plurality of repetition levels.
  28. A user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    identify a transmission power for transmission of at least one uplink message associated with a random access channel (RACH) procedure;
    determine that the identified transmission power for the at least one uplink message exceeds a maximum transmission power associated with the UE;
    determine a repetition level for transmission of the at least one uplink message at the maximum transmission power based on a difference between the identified transmission power and the maximum transmission power; and
    transmit the at least one uplink message at the maximum transmission power in accordance with the determined repetition level.
  29. A base station, comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    transmit information indicative of an association between a plurality of repetition levels for transmission of at least one uplink message associated with a random access channel (RACH) procedure and a respective plurality of power differential ranges, each of the plurality of power differential ranges associated with a different range of differences between an identified transmission power for transmission of the at least one uplink message by a respective UE and a maximum transmission power associated with the respective UE; and
    receive, from a UE in response to the transmitted information, the at least one uplink message in accordance with one of the plurality of repetition levels.
  30. A non-transitory computer-readable medium containing instructions stored thereon, for causing at least one processor in a user equipment (UE) to:
    identify a transmission power for transmission of at least one uplink message associated with a random access channel (RACH) procedure;
    determine that the identified transmission power for the at least one uplink message exceeds a maximum transmission power associated with the UE;
    determine a repetition level for transmission of the at least one uplink message at the maximum transmission power based on a difference between the identified transmission power and the maximum transmission power; and
    transmit the at least one uplink message at the maximum transmission power in accordance with the determined repetition level.
  31. A non-transitory computer-readable medium containing instructions stored thereon, for causing at least one processor in a base station to:
    transmit information indicative of an association between a plurality of repetition levels for transmission of at least one uplink message associated with a random access channel (RACH) procedure and a respective plurality of power differential ranges, each of the plurality of power differential ranges associated with a different range of differences between an identified transmission power for transmission of the at least one uplink message by a respective UE and a maximum transmission power associated with the respective UE; and
    receive, from a UE in response to the transmitted information, the at least one uplink message in accordance with one of the plurality of repetition levels.
PCT/CN2019/118686 2019-11-15 2019-11-15 Associating a repetition level for an uplink message with a transmission power differential WO2021092876A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/118686 WO2021092876A1 (en) 2019-11-15 2019-11-15 Associating a repetition level for an uplink message with a transmission power differential

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/118686 WO2021092876A1 (en) 2019-11-15 2019-11-15 Associating a repetition level for an uplink message with a transmission power differential

Publications (1)

Publication Number Publication Date
WO2021092876A1 true WO2021092876A1 (en) 2021-05-20

Family

ID=75911642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118686 WO2021092876A1 (en) 2019-11-15 2019-11-15 Associating a repetition level for an uplink message with a transmission power differential

Country Status (1)

Country Link
WO (1) WO2021092876A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023109763A1 (en) * 2021-12-16 2023-06-22 维沃移动通信有限公司 Prach transmission method and apparatus, and terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160330698A1 (en) * 2014-03-12 2016-11-10 Panasonic Intellectual Property Corporation Of America Power headroom reporting for mtc devices in enhanced coverage mode
CN107211015A (en) * 2015-01-16 2017-09-26 三星电子株式会社 Control information transmission method and device in wireless communication system
WO2017220635A1 (en) * 2016-06-21 2017-12-28 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods of determining a reporting configuration associated with a coverage level of a wireless device
CN108964851A (en) * 2017-05-17 2018-12-07 华为技术有限公司 A kind of method, apparatus and system sending and receiving instruction information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160330698A1 (en) * 2014-03-12 2016-11-10 Panasonic Intellectual Property Corporation Of America Power headroom reporting for mtc devices in enhanced coverage mode
CN107211015A (en) * 2015-01-16 2017-09-26 三星电子株式会社 Control information transmission method and device in wireless communication system
WO2017220635A1 (en) * 2016-06-21 2017-12-28 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods of determining a reporting configuration associated with a coverage level of a wireless device
CN108964851A (en) * 2017-05-17 2018-12-07 华为技术有限公司 A kind of method, apparatus and system sending and receiving instruction information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Clarification on Msg3 PUSCH repetition level in TS 36.213", 3GPP DRAFT; R1-164836, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nanjing, China; 20160523 - 20160527, 14 May 2016 (2016-05-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051089908 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023109763A1 (en) * 2021-12-16 2023-06-22 维沃移动通信有限公司 Prach transmission method and apparatus, and terminal

Similar Documents

Publication Publication Date Title
US11743814B2 (en) Cell selection based on class of user equipments
EP4000341A1 (en) Supporting cross-tag scheduling and 2-step rach payload transmission for a pdcch-ordered contention-free random access procedure
US20230345542A1 (en) Design considerations for a random access response for a two-step random access procedure
WO2021159133A1 (en) Determining a duration of a resetting time period after uplink beam failure
WO2021174244A1 (en) Random access channel message without a physical downlink control channel
WO2021076584A1 (en) Random access response type differentiation
WO2021092876A1 (en) Associating a repetition level for an uplink message with a transmission power differential
WO2021092844A1 (en) Associating a repetition level for an uplink message with a preamble sequence group of a preamble for a rach procedure
WO2021109101A1 (en) Pusch opportunity repetitions for rach procedure
WO2021114069A1 (en) Rach procedures based upon downlink receive capability level of a user equipment
WO2023010584A1 (en) Random access occasions for repetition of a physical uplink shared channel message
WO2021093649A1 (en) Dedicated group of rach opportunities for a class of user equipments
WO2021226626A1 (en) Sidelink resource reservation for a user equipment using a no-sensing mode
WO2020206651A1 (en) Indication for two-step rach fallback to four-step rach
WO2020207392A1 (en) Random access procedure
WO2021159265A1 (en) Reporting for maximum permissible exposure
WO2022232984A1 (en) Random access partitions for different use cases
US20220053574A1 (en) Alternative demodulation reference signal for repetitions of a random access response physical downlink control channel communication
WO2022241636A1 (en) Uplink channel transmissions using per-transmit-receive-point-and-panel power control parameters
WO2021092825A1 (en) Random access for secondary user equipment
WO2021030933A1 (en) Random access radio network temporary identifier for random access
EP4186325A1 (en) Uplink data transfer over random access or dedicated uplink resources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952591

Country of ref document: EP

Kind code of ref document: A1