WO2021091361A1 - 무선 협력 통신 시스템에서 다중 데이터를 송수신하는 방법 및 장치 - Google Patents

무선 협력 통신 시스템에서 다중 데이터를 송수신하는 방법 및 장치 Download PDF

Info

Publication number
WO2021091361A1
WO2021091361A1 PCT/KR2020/015658 KR2020015658W WO2021091361A1 WO 2021091361 A1 WO2021091361 A1 WO 2021091361A1 KR 2020015658 W KR2020015658 W KR 2020015658W WO 2021091361 A1 WO2021091361 A1 WO 2021091361A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
tci
pdcch
terminal
base station
Prior art date
Application number
PCT/KR2020/015658
Other languages
English (en)
French (fr)
Inventor
정의창
노훈동
박진현
장영록
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200035748A external-priority patent/KR20210055566A/ko
Priority claimed from KR1020200063267A external-priority patent/KR20210055577A/ko
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP20885908.2A priority Critical patent/EP4044741A4/en
Priority to US17/775,123 priority patent/US20220408470A1/en
Publication of WO2021091361A1 publication Critical patent/WO2021091361A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present disclosure (disclosure) relates to a wireless communication system, and relates to a method and apparatus for transmitting and receiving multiple data in a wireless cooperative communication system.
  • a 5G communication system or a pre-5G communication system is called a communication system after a 4G network or a system after an LTE system (Post LTE).
  • 5G communication systems are being considered for implementation in an ultra-high frequency (mmWave) band (eg, such as a 60 gigabyte (70 GHz) band).
  • mmWave ultra-high frequency
  • 5G communication systems include beamforming, massive MIMO, and Full Dimensional MIMO (FD-MIMO). ), array antenna, analog beam-forming, and large scale antenna technologies are being discussed.
  • FD-MIMO Full Dimensional MIMO
  • array antenna analog beam-forming, and large scale antenna technologies are being discussed.
  • cloud RAN cloud radio access networks
  • ultra-dense networks in order to improve the network of the system, in 5G communication systems, evolved small cells, advanced small cells, cloud radio access networks (cloud RAN), and ultra-dense networks.
  • D2D Device to Device communication
  • wireless backhaul moving network
  • cooperative communication CoMP (Coordinated Multi-Points)
  • interference cancellation And other technologies are being developed.
  • ACM advanced coding modulation
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC Small Cellular Cellular System
  • FBMC Filter Bank Multi Carrier
  • NOMA non-orthogonal multiple access
  • SCMA sparse code multiple access
  • IoT Internet of Things
  • M2M Machine Type Communication
  • MTC Machine Type Communication
  • a method for a base station and a terminal to determine a default QCL in a wireless communication system is provided.
  • the terminal and the base station provide a method of determining a default QCL based on MAC CE in Single/Multi-TRP.
  • a control signal processing method in a wireless communication system of the present invention for solving the above problems, the method comprising: receiving a first control signal transmitted from a base station; Processing the received first control signal; And transmitting a second control signal generated based on the processing to the base station.
  • a method and apparatus for transmitting and receiving one or more data between a transmission node and a terminal may be provided.
  • LTE Long Term Evolution or E-UTRA (Evolved Universal Terrestrial Radio Access)
  • LTE-A Long Term Evolution-Advanced
  • NR NR
  • FIG. 2 is a view showing a frame, subframe, slot structure in 5G (5 th generation), according to one embodiment of the present disclosure.
  • BWP bandwidth part
  • FIG. 4 is a diagram illustrating an example of indicating and changing a portion of a bandwidth in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating an example of setting a control region of a downlink control channel in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating an example of PDSCH frequency axis resource allocation in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating an example of allocation of a physical downlink shared channel (PDSCH) time axis resource in a wireless communication system according to an embodiment of the present disclosure.
  • PDSCH physical downlink shared channel
  • FIG. 8 is a diagram illustrating an example of time axis resource allocation according to subcarrier intervals of a data channel and a control channel in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 9 is a diagram illustrating an exemplary configuration of a cooperative communication antenna port according to an embodiment of the present disclosure.
  • 10A is a diagram illustrating a MAC CE structure for TCI state activation of a UE-specific PDCCH according to the present disclosure.
  • TCI transmission configuration indication
  • FIG. 11 is a diagram illustrating an example of cooperative communication based on a single PDCCH according to an embodiment of the present disclosure.
  • FIG. 12 is a diagram illustrating an example of cooperative communication based on multiple PDCCHs according to an embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of cooperative communication based on multiple PDCCHs according to another embodiment of the present disclosure.
  • FIG. 14 is a diagram illustrating an example of cooperative communication based on multiple PDCCHs according to another embodiment of the present disclosure.
  • 15 is a flowchart illustrating a method of operating a terminal according to an embodiment of the present disclosure.
  • 16 to 18 are diagrams for explaining a process in which a plurality of TRPs transmits a plurality of PDSCHs through a single PDCCH to a specific terminal according to an embodiment of the present disclosure.
  • FIG. 19 is a flowchart illustrating a method of operating a terminal according to another embodiment of the present disclosure.
  • FIG. 20 illustrates a method for a UE to receive a PDSCH based on NC-JT transmission and a default QCL assumption according to an embodiment of the present disclosure.
  • 21 illustrates a structure of a terminal in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 22 illustrates a structure of a base station in a wireless communication system according to an embodiment of the present disclosure.
  • a method for receiving a Physical Downlink Shared CHannel (PDSCH) of a terminal is a transmission configuration indication (TCI) field included in Downlink Control Information (DCI) through higher layer signaling from a base station.
  • TCI transmission configuration indication
  • Receiving configuration information on whether to apply the information receiving from the base station at least one PDCCH (Physical Downlink Control CHannel) for scheduling a first PDSCH and a second PDSCH transmitted from different base stations And a scheduling time offset between the at least one or more PDCCHs and at least one of the first PDSCH and the second PDSCH is set to apply the TCI field and is greater than or equal to a beam change time limit, the at least one or more Each of the first PDSCH and the second PDSCH based on a QCL parameter (quasi co-location parameter) of a TCI state indicated by a codepoint of a TCI field included in the DCI transmitted through the PDCCH It may include the step of receiving.
  • PDCCH Physical Downlink Control CHannel
  • a scheduling time offset between the at least one or more PDCCHs and at least one of the first PDSCH and the second PDSCH is set to apply the TCI field and is greater than or equal to a beam change time limit, the at least one or more
  • receiving the first PDSCH and the second PDSCH based on a QCL parameter used to receive the at least one PDCCH, respectively It may include.
  • the QCL parameter used to receive the at least one PDCCH is used to receive a PDCCH of CORESET related to a search space having the lowest CORESET ID (ControlResourceSET ID) in the most recent slot. Can include the QCL parameter.
  • the time limit for changing the beam may be included in UE capability and transmitted to the base station.
  • the TCI state indicated by a codepoint of the TCI field may indicate one of the at least one TCI state candidate.
  • a method of transmitting a physical downlink shared channel (PDSCH) of a base station includes information on a transmission configuration indication (TCI) field included in downlink control information (DCI) through higher layer signaling.
  • TCI transmission configuration indication
  • a codepoint of the TCI field included in the DCI transmitted through the PDCCH indicates It may include the step of transmitting the PDSCH based on the QCL parameter (quasi co-location parameter) of the TCI state (TCI state).
  • the scheduling time offset is shorter than a beam change time limit
  • the QCL parameter used to transmit the at least one PDCCH is used to transmit the PDCCH of CORESET related to the search space having the lowest CORESET ID (ControlResourceSET ID) in the most recent slot.
  • the beam change time limit may be included in UE capability and received from the UE.
  • the TCI state indicated by the codepoint of the TCI field may indicate one of the at least one or more TCI state candidates.
  • a method of operating a terminal receiving a Physical Downlink Shared CHannel includes: a transmitting/receiving unit; And receiving configuration information on whether to apply information of a Transmission Configuration Indication (TCI) field included in Downlink Control Information (DCI) through higher layer signaling from the base station, and Receives at least one PDCCH (Physical Downlink Control CHannel) for scheduling 1 PDSCH and a second PDSCH, is configured to apply the TCI field, and is configured to apply the TCI field, and at least one of the at least one PDCCH and the first PDSCH and the second PDSCH QCL of a TCI state indicated by a codepoint of a TCI field included in the DCI transmitted through the at least one or more PDCCHs when the scheduling time offset between them is longer than or equal to the beam change time limit It may include a control unit for controlling to receive each of the first PDSCH and the second PDSCH based on a parameter
  • control unit when the scheduling time offset is shorter than the beam change time limit, based on the QCL parameter used to receive the at least one PDCCH, the first PDSCH and the second PDSCH Each can be received.
  • the QCL parameter used to receive the at least one PDCCH is used to receive a PDCCH of CORESET related to a search space having the lowest CORESET ID (ControlResourceSET ID) in the most recent slot. Can include the QCL parameter.
  • control unit receives a MAC CE including information related to at least one TCI state candidate for a PDSCH among TCI states transmitted through higher layer signaling from the base station, and is included in the DCI.
  • the TCI state indicated by a codepoint of the TCI field may indicate one of the at least one TCI state candidate.
  • a base station for transmitting a physical downlink shared channel (PDSCH) in a wireless communication system includes: a transceiver; Transmission configuration information on whether to apply the information of the Transmission Configuration Indication (TCI) field included in the Downlink Control Information (DCI) through higher layer signaling to the terminal, and scheduling a plurality of PDSCHs transmitted from different base stations
  • TCI Transmission Configuration Indication
  • DCI Downlink Control Information
  • a control unit for controlling to transmit a PDSCH based on a QCL parameter (quasi co-location parameter) of a TCI state indicated by a codepoint of a TCI field included in the DCI transmitted through the PDCCH. can do.
  • each block of the flowchart diagrams and combinations of the flowchart diagrams may be executed by computer program instructions. Since these computer program instructions can be mounted on the processor of a general purpose computer, special purpose computer or other programmable data processing equipment, the instructions executed by the processor of the computer or other programmable data processing equipment are described in the flowchart block(s). It creates a means to perform functions. These computer program instructions can also be stored in computer-usable or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement a function in a particular way, so that the computer-usable or computer-readable memory It may also be possible to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block(s).
  • each block may represent a module, segment, or part of code that contains one or more executable instructions for executing the specified logical function(s).
  • the functions mentioned in the blocks may occur out of order. For example, two blocks shown in succession may in fact be executed substantially simultaneously, or the blocks may sometimes be executed in the reverse order depending on the corresponding function.
  • the term' ⁇ unit' used in this embodiment refers to software or hardware components such as field programmable gate array (FPGA) or application specific integrated circuit (ASIC), and' ⁇ unit' performs certain roles. do.
  • The' ⁇ unit' may be configured to be in an addressable storage medium, or may be configured to reproduce one or more processors. Therefore, according to some embodiments,' ⁇ unit' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and programs. Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • components and functions provided in the' ⁇ units' may be combined into a smaller number of elements and' ⁇ units', or may be further separated into additional elements and' ⁇ units'.
  • components and' ⁇ units' may be implemented to play one or more CPUs in a device or a security multimedia card.
  • the' ⁇ unit' may include one or more processors.
  • the base station is a subject that performs resource allocation of the terminal, and is at least one of a gNode B (gNB), an eNode B (eNB), a Node B, a base station (BS), a radio access unit, a base station controller, or a node on the network.
  • the terminal may include a user equipment (UE), a mobile station (MS), a terminal, a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function.
  • UE user equipment
  • MS mobile station
  • the present disclosure is not limited to the above example.
  • the present disclosure describes a technique for receiving broadcast information from a base station by a terminal in a wireless communication system.
  • This disclosure relates to a 4G (4 th generation) 5G to support higher data rates than the later system (5 th generation) communication system, a communication method and a system for fusing and IoT (internet of things, things, Internet) technology.
  • This disclosure is based on 5G communication technology and IoT-related technologies, and intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety related services, etc. ) Can be applied.
  • a term referring to broadcast information a term referring to control information, a term related to communication coverage, a term referring to a state change (e.g., event), and network entities
  • a term referring to, a term referring to messages, a term referring to a component of a device, and the like are exemplified for convenience of description. Accordingly, the present disclosure is not limited to terms to be described later, and other terms having an equivalent technical meaning may be used.
  • LTE 3rd generation partnership project long term evolution
  • the wireless communication system deviated from the initial voice-oriented service, for example, 3GPP HSPA (High Speed Packet Access), LTE (Long Term Evolution or E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced. (LTE-A), LTE-Pro, 3GPP2's High Rate Packet Data (HRPD), UMB (Ultra Mobile Broadband), and IEEE's 802.16e. It is evolving into a communication system.
  • 3GPP HSPA High Speed Packet Access
  • LTE-A LTE-Advanced.
  • LTE-Pro LTE-Pro
  • HRPD High Rate Packet Data
  • UMB UserMB
  • the LTE system employs an Orthogonal Frequency Division Multiplexing (OFDM) scheme in downlink (DL), and Single Carrier Frequency Division Multiple Access (SC-FDMA) in uplink (UL).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • Uplink refers to a radio link through which a terminal (UE (User Equipment) or MS (Mobile Station)) transmits data or control signals to a base station (eNode B or base station (BS)), and downlink refers to a base station It means a wireless link that transmits data or control signals.
  • the multiple access method as described above divides the data or control information of each user by assigning and operating time-frequency resources to carry data or control information for each user so that they do not overlap with each other, that is, orthogonality is established. .
  • Enhanced Mobile BroadBand eMBB
  • massive Machine Type Communication mMTC
  • Ultra Reliability Low Latency Communciation URLLC
  • eMBB aims to provide a data transmission speed that is more improved than the data transmission speed supported by the existing LTE, LTE-A, or LTE-Pro.
  • eMBB in a 5G communication system, eMBB must be able to provide a maximum transmission rate of 20 Gbps in downlink and 10 Gbps in uplink from the viewpoint of one base station. At the same time, an increased user perceived data rate must be provided.
  • MIMO multi-input multi-output
  • the data transmission speed required by the 5G communication system can be satisfied.
  • mMTC is being considered to support application services such as Internet of Things (IoT) in 5G communication systems.
  • IoT Internet of Things
  • mMTC may require large-scale terminal access support within a cell, improved terminal coverage, improved battery time, and reduced terminal cost.
  • the IoT is attached to various sensors and various devices to provide communication functions, so it must be able to support a large number of terminals (for example, 1,000,000 terminals/km 2) within a cell.
  • the terminal supporting mMTC is highly likely to be located in a shaded area not covered by the cell, such as the basement of a building due to the nature of the service, it may require wider coverage than other services provided by the 5G communication system.
  • a terminal supporting mMTC must be configured as a low-cost terminal, and since it is difficult to frequently exchange the battery of the terminal, a very long battery life time may be required.
  • a service supporting URLLC must satisfy an air interface latency of less than 0.5 milliseconds, and at the same time have a requirement of a packet error rate of 10 -5 or less. Therefore, for a service supporting URLLC, a 5G system must provide a smaller Transmit Time Interval (TTI) than other services, and at the same time, a design requirement to allocate a wide resource in a frequency band is required.
  • TTI Transmit Time Interval
  • Services considered in the 5G communication system described above should be provided by fusion with each other based on one framework. That is, for efficient resource management and control, it is preferable that each service is integrated into one system, controlled, and transmitted rather than independently operated.
  • an embodiment of the present disclosure will be described below using an LTE, LTE-A, LTE Pro, or NR system as an example, the embodiment of the present disclosure may be applied to other communication systems having a similar technical background or channel type. In addition, the embodiments of the present disclosure may be applied to other communication systems through some modifications without significantly departing from the scope of the present disclosure, as determined by a person with skilled technical knowledge.
  • the present disclosure relates to a method and apparatus for repeatedly transmitting data and control signals between a plurality of transmission nodes and terminals performing cooperative communication in order to improve communication reliability.
  • FIG. 1 is a diagram showing a time-frequency domain transmission structure of an LTE, LTE-A, NR or similar wireless communication system according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing a basic structure of a time-frequency domain, which is a radio resource domain in which data or control channels are transmitted in a 5G system.
  • the horizontal axis represents the time domain and the vertical axis represents the frequency domain.
  • the basic unit of a resource in the time and frequency domain is a resource element (RE, 1-01), 1 OFDM (orthogonal frequency division multiplexing) symbol (1-02) on the time axis and 1 subcarrier (subcarrier) on the frequency axis ( 1-03).
  • REs resource element
  • OFDM orthogonal frequency division multiplexing
  • subcarrier subcarrier
  • FIG. 2 is a diagram illustrating a frame, subframe, and slot structure in 5G according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a slot structure considered in a 5G system.
  • FIG. 2 shows an example of a structure of a frame (frame, 2-00), a subframe (subframe, 2-01), and a slot (slot, 2-02).
  • One frame (2-00) may be defined as 10 ms.
  • One subframe 2-01 may be defined as 1 ms, and thus, one frame 2-00 may consist of a total of 10 subframes 2-01.
  • One subframe (2-01) may be composed of one or a plurality of slots (2-02, 2-03), and the number of slots (2-02, 2-03) per subframe (2-01) May be different according to the setting value ⁇ (2-04, 2-05) for the subcarrier spacing.
  • one component carrier (CC) or serving cell may be configured with a maximum of 250 or more RBs. Therefore, when the terminal always receives the entire serving cell bandwidth like LTE, the power consumption of the terminal can be extreme, and to solve this, the base station sets one or more bandwidth parts (BWP) to the terminal. Thus, it is possible to support the UE to change the reception area within the cell.
  • the base station may set the'initial BWP', which is the bandwidth of CORESET #0 (or common search space, CSS), to the terminal through a master information block (MIB).
  • MIB master information block
  • the base station may set an initial BWP (first BWP) of the terminal through RRC signaling, and may notify at least one or more BWP configuration information that may be indicated through downlink control information (DCI) in the future. Thereafter, the base station can indicate to the terminal what band the terminal will use by notifying the BWP ID through DCI. If the terminal does not receive the DCI in the currently allocated BWP for more than a specific time, the terminal may attempt to receive DCI by returning to the'default BWP'.
  • first BWP initial BWP
  • DCI downlink control information
  • FIG. 3 illustrates an example of a partial configuration of a bandwidth in a wireless communication system according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of setting a bandwidth portion in a 5G communication system.
  • FIG. 3 shows a terminal bandwidth 3-00 having two bandwidth portions, that is, a bandwidth portion #1 (BWP).
  • BWP bandwidth portion #1
  • An example set to #1) (3-05) and bandwidth part #2 (BWP #2) (3-10) is shown.
  • the base station may set one or a plurality of bandwidth portions to the terminal, and may set information as shown in [Table 2] below for each bandwidth portion.
  • various parameters related to the bandwidth portion may be set to the terminal.
  • the above-described information can be delivered from the base station to the terminal through higher layer signaling, for example, RRC signaling.
  • At least one bandwidth portion among the set one or a plurality of bandwidth portions may be activated. Whether or not to activate the configured bandwidth portion may be transmitted from the base station to the terminal in a semi-static manner through RRC signaling, or may be dynamically transmitted through a medium access control (MAC) control element (CE) or DCI.
  • MAC medium access control
  • CE control element
  • the setting of the bandwidth portion supported by the 5G communication system described above can be used for various purposes.
  • the bandwidth supported by the terminal when the bandwidth supported by the terminal is smaller than the system bandwidth, the bandwidth supported by the terminal may be supported through the setting of the bandwidth portion.
  • the frequency position (configuration information 2) of the bandwidth portion is set to the terminal, so that the terminal can transmit and receive data at a specific frequency position within the system bandwidth.
  • the base station may set a plurality of bandwidth portions to the terminal. For example, in order to support both data transmission and reception using a subcarrier spacing of 15 kHz and a subcarrier spacing of 30 kHz to an arbitrary terminal, two bandwidth portions may be set to use subcarrier spacings of 15 kHz and 30 kHz, respectively. Different bandwidth portions may be frequency division multiplexed (FDM), and when data is to be transmitted/received at a specific subcarrier interval, a bandwidth portion set at the corresponding subcarrier interval may be activated.
  • FDM frequency division multiplexed
  • the base station may set a bandwidth portion having a different size of bandwidth to the terminal. For example, if the terminal supports a very large bandwidth, such as 100 MHz, and always transmits/receives data through the corresponding bandwidth, it may cause very large power consumption. In particular, it is very inefficient in terms of power consumption for the UE to monitor an unnecessary downlink control channel for a large bandwidth of 100 MHz in a situation where there is no traffic. Therefore, for the purpose of reducing power consumption of the terminal, the base station may set a bandwidth portion of a relatively small bandwidth to the terminal, for example, a bandwidth portion of 20 MHz. In a situation where there is no traffic, the UE can perform a monitoring operation in the 20 MHz bandwidth portion, and when data is generated, it can transmit and receive data using the 100 MHz bandwidth portion according to the instruction of the base station.
  • FIG. 4 is a diagram illustrating an example of indicating and changing a portion of a bandwidth in a wireless communication system according to an embodiment of the present invention.
  • a base station may set one or a plurality of bandwidth portions to a terminal, and a bandwidth of a bandwidth portion, a frequency position of a bandwidth portion, and a configuration for each bandwidth portion, Information about the numerology of the bandwidth portion may be notified to the terminal.
  • 4 shows an example in which two bandwidth portions, bandwidth portions #1BPW #1, 4-05) and bandwidth portion #2 (BWP #2, 4-10) are set in a terminal bandwidth (4-00) to one terminal. Is shown.
  • bandwidth portions #1BPW #1, 4-05) and bandwidth portion #2 (BWP #2, 4-10) are set in a terminal bandwidth (4-00) to one terminal. Is shown.
  • bandwidth portions #1BPW #1, 4-05) and bandwidth portion #2 (BWP #2, 4-10) are set in a terminal bandwidth (4-00) to one terminal. Is shown.
  • bandwidth portions #1BPW #1, 4-05) and bandwidth portion #2 (BWP #2, 4-10) are set in a terminal bandwidth (4-00) to one terminal. Is shown.
  • bandwidth part #1 (BWP #1) (4-02) of the bandwidth parts set in slot #0 (4-25) is activated, and the terminal is in a state in which bandwidth part #1 (BWP #1) (
  • the physical downlink control channel (PDCCH) can be monitored in the control area #1 (4-45) set in 4-05), and the data (4- 55) can be transmitted and received.
  • the control region in which the UE receives the PDCCH may be different depending on which of the set bandwidth parts is activated, and accordingly, the bandwidth at which the UE monitors the PDCCH may vary.
  • the base station may additionally transmit an indicator for changing the configuration of the bandwidth portion to the terminal.
  • changing the setting for the bandwidth portion may be regarded as the same as an operation of activating a specific bandwidth portion (eg, changing the activation from the bandwidth portion A to the bandwidth portion B).
  • the base station can transmit a configuration switching indicator to the terminal in a specific slot, and the terminal determines the part of the bandwidth to be activated by applying the changed configuration according to the configuration change indicator from a specific point after receiving the configuration change indicator from the base station. And, it is possible to perform monitoring on the PDCCH in the control region set in the active bandwidth portion.
  • the base station instructs the terminal to change the activated bandwidth part from the existing bandwidth part #1 (BWP #1) (4-05) to the bandwidth part #2 (BWP #2) (4-10).
  • (configuration switching indication, 4-15) can be transmitted in slot #1 (4-30).
  • the terminal may activate the bandwidth part #2 (BWP #2) (6-10) according to the content of the indicator.
  • a transition time (4-20) for changing the bandwidth portion may be required, and accordingly, a time point in which the activated bandwidth portion is changed and applied may be determined.
  • a transition time of 1 slot 4-20 is required after receiving the setting change indicator 4-15 is illustrated. Data transmission/reception may not be performed during the transition time (4-20) (4-60). Accordingly, the bandwidth portion #2 (BWP #2) (4-10) is activated in the slot #2 (4-35), and an operation of transmitting and receiving control channels and data to the corresponding bandwidth portion may be performed.
  • the base station may preset one or a plurality of bandwidth portions to the terminal by higher layer signaling (e.g., RRC signaling, etc.), and the configuration change indicator (4-15) is mapped with one of the bandwidth portion settings preset by the base station.
  • higher layer signaling e.g., RRC signaling, etc.
  • the configuration change indicator (4-15) is mapped with one of the bandwidth portion settings preset by the base station.
  • an indicator of log 2 N bits may select and indicate one of N preset bandwidth portions.
  • [Table 3] an example of indicating configuration information for a bandwidth portion using a 2-bit indicator is described.
  • the configuration change indicator 4-15 for the bandwidth portion described in FIG. 4 may be transmitted from the base station to the terminal in the form of MAC CE signaling or L1 signaling (eg, common DCI, group-common DCI, terminal-specific DCI, etc.). have.
  • L1 signaling eg, common DCI, group-common DCI, terminal-specific DCI, etc.
  • at what point in time when the bandwidth portion activation is applied may depend on the following. From what point the configuration change is applied depends on a predefined value (e.g., applied from after the N ( ⁇ 1) slot after receiving the configuration change indicator), or the base station is set to higher layer signaling (e.g., RRC signaling) to the terminal Alternatively, it may be transmitted by being partially included in the content of the setting change indicator 4-15. Alternatively, it may be determined by a combination of the above-described methods. After receiving the configuration change indicator 4-15 for the bandwidth portion, the terminal may apply the changed configuration from the time point obtained by the above-described method.
  • FIG. 5 is a diagram illustrating an example of setting a control region of a downlink control channel in a wireless communication system according to an embodiment of the present invention.
  • control region #1 control resource set, CORESET
  • control region #2 control area #2
  • control regions 5-01 and 5-02 may be set in a specific frequency resource 5-03 within the entire terminal bandwidth portion 5-10 on the frequency axis.
  • the control regions 5-01 and 5-02 may be set as one or a plurality of OFDM symbols on the time axis, and may be defined as a control resource set duration (5-04).
  • control region #1 (5-01) is set to the length of the control region of two symbols
  • control region #2 (5-02) is set to the length of the control region of one symbol.
  • the control region in 5G described above may be set by the base station through higher layer signaling to the terminal (eg, system information, master information block (MIB), radio resource control (RRC) signaling).
  • Setting a control region to a terminal means providing information such as a control region identifier, a frequency position of the control region, and a symbol length of the control region to the terminal.
  • the information in [Table 4] may be included.
  • the tci-StatesPDCCH (simply named TCI state) configuration information is one or more SSs (synchronization signals) in a relationship between a demodulation reference signal (DMRS) and a quasi co-located (QCL) transmitted from the control region.
  • DMRS demodulation reference signal
  • QCL quasi co-located
  • PBCH physical broadcast channel
  • CSI-RS channel state information reference signal
  • two different antenna ports can be connected in a relationship between a (QCL) target antenna port and a (QCL) reference antenna port, and the terminal may have statistical characteristics of the channel measured at the reference antenna port (e.g. For example, all or part of the channel's large scale parameters such as Doppler shift, Doppler spread, average delay, delay spread, average gain, and spatial Rx (or Tx) parameters, or the reception spatial filter coefficient or the transmission spatial filter coefficient of the terminal) is the target antenna port. It can be applied (or assumed) when receiving.
  • the target antenna port refers to an antenna port for transmitting a channel or signal set by the higher layer setting including the QCL setting, or a channel or an antenna port for transmitting a signal to which the TCI state indicating the QCL setting is applied.
  • the reference antenna port above refers to an antenna port that transmits a channel or signal indicated (specified) by a referenceSignal parameter in the QCL configuration.
  • statistical characteristics of a channel (indicated by a parameter qcl-Type in the QCL setting) defined by the QCL setting may be classified as follows according to the QCL type.
  • o'QCL-TypeA' ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
  • the types of QCL type are not limited to the above four types, but all possible combinations are not listed in order not to obscure the subject matter of explanation.
  • the bandwidth and transmission section of the target antenna port are sufficient compared to the reference antenna port (i.e., the number of samples of the target antenna port and the transmission band/time in both the frequency axis and the time axis are In case of more than band/time)
  • the reference antenna port i.e., the number of samples of the target antenna port and the transmission band/time in both the frequency axis and the time axis are In case of more than band/time
  • QCL-TypeB is a QCL type used when the bandwidth of a target antenna port is sufficient to measure statistical characteristics measurable in the frequency axis, that is, Doppler shift and Doppler spreads.
  • QCL-TypeC is a QCL type used when the bandwidth and transmission interval of the target antenna port are insufficient to measure second-order statistics, i.e., Doppler spread and delay spreads, so that only first-order statistics, i.e., Doppler shift and average delay, can be referenced. .
  • QCL-TypeD is a QCL type set when the spatial reception filter values used when receiving the reference antenna port can be used when receiving the target antenna port.
  • the base station can set or instruct one target antenna port to set up to two QCL settings through the following TCI state setting.
  • the first QCL setting may be set to one of QCL-TypeA, QCL-TypeB, and QCL-TypeC.
  • the settable QCL type is specified according to the types of the target antenna port and the reference antenna port, and will be described in detail below.
  • the second QCL setting may be set to QCL-TypeD, and may be omitted in some cases.
  • the first QCL setting and the second QCL setting may be set to at least one of QCL-type A to QCL-type D in some cases.
  • Tables 4-1 to 4-5 below are tables showing effective TCI state settings according to the target antenna port type.
  • Table 4-1 shows the effective TCI state setting when the target antenna port is CSI-RS for tracking (TRS).
  • the TRS means an NZP CSI-RS in which a repetition parameter is not set among CSI-RSs and trs-Info is set to true. In the case of setting No. 3 in Table 4-1, it can be used for aperiodic TRS.
  • Table 4-2 shows the effective TCI state setting when the target antenna port is CSI-RS for CSI.
  • the CSI-RS for CSI refers to an NZP CSI-RS in which a repetition parameter is not set and trs-Info is not set to true among CSI-RSs.
  • Table 4-3 shows a valid TCI state setting when the target antenna port is CSI-RS for beam management (the same meaning as BM, CSI-RS for L1 RSRP reporting).
  • the CSI-RS for BM refers to an NZP CSI-RS in which a repetition parameter is set among CSI-RS and has a value of On or Off, and trs-Info is not set to true.
  • Table 4-4 shows effective TCI state settings when the target antenna port is PDCCH DMRS.
  • Table 4-5 shows valid TCI state settings when the target antenna port is PDSCH DMRS.
  • target antenna ports and reference antenna ports for each step are set to “SSB” -> “TRS” -> “CSI-RS for CSI, or CSI-RS for BM. , Or PDCCH DMRS, or PDSCH DMRS”.
  • FD-RA frequency domain resource allocation
  • FIG. 6 is a diagram illustrating an example of PDSCH frequency axis resource allocation in a wireless communication system according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating three frequency axis resource allocation methods of type 0 (6-00), type 1 (6-05), and dynamic switch (6-10) that can be set through an upper layer in NR. It is a drawing.
  • NRBG means the number of resource block groups (RBG) determined as shown in [Table 5] below according to the BWP size allocated by the BWP indicator and the upper layer parameter rbg-Size. Data is transmitted to the RBG indicated by 1.
  • the terminal is configured to use only resource type 1 through higher layer signaling (6-05), some DCIs that allocate PDSCH to the corresponding terminal It has frequency axis resource allocation information consisting of three bits. The conditions for this will be described again later.
  • the base station may set the starting VRB 6-20 and the length of the frequency axis resources continuously allocated therefrom (6-25).
  • some DCIs that allocate PDSCH to the UE are payload for setting resource type 0 (6-15) It has frequency axis resource allocation information consisting of bits of a larger value (6-35) among payloads (6-20, 6-25) for setting resource type 1. The conditions for this will be described again later. At this time, one bit may be added to the first part (MSB) of the frequency axis resource allocation information within the DCI, and if the corresponding bit is 0, it indicates that resource type 0 is used, and if it is 1, it indicates that resource type 1 is used. Can be.
  • MSB first part
  • FIG. 7 is a diagram illustrating an example of allocation of a physical downlink shared channel (PDSCH) time axis resource in a wireless communication system according to an embodiment of the present invention.
  • PDSCH physical downlink shared channel
  • the base station includes a subcarrier spacing (SCS) of a data channel and a control channel set using an upper layer. , ), scheduling offset (K 0 ) value, and the time axis position of the PDSCH resource according to the OFDM symbol start position (7-00) and length (7-05) within one slot dynamically indicated through DCI. I can instruct.
  • SCS subcarrier spacing
  • K 0 scheduling offset
  • FIG. 8 is a diagram illustrating an example of time axis resource allocation according to subcarrier intervals of a data channel and a control channel in a wireless communication system according to an embodiment of the present invention.
  • NR provides various types of DCI formats as shown in [Table 6] below according to the purpose for efficient control channel reception by the terminal.
  • the base station may use DCI format 0_0 or DCI format 0_1 to allocate PDSCH to one cell.
  • DCI format 0_1 when transmitted with a CRC scrambled by a cell radio network temporary identifier (C-RNTI), a configured scheduling RNTI (CS-RNTI), or a new-RNTI, includes at least the following information:
  • DCI format indicator always set to 1
  • N RBG bits or bits indicates frequency axis resource allocation, and when DCI format 1_0 is monitored in UE specific search space Is the size of the active DL BWP, otherwise Is the size of the initial DL BWP.
  • N RBG is the number of resource block groups. For a detailed method, refer to the frequency axis resource allocation.
  • -VRB-to-PRB mapping (1 bit): 0 indicates non-interleaved, 1 indicates interleaved VRP-to-PRB mapping.
  • -Modulation and coding scheme indicates the modulation order and coding rate used for PDSCH transmission.
  • -New data indicator (1 bit): indicates whether the PDSCH is initial transmission or retransmission according to whether toggle.
  • -HARQ process number (4 bits): indicates the HARQ process number used for PDSCH transmission.
  • -PUCCH resource indicator (3 bits): a PUCCH resource indicator, indicating one of 8 resources set as a higher layer.
  • HARQ feedback timing indicator As a HARQ feedback timing indicator, it indicates one of eight feedback timing offsets set as an upper layer.
  • DCI format 1_1 when transmitted with a CRC scrambled by a cell radio network temporary identifier (C-RNTI), a configured scheduling RNTI (CS-RNTI), or a new-RNTI, includes at least the following information:
  • DCI format indicator always set to 1
  • -Carrier indicator (0 or 3 bits): indicates the CC (or cell) in which the PDSCH allocated by the corresponding DCI is transmitted.
  • -Bandwidth part indicator (0 or 1 or 2 bits): indicates the BWP in which the PDSCH allocated by the corresponding DCI is transmitted.
  • -Frequency domain resource assignment (payload is determined according to the frequency axis resource allocation): indicates frequency axis resource assignment, Is the size of the active DL BWP. For a detailed method, refer to the frequency axis resource allocation.
  • -VRB-to-PRB mapping (0 or 1 bit): 0 indicates non-interleaved, 1 indicates interleaved VRP-to-PRB mapping. If the frequency axis resource allocation is set to resource type 0, it is 0 bit.
  • -PRB bundling size indicator (0 or 1 bit): 0 bit when the upper layer parameter prb-BundlingType is not set or set to'static', and 1 bit when set to'dynamic'.
  • -Rate matching indicator (0 or 1 or 2 bits): indicates a rate matching pattern.
  • -ZP CSI-RS trigger (0 or 1 or 2 bits): indicator for triggering aperiodic ZP CSI-RS.
  • -Modulation and coding scheme indicates the modulation order and coding rate used for PDSCH transmission.
  • -New data indicator (1 bit): indicates whether the PDSCH is initial transmission or retransmission according to whether toggle.
  • -Modulation and coding scheme indicates the modulation order and coding rate used for PDSCH transmission.
  • -New data indicator (1 bit): indicates whether the PDSCH is initial transmission or retransmission according to whether toggle.
  • -HARQ process number (4 bits): indicates the HARQ process number used for PDSCH transmission.
  • -PUCCH resource indicator (3 bits): This is a PUCCH resource indicator, indicating one of eight resources configured as an upper layer.
  • HARQ feedback timing indicator As a HARQ feedback timing indicator, it indicates one of eight feedback timing offsets set as an upper layer.
  • -Antenna port (4 or 5 or 6 bits): indicates DMRS port and CDM group without data.
  • TCI indicator (0 or 3 bits): TCI indicator.
  • -CBG transmission information (0 or 2 or 4 or 6 or 8 bits): an indicator indicating whether to transmit the code block groups in the allocated PDSCH. 0 means that the corresponding CBG is not transmitted, and 1 means that the corresponding CBG is transmitted.
  • -CBG flushing out information (0 or 1 bit): An indicator indicating whether previous CBGs have been contaminated. 0 means that they may have been contaminated, and 1 means that they can be used when receiving retransmissions (combinable).
  • the maximum number of DCIs of different sizes that the UE can receive per slot in the corresponding cell is 4.
  • the maximum number of DCIs of different sizes scrambled with C-RNTIs that the UE can receive per slot in the corresponding cell is 3.
  • the antenna port indication can be indicated through the following [Table 7] to [Table 10].
  • [Table 7] is a table used when dmrs-type is indicated as 1 and maxLength is indicated as 1.
  • drms-tpye is 2 and maxLength is 2
  • use [Table 10] to indicate the port of the DMRS to be used.
  • the numbers 1, 2, and 3 indicated by the number of DMRS CDM group(s) without data are respectively CDMR groups ⁇ 0 ⁇ , ⁇ 0, 1 ⁇ , ⁇ 0, 1, 2 ⁇ Means.
  • the DMRS port(s) is a sequence of indexes of ports to be used.
  • the antenna port is indicated by DMRS port + 1000.
  • the CDM group of the DMRS is connected to the antenna port and the method of generating the DMRS sequence as shown in [Table 11] and [Table 12].
  • lines 2, 10, and 23 are used only for single user MIMO. That is, in this case, the UE may not perform a multi-user MIMO reception operation such as cancelation, nulling, or whitening of multi-user interference without assuming that the other UE is co-schedule.
  • FIG. 9 is a diagram illustrating an exemplary configuration of a cooperative communication antenna port according to an embodiment of the present invention.
  • JT joint transmission
  • C-JT coherent joint transmission
  • transmission reception point (TRP) A (9-05) and TRP B (9-10) transmit the same data (PDSCH) to each other, and joint precoding is performed in multiple TRPs.
  • TRP A (9-05) and TRP B (9-10) transmit the same DMRS ports (eg, DMRS ports A and B in both TRPs) for the same PDSCH transmission.
  • the UE may receive one DCI information for receiving one PDSCH demodulated based on the DMRS transmitted through the DMRS ports A and B.
  • NC-JT non-coherent joint transmission
  • different PDSCHs are transmitted in each cell, TRP, and/or beam, and individual precoding may be applied to each PDSCH.
  • TRP A (9-25) and TRP B (9-30) transmit different DMRS ports for different PDSCH transmissions (e.g., DMRS port A in TRP A and DMRS port B in TRP B). It can mean.
  • the UE may receive two types of DCI information for receiving PDSCH A demodulated based on DMRS transmitted through DMRS port A and PDSCH B demodulated based on DMRS transmitted through other DMRS port B. have.
  • PDSCHs transmitted from two (or more) different transmission points are allocated through a single PDCCH, or two are allocated through multiple PDCCHs. It is necessary to allocate PDSCHs transmitted from different transmission points.
  • the UE acquires a QCL (quasi co-location) connection relationship between each reference signal or channel based on L1/L2/L3 signaling, and through this, it is possible to efficiently estimate large scale parameters of each reference signal or channel. If the transmission points of a certain reference signal or channel are different, the large scale parameters are difficult to share with each other.
  • the base station transmits two or more quasi co-location information for two or more transmission points to the terminal at the same time. It needs to be informed through the TCI state. If non-coherent cooperative transmission is supported through multiple PDCCHs, that is, when two or more PDCCHs allocate two or more PDSCHs to the same serving cell and the same bandwidth portion at the same time, the two or more TCI states are each Each of the PDSCH to DMRS ports may be allocated through the PDCCH.
  • the two or more TCI states are It should be allocated to each PDSCH to DMRS ports through the PDCCH.
  • the two or more TCI states are respectively assigned to the DMRS port group. It is connected so that the channel can be estimated based on different QCL assumptions for each group.
  • different DMRS ports may be code division multiplexing (CDM), frequency division multiplexing (FDM), or time domain multiplexing (TDM) in order to increase channel measurement accuracy and reduce a transmission burden.
  • CDM group when the DMRS ports that become CDM are collectively referred to as a CDM group, code-based multiplexing works well when the DMRS ports in the CDM group have similar channel characteristics for each port (i.e., OCC ( orthogonal cover code)), it may be important to ensure that the DMRS ports in the same CDM group do not have different TCI states.
  • OCC orthogonal cover code
  • a process of transmitting control information through a PDCCH may be expressed as transmitting a PDCCH
  • a process of transmitting data through a PDSCH may be expressed as transmitting a PDSCH.
  • the [Tables 7] to [Table 12] are referred to as "a first antenna port indication (or, a conventional antenna port indication)", and some of the code points of [Tables 7] to [Table 12] Or, the modified table is referred to as "a second antenna port indication”.
  • the DMRS port and CDM group without data allocation are referred to as DMRS allocation.
  • the terminal may determine the number of antenna ports used when transmitting the PDSCH through a table indicating the DMRS port.
  • the Rel-15-based antenna port indication method may be based on an index of a length of 4 to 6 bits indicated in an antenna port field in DCI, and an antenna port may be determined accordingly.
  • the terminal may check information on the number and index of DMRS ports for the PDSCH, the number of front-load symbols, and the number of CDM groups based on the indicator (index) transmitted by the base station.
  • a change in a dynamic beamforming direction may be determined based on information in the transmission configuration indication (TCI) field in DCI 1_1.
  • the terminal checks the TCI field of 3bits information, and the TCI states activated in the DL BWP or the scheduled component carrier and the direction of the beam linked to the DL-RS Can be judged. Conversely, if tci-PresentDCI is disabled, it may be considered that there is no change in the direction of the beam of beamforming.
  • a scenario of allocating PDSCHs transmitted from two (or more) different transmission points through a single PDCCH is considered.
  • the Rel-15 terminal receives a PDSCH stream including a single or multiple layers QCLed based on TCI information and antenna port information in a single PDCCH.
  • the rel-16 terminal may receive multi-TRP or data transmitted from a plurality of base stations in the form of C-JT/NC-JT.
  • the rel-16 terminal needs a basic upper layer configuration. Specifically, in order to set the upper layer, the terminal needs a process of receiving C-JT / NC-JT related parameters or setting values, and setting each.
  • a separate DMRS port table for transmitting and receiving C-JT/NC-JT transmission signaling is proposed for a base station and a terminal supporting C-JT/NC-JT.
  • the proposed DMRS port table may be divided into a DMRS port table indicated in an antenna port field indicated based on DCI format 1_1 and a separate table.
  • a field that the UE should use may be indicated by using an existing antenna port field in DCI format 1_1.
  • detailed DMRS port number for NC-JT transmission, the number of DMRS CDM group(s) excluding data, and the (maximum) number of front-loaded symbols , DMRS-type may indicate at least one information.
  • [Table 12-1] to [Table 12-4] propose a DMRS port so that DMRS ports transmitted in the same TRP are transmitted to the same CDM group based on the CDM group described in [Table 11].
  • the left and right sides of the semicolon (;) are indicated as different TRP transmissions and different CDM group mappings, but may be omitted according to exemplary embodiments.
  • the order of values included in the table may be changed based on the semicolon (;).
  • the DMRS ports described in the table show a case in which a maximum of two DMRS ports are supported, respectively, for the first TRP and the second TRP.
  • concepts such as the basic DMRS port, type, and the number of frontloaded symbols described in [Table 7] to [Table 10] can be applied equally.
  • the DMRS port table for the purpose of C-JT/NC-JT can support different types of ports by distinguishing them from ports that were not supported in rel-15.
  • the terminal may determine that the first TRP and the second TRP transmit the DMRS through the DMRS port 0 and the DMRS port 2. .
  • the terminal confirming that the number of each port is one may determine that single layer transmission is performed from the first TRP and the second TRP.
  • the terminal may determine that the first TRP and the second TRP transmit the DMRS through the DMRS port 1 and the DMRS port 3.
  • the terminal confirming that the number of each port is one may determine that single layer transmission is performed from the first TRP and the second TRP.
  • Entry 1 has a different port number from entry 0, but it is functionally similar to entry 0 and may be omitted from the table above.
  • the terminal may determine that the first TRP transmits the DMRS through the DMRS ports 0 and 1, and that the second TRP transmits the DMRS through the DMRS port 2.
  • the terminal confirming that the number of each port is two or one may determine that layer 2 transmission is performed in the first TRP and layer 1 transmission is performed in the second TRP.
  • the terminal can determine that the base station transmits the DMRS through the first TRP DMRS port 0, and the remaining one second TRP transmits the DMRS through the DMRS ports 2 and 3. have.
  • the UE confirming that the number of each port is 1 or 2 may determine that single layer transmission is performed in the first TRP and 2 layers transmission is performed in the remaining second TRP.
  • Entry 4 and entry 5 have different port numbers from entry 2 and entry 3, but they are functionally similar and thus may be omitted from the table.
  • the terminal may determine that the first TRP transmits the DMRS through the DMRS ports 0 and 1 and the remaining second TRP transmits through the DMRS through the DMRS ports 2 and 3.
  • the UE confirming that the number of each port is two may determine that layer 2 transmission is performed in the first TRP and layer 2 transmission is performed in the remaining second TRP.
  • [Table 12-1] lists embodiments in an entry format among various cases in which the base station and the terminal communicate, and all or part of the seven entries can be applied in an actual system. In addition, another table composed of at least one entry among the entries included in Table [12-1] may be used. In addition, [Table 12-1] describes a case in which the base station transmits one codeword to the terminal, but it can be similarly applied even when transmitting two or more codewords.
  • [Table 12-3] is a DMRS port table for C-JT/NC-JT transmission of DMRS type 2 different from DMRS type 1 described in [Table 12-1].
  • [Table 12-3] supports up to 12 DMRS ports, which is a structure suitable for MU-MIMO type.
  • the terminal may determine that the first TRP and the second TRP transmit DMRS through DMRS port 0 and DMRS port 2, respectively.
  • the terminal confirming that the number of each port is one may determine that single layer transmission is performed from the first TRP and the second TRP, respectively.
  • the entry in [Table 12-3] shows the case where the number of DMRS CDM groups is 2 and 3 at once, and does not exclude showing 2 and 3 in separate entries.
  • the above embodiments are listed in an entry format, and some or all of the 14 entries may be applied in an actual system. For example, for some of the entries, a table may be determined with only entries 0, 2, 3, 6, 7, 9, 10, and 13.
  • the order of the entries in the above embodiment is only an embodiment and does not limit the present invention.
  • the above table describes a case in which the base station transmits one codeword to the terminal, but may be similarly applied even when transmitting two or more codewords.
  • a total of 2 to 4 DMRS ports are allocated for DMRS port configuration for C-JT/NC-JT, and at least one DMRS port is allocated for each CDM group. .
  • the number of front-loaded symbols if the number of front-loaded symbols is one, allocate within DMRS port 0-3 (the same as [Table 12-3] and omitted), and if the number of front-loaded symbols is two, DMRS port 0-7 Allocate within.
  • the frequency domain orthogonal cover code (OCC) of each CDM group should be the same.
  • the time domain OCC of each CDM group may be the same or different.
  • DMRS ports 0 and 2 using the same time domain OCC may be used at the same time, and DMRS ports 0 and 6 using different time domain OCCs may also be used at the same time.
  • the time domain OCC applied to each of the CDM groups ⁇ 0,1 ⁇ may be the same or different.
  • the above embodiments are listed in an entry format, and some or all of the 28 entries may be applied in an actual system.
  • entries 0, 2, 3, 6, 7, 9, 10, 13 or 0, 2, 3, 6, 7, 9, 10, 13, 14, 16, 17, 20, 23 Only, 24, and 27 can be used to determine the table.
  • the order of the entries in the above embodiment is only an embodiment and does not limit the present invention.
  • the above table describes a case in which the base station transmits one codeword to the terminal, but may be similarly applied even when transmitting two or more codewords.
  • [Table 13-1] proposes a method for the base station to use the reserved bit codepoint on the existing rel-15 as a DMRS port indication method to the terminal for the C-JT/NC-JT transmission.
  • fields 0 to 11 are used, and fields 12-15 are not used as reserved bits.
  • a DMRS port for cooperative transmission transmitted in two TRPs may be indicated by using four codepoints of 12 to 15 in the DMRS port table as shown in [Table 13-1].
  • the terminal may determine that the first TRP and the second TRP transmit the DMRS through the DMRS port 0 and the DMRS port 2.
  • the terminal confirming that the number of each port is one may determine that single layer transmission is performed from the first TRP and the second TRP.
  • the terminal may determine that the first TRP transmits the DMRS through the DMRS ports 0 and 1, and that the second TRP transmits the DMRS through the DMRS port 2.
  • the terminal confirming that the number of each port is two or one may determine that layer 2 transmission is performed in the first TRP and layer 1 transmission is performed in the second TRP.
  • the terminal determines that the first TRP transmits the DMRS through the DMRS port 0, and the remaining second TRP transmits the DMRS through the DMRS ports 2 and 3. I can.
  • the terminal confirming that the number of each port is 1 or 2 may determine that single layer transmission is performed from the TRP in the first TRP and 2 layers transmission is performed in the remaining second TRP.
  • the terminal determines that the first TRP transmits the DMRS through the DMRS ports 0 and 1, and the remaining second TRP transmits the DMRS through the DMRS ports 2 and 3. I can.
  • the UE confirming that the number of each port is two may determine that layer 2 transmission is performed in the first TRP and layer 2 transmission is performed in the remaining second TRP.
  • the terminal set to C-JT/NC-JT transmission enabled in the upper layer checks the residual codepoint of the existing antenna port field in DCI format 1_1 and transmits C-JT/NC-JT in a dynamic manner. You can judge whether or not. That is, when the antenna port field in DCI format 1_1 is 12 to 15, the terminal is the number of TRPs used for transmission of the PDSCH scheduled in DCI, the number of layers to be transmitted, the number of DMRS DCM groups without data, and front-loaded symbols. You can check the number of The above embodiments are listed in an entry format, and some or all of the four entries may be applied in an actual system. The order of entries in the above embodiment is only an example and does not limit the present invention.
  • a duplicate index may be omitted. That is, in [Table 13-1], entries 12, 13, and 15 for NC-JT transmission may be omitted because entries 11, 9, and 10 have the same port index. In addition, in [Table 13-2], entries 31, 32, and 34 for NC-JT transmission may be omitted because entries 11, 9, and 10 have the same port index. In addition, in [Table 13-3], entries 24, 25, 27, 29, and 31 for NC-JT transmission may be omitted because entries 23, 9, 10, 29, and 22 have the same port index.
  • entries 24, 25, 27, 29, and 31 for NC-JT transmission may be omitted because entries 23, 9, 10, 29, and 22 have the same port index.
  • entries 58,59,61,63,65 for NC-JT transmission may be omitted because entries 23, 9, 10, 20, and 22 have the same port index.
  • the terminal may support multi-TRP or data transmitted from a plurality of base stations in the form of C-JT/NC-JT.
  • a terminal supporting C-JT / NC-JT may receive a parameter or setting value related to C-JT / NC-JT in a higher layer configuration, and set the RRC parameter of the terminal based on this.
  • the UE may utilize the UE capability parameter tci-StatePDSCH.
  • the UE capability parameter tci-StatePDSCH defines TCI states for the purpose of PDSCH transmission, and the number of TCI states can be set to 4, 8, 16, 32, 64, 128 in FR1, and 64, 128 in FR2.
  • up to 8 states that can be indicated by 3 bits of the TCI field of DCI may be set through the MAC CE message.
  • the maximum value of 128 means a value indicated by maxNumberConfiguredTCIstatesPerCC in the tci-StatePDSCH parameter included in the capability signaling of the terminal.
  • a base station can activate/deactivate a TCI state through different MAC CE signaling such as rel-15 and rel-16.
  • MAC CE signaling such as rel-15 and rel-16.
  • a TCI field may be used to dynamically support a beamforming direction indication or a beamforming direction change command.
  • the beamforming direction indication or the beamforming direction change command refers to an operation that is applied when the UE that checks the TCI states field information in DCI format 1_1 receives the PDSCH in the downlink after a certain period of time, and the direction is QCLed base station/TRP. Refers to the corresponding beamforming setting direction in connection with the DL RS of.
  • the base station or the terminal may determine to use Rel-15 MAC CE for Rel-15 DCI format and to use Rel-16 MAC CE for Rel-16 DCI format, respectively.
  • Rel-15 MAC CE for Rel-15 DCI format
  • Rel-16 MAC CE for Rel-16 DCI format
  • 10A is a diagram illustrating a MAC CE structure for TCI state activation of a UE-specific PDCCH according to the present disclosure.
  • FIG. 10A shows a MAC CE structure for TCI state activation of Rel-15-based UE-specific PDCCH.
  • 10-50 of FIG. 10A shows a MAC-CE structure for TCI state activation/deactivation of Rel-15-based UE-specific PDSCH.
  • the MAC CE of Rel-16 can be configured in a form of partially extending the MAC CE message of rel-15. In this embodiment, it may be proposed that all TCI states activated by the rel-15 MAC CE are included in the TCI states activated by the rel-16 MAC CE.
  • the base station is the total TCI states of the RRC configured TCI states (10-01) of rel-15 M as TCI #0, TCI #1, TCI #2,..., TCI #M-1 TCI #0', TCI #1', TCI #2', ..., TCI #K-1 as a subset (10-21) of TCI states selected by MAC CE of rel-15. You can choose.
  • the base station and the terminal supporting rel-16 may separately set the RRC configured TCI states supporting rel-16 or use the RRC configured TCI states configured in rel-15 as it is.
  • the RRC configured TCI states supporting rel-16 may include some or all of the RRC configured TCI states set in rel-15.
  • the TCI states of rel-16 may be equal to or greater than 128. If a base station or a terminal expands the number of TCI states supported by rel-15 in proportion to the number of base stations/TRPs operating in C-JT/NC-JT in rel-16, when operating with two TRPs, up to 256 TCI states can be set.
  • the rel-16 MAC CE may include some or all of the TCI states supported by the MAC CE of rel-15 in the RRC configured TCI states for rel-16 use.
  • rel-16 MAC CE includes all of the TCI states supported by the MAC CE of rel-15, and expands in proportion to the number of base stations/TRPs operating as C-JT/NC-JT in rel-16, two When operating in TRP, a maximum of 2K TCI states can be set.
  • Table 14 shows details of the tci-StatePDSCH parameters described in the above embodiment. Specifically, the FR2 mandatory value of the parameter maxNumberConfiguredTCIstatesPerCC may be modified from 64 to 128 or 256, or may be separately added to 64, 128 or 256 for C-JT/NC-JT purposes.
  • a base station or terminal supporting Rel-15 and rel-16 sets the maximum values for rel-15 and rel-16 respectively to set the TCI states through MAC CE to a value equal to or less than the set maximum value.
  • Various embodiments below may be proposed as a method of setting the number of TCI states to a value equal to or less than the maximum value.
  • the number of TCI states activated by the MAC CE messages of Rel-15 and rel-16 may be set by the UE capability value reported by the UE. According to another example, the number of TCI states activated by MAC CE messages of rel-15 and rel-16 may be determined as a value preset by the base station. According to another example, the number of TCI states activated by MAC CE messages of rel-15 and rel-16 may be determined as a value previously promised by the base station and the terminal.
  • the base station and the terminal is the total TCI states (11-00) of the RRC configured TCI states of rel-15 TCI #0, TCI #1, TCI #2, ..., TCI #M-1 and Likewise, it is determined as M, among them, TCI #0', TCI #1', TCI #2', ..., TCI by selecting a subset (11-20) of TCI states selected by MAC CE of rel-15 #K-1 can be arranged. If TCI #0 is selected among M TCI states, it can be arranged in TCI #0'.
  • the maximum value of K for the base station and the terminal supporting rel-15 may be set or determined to be 8, and the maximum value of K for the base station and terminal supporting rel-16 may also be set to 8. have.
  • the base station may instruct the terminal to select a beam for the PDSCH through a DCI based beam selection operation within one CORESET.
  • the selection of the beam may be determined by checking the TCI field information 10-41 in the DCI among up to eight.
  • the TCI field #I indicated in FIG. 10B may be selected as a value of 0 to 7.
  • TCI #0' TCI #0'
  • K 8
  • the maximum value of K for the base station and the terminal supporting rel-16 will be set to 16.
  • I can.
  • the maximum value is set to 16
  • #I selected and indicated by the base station may be selected as a value of 0 to 15 when K is 16.
  • Table 15 shows UE capability reporting parameters for QCL-TypeD "PDSCH beam switching (or timeDurationForQCL, UE capa 2-2)" and "Max number of downlink RS resources used for QCL type-D in the active TCI states and active spatial relation. This is a table showing the characteristics of "info (or UE capa 2-62)".
  • the UE reports the time interval required to change the reception beam from a minimum of 7 symbols to a maximum of 28 symbols based on a 60 kHz subcarrier interval (SCS) to the base station through timeDurationForQCL or a 120 kHz subcarrier interval (SCS). It is possible to report a time interval required for a reception beam change from a minimum of 14 symbols to a maximum of 28 symbols.
  • SCS subcarrier interval
  • the 60kHz and 120kHz SCS are values that can be set only in FR2, and according to Table 15, it can be seen that timeDurationForQCL is also available only in FR2.
  • the UE can inform the base station of how many downlink reference signals can be used as a reference RS for the QCL type-D of the activated TCI state through "UE capa 2-62". For example, if the value of "UE capa 2-62" is 1, this means that there is only one reference RS of QCL type-D in the activated TCI state. It can be interpreted as meaning that it cannot. On the other hand, if the value of "UE capa 2-62" is 2 or more, this means that there are two or more reference RSs of QCL type-D in the activated TCI state. It can be interpreted to mean that there is.
  • the Rel-15-based base station may allocate data in consideration of a scheduling time offset (t_so) from a time when reception of the PDCCH in CORESET is completed to a time when a PDSCH scheduled by the PDCCH is transmitted.
  • the scheduling time offset (t_so) is the time from the last symbol (or the next symbol) of the PDCCH allocating the PDSCH to the previous symbol where the PDSCH transmitting data starts in the corresponding slot indicated by k0 described in FIG. 8 ( duration).
  • the scheduling time offset (t_so) may determine the start symbol of the PDSCH based on a Start and Length Indicator (SLIV) index set in startSymbolAndLength (0 to 127) of PDSCH-TimeDomainResourceAllocation set in an upper layer.
  • the application of the beamforming may vary for each UE according to the capability of the UE, and the capability is transmitted as a timeDurationForQCL value to the base station and the base station during the RRC setup process.
  • the timeDurationForQCL may be referred to as a time interval for the UE to apply QCL or a time interval for applying QCL.
  • the UE may perform the following operation according to the scheduling time offset (t_so) and a value of timeDurationForQCL based on the capability of the UE to be set in the upper layer.
  • the UE When tci-PresentinDCI is not set to'enabled' in the upper layer configuration, the UE has a scheduling offset/scheduling timining offset between the PDCCH and PDSCH regardless of the DCI format is greater than the timeDurationForQCL reported by the UE capability report. You can check whether it is the same or not.
  • the terminal assumes that the TCI field exists in the corresponding DCI, and the scheduling time offset between the PDCCH and the PDSCH reports the terminal capability. You can check whether it is greater than or equal to the timeDurationForQCL reported as.
  • the UE sets the DMRS port of the received PDSCH based on the QCL parameter used for CORESET associated with the monitored search space having the lowest CORESET ID in the most recent slot. Can be decided.
  • the UE when the scheduling offset/scheduling timing offset between the PDCCH and the PDSCH is greater than or equal to timeDurationForQCL, the UE applies a QCL assumption such as CORESET used to transmit the PDCCH to the corresponding PDSCH DMRS port.
  • the UE applies the QCL assumption indicated by the TCI field in the corresponding PDCCH (DCI) to the corresponding PDSCH DMRS port.
  • the UE does not include the QCL-TypeD among the TCI states set "for all BWPs"
  • the UE is always in the indicated TCI state regardless of the interval between the DCI and the PDSCH allocated by the DCI.
  • QCL assumption can be obtained accordingly
  • 11, 12, 13, and 14 are diagrams illustrating a structure of a PDCCH transmitted according to at least one CORESET and a search space set by a base station.
  • the base station transmits the first PDCCH within one CORESET (eg, the first CORESET or PDCCH#1) as shown in FIG. 8.
  • the first PDCCH transmitted in TRP-A may schedule one or more PUCCH resources and at least two or more plurality of PDSCHs.
  • DMRS ports of different CDM groups may be applied to each of the PDSCHs transmitted by the base station, and a DMRS transmission symbol transmitted together with each of the PDSCHs may be located in the same symbol.
  • the base station applies the same beam direction to the PDCCH beam direction (TCI-states) in a specific CORESET transmitted by the base station for a specific terminal unless otherwise updated by MAC CE. 11, 12, 13, and 14, the N-th PDCCH (PDCCH#N) transmitted by the base station/TRP A is the PDCCH in the CORESET linked to the monitored search space having the lowest CORESET ID in the most recent slot. Show That is, if the UE does not receive the PDCCH beam change update message, the QCL parameter used to receive the Nth PDCCH in the CORESET associated with the monitored search space having the lowest CORESET ID in the most recent slot is the same for the first PDCCH reception. Apply. Although the Nth PDCCH is transmitted in a different search space in the same CORESET, it has been described that it is transmitted in a previous slot of the first PDCCH, but transmission in a different search space of the same slot is not limited.
  • the first PDCCH or the second PDCCH indicates allocation of the first PDSCH and the second PDSCH for NC-JT transmission, and the PDSCHs have a beamforming direction set in an upper layer. It may be changed according to beamforming information, TCI information of DCI in the first PDCCH or the second PDCCH, antenna port information, or RNTI information.
  • the terminal may check the beamforming direction changed by the base station based on the received beamforming information and DCI information.
  • a beamforming direction of the first PDCCH may be different from both of the beamforming directions of the first PDSCH and the second PDSCH for NC-JT transmission.
  • the beamforming direction of the first PDCCH may coincide with the beamforming direction of the first PDSCH or the second PDSCH for NC-JT transmission.
  • the base station may configure the beamforming directions of the first PDSCH and the second PDSCH to be different from each other in consideration of spatial beamforming gain.
  • 11 is a proposal for the operation of the base station and the terminal according to the relationship between the time duration or the number of symbols between the last symbol of the first PDCCH and the start symbol of the PDSCHs received by the terminal and the relationship between the timeDurationForQCL do.
  • the scheduling timing offset is defined as the number of symbols between the last symbol of the PDDCH and the start symbol of the PDSCH corresponding to the PDCCH, but the embodiment of the present invention is not limited thereto, and a predetermined number of symbol units Alternatively, it may be variously defined in units of slots.
  • the base station may not support NC-JT-based transmission scheduling with a single PDCCH to a terminal in which tci-PresentinDCI is not set to'enabled'. That is, the base station may allocate only one PDSCH in one PDCCH for a terminal in which tci-PresentinDCI is not set to'enabled'.
  • NC-JT-based transmission can be performed only when a terminal in which tci-PresentinDCI is set to'enabled'.
  • the base station may instruct a terminal in which tci-PresentinDCI is not set to'enabled' for NC-JT-based transmission scheduling with a single PDCCH using antenna port information within a single PDCCH.
  • the base station may indicate to the terminal information related to DMRS mapped to different CDM groups in the antenna port information to inform a plurality of PDSCH related information to be transmitted by the base station.
  • the base station may support NC-JT-based transmission by scheduling in DCI format 1_1 in a single PDCCH to a terminal in which tci-PresentinDCI is set to'enabled'.
  • the base station may perform data transmission to the terminal in consideration of a scheduling time offset (t_so) between a single PDCCH and a plurality of PDSCHs.
  • FIG. 11-00 of FIG. 11 shows a case where the value of t_so scheduled by the base station is 14 or more.
  • the base station may determine and operate using at least one of the methods proposed below.
  • the base station transmits a first PDCCH (DCI format 1_1) for NC-JT-based transmission to a specific terminal in which tci-PresentinDCI is set to'enabled' and a first PDSCH allocated by the first PDCCH 11-10 (11-20) and the second PDSCH (11-25) may be transmitted.
  • the base station may transmit both the first PDSCH 11-20 and the second PDSCH 11-25 based on the scheduling algorithm of the base station without considering the timeDurationForQCL of the terminal.
  • the base station may indicate the beamforming direction in which the PDSCHs are transmitted using TCI information and antenna port information in the DCI of the first PDCCH 11-10, but the capability of the UE is not considered during scheduling.
  • the base station determines that the terminal can receive at least one PDSCH based on the timeDurationForQCL information of the terminal and the indicated TCI state-related information of the first PDSCH and the second PDSCH, the NC-JT-based transmission of a specific terminal
  • the UE may transmit a first PDCCH and transmit a first PDSCH and a second PDSCH allocated by the first PDCCH.
  • the base station determines that the terminal can receive the two PDSCHs based on the timeDurationForQCL information of the terminal and the indicated TCI state-related information of the first PDSCH and the second PDSCH, the NC-JT-based transmission of a specific terminal
  • the UE may transmit a first PDCCH and transmit a first PDSCH and a second PDSCH allocated by the first PDCCH.
  • the terminal may not expect NC-JT-based transmission. That is, when tci-PresentinDCI is not set to'enabled' or when DCI format 1_0 is received, it may be considered that only one PDSCH corresponding to one PDCCH is transmitted. For example, the UE may determine that the beamforming direction of the first PDCCH and the beamforming direction of the PDSCH indicated by the first PDCCH are the same.
  • the terminal may determine whether to transmit NC-JT based on antenna port information included in DCI. That is, the antenna port information may include information on whether the base station transmits a single PDSCH or a plurality of PDSCHs. For example, the UE may determine that the beamforming direction of the first PDCCH and at least one direction of the first PDSCH and the second PDSCH indicated by the first PDCCH are the same. Alternatively, the UE may determine that the beamforming direction of the first PDCCH and the directions of the first PDSCH and the second PDSCH indicated by the first PDCCH are in a default TCI state.
  • the terminal capability parameter timeDurationForQCL reported to the base station by calculating the scheduling time offset (t_so) (e.g.: S14) can be compared.
  • FIG. 11-00 of FIG. 11 shows a case where the value of t_so calculated by the terminal is 14 or more.
  • the terminal may determine and operate using at least one of the methods proposed below.
  • the UE assumes that the TCI field is present in the corresponding DCI and may apply QCL parameters (sets) of TCI states indicating the direction of beamforming for at least one PDSCH indicated by the TCI codepoint.
  • the UE may assume that the TCI states for one PDSCH among two PDSCHs are the same as the TCI of the PDCCH.
  • the UE may receive data by applying QCL parameters for the first PDSCH and the second PDSCH based on the information of the configured TCI field.
  • FIG. 11-50 of FIG. 11 illustrate a case in which a t_so value between PDCCH and PDSCHs transmitted by a base station is less than 14.
  • the base station may determine and operate using at least one of the methods proposed below.
  • the base station when the base station does not set tci-PresentinDCI to'enable', the base station can operate in the same manner as in embodiment 1-1.
  • the base station transmits the first PDCCH and the first PDSCH and the second PDSCH allocated by the first PDCCH based on the scheduling algorithm of the base station without considering the timeDurationForQCL of the terminal for NC-JT-based transmission of a specific terminal. Can all be transmitted.
  • the base station may indicate the beamforming direction in which the PDSCHs are transmitted using TCI information and antenna port information in the DCI transmitted through the first PDCCH. In this case, the capability of the terminal is not considered during scheduling.
  • the base station transmits the first PDCCH for NC-JT-based transmission of a specific terminal and for the first PDSCH and the second PDSCH allocated by the first PDCCH, the timeDurationForQCL information of the terminal and the indicated first PDSCH and If the terminal determines that reception of at least one PDSCH is impossible based on the TCI state-related information of the second PDSCH, only a receivable PDSCH (eg, PDSCH #1) can be transmitted to the terminal.
  • the base station transmits the first PDCCH for NC-JT-based transmission of a specific terminal and the first PDSCH and the second PDSCH allocated by the first PDCCH, the timeDurationForQCL information of the terminal and the indicated first PDSCH.
  • the base station considers the timeDurationForQCL of the terminal and the TCI state that the terminal can receive (e.g., PDCCH#1 or PDCCH
  • the terminal determines that reception of at least one PDSCH is impossible based on the TCI state-related information of the second PDSCH
  • the base station considers the timeDurationForQCL of the terminal and the TCI state that the terminal can receive (e.g., PDCCH#1 or PDCCH
  • At least one of the first PDSCH and the second PDSCH may be transmitted based on the TCI state used to receive #N.
  • the base station considers only the timeDurationForQCL information of the terminal, and the terminal is at least If it is determined that reception of one PDSCH is impossible, transmission of all PDSCHs (eg, PDSCH#1, PDSCH#2) decided to be transmitted on the PDCCH may not be performed.
  • the terminal When the terminal receives a message in which tci-PresentinDCI is set to'enable' from the base station and receives the DCI format 1_1 of the first PDCCH, the terminal calculates the scheduling time offset (t_so) and reports the terminal capability parameter timeDurationForQCL ( Example: S14) can be compared.
  • FIG. 11-50 of FIG. 11 shows a case where the value of t_so calculated by the terminal is less than 14.
  • the terminal may determine and operate using at least one of the methods proposed below.
  • the terminal may not expect NC-JT-based transmission of the base station.
  • the UE may skip all PDSCH reception operations indicated in the PDCCH. For another example, if the timeDurationForQCL required for the UE to apply the TCI state-related QCL parameter indicating the beamforming direction for the PDSCH is not satisfied, the UE is in the CORESET associated with the monitored search space having the lowest CORESET ID in the most recent slot.
  • the QCL parameter used to receive the Nth PDCCH may be applied in the same manner for reception of the first PDSCH or the second PDSCH.
  • the UE may perform decoding by applying the QCL parameter to both the first PDSCH and the second PDSCH.
  • the terminal can selectively expect to succeed in receiving only one PDSCH among the two PDSCHs.
  • the terminal can expect the base station to transmit based on single transmission.
  • the UE is the N-th PDCCH in the CORESET associated with the monitored search space having the lowest CORESET ID in the most recent slot. You can use the QCL parameter used to receive the. Accordingly, the UE may receive data from the PDSCH allocated to the lowest/highest resource RB among the first PDSCH and the second PDSCH (eg, first PDSCH/second PDSCH), and in this case, the QCL parameter may be used. .
  • the UE The QCL parameter used to receive the N PDCCH can be applied to both the first PDSCH and the second PDSCH.
  • the DMRS port configuration for receiving the first PDSCH and the second PDSCH may be received based on antenna port information in the DCI.
  • the UE expects that one default QCL is set in NC-JT transmission based on Single PDCCH within one CORESET.
  • the UE can expect to set two or more default QCLs.
  • the two or more default QCLs it means that the UE can apply a QCL parameter to two PDSCHs (eg, a first PDSCH and a second PDSCH) based on information previously set from the base station.
  • the QCL parameter to be applied may be internally or externally set by DCI information (eg, antenna port information and TCI information) indicated to the UE, MAC CE or RRC information.
  • the beamforming direction of each TRP based on at least two default QCLs is the same beamforming direction at the terminal performing the reception operation. It can be set to be the direction.
  • the plurality of TRPs may set the TCI state of each TRP assuming that the UE performs the same beamforming.
  • the UE may determine that the TCI states are the same based on MAC CE or RRC information set implicitly or externally by the base station and perform a reception operation based on this.
  • the TCI states may be the same or different from each other in consideration of the location and channel of the TRP. That is, the UE may perform reception beamforming in the same direction by applying a QCL parameter to two PDSCHs (eg, a first PDSCH and a second PDSCH).
  • the base station may configure two or more default QCLs to match each other. That is, two are explicitly set, but can be set to indicate the same beamforming direction.
  • the terminal may perform the same beamforming by checking the same TCI states setting set in the base station.
  • the UE may perform a reception operation based on one TCI state assuming that a plurality of TCI states for default QCL set in the base station are the same. That is, the UE may perform reception beamforming in the same direction by applying the same QCL parameter to two PDSCHs (eg, a first PDSCH and a second PDSCH).
  • the base station may sequentially set at least two default QCLs per one CORESET or one PDCCH-config.
  • the base station may or may not set a default QCL for the first PDSCH and later set a default QCL for the second PDSCH. If the default QCL for the second PDSCH is not set, if only the default QCL for the first PDSCH set in one ServingCell, PDCCH-config or CORESET (group) per TRP is configured, the terminal has a default QCL for the second PDSCH. It may be determined to be the same as that of the first PDSCH. Alternatively, the UE may determine that the default QCL for the second PDSCH is unnecessary, and thus determine that it is not scheduled within a scheduling time offset. Alternatively, the UE may determine that transmission of the second PDSCH will not be performed.
  • the UE assumes that at least two or more PDSCHs are not transmitted within one slot in a single-DCI-based multi-TRP, and at least two default QCLs are configured. Thereafter, the UE may determine that at least two or more plurality of PDSCHs will be transmitted within one slot in the plurality of TRPs.
  • the base station transmits the first PDCCH within one CORESET (e.g., CORESET #0 or PDCCH #1), and additionally transmits the second PDCCH within another CORESET (e.g., CORESET #1 or PDCCH #2). Examples will be described.
  • the first PDCCH transmitted in TRP-A schedules one or more PUCCH resources (first PUCCH) and one or more plurality of PDSCHs (first PDSCH), and the second PDCCH transmitted in TRP-B is one More than one PUCCH resource (second PUCCH) and one or more plurality of PDSCHs (second PDSCH) can be scheduled.
  • Each of the PDSCHs transmitted by the base station may be applied to a DMRS port of a different CDM group, and a DMRS transmission symbol transmitted together with each of the PDSCHs may be located in the same symbol. It is assumed that the PDSCHs are transmitted in the same symbol, but the present invention does not necessarily limit only transmission in the same symbol.
  • the plurality of CORESETs may be separately set by a base station for multi-DCI-based NC-JT transmission.
  • the plurality of CORESETs may be set in a set form such as a CORESET group, and may be indicated based on an upper layer or L1/L2 signaling for a terminal supporting NC-JT.
  • the base station may set one CORESET group including at least one CORESET(s) to a specific terminal for multi-DCI-based NC-JT-based transmission. Specifically, the base station sets four CORESETs in one CORESET group to a specific terminal, and thus the terminal monitors the set CORESETs to receive two PDCCHs and receive PDSCHs allocated from the received PDCCH. As shown in FIG. 12, one CORESET group (e.g., CORESET group #0) is set from the base station to a specific terminal, and the terminal is NC among up to five CORESETs (e.g., CORESET #0 to CORESET #4) included in the CORESET group.
  • CORESET group #0 is set from the base station to a specific terminal
  • the terminal is NC among up to five CORESETs (e.g., CORESET #0 to CORESET #4) included in the CORESET group.
  • CORESET #0 and CORESET #1 can be monitored for JT purposes.
  • the CORESET to be monitored by the terminal within the CORESET group may be set by the base station or may be determined arbitrarily according to the configuration of the terminal, and this may be applied to other embodiments of the present disclosure.
  • the base station may set at least two or more CORESET groups including at least one or more CORESET(s) to a specific terminal for multi-DCI-based NC-JT-based transmission.
  • the base station may set two CORESET groups to a specific terminal, and set or instruct one CORESET group from among the set CORESET groups or CORESET(s) in each CORESET group.
  • the UE may receive two PDCCHs by monitoring the set CORESET(s) and receive PDSCHs allocated from the received PDCCH. As shown in FIG.
  • two CORESET groups (e.g., CORESET group #0, CORESET group #1) are set from the base station to a specific terminal, and among the CORESETs in the CORESET group, the terminal is CORESET # in the CORESET group # 0 for NC-JT purposes You can monitor 0 and CORESET #1 in CORESET group #1.
  • the CORESET to be monitored by the terminal within the CORESET group may be set by the base station or may be determined arbitrarily according to the configuration of the terminal.
  • the CORESET #0 may include a first PDCCH and an Nth PDCCH
  • the CORESET #1 may include a second PDCCH and an N+1th PDCCH.
  • the CORESET set for each CORESET group can be different (e.g., CORESET group #0 includes CORESET #0 and #2, CORESET group #1 includes CORESET #1, #3, and #5), and is set in all CORESET groups.
  • the total number of CORESETs may be within the maximum number of CORESETs that can be set to the terminal, that is, reported as UE capability. In the above embodiment, the maximum number of CORESETs may be 5 or less.
  • the base station applies the same beam direction to the PDCCH beam direction (TCI-states) in a specific CORESET transmitted by the base station for a specific terminal unless otherwise updated by MAC CE.
  • Nth PDCCH (PDCCH#N)/N+1th PDCCH (PDCCH#N+1) transmitted by TRP-A/TRP-B is the lowest CORESET ID in the most recent slot of each CORESET. Shows the PDCCHs in the CORESET associated with the monitored search space with. That is, if the terminal does not receive the PDCCH beam change update message, the QCL parameter used to receive the Nth PDCCH/N+1th PDCCH in the CORESET associated with the monitored search space having the lowest CORESET ID in the most recent slot is determined. The same can be applied to reception of 1 PDCCH/ 2nd PDCCH.
  • the Nth PDCCH (PDCCH#N)/N+1th PDCCH (PDCCH#N+1) is transmitted in a different search space in the same CORESET, and is described as being transmitted in the same slot of the first PDCCH/second PDCCH. However, it does not limit the case of transmission in another search space of the previous slot.
  • the first PDCCH and the second PDCCH respectively indicate the allocation of the first PDSCH and the second PDSCH for NC-JT transmission, and in this case, the PDSCHs are beamforming information set in an upper layer and a first PDCCH and a second PDSCH. It may be changed according to the TCI information, antenna port information, or RNTI information of the DCI in the PDCCH.
  • the terminal may check the beamforming direction changed by the base station based on the received beamforming information and DCI information.
  • the first PDCCH beamforming direction is different from the beamforming direction of the first PDSCH for NC-JT transmission
  • the second PDCCH beamforming direction is the beamforming of the second PDSCH for NC-JT transmission. Both directions can be different.
  • the beamforming direction of the first PDCCH coincides with the beamforming direction of the first PDSCH for NC-JT transmission, or the beamforming direction of the second PDCCH is the second PDSCH for NC-JT transmission.
  • the base station may configure the beamforming directions of the first PDSCH and the second PDSCH to be different from each other in consideration of spatial beamforming gain.
  • scheduling timing offset and timeDurationForQCL which is the duration between the last symbol of the first PDCCH received by the UE and the start symbol of the first PDSCH, and the last symbol and the second of the second PDCCH.
  • the base station can schedule without considering the scheduling time offset (t_so) and the timeDurationForQCL reported by the terminal capability report for NC-JT-based transmission.
  • the base station can schedule without considering the scheduling time offset (t_so) and the timeDurationForQCL reported by the terminal capability report for NC-JT-based transmission. .
  • the base station may determine whether to change the NC-JT-based first PDSCH and the second PDSCH transmission beam without considering the capability of the terminal. Accordingly, the base station may transmit the PDSCHs based on the TCI field information of the PDCCH to which the first PDSCH and the second PDSCH are allocated.
  • the base station may perform scheduling in consideration of a scheduling time offset (t_so) for NC-JT-based transmission and timeDurationForQCL reported as a terminal capability report.
  • the base station may determine the beam direction of the PDSCHs according to whether the NC-JT-based first PDSCH and the second PDSCH transmission beam are changed.
  • the base station has two CORESET group #0 and CORESET group #1 (e.g., CORESET group #0 includes CORESET #0 and #2, and CORESET group #1 includes CORESET #1, #3, and #5. Including), CORESET #0 in CORESET group #0 and CORESET #1 in CORESET group #1 are set in the terminal for NC-JT purposes, and the beams of the first PDSCH and the second PDSCH among the PDSCHs to be transmitted in connection with the PDCCH in the CORESETs. Describe the case where the change occurs.
  • the base station compares the first scheduling time offset and timeDurationForQCL, which is the duration between the first PDCCH and the first PDSCH, when the beam of the PDSCH changes to a specific terminal, or the duration between the second PDCCH and the second PDSCH. ), at least one of comparing the second scheduling time offset and timeDurationForQCL may be performed. Accordingly, the base station may operate as follows when the first scheduling time offset and the second scheduling time offset at which the beam change occurs are less than timeDurationForQCL.
  • the QCL parameter used to transmit the Nth PDCCH may be applied to the first PDSCH transmission, and the QCL parameter used to transmit the N+1 PDCCH may be applied equally to the second PDSCH transmission.
  • the base station may set two CORESET groups for NC-JT, and correspond each CORESET group to each TRP.
  • the QCL assumption for each PDSCH may be referenced from the corresponding lowest CORESET-ID in the CORESET group.
  • the QCL parameter used to transmit the Nth PDCCH in the CORESET associated with the monitored search space with the lowest CORESET ID (eg, CORESET #0) in the most recent slot in the lowest CORESET group (eg, CORESET group #0) May be applied equally to the transmission of the first PDSCH and the second PDSCH.
  • the QCL parameter used to transmit the Nth PDCCH in the CORESET associated with the monitored search space with the lowest CORESET ID (CORESET #0) in the most recent slot in the lowest CORESET group (COREST group #0) is the first PDSCH.
  • the second PDSCH transmission may be dropped or not performed. That is, transmission of the PDSCH may be prioritized according to the lowest CORESET ID.
  • a base station can set a CORESET for NC-JT purposes within one CORESET group #0 (e.g., CORESET group #0 includes CORESET #0 and CORESET #1) (CORESET #0 and CORESET #0 in FIG. CORESET #1), a case where a beam change of the first PDSCH and the second PDSCH occurs among PDSCHs to be transmitted in connection with the PDCCH in the CORESETs will be described.
  • the base station compares the first scheduling time offset and timeDurationForQCL, which is the duration between the first PDCCH and the first PDSCH, when the beam of the PDSCH is changed to a specific terminal, and compares the time between the second PDCCH and the second PDSCH ( duration), a second scheduling time offset and timeDurationForQCL. Accordingly, when the first scheduling time offset or the second scheduling time offset at which the beam change of the PDSCH occurs is less than timeDurationForQCL, the base station may operate as in various embodiments as follows.
  • the base station is the lowest ID (e.g., CORESET #0) or the next smallest ID (e.g., CORESET #1) in the most recent slot in the CORESET group (e.g., CORESET group #0) where the beam change occurs.
  • the QCL parameter used to transmit the Nth PDCCH in the CORESET linked to the monitored search space is applied to the first PDSCH transmission, or the QCL parameter used to transmit the N+1 PDCCH is the same for the second PDSCH transmission. Can be applied.
  • the base station is based on the lowest ID (e.g., CORESET #0) information in the most recent slot in the CORESET group (e.g., CORESET group #0) where the beam change occurs.
  • the QCL parameter used to transmit the N PDCCH may be equally applied to the transmission of the first PDSCH or the second PDSCH in which the beam change has occurred.
  • the base station is based on the lowest ID (e.g., CORESET #0) information in the most recent slot in the CORESET group (e.g., CORESET group #0) where the beam change occurs.
  • the QCL parameter used for N PDCCH transmission may be applied to the first PDSCH transmission, and the second PDSCH transmission may be dropped or not performed. That is, transmission of the PDSCH may be prioritized according to the lowest CORESET ID.
  • CORESET group #0 includes CORESET #0 and CORESET #2
  • CORESET group #0 includes CORESET #0 and CORESET #2
  • only CORESET may exist without the concept or setting of a CORESET group, and a solution accordingly
  • only the CORESET group is excluded, and it may be obvious that they are interpreted as a description of the CORESET ID.
  • the base station when a beam change of at least one PDSCH among the PDSCHs to be transmitted occurs, the base station provides a first scheduling time offset and timeDurationForQCL, which are the durations between the first PDCCH and the first PDSCH, to a specific terminal.
  • a first scheduling time offset and timeDurationForQCL which are the durations between the first PDCCH and the first PDSCH.
  • the base station may select one of the QCL parameters used to transmit the Nth PDCCH and the N+1 PDCCH and apply the directions of the beams of the first PDSCH and the second PDSCH in common.
  • the selection method is the longest in consideration of the time difference between the PDCCH transmission for transmitting the PDSCH and the ACK/NACK of the PDSCH and the PDSCH or the PDCCH index allocated in the most recent search space by selecting the lowest/highest CORESET ID in detail. It may include a method of choice.
  • the plurality of PDSCHs may be transmitted in TRP-A or TRP-B.
  • the terminal When the terminal receives a message in which tci-PresentinDCI is set to'enable' from the base station and receives the DCI format 1_1 of the first PDCCH, the terminal capability parameter timeDurationForQCL reported to the base station by calculating the scheduling time offset (t_so) (e.g., S14 ) Can be compared. 12 shows a case in which both the value of t_so1 and the value of t_so2 calculated by the terminal are less than 14. If the calculated value of t_so is less than 14, the terminal may determine and operate in the method proposed below.
  • t_so scheduling time offset
  • the terminal when the terminal has tci-PresentinDCI set to'enabled' from the base station and receives the DCI format 1_1 of the first PDCCH or the second PDCCH, the terminal reports the calculated scheduling time offset (t_so) value to the base station. If all are smaller than the capability parameter timeDurationForQCL (eg, S14), the UE may not expect NC-JT-based transmission of the base station. For example, if the timeDurationForQCL required to apply the TCI state-related QCL parameter indicating the beamforming direction for the PDSCH is not satisfied, the UE may skip all PDSCH reception operations indicated in the PDCCH.
  • timeDurationForQCL eg, S14
  • the UE corresponds to embodiment 5-2. So, it can be operated as follows.
  • the UE may be configured with a plurality of CORESET groups.
  • the first PDSCH is allocated in association with the PDCCH in the CORESET in CORESET group #0
  • the second PDSCH is associated with the PDCCH in the CORESET in CORESET group #1. Is assumed to be assigned.
  • the terminal is a monitored search having the lowest CORESET ID (e.g., CORESET #0, CORESET #1) in the most recent slot in the CORESET group (e.g., CORESET group #0, CORESET group #1) where the beam change occurs.
  • the first QCL parameter related information used to receive the Nth PDCCH in the CORESET associated with the space is applied to the first PDSCH reception, or the second QCL parameter related information used to receive the N+1th PDCCH is applied to the second PDSCH.
  • Each can be applied to reception.
  • the UE may perform decoding by applying the information related to the QCL parameter to the first PDSCH and the second PDSCH, respectively.
  • the UE is monitored search having the lowest CORESET ID (eg, CORESET #0) in the most recent slot in the lowest CORESET group among the CORESET group (eg, CORESET group #0, CORESET group #1) where the beam change occurs.
  • Information related to the first QCL parameter used to receive the Nth PDCCH in the CORESET associated with the space may be applied to both the first PDSCH reception and the second PDSCH reception.
  • the UE is a monitored search having the lowest CORESET ID (eg, CORESET #0) in the most recent slot in the lowest CORESET group among the CORESET group (eg, CORESET group #0, CORESET group #1) where the beam change occurs.
  • the information related to the first QCL parameter used to receive the Nth PDCCH in the CORESET associated with the space may be applied to the first PDSCH reception, and the second PDSCH reception may be dropped or not performed. That is, reception of the PDSCH may be prioritized according to the lowest CORESET ID.
  • the UE corresponds to embodiment 5-2. So, it can be operated as follows.
  • the terminal may be configured with a plurality of CORESET groups.
  • the first PDSCH and the second PDSCH are linked to the PDCCH in the CORESET group #0 (e.g., CORESET group #0 includes CORESET #0 to CORESET #4) Is assumed to be assigned.
  • the terminal is the lowest CORESET ID (e.g., CORESET #0) or/and the next smallest ID (e.g., CORESET #0) in the most recent slot in the CORESET group (e.g., CORESET group #0) where the beam change occurs 1)
  • the QCL parameter used to receive the Nth PDCCH in the CORESET linked to the monitored search space is applied to the first PDSCH reception, and/or the QCL parameter used to transmit the N+1 PDCCH is applied to the second PDSCH. The same can be applied to each. Specifically, in FIG.
  • the UE when PDSCH #1 is scheduled from CORESET group #0, the UE sets the QCL parameter used for the PDCCH #N corresponding to the most recent slot in the corresponding CORESET group and the monitored search space for the lowest CORESET ID. #1 Used for reception. Meanwhile, when PDSCH #2 is scheduled from CORESET group #1, the UE uses the QCL parameter used for PDCCH #N+1 to receive PDSCH #2, similar to the above description.
  • the terminal is the Nth in the CORESET linked to the monitored search space based on the lowest ID (e.g., CORESET #0) information in the most recent slot in the CORESET group (e.g., CORESET group #0) where the beam change occurs.
  • the QCL parameter used to transmit the PDCCH may be equally applied to the transmission of the first PDSCH or/and the second PDSCH in which the beam change has occurred.
  • the base station is based on the lowest ID (e.g., CORESET #0) information in the most recent slot in the CORESET group (e.g., CORESET group #0) where the beam change occurs.
  • the QCL parameter used for N PDCCH transmission may be applied to the first PDSCH reception, and the second PDSCH reception may be dropped or not performed. That is, reception of the PDSCH may be prioritized according to the lowest CORESET ID.
  • CORESET group #0 includes CORESET #0 to CORESET #4
  • CORESET group #0 includes CORESET #0 to CORESET #4
  • only CORESET may exist without the concept or setting of a CORESET group, and a solution accordingly
  • only the CORESET group is excluded, and it may be obvious that they are interpreted as a description of the CORESET ID.
  • the UE is the lowest CORESET in the most recent slot in each CORESET. Decoding by selecting at least one of information related to the first QCL parameter and information related to the second QCL parameter used to receive the N-th PDCCH in the CORESET linked to the monitored search space having the ID and applying it to both the first PDSCH and the second PDSCH. You can do it.
  • the selection method specifically selects the lowest/highest CORESET ID among a plurality of CORESETs, selects a PDCCH index allocated from the most recent search space, or considers the time difference of PUCCH transmission for transmitting the ACK/NACK of the PDSCH and the PDSCH. So you can decide to choose the longest one.
  • the plurality of PDCSHs may be transmitted in TRP-A or TRP-B.
  • the UE when tci-PresentinDCI is not set to'enabled' from the base station or when DCI format 1_0 is received, the UE does not consider the scheduling time offset (t_so) and the timeDurationForQCL reported by the UE capability report and is based on NC-JT transmission. It is possible to receive a plurality of PDSCHs. That is, when tci-PresentinDCI is not set to'enabled' from the base station or when DCI format 1_0 is received from the base station, the terminal may consider that only one PDSCH is allocated and transmitted in one PDCCH.
  • the UE has the same beamforming direction as the first PDCCH beamforming direction and the beamforming direction of the first PDSCH indicated by the first PDCCH, and the second PDCCH beamforming direction and the beamforming direction of the second PDSCH indicated by the second PDCCH It can be determined that this is the same.
  • the terminal may determine that the PDSCH transmission based on NC-JT transmission is not supported.
  • FIG. 13-00 of FIG. 13 shows a case where one of the values of t_so1 and t_so2 calculated by the terminal is less than 14.
  • the base station and the terminal may determine and operate in the method proposed below.
  • the base station If the base station does not set tci-PresentinDCI to'enabled' for a specific terminal as in Example 5-1, the base station considers the scheduling time offset (t_so) and the timeDurationForQCL reported by the terminal capability report for NC-JT-based transmission. You can schedule without doing it.
  • the base station when the base station is set to'enabled' for a specific terminal as in embodiment 5-2, the base station provides a scheduling time offset (t_so) and a timeDurationForQCL reported as a terminal capability report for NC-JT-based transmission. It can be scheduled without consideration.
  • t_so scheduling time offset
  • timeDurationForQCL timeDurationForQCL reported as a terminal capability report for NC-JT-based transmission. It can be scheduled without consideration.
  • the base station may perform scheduling in consideration of a scheduling time offset (t_so) for NC-JT-based transmission and timeDurationForQCL reported as a terminal capability report.
  • the base station may determine the beam direction of the PDSCHs according to whether the NC-JT-based first PDSCH and the second PDSCH transmission beam are changed.
  • the base station has two CORESET group #0 and CORESET group #1 (e.g., CORESET group #0 includes CORESET #0 and #2, and CORESET group #1 includes CORESET #1, #3, and #5. Including), CORESET #0 included in CORESET group #0 and CORESET #1 included in CORESET group #1 are set as the CORESET of the terminal, and the first PDSCH among the PDSCHs to be transmitted in connection with the PDCCH in the CORESETs. And a case in which the beam change of the second PDSCH occurs.
  • the base station compares the first scheduling time offset (t_so1) and timeDurationForQCL, which is the duration between the first PDCCH and the first PDSCH, or the second scheduling time offset (duration), which is the duration between the second PDCCH and the second PDSCH. At least one of comparing t_so2) and timeDurationForQCL may be performed. If one of the first or second scheduling time offsets has an offset value less than timeDurationForQCL, the following operation may be performed. In this embodiment, it is assumed that t_so2 is less than timeDurationForQCL.
  • the base station sets a CORESET group (eg, CORESET group #1) in each CORESET group (eg, CORESET group #0, CORESET group #1) whose offset value is smaller than timeDurationForQCL and a CORESET ID in the group. Based on the QCL parameter used to transmit the N+1th PDCCH in the CORESET associated with the monitored search space having the lowest CORESET ID (eg, CORESET #1) in the most recent slot, it may be applied to the second PDSCH transmission.
  • a CORESET group eg, CORESET group #1
  • the QCL parameter used for PDCCH #N+1 corresponding to the most recent slot in the CORESET group and the monitored search space for the lowest CORESET ID is PDSCH. #2 Used for transmission.
  • the base station selects the lowest CORESET ID (e.g., CORESET #0) from the most recent slot in the lowest CORESET group (CORESET group #0) among each CORESET group (e.g., CORESET group #0, CORESET group #1).
  • the branch can apply the QCL parameter used to transmit the Nth PDCCH in the CORESET associated with the monitored search space to the second PDSCH transmission.
  • the base station offsets the beam direction of the PDSCH (second PDSCH) scheduled in the CORESET (eg, CORESET #1) within the CORESET group (eg, CORESET group #1) whose offset value is smaller than the timeDurationForQCL.
  • the QCL parameter according to the beamforming direction indicated by the CORESET (eg, CORESET #0) in the CORESET group (eg, CORESET #0) on the side whose value is greater than or equal to timeDurationForQCL, that is, the information of the TCI field indicated by the second PDCCH Can be applied.
  • the base station may apply the QCL parameter of the first PDCCH (or first PDSCH) to the second PDSCH.
  • the base station compares t_so1 and timeDurationForQCL or t_so2 and timeDurationForQCL to a specific terminal, respectively, regardless of each CORESET group, and if one of t_so1 or t_so2 is less than timeDurationForQCL, the base station is the one whose offset value is less than timeDurationForQCL.
  • the PDSCH (second PDSCH) scheduled in CORESET (eg, CORESET #1) may not be transmitted (stop or skip).
  • a base station to a specific terminal is a CORESET for NC-JT purposes within one CORESET group #0 (e.g., CORESET group #0 includes CORESET #0 and CORESET #1) (CORESET #0 and CORESET #1)
  • CORESET #0 and CORESET #1 A case in which a beam change of at least one PDSCH occurs among PDSCHs to be transmitted in association with the PDCCH in the CORESETs will be described.
  • the base station compares the first scheduling time offset and timeDurationForQCL, which is the duration between the first PDCCH and the first PDSCH, where the beam of the PDSCH is changed, or the second PDCCH and the second PDSCH.
  • At least one of an operation of comparing the scheduling time offset and timeDurationForQCL may be performed. If the first scheduling time offset or the second scheduling time offset at which the PDSCH beam change occurs is less than timeDurationForQCL, it may operate as in various embodiments as follows.
  • the base station is monitored search having the lowest CORESET ID (eg, CORESET #0) in the most recent slot based on the CORESET ID of the side whose offset value is smaller than timeDurationForQCL in the CORESET group (eg, CORESET group #0).
  • the QCL parameter used to transmit the Nth PDCCH in the CORESET associated with the space may be applied to the second PDSCH transmission.
  • the base station is linked with a monitored search space having the lowest CORESET ID (eg, CORESET #0) in the most recent slot in the lowest CORESET group (CORESET group #0) among the CORESET group (eg, CORESET group #0).
  • the QCL parameter used to transmit the Nth PDCCH in the established CORESET may be applied to the second PDSCH transmission.
  • the base station sets the beam direction of the PDSCH (second PDSCH) scheduled in a CORESET (e.g., CORESET #1) whose offset value is less than timeDurationForQCL for NC-JT transmission, and the offset value is greater than timeDurationForQCL.
  • the QCL parameter may be applied according to the beamforming direction indicated by CORESET (eg, CORESET #0) of the same side, that is, information of the TCI field indicated by the second PDCCH.
  • the second PDSCH may apply the QCL parameter of the first PDCCH (or first PDSCH).
  • the base station compares t_so1 and timeDurationForQCL or t_so2 and timeDurationForQCL to a specific terminal, respectively, and if one of t_so1 or t_so2 is less than timeDurationForQCL, the base station provides the offset for NC-JT transmission.
  • the PDSCH (second PDSCH) scheduled in the CORESET (eg, CORESET #1) of the side whose value is less than timeDurationForQCL may not be transmitted.
  • CORESET group #0 includes CORESET #0 and CORESET #2
  • CORESET group #0 includes CORESET #0 and CORESET #2
  • only CORESET may exist without the concept or setting of a CORESET group, and a solution accordingly
  • only the CORESET group is excluded, and it may be obvious that it is interpreted as a description of the CORESET ID.
  • the terminal When the terminal receives the DCI format 1_1 of the first PDCCH or the second PDCCH from the base station when tci-PresentinDCI is set to'enabled' and the terminal receives the calculated scheduling time offset (t_so) value, the terminal capability parameter timeDurationForQCL reported to the base station If it is smaller in one CORESET than (Example: S14), the UE may not expect NC-JT-based transmission of the base station. For example, when the value of t_so1 is 14 or more and the value of t_so2 is less than 14, the terminal may determine that the base station does not perform NC-JT-based transmission. That is, if the timeDurationForQCL required to apply the TCI state-related QCL parameter indicating the beamforming direction for the second PDSCH is not satisfied, the UE skips the second PDSCH reception operation indicated in the second PDCCH. I can.
  • the terminal When the terminal has tci-PresentinDCI set to'enabled' from the base station and receives the DCI format 1_1 of the first PDCCH or the second PDCCH, the terminal reports the scheduling time offset (t_so) value calculated in one CORESET to the base station. If it is less than the terminal capability parameter timeDurationForQCL (eg, S14), the terminal may consider NC-JT-based transmission of the base station as follows in response to Embodiment 7-2.
  • timeDurationForQCL eg, S14
  • the UE may be configured with a plurality of CORESET groups.
  • the first PDSCH is allocated in association with the PDCCH in the CORESET in CORESET group #0
  • the second PDSCH is associated with the PDCCH in the CORESET in CORESET group #1. Is assumed to be assigned.
  • the terminal may determine that the base station is NC-JT-based transmission. have. That is, if the terminal is not satisfied with the timeDurationForQCL required to apply the TCI state-related QCL parameter indicating the beamforming direction for the second PDSCH, the terminal has a CORESET group (e.g., CORESET group #1) of the side whose t_so2 value is less than timeDurationForQCL.
  • CORESET group e.g., CORESET group #1
  • the terminal may determine that the base station is NC-JT-based transmission. have. That is, the terminal is a monitored search having the lowest CORESET ID (e.g., CORESET #0) in the most recent slot in the lowest CORESET group (CORESET group #0) among each CORESET group (e.g. CORESET group #0, CORESET group #1).
  • the QCL parameter used to receive the Nth PDCCH in the CORESET associated with the space may be applied to the second PDSCH reception.
  • the terminal may determine that the base station is NC-JT-based transmission. have.
  • the UE determines the beam direction of the PDSCH (second PDSCH) scheduled in the CORESET group (eg, CORESET #1) within the CORESET group (eg, CORESET group #1) whose offset value is less than timeDurationForQCL, and the offset value is timeDurationForQCL
  • the QCL parameter can be applied according to the beamforming direction indicated by the CORESET (eg, CORESET #0) in the CORESET group (eg, CORESET group #0) of the same or greater than, that is, information of the TCI field indicated by the second PDCCH I can.
  • the UE may apply the QCL parameter of the first PDCCH (or first PDSCH) to the second PDSCH.
  • the base station compares t_so1 and timeDurationForQCL or t_so2 and timeDurationForQCL to a specific terminal, respectively, regardless of each CORESET group, and if one of t_so1 or t_so2 is less than timeDurationForQCL, the base station is the one whose offset value is less than timeDurationForQCL.
  • the PDSCH (second PDSCH) scheduled in CORESET (eg, CORESET #1) may not be transmitted.
  • the terminal when the terminal has tci-PresentinDCI set to'enabled' from the base station and receives the DCI format 1_1 of the first PDCCH or the second PDCCH, the terminal is a scheduling time offset (t_so) value calculated in one CORESET If it is less than the UE capability parameter timeDurationForQCL (eg, S14) reported to the base station, the UE may consider NC-JT-based transmission of the base station as follows in response to Embodiment 7-2.
  • t_so scheduling time offset
  • a CORESET (e.g., CORESET #0 and CORESET #1) is set for NC-JT purposes within one CORESET group #0 (e.g., CORESET group #0 includes CORESET #0 to CORESET #4).
  • CORESET group #0 includes CORESET #0 to CORESET #4.
  • a beam change of at least one PDSCH occurs among PDSCHs to be transmitted in association with the PDCCH in the CORESETs.
  • the present disclosure is not limited thereto, and the number of CORESETs set in the terminal may be changed according to the settings of the base station.
  • the terminal is monitored with the lowest CORESET ID (eg, CORESET #0) in the most recent slot based on the CORESET ID of the side whose offset value is smaller than timeDurationForQCL in the set CORESET group (eg, CORESET group #0).
  • the QCL parameter used to receive the Nth PDCCH in the CORESET associated with the search space may be applied to the second PDSCH reception.
  • the UE is associated with a monitored search space having the lowest CORESET ID (eg, CORESET #0) in the most recent slot in the lowest CORESET group (CORESET group #0) among the CORESET group (eg, CORESET group #0).
  • the QCL parameter used to receive the Nth PDCCH in the established CORESET may be applied to the second PDSCH reception.
  • the UE sets the beam direction of the PDSCH (second PDSCH) scheduled in a CORESET (eg, CORESET #1) whose offset value is smaller than timeDurationForQCL for NC-JT transmission, and the offset value is greater than timeDurationForQCL.
  • the QCL parameter may be applied according to the beamforming direction indicated by CORESET (eg, CORESET #0) of the same side, that is, information of the TCI field indicated by the second PDCCH.
  • the second PDSCH may apply the QCL parameter of the first PDCCH (or first PDSCH).
  • the base station compares t_so1 and timeDurationForQCL or t_so2 and timeDurationForQCL to a specific terminal, respectively, and if one of t_so1 or t_so2 is less than timeDurationForQCL, the base station provides the offset for NC-JT transmission.
  • the PDSCH (second PDSCH) scheduled in the CORESET (eg, CORESET #1) of the side whose value is less than timeDurationForQCL may not be transmitted.
  • CORESET group #0 includes CORESET #0 and CORESET #2
  • CORESET group #0 includes CORESET #0 and CORESET #2
  • only CORESET may exist without the concept or setting of a CORESET group, and a solution accordingly
  • only the CORESET group is excluded, and it may be obvious that it is interpreted as a description of the CORESET ID.
  • the UE when tci-PresentinDCI is not set to'enabled' from the base station or when receiving DCI format 1_0, the UE does not consider the scheduling time offset (t_so) and the timeDurationForQCL reported by the UE capability report and is based on NC-JT transmission. It is possible to receive a plurality of PDSCHs. That is, when the DCI format 1_0 is received, the UE may consider that only one PDSCH allocated by the base station in one PDCCH is transmitted.
  • the UE has the same beamforming direction as the first PDCCH beamforming direction and the beamforming direction of the first PDSCH indicated by the first PDCCH, and the second PDCCH beamforming direction and the beamforming direction of the second PDSCH indicated by the second PDCCH It can be determined that this is the same.
  • the terminal may determine that the PDSCH transmission based on NC-JT transmission is not supported.
  • 13-50 of FIG. 14 show values of a duration (t_so1) between the last symbol of the first PDCCH and the start symbol of the first PDSCH calculated by the UE, and between the last symbol of the first PDCCH and the start symbol of the first PDSCH.
  • duration (t_so2) is all 14 or more, the base station and the terminal can determine and operate according to at least one of the methods proposed below.
  • the base station may always set tci-PresentinDCI to'enabled' during NC-JT transmission.
  • the base station may set a scheduling time point so that the time condition is always satisfied during NC-JT transmission.
  • the scheduling time offset (t_so) value calculated by the UE is the UE capability parameter timeDurationForQCL reported to the base station (e.g. : When all are greater than or equal to S14), the UE applies the QCL assumption indicated by the TCI field in the corresponding PDCCH (DCI) to the corresponding PDSCH DMRS port.
  • the UE may apply a TCI state related QCL parameter for the first PDSCH and the second PDSCH based on the TCI field information of each DCI in the first PDCCH and the second PDCCH in order to change the PDSCH beamforming direction.
  • the above operation can be easily applied by analogy as in the eighth embodiment.
  • the base station may not perform scheduling for NC-JT transmission when tci-PresentinDCI is not set to'enabled' or instructed to DCI format 1_0 to the terminal.
  • the terminal may consider that only one PDSCH allocated from one PDCCH is transmitted by the base station.
  • the UE has the same beamforming direction as the first PDCCH beamforming direction and the beamforming direction of the first PDSCH indicated by the first PDCCH, and the second PDCCH beamforming direction and the beamforming direction of the second PDSCH indicated by the second PDCCH It can be determined that this is the same.
  • the UE may expect to set one or more default QCLs in NC-JT transmission based on multiple PDCCHs within one CORESET.
  • 15 is a flowchart illustrating a method of operating a terminal according to an embodiment of the present disclosure.
  • the terminal is at least one configuration including at least one of a parameter related to base station beamforming (tci-PresentinDCI), a control channel and a data channel parameter, or configuration information (PDDCH-config, PDSCH-config) during the RRC configuration process with the base station Information can be received (15-00).
  • a parameter related to base station beamforming tci-PresentinDCI
  • a control channel and a data channel parameter e.g., a control channel and a data channel parameter
  • configuration information e.g., PDSCH-config
  • the terminal may transmit (15-00) UE capability information (timeDurationForQCL) to the base station.
  • the UE may transmit the UE capability information at a request from the base station or at a predetermined time (eg, during an RRC setup process with the base station). Therefore, when the base station receives the capability information of the terminal, the process of receiving the capability may be omitted. Alternatively, the step of receiving capability according to the setting information itself may be omitted.
  • the UE receives the first PDCCH or the second PDCCH in a specific CORESET based on the configuration information from the base station.
  • the UE may check at least one of resource allocation information for the first PDSCH or the second PDSCH, TCI related information, antenna port information, etc. based on the first PDCCH or the second PDCCH (15-10).
  • the UE calculates a scheduling time offset between the PDCCH and the PDSCH (at least one of between the first PDDCH and the first PDSCH or between the second PDCCH and the second PDSCH), and based on the calculation result At least one of a reception operation (or reception operation method) or a reception beamforming direction of the first PDSCH or the second PDSCH may be determined (15-20).
  • the UE determines the reception operation method is at least one of determining whether to receive data through at least one of the first PDSCH or the second PDSCH, or receiving data when it is determined to receive data. May include determining.
  • the terminal may receive data through a first PDSCH and a first PDSCH corresponding to the first PDCCH or the second PDCCH based on at least one of the identified information 15-10 and the determination 15-20 result. (15-30).
  • the terminal may perform decoding of the received data.
  • Table 16 shows a simplified abstract syntax notation (ASN. 1) structure of a serving cell. The following embodiments will be described based on the high-level information element and field information described in Table 16 in order to distinguish between the configuration of Mutli-TRP and multi-TRP for NC-JT-based transmission.
  • ServingCell may be mapped to each cell index through ServingCellIndex.
  • ServingCellIndex means the ID of the serving cell, a value of 0 when the serving cell is a PCell of the master cell group, a value set as the servCellIndex of the SpCellConfig information element (IE) in the case of a PSCell, and the sCellIndex of the SCellConfig IE in the case of an SCell. can do.
  • IE SpCellConfig information element
  • physCellId indicates a physical cell identifier for the serving cell
  • the corresponding ID may be a value set in the ServingCellConfigCommon IE.
  • the downlink transmission channel-related configuration of the serving cell and transmission resource configuration such as BWP may be defined by IEs such as ARFCN, PDSCH-ServingCellConfig, BWP, PDCCH-Config, and PDSCH-Config.
  • a configuration related to uplink transmission of a corresponding serving cell may be defined by IEs such as ARFCN, PUSCH-ServingCellConfig, BWP, PUCCH-Config, and PUSCH-Config.
  • the configuration of a pair or set of TRP may be configured based on the parameters of Table 16 or IE.
  • the configuration of a pair or set of TRPs may configure or classify a TRP in units of ServingCell IE.
  • the TRP is classified based on each ServingCell
  • NC-JT-based transmission configures a pair or set between different ServingCells, and if a change is required, it can be additionally combined and changed. That is, it is possible to operate a plurality of base stations by mapping each TRP to a different ServingCell object.
  • a pair or set of ServingCells may be configured and separate higher layer parameters may be set for this.
  • multi-TRPs for NC-JT may have the same SSB carrier or SCS-SpecificCarrier.
  • the multi-TRPs may include the same SCS, the same carrier BW, and the same point A (a common reference point for resource block grids or the lowest subcarrier of common RB 0).
  • the configuration of a pair or set of TRPs for NC-JT-based mutli-TRP transmission may configure or classify the TRP in units of PDCCH-config.
  • the UE can determine that the multi-TRPs are the same cell. If the base station configures a pair or set of TRPs for the NC-JT in units of PDDCH-config, the UE determines the configuration and change of the TRP through setting and changing the PDCCH-config through an RRC setting or reconfiguration process. I can.
  • At least two or more plurality of TRPs may set a plurality of CORESETs and SearchSpaces through the PDCCH-config, and may additionally allocate different scrambling IDs or different time/frequency resources.
  • up to five CORESETs may be used per PDCCH-config for URLLC purposes, and TCI states independent from each other may be set for the TRPs for PDCCH diversity performance.
  • the configuration of a pair or set of TRPs may configure or classify the TRP in units of CORESET or CORESET group below PDCCH-config.
  • the UE can determine that the multi-TRPs are the same cell. If the base station configures a pair or set of TRPs for the NC-JT in units of CORESET or CORESET group, the terminal sets up a CORESET (index) or CORESET group (index) below the PDCCH-config through an RRC setting or reset process, and It is possible to determine the configuration and change of the TRP through the change.
  • each CORESET index may be linked to each other for transmission of at least two or more plurality of TRPs, or the CORESETs of TRPs may be mapped to be operated in association with each other by using a CORESET group index set in each CORESET.
  • the maximum number of CORESETs that can be set in the same TRP is determined by the capability of the terminal, and the base station considers the capability value of the terminal and adjusts the maximum number of CORESET candidate values from a minimum of 3 to a maximum of 5 (e.g., URLLC scenario ) Can be set.
  • the maximum number of CORESET groups (index) supported by the terminal may be set to be less than or equal to the maximum number of CORESETs set for the terminal.
  • a terminal supporting NC-JT in Rel-16 supports up to two CORESET groups.
  • the terminal may store the set CORESET group (index) in a memory according to the capability value of the terminal, and manage based on this.
  • each dataScramblingIdentityPDSCH is associated with the upper layer index for each CORESET, and the DCI identified in the CORESET having the same upper layer index is scheduled. Applies to one PDSCH.
  • Various embodiments of the present invention describe operations for determining a default QCL in a base station and a terminal.
  • the TRP may be decoupled so that the PDCCH beam (a beam for transmitting PDSCH) and the PDSCH beam (beam for transmitting PDSCH) are not the same according to the setting of the base station or the TRP.
  • the unequal set beams have different beam widths, such as when the PDCCH beam width is set to a wider and the PDSCH beam width is set to a narrow beam, or the beam widths are the same and different or adjacent beams are set.
  • At least two widths of beams operated by the base station can be set, and at this time, the base station transmits a PDCCH.
  • the beam is mainly used by setting a wide beam such as level 1, and the beam for transmitting the PDSCH can be used by setting a narrow beam such as level 2 or 3 in addition to level 1 for terminal(s) requiring increased throughput. .
  • the UE may perform a PDSCH reception operation in a manner similar to rel-15.
  • the UE has the UE capability parameter timeDurationForQCL (e.g.: 14 symbols), the QCL assumption (ie, the same QCL parameter) applied at the lowest CORESEST ID at the latest monitoring time (slot or occasion) may be applied to PDSCH reception.
  • a beam for transmitting different PDCCH and a beam for transmitting PDSCH may be suitable in the same situation.
  • the terminal may use a default spatial QCL for PDSCH reception, and in this disclosure A method of determining the default spatial QCL is proposed.
  • the base station and the terminal may configure a beam applied to the default QCL through MAC CE-based signaling.
  • the terminal may check the default (spatial) QCL related information of the MAC CE received from the base station, and apply the confirmed information in the operation of receiving the PDSCH. That is, the UE receives the MAC CE from the base station and checks information related to the default QCL, and when the received t_so value between the above-described PDCCH and the PDSCH is less than timeDurationForQCL, the PDSCH transmits information related to the default QCL set in the MAC CE for PDSCH reception.
  • the PDSCH may be received by applying to a beam receiving.
  • the information related to the default QCL may include at least one of information related to a QCL parameter, TCI states, and DL-RS or UL-RS.
  • the MAC CE structure set by the base station can (re) use and (re) interpret at least one of the MAC CE structures discussed in the existing rel-15/16.
  • the UE when the UE receives a TCI States Activation / Deactivation MAC CE message for a rel-15-based PDSCH as shown in FIG. 10-00 of FIG. 10A, the beam indicated by the default QCL of the PDSCH and the beam transmitting the PDCCH are It can be determined that it is set differently. Specifically, upon receiving the TCI States Activation/Deactivation message, the UE may understand one TCI state as a TCI state corresponding to a default QCL according to a predetermined rule among activated TCI states.
  • the TCI state corresponding to the default QCL may be defined as a TCI state indicated by an index value of the lowest/highest index among activated TCI states in the MAC CE message.
  • the TCI corresponding to the default QCL in the serving cell #2 and BWP #4 is received. It may be determined that the state is set to the lowest TCI index (T0) or the highest index (T7) among activated TCI indexes.
  • the terminal receives the TCI State Indication MAC CE message for the rel-15-based PDCCH as shown in FIG. 10-50 of FIG. 10A, and the TCI state ID indicated along with the CORESET 0 in the message is for a beam transmitting the PDSCH. It can be understood as the TCI state corresponding to the default QCL.
  • the TCI state ID of the MAC CE message means the ID of the TCI states for the PDSCH set in the upper layer (eg, the TCI states ID included in tci-States-ToAddModList).
  • the UE receives the TCI State Indication MAC CE for the PDCCH from the base station and checks information related to the default QCL, and when the received t_so value of the PDDCH and PDSCH is less than timeDurationForQCL, it is indicated along with the CORESET 0 for PDSCH reception.
  • the TCI state can be applied to a beam receiving the PDSCH.
  • the UE receives the PDSCH scheduled through the PDCCH transmitted in CORESET 0, the default QCL beam for the PDSCH may be the same as the beam configured for CORESET 0.
  • the terminal may have a default beam for PDSCH reception in a preset TCI state as in the various embodiments.
  • some of the beam list for PDCCH reception configured in the terminal is a beam list for PDSCH reception (e.g., tci-StatesToAddModList).
  • a list of beams set and released through tci-StatesTo ReleaseList the base station and the terminal may exclude the redundantly configured beam when configuring a default QCL for PDSCH reception.
  • the UE compares a reference RS and QCL type for each of the beams configured for PDCCH reception with a reference RS and QCL type for each of the beams configured for PDSCH reception, and the reference RS and QCL type are the PDCCH reception beam list and If there are duplicates in the PDSCH reception beam list, the beam may be excluded from the default QCL configuration for PDSCH reception. Alternatively, the UE may not expect the base station to set a beam that can be redundantly used for PDCCH reception and PDSCH reception as a default QCL for PDSCH reception.
  • the MAC CE structure set by the base station may be configured with a new new control element message (signaling) structure.
  • the new message may be configured in the form of a message for setting a default QCL for supporting single-TRP.
  • the MAC CE message for configuring the default QCL may include information indicating at least one state (eg, TCI index) among TCI states for a default QCL assumption of the PDSCH.
  • the message may directly or indirectly indicate the direction of a beam transmitted by the base station using information such as QCL type A/B/C/D or DL-RS/UL-RS index.
  • the information includes the DCI including beam information for PDSCH reception transmitted by one TRP, when the terminal does not have enough time to receive the PDSCH by switching the beam, or when the terminal does not have enough time to receive the PDSCH by switching the beam, the base station and This refers to the direction of the beam assumed by the UE for reception of the PDSCH.
  • the message may be configured in the form of a message for setting a default QCL for supporting multi-TRP.
  • the MAC CE message for setting the default QCL contains information indicating at least one TCI state among the TCI states for the default QCL assumption of the PDSCH (s) (eg, TCI index #1 or TCI index #2, etc.). Can include.
  • the UE may determine that the multi-TRP indicates the same default QCL or indicates one default QCL in the single-TRP. If the TCI states are included and the TCI states are different at this time, it can be determined as indicating two or more different default QCLs in the multi-TRP.
  • the UE may determine that the order of the TCI indexes is mapped according to the order of the TRP or the order of the HigherLayerIndexPerCORESET index. Alternatively, the TRP index/HigherLayerIndexPerCORESET index and the corresponding TCI index may be respectively indicated. In addition, when the message includes two or more TCI states and the indicated TCI states are the same, the UE may determine that the same default QCL is indicated.
  • the MAC CE message for setting the default QCL is at least one TCI set (e.g., one pair constituting two, one of the TCI states for the default QCL assumption of the PDSCH(s) transmitted in the multi-TRP) It may include information (eg, TCI set index) indicating one set constituting three. At this time, when the terminal receives the TCI set index, the terminal may determine that the TCI states specified in advance in the multi-TRP are indicated as default QCL.
  • the message may directly or indirectly indicate the direction of a beam transmitted by the base station using information such as a plurality of QCL type A/B/C/D or DL-RS/UL-RS indexes.
  • the information refers to the direction of the beam assumed for reception of the PDSCH by the base station and the terminal when there is insufficient time for the terminal to receive the PDSCH by performing beam switching on the PDSCH transmitted by one TRP.
  • the messages may be set as separate messages for single-TRP and multi-TRP, respectively, or may be set as an integrated message composed of one type.
  • a MAC CE message for configuring a multi-TRP-based default beam may be separately configured for a single-DCI-based multi-TRP.
  • a MAC CE message for configuring a multi-TRP-based default beam may be separately configured for a multi-DCI-based multi-TRP.
  • separate messages for the single-TRP and multi-TRP may be determined according to the supported TRP transmission/reception capability of the terminal.
  • the MAC CE may be used to set the initial default QCL or may be additionally updated.
  • the MAC CE message configuration and configuration may be configured for each CC (per component carrier) or for each BWP (per BWP).
  • the MAC message configuration and setting may be set in units of one CC.
  • the MAC CE message may indicate information related to default QCL applied in one CC (eg, primary CC/PCell/PSCell, secondary CC/SCell or across CC) and activated BWP.
  • the MAC CE message may indicate default QCL-related information applied in one CC and at least one configured BWP(s).
  • the MAC CE message may indicate default QCL-related information applied in one CC and all BWP(s) supported by the CC.
  • the MAC message configuration and setting may be set for a plurality of CCs at once.
  • the MAC CE message may indicate information related to default QCL applied in at least two or more CCs (eg, including a primary CC/PCell/PSCell, secondary CC/SCell, or across CC) and activated BWP.
  • the MAC CE message may indicate default QCL-related information applied in at least two or more CCs and configured at least one or more BWP(s).
  • the MAC CE message may indicate default QCL-related information applied in at least two or more CCs and all BWP(s) supported by the CC.
  • the MAC CE message configuration and configuration may be set for each combination of CCs and/or combination of BWPs set for the terminal. Specifically, a factor indicating some or all of the CC(s)/activated CCs(s) preset by higher layer signaling in the MAC CE message may be set.
  • the CC indication factor may indicate at least one as shown in Table 17.
  • the MAC CE message may include default QCL related information applied to the CC indicated as above.
  • the MAC CE message may be applied to all BWP/activated BWP/BWP sets in the indicated CC.
  • the BWP set may be explicitly indicated or may be an implicitly promised BWP set, and when explicitly indicated, may be indicated through higher layer configuration or MAC CE.
  • MAC CE message configuration and configuration may be set or additionally updated when the terminal switches CC or BWP.
  • the MAC CE message may indicate default QCL-related information for each BWP when switching of the CC occurs, such as when an additional CC is activated or a connected CC is deactivated and a new CC is activated.
  • the MAC CE message may indicate information related to default QCL applied in a switched or updated CC(s) and activated BWP in addition to the CC currently communicating between the UE and the base station.
  • the MAC CE message may indicate default QCL-related information applied in a switched or updated CC(s) and at least one configured BWP(s).
  • the MAC CE message may indicate default QCL-related information applied in all BWP(s) supported by the switched or updated CC(s).
  • the method of designating and updating a beam for a default QCL based on the MAC CE message can be effectively used from a time point when the MAC CE mesh is set. For example, after the initial access process of the UE, a period in which the MAC CE message related to the default QCL configuration from the base station is not activated may occur. The period may include a period in which the MAC CE message related to the default QCL configuration is not received and a predefined period from the time when the terminal receives the MAC CE message to activate the corresponding receiving MAC CE.
  • the default QCL may be set as follows.
  • the UE may determine that the beam for transmitting the PDCCH and the beam for transmitting the PDSCH transmitted by the base station are the same until the MAC CE message for setting default QCL-related information transmitted by the base station is activated. If the UE has a scheduling time offset (t_so) calculated from the time when the COORESET including the PDCCH that allocates the PDSCH is received to the time when the allocated PDSCH is received is less than the UE capability parameter timeDurationForQCL (e.g., 14 symbols) reported to the base station .
  • the QCL assumption applied at the lowest CORESEST ID at the most recent monitoring time (slot or occasion) may be equally applied to PDSCH reception.
  • the QCL assumption applied to the lowest CORESEST ID at the most recent monitoring time (slot or occasion) within the CORESET group in which the PDCCH that allocates the PDSCH is transmitted may be equally applied to PDSCH reception.
  • the operation may be applied to the non-activated CC or BWP if the MAC CE message for PDSCH default QCL configuration is activated in a specific CC or BWP, but the MAC CE message is not activated in the remaining CC or BWP.
  • the UE may receive the PDSCH based on the default QCL-related information set in the MAC CE message as described in Examples 1 and 2. . That is, the UE has a scheduling time offset (t_so) calculated from the time when the PDSCH allocation control information is received through CORESET to the time when the allocated PDSCH is received is less than the UE capability parameter timeDurationForQCL (e.g., 14 symbols) reported to the base station. If it is small, the QCL parameter can be applied to receive the PDSCH based on the QCL related information indicated by the MAC CE.
  • t_so scheduling time offset
  • timeDurationForQCL e.g. 14 symbols
  • the UE After receiving the MAC CE message for configuring the default QCL-related information transmitted from the base station, the UE receives the MAC CE message when the code point value of the TCI (Transmission configuration indication) field is indicated in DCI format 1_1, as described in Examples 1 and 2,
  • the PDSCH may be received based on default QCL-related information set in the CE message.
  • the TCI field may be applied when a higher layer parameter tci-PresentInDCI is enabled.
  • the terminal may not expect the default QCL configuration based on the MAC CE message. Or, if the base station does not set the higher layer parameter tci-PresentInDCI to the terminal to enable, the terminal receives the PDSCH even if it receives the MAC CE message for default QCL configuration transmitted by the base station. Default QCL related information may not be applied.
  • the UE has a scheduling time offset (t_so) value calculated from the time when the PDSCH allocation control information is received through CORESET to the time when the allocated PDSCH is received is less than the UE capability parameter timeDurationForQCL (e.g., 14 symbols) reported to the base station.
  • timeDurationForQCL e.g. 14 symbols
  • the QCL assumption applied at the lowest CORESET ID at the latest monitoring time (slot or occasion) can be equally applied to PDSCH reception.
  • the QCL assumption applied to the lowest CORESEST ID at the most recent monitoring time (slot or occasion) within the CORESET group in which the PDCCH that allocates the PDSCH is transmitted may be equally applied to PDSCH reception. .
  • the terminal when the base station performs cross-carrier scheduling or cross-BWP scheduling for the PDSCH, and the PDSCH default QCL through MAC CE is not configured in a specific CC or BWP, the terminal is the above-described MAC in a specific CC or BWP.
  • the same operation as before CE message activation can be performed.
  • the terminal is a scheduling time offset calculated from the time when control information for scheduling the PDSCH allocated to the cross-carrier or cross-BWP is received through CORESET to the time when the PDSCH allocated to the cross-carrier or cross-BWP is received. If the (t_so) value is less than the terminal capability parameter timeDurationForQCL (e.g. 14 symbols) reported to the base station, the QCL assumption applied at the lowest CORESET ID at the latest monitoring time (slot or occasion) is applied to the PDSCH reception. I can.
  • timeDurationForQCL e.g. 14 symbols
  • the UE is a scheduling time offset calculated from the time when the CORESET in the CORESET group including the PDCCH for scheduling the PDSCH allocated to the cross-carrier or cross-BWP is received to the time when the PDSCH allocated to the cross-carrier or cross-BWP is received. If the (t_so) value is less than the terminal capability parameter timeDurationForQCL (e.g., 14 symbols) reported to the base station, the lowest CORESEST at the most recent monitoring time (slot or occasion) within the CORESET group in which the PDCCH allocating the PDSCH is transmitted.
  • the QCL assumption applied to the ID may apply the same QCL parameter to PDSCH reception.
  • a scheme according to PDSCH transmission can be classified as follows.
  • Scheme 1 (Spatial Domain Multiplexing; SDM): Each PDSCH transmitted by a method in which a base station allocates a PDSCH based on n TCI states smaller than N s (the maximum number of supported TCI states) within a single slot. When overlapped with each other on the time and frequency side (domain)
  • Method (Scheme) 2 Frequency Domain Multiplexing; FDM: Each PDSCH transmitted by a method in which the base station allocates a PDSCH based on n TCI states smaller than N f (the maximum number of supported TCI states) within a single slot. Non-overlapped on the frequency side
  • Method (Scheme) 3 Time Domain Multiplexing; TDM: Each PDSCH transmitted by a method in which the base station allocates a PDSCH based on n TCI states smaller than N t1 (the maximum number of supported TCI states) within a single slot. Non-overlapped on the temporal side
  • Method (Scheme) 4 (Time Domain Multiplexing; TDM): Each PDSCH transmitted by a method in which a base station allocates a PDSCH based on n TCI states smaller than N t2 (maximum number of supported TCI states) over multiple slots. Non-overlapped on the temporal side
  • the maximum number of TCI States may be 2 or more, based on, for example, 3GPP rel-16.
  • the TRP can support the same number of consecutive symbols when transmitted once. For example, if the first PDSCH transmitted to the terminal is composed of two symbols, the second and subsequent PDSCHs may be all composed of two symbols.
  • the maximum number of layers transmitted per TRP may be at least two or more. The maximum supported TB size may be determined based on the capability of the terminal.
  • the number of times the PDSCH is transmitted may be determined by the number of TCI states indicated in the codepoint of the TCI field in the DCI. For example, if the number of states is 1 by checking the TCI field in the DCI received by the terminal, it may mean that the terminal transmits the PDSCH allocated by the base station once, and if there are two, it may mean that it is transmitted twice.
  • an offset value Koffset indicating an offset by a certain symbol or slot between PDSCHs in the time side may be set.
  • the first symbol of the second transmission may be allocated apart from the last symbol of the first transmission by the number of Koffset symbols.
  • the Koffset value may be set by a related RRC parameter. In this case, if Koffset is not separately set in RRC, the UE considers Koffset to be 0.
  • the base station may indicate the number of times to transmit the PDSCH using the PDSCH-TimeDomainResourceAllocation field to the terminal for Time Domain Resource Allocation (TDRA).
  • TDRA Time Domain Resource Allocation
  • information of the SLIV field indicating the start position, length, and offset of the PDSCH symbol may be used directly or indirectly.
  • the SLIV value applied to the first PDSCH allocated as the base station may be equally applied to a plurality of PDSCHs transmitted second and later.
  • the RVid indicated by the DCI may indicate selection of one redundancy version (RV) sequence.
  • the base station transmits data according to the set RVid, and at this time, data having the same RV id has the same data.
  • the transmission sequence of RV is based on repeated transmission of 4 times, and each transmission transmits data with RV id of 0, 2, 3, 1 or 0, 0, 0, 0 or 0, 3, 0, 3 times. I can. Such a sequence may be performed to obtain a gain through soft combining when the UE receives the retransmitted data.
  • the RV sequence transmitted in each TRP can be defined as follows.
  • the selected RV sequence is linked to the first TRP (first TCI state), and the RV sequence linked to the second TRP is determined by RV offset from the selected RV sequence.
  • 16 to 18 are diagrams for explaining a process in which a plurality of TRPs transmits a plurality of PDSCHs through a single PDCCH to a specific terminal according to an embodiment of the present disclosure.
  • FIGS. 16-00, 17-00, and 18-00 correspond to a case in which Koffset between a plurality of PDSCHs allocated to a terminal by a base station based on a scheme 3 and 4) is 0. do.
  • the base station may transmit the first PDCCH and the first and second PDSCHs corresponding thereto to the terminal, and may transmit the second PDCCH and the first to fourth PDSCHs corresponding to the second PDCCH and the corresponding first to fourth PDSCHs subsequently or after a predetermined time depending on the case.
  • the UE may receive a plurality of PDSCHs and transmit HARQ ACK/NACK to PUCCHs #1 and #2 indicated on the PDCCH set by the base station according to whether decoding is successful.
  • a plurality of PDSCHs scheduled in a single PDCCH may repeatedly transmit the same data (eg, the indicated RV value is the same).
  • the number of TCI states transmitted by the TRPs or the number of TRPs transmitting the PDSCH may be the same as the number of repeatedly transmitted PDSCHs as in pattern 1.
  • pattern 1 is as follows.
  • the UE confirms that the TCI states ⁇ #1, #2, #3, #4 ⁇ are indicated through the TCI codepoint in the DCI, and as shown in 16-00, the TCI state #1 in the first PDSCH and the second PDSCH. It can be seen that instructing to apply TCI state #2, TCI state #3 to the third PDSCH, and TCI state #4 to the fourth PDSCH.
  • the terminal having checked DCI may determine the direction of the reception beam through the following determination process whether or not the indicated states are applied.
  • the position of the time-side resource of the PDSCH(s) to which the TCI states are applied and the timeDurationForQCL are compared, and whether TCI states are applied. Can be judged.
  • the UE may sequentially allocate all TCI state information indicated by the DCI to the PDSCH when the time when the TCI states are applied to the PDSCHs is later than the location based on the set timeDurationForQCL. That is, if the terminal confirms that the last symbol index of the PDCCH transmitted by the base station is 2 and the set timeDurationForQCL value is 7, if the transmission time (start time) of the PDSCHs scheduled to apply the TCI states is greater than or equal to the 9th symbol, sequentially As a result, TCI state #1 may be applied to the first PDSCH, TCI state #2 to the second PDSCH, TCI state #3 to the third PDSCH, and TCI state #4 to the fourth PDSCH.
  • a terminal receiving a plurality of PDSCHs indicated by TCI states from the base station will allocate all TCI state information indicated by the DCI to the PDSCH in complete sequential order if the time when the TCI states are applied to the PDSCHs is earlier than the location based on the set timeDurationForQCL. It may not be possible.
  • a terminal receiving a plurality of PDSCHs indicated by TCI states from a base station has at least one symbol of a first PDSCH (eg, a first PDSCH) among a plurality of PDSCHs in a position based on timeDurationForQCL
  • the terminal is a first PDSCH TCI state #1 indicated in is not applied, and default spatial QCL can be applied.
  • the default spatial QCL refers to a QCL parameter used to receive the PDCCH in CORESET associated with the monitored search space with the lowest CORESET ID in the most recent slot.
  • the UE may sequentially apply and receive TCI state #2 to the second PDSCH, TCI state #3 to the third PDSCH, and TCI state #4 to the fourth PDSCH. That is, as shown in 16-30, when the base station instructs the terminal to apply TCI state #1 to the first PDSCH, but the start symbol of the first PDSCH is symbol 4 and the symbol length is 5, the last symbol index of the PDCCH is 2 The terminal confirms that the timeDurationForQCL value is 7 and the first PDSCH follows the default spatial QCL, and the remaining second to fourth PDSCHs apply TCI states #2 to #4 indicated by the TCI in the DCI for PDSCH reception. Beamforming is performed.
  • a terminal receiving a plurality of PDSCHs indicated by TCI states from a base station if at least one symbol of a second PDSCH (eg, a first PDSCH) among the plurality of PDSCHs is present in a position based on timeDurationForQCL, the terminal is the first , TCI states #1 and #2 indicated by the second PDSCH may not be applied, and default spatial QCL may be applied.
  • the default spatial QCL refers to a QCL parameter used to receive the PDCCH in CORESET associated with the monitored search space with the lowest CORESET ID in the most recent slot.
  • the UE may sequentially apply and receive TCI state #3 to the third PDSCH and TCI state #4 to the fourth PDSCH.
  • the base station instructs the UE to apply TCI states #1 and #2 to the first and second PDSCHs, but if the start symbol of the first PDSCH is symbol 5 and the symbol length is 3, the last symbol index of the PDCCH is The UE confirms that the timeDurationForQCL value is 7 and the first and second PDSCHs follow the default spatial QCL, and the remaining third and fourth PDSCHs are PDSCHs by applying TCI states #3 and #4 indicated by the TCI in the DCI. Beamforming is performed for reception.
  • the default spatial QCL may be extended as follows.
  • the default spatial QCL may be set to the same value for all TRPs, or may be set differently for each TRP.
  • Default spatial QCL for PDSCH may mean a value having the lowest ID among TCI states for PDSCH set as RRC or a value having the lowest ID among TCI states for PDSCH activated by MAC-CE.
  • Different default spatial QCLs may be applied depending on the situation. For example, in the case of cross-carrier scheduling or cross-BWP scheduling, 3) may be applied, and in other cases, 1) or 2) may be applied. In the case of a terminal supporting MAC-CE configuring the default spatial QCL for PDSCH, 1) may be applied before activating the corresponding MAC-CE, and 2) may be applied thereafter.
  • the terminal receiving the PDSCH indicated by the TCI states from the base station in slot 0/1 of 16-00 if the start position of all the plurality of repeated PDSCHs is less than timeDurationForQCL, the terminal is the first
  • the TCI states indicated for the PDSCH-the second PDSCH or the first PDSCH-the fourth PDSCH may not be applied, and a default spatial QCL may be applied.
  • one, two, or four default QCLs may be set and operated based on the single-PDCCH default QCL enhancement.
  • the base station instructs the UE to apply TCI states #1 to #4 to the first to fourth PDSCHs, but if the start symbol of the first PDSCH is the 4th symbol and the symbol length is 1, the PDCCH After confirming that the last symbol index is 2 and the timeDurationForQCL value is 7, the symbol index of the start position of all the repeated PDSCHs (symbols 4, 5, 6, and 7) is the symbol index (9 ) of the position considering the timeDurationForQCL. Times), the first to fourth PDSCHs may follow a default spatial QCL. At this time, the set default QCL may be set or determined as 1, 2, or 4, and the PDSCHs may be received by applying this.
  • the terminal receiving the plurality of PDSCHs indicated by the TCI states from the base station is earlier than the location based on the set timeDurationForQCL, the terminal receives the first PDSCH to the fourth PDSCH regardless of the location of the overlapped PDSCH. Without applying the indicated TCI state, a default spatial QCL may be applied to the first PDSCH to the fourth PDSCH.
  • the terminal receiving the plurality of PDSCHs indicated by the TCI states from the base station has at least one symbol of the first PDSCH (eg, the first PDSCH) among the plurality of PDSCHs is present in a position based on timeDurationForQCL, the terminal is the first The TCI state #1 indicated by the PDSCH is not applied, and the default spatial QCL is applied, and the UE sequentially applies TCI state #1 to the second PDSCH, TCI state #2 to the third PDSCH, and TCI state #3 to the fourth PDSCH. Can be received by applying.
  • the base station instructs the terminal to apply TCI state #1 to the first PDSCH, but the start symbol of the first PDSCH is symbol 4 and the symbol length is 5, the last symbol index of the PDCCH is 2
  • the UE confirms that the timeDurationForQCL value is 7 and the first PDSCH follows the default spatial QCL, and the remaining second to fourth PDSCHs apply TCI states #1 to #3 indicated by the TCI in the DCI for PDSCH reception. Beamforming is performed.
  • the base station may change and indicate TCI-related information in DCI by considering the default QCL of the terminal in advance.
  • the base station predicts the default QCL in which the terminal is operated, and sets the TCI state to ⁇ #1, #2, #3 ⁇ , ⁇ #1, not ⁇ #1, #2, #3, #4 ⁇ , #2 ⁇ or ⁇ #1 ⁇ can be indicated.
  • the base station may dummy-padded the TCI field or the upper layer parameter field related to TCI stats.
  • 16-60 illustrate a case where a Koffset between a plurality of PDSCHs allocated by a base station to a terminal in various embodiments of Alt1 and Alt2 is not 0 (the Koffset value is set to 2).
  • the condition to be changed to Koffset is, if the position based on timeDurationForQCL exists in the offset region located between the PDSCHs on the time side, the UE may consider the PDSCH(s) existing before the offset as a region to determine whether to apply the default QCL. have.
  • TCI state #1 may be applied to the first PDSCH, TCI state #2 to the second PDSCH, TCI state #3 to the third PDSCH, and TCI state #4 to the fourth PDSCH.
  • the base station instructs the UE to apply TCI state #1 to the first PDSCH, but the start symbol of the first PDSCH is the 4th symbol, the symbol length is 4, and the Koffset is 2, the last symbol index of the PDCCH is
  • the terminal confirming that the timeDurationForQCL value is number 2 and is 7 further confirms that timeDurationForQCL exists in the offset region between the first PDSCH and the second PDSCH or in the region before the second PDSCH, and the first PDSCH follows the default spatial QCL and the remaining second
  • the 2 PDSCH to the 4th PDSCH may be respectively reflected according to the various embodiments (alt 1-2).
  • one or two default QCLs may be set and operated based on the single-PDCCH default QCL enhancement.
  • the base station instructs the UE to apply TCI states #1 to #2 to the first to fourth PDSCHs, but if the start symbol of the first PDSCH is the 4th symbol and the symbol length is 1, the PDCCH After confirming that the last symbol index is 2 and the timeDurationForQCL value is 7, the symbol index of the start position of all the repeated PDSCHs (symbols 4, 5, 6, and 7) is the symbol index (9 ) of the position considering the timeDurationForQCL. Times), the first to fourth PDSCHs may follow a default spatial QCL. At this time, the set default QCL may be set or determined as two, and the PDSCHs may be received by applying them.
  • the default spatial QCL may be extended as follows.
  • the default spatial QCL may be set to the same value for all TRPs, or may be set differently for each TRP.
  • Default spatial QCL for PDSCH may mean a value having the lowest ID among TCI states for PDSCH set as RRC or a value having the lowest ID among TCI states for PDSCH activated by MAC-CE.
  • Different default spatial QCLs may be applied depending on the situation. For example, in the case of cross-carrier scheduling or cross-BWP scheduling, 3) may be applied, and in other cases, 1) or 2) may be applied. In the case of a terminal supporting MAC-CE configuring the default spatial QCL for PDSCH, 1) may be applied before activating the corresponding MAC-CE, and 2) may be applied thereafter.
  • the number of TCI states transmitted by TRPs or the number of TRPs transmitting PDSCH may be smaller than the number of repeatedly transmitted PDSCHs as in pattern 2.
  • pattern 2d is as follows.
  • the UE can check the PDCCH to confirm that the TCI states ⁇ #1, #2 ⁇ are indicated through the TCI codepoint in the DCI, and confirm that the PDSCH is repeatedly transmitted a total of 4 times.
  • the method of transmitting the PDSCH 4 times by the base station can be classified as follows according to the method of applying the TCI states.
  • Method 1 Cyclical mapping method (e.g. 1 st occasion-#1 for TRP1, 2 nd occasion-#2 for TRP2, 3 rd occasion-#1 for TRP1, 4 th ocassion-#2 for TRP2), each TRP is repeated When the corresponding TCI states are indicated as many times as the number of transmissions (e.g., 2 times)
  • Method 2 Sequential mapping method (e.g. 1 st occasion-#1 for TRP1, 2 nd occasion-#1 for TRP1, 3 rd occasion-#2 for TRP1, 4 th occasion-#2 for TRP2), each TRP is one In case of repetitive transmission (e.g., 2 times) corresponding to the TCI state of
  • TRP 1 may be transmitted by applying TCI state #1 to the first PDSCH to the UE, and TRP 2 may then be transmitted by applying TCI state #2 to the second PDSCH. . Subsequently, TRP 1 may be transmitted by applying TCI state #1 to the third PDSCH, and TRP 2 applying TCI state #2 to the fourth PDSCH.
  • TRP 1 may transmit the UE twice by applying TCI state #1 to the first PDSCH and the second PDSCH. Subsequently, TRP 2 may be transmitted twice by applying TCI state #2 to the third PDSCH and the fourth PDSCH.
  • the base station may set a higher layer parameter so that the terminal distinguishes between Method 1 and Method 2. For example, when the base station sets the value for the RRC parameter RepTCIMapping to the terminal as'CycMapping', the terminal operates in method 1, and when the value for the parameter is set as'SeqMapping', the terminal can operate in method 2.
  • the base station may use a separate field within the DCI to distinguish between Method 1 and Method 2, or may utilize an existing TCI field.
  • a parameter or bit resource capable of distinguishing Method 1 and Method 2 may be used in RRC. That is, the terminal having confirmed the DCI may determine the direction of the reception beam through the following determination process whether or not the indicated states are applied.
  • the UE checks whether it is method 1, and compares the location of the time-side resource of the PDSCH(s) to which the TCI states is applied and the timeDurationForQCL to TCI. Whether to apply states can be determined.
  • the UE may consider that all TCI state information indicated by the DCI is cyclically mapped to the PDSCH when the time when the TCI states are applied to PDSCHs in Method 1 is later than the location based on the set timeDurationForQCL.
  • the terminal confirms that the last symbol index of the PDCCH transmitted by the base station is 2 and the set timeDurationForQCL value is 7, if the transmission time (start time) of the PDSCHs scheduled to apply the TCI states is greater than or equal to the 9th symbol, sequentially TCI state #1 to the first PDSCH allocated from TRP 1, TCI state #2 to the second PDSCH allocated from TRP 2, TCI state #1 to the third PDSCH allocated from TRP 1, and the fourth PDSCH allocated from TRP 2 The PDSCH can be received by applying TCI state #2.
  • a terminal receiving a plurality of PDSCHs indicated by TCI states from the base station will allocate all TCI state information indicated by the DCI to the PDSCH in complete sequential order if the time when the TCI states are applied to the PDSCHs is earlier than the location based on the set timeDurationForQCL. It may not be possible.
  • a terminal receiving a plurality of PDSCHs indicated by TCI states from a base station has at least one symbol of the first PDSCH (eg, the first PDSCH) among the plurality of PDSCHs is present at a location based on timeDurationForQCL
  • the UE may not apply the TCI state #1 indicated by the first PDSCH and may apply the default spatial QCL.
  • Default spatial QCL refers to a QCL parameter used to receive a PDCCH in CORESET associated with a monitored search space having the lowest CORESET ID in the most recent slot.
  • the UE sequentially receives TCI state #2 to the second PDSCH allocated from TRP 2, TCI state #1 to the third PDSCH allocated from TRP 1, and TCI state #2 to the fourth PDSCH allocated from TRP 2.
  • I can. That is, as shown in FIG.
  • the base station instructs the UE to apply TCI state #1 to the first PDSCH, but the start symbol of the first PDSCH is symbol 4 and the symbol length is 5, the last symbol index of the PDCCH is 2
  • the first PDSCH follows the default spatial QCL
  • the second PDSCH where the symbol index allocated in TRP 2 starts at 9 is TCI state #2
  • the next slot allocated in TRP 1 TCI state #1 may be applied to the third PDSCH starting at symbol
  • TCI state #2 may be applied to the fourth PDSCH allocated in TRP 2 starting at symbol 5 in the next slot.
  • the default spatial QCL of the first PDSCH or the second PDSCH may correspond to at least one of TRP1, TRP2, or TRP transmitting DCI.
  • a terminal receiving a plurality of PDSCHs indicated by TCI states from a base station has at least one symbol of a first PDSCH (eg, a first PDSCH) among a plurality of PDSCHs in a position based on timeDurationForQCL
  • the terminal is a first PDSCH TCI state #1 indicated in is not applied, and default spatial QCL can be applied.
  • the UE sequentially applies the default QCL applied to the first PDSCH instead of the TCI state #1 to the second PDSCH allocated from TRP 2, TCI state #2 to the second PDSCH allocated from TRP 1, and It can be received by applying TCI state #2 to the fourth PDSCH.
  • a terminal receiving a plurality of PDSCHs indicated by TCI states from a base station if at least one symbol of a second PDSCH (eg, a first PDSCH) among the plurality of PDSCHs is present in a position based on timeDurationForQCL, the terminal is the first , TCI states #1 and #2 indicated by the second PDSCH may not be applied, and default spatial QCL may be applied.
  • the UE sequentially applies the default QCL applied to the first PDSCH, not TCI state #1, to the third PDSCH allocated in TRP 1, and the second PDSCH, not TCI state #2, to the fourth PDSCH allocated in TRP 2
  • the applied default spatial QCL can be applied.
  • the default spatial QCL applied to the first PDSCH and the default spatial QCL applied to the second PDSCH are identical to each other, the default spatial QCL is applied equally, and if set differently, they may be applied differently.
  • the default spatial QCL of the first PDSCH may correspond to at least one of TRP1, TRP2, or TRP transmitting DCI.
  • the UE may apply the default spatial QCL without applying the TCI states indicated for the first PDSCH-the second PDSCH or the first PDSCH-the fourth PDSCH.
  • one or two default QCLs may be set and operated based on the single-PDCCH default QCL enhancement.
  • the base station instructs the UE to apply TCI states #1 to #2 to the first to fourth PDSCHs, but if the start symbol of the first PDSCH is the 4th symbol and the symbol length is 1, the PDCCH After confirming that the last symbol index is 2 and the timeDurationForQCL value is 7, the symbol index of the start position of all the repeated PDSCHs (symbols 4, 5, 6, and 7) is the symbol index (9 ) of the position considering the timeDurationForQCL. Times), the first to fourth PDSCHs may follow a default spatial QCL. At this time, the set default QCL may be set or determined as two, and the PDSCHs may be received by applying them.
  • the UE checks whether it is method 2, and compares the location of the time-side resource of the PDSCH(s) to which the TCI states is applied and the timeDurationForQCL to TCI. Whether to apply states can be determined.
  • the UE may consider that all TCI state information indicated by DCI is sequentially mapped to the PDSCH.
  • the terminal confirms that the last symbol index of the PDCCH transmitted by the base station is 2 and the set timeDurationForQCL value is 7, if the transmission time (start time) of the PDSCHs scheduled to apply the TCI states is greater than or equal to the 9th symbol, sequentially TCI state #1 to the first PDSCH allocated from TRP 1, TCI state #1 to the second PDSCH allocated from TRP 1, TCI state #2 to the third PDSCH allocated from TRP 2, and the fourth PDSCH allocated from TRP 2 The PDSCH can be received by applying TCI state #2.
  • a terminal receiving a plurality of PDSCHs indicated by TCI states from the base station will allocate all TCI state information indicated by the DCI to the PDSCH in complete sequential order if the time when the TCI states are applied to the PDSCHs is earlier than the location based on the set timeDurationForQCL. It may not be possible.
  • the UE may apply the default spatial QCL without applying the TCI state #1 indicated by the first PDSCH.
  • the default spatial QCL refers to a QCL parameter used to receive the PDCCH in CORESET associated with the monitored search space with the lowest CORESET ID in the most recent slot.
  • the UE sequentially receives TCI state #1 to the second PDSCH allocated from TRP 1, TCI state #2 to the third PDSCH allocated from TRP 2, and TCI state #2 to the fourth PDSCH allocated from TRP 2.
  • I can. That is, as shown in Figs. 18-30, when the base station instructs the UE to apply TCI state #1 to the first PDSCH, but the start symbol of the first PDSCH is symbol 4 and the symbol length is 5, the last symbol index of the PDCCH is The UE confirms that the timeDurationForQCL value is 7 and the first PDSCH follows the default spatial QCL, and the symbol index allocated from TRP 1 is allocated from TCI state #1 and TRP 2 to the second PDSCH starting from number 9.
  • the default QCL of the first PDSCH may correspond to at least one of TRP1, TRP2, or TRP transmitting DCI.
  • the default spatial QCL may be the default spatial QCL mentioned in [Alt 3-2].
  • a terminal receiving a plurality of PDSCHs indicated by TCI states from a base station has at least one symbol of the first or second PDSCH (eg, the first PDSCH or the second PDSCH) among the plurality of PDSCHs present at a location based on timeDurationForQCL If so, the terminal may not apply the TCI state #1 indicated by the first PDSCH, but may apply the default spatial QCL. In addition, the UE may sequentially apply the default spatial QCL to the second PDSCH allocated in TRP 1, and apply TCI state #2 to the third and fourth PDSCHs allocated in TRP 2 to receive.
  • a default spatial QCL may be commonly applied.
  • the default QCL of the first and third PDSCHs may correspond to at least one of TRP1, TRP2, or TRP that transmits DCI.
  • the UE may apply the default spatial QCL without applying the TCI states indicated for the first PDSCH-the second PDSCH or the first PDSCH-the fourth PDSCH.
  • one or two default QCLs may be set and operated based on the single-PDCCH default QCL enhancement.
  • the base station instructs the UE to apply TCI states #1 to #2 to the first to fourth PDSCHs, but if the start symbol of the first PDSCH is the 4th symbol and the symbol length is 1, the PDCCH After confirming that the last symbol index is 2 and the timeDurationForQCL value is 7, the symbol index of the start position of all the repeated PDSCHs (symbols 4, 5, 6, and 7) is the symbol index (9 ) of the position considering the timeDurationForQCL. Times), the first to fourth PDSCHs may follow a default spatial QCL. At this time, the set default QCL may be set or determined as two, and the PDSCHs may be received by applying them.
  • the default spatial QCL may be set to the same value for all TRPs, or may be set differently for each TRP.
  • Default spatial QCL for PDSCH may mean a value having the lowest ID among TCI states for PDSCH set as RRC or a value having the lowest ID among TCI states for PDSCH activated by MAC-CE.
  • Different default spatial QCLs may be applied depending on the situation. For example, in the case of cross-carrier scheduling or cross-BWP scheduling, 3) may be applied, and in other cases, 1) or 2) may be applied. In the case of a terminal supporting MAC-CE configuring the default spatial QCL for PDSCH, 1) may be applied before activating the corresponding MAC-CE, and 2) may be applied thereafter.
  • the TCI state(s) corresponding to the lowest codepoint among the TCI states set as TCI in the DCI field can be used as the default QCL.
  • the lowest codepoint may mean that the index value of the codepoint itself has the smallest value among codepoints of the TCI field.
  • the lowest codepoint may include two or more TCI states.
  • the lowest codepoint may mean having the smallest value (index) among codepoints including at least two or more TCI states among a plurality of codepoints of the TCI field.
  • both the first TCI state and the second TCI state may be determined as default QCL. That is, when all of the determined first and second TCI states are determined as default QCL, the terminal may perform beamforming according to all of the first and second TCI states.
  • at least one of the first TCI state and the second TCI state may be determined as a default QCL. That is, if only the first TCI state is determined as the default QCL, the UE can perform beamforming according to only the first TCI state, and if only the second TCI state is determined as the default QCL, the UE is the second TCI state Beamforming can be performed along the bay.
  • the method of determining one of the two TCI states as the default QCL described above may follow the configuration of the base station and the terminal or a predetermined operation.
  • the default QCL operation described above may be a characteristic defined in UE capability.
  • the default QCL operation described in 1) to 5) may be a characteristic defined in UE capability.
  • the UE may report as UE capability that it can perform a default QCL operation including two TCI states, and the base station performs a default QCL operation including two TCI states by higher layer signaling for the UE. You can set whether it is possible or not. Therefore, the default QCL operation may vary according to the reported UE capability.
  • the base station If the UE reports that it is possible to perform a default QCL operation including two TCI states through the UE capability to the base station, and the base station performs a default QCL operation including two TCI states by higher layer signaling for the UE If at least one codepoint including two TCI states among the TCI codepoints is activated, and at least one of the TCI states set in the PDSCH in the corresponding serving cell includes QCL-TypeD, the default QCL operation execution condition is applied. In this situation, the TCI codepoint of the lowest index among codepoints including two TCI states is used.
  • the UE can receive by applying a default QCL operation including two TCI states to all PDSCHs scheduled for the corresponding PDCCH.
  • the limit for example, timeDurationForQCL
  • the UE can receive by applying a default QCL operation including two TCI states to all PDSCHs scheduled for the corresponding PDCCH.
  • the first TCI state of the two TCI states included in the default QCL operation may be applied, and when receiving the second PDSCH, the second TCI state of the two TCI states included may be applied.
  • the terminal implementation may apply and receive any TCI state among two TCI states included in the default QCL operation.
  • the first TCI state of the default TCI codepoint is applied to the first and third PDSCHs, and the default TCI is applied to the second and fourth PDSCHs. It can be received by applying the second TCI state of the codepoint.
  • the first TCI state of the default TCI codepoint is applied to the first and second PDSCHs, and the default TCI codepoint is applied to the third and fourth PDSCHs.
  • the time interval between some of the plurality of PDSCHs indicated by the corresponding PDCCH and the PDCCH is the beam change time reported by the terminal. If the time interval between the remaining PDSCH and the PDCCH is shorter than the limit (e.g., timeDurationForQCL) and the time interval between the remaining PDSCH and the PDCCH is longer than the beam change time limit (for example, timeDurationForQCL) reported by the terminal, the terminal receives the PDCCH and the time interval between the reception of the PDCCH is the beam change time reported by the terminal.
  • the limit e.g., timeDurationForQCL
  • timeDurationForQCL the time interval between the remaining PDSCH and the PDCCH is longer than the beam change time limit
  • a default QCL operation including two TCI states may be applied and received.
  • the time interval between PDCCH reception is longer than the beam change time limit (for example, timeDurationForQCL) reported by the UE, it may be received by applying the TCI state indicated by the PDCCH.
  • two default TCIs for PDSCHs whose time interval with the PDCCH is shorter than the beam change time limit (for example, timeDurationForQCL) reported by the terminal After applying in order, two indicated TCIs may be sequentially applied to PDSCHs whose time interval with the PDCCH is longer than the beam change time limit (for example, timeDurationForQCL) reported by the UE.
  • the first PDSCH has a time interval with the PDCCH that is shorter than the beam change time limit (for example, timeDurationForQCL) reported by the UE, and the second For the PDSCH, if the time interval with the PDCCH is longer than the beam change time limit (for example, timeDurationForQCL) reported by the terminal, the terminal applies the default TCI#1 to the first PDSCH, initializes the index applied in the default TCI, and then the second PDSCH. It can be received by applying indicated TCI#1 for.
  • the beam change time limit for example, timeDurationForQCL
  • the UE may receive a default TCI#1 for the first PDSCH and the indicated TCI#2 for the second PDSCH in consideration of the last index applied in the default TCI.
  • the number of scheduled PDSCHs for which cyclical mapping is set for scheme 4 is 4, and the time interval with the PDCCH for the first and second PDSCHs is shorter than the beam change time limit (for example, timeDurationForQCL) reported by the UE, and the third and For the fourth PDSCH, if the time interval with the PDCCH is longer than the beam change time limit (for example, timeDurationForQCL) reported by the UE, the UE applies default TCI#1 and default TCI#2 for the first and second PDSCH, respectively.
  • the number of scheduled PDSCHs for which cyclical mapping is set for scheme 4 is 4, and the time interval with the PDCCH for the first to third PDSCHs is shorter than the beam change time limit (for example, timeDurationForQCL) reported by the UE, and yes If the time interval with the PDCCH is longer than the beam change time limit (for example, timeDurationForQCL) reported by the UE, the UE defaults TCI#1 and default TCI#2 for the first, second, and third PDSCHs, respectively. , It can be received by applying the default TCI#1, and the index applied in the default TCI can be initialized and the indicated TCI state#1 can be applied to the fourth PDSCH.
  • the beam change time limit for example, timeDurationForQCL
  • the UE can receive each of the first, second, and third PDSCHs by applying default TCI#1, default TCI#2, and default TCI#1, and taking into account the last index applied in the default TCI.
  • the number of scheduled PDSCHs for which sequential mapping is set is 4, and the time interval with the PDCCH for the first to third PDSCHs is shorter than the beam change time limit (for example, timeDurationForQCL) reported by the UE, and the fourth PDSCH If the time interval with the PDCCH is longer than the beam change time limit (for example, timeDurationForQCL) reported by the terminal, the terminal defaults TCI#1, default TCI#1, and default for the first, second, and third PDSCHs, respectively. It can be received by applying TCI#2, and the index applied in the default TCI can be initialized and the indicated TCI state#1 can be applied to the fourth PDSCH.
  • TCI#2 the index applied in the default TCI can be initialized and the indicated TCI state#1 can be applied to the fourth PDSCH.
  • the UE can receive the first, second, and third PDSCHs by applying default TCI#1, default TCI#1, and default TCI#2, respectively, and considering the last index applied in the default TCI.
  • the base station does not perform the default QCL operation including two TCI states by higher layer signaling for the UE. If there is no codepoint including two TCI states among the TCI codepoints, the QCL assumption used when receiving a CORESET corresponding to the lowest controlResourceSetId in the most recent slot in a situation where the default QCL operation execution condition is applied can be followed. In addition, in addition to this, various default QCL operations mentioned above can be applied, and the number of default QCLs that can be applied may be limited to one.
  • the time interval between at least one of the plurality of PDSCHs indicated by the corresponding PDCCH and the PDCCH is the beam change time limit reported by the UE. If it is shorter than (for example, timeDurationForQCL), the UE can receive by applying a default QCL operation that can apply only one TCI to all PDSCHs scheduled for the corresponding PDCCH.
  • a default QCL operation that can apply only one TCI to all of the first to fourth PDSCHs is applied and received. I can.
  • the time interval between some of the plurality of PDSCHs indicated by the corresponding PDCCH and the PDCCH is the beam change time reported by the terminal. If the time interval between the remaining PDSCH and the PDCCH is shorter than the limit (e.g., timeDurationForQCL) and the time interval between the remaining PDSCH and the PDCCH is longer than the beam change time limit (for example, timeDurationForQCL) reported by the terminal, the terminal receives the PDCCH and the time interval between the reception of the PDCCH is the beam change time reported by the terminal.
  • the limit e.g., timeDurationForQCL
  • timeDurationForQCL the time interval between the reception of the PDCCH is the beam change time reported by the terminal.
  • a default QCL operation that can apply only one TCI may be applied and received.
  • the time interval between PDCCH reception is longer than the beam change time limit (for example, timeDurationForQCL) reported by the UE, it may be received by applying the TCI state indicated by the PDCCH.
  • the beam change time limit for example, timeDurationForQCL
  • two indicated TCIs may be sequentially applied to PDSCHs whose time interval with the PDCCH is longer than the beam change time limit (for example, timeDurationForQCL) reported by the terminal. More specifically, after receiving the PDCCH indicating transmission of two PDSCHs scheduled with scheme 3, the first PDSCH has a time interval with the PDCCH that is shorter than the beam change time limit (for example, timeDurationForQCL) reported by the UE, and the second For the PDSCH, if the time interval with the PDCCH is longer than the beam change time limit (for example, timeDurationForQCL) reported by the terminal, the terminal applies the default TCI#1 to the first PDSCH, initializes the index applied in the default TCI, and then the second PDSCH.
  • the beam change time limit for example, timeDurationForQCL
  • the UE may receive a default TCI#1 for the first PDSCH and the indicated TCI#2 for the second PDSCH in consideration of the last index applied in the default TCI.
  • the number of scheduled PDSCHs for which cyclical mapping is set for scheme 4 is 4, and the time interval with the PDCCH for the first and second PDSCHs is shorter than the beam change time limit (for example, timeDurationForQCL) reported by the UE, and the third and If the fourth PDSCH with the PDCCH is longer than the beam change time limit (for example, timeDurationForQCL) reported by the UE, the UE can receive the first and second PDSCHs by applying default TCI#1, and , Initializing the index applied to the default TCI, and applying indicated TCI state#1 and indicated TCI state#2 to the third and fourth PDSCH, respectively, and receive.
  • the UE can receive by applying default TCI#1 for both the first and second PDSCH, and each indicated TCI state #2 for the third and fourth PDSCH in consideration of the index applied as the default TCI, It can be received by applying indicated TCI state#1.
  • the number of scheduled PDSCHs for which cyclical mapping is set for scheme 4 is 4, and the time interval with the PDCCH for the first to third PDSCHs is shorter than the beam change time limit (for example, timeDurationForQCL) reported by the UE, and yes If the time interval with the PDCCH is longer than the beam change time limit (for example, timeDurationForQCL) reported by the UE, the UE receives the default TCI#1 for all of the first, second, and third PDSCHs. It can be received by initializing the index applied in the default TCI and applying indicated TCI state#1 to the fourth PDSCH.
  • the beam change time limit for example, timeDurationForQCL
  • the UE can receive by applying default TCI#1 for all of the first, second, and third PDSCHs, and indicated TCI state #2 for the fourth PDSCH in consideration of the last index applied in the default TCI. It can be applied and received.
  • the number of scheduled PDSCHs for which sequential mapping is configured is 4, and the time interval with the PDCCH for the first to third PDSCHs is shorter than the beam change time limit (for example, timeDurationForQCL) reported by the UE, and the fourth PDSCH is PDCCH
  • the terminal can receive the first, second, and third PDSCHs by applying default TCI#1, and the default The index applied in the TCI can be initialized and the fourth PDSCH can be received by applying the indicated TCI state #1.
  • the UE can receive the first, second, and third PDSCHs by applying default TCI#1, and indicates TCI state #2 for the fourth PDSCH in consideration of the last index applied in the default TCI. It can be applied and received.
  • the base station does not perform the default QCL operation including two TCI states by higher layer signaling for the UE.
  • the UE may not expect that the time interval with the PDCCH for all PDSCHs scheduled with scheme 3 or 4 is shorter than the beam change time limit (for example, timeDurationForQCL) reported by the UE.
  • the above-mentioned operation is a default QCL including two TCI states if the UE reports that it is possible with UE capability for performing a default QCL operation including two TCI states, and the base station includes two TCI states as higher layer signaling for the UE. The same can be applied to the case where it is set that the operation cannot be performed.
  • a terminal in which cyclical mapping is set is a default spatial QCL applied to the first PDSCH transmitted from TRP 1 in the case of Alt 3-2 to 4, and the TCI state at the first position of the lowest codepoint is
  • the TCI state at the second position of the lowest codepoint may be applied.
  • the default spatial QCL applied to the first PDSCH transmitted from TRP 3 the first TCI state or the TCI states indicated by the scheduling DCI is applied, and the default spatial QCL applied to the second PDSCH transmitted from TRP 4 is the second The located TCI state or the TCI states indicated by the scheduling DCI can be applied.
  • the terminal in which cyclical mapping is enabled is the default spatial QCL applied to the first and second PDSCHs transmitted from TRP 1 under the condition of Alt 4-2 to 4, and is the first position of the lowest codepoint.
  • the TCI state in the second position of the lowest codepoint or the TCI states indicated by the scheduling DCI may be applied.
  • the UE does not expect to receive the PDSCH transmission of layers larger than two. That is, it will be limited to receive a maximum of two layers.
  • the applied RV is applied as shown in Table 18-1 when the pdsch-AggregationFactor is set, where the n value considers only the PDSCH transmission occasions associated with the first TCI state. And count.
  • the RV applied to the PDSCH transmission occasion associated with the second TCI state is applied as shown in Table 18-2 when the pdsch-AggregationFactor is set, the additional shifting calculation for each rv s is set by the upper layer RVSeqOffset.
  • the value of n is calculated by considering only the PDSCH transmission occasions associated with the second TCI state.
  • the Koffset value is set to 2
  • the condition to be changed to Koffset is a region in which a position based on timeDurationForQCL exists in an offset region (including a boundary) located between PDSCHs on the time axis
  • the UE determines whether to apply the default QCL to the PDSCH(s) existing before the offset Can be considered as For example, if the terminal confirms that the last symbol index of the PDCCH transmitted by the base station is 2 and the set timeDurationForQCL value is 7, the transmission time (start time) of PDSCHs scheduled to apply the TCI states is greater than or equal to the 9th symbol, TCI state #1 to the first PDSCH allocated from TRP 1, TCI state #2 to the second PDSCH allocated from TRP 2, TCI state #1 to the third PDSCH allocated from TRP 1, and the fourth
  • the base station instructs the UE to apply TCI state #1 to the first PDSCH, but the start symbol of the first PDSCH is the 4th symbol, the symbol length is 4, and the Koffset is 2, the last symbol index of the PDCCH is
  • the terminal confirming that the timeDurationForQCL value is number 2 and is 7 further confirms that timeDurationForQCL exists in the offset region between the first PDSCH and the second PDSCH or in the region before the second PDSCH, and the first PDSCH follows the default spatial QCL and the remaining second 2 PDSCH to 4 PDSCH may be reflected according to the various embodiments (alt 3 and 4), respectively.
  • FIG. 19 is a flowchart illustrating a method of operating a terminal according to an embodiment of the present disclosure.
  • the terminal includes at least one of at least one of parameters related to base station beamforming (tci-PresentinDCI, RepTCIMapping), parameters for control channels and data channels, or configuration information (PDDCH-config, PDSCH-config) in the process of configuring the base station and RRC.
  • the setting information of can be received (19-00).
  • the UE can check data, resource related information, beamforming pattern, etc. that are repeatedly transmitted from the base station.
  • the terminal may transmit (19-00) UE capability information (timeDurationForQCL) to the base station.
  • the UE may transmit the UE capability information at a request from the base station or at a predetermined time (eg, during an RRC setup process with the base station). Therefore, when the base station receives the capability information of the terminal, the process of receiving the capability may be omitted. Alternatively, the step of receiving capability according to the setting information itself may be omitted.
  • the terminal receives the first PDCCH in a specific CORESET based on the configuration information from the base station.
  • the terminal may check at least one of resource allocation information for the PDCCH and a plurality of PDSCHs, TCI-related information, antenna port information, and the like (19-10).
  • the plurality of PDSCHs eg, two PDSCHs, four PDSCHs, etc.
  • the plurality of PDSCHs may be repeatedly transmitted based on repeatedly transmitted data, resource-related information, and beamforming patterns described in FIGS. 16 to 18.
  • the UE calculates a scheduling time offset between the PDCCH and at least one PDSCH of the PDSCHs (e.g., at least one of between the PDDCH and each N-th PDSCH, and an N value is an integer of 2, 4 or more) And, based on the calculation result, at least one of a reception operation (or a reception operation method) or a reception beamforming direction is determined (19-20) for each Nth PDSCH (eg, an N value is an integer of 2, 4 or more) I can.
  • a scheduling time offset between the PDCCH and at least one PDSCH of the PDSCHs e.g., at least one of between the PDDCH and each N-th PDSCH, and an N value is an integer of 2, 4 or more
  • a reception operation or a reception operation method or a reception beamforming direction
  • the terminal determines the reception operation method
  • at least one of determining whether to receive data through at least one of each of the first PDSCH or the second PDSCH or the method for receiving data when it is determined to receive data It may involve determining one.
  • the UE determines the reception operation method is to determine whether to receive data through at least one of each N-th PDSCH, or when it is determined to receive each N-th PDSCH data, it is repeatedly transmitted for receiving data. It may include determining data, resource-related information, and a beamforming pattern.
  • the terminal may receive data through a first PDSCH and a first PDSCH corresponding to the first PDCCH or the second PDCCH based on at least one of the identified information 19-10 and the determination 19-20 result. (19-30).
  • the terminal may perform decoding of the received data.
  • FIG. 20 illustrates a method for a UE to receive a PDSCH based on NC-JT transmission and a default QCL assumption according to an embodiment of the present disclosure.
  • a terminal with maxNumberActiveTCI-PerBWP of 1 may report related UE capability-related information to the base station.
  • the UE supports one active TCI state for each CC and each BWP, and the UE can basically track one active TCI state for PDCCH and PDSCH reception.
  • the terminal additionally includes CSI-RS(s) for RLM purposes (eg, slot #0), CSI-RS(s) for beam management purposes (eg, slot #1), CSI-RS(s) for beam failure detection purposes, Alternatively, when the CSI-RS(s) for tracking purposes is set, the UE may measure the channel by receiving the periodic CSI-RS, SPS CSI-RS, and aperiodic CSI-RS.
  • the UE when beam switching is indicated to the UE in the first PDCCH and the scheduled first PDSCH and the first CSI-RS for channel measurement overlap in the same OFDM symbol, the UE has a default QCL-based default PDSCH beam. And CSI-RS QCL type-D assumptions set in the RRC may conflict with each other.
  • the UE to receive the PDSCH allocated from the PDCCH indicating beam switching If the start time of the PDSCH is located earlier than the time based on timeDurationForQCL, the UE may receive the PDSCH according to the configured default QCL (or enhanced default QCL).
  • the configured default QCL or enhanced default QCL
  • the (enhanced) default QCL may operate based on at least one of various methods as follows.
  • the default spatial QCL may be set to the same value for all TRPs, or may be set differently for each TRP.
  • Default spatial QCL for PDSCH may mean a value having the lowest ID among TCI states for PDSCH set as RRC or a value having the lowest ID among TCI states for PDSCH activated by MAC-CE.
  • Different default spatial QCLs may be applied depending on the situation. For example, in the case of cross-carrier scheduling or cross-BWP scheduling, 3) may be applied, and in other cases, 1) or 2) may be applied. In the case of a terminal supporting MAC-CE configuring the default spatial QCL for PDSCH, 1) may be applied before activating the corresponding MAC-CE, and 2) may be applied thereafter.
  • the TCI state(s) corresponding to the lowest codepoint among the TCI states set as TCI in the DCI field can be used as the default QCL.
  • the lowest codepoint may mean that the index value of the codepoint itself has the smallest value among codepoints of the TCI field.
  • the lowest codepoint may include two or more TCI states.
  • the lowest codepoint may mean having the smallest value (index) among codepoints including at least two or more TCI states among a plurality of codepoints of the TCI field.
  • This embodiment can be sufficiently applied to various embodiments described in FIGS. 16 to 18.
  • the QCL type-D assumption of the CSI-RS may be applied to the PDSCH reception.
  • the base station when each PDSCH scheduled in a plurality (eg, two) PDCCHs is allocated, the base station connects to each CORESET index or TRP index to which the PDSCHs are allocated to a specific terminal, and the CSI-RS Can be set.
  • the association setting method may include a method of indicating the CORESET index or TRP index directly to the CSI-RS, or indicating the CORESET index or TRP index to an SSB or RS referred to in a QCL relationship in the CSI-RS.
  • the UE may apply the QCL type-D assumption of the CSI-RS to receive the overlapped PDSCH.
  • the terminal is at least one of the default spatial QCL of the PDSCH resource (e.g., the enhance default QCL 1), 2), 3) One) assumption can be applied or the QCL type-D assumption of CSI-RS can be applied.
  • the UE has a default spatial QCL in common for reception of all PDSCHs transmitted in each TRP (e.g., the enhance default QCL 1), 2), At least one of 3)) can be applied or the QCL type-D assumption of CSI-RS can be applied.
  • a default spatial QCL in common for reception of all PDSCHs transmitted in each TRP e.g., the enhance default QCL 1, 2), At least one of 3
  • the QCL type-D assumption of CSI-RS can be applied.
  • the plurality of PDSCHs resources and the CSI-RS do not overlap each other on the time-side resource, but the offset symbol resource is If they overlap, the QCL type-D assumption of the CSI-RS can be applied to PDSCH reception.
  • 21 is a block diagram illustrating a structure of a terminal in a wireless communication system according to an embodiment of the present invention.
  • a terminal may include a terminal receiving unit 21-00, a terminal transmitting unit 21-10, and a terminal processing unit (control unit) 21-05.
  • the terminal receiving unit 21-00 and the terminal transmitting unit 21-10 may be referred to as a transmitting/receiving unit together. According to the above-described communication method of the terminal, the terminal receiving unit 21-00, the terminal transmitting unit 21-10, and the terminal processing unit 21-05 of the terminal may operate. However, the components of the terminal are not limited to the above-described example. For example, the terminal may include more or fewer components than the above-described components (eg, memory, etc.). In addition, the terminal receiving unit 21-00, the terminal transmitting unit 21-10, and the terminal processing unit 21-05 may be implemented in the form of a single chip.
  • the terminal reception unit 21-00 and the terminal transmission unit 21-10 may transmit and receive signals to and from the base station.
  • the signal may include control information and data.
  • the transceiving unit may include an RF transmitter that up-converts and amplifies a frequency of a transmitted signal, and an RF receiver that amplifies a received signal with low noise and down-converts a frequency.
  • this is only an embodiment of the transmission/reception unit, and components of the transmission/reception unit are not limited to the RF transmitter and the RF receiver.
  • the transmission/reception unit may receive a signal through a wireless channel, output it to the terminal processing unit 21-05, and transmit a signal output from the terminal processing unit 21-05 through a wireless channel.
  • the memory may store programs and data necessary for the operation of the terminal.
  • the memory may store control information or data included in a signal obtained from the terminal.
  • the memory may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media.
  • the terminal processing unit 21-05 may control a series of processes so that the terminal can operate according to the above-described embodiment of the present disclosure.
  • the terminal processing units 21-05 may be implemented as a control unit or one or more processors.
  • FIG. 22 is a block diagram showing the structure of a base station in a wireless communication system according to an embodiment of the present invention.
  • a base station may include a base station receiving unit 22-00, a base station transmitting unit 22-10, and a base station processing unit (control unit) 22-05.
  • the base station receiving unit 22-00 and the base station transmitting unit 22-10 may be referred to as a transmitting/receiving unit together. According to the above-described communication method of the base station, the base station receiving unit 22-00, the base station transmitting unit 22-10, and the base station processing unit 22-05 of the base station can operate.
  • the components of the base station are not limited to the above-described example.
  • the base station may include more or fewer components than the above-described components (eg, memory, etc.).
  • the base station receiving unit 22-00, the base station transmitting unit 22-10, and the base station processing unit 22-05 may be implemented in the form of a single chip.
  • the base station receiving unit 22-00 and the base station transmitting unit 22-10 may transmit and receive signals to and from the terminal.
  • the signal may include control information and data.
  • the transceiving unit may include an RF transmitter that up-converts and amplifies a frequency of a transmitted signal, and an RF receiver that amplifies a received signal with low noise and down-converts a frequency.
  • this is only an embodiment of the transmission/reception unit, and components of the transmission/reception unit are not limited to the RF transmitter and the RF receiver.
  • the transmission/reception unit may receive a signal through a radio channel, output it to the base station processing unit 22-05, and transmit the signal output from the base station processing unit 22-05 through a radio channel.
  • the memory may store programs and data necessary for the operation of the base station.
  • the memory may store control information or data included in a signal obtained from the base station.
  • the memory may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media.
  • the base station processing unit 22-05 may control a series of processes so that the base station can operate according to the above-described embodiment of the present disclosure.
  • the base station processing units 22-05 may be implemented as a control unit or one or more processors.
  • a computer-readable storage medium storing one or more programs (software modules) may be provided.
  • One or more programs stored in a computer-readable storage medium are configured to be executable by one or more processors in an electronic device (device).
  • the one or more programs include instructions for causing the electronic device to execute methods according to embodiments described in the claims or specification of the present disclosure.
  • These programs include random access memory, non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM.
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • magnetic disc storage device Compact Disc-ROM (CD-ROM), Digital Versatile Discs (DVDs), or other types of It may be stored in an optical storage device or a magnetic cassette. Alternatively, it may be stored in a memory composed of a combination of some or all of them. In addition, a plurality of configuration memories may be included.
  • the program is accessed through a communication network such as Internet, Intranet, Local Area Network (LAN), Wide LAN (WLAN), or Storage Area Network (SAN), or a combination of these. It may be stored in an (access) attachable storage device. Such a storage device may access a device performing an embodiment of the present disclosure through an external port. In addition, a separate storage device on the communication network may access a device performing an embodiment of the present disclosure.
  • a communication network such as Internet, Intranet, Local Area Network (LAN), Wide LAN (WLAN), or Storage Area Network (SAN), or a combination of these. It may be stored in an (access) attachable storage device.
  • Such a storage device may access a device performing an embodiment of the present disclosure through an external port.
  • a separate storage device on the communication network may access a device performing an embodiment of the present disclosure.
  • the method of the present invention may be implemented by combining some or all of the contents included in each embodiment within a range not impairing the essence of the present invention.

Abstract

본 개시의 일 실시 예에 따른 무선 통신 시스템에서 단말의 PDSCH의 수신 방법은, 기지국으로부터 상위 레이어 시그널링을 통해 DCI에 포함된 TCI 필드의 정보를 적용하도록 할 것인지 여부에 대한 설정 정보를 수신하는 단계, 상기 기지국으로부터, 서로 다른 기지국으로부터 전송되는 제1 PDSCH 및 제2 PDSCH를 스케줄링하는 적어도 하나 이상의 PDCCH를 수신하는 단계 및 상기 TCI 필드를 적용하도록 설정되고, 상기 적어도 하나 이상의 PDCCH와 상기 제1 PDSCH 및 상기 제2 PDSCH 중 적어도 하나 사이의 스케줄링 시간 오프셋이 빔(beam) 변경 시간 제한보다 길거나 같은 경우, 상기 적어도 하나 이상의 PDCCH를 통해 전송되는 DCI에 포함된 TCI 필드의 코드포인트가 지시하는 TCI 상태(TCI state)의 QCL 파라미터에 기초하여 상기 제1 PDSCH 및 상기 제2 PDSCH를 각각 수신하는 단계를 포함할 수 있다.

Description

무선 협력 통신 시스템에서 다중 데이터를 송수신하는 방법 및 장치
본 개시(disclosure)는 무선 통신 시스템에 대한 것으로서, 무선 협력 통신 시스템에서 다중 데이터를 송수신하는 방법 및 장치에 관한 것이다.
4G(4 th generation) 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G(5 th generation) 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후(Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후(Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역(예를 들어, 60기가(70GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀(advanced small cell), 클라우드 무선 액세스 네트워크(cloud radio access network: cloud RAN), 초고밀도 네트워크(ultra-dense network), 기기 간 통신(Device to Device communication: D2D), 무선 백홀(wireless backhaul), 이동 네트워크(moving network), 협력 통신(cooperative communication), CoMP(Coordinated Multi-Points), 및 수신 간섭제거(interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM(Hybrid FSK and QAM Modulation) 및 SWSC(Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non-orthogonal multiple access), 및 SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술인 빔 포밍, MIMO 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 3eG 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
상술한 바와 같이, 무선 통신 시스템의 발전에 따라, 네트워크 협력 통신(cooperative communication)을 위한 데이터 송수신 방안이 요구되고 있다.
본 개시의 일 실시 예에 따르면, 무선 통신 시스템에서 기지국과 단말이 default QCL을 결정하기 위한 방법을 제공한다.
또한, 본 개시의 일 실시예에 따르면, 단말과 기지국은 Single/Multi-TRP에서 MAC CE에 기반하여 default QCL를 결정하는 방법을 제공한다.
상기와 같은 문제점을 해결하기 위한 본 발명의 무선 통신 시스템에서 제어 신호 처리 방법에 있어서, 기지국으로부터 전송되는 제1 제어 신호를 수신하는 단계; 상기 수신된 제1 제어 신호를 처리하는 단계; 및 상기 처리에 기반하여 생성된 제2 제어 신호를 상기 기지국으로 전송하는 단계를 포함하는 것을 특징으로 한다.
본 발명의 일 실시 예에 따르면, 무선 통신 시스템에서 협력 통신(cooperative communication)을 수행하기 위하여, 전송 노드(transmission node)와 단말 간 하나 이상의 데이터를 송수신하는 방법 및 장치를 제공할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 개시의 일 실시 예에 따른 LTE(Long Term Evolution 또는 E-UTRA(Evolved Universal Terrestrial Radio Access)), LTE-Advanced(LTE-A), NR 또는 이와 유사한 무선 통신 시스템의 시간-주파수영역 전송 구조를 나타낸 도면이다.
도 2는 본 개시의 일 실시 예에 따른 5G(5 th generation)에서 프레임, 서브프레임, 슬롯 구조를 도시한 도면이다.
도 3은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 대역폭 부분(bandwidth part, BWP) 구성 예시를 도시한다.
도 4는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 대역폭 부분 지시 및 변경에 대한 예시를 도시한 도면이다.
도 5는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 하향링크 제어채널의 제어영역 설정의 일 예를 도시한 도면이다.
도 6은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH 주파수 축 자원 할당 예제를 도시한 도면이다.
도 7은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH(physical downlink shared channel) 시간 축 자원 할당의 예시를 도시한 도면이다.
도 8은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격에 따른 시간 축 자원 할당 예시를 도시한 도면이다.
도 9은 본 개시의 일 실시 예에 따른 협력 통신 안테나 포트 구성 예시를 도시한 도면이다.
도 10a는 본 개시에 따른 UE-specific PDCCH의 TCI state activation을 위한 MAC CE 구조를 도시한 도면이다.
도 10b는 본 개시의 일 실시 예에 따른 TCI (transmission configuration indication) states 설정 및 빔포밍 지시 관련 예시를 도시한 도면이다.
도 11은 본 개시의 일 실시 예에 따른 single PDCCH 기반 협력 통신 예시를 도시한 도면이다.
도 12은 본 개시의 일 실시 예에 따른 multiple PDCCH 기반 협력 통신 예시를 도시한 도면이다.
도 13은 본 개시의 다른 실시 예에 따른 multiple PDCCH 기반 협력 통신 예시를 도시한 도면이다.
도 14는 본 개시의 또다른 실시 예에 따른 multiple PDCCH 기반 협력 통신 예시를 도시한 도면이다.
도 15는 본 개시의 일 실시예에 따른 단말의 동작 방법을 나타내는 순서도이다.
도 16 내지 도 18은 본 개시의 일 실시 예에 따른 복수의 TRPs가 특정 단말에게 single PDCCH를 통해 복수의 PDSCH를 전송하는 과정을 설명하는 도면이다.
도 19는 본 개시의 다른 실시예에 따른 단말의 동작 방법을 나타내는 순서도이다.
도 20은 본 개시의 실시예에 따라 단말이 NC-JT전송 기반의 PDSCH를 수신하는 방법 및 default QCL 가정을 설명한다.
도 21은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 단말 구조를 도시한다.
도 22는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 기지국 구조를 도시한다.
본 개시의 일 실시 예에 따른 무선 통신 시스템에서 단말의 PDSCH(Physical Downlink Shared CHannel)의 수신 방법은, 기지국으로부터 상위 레이어 시그널링을 통해 DCI(Downlink Control Information)에 포함된 TCI(Transmission configuration indication) 필드의 정보를 적용하도록 할 것인지 여부에 대한 설정 정보를 수신하는 단계, 상기 기지국으로부터, 서로 다른 기지국으로부터 전송되는 제1 PDSCH 및 제2 PDSCH를 스케줄링하는 적어도 하나 이상의 PDCCH(Physical Downlink Control CHannel)를 수신하는 단계 및 상기 TCI 필드를 적용하도록 설정되고, 상기 적어도 하나 이상의 PDCCH와 상기 제1 PDSCH 및 상기 제2 PDSCH 중 적어도 하나 사이의 스케줄링 시간 오프셋이 빔(beam) 변경 시간 제한보다 길거나 같은 경우, 상기 적어도 하나 이상의 PDCCH를 통해 전송되는 DCI에 포함된 TCI 필드의 코드포인트(codepoint)가 지시하는 TCI 상태(TCI state)의 QCL 파라미터(quasi co-location parameter)에 기초하여 상기 제1 PDSCH 및 상기 제2 PDSCH를 각각 수신하는 단계를 포함할 수 있다.
일 실시 예에서, 상기 스케줄링 시간 오프셋이 빔(beam) 변경 시간 제한보다 짧은 경우, 상기 적어도 하나 이상의 PDCCH를 수신하는데 사용된 QCL 파라미터에 기초하여 상기 제1 PDSCH 및 상기 제2 PDSCH를 각각 수신하는 단계를 포함할 수 있다.
일 실시 예에서, 상기 적어도 하나 이상의 PDCCH를 수신하는데 사용된 QCL 파라미터는, 가장 최근 슬롯(slot)에서 lowest CORESET ID(ControlResourceSET ID)를 갖는 탐색 공간(search space)과 관련된 CORESET의 PDCCH를 수신하는데 사용된 QCL 파라미터를 포함할 수 있다.
일 실시 예에서, 상기 빔(beam) 변경 시간 제한은, 단말 능력 정보(UE capability)에 포함되어 상기 기지국으로 전송될 수 있다.
일 실시 예에서, 상기 기지국으로부터 상위 레이어 시그널링을 통해 전송되는 TCI 상태들 중, PDSCH를 위한 적어도 하나 이상의 TCI 상태 후보와 관련된 정보를 포함하는 MAC CE를 수신하는 단계를 더 포함하고, 상기 DCI에 포함된 TCI 필드의 코드포인트(codepoint)가 지시하는 TCI 상태는 상기 적어도 하나 이상의 TCI 상태 후보 중 하나를 지시할 수 있다.
본 개시의 일 실시 예에 따른 무선 통신 시스템에서 기지국의 PDSCH(Physical Downlink Shared CHannel)의 전송 방법은, 상위 레이어 시그널링을 통해 DCI(Downlink Control Information)에 포함된 TCI(Transmission configuration indication) 필드의 정보를 적용하도록 할 것인지 여부에 대한 설정 정보를 단말로 전송하는 단계, 서로 다른 기지국으로부터 전송되는 복수의 PDSCH들을 스케줄링하는 PDCCH(Physical Downlink Control CHannel)를 단말로 전송하는 단계 및 상기 TCI 필드를 적용하도록 설정되고, 상기 PDCCH와 상기 복수의 PDSCH 중 적어도 하나 사이의 스케줄링 시간 오프셋이 빔(beam) 변경 시간 제한보다 길거나 같은 경우, 상기 PDCCH를 통해 전송되는 DCI에 포함된 TCI 필드의 코드포인트(codepoint)가 지시하는 TCI 상태(TCI state)의 QCL 파라미터(quasi co-location parameter)에 기초하여 PDSCH를 전송하는 단계를 포함할 수 있다.
일 실시 예에서, 상기 스케줄링 시간 오프셋이 빔(beam) 변경 시간 제한보다 짧은 경우, 상기 PDCCH를 전송하는데 사용된 QCL 파라미터에 기초하여 상기 PDSCH를 전송하는 단계를 포함할 수 있다.
일 실시 예에서, 상기 적어도 하나 이상의 PDCCH를 전송하는데 사용된 QCL 파라미터는, 가장 최근 슬롯(slot)에서 lowest CORESET ID(ControlResourceSET ID)를 갖는 탐색 공간(search space)과 관련된 CORESET의 PDCCH를 전송하는데 사용된 QCL 파라미터를 포함할 수 있다.
일 실시 예에서, 상기 빔(beam) 변경 시간 제한은, 단말 능력 정보(UE capability)에 포함되어 상기 단말로부터 수신될 수 있다.
일 실시 예에서, 상위 레이어 시그널링을 통해 전송되는 TCI 상태들 중, PDSCH를 위한 적어도 하나 이상의 TCI 상태 후보와 관련된 정보를 포함하는 MAC CE를 단말로 전송하는 단계를 더 포함하고, 상기 DCI에 포함된 TCI 필드의 코드포인트가 지시하는 TCI 상태는 상기 적어도 하나 이상의 TCI 상태 후보 중 하나를 지시할 수 있다.
본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH(Physical Downlink Shared CHannel)의 수신하는 단말의 동작 방법은, 송수신부; 및 기지국으로부터 상위 레이어 시그널링을 통해 DCI(Downlink Control Information)에 포함된 TCI(Transmission configuration indication) 필드의 정보를 적용하도록 할 것인지 여부에 대한 설정 정보를 수신하고, 상기 기지국으로부터 서로 다른 기지국으로부터 전송되는 제1 PDSCH 및 제2 PDSCH를 스케줄링하는 적어도 하나 이상의 PDCCH(Physical Downlink Control CHannel)를 수신하며, 상기 TCI 필드를 적용하도록 설정되고, 상기 적어도 하나 이상의 PDCCH와 상기 제1 PDSCH 및 상기 제2 PDSCH 중 적어도 하나 사이의 스케줄링 시간 오프셋이 빔(beam) 변경 시간 제한보다 길거나 같은 경우, 상기 적어도 하나 이상의 PDCCH를 통해 전송되는 DCI에 포함된 TCI 필드의 코드포인트(codepoint)가 지시하는 TCI 상태(TCI state)의 QCL 파라미터(quasi co-location parameter)에 기초하여 상기 제1 PDSCH 및 상기 제2 PDSCH를 각각 수신하도록 제어하는 제어부를 포함할 수 있다.
일 실시 예에서, 상기 제어부는, 상기 스케줄링 시간 오프셋이 빔(beam) 변경 시간 제한보다 짧은 경우, 상기 적어도 하나 이상의 PDCCH를 수신하는데 사용된 QCL 파라미터에 기초하여 상기 제1 PDSCH 및 상기 제2 PDSCH를 각각 수신할 수 있다.
일 실시 예에서, 상기 적어도 하나 이상의 PDCCH를 수신하는데 사용된 QCL 파라미터는, 가장 최근 슬롯(slot)에서 lowest CORESET ID(ControlResourceSET ID)를 갖는 탐색 공간(search space)과 관련된 CORESET의 PDCCH를 수신하는데 사용된 QCL 파라미터를 포함할 수 있다.
일 실시 예에서, 상기 제어부는, 상기 기지국으로부터 상위 레이어 시그널링을 통해 전송되는 TCI 상태들 중, PDSCH를 위한 적어도 하나 이상의 TCI 상태 후보와 관련된 정보를 포함하는 MAC CE를 수신하고, 상기 DCI에 포함된 TCI 필드의 코드포인트(codepoint)가 지시하는 TCI 상태는 상기 적어도 하나 이상의 TCI 상태 후보 중 하나를 지시할 수 있다.
본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH(Physical Downlink Shared CHannel)를 전송하는 기지국은, 송수신부; 상위 레이어 시그널링을 통해 DCI(Downlink Control Information)에 포함된 TCI(Transmission configuration indication) 필드의 정보를 적용하도록 할 것인지 여부에 대한 설정 정보를 단말로 전송하고, 서로 다른 기지국으로부터 전송되는 복수의 PDSCH들을 스케줄링하는 PDCCH(Physical Downlink Control CHannel)를 단말로 전송하며, 상기 TCI 필드를 적용하도록 설정되고, 상기 PDCCH와 상기 복수의 PDSCH 중 적어도 하나 사이의 스케줄링 시간 오프셋이 빔(beam) 변경 시간 제한보다 길거나 같은 경우, 상기 PDCCH를 통해 전송되는 DCI에 포함된 TCI 필드의 코드포인트(codepoint)가 지시하는 TCI 상태(TCI state)의 QCL 파라미터(quasi co-location parameter)에 기초하여 PDSCH를 전송하도록 제어하는 제어부를 포함할 수 있다.
이하, 본 개시의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
실시 예를 설명함에 있어서 본 개시가 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 개시의 실시 예들은 본 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 개시의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능할 수 있다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능할 수 있다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능할 수 있다.
이때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일부 실시 예에 따르면 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 일부 실시 예에 따르면, '~부'는 하나 이상의 프로세서를 포함할 수 있다.
이하 첨부된 도면을 참조하여 본 개시의 동작 원리를 상세히 설명한다. 하기에서 본 개시를 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B(gNB), eNode B(eNB), Node B, BS(base station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE(user equipment), MS(mobile station), terminal, 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니다.이하, 본 개시는 무선 통신 시스템에서 단말이 기지국으로부터 방송 정보를 수신하기 위한 기술에 대해 설명한다. 본 개시는 4G(4 th generation) 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G(5 th generation) 통신 시스템을 IoT(internet of things, 사물인터넷) 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다.
이하 설명에서 사용되는 방송 정보를 지칭하는 용어, 제어 정보를 지칭하는 용어, 통신 커버리지(coverage)에 관련된 용어, 상태 변화를 지칭하는 용어(예: 이벤트(event)), 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 장치의 구성 요소를 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 개시가 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 다른 용어가 사용될 수 있다.
이하 설명의 편의를 위하여, 3GPP LTE(3rd generation partnership project long term evolution) 규격에서 정의하고 있는 용어 및 명칭들이 일부 사용될 수 있다. 하지만, 본 개시가 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 또는 E-UTRA(Evolved Universal Terrestrial Radio Access)), LTE-Advanced(LTE-A), LTE-Pro, 3GPP2의 HRPD(High Rate Packet Data), UMB(Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다.
광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(Downlink; DL)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(Uplink; UL)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(UE(User Equipment) 또는 MS(Mobile Station))이 기지국(eNode B, 또는 base station(BS))으로 데이터 또는 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 또는 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 각 사용자 별로 데이터 또는 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성 (Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어정보를 구분한다.
LTE 이후의 향후 통신 시스템으로서, 즉, 5G 통신시스템은 사용자 및 서비스 제공자 등의 다양한 요구 사항을 자유롭게 반영할 수 있어야 하기 때문에 다양한 요구사항을 만족하는 서비스가 지원되어야 한다. 5G 통신시스템을 위해 고려되는 서비스로는 증가된 모바일 광대역 통신(Enhanced Mobile BroadBand: eMBB), 대규모 기계형 통신(massive Machine Type Communication: mMTC), 초신뢰 저지연 통신(Ultra Reliability Low Latency Communciation: URLLC) 등이 있다.
일부 실시 예에 따르면, eMBB는 기존의 LTE, LTE-A 또는 LTE-Pro가 지원하는 데이터 전송 속도보다 더욱 향상된 데이터 전송 속도를 제공하는 것을 목표로 한다. 예를 들어, 5G 통신시스템에서 eMBB는 하나의 기지국 관점에서 하향링크에서는 20Gbps 최대 전송 속도(peak data rate), 상향링크에서는 10Gbps의 최대 전송 속도를 제공할 수 있어야 한다. 동시에, 증가된 단말의 실제 체감 전송 속도(User perceived data rate)를 제공해야 한다. 이와 같은 요구 사항을 만족시키기 위해, 더욱 향상된 다중 입력 다중 출력 (Multi Input Multi Output: MIMO) 전송 기술을 포함하여 송수신 기술의 향상을 요구한다. 또한 현재의 LTE가 사용하는 2GHz 대역 대신에 3~6GHz 또는 6GHz 이상의 주파수 대역에서 20MHz 보다 넓은 주파수 대역폭을 사용함으로써 5G 통신시스템에서 요구하는 데이터 전송 속도를 만족시킬 수 있다.
동시에, 5G 통신시스템에서 사물 인터넷(Internet of Thing: IoT)와 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 단말의 비용 감소 등이 요구될 수 있다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km 2)을 지원할 수 있어야 한다. 또한 mMTC를 지원하는 단말은 서비스의 특성상 건물의 지하와 같이 셀이 커버하지 못하는 음영지역에 위치할 가능성이 높으므로 5G 통신시스템에서 제공하는 다른 서비스 대비 더욱 넓은 커버리지를 요구할 수 있다. mMTC를 지원하는 단말은 저가의 단말로 구성되어야 하며, 단말의 배터리를 자주 교환하기 힘들기 때문에 매우 긴 배터리 생명시간(battery life time)이 요구될 수 있다.
마지막으로, URLLC의 경우, 특정한 목적(mission-critical)으로 사용되는 셀룰러 기반 무선 통신 서비스로서, 로봇(Robot) 또는 기계 장치(Machinery)에 대한 원격 제어(remote control), 산업 자동화(industrial automation), 무인 비행장치(Unmaned Aerial Vehicle), 원격 건강 제어(Remote health care), 비상 상황 알림(emergency alert) 등에 사용되는 서비스로서, 초 저지연 및 초 신뢰도를 제공하는 통신을 제공해야 한다. 예를 들어, URLLC을 지원하는 서비스는 0.5 밀리초보다 작은 무선 접속 지연시간(Air interface latency)를 만족해야 하며, 동시에 10 -5 이하의 패킷 오류율(Packet Error Rate)의 요구사항을 갖는다. 따라서, URLLC을 지원하는 서비스를 위해 5G 시스템은 다른 서비스보다 작은 전송 시간 구간(Transmit Time Interval: TTI)를 제공해야 하며, 동시에 주파수 대역에서 넓은 리소스를 할당해야 하는 설계사항이 요구된다. 다만, 전술한 mMTC, URLLC, eMBB는 서로 다른 서비스 유형의 일 예일 뿐, 본 개시의 적용 대상이 되는 서비스 유형이 전술한 예에 한정되는 것은 아니다.
상기에서 전술한 5G 통신시스템에서 고려되는 서비스들은 하나의 프레임워크 (Framework) 기반으로 서로 융합되어 제공되어야 한다. 즉, 효율적인 리소스 관리 및 제어를 위해 각 서비스들이 독립적으로 운영되기 보다는 하나의 시스템으로 통합되어 제어되고 전송되는 것이 바람직하다.
또한, 이하에서 LTE, LTE-A, LTE Pro 또는 NR 시스템을 일례로서 본 개시의 실시 예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 개시의 실시 예가 적용될 수 있다. 또한, 본 개시의 실시 예는 숙련된 기술적 지식을 가진 자의 판단으로써 본 개시의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.
본 개시는 통신 신뢰도 향상을 위해 협력 통신(cooperative communication)을 수행하는 다수의 전송 노드와 단말 간 데이터 및 제어 신호를 반복 전송하는 방법 및 장치에 관한 것이다.
본 개시에 따르면, 무선통신 시스템에서 네트워크 협력 통신이 사용되는 경우, 단말 수신 데이터/제어 신호의 신뢰도가 향상될 수 있다.
이하 5G 시스템의 프레임 구조에 대해 도면을 참조하여 보다 구체적으로 설명한다.
도 1은 본 발명의 일 실시 예에 따른 LTE, LTE-A, NR 또는 이와 유사한 무선 통신 시스템의 시간-주파수영역 전송 구조를 나타낸 도면이다.
도 1은 5G 시스템에서 데이터 또는 제어채널이 전송되는 무선 자원 영역인 시간-주파수 영역의 기본 구조를 도시한 도면이다. 도 1을 참조하면, 도 1에 가로축은 시간 영역을, 세로축은 주파수 영역을 나타낸다. 시간 및 주파수 영역에서 자원의 기본 단위는 자원 요소(resource element, RE, 1-01)로서 시간 축으로 1 OFDM(orthogonal frequency division multiplexing) 심볼(1-02) 및 주파수 축으로 1 부반송파(subcarrier)(1-03)로 정의될 수 있다. 주파수 영역에서
Figure PCTKR2020015658-appb-img-000001
(일례로 12)개의 연속된 RE들은 하나의 자원 블록(resource block, RB, 1-04)을 구성할 수 있다.
도 2는 본 발명의 일 실시 예에 따른 5G에서 프레임, 서브프레임, 슬롯 구조를 도시한 도면이다.
도 2는 5G 시스템에서 고려하는 슬롯 구조를 도시한 도면이다. 도 2를 참조하면, 도 2에는 프레임(frame, 2-00), 서브프레임(subframe, 2-01), 슬롯(slot, 2-02) 구조의 일 예가 도시되어 있다. 1 프레임(2-00)은 10ms로 정의될 수 있다. 1 서브프레임(2-01)은 1ms로 정의될 수 있으며, 따라서 1 프레임(2-00)은 총 10개의 서브프레임(2-01)으로 구성될 수 있다. 1 슬롯(2-02, 2-03)은 14개의 OFDM 심볼로 정의될 수 있다(즉 1 슬롯 당 심볼 수(
Figure PCTKR2020015658-appb-img-000002
)=14). 1 서브프레임(2-01)은 하나 또는 다수 개의 슬롯(2-02, 2-03)으로 구성될 수 있으며, 1 서브프레임(2-01)당 슬롯(2-02, 2-03)의 개수는 부반송파 간격에 대한 설정 값 μ(2-04, 2-05)에 따라 다를 수 있다. 도 2의 일 예에서는 부반송파 간격 설정 값으로 μ=0(2-04)인 경우와 μ=1(2-05)인 경우가 도시되어 있다. μ=0(2-04)일 경우, 1 서브프레임(2-01)은 1개의 슬롯(2-02)으로 구성될 수 있고, μ=1(2-05)일 경우, 1 서브프레임(2-01)은 2개의 슬롯(2-03)으로 구성될 수 있다. 즉 부반송파 간격에 대한 설정 값 μ에 따라 1 서브프레임 당 슬롯 수(
Figure PCTKR2020015658-appb-img-000003
)가 달라질 수 있고, 이에 따라 1 프레임 당 슬롯 수(
Figure PCTKR2020015658-appb-img-000004
) 가 달라질 수 있다. 각 부반송파 간격 설정 μ에 따른
Figure PCTKR2020015658-appb-img-000005
Figure PCTKR2020015658-appb-img-000006
는 하기의 [표 1]과 같이 정의될 수 있다.
[표 1]
Figure PCTKR2020015658-appb-img-000007
NR에서 한 개의 컴포넌트 캐리어(component carrier, CC) 혹은 서빙 셀(serving cell)은 최대 250개 이상의 RB로 구성되는 것이 가능하다. 따라서 단말이 LTE와 같이 항상 전체 서빙 셀 대역폭(serving cell bandwidth)을 수신하는 경우 단말의 파워 소모가 극심할 수 있고, 이를 해결하기 위하여 기지국은 단말에게 하나 이상의 대역폭 부분(bandwidth part, BWP)을 설정하여 단말이 셀(cell) 내 수신 영역을 변경할 수 있도록 지원하는 것이 가능하다. NR에서 기지국은 CORESET #0(혹은 common search space, CSS)의 대역폭인 'initial BWP'를 MIB(master information block)를 통하여 단말에게 설정할 수 있다. 이후 기지국은 RRC 시그널링을 통하여 단말의 초기 BWP(first BWP)를 설정하고, 향후 하향링크 제어 정보(downlink control information, DCI)를 통하여 지시될 수 있는 적어도 하나 이상의 BWP 설정 정보들을 통지할 수 있다. 이후 기지국은 DCI를 통하여 BWP ID를 공지함으로써 단말이 어떠한 대역을 사용할지 단말에게 지시할 수 있다. 만약 단말이 특정 시간 이상 동안 현재 할당된 BWP에서 DCI를 수신하지 못할 경우 단말은 'default BWP'로 회귀하여 DCI 수신을 시도할 수 있다.
도 3은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 대역폭 부분 구성 예시를 도시한다.
도 3은 5G 통신 시스템에서 대역폭 부분에 대한 설정의 일 예를 도시한 도면이다.도 3을 참조하면, 도 3은 단말 대역폭(3-00)이 두 개의 대역폭 부분, 즉 대역폭 부분 #1(BWP #1)(3-05)과 대역폭 부분 #2(BWP #2)(3-10)로 설정된 일 예를 도시한다. 기지국은 단말에게 하나 또는 다수 개의 대역폭 부분을 설정해줄 수 있으며, 각 대역폭 부분에 대하여 하기의 [표 2]와 같은 정보들을 설정해 줄 수 있다.
[표 2]
Figure PCTKR2020015658-appb-img-000008
상기 [표 2]에서 설명된 설정 정보 외에도 대역폭 부분과 관련된 다양한 파라미터들이 단말에게 설정될 수 있다. 상술한 정보들은 상위 계층 시그널링, 예컨대 RRC 시그널링을 통해 기지국이 단말에게 전달할 수 있다. 설정된 하나 또는 다수 개의 대역폭 부분들 중에서 적어도 하나의 대역폭 부분이 활성화(activation)될 수 있다. 설정된 대역폭 부분에 대한 활성화 여부는 기지국으로부터 단말에게 RRC 시그널링을 통해 준정적(semi-static)으로 전달되거나, MAC(medium access control) CE(control element) 또는 DCI를 통해 동적으로 전달될 수 있다.
상술한 5G 통신 시스템에서 지원하는 대역폭 부분에 대한 설정은 다양한 목적으로 사용될 수 있다.
일 예로 시스템 대역폭보다 단말이 지원하는 대역폭이 작을 경우에, 대역폭 부분에 대한 설정을 통해, 단말이 지원하는 대역폭이 지원될 수 있다. 예컨대 [표 2]에서 대역폭 부분의 주파수 위치(설정정보 2)가 단말에게 설정됨으로써, 시스템 대역폭 내의 특정 주파수 위치에서 단말이 데이터를 송수신할 수 있다.
또 다른 일 예로 서로 다른 뉴머롤로지를 지원하기 위한 목적으로, 기지국이 단말에게 다수 개의 대역폭 부분을 설정할 수 있다. 예컨대, 임의의 단말에게 15kHz의 부반송파 간격과 30kHz의 부반송파 간격을 이용한 데이터 송수신을 모두 지원하기 위해서, 두 개의 대역폭 부분이 각각 15kHz와 30kHz의 부반송파 간격을 이용하도록 설정될 수 있다. 서로 다른 대역폭 부분은 FDM(frequency division multiplexing)될 수 있고, 특정 부반송파 간격으로 데이터를 송수신하고자 할 경우 해당 부반송파 간격으로 설정되어 있는 대역폭 부분이 활성화 될 수 있다.
또 다른 일 예로 단말의 전력 소모 감소를 위한 목적으로, 기지국이 단말에게 서로 다른 크기의 대역폭을 갖는 대역폭 부분을 설정할 수 있다. 예컨대, 단말이 매우 큰 대역폭, 예컨대 100MHz의 대역폭을 지원하고 해당 대역폭으로 항상 데이터를 송수신할 경우, 매우 큰 전력 소모를 야기할 수 있다. 특히 트래픽(traffic)이 없는 상황에서 단말이 100MHz의 큰 대역폭에 대한 불필요한 하향링크 제어채널에 대한 모니터링을 수행하는 것은 전력 소모 관점에서 매우 비효율적이다. 그러므로 단말의 전력 소모를 줄이기 위한 목적으로 기지국은 단말에게 상대적으로 작은 대역폭의 대역폭 부분, 예컨대 20MHz의 대역폭 부분을 설정할 수 있다. 트래픽이 없는 상황에서 단말은 20MHz 대역폭 부분에서 모니터링 동작을 수행할 수 있고, 데이터가 발생하였을 경우 기지국의 지시에 따라 100MHz의 대역폭 부분을 이용하여 데이터를 송수신할 수 있다.
도 4는 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 대역폭 부분 지시 및 변경에 대한 예시를 도시한 도면이다.
도 4는 대역폭 부분에 대한 동적 설정 변경 방법을 도시한 도면이다. 도 4를 참조하면, 상술한 [표 2]에서 설명한 바와 같이, 기지국은 단말에게 하나 또는 다수 개의 대역폭 부분을 설정할 수 있으며, 각 대역폭 부분에 대한 설정으로 대역폭 부분의 대역폭, 대역폭 부분의 주파수 위치, 대역폭 부분의 뉴머롤로지 등에 대한 정보를 단말에게 알려줄 수 있다. 도 4에는 한 단말에게 단말 대역폭(4-00) 내에 두 개의 대역폭 부분, 대역폭 부분 #1BPW #1, 4-05)과 대역폭 부분 #2(BWP #2, 4-10)가 설정되어 있는 일 예가 도시되어 있다. 설정된 대역폭 중에서 하나 또는 다수 개의 대역폭 부분이 활성화 될 수 있으며, 도 4에서는 하나의 대역폭 부분이 활성화되는 일 예가 고려될 수 있다. 도 4에서는 슬롯 #0(4-25)에서 설정된 대역폭 부분들 중에서 대역폭 부분 #1(BWP #1)(4-02)이 활성화되어 있는 상태이고, 단말은 대역폭 부분 #1(BWP #1)(4-05)에 설정되어 있는 제어 영역 #1(4-45)에서 PDCCH(physical downlink control channel)를 모니터링할 수 있고, 대역폭 부분 #1(BWP #1)(4-05)에서 데이터(4-55)를 송수신할 수 있다. 설정된 대역폭 부분 중에서 어떤 대역폭 부분이 활성화되는지에 따라서 단말이 PDCCH를 수신하는 제어 영역이 다를 수 있고, 이에 따라 단말이 PDCCH를 모니터링하는 대역폭이 달라질 수 있다.
기지국은 단말에게 대역폭 부분에 대한 설정을 변경하는 지시자를 추가로 전송할 수 있다. 여기서 대역폭 부분에 대한 설정을 변경하는 것이라 함은 특정 대역폭 부분을 활성화하는 동작(예컨대 대역폭 부분 A에서 대역폭 부분 B로의 활성화 변경)과 동일하게 여겨질 수 있다. 기지국은 단말에게 설정 변경 지시자(configuration switching indicator)를 특정 슬롯에서 전송할 수 있고, 단말은 기지국으로부터 설정 변경 지시자를 수신한 후 특정 시점에서부터 설정 변경 지시자에 따른 변경된 설정을 적용하여 활성화할 대역폭 부분을 결정하고, 활성화된 대역폭 부분에 설정되어 있는 제어 영역에서 PDCCH에 대한 모니터링을 수행할 수 있다.
도 4에서 기지국은 단말에게 활성화된 대역폭 부분을 기존 대역폭 부분 #1(BWP #1)(4-05)에서 대역폭 부분 #2(BWP #2)(4-10)로 변경을 지시하는 설정 변경 지시자(configuration switching indication, 4-15)를 슬롯 #1(4-30)에서 전송할 수 있다. 단말은 해당 지시자를 수신한 후, 지시자의 내용에 따라 대역폭 부분 #2(BWP #2)(6-10)를 활성화 할 수 있다. 이 때 대역폭 부분의 변경을 위한 전이 시간(transition time, 4-20)이 요구될 수 있고, 이에 따라 활성화하는 대역폭 부분을 변경하여 적용하는 시점이 결정될 수 있다. 도 4에서는 설정 변경 지시자(4-15)를 수신한 후 1 슬롯의 전이 시간(4-20)이 소요되는 경우가 도시되어 있다. 전이 시간(4-20)에는 데이터 송수신이 수행되지 않을 수 있다(4-60). 이에 따라 슬롯 #2(4-35)에서 대역폭 부분 #2(BWP #2)(4-10)가 활성화되어 해당 대역폭 부분으로 제어채널 및 데이터가 송수신되는 동작이 수행될 수 있다.
기지국은 단말에게 하나 또는 다수 개의 대역폭 부분을 상위 계층 시그널링(예컨대 RRC 시그널링 등)으로 미리 설정할 수 있으며, 설정 변경 지시자(4-15)가 기지국이 미리 설정한 대역폭 부분 설정 중 하나와 매핑되는 방법으로 활성화를 지시할 수 있다. 예컨대 log 2N 비트의 지시자는 N개의 기 설정된 대역폭 부분들 중 한 가지를 선택하여 지시할 수 있다. 하기 [표 3]에서는 2비트 지시자를 이용하여 대역폭 부분에 대한 설정 정보를 지시하는 일 예가 설명된다.
[표 3]
Figure PCTKR2020015658-appb-img-000009
도 4에서 설명된 대역폭 부분에 대한 설정 변경 지시자(4-15)는 MAC CE 시그널링 또는 L1 시그널링(예컨대 공통 DCI, 그룹-공통 DCI, 단말-특정 DCI 등)의 형태로 기지국으로부터 단말에게 전달될 수 있다. 도 4에서 설명된 대역폭 부분에 대한 설정 변경 지시자(4-15)에 따라, 대역폭 부분 활성화가 어느 시점에서부터 적용될지 여부는 다음에 따를 수 있다. 설정 변경이 어느 시점부터 적용될지는 미리 정의되어 있는 값(예컨대 설정 변경 지시자 수신 후 N(≥1) 슬롯 뒤부터 적용)에 따르거나, 또는, 기지국이 단말에게 상위 계층 시그널링(예컨대 RRC 시그널링)으로 설정하거나, 또는 설정 변경 지시자(4-15)의 내용에 일부 포함되어 전송될 수 있다. 또는, 상술한 방법들의 조합으로 결정될 수 있다. 단말은 대역폭 부분에 대한 설정 변경 지시자(4-15)를 수신한 후 상술한 방법으로 획득한 시점에서부터 변경된 설정을 적용할 수 있다.
하기에는 5G 통신 시스템에서의 하향링크 제어채널에 대하여 도면을 참조하여 보다 구체적으로 설명된다.
도 5는 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 하향링크 제어채널의 제어영역 설정의 일 예를 도시한 도면이다.
도 5는 5G 무선통신 시스템에서 하향링크 제어채널이 전송되는 제어영역(control resource set, CORESET)에 대한 일 예를 도시한 도면이다. 도 5를 참조하면, 도 5에는 주파수 축으로 단말의 대역폭 부분(5-10), 시간축으로 하나의 슬롯(5-20) 내에 2개의 제어영역(제어영역 #1(CORESET #1)(5-01), 제어영역 #2(CORESET #2)(5-02))이 설정되어 있는 일 예가 도시되어 있다. 제어영역(5-01, 5-02)은 주파수 축으로 전체 단말 대역폭 부분(5-10) 내에서 특정 주파수 자원(5-03)에 설정될 수 있다. 제어영역(5-01, 5-02)은 시간 축으로는 하나 혹은 다수 개의 OFDM 심볼로 설정될 수 있고, 제어영역 길이(control resource set duration, 5-04)로 정의될 수 있다. 도 5의 일 예에서 제어영역 #1(5-01)은 2개의 심볼의 제어영역 길이로 설정되어 있고, 제어영역 #2(5-02)는 1개의 심볼의 제어영역 길이로 설정되어 있다.
상기에서 설명된 5G에서의 제어영역은, 기지국이 단말에게 상위 계층 시그널링(예컨대 시스템 정보(system information), MIB(master information block), RRC(radio resource control) 시그널링)을 통해 설정할 수 있다. 단말에게 제어영역을 설정한다는 것은, 단말에게 제어영역 식별자(identity), 제어영역의 주파수 위치, 제어영역의 심볼 길이 등의 정보를 제공하는 것을 의미한다. 예컨대 [표 4]의 정보들이 포함될 수 있다.
[표 4]
Figure PCTKR2020015658-appb-img-000010
[표 4]에서 tci-StatesPDCCH(간단히 TCI state로 명명함) 설정 정보는, 해당 제어영역에서 전송되는 DMRS(demodulation reference signal)와 QCL(quasi co located) 관계에 있는 하나 또는 다수 개의 SS(synchronization signal)/PBCH(physical broadcast channel) 블록(block) 인덱스 또는 CSI-RS(channel state information reference signal) 인덱스의 정보를 포함할 수 있다.
무선 통신 시스템에서 하나 이상의 서로 다른 안테나 포트들(혹은 하나 이상의 채널, 신호 (시그널) 및 이들의 조합들로 대체되는 것도 가능하며, 이하의 본 개시에서는 설명에서는 편의를 위하여 서로 다른 안테나 포트들로 통일하여 지칭한다)은 아래와 같은 QCL 설정에 의하여 서로 연결(associate)될 수 있다.
Figure PCTKR2020015658-appb-img-000011
구체적으로 QCL 설정은 두 개의 서로 다른 안테나 포트들을 (QCL) target 안테나 포트와 (QCL) reference 안테나 포트의 관계로 연결할 수 있으며, 단말은 상기 reference 안테나 포트에서 측정된 채널의 통계적인 특성들(예를 들어 Doppler shift, Doppler spread, average delay, delay spread, average gain, spatial Rx (혹은 Tx) 파라미터 등 채널의 large scale 파라미터 내지 단말의 수신 공간 필터 계수 혹은 송신 공간 필터 계수) 중 전부 혹은 일부를 target 안테나 포트 수신 시 적용 (혹은 가정) 할 수 있다. 위에서 target 안테나 포트라 함은 상기 QCL 설정을 포함하는 상위레이어 설정에 의하여 설정되는 채널 혹은 신호를 송신하는 안테나 포트 내지는 상기 QCL 설정을 지시하는 TCI state가 적용되는 채널 혹은 신호를 송신하는 안테나 포트를 의미한다. 위에서 reference 안테나 포트라 함은 상기 QCL 설정 내 referenceSignal 파라미터에 의하여 지시(특정)되는 채널 혹은 신호를 송신하는 안테나 포트를 의미한다.
구체적으로, 상기 QCL 설정에 의하여 한정되는 (상기 QCL 설정 내에서 파라미터 qcl-Type에 의하여 지시되는) 채널의 통계적인 특성들은 QCL type에 따라 다음과 같이 분류될 수 있다.
o 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
o 'QCL-TypeB': {Doppler shift, Doppler spread}
o 'QCL-TypeC': {Doppler shift, average delay}
o 'QCL-TypeD': {Spatial Rx parameter}
이때 QCL type의 종류는 위 네 가지 종류에 한정되는 것은 아니나 설명의 요지를 흐리지 않기 위하여 모든 가능한 조합들을 나열하지는 않는다.
상기 QCL-TypeA는 target 안테나 포트의 대역폭 및 전송 구간이 reference 안테나 포트 대비 모두 충분하여 (즉 주파수 축 및 시간 축 모두에서 target 안테나 포트의 샘플 수 및 전송 대역/시간이 reference 안테나 포트의 샘플 수 및 전송 대역/시간보다 많은 경우) 주파수 및 시간 축에서 측정 가능한 모든 통계적 특성들을 참조 가능한 경우에 사용되는 QCL type이다.
QCL-TypeB는 target 안테나 포트의 대역폭이 주파수 축에서 측정 가능한 통계적 특성들, 즉 Doppler shift, Doppler spread들을 측정하기에 충분한 경우에 사용되는 QCL type이다.
QCL-TypeC는 target 안테나 포트의 대역폭 및 전송 구간이 second-order statistics, 즉 Doppler spread 및 delay spread들을 측정하기에는 불충분하여 first-order statistics, 즉 Doppler shift, average delay만을 참조 가능한 경우에 사용되는 QCL type이다.
QCL-TypeD는 reference 안테나 포트를 수신할 때 사용한 공간 수신 필터 값 들을 target 안테나 포트 수신 시 사용할 수 있을 때 설정되는 QCL type이다.
한편, 기지국은 아래와 같은 TCI state설정을 통하여 최대 두 개의 QCL 설정을 하나의 target 안테나 포트에 설정 혹은 지시하는 것이 가능하다.
Figure PCTKR2020015658-appb-img-000012
하나의 TCI state 설정에 포함되는 두 개의 QCL 설정 중 첫 번째 QCL 설정은 QCL-TypeA, QCL-TypeB, QCL-TypeC 중 하나로 설정될 수 있다. 이때 설정 가능한 QCL type은 target 안테나 포트 및 reference 안테나 포트의 종류에 따라 특정되며 아래 상세히 설명한다. 또한 상기 하나의 TCI state 설정에 포함되는 두 개의 QCL 설정 중 두 번째 QCL 설정은 QCL-TypeD로 설정될 수 있으며 경우에 따라 생략되는 것이 가능하다. 다만, 이는 본 개시의 일 실시예일 뿐이며, 상기 첫 번째 QCL 설정 및 두 번째 QCL 설정은 경우에 따라 QCL-type A 내지 QCL-type D 중 적어도 하나로 설정될 수 있다.
아래 표 4-1 내지 표 4-5에서는 target 안테나 포트 종류에 따른 유효한 TCI state 설정들을 나타내는 표 들이다.
표 4-1은 target 안테나 포트가 CSI-RS for tracking (TRS) 일 경우 유효한 TCI state 설정을 나타낸다. 상기 TRS는 CSI-RS 중 repetition 파라미터가 설정되지 않고 trs-Info가 true로 설정된 NZP CSI-RS를 의미한다. 표 4-1에서 3번 설정의 경우 aperiodic TRS를 위하여 사용될 수 있다.
[표 4-1] Target 안테나 포트가 CSI-RS for tracking (TRS) 일 경우 유효한 TCI state 설정
Figure PCTKR2020015658-appb-img-000013
표 4-2는 target 안테나 포트가 CSI-RS for CSI 일 경우 유효한 TCI state 설정을 나타낸다. 상기 CSI-RS for CSI는 CSI-RS 중 repetition 파라미터가 설정되지 않고 trs-Info 또한 true로 설정되지 않은 NZP CSI-RS를 의미한다.
[표 4-2] Target 안테나 포트가 CSI-RS for CSI일 경우 유효한 TCI state 설정
Figure PCTKR2020015658-appb-img-000014
표 4-3은 target 안테나 포트가 CSI-RS for beam management (BM, CSI-RS for L1 RSRP reporting과 동일한 의미)일 경우 유효한 TCI state 설정을 나타낸다. 상기 CSI-RS for BM은 CSI-RS 중 repetition 파라미터가 설정되어 On 또는 Off의 값을 가지며, trs-Info가 true로 설정되지 않은 NZP CSI-RS를 의미한다.
[표 4-3] Target 안테나 포트가 CSI-RS for BM (for L1 RSRP reporting)일 경우 유효한 TCI state 설정
Figure PCTKR2020015658-appb-img-000015
표 4-4는 target 안테나 포트가 PDCCH DMRS일 경우 유효한 TCI state 설정을 나타낸다.
[표 4-4] Target 안테나 포트가 PDCCH DMRS일 경우 유효한 TCI state 설정
Figure PCTKR2020015658-appb-img-000016
표 4-5는 target 안테나 포트가 PDSCH DMRS일 경우 유효한 TCI state 설정을 나타낸다.
[표 4-5] Target 안테나 포트가 PDSCH DMRS일 경우 유효한 TCI state 설정
Figure PCTKR2020015658-appb-img-000017
상기 표 4-1 내지 4-5에 의한 대표적인 QCL 설정 방법은 각 단계 별 target 안테나 포트 및 reference 안테나 포트를 “SSB”-> “TRS”-> “CSI-RS for CSI, 또는 CSI-RS for BM, 또는 PDCCH DMRS, 또는 PDSCH DMRS”와 같이 설정하여 운용하는 것이다. 이를 통하여 SSB 및 TRS로부터 측정할 수 있는 통계적 특성들을 각 안테나 포트들까지 연계시켜 단말의 수신 동작을 돕는 것이 가능하다.
아래에서는 NR에서 데이터 전송을 위한 시간 및 주파수 자원 할당 방법들이 설명된다.
NR에서는 BWP 지시(indication)를 통한 주파수 축 자원 후보 할당에 더하여 다음과 같은 세부적인 주파수 축 자원 할당 방법(frequency domain resource allocation, FD-RA)들이 제공될 수 있다.
도 6은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH 주파수 축 자원 할당 예제를 도시한 도면이다.
도 6은 NR에서 상위 레이어를 통하여 설정 가능한 type 0(6-00), type 1(6-05), 그리고 동적 변경(dynamic switch)(6-10)의 세 가지 주파수 축 자원 할당 방법들을 도시하는 도면이다.
도 6을 참조하면, 만약 상위 레이어 시그널링을 통하여 단말이 resource type 0 만을 사용하도록 설정된 경우(6-00), 해당 단말에게 PDSCH를 할당하는 일부 하향링크 제어 정보(downlink control information, DCI)는 NRBG개의 비트로 구성되는 비트맵을 가진다. 이를 위한 조건은 차후 다시 설명한다. 이때 NRBG는 BWP 지시자(indicator)가 할당하는 BWP 크기(size) 및 상위 레이어 파라미터 rbg-Size에 따라 아래 [표 5]와 같이 결정되는 RBG(resource block group)의 수를 의미하며, 비트맵에 의하여 1로 표시되는 RBG에 데이터가 전송되게 된다.
[표 5]
Figure PCTKR2020015658-appb-img-000018
만약 상위 레이어 시그널링을 통하여 단말이 resource type 1 만을 사용하도록 설정된 경우(6-05), 해당 단말에게 PDSCH를 할당하는 일부 DCI는
Figure PCTKR2020015658-appb-img-000019
개의 비트들로 구성되는 주파수 축 자원 할당 정보를 가진다. 이를 위한 조건은 차후 다시 설명된다. 기지국은 이를 통하여 starting VRB(6-20)와 이로부터 연속적으로 할당되는 주파수 축 자원의 길이(6-25)를 설정할 수 있다.
만약 상위 레이어 시그널링을 통하여 단말이 resource type 0과 resource type 1를 모두 사용하도록 설정된 경우(6-10), 해당 단말에게 PDSCH를 할당하는 일부 DCI는 resource type 0을 설정하기 위한 payload(6-15)와 resource type 1을 설정하기 위한 payload(6-20, 6-25)중 큰 값(6-35)의 비트들로 구성되는 주파수 축 자원 할당 정보를 가진다. 이를 위한 조건은 차후 다시 설명된다. 이때, DCI 내 주파수 축 자원 할당 정보의 제일 앞 부분(MSB)에 한 비트가 추가될 수 있고, 해당 비트가 0일 경우 resource type 0이 사용됨을 지시되고, 1일 경우 resource type 1이 사용됨을 지시될 수 있다.
도 7은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH(physical downlink shared channel) 시간 축 자원 할당의 예시를 도시한 도면이다.
도 7은 NR의 시간 축 자원 할당 일례를 도시하는 도면이다. 도 7을 참조하면, 기지국은 상위 레이어를 이용하여 설정되는 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격(subcarrier spacing,SCS)(
Figure PCTKR2020015658-appb-img-000020
,
Figure PCTKR2020015658-appb-img-000021
), 스케줄링 오프셋(scheduling offset)(K 0) 값, 그리고 DCI를 통하여 동적으로 지시되는 한 slot 내 OFDM symbol 시작 위치(7-00)와 길이(7-05)에 따라 PDSCH 자원의 시간 축 위치를 지시할 수 있다.
도 8은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격에 따른 시간 축 자원 할당 예제를 도시하는 도면이다.
도 8을 참조하면, 데이터 채널 및 제어 채널의 서브캐리어 간격이 같은 경우(8-00,
Figure PCTKR2020015658-appb-img-000022
=
Figure PCTKR2020015658-appb-img-000023
), 데이터와 제어를 위한 슬롯 번호(slot number)가 같으므로, 기지국 및 단말은 미리 정해진 슬롯 오프셋(slot offset) K 0에 맞추어, 스케줄링 오프셋(scheduling offset)이 발생하는 것을 알 수 있다. 반면, 데이터 채널 및 제어 채널의 서브캐리어 간격이 다른 경우(8-05,
Figure PCTKR2020015658-appb-img-000024
Figure PCTKR2020015658-appb-img-000025
), 데이터와 제어를 위한 슬롯 번호(slot number)가 다르므로, 기지국 및 단말은 PDCCH의 서브캐리어 간격을 기준으로 하여, 미리 정해진 슬롯 오프셋(slot offset) K 0에 맞추어 스케줄링 오프셋(scheduling offset)이 발생하는 것을 알 수 있다.
NR에서는 단말의 효율적인 제어 채널 수신을 위하여 목적에 따라 아래 [표 6]과 같이 다양한 형태의 DCI format을 제공한다.
[표 6]
Figure PCTKR2020015658-appb-img-000026
예를 들어, 기지국은 하나의 셀(cell)에 PDSCH를 할당(scheduling)하기 위하여 DCI format 0_0 혹은 DCI format 0_1을 사용할 수 있다.
DCI format 0_1은, C-RNTI(cell radio network temporary identifier) 혹은 CS-RNTI(configured scheduling RNTI) 혹은 new-RNTI에 의하여 스크램블링 된 CRC와 함께 전송되는 경우, 적어도 다음과 같은 정보들을 포함한다:
- Identifier for DCI formats(1 bits): DCI format 지시자로 항상 1로 설정
- frequency domain resource assignment(N RBG bits 혹은
Figure PCTKR2020015658-appb-img-000027
bits): 주파수 축 자원 할당을 지시하며, DCI format 1_0이 UE specific search space에서 모니터 되는 경우
Figure PCTKR2020015658-appb-img-000028
는 active DL BWP의 크기이며, 이외의 경우
Figure PCTKR2020015658-appb-img-000029
는 initial DL BWP의 크기이다. N RBG 는 resource block group의 숫자이다. 상세 방법은 상기 주파수 축 자원 할당을 참조한다.
- time domain resource assignment(0~4 bits): 상기 설명에 따라 시간 축 자원 할당을 지시한다.
- VRB-to-PRB mapping(1 bit): 0인 경우 Non-interleaved, 1인 경우 interleaved VRP-to-PRB mapping을 지시한다.
- Modulation and coding scheme(5 bits): PDSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
- New data indicator(1 bit): Toggle 여부에 따라 PDSCH가 초기 전송인지, 재전송 인지를 지시한다.
- Redundancy version(2 bits): PDSCH 전송에 사용된 redundancy version을 지시한다.
- HARQ process number(4 bits): PDSCH 전송에 사용된 HARQ process number를 지시한다.
- Downlink assignment index(2 bits): DAI 지시자
- TPC command for scheduled PUCCH(2 bits): PUCCH power control 지시자
- PUCCH resource indicator(3 bits): PUCCH 자원 지시자로, 상위레이어로 설정된 8가지 자원 중 하나를 지시한다.
- PDSCH-to-HARQ_feedback timing indicator(3 bits): HARQ feedback timing 지시자로, 상위레이어로 설정된 8가지 feedback timing offset 중 하나를 지시한다.
DCI format 1_1은, C-RNTI(cell radio network temporary identifier) 혹은 CS-RNTI(configured scheduling RNTI) 혹은 new-RNTI에 의하여 스크램블링 된 CRC와 함께 전송되는 경우, 적어도 다음과 같은 정보들을 포함한다:
- Identifier for DCI formats(1 bit): DCI format 지시자로 항상 1로 설정
- Carrier indicator(0 또는 3 bits): 해당 DCI가 할당하는 PDSCH가 전송되는 CC(혹은 cell)을 지시한다.
- Bandwidth part indicator(0 또는 1 또는 2 bits): 해당 DCI가 할당하는 PDSCH가 전송되는 BWP을 지시한다.
- Frequency domain resource assignment(상기 주파수 축 자원 할당에 따라 payload 결정): 주파수 축 자원 할당을 지시하며,
Figure PCTKR2020015658-appb-img-000030
는 active DL BWP의 크기이다. 상세 방법은 상기 주파수 축 자원 할당을 참조한다.
- Time domain resource assignment(0 ~ 4 bits): 상기 설명에 따라 시간 축 자원 할당을 지시한다.
- VRB-to-PRB mapping(0 or 1 bit): 0인 경우 Non-interleaved, 1인 경우 interleaved VRP-to-PRB mapping을 지시한다. 주파수 축 자원 할당이 resource type 0으로 설정된 경우 0 bit 이다.
- PRB bundling size indicator(0 or 1 bit): 상위 레이어 파라미터 prb-BundlingType이 설정되지 않거나 혹은 'static'으로 설정된 경우 0 bit 이며, 'dynamic'으로 설정된 경우 1 bit 이다.
- Rate matching indicator(0 or 1 or 2 bits): rate matching pattern을 지시한다.
- ZP CSI-RS trigger(0 or 1 or 2 bits): aperiodic ZP CSI-RS를 트리거하는 지시자.
- For transport block 1:
- Modulation and coding scheme(5 bits): PDSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
- New data indicator(1 bit): Toggle 여부에 따라 PDSCH가 초기 전송인지, 재전송 인지를 지시한다.
- Redundancy version(2 bits): PDSCH 전송에 사용된 redundancy version을 지시한다.
- For transport block 2:
- Modulation and coding scheme(5 bits): PDSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
- New data indicator(1 bit): Toggle 여부에 따라 PDSCH가 초기 전송인지, 재전송 인지를 지시한다.
- Redundancy version(2 bits): PDSCH 전송에 사용된 redundancy version을 지시한다.
- HARQ process number(4 bits): PDSCH 전송에 사용된 HARQ process number를 지시한다.
- Downlink assignment index(0 or 2 or 4 bits): DAI 지시자
- TPC command for scheduled PUCCH(2 bits): PUCCH power control 지시자
- PUCCH resource indicator(3 bits): PUCCH 자원 지시자로, 상위 레이어로 설정된 8가지 자원 중 하나를 지시한다.
- PDSCH-to-HARQ_feedback timing indicator(3 bits): HARQ feedback timing 지시자로, 상위레이어로 설정된 8가지 feedback timing offset 중 하나를 지시한다.
- Antenna port(4 or 5 or 6 bits): DMRS port 및 CDM group without data를 지시한다.
- Transmission configuration indication(0 or 3 bits): TCI 지시자.
- SRS request(2 or 3 bits): SRS 전송 요청 지시자
- CBG transmission information(0 or 2 or 4 or 6 or 8 bits): 할당된 PDSCH 내 code block group들에 대한 전송 여부를 알려주는 지시자. 0은 해당 CBG가 전송되지 않음을 의미하고, 1은 전송 됨을 의미한다.
- CBG flushing out information(0 or 1 bit): 이전 CBG들의 오염 여부를 알려주는 지시자로, 0이면 오염되었을 수 있음을 의미하고, 1이면 재전송 수신 시 사용할 수 있음(combinable)을 의미한다.
- DMRS sequence initialization(0 or 1 bit): DMRS scrambling ID 선택 지시자
단말이 해당 cell에서 slot 당 수신 가능한 서로 다른 크기의 DCI 수는 최대 4이다. 단말이 해당 셀에서 slot 당 수신 가능한 C-RNTI로 스크램블링 된 서로 다른 크기의 DCI 수는 최대 3이다.
여기서 antenna port indication을 다음의 [표 7] 내지 [표 10]을 통해 지시할 수 있다.
[표 7] Antenna port(s) (1000 + DMRS port), dmrs-Type=1, maxLength=1
Figure PCTKR2020015658-appb-img-000031
[표 8] Antenna port(s) (1000 + DMRS port), dmrs-Type=1, maxLength=2
Figure PCTKR2020015658-appb-img-000032
[표 9] Antenna port(s) (1000 + DMRS port), dmrs-Type=2, maxLength=1
Figure PCTKR2020015658-appb-img-000033
[표 10] Antenna port(s) (1000 + DMRS port), dmrs-Type=2, maxLength=2
Figure PCTKR2020015658-appb-img-000034
Figure PCTKR2020015658-appb-img-000035
[표 7]은 dmrs-type이 1로, maxLength가 1로 지시된 경우 사용하는 표이다. [표 8]은 dmrs-Type=1, maxLength=2로 지시된 경우 사용하는 표이다. dmrs-type=2, maxLength=1인 경우는 [표 9]를 사용하고, drms-tpye이 2이고 maxLength가 2인 경우에는 [표 10]을 사용하여 사용하는 DMRS의 port를 지시한다. [표 7] 내지 [표 10]에서 number of DMRS CDM group(s) without data가 지시하는 숫자 1, 2, 3은 각각 CDMR group {0}, {0, 1}, {0, 1, 2}를 의미힌다. DMRS port(s)는 사용하는 port의 index를 순서대로 놓은 것이다. Antenna port는 DMRS port + 1000으로 지시한다. DMRS의 CDM group은 [표 11]과 [표 12]와 같이 DMRS 시퀀스를 발생하는 방법과 antenna port와 연결되어 있다. [표 11]은 dmrs-type=1를 사용하는 경우의 파라미터이고, [표 12]는 dmrs-type=2를 상용하는 경우의 파라미터이다.
[표 11] Parameters for PDSCH DMRS dmrs-type=1.
Figure PCTKR2020015658-appb-img-000036
[표 12] Parameters for PDSCH DMRS dmrs-type=2.
Figure PCTKR2020015658-appb-img-000037
각 파라미터에 따른 DMRS의 시퀀스는 다음 [수학식 1]에 의해서 결정된다.
[수학식 1]
Figure PCTKR2020015658-appb-img-000038
[표 7] 및 [표 8]에서 한 개의 codeword만 enable 된 경우 2, 9, 10, 11, 30번 행은 단일 사용자 MIMO만을 위하여 사용된다. 즉, 이 경우 단말은 다른 단말이 co-schedule 되었다고 가정하지 않고 다중사용자 간섭을 제거하거나(cancelation), 널링하거나(nulling), 혹은 백화(whitening) 하는 등 다중 사용자 MIMO 수신 동작을 수행하지 않을 수 있다.
[표 9] 및 [표 10]에서 한 개의 codeword만 enable 된 경우 2, 10, 23번 행은 단일 사용자 MIMO만을 위하여 사용된다. 즉 이 경우 단말은 다른 단말이 co-schedule 되었다고 가정하지 않고 다중사용자 간섭을 제거하거나(cancelation), 널링하거나(nulling), 혹은 백화(whitening) 하는 등 다중 사용자 MIMO 수신 동작을 수행하지 않을 수 있다.
도 9는 본 발명의 일 실시 예에 따른 협력 통신 안테나 포트 구성 예시를 도시한 도면이다.
도 9을 참조하면, 합동 전송(joint transmission: JT) 기법과 상황에 따른 TRP별 무선자원 할당에 대한 예시가 도시되어 있다.
도 9에서 9-00은 각 셀, TRP 및/또는 빔 간 코히런트(coherent) 프리코딩을 지원하는 코히런트 합동 전송(coherent joint transmission: C-JT)을 도시하는 도면이다.
C-JT에서는 TRP(transmission reception point) A(9-05)과 TRP B(9-10)에서 서로 같은 데이터(PDSCH)를 전송하며 다수의 TRP에서 joint 프리코딩을 수행한다. 이는 TRP A(9-05)과 TRP B(9-10)에서 같은 PDSCH 전송을 위한 동일한 DMRS 포트들(예를 들어 두 TRP 모두에서 DMRS port A, B)을 전송하게 됨을 의미할 수 있다. 이 경우 단말은 DMRS port A, B를 통해 전송되는 DMRS 에 기반하여 복조되는 하나의 PDSCH를 수신하기 위한 DCI 정보 하나를 수신할 수 있다.
도 9에서 9-20는 각 셀, TRP 및/또는 빔 간 비-코히런트 프리코딩을 지원하는 비-코히런트 합동 전송(NC-JT)을 도시하는 도면이다. NC-JT의 경우 상기 각 셀, TRP 및/또는 빔에서 서로 다른 PDSCH를 전송하며 각 PDSCH에는 개별 프리코딩이 적용될 수 있다. 이는 TRP A(9-25)과 TRP B(9-30)가 서로 다른 PDSCH 전송을 위한 서로 다른 DMRS 포트들(예를 들어 TRP A에서는 DMRS port A, TRP B에서는 DMRS port B)을 전송하게 됨을 의미할 수 있다. 이 경우 단말은 DMRS port A를 통해 전송되는 DMRS에 기반하여 복조되는 PDSCH A와, 다른 DMRS port B를 통해 전송되는 DMRS에 기반하여 복조되는 PDSCH B를 수신하기 위한 두 종류의 DCI 정보를 수신할 수 있다.
한 단말에게 동시에 두 개 이상의 전송지점에서 데이터를 제공하는 NC-JT를 지원하기 위하여, 단일 PDCCH를 통해 두 개(이상)의 서로 다른 전송지점에서 전송되는 PDSCH들을 할당하거나, 다중 PDCCH를 통해 두 개 이상의 서로 다른 전송지점에서 전송되는 PDSCH들을 할당하는 것이 필요하다. 단말은 L1/L2/L3 시그널링을 기반으로 각 기준신호 혹은 채널 간 QCL(quasi co-location) 연결 관계를 획득하고 이를 통하여 각 기준신호 혹은 채널의 large scale parameter들을 효율적으로 추정하는 것이 가능하다. 만약 어떤 기준신호 혹은 채널의 전송지점이 다를 경우 상기 large scale parameter들은 서로 공유되기 어렵기 때문에 협력 전송을 수행할 때 기지국은 단말에게 동시에 두 개 이상의 전송지점에 대한 quasi co-location 정보를 두 개 이상의 TCI state를 통하여 알려줄 필요가 있다. 만약 다중 PDCCH를 통해 비-코히런트 협력 전송이 지원되는 경우, 즉 두 개 이상의 PDCCH가 두 개 이상의 PDSCH를 동일 시점에 같은 서빙 셀 및 같은 대역폭 부분에 할당하는 경우, 상기 두 개 이상의 TCI state들은 각 PDCCH를 통하여 각 PDSCH 내지 DMRS port들에 각각 할당될 수 있다. 반면 단일 PDCCH를 통해 비-코히런트 협력 전송이 지원되는 경우, 즉 하나의 PDCCH가 두 개 이상의 PDSCH를 동일 시점에 같은 서빙 셀 및 같은 대역폭 부분에 할당하는 경우, 상기 두 개 이상의 TCI state들은 하나의 PDCCH를 통하여 각 PDSCH 내지 DMRS port들에 할당되어야 한다.
만약 특정 시점에서 단말에게 할당된 DMRS port들이 전송지점 A에서 전송되는 DMRS port group A와 전송지점 B에서 전송되는 DMRS port group B로 나뉜다고 가정하면, 상기 두 개 이상의 TCI state는 각기 DMRS port group에 연결되어 각 group 별 서로 다른 QCL 가정을 바탕으로 채널을 추정할 수 있게 한다. 한편 서로 다른 DMRS 포트들은 채널 측정 정확도를 높임과 동시에 전송 부담을 경감시키기 위하여 CDM(code division multiplexing) 되거나 FDM(frequency division multiplexing) 되거나 혹은 TDM(time domain multiplexing) 되는 것이 가능하다. 이 중 CDM 되는 DMRS port들을 CDM group으로 통칭할 때, CDM group 내 DMRS port 들은 각 port 별 채널 특성이 유사한 경우에 code 기반의 멀티플렉싱이 잘 동작 하므로(즉, 각 port 별 채널 특성이 유사한 경우 OCC (orthogonal cover code)에 의한 구분이 잘 되므로) 같은 CDM group에 존재하는 DMRS port들이 서로 다른 TCI state를 가지지 않도록 하는 것이 중요할 수 있다. 본 발명에서는 상기 특성을 만족시키기 위한 DMRS port 및 CDM group without data을 단말에게 지시하는 방법을 제공한다.
한편, 본 발명에서는 설명의 편의를 위해 PDCCH를 통해 제어 정보를 전송하는 과정을 PDCCH를 전송한다고 표현할 수 있으며, PDSCH를 통해 데이터를 전송하는 과정을 PDSCH를 전송한다고 표현할 수 있다.
이하 설명의 편의를 위하여 상기 [표 7] 내지 [표 12]를 "제1 antenna port indication(또는, 종래의 antenna port indication)"이라 지칭하고 [표 7] 내지 [표 12]의 코드 포인트 중 일부 혹은 전부를 수정한 표를 "제2 antenna port indication(신규 antenna port indication)"이라 지칭한다. 또한, 상기 DMRS port 및 CDM group without data 할당을 DMRS 할당으로 명명하도록 한다.
단말은 DMRS 포트를 지시하는 테이블을 통해서 PDSCH 전송 시 사용되는 안테나 포트의 개수를 판단할 수 있다. Rel-15 기반의 안테나 포트 지시 방법은 DCI format 1_1의 경우, DCI 내 안테나 포트 필드에서 지시되는 4 내지 6 bits 길이의 인덱스에 기반할 수 있고, 이에 따라 안테나 포트가 결정될 수 있다. 단말은 기지국이 전송하는 지시자(인덱스)에 기반하여 PDSCH를 위한 DMRS 포트의 개수 및 인덱스, front-load symbol의 개수, CDM 그룹의 개수 정보를 확인할 수 있다. 또한, DCI 1_1 내 transmission configuration indication (TCI) 필드의 정보에 기반하여 다이나믹(dynamic)한 빔포밍 방향의 변경을 판단할 수 있다. 만일 상위 레이어에서 tci-PresentDCI가 'enabled'로 설정되면, 단말은 3bits 정보의 TCI 필드를 확인하여 DL BWP 또는 스케줄된 component carrier에 활성화된(activated) TCI states와 DL-RS에 연계된 빔의 방향을 판단할 수 있다. 반대로, tci-PresentDCI가 disable 되었다면, 빔포밍의 빔의 방향 변경이 없는 것으로 간주할 수 있다.
본 발명의 다양한 실시 예에서는 단일 PDCCH를 통해 두 개(이상)의 서로 다른 전송지점에서 전송되는 PDSCH들을 할당하는 시나리오를 고려한다. Rel-15 단말은 단일 PDCCH 내의 TCI 정보와 안테나 포트 정보를 기반으로 QCLed된 단일 또는 복수 레이어(layer)를 포함하는 PDSCH 스트림을 수신한다. 반면에 rel-16 단말은 Multi-TRP 또는 복수의 기지국에서 송신되는 데이터를 C-JT/NC-JT 형태로 수신할 수 있다. 상기 C-JT/NC-JT를 지원하기 위해서 rel-16 단말은 기본적인 상위 레이어 설정이 필요하다. 구체적으로, 상위 레이어 설정을 위해 단말은 C-JT / NC-JT 관련 파라미터 또는 세팅 값 등을 수신하고, 각각 설정하는 과정이 필요하다.
[제 1 실시 예]
본 개시에서는 C-JT/NC-JT를 지원하는 기지국과 단말에 대해 C-JT/NC-JT 전송 시그널링을 송수신 목적의 별도 DMRS port table을 제안한다. 상기 제안하는 DMRS port table은 DCI format 1_1에 기반하여 지시하는 안테나 포트 필드에서 지시되는 DMRS port table과 별도의 테이블로 구분될 수 있다. 상기 rel-15에서 제안된 DMRS port table과 구분하기 위한 방법으로 기지국과 단말은 RRC 설정에서 NC-JT transmission 지원여부에 대한 정보를 사전에 설정할 수 있다. 즉, RRC 설정을 통해 C-JT/NC-JT transmission = enabled/disabled 과 같은 필드가 설정될 수 있으며, 상기 필드에 기반하여 C-JT/NC-JT 지원 여부를 확인할 수 있다.
상위 레이어를 통해 C-JT/NC-JT transmission = enabled로 설정되는 경우, DCI format 1_1 내의 기존의 안테나 포트 필드를 사용하여 단말이 사용해야 하는 필드를 지시할 수 있다. 또는 별도의 DCI format 1_1 내 안테나 포트 필드를 제외한 별도의 필드를 사용하여 NC-JT 전송에 세부적인 DMRS 포트 번호, 데이터를 제외한 DMRS CDM group(s) 의 개수, front-loaded 심볼의 (최대) 개수, DMRS-type 중 적어도 하나의 정보를 지시할 수 있다.
[표 12-1] 내지 [표 12-4]는 상기 [표 11]에서 설명한 CDM group을 기준으로 동일한 TRP에서 전송되는 DMRS 포트들은 같은 CDM group으로 전송되도록 DMRS port를 제안한 것이다. [표 12-1] 내지 [표 12-4]는 세미콜론(;)을 기준으로 좌측과 우측이 다른 TRP 전송, 다른 CDM group 매핑으로 구분되는 의미로 표시하였으나 실시 예에 따라 생략될 수도 있다. 또한, 세미콜론(;) 을 기준으로 테이블에 포함된 값들의 순서가 변경될 수 있다. 또한, 테이블에서 설명되고 있는 DMRS ports는 제 1 TRP, 제 2 TRP 각각 최대 2개의 DMRS 포트를 지원하는 경우를 보여준다. 또한 [표 7] 내지 [표 10]에서 설명한 기본적인 DMRS 포트, 타입 및 frontloaded 심볼의 개수 등의 개념은 동일하게 적용될 수 있다.
[표 12-1]과 같이 C-JT/NC-JT 목적의 DMRS port table은 rel-15에서 미지원 되던 포트와 구분하여 다른 형태의 포트를 지원할 수 있다.
예를 들어, 기지국이 entry (또는 value라 표현할 수도 있다) 0을 단말에게 지시하면, 단말은 제1 TRP, 제2 TRP가 DMRS 포트 0, DMRS 포트 2를 통해 DMRS를 전송하는 것으로 판단할 수 있다. 또한, 각 포트의 수가 1개인 것을 확인한 단말은 제1 TRP, 제2 TRP로부터 single layer transmission이 수행되는 것으로 판단할 수 있다.
기지국이 entry 1을 단말에게 지시하면, 단말은 제1 TRP, 제2 TRP가 DMRS 포트 1, DMRS 포트 3를 통해 DMRS를 전송하는 것으로 판단할 수 있다. 또한, 각 포트의 수가 1개인 것을 확인한 단말은 제1 TRP, 제2 TRP로부터 single layer transmission이 수행되는 것으로 판단할 수 있다. 상기 entry 1은 entry 0과 포트 넘버는 다르지만, 기능적으로 유사하여 entry 0과 중복으로 간주하여 상기 표에서 생략될 수 있다.
기지국이 entry 2를 단말에게 지시하면, 단말은 제1 TRP가 DMRS 포트 0, 1을 통해 DMRS를 전송하고, 제2 TRP가 DMRS 포트 2를 통해 DMRS를 전송하는 것으로 판단할 수 있다. 또한, 각 포트의 수가 2개, 1개인 것을 확인한 단말은 제1 TRP에서는 2 layer transmission, 제2 TRP에서는 1 layer transmission이 수행되는 것으로 판단할 수 있다.
기지국이 entry 3를 단말에게 지시하면, 단말은 기지국이 제1 TRP가 DMRS 포트 0을 통해 DMRS를 전송하고, 나머지 1개의 제2 TRP가 DMRS 포트 2, 3을 통해 DMRS를 전송하는 것으로 판단할 수 있다. 또한, 각 포트의 수가 1개, 2개인 것을 확인한 단말은 제1 TRP에서는 single layer transmission, 나머지 제2 TRP에서는 2 layers transmission이 수행되는 것으로 판단할 수 있다.
entry 4와 5를 위한 기지국과 단말의 동작은 상기 entry 2와 3으로부터 쉽게 이해될 수 있다. 상기 entry 4 및 entry 5는 entry 2 및 entry 3과 포트 넘버는 다르지만, 기능적으로 유사하므로 상기 표에서 생략될 수 있다.
기지국이 entry 6을 단말에게 지시하면, 단말은 제1 TRP이 DMRS 포트 0, 1을 통해 DMRS를 전송하고 나머지 제2 TRP이 DMRS 포트 2, 3을 통해 DMRS를 통해 전송하는 것으로 판단할 수 있다. 또한, 각각의 포트의 수가 2개씩인 것을 확인한 단말은 제1 TRP에서는 2 layer transmission, 나머지 제2 TRP에서는 2 layer transmission이 수행되는 것으로 판단할 수 있다.
[표 12-1]은 기지국과 단말이 통신하는 다양한 경우들 중에서 실시 예들을 entry 형식으로 나열한 것으로 7개의 entry 전부 또는 일부가 실제 시스템에서 적용될 수 있다. 또한, 상기 표 [12-1]에 포함된 entry 중 적어도 하나의 entry로 구성된 다른 표가 사용될 수도 있다. 또한, [표 12-1]은 기지국이 단말에게 하나의 codeword를 전송하는 경우를 설명하였는데, 만일 2개 이상의 codeword를 전송하는 경우에도 유사하게 적용될 수 있다.
[표 12-2]는 [표 12-1]에서 설명한 동일한 DMRS type 1에서 상이한 maxLength = 2 인 경우를 설명한다. [표 7] 내지 [표 8]을 참고하면, C-JT/NC-JT를 위한 DMRS 포트 설정은 DMRS 포트 0 내지 3까지는 maxLength = 1과 동일한 형태로 매핑 될 수 있다.
[표 12-3]은 [표 12-1]에서 설명한 DMRS type 1과 다른 DMRS type 2의 C-JT/NC-JT 전송을 위한 DMRS port table이다. [표 12-3]은 최대 12개 DMRS 포트를 지원하고 이는 MU-MIMO 형태에 적합한 구조이다.
예를 들어, 기지국이 entry 1을 단말에게 지시하면 단말은 제1 TRP, 제2 TRP가 각각 DMRS 포트 0, DMRS 포트 2를 통해 DMRS를 전송하는 것으로 판단할 수 있다. 또한, 각 포트의 수가 1개인 것을 확인한 단말은 제1 TRP, 제2 TRP로부터 각각 single layer transmission이 수행되는 것으로 판단할 수 있다. [표 12-3]의 entry는 DMRS CDM group 의 수가 2와 3인 경우를 한번에 나타낸 것으로 상기 2와 3을 구분된 entry에 나타내는 것을 배제하지 않는다. 상기 실시 예들은 entry 형식으로 나열한 것으로 14개의 entry 일부 또는 전부가 실제 시스템에서 적용될 수 있다. 예를 들어, 상기 entry 일부는 entry 0, 2, 3, 6, 7, 9, 10, 13만으로 테이블이 결정될 수 있다. 또한, 상기 실시 예에서 entry 의 순서는 일 실시 예일 뿐 본 발명을 한정하는 것은 아니다. 또한, 상기 표는 기지국이 단말에게 하나의 codeword를 전송하는 경우를 설명하였는데, 만일 2개 이상의 codeword를 전송하는 경우에도 유사하게 적용될 수 있다.
[표 12-4]는 [표 12-3]에서 설명한 동일한 DMRS type 2에서 상이한 maxLength = 2 인 경우를 설명한다. [표 7] 내지 [표 8]을 참고하면, C-JT/NC-JT를 위한 DMRS 포트 설정은 총 2개 내지 4개의 DMRS 포트가 할당되며, 각 CDM 그룹마다 최소 하나의 DMRS 포트가 할당된다. Front-loaded symbol 수에 따라, front-loaded symbol 수가 하나인 경우 DMRS 포트 0-3 내에서 할당하며([표 12-3]과 동일하여 생략), front-loaded symbol 수가 둘인 경우 DMRS 포트 0-7 내에서 할당한다. 총 2개의 DMRS 포트가 사용되는 경우, 각 CDM 그룹의 frequency domain OCC(orthogonal cover code)는 동일해야 한다.
한편, 각 CDM 그룹의 time domain OCC는 동일할 수도 있고 다를 수도 있다. 예컨대, CDM 그룹 {0,1} 각각에서 동일한 time domain OCC를 사용하는 DMRS port 0과 2가 동시에 사용될 수 있고, 서로 다른 time domain OCC를 사용하는 DMRS port 0과 6도 동시에 사용될 수 있다. 총 3개 이상의 DMRS 포트가 사용되는 경우, 이 때 CDM 그룹 {0,1} 각각에 적용되는 time domain OCC는 동일할 수도 있고 다를 수도 있다. 상기 실시 예들은 entry 형식으로 나열한 것으로 28개의 entry 일부 또는 전부가 실제 시스템에서 적용될 수 있다.
예를 들어, 상기 entry 일부는 entry 0, 2, 3, 6, 7, 9, 10, 13 또는 0, 2, 3, 6, 7, 9, 10, 13, 14, 16, 17, 20, 23, 24, 27만으로 테이블이 결정될 수 있다. 또한, 상기 실시 예에서 entry 의 순서는 일 실시 예일 뿐 본 발명을 한정하는 것은 아니다. 또한, 상기 표는 기지국이 단말에게 하나의 codeword를 전송하는 경우를 설명하였는데, 만일 2개 이상의 codeword를 전송하는 경우에도 유사하게 적용될 수 있다.
[표 12-1] DMRS indication table for antenna port(s) (1000 + DMRS port), dmrs-Type=1, maxLength=1
Figure PCTKR2020015658-appb-img-000039
[표 12-2] DMRS indication table for antenna port(s) (1000 + DMRS port), dmrs-Type=1, maxLength=2
Figure PCTKR2020015658-appb-img-000040
[표 12-3] DMRS indication table for antenna port(s) (1000 + DMRS port), dmrs-Type=2, maxLength=1
Figure PCTKR2020015658-appb-img-000041
[표 12-4] DMRS indication table for antenna port(s) (1000 + DMRS port), dmrs-Type=2, maxLength=2
Figure PCTKR2020015658-appb-img-000042
[제 2 실시 예]
[표 13-1]에서는 상기 C-JT/NC-JT 전송을 위해 기지국이 단말에게 DMRS 포트 지시 방법으로 기존의 rel-15 상에서 reserved bit의 codepoint를 사용하는 방법을 제안한다. [표 7]과 같이 Rel-15 DMRS port table은 0 내지 11까지 필드를 사용하고 있었고, 12-15까지는 reserved bits로 사용되지 않는다. 본 발명의 실시 예에서는 [표 13-1]과 같이 DMRS port table에서 12내지 15의 codepoint 4개를 활용하여 2개의 TRP에서 전송되는 협력 전송을 위한 DMRS 포트를 지시할 수 있다. 이와 같이 동일 reserved bits를 사용하면 기지국과 단말은 별도의 필드를 할당할 필요가 없어 DCI 자원을 보다 효율적으로 사용할 수 있다.
일례로, 기지국이 entry 12를 단말에게 지시하면, 단말은 제1 TRP, 제2 TRP가 DMRS 포트 0, DMRS 포트 2를 통해 DMRS를 전송하는 것으로 판단할 수 있다. 또한, 각 포트의 수가 1개인 것을 확인한 단말은 제1 TRP, 제2 TRP로부터 single layer transmission이 수행되는 것으로 판단할 수 있다.
다른 예로, 기지국이 entry 13를 단말에게 지시하면, 단말은 제1 TRP가 DMRS 포트 0, 1을 통해 DMRS를 전송하고, 제2 TRP가 DMRS 포트 2를 통해 DMRS를 전송하는 것으로 판단할 수 있다. 또한, 각 포트의 수가 2개, 1개인 것을 확인한 단말은 제1 TRP에서는 2 layer transmission, 제2 TRP에서는 1 layer transmission이 수행되는 것으로 판단할 수 있다.
다른 예로, 기지국이 entry 14를 단말에게 지시하면, 단말은 제1 TRP이 DMRS 포트 0을 통해 DMRS를 전송하고, 나머지 1개의 제2 TRP가 DMRS 포트 2, 3을 통해 DMRS를 전송하는 것으로 판단할 수 있다. 또한, 각 포트의 수가 1개, 2개인 것을 확인한 단말은 TRP로부터 제1 TRP에서는 single layer transmission, 나머지 제2 TRP에서는 2 layers transmission이 수행되는 것으로 판단할 수 있다.
다른 예로, 기지국이 entry 15를 단말에게 지시하면, 단말은 제1 TRP이 DMRS 포트 0, 1을 통해 DMRS를 전송하고, 나머지 제2 TRP가 DMRS 포트 2, 3을 통해 DMRS를 전송하는 것으로 판단할 수 있다. 또한, 각각의 포트의 수가 2개씩인 것을 확인한 단말은 제1 TRP에서는 2 layer transmission, 나머지 제2 TRP에서는 2 layer transmission이 수행되는 것으로 판단할 수 있다.
여기서, 상위 레이어에서 C-JT/NC-JT transmission = enabled로 설정되는 단말은 DCI format 1_1내의 기존의 안테나 포트 필드의 잔여 codepoint를 확인하여 다이나믹(dynamic)한 방법으로 C-JT/NC-JT 전송 여부를 판단할 수 있다. 즉, DCI format 1_1 내 안테나 포트 필드가 12 내지 15인 경우 단말은 DCI에서 스케줄링되는 PDSCH의 전송에 사용되는 TRP의 개수, 전송되는 레이어의 개수, 데이터가 없는 DMRS DCM 그룹의 개수, front-loaded 심볼의 개수 등을 확인할 수 있다. 상기 실시 예들은 entry 형식으로 나열한 것으로 4개의 entry 일부 또는 전부가 실제 시스템에서 적용될 수 있다. 상기 실시 예에서 entry 의 순서는 일 실시예일 뿐이며 본 발명을 한정하는 것은 아니다.
일례로, [표 13-2] 내지 [표 13-4]는 [표 12-2] 내지 [표 12-4]에서 별도로 생성된 DMRS 포트 일부를 rel-15 표준에 정의된 [표 8] 내지 [표 10]에 추가한 실시 예로, 가급적 bits size를 줄이기 위해 중복되는 DMRS 포트를 생략하였다. 상기 생략은 하나의 실시 예일 뿐이며, [표 12-1] 내지 [표 12-4]에서 표시된 DMRS 포트 일부 또는 전부를 추가 활용하여 테이블을 완성할 수 있다. 또한, 기지국은 rel-16 NC-JT 단말에게 [표 12-1] 내지 [표 13-4]와 같이 합동 전송을 스케줄링함과 동시에 rel-15 단말에게 single port 전송을 동일 DMRS 포트에 스케줄링하여 하향링크 MU-MIMO 동작이 수행될 수 있다.
다른 예로, [표 13-1] 내지 [표 13-4]의 일부 entries에서 DMRS 포트 인덱스가 동일한 경우, 중복되는 index가 생략될 수 있다. 즉, [표 13-1]에서 NC-JT 전송을 위한 entry 12, 13, 15는 entry 11, 9, 10과 포트 인덱스가 동일하여 생략될 수 있다. 또한, [표 13-2]에서 NC-JT 전송을 위한 entry 31, 32, 34는 entry 11, 9, 10과 포트 인덱스가 동일하여 생략될 수 있다. 또한, [표 13-3]에서 NC-JT 전송을 위한 entry 24, 25, 27, 29, 31은 entry 23, 9, 10, 29, 22와 포트 인덱스가 동일하여 생략될 수 있다. 또한, [표 13-3]에서 NC-JT 전송을 위한 entry 24, 25, 27, 29, 31은 entry 23, 9, 10, 29, 22와 포트 인덱스가 동일하여 생략될 수 있다. 또한, [표 13-4]에서 NC-JT 전송을 위한 entry 58,59,61,63,65는 entry 23, 9, 10, 20, 22와 포트 인덱스가 동일하여 생략될 수 있다. 상기 인덱스가 생략되는 경우는 NC-JT를 위해 적어도 상이한 CDM group이 동일 포트내에서는 전송되지 않는다는 가정, TCI 필드에서 NC-JT 여부를 지시하여 단말이 NC-JT을 위한 DMRS 포트를 구분할 수 있다는 가정, MAC CE 메시지의 수신과 DCI 수신을 기반으로 DMRS 포트를 구분할 수 있다는 가정 중 하나를 기반으로 중복되는 entry가 생략될 수 있다.
[표 13-1] DMRS indication table for antenna port(s) (1000 + DMRS port), dmrs-Type=1, maxLength=1
Figure PCTKR2020015658-appb-img-000043
[표 13-2] DMRS indication table for antenna port(s) (1000 + DMRS port), dmrs-Type=1, maxLength=2
Figure PCTKR2020015658-appb-img-000044
[표 13-3] DMRS indication table for antenna port(s) (1000 + DMRS port), dmrs-Type=2, maxLength=1
Figure PCTKR2020015658-appb-img-000045
[표 13-4] DMRS indication table for antenna port(s) (1000 + DMRS port), dmrs-Type=2, maxLength=2
Figure PCTKR2020015658-appb-img-000046
단말은 Multi-TRP 또는 복수의 기지국에서 송신되는 데이터를 C-JT/NC-JT 형태로 지원할 수 있다. C-JT / NC-JT를 지원하는 단말은 상위 레이어 설정에서 C-JT / NC-JT 관련 파라미터 또는 세팅 값 등을 수신하고, 이를 기반으로 단말의 RRC 파라미터를 세팅할 수 있다. 상위 레이어 설정을 위해 단말은 UE capability 파라미터 tci-StatePDSCH를 활용할 수 있다. 여기서 UE capability 파라미터 tci-StatePDSCH는 PDSCH 전송을 목적으로 TCI states를 정의하는데 TCI states의 개수는 FR1에서 4, 8, 16, 32, 64, 128로, FR2에서는 64, 128로 설정될 수 있고, 설정된 개수 중에 MAC CE 메시지를 통해 DCI의 TCI 필드 3 bits로 지시될 수 있는 최대 8개의 상태가 설정될 수 있었다. 최대값 128은 단말의 capability signaling에 포함되어 있는 tci-StatePDSCH 파라미터 내 maxNumberConfiguredTCIstatesPerCC가 지시하는 값을 의미한다. 이와 같이, 상위 레이어 설정부터 MAC CE 설정까지 일련의 설정 과정은 1개의 TRP에서의 적어도 하나의 PDSCH를 위한 빔포밍 지시 또는 빔포밍 변경 명령에 적용될 수 있다.
본 개시의 다양한 실시예는 기지국이 rel-15, rel-16과 같이 상이한 MAC CE 시그널링(signaling)을 통해 어떻게 단말이 TCI state를 활성화/비활성화 (activation/ deactivation) 할 수 있는지에 대해 설명한다. 특히 DCI format 1_1과 같이 특정 단말을 위한 PDSCH의 할당 시 TCI 필드를 활용하여 빔포밍의 방향 지시 또는 빔포밍의 방향 변경 명령을 dynamic하게 지원하도록 할 수 있다.
빔포밍의 방향 지시 또는 빔포밍의 방향 변경 명령은 DCI format 1_1 내의 TCI states 필드 정보를 확인한 단말이 일정 시간 이후에 하향링크에서 PDSCH 수신 시 적용되는 동작을 의미하는 것으로, 방향은 QCL 된 기지국/TRP의 DL RS에 연계하여 대응되는 빔포밍 설정 방향을 의미한다.
우선, 기지국 또는 단말은 Rel-15 DCI format을 위한 Rel-15 MAC CE를 사용하고, Rel-16 DCI format을 위한 Rel-16 MAC CE를 각각 사용하도록 결정할 수 있다. 이처럼 각각의 rel-15의 MAC CE 구조와 rel-16의 MAC CE 구분되는 방법에 따라 다른 해결 방법들이 제안된다.
도 10a는 본 개시에 따른 UE-specific PDCCH의 TCI state activation을 위한 MAC CE 구조를 도시한 도면이다.
도 10a의 10-00는 Rel-15 기반의 UE-specific PDCCH의 TCI state activation을 위한 MAC CE 구조를 도시한다.
상기 MAC CE 내의 각 필드의 의미 및 각 필드에 설정 가능한 값은 다음과 같다.
Figure PCTKR2020015658-appb-img-000047
또한 도 10a의 10-50는 Rel-15 기반의 UE-specific PDSCH의 TCI state activation/deactivation을 위한 MAC-CE 구조를 도시한다.
상기 MAC CE 내 각 필드의 의미 및 각 필드에 설정 가능한 값은 다음과 같다.
Figure PCTKR2020015658-appb-img-000048
Rel-16의 MAC CE는 rel-15의 MAC CE 메시지를 일부 확장하는 형태로 구성될 수 있다. 본 실시 예는 rel-15 MAC CE에 의해 활성화된 모든 TCI states 들은 rel-16 MAC CE에 의해 활성화된 TCI states 내에 포함되도록 제안될 수 있다.
일례로, 도 10b처럼 기지국은 rel-15의 RRC configured TCI states(10-01)의 전체 TCI states를 TCI #0, TCI #1, TCI #2,..., TCI #M-1와 같이 M개로 결정하고, 이중에서 rel-15의 MAC CE에 의해 선택되는 TCI states의 subset(10-21)으로 TCI #0', TCI #1', TCI #2', ..., TCI #K-1를 선택할 수 있다. 반면, rel-16를 지원하는 기지국과 단말은 rel-16을 지원하는 RRC configured TCI states를 별도로 설정하거나 rel-15에서 설정된 RRC configured TCI states를 그대로 사용할 수도 있다. 이때, rel-16을 지원하는 RRC configured TCI states는 rel-15에서 설정된 RRC configured TCI states의 일부 또는 전부를 포함할 수 있다. 만일 M=128이면 rel-16의 TCI states는 128과 같거나 더 클 수 있다. 만일 기지국 또는 단말이 rel-15에서 지원하는 TCI states의 개수를 rel-16에서 C-JT/NC-JT로 동작하는 기지국/TRP 개수에 비례하여 확장한다면 2개의 TRP로 동작하는 경우, 최대 256개의 TCI states가 설정될 수 있다. 여기서 rel-16 MAC CE는 rel-16 용도의 RRC configured TCI states에서 rel-15의 MAC CE에서 지원하는 TCI states의 일부 또는 전부를 포함할 수 있다. 구체적으로 rel-16 MAC CE가 rel-15의 MAC CE에서 지원하는 TCI states의 전부를 포함하고, rel-16에서 C-JT/NC-JT로 동작하는 기지국/TRP 개수에 비례하여 확장한다면 2개의 TRP로 동작하는 경우, 최대 2K 개의 TCI states가 설정될 수 있다.
표 14는 상기 실시예에서 설명한 tci-StatePDSCH 파라미터의 세부 내용이다. 구체적으로 파라미터 maxNumberConfiguredTCIstatesPerCC의 FR2 mandatory 값은 64에서 128 또는 256으로 수정되거나 또는 C-JT/NC-JT 목적을 위해 별도로 64, 128 또는 256으로 추가될 수 있다.
[표 14]
Figure PCTKR2020015658-appb-img-000049
일례로, Rel-15 및 rel-16을 지원하는 기지국 또는 단말은 MAC CE를 통한 TCI states 설정을 위해 rel-15 및 rel-16에 대한 최대값을 각각 설정하여 설정된 최대값과 같거나 작은 값으로 TCI state의 개수를 설정할 수 있다. 최대값과 같거나 작은 값으로 TCI state의 개수를 설정하는 방법으로 아래의 다양한 실시예가 제안될 수 있다.
Rel-15 및 rel-16의 MAC CE 메시지에 의해 활성화되는 TCI states의 개수는 단말이 보고하는 UE capability 값에 의해 설정될 수 있다. 다른 예에 따라, rel-15 및 rel-16의 MAC CE 메시지에 의해 활성화되는 TCI states의 개수는 기지국이 미리 설정한 값으로 결정될 수 있다. 또 다른 예에 따라, rel-15 및 rel-16의 MAC CE 메시지에 의해 활성화되는 TCI states의 개수는 기지국과 단말이 미리 약속된 값으로 결정될 수 있다.
일례로, 도 10b처럼 기지국 및 단말은 rel-15의 RRC configured TCI states의 전체 TCI states(11-00)를 TCI #0, TCI #1, TCI #2, ..., TCI #M-1와 같이 M개로 결정하고, 그 중에서 rel-15의 MAC CE에 의해 선택되는 TCI states의 subset(11-20)을 선택하여 TCI #0', TCI #1', TCI #2', ..., TCI #K-1를 배열할 수 있다. M개의 TCI states 중에 TCI #0이 선택되면 이를 TCI #0'에 배열할 수 있다. 여기서, 예를 들어 rel-15를 지원하는 기지국과 단말을 위한 K 값의 최대값이 8로 설정되거나 결정되고, rel-16을 지원하는 기지국과 단말을 위한 K의 최대값도 8로 설정될 수 있다. 상기 최대값이 8로 설정되면, 기지국은 하나의 CORESET 내의 DCI based beam selection 동작을 통해 단말에게 PDSCH를 위한 빔의 선택을 지시할 수 있다. 빔의 선택은 최대 8개 중에서 DCI 내 TCI 필드 정보(10-41)를 확인하여 결정될 수 있다. 도 10b에서 지시된 TCI 필드 #I는 0 내지 7의 값으로 선택될 수 있다. 예를 들어, DCI 내 TCI 필드가 000으로 지시되면 TCI #0', TCI #1', TCI #2', TCI #3', TCI #4', TCI #5', TCI #6', TCI #7'중에서 TCI #0'(TCI #I = TCI#0')가 지시된 것으로 판단할 수 있다. 상기 실시 예는 최대값이 각각 8로 설정된 (K=8)의 경우를 설명하였으나, 8보다 작은 값으로 설정될 수도 있다. 상기 실시예는 Rel-15를 위한 MAC CE의 최대값 K와 rel-16을 위한 MAC CE의 최대값 K이 같은 경우를 설명하였으나, 다른 값으로 설정 될 수도 있다.
다른 예로, C-JT/NC-JT로 동작하는 기지국/TRP 개수에 비례하여 확장한다면 2개의 TRP로 동작하는 경우, rel-16을 지원하는 기지국과 단말을 위한 K의 최대값은 16으로 설정될 수 있다. 상기 최대값이 16으로 설정되면 기지국 하나의 CORESET 내의 DCI based beam selection 동작을 통해 단말에게 PDSCH를 위해 하나 또는 둘 이상의 빔 선택을 지시할 수 있다. 상기 기지국에 의해 선택되어 지시되는 #I는 K가 16인 경우, 0 내지 15의 값으로 선택될 수 있다. 상기 실시 예는 최대값이 각각 16로 설정된 (K=16)의 경우를 설명하였으나, 16보다 작은 값으로 설정될 수도 있다.
표 15는 QCL-TypeD에 대한 단말 능력 보고 파라미터 "PDSCH beam switching (혹은 timeDurationForQCL, UE capa 2-2)" 와 "Max number of downlink RS resources used for QCL type-D in the active TCI states and active spatial relation info (혹은 UE capa 2-62)"의 특성을 나타내는 표이다. 표 15를 참조하면 단말은 timeDurationForQCL를 통하여 기지국에게 60kHz 서브캐리어 간격(SCS)를 기준으로 최소 7 심볼에서 최대 28 심볼까지 수신 빔 변경에 필요한 시간 간격을 보고하거나 120kHz 서브캐리어 간격(SCS)를 기준으로 최소 14 심볼에서 최대 28 심볼까지 수신 빔 변경에 필요한 시간 간격을 보고할 수 있다. 60kHz 및 120kHz SCS는 FR2에서만 설정 가능한 값으로, 표 15에 따르면 timeDurationForQCL 또한 FR2에서만 이용 가능한 것을 알 수 있다. 또한 단말은 "UE capa 2-62"을 통하여 기지국에게 최대 몇 개의 하향링크 기준 신호를 활성화 된 TCI state의 QCL type-D를 위한 reference RS로 사용할 수 있는지를 알려주는 것이 가능하다. 일례로 상기 "UE capa 2-62"의 값이 1인 경우 이는 활성화된 TCI state 내 QCL type-D의 reference RS가 한 개라는 뜻으로 QCL-type D, 즉 수신 빔에 대한 동적 변경을 수행할 수 없다는 의미로 해석 될 수 있다. 반면 "UE capa 2-62"의 값이 2 이상인 경우 이는 활성화된 TCI state 내 QCL type-D의 reference RS가 두 개 이상이라는 뜻으로 QCL-type D, 즉 수신 빔에 대한 동적 변경을 수행할 수 있다는 의미로 해석 될 수 있다.
[표 15]
Figure PCTKR2020015658-appb-img-000050
Rel-15 기반의 기지국은 CORESET 내 PDCCH의 수신을 완료한 시점부터 상기 PDCCH가 스케줄링하는 PDSCH가 전송되는 시점까지의 scheduling time offset(t_so)을 고려하여 데이터를 할당할 수 있다. 상기 scheduling time offset(t_so)은 상기 PDSCH를 할당하는 상기 PDCCH의 마지막 심볼(또는 그 다음 심볼)부터 도 8에서 설명한 k0가 지시하는 해당 슬롯에서 데이터를 전송하는 PDSCH가 시작되는 이전 심볼까지의 시간(duration)을 의미한다. 상기 scheduling time offset(t_so)은 상위 레이어에서 설정된 PDSCH-TimeDomainResourceAllocation의 startSymbolAndLength (0 내지 127)에서 설정된 SLIV(Start and Length Indicator) 인덱스를 기반으로 PDSCH의 시작 심볼을 판단할 수 있다. 상기 빔포밍의 적용은 단말의 능력에 따라 단말마다 다를 수 있고, 상기 능력은 기지국과 RRC 설정 과정에서 기지국에게 timeDurationForQCL 값으로 전달된다. 본 발명에서 상기 timeDurationForQCL은 단말이 QCL을 적용하기 위한 시간 구간 또는 QCL 적용 시간 구간으로 칭할 수 있다.
기본적으로 단말은 상기 scheduling time offset(t_so)과 상위 레이어에서 설정될 단말의 능력에 기반한 timeDurationForQCL의 값에 따라 아래와 같이 동작을 수행할 수 있다.
상위 레이어 설정에서 tci-PresentinDCI가 'enabled'로 설정되지 않은 경우, 단말은 DCI format에 관계 없이 PDCCH와 PDSCH 간 scheduling offset/scheduling timining offset이 단말 능력 보고(UE capability report)로 보고된 timeDurationForQCL보다 크거나 같은 지에 대한 여부를 확인할 수 있다.
상위 레이어 설정에서 tci-PresentinDCI가 'enabled'로 설정되고 단말이 기지국으로부터 DCI format 1_1를 수신한 경우, 단말은 해당 DCI에 TCI field가 존재하는 것으로 가정하고 PDCCH와 PDSCH 간 scheduling time offset이 단말 능력 보고로 보고된 timeDurationForQCL보다 크거나 같은 지에 대한 여부를 확인할 수 있다.
상기 PDCCH와 PDSCH 간 scheduling offset/scheduling timing offset이 timeDurationForQCL 보다 작은 경우, 단말은 수신된 PDSCH의 DMRS port를 가장 최근 slot에서 가장 낮은 CORESET ID를 가지는 monitored search space와 연계된 CORESET에 사용된 QCL parameter에 기반하여 결정할 수 있다.
또한, 일례로 상기 PDCCH와 PDSCH 간 scheduling offset/scheduling timing offset이 timeDurationForQCL 보다 크거나 같은 경우, 단말은 상기 PDCCH를 전송하는데 사용된 CORESET과 같은 QCL assumption을 해당 PDSCH DMRS port에 적용한다.
다른 예로, PDCCH와 PDSCH 간 scheduling offset/scheduling timing offset이 timeDurationForQCL 보다 크거나 같은 경우, 단말은 해당 PDCCH(DCI) 내 TCI field가 지시하는 QCL assumption을 해당 PDSCH DMRS port에 적용한다. 한편, 단말이 "모든 BWP에 대하여" 설정 받은 TCI state들 중 어떤 TCI state도 QCL-TypeD를 포함하지 않는 경우, 단말은 DCI와 그 DCI가 할당하는 PDSCH 간 간격에 관계 없이 항상 지시되는 TCI state에 따라 QCL assumption을 획득할 수 있다
도 11, 도 12, 도 13 및 도 14는 기지국이 설정한 적어도 하나의 CORESET 및 search space에 따라 전송하는 PDCCH의 구조를 도시한 도면이다.
도 11, 도 12, 도 13 및 도 14는 도 8과 같이 기지국은 하나의 CORESET (예: 제1 CORESET 또는 PDCCH#1)내에서 제1 PDCCH를 전송하는 실시예를 설명한다. 구체적으로 TRP-A 에서 전송되는 제1 PDCCH는 하나 이상의 PUCCH 자원 및 적어도 2개 이상의 복수의 PDSCH를 스케줄링 할 수 있다. 기지국이 전송하는 상기 각각의 PDSCH에는 서로 상이한 CDM group의 DMRS 포트가 적용될 수 있으며, 상기 각 PDSCH와 같이 전송되는 DMRS 전송 심볼은 동일한 심볼에 위치할 수 있다.
기지국은 특정한 단말을 위해 기지국이 전송하는 특정 CORESET 내의 PDCCH 빔 방향(TCI-states)을 MAC CE에 의한 별도 업데이트가 없는 한 동일한 빔 방향을 적용한다. 도 11, 도 12, 도 13 및 도 14에서 기지국/TRP A가 전송한 제N PDCCH(PDCCH#N)는 가장 최근 slot에서 가장 낮은(lowest) CORESET ID를 가지는 monitored search space와 연계된 CORESET 내 PDCCH를 보여준다. 즉, 단말은 PDCCH 빔 변경 업데이트 메시지를 수신하지 않으면, 상기 가장 최근 slot에서 lowest CORESET ID를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH를 수신하는데 사용된 QCL parameter를 제1 PDCCH 수신에도 동일하게 적용한다. 상기 제N PDCCH는 동일한 CORESET 에서 상이한 search space에서 전송되는 실시예로 제1 PDCCH의 이전 slot에서 전송되는 것으로 설명되었으나 동일한 slot의 다른 search space에서 전송되는 것을 제한하지는 않는다.
도 11, 도 12, 도 13 및 도 14에서 제1 PDCCH 또는 제2 PDCCH는 NC-JT 전송을 위해 제1 PDSCH, 제2 PDSCH 할당을 지시하고, 이때 상기 PDSCHs들은 빔포밍 방향은 상위 레이어에서 설정된 빔포밍 정보 및 제1 PDCCH 또는 제2 PDCCH 내 DCI의 TCI 정보, 안테나 포트 정보 또는 RNTI 정보 등에 따라 변경될 수 있다. 단말은 상기 수신된 빔포밍 정보 및 DCI 정보를 기반으로 기지국에 의해 변경된 빔포밍 방향을 확인할 수 있다.
일례로, 도 11에서 상기 제 1 PDCCH의 빔포밍 방향은 NC-JT 전송을 위한 상기 제1 PDSCH 및 제2 PDSCH의 빔포밍 방향과 모두 상이할 수 있다. 다른 예로, 상기 제 1 PDCCH의 빔포밍 방향은 NC-JT 전송을 위한 상기 제1 PDSCH 또는 제2 PDSCH의 빔포밍 방향과 일치 할 수 있다. 다른 예로, 기지국은 spatial beamforming gain을 고려하여 상기 제1 PDSCH 및 제2 PDSCH의 빔포밍의 방향이 서로 상이 하도록 설정할 수 있다.
도 11은 단말이 수신한 제1 PDCCH의 마지막 심볼과 PDSCHs의 시작 심볼 사이의 시간(duration) 또는 심볼 수를 포함하는 스케줄링 오프셋 (scheduling timing offset)과 timeDurationForQCL의 관계에 따른 기지국과 단말의 동작을 제안한다.
본 개시에서는 스케줄링 타이밍 오프셋 (scheduling timing offset)을 PDDCH의 마지막 심볼과 상기 PDCCH에 상응하는 PDSCH의 시작 심볼 사이의 심볼 수로 정의하지만, 본 발명의 실시에가 이에 한정되는 것은 아니며 미리 정해진 수의 심볼 단위 또는 슬롯 단위 등으로 다양하게 정의될 수 있다.
[실시예 1-1]
일례로, 기지국은 tci-PresentinDCI가 'enabled'로 설정되지 않은 단말에게 single PDCCH로 스케줄링하는 NC-JT 기반 전송을 지원하지 않을 수 있다. 즉, 기지국은 tci-PresentinDCI가 'enabled'로 설정되지 않은 단말을 위해 하나의 PDCCH에서는 하나의 PDSCH만을 할당할 수 있다. 결국, 기지국이 특정 단말을 위해 single PDCCH로 스케줄링하여 2개 이상의 복수의 PDSCH를 할당하는 경우, tci-PresentinDCI가 'enabled'로 설정된 단말인 경우에만 NC-JT 기반의 전송을 수행할 수 있다. 그러나 multi-PDCCH로 스케줄링하여 NC-JT 기반 전송을 수행하는 것은 가능할 수 있고, 이와 관련된 설명은 실시예 5-1에서 추가적으로 설명한다.
다른 예로, 기지국은 tci-PresentinDCI가 'enabled'로 설정되지 않은 단말에게 single PDCCH 내 안테나 포트 정보를 이용하여 single PDCCH로 스케줄링하는 NC-JT 기반 전송을 지시할 수 있다. 구체적으로 기지국이 상기 안테나 포트 정보에서 서로 상이한 CDM group으로 매핑된 DMRS 관련 정보를 단말에게 지시하여 기지국이 전송할 복수의 PDSCH 관련 정보를 알려줄 수 있다.
[실시예 1-2]
기지국은 tci-PresentinDCI가 'enabled'로 설정된 단말에게 single PDCCH에서 DCI format 1_1로 스케줄링하여 NC-JT 기반 전송을 지원할 수 있다. 또한, 기지국은 상기 NC-JT 기반 전송에서 단일 PDCCH와 복수의 PDSCH 사이의 scheduling time offset(t_so)를 고려하여 단말에게 데이터 전송을 수행할 수 있다.
도 11의 11-00는 기지국이 스케줄링하는 t_so의 값이 14 이상인 경우를 보여준다. 상기 t_so의 계산 값이 14 이상인 경우, 기지국은 아래에서 제안하는 방법 중 적어도 하나의 방법을 이용하여 판단 및 동작할 수 있다.
일례로, 기지국은 tci-PresentinDCI가 'enabled'로 설정된 특정 단말에게 NC-JT 기반 전송을 위해 제1 PDCCH(DCI format 1_1)의 전송과 상기 제1 PDCCH(11-10)가 할당하는 제1 PDSCH(11-20) 및 제2 PDSCH(11-25) 전송을 수행할 수 있다. 이때 기지국은 상기 단말의 timeDurationForQCL을 고려하지 않고 기지국의 스케줄링 알고리즘에 기반하여 제1 PDSCH(11-20) 및 제2 PDSCH(11-25)를 모두 전송할 수 있다. 예를 들어, 기지국은 제1 PDCCH(11-10)의 DCI내 TCI 정보 및 안테나 포트 정보를 이용하여 상기 PDSCHs가 전송되는 빔포밍 방향을 지시할 수 있는데 이때 단말의 능력은 스케줄링 시 고려되지 않는다.
다른 예로, 기지국은 상기 단말의 timeDurationForQCL 정보와 지시되는 제1 PDSCH 및 제2 PDSCH의 TCI state 관련 정보를 기반으로 단말이 적어도 하나의 PDSCH의 수신이 가능하다고 판단되면, 특정 단말의 NC-JT 기반 전송을 위해 상기 단말에게 제1 PDCCH의 전송과 상기 제1 PDCCH가 할당하는 제1 PDSCH 및 제2 PDSCH를 전송할 수 있다.
다른 예로, 기지국은 상기 단말의 timeDurationForQCL 정보와 지시되는 제1 PDSCH 및 제2 PDSCH의 TCI state 관련 정보를 기반으로 단말이 상기 2개의 PDSCH의 수신이 가능하다고 판단되면, 특정 단말의 NC-JT 기반 전송을 위해 상기 단말에게 제1 PDCCH의 전송과 상기 제1 PDCCH가 할당하는 제1 PDSCH 및 제2 PDSCH를 전송할 수 있다.
[실시예 2-1]
일례로, tci-PresentinDCI가 'enabled'로 설정되지 않은 경우, 단말은 NC-JT 기반의 전송을 기대하지 않을 수 있다. 즉, 단말은 tci-PresentinDCI가 'enabled'로 설정되지 않거나 DCI format 1_0을 수신하면 하나의 PDCCH에 상응하는 하나의 PDSCH만이 전송되는 것으로 간주할 수 있다. 예를 들어, 단말은 제1 PDCCH의 빔포밍 방향과 상기 제1 PDCCH가 지시하는 PDSCH의 빔포밍 방향이 서로 동일한 것으로 판단할 수 있다.
다른 예로, tci-PresentinDCI가 'enabled'로 설정되지 않은 경우, 단말은 DCI에 포함된 안테나 포트 정보를 기반으로 NC-JT 전송 여부를 판단할 수 있다. 즉, 상기 안테나 포트 정보는, 기지국이 단일 PDSCH를 전송하는지 또는 복수의 PDSCH를 전송하는지에 대한 정보를 포함할 수 있다. 예를 들어, 단말은 제1 PDCCH의 빔포밍 방향과 상기 제1 PDCCH가 지시하는 제1 PDSCH, 제2 PDSCH의 방향이 적어도 하나는 같은 것으로 판단할 수 있다. 또는 단말은 제1 PDCCH의 빔포밍 방향과 상기 제1 PDCCH이 지시하는 제1 PDSCH, 제2 PDSCH의 방향이 기본(default)적으로 설정된 TCI state인 것으로 판단할 수 있다.
[실시예 2-2]
단말이 기지국으로부터 tci-PresentinDCI가 'enable'로 설정되는 메시지를 수신하고 제1 PDCCH의 DCI format 1_1를 수신한 경우, scheduling time offset(t_so)를 계산하여 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예: S14)과 비교할 수 있다.
도 11의 11-00는 단말이 계산한 t_so의 값이 14 이상인 경우를 보여준다. 상기 t_so의 값이 14 이상인 경우, 단말은 아래에서 제안하는 방법 중 적어도 하나의 방법을 이용하여 판단 및 동작할 수 있다.
일례로, 단말은 해당 DCI에 TCI field가 존재하는 것으로 가정하고 TCI의 codepoint가 지시하는 적어도 하나 이상의 PDSCH를 위한 빔포밍의 방향을 지시하는 TCI states의 QCL parameter (set)들을 각각 적용할 수 있다.
다른 예로, 상기 TCI의 codepoint가 지시하는 정보가 하나의 TCI state를 포함하면 단말은 2개의 PDSCHs 중에서 하나의 PDSCH를 위한 TCI states는 PDCCH의 TCI와 동일한 것으로 가정할 수 있다. 단말은 상기 설정된 TCI 필드의 정보를 기반으로 제1 PDSCH, 제2 PDSCH를 위한 QCL parameter를 적용하여 데이터를 수신할 수 있다.
도 11의 11-50은 기지국이 전송하는 PDCCH와 PDSCHs 간의 t_so 값이 14 미만인 경우를 도시한다. 상기 t_so의 값이 14 미만인 경우, 기지국은 아래에서 제안하는 방법 중 적어도 하나의 방법을 이용하여 판단 및 동작할 수 있다.
[실시예3-1]
본 실시예는 기지국이 tci-PresentinDCI를 'enable'로 설정하지 않은 경우, 기지국은 실시예 1-1와 같은 방법으로 동작 할 수 있다.
[실시예3-2]
본 실시예에서는 기지국이 tci-PresentinDCI를 'enable'로 설정하고 제1 PDCCH의 DCI format 1_1를 송신한 경우의 동작을 설명한다.
일례로, 기지국은 특정 단말의 NC-JT 기반 전송을 위해 상기 단말의 timeDurationForQCL을 고려하지 않고 기지국의 스케줄링 알고리즘에 기반하여 제1 PDCCH의 전송과 상기 제1 PDCCH가 할당하는 제1 PDSCH 및 제2 PDSCH를 모두 전송할 수 있다. 예를 들어, 기지국은 제1 PDCCH를 통해 전송되는 DCI내 TCI 정보 및 안테나 포트 정보를 이용하여 상기 PDSCHs가 전송되는 빔포밍 방향을 지시할 수 있는데 이때 단말의 능력은 스케줄링 시 고려되지 않는다. 다른 예로, 기지국은 특정 단말의 NC-JT 기반 전송을 위해 제1 PDCCH의 전송과 상기 제1 PDCCH가 할당하는 제1 PDSCH 및 제2 PDSCH에 대해, 상기 단말의 timeDurationForQCL 정보와 지시되는 제1 PDSCH 및 제2 PDSCH의 TCI state 관련 정보를 기반으로 단말이 적어도 하나의 PDSCH의 수신이 불가능하다고 판단되면, 상기 단말에게 수신 가능한 PDSCH (예: PDSCH#1)만을 전송할 수 있다. 다른 예로, 기지국은 특정 단말의 NC-JT 기반 전송을 위해 제1 PDCCH의 전송과 상기 제1 PDCCH가 할당하는 제1 PDSCH 및 제2 PDSCH 전송에 대해, 상기 단말의 timeDurationForQCL 정보와 지시되는 제1 PDSCH 및 제2 PDSCH의 TCI state 관련 정보를 기반으로 단말이 적어도 하나의 PDSCH의 수신이 불가능하다고 판단되면, 기지국은 상기 단말의 timeDurationForQCL를 고려하여 단말이 수신이 가능한 TCI state (예: PDCCH#1 또는 PDCCH#N을 수신하는데 사용된 TCI state)를 기반으로 제1 PDSCH, 제2 PDSCH 중 적어도 하나를 전송할 수 있다. 다른 예로, 기지국은 특정 단말의 NC-JT 기반 전송을 위해 제1 PDCCH의 전송과 상기 제1 PDCCH가 할당하는 제1 PDSCH 및 제2 PDSCH 전송에 대해, 상기 단말의 timeDurationForQCL 정보만을 고려하여 단말이 적어도 하나의 PDSCH의 수신이 불가능하다고 판단되면, 상기 PDCCH에서 전송하기로 한 모든 PDSCH(예: PDSCH#1, PDSCH#2)의 전송을 수행하지 않을 수 있다.
단말이 기지국으로부터 tci-PresentinDCI가 'enable'로 설정되는 메시지를 수신하고 제1 PDCCH의 DCI format 1_1를 수신한 경우, 단말은 scheduling time offset(t_so)를 계산하여 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예: S14)과 비교할 수 있다.
도 11의 11-50은 단말이 계산한 t_so의 값이 14 미만인 경우를 도시한다. 상기 t_so의 값이 14 미만인 경우, 단말은 아래에서 제안하는 방법 중 적어도 하나의 방법을 이용하여 판단 및 동작할 수 있다.
[실시예4-1]
단말이 계산한 scheduling time offset(t_so) 값이 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예: S14) 보다 작으면 단말은 기지국의 NC-JT 기반의 전송을 기대하지 않을 수 있다.
예를 들어, 단말은 PDSCH를 위한 빔포밍 방향을 지시하는 TCI state 관련 QCL parameter를 적용하는데 필요한 timeDurationForQCL이 만족되지 않으면, 단말은 상기 PDCCH에서 지시된 모든 PDSCH 수신 동작을 스킵(skip)할 수 있다. 다른 예를 들어, 단말이 PDSCH를 위한 빔포밍 방향을 지시하는 TCI state 관련 QCL parameter를 적용하는데 필요한 timeDurationForQCL이 만족되지 않으면, 단말은 가장 최근 slot에서 lowest CORESET ID를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH를 수신하는데 사용된 QCL parameter를 제1 PDSCH 또는 제2 PDSCH 수신을 위해 동일하게 적용할 수 있다. 구체적으로 단말은 상기 QCL parameter를 제1 PDSCH와 제2 PDSCH에 모두 적용하여 디코딩을 수행할 수 있다. 결과적으로 기지국이 서로 상이한 빔포밍 방향을 적용한 NC-JT 전송을 수행했다면, 단말은 선택적으로 상기 2개의 PDSCH 중에서 하나의 PDSCH만 수신 성공하는 것을 기대할 수 있다.
[실시예4-2]
단말이 계산한 scheduling time offset(t_so) 값이 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예: S14) 보다 작으면 단말은 기지국이 single transmission 기반의 전송을 기대할 수 있다.
일례로, 단말은 PDSCH를 위한 빔포밍 방향을 지시하는 TCI state 관련 QCL parameter를 적용하는데 필요한 timeDurationForQCL이 만족되지 않으면 단말은 가장 최근 slot에서 lowest CORESET ID를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH를 수신하는데 사용된 QCL parameter를 사용할 수 있다. 따라서, 단말은 제1 PDSCH 및 제2 PDSCH 중에서 lowest/highest resource RB에 할당된 PDSCH에서 (예: 제1 PDSCH/제2 PDSCH) 데이터를 수신 할 수 있으며, 이 때, 상기 QCL parameter를 사용할 수 있다. 다른 예를 들어, 단말은 PDSCH를 위한 빔포밍 방향을 지시하는 TCI state 관련 QCL parameter를 적용하는데 필요한 timeDurationForQCL이 만족되지 않으면 단말은 가장 최근 slot에서 lowest CORESET ID를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH를 수신하는데 사용된 QCL parameter를 제1 PDSCH 및 제2 PDSCH 모두에 적용할 수 있다. 그리고, 상기 제1 PDSCH 및 제2 PDSCH 수신을 위한 DMRS 포트 설정은 DCI 내 안테나 포트 정보에 기반하여 수신할 수 있다.
상기 실시예들에서 단말은 하나의 CORESET 내 Single PDCCH 기반의 NC-JT 전송에서 하나의 default QCL이 설정되는 것을 기대한다.
추가로 하나의 CORESET 내 Single PDCCH 기반의 NC-JT에서 단말은 둘 이상의 default QCL이 설정되는 것을 기대할 수 있다. 상기 둘 이상의 default QCL이 설정되는 것은 단말이 기지국으로부터 사전에 설정된 정보에 기반하여 2개의 PDSCH(예: 제1 PDSCH, 제2 PDSCH)에 QCL parameter를 적용할 수 있는 것을 의미한다. 상기 적용할 QCL parameter는 단말에게 지시되는 DCI 정보(예: 안테나 포트 정보 및 TCI 정보), MAC CE 또는 RRC 정보에 의해 내재적 또는 외재적으로 설정될 수 있다.
일례로, 기지국은 하나의 CORESET 또는 하나의 PDCCH-config 마다 적어도 둘 이상의 default QCL을 설정 시, 적어도 둘 이상의 default QCL에 기반한 각 TRP들의 빔포밍 방향이 수신 동작을 수행하는 단말 측에서 동일한 빔포밍의 방향이 되도록 설정할 수 있다. 또는 상기 복수의 TRP들은 단말 측에서 동일한 빔포밍을 수행하는 것을 가정하여 각 TRP의 TCI state를 설정할 수 있다. 이 때, 단말은 기지국에서 내재적 또는 외재적으로 설정한 MAC CE 또는 RRC 정보에 기반하여 TCI states가 동일한 것으로 판단하고 이를 기반으로 수신 동작을 수행할 수 있다. 상기 TCI states는 TRP의 위치 및 채널을 고려하여 서로 같거나 상이할 수 있다. 즉, 단말은 2개의 PDSCH(예: 제1 PDSCH, 제2 PDSCH)에 QCL parameter를 적용하여 동일한 방향으로 수신 빔포밍을 수행할 수 있다.
다른 예로, 기지국은 하나의 CORESET 또는 하나의 PDCCH-config 마다 적어도 둘 이상의 default QCL을 설정 시, 기지국 측에서 둘 이상의 default QCL이 서로 일치하도록 설정할 수 있다. 즉 명시적으로 2개를 설정하지만 동일한 빔포밍 방향을 지시하도록 설정할 수 있다. 이 때, 단말은 기지국에서 설정된 동일한 TCI states 설정을 확인하여 동일한 빔포밍을 수행할 수 있다. 또는 단말은 기지국에서 설정된 default QCL을 위한 복수의 TCI states가 서로 동일한 것을 가정하여 하나의 TCI state에 기반하여 수신 동작을 수행할 수 있다. 즉, 단말은 2개의 PDSCH(예: 제1 PDSCH, 제2 PDSCH)에 동일하게 설정된 QCL parameter를 적용하여 동일한 방향으로 수신 빔포밍을 수행할 수 있다.
한편, 기지국이 하나의 CORESET 또는 하나의 PDCCH-config 마다 적어도 둘 이상의 default QCL을 순차적으로 설정할 수 있다. 또는 경우에 따라서 둘 이상의 default QCL이 완전하게 설정되지 않고 하나의 default QCL만 설정되는 상태가 존재할 수 있다.
일례로, 기지국은 제1 PDSCH에 대한 default QCL을 설정하고 제2 PDSCH에 대한 default QCL을 이후에 설정하거나 설정하지 않을 수 있다. 만일 제2 PDSCH에 대한 default QCL이 미설정된 경우, TRP 마다 하나의 ServingCell, PDCCH-config 또는 CORESET (group)에서 설정된 제1 PDSCH를 위한 default QCL만이 설정되면, 단말은 제2 PDSCH를 위한 default QCL이 제 1 PDSCH의 것과 동일한 것으로 판단할 수 있다. 또는 단말은 제2 PDSCH를 위한 default QCL이 불필요한 것으로 판단하여 scheduling time offset 이내에 스케줄링 되지 않는 것으로 판단할 수도 있다. 또는 단말은 제2 PDSCH의 전송이 수행되지 않을 것이라고 판단할 수도 있다. 다시 말해 기지국이 적어도 2개의 default QCL을 설정하지 않는 경우, 단말은 single-DCI 기반 multi-TRP에서 한 슬롯 이내에 적어도 2개 이상의 복수의 PDSCH가 전송되지 않을 것으로 가정하고, 적어도 2개의 default QCL이 설정된 이후에 단말은 상기 복수의 TRP에서 한 슬롯 이내에 적어도 2개 이상의 복수의 PDSCH가 전송될 것으로 판단할 수 있다.
도 12에서 기지국은 하나의 CORESET (예: CORESET#0 또는 PDCCH#1)내에서 제1 PDCCH를 전송하고, 추가적으로 다른 CORESET (예: CORESET#1 또는 PDCCH#2)내에서 제2 PDCCH를 전송하는 실시예를 설명한다.
구체적으로 TRP-A 에서 전송되는 제1 PDCCH는 하나 이상의 PUCCH 자원(제1 PUCCH) 및 1개 또는 그 이상의 복수의 PDSCH(제1 PDSCH)를 스케줄링 하고, TRP-B 에서 전송되는 제2 PDCCH는 하나 이상의 PUCCH 자원(제2 PUCCH) 및 1개 또는 그 이상의 복수의 PDSCH(제2 PDSCH)를 스케줄링 할 수 있다. 기지국이 전송하는 상기 각각의 PDSCH는 서로 상이한 CDM group의 DMRS 포트가 적용될 수 있으며, 상기 각 PDSCH와 같이 전송되는 DMRS 전송 심볼은 동일한 심볼에 위치할 수 있다. 상기 PDSCHs는 동일한 심볼에서 전송되는 것을 가정하였으나, 본 발명은 반드시 동일한 심볼에서 전송되는 것만을 한정하는 것은 아니다.
또한, 상기 복수의 CORESET들은 기지국이 Multi-DCI 기반의 NC-JT 전송을 위해 각각 구분되어 설정될 수 있다. 또는 상기 복수의 CORESET들은 CORESET group과 같은 set형태로 설정될 수 있으며 NC-JT를 지원하는 단말을 위해 상위 레이어 또는 L1/L2 시그널링을 기반으로 지시될 수 있다.
일례로, 기지국은 Multi-DCI 기반의 NC-JT 기반의 전송을 위해 특정 단말에게 적어도 하나 이상의 CORESET(s)를 포함하는 하나의 CORESET group을 설정할 수 있다. 구체적으로 기지국은 특정 단말에게 1개의 CORESET group 내 4개의 CORESET을 설정하고, 따라서 단말은 설정된 상기 CORESETs를 모니터링하여 2개의 PDCCH를 수신하고 상기 수신된 PDCCH에서 할당된 PDSCHs를 수신할 수 있다. 도 12와 같이 기지국으로부터 특정 단말에게 하나의 CORESET group (예: CORESET group #0)이 설정되고, 상기 CORESET group 내에 포함된 최대 5개의 CORESET (예: CORESET #0 내지 CORESET #4) 중에서 단말은 NC-JT 목적으로 CORESET #0과 CORESET #1을 모니터링할 수 있다. 이 때, 상기 CORESET group 내에서 단말이 모니터링할 CORESET은 기지국이 설정하거나 단말의 설정에 따라 혹은 임의로 결정될 수 있으며, 이는 본 개시의 다른 실시예에도 적용될 수 있다.
다른 예로, 기지국은 Multi-DCI 기반의 NC-JT 기반의 전송을 위해 특정 단말에게 적어도 하나 이상의 CORESET(s)를 포함하는 적어도 두 개 이상의 CORESET group을 설정할 수 있다. 예를 들어, 기지국은 특정 단말에게 2개의 CORESET groups를 설정하고, 상기 설정된 CORESET groups 중에서 하나의 CORESET group 또는 각각의 CORESET group 내 CORESET(s)을 설정 또는 지시할 수 있다. 따라서 단말은 설정된 상기 CORESET(s)을 모니터링하여 2개의 PDCCH를 수신하고 상기 수신된 PDCCH에서 할당된 PDSCHs를 수신할 수 있다. 도 12와 같이 기지국으로부터 특정 단말에게 두 개의 CORESET group (예: CORESET group #0, CORESET group #1)이 설정되고, 상기 CORESET group 내의 CORESET 중에서 단말은 NC-JT 목적으로 CORESET group #0 내 CORESET #0과 CORESET group #1 내 CORESET #1을 모니터링할 수 있다. 이 때, 상기 CORESET group 내에서 단말이 모니터링할 CORESET은 기지국이 설정하거나 단말의 설정에 따라 혹은 임의로 결정될 수 있다.
상기 CORESET #0은 제1 PDCCH 및 제 N PDCCH를 포함할 수 있고, 상기 CORESET #1은 제2 PDCCH 및 제 N+1 PDCCH를 포함할 수 있다. 각 CORESET group별로 설정되는 CORESET은 서로 다를 수 있으며 (예: CORESET group #0은 CORESET #0, #2 포함, CORESET group #1은 CORESET #1, #3, #5 포함), 모든 CORESET group에 설정된 CORESET 수의 총합은 단말에 설정 가능한, 즉 UE capability로 보고되는, 최대 CORESET 개수 이내일 수 있다. 상기 실시예에서 최대 CORESET 개수는 5 이내일 수 있다.
기지국은 특정한 단말을 위해 기지국이 전송하는 특정 CORESET 내의 PDCCH 빔 방향(TCI-states)을 MAC CE에 의한 별도 업데이트가 없는 한 동일한 빔 방향을 적용한다.
도 12는 TRP-A/TRP-B가 전송한 제N PDCCH(PDCCH#N)/ 제N+1 PDCCH(PDCCH#N+1)는 각각의 CORESET의 가장 최근 slot에서 가장 낮은(lowest) CORESET ID를 가지는 monitored search space와 연계된 CORESET 내 PDCCH들을 도시한다. 즉, 단말은 PDCCH 빔 변경 업데이트 메시지를 수신하지 않으면, 상기 가장 최근 slot에서 lowest CORESET ID를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH/ 제N+1 PDCCH를 수신하는데 사용된 QCL parameter를 제1 PDCCH/ 제2 PDCCH 수신에도 동일하게 적용할 수 있다.
상기 제N PDCCH(PDCCH#N)/ 제N+1 PDCCH(PDCCH#N+1)는 동일한 CORESET 에서 상이한 search space에서 전송되는 실시예로 제1 PDCCH/제2 PDCCH의 동일 slot에서 전송되는 것으로 설명되었으나 이전 slot의 다른 search space에서 전송되는 경우를 제한하지는 않는다.
상기 제1 PDCCH 및 제2 PDCCH는 NC-JT 전송을 위해 제1 PDSCH 및 제2 PDSCH 할당을 각각 지시하고, 이때 상기 PDSCHs들은 빔포밍 방향은 상위 레이어에서 설정된 빔포밍 정보 및 제1 PDCCH 및 제2 PDCCH 내의 DCI의 TCI 정보, 안테나 포트 정보 또는 RNTI 정보 등에 따라 변경될 수 있다. 단말은 상기 수신된 빔포밍 정보 및 DCI 정보를 기반으로 기지국에 의해 변경된 빔포밍 방향을 확인할 수 있다.
일례로, 상기 제1 PDCCH 빔포밍 방향은 NC-JT 전송을 위한 상기 제1 PDSCH의 빔포밍 방향과 상이하며, 상기 제2 PDCCH 빔포밍 방향은 NC-JT 전송을 위한 상기 제2 PDSCH의 빔포밍 방향 모두 상이할 수 있다.
다른 예로, 상기 제 1 PDCCH의 빔포밍 방향은 NC-JT 전송을 위한 상기 제1 PDSCH의 빔포밍 방향과 일치하고, 또는 상기 제2 PDCCH의 빔포밍 방향은 NC-JT 전송을 위한 상기 제2 PDSCH의 빔포밍 방향과 일치 할 수 있다.
다른 예로, 기지국은 spatial beamforming gain을 고려하여 상기 제1 PDSCH 및 제2 PDSCH의 빔포밍의 방향이 서로 상이 하도록 설정할 수 있다.
도 12, 도 13 및 도 14는 단말이 수신한 제1 PDCCH의 마지막 심볼과 제1 PDSCH의 시작 심볼 사이의 시간(duration)인 scheduling timing offset과 timeDurationForQCL의 관계, 제2 PDCCH의 마지막 심볼과 제2 PDSCH의 시작 심볼 사이의 시간(duration)인 scheduling time offset과 timeDurationForQCL의 관계에 따른 기지국과 단말의 동작을 제안한다.
[실시예 5-1]
기지국은 특정 단말에게 tci-PresentinDCI가 'enabled'로 설정되지 않은 경우, 기지국은 NC-JT 기반 전송을 위해 scheduling time offset (t_so)과 단말 능력 보고로 보고된 timeDurationForQCL을 고려하지 않고 스케줄링 할 수 있다.
[실시예 5-2]
일례로, 기지국은 특정 단말에게 tci-PresentinDCI가 'enabled'로 설정된 경우, 기지국은 NC-JT 기반 전송을 위해 scheduling time offset (t_so)과 단말 능력 보고로 보고된 timeDurationForQCL을 고려하지 않고 스케줄링 할 수 있다. 기지국은 NC-JT 기반의 제1 PDSCH 및 제2 PDSCH 전송 빔의 변경 여부를 단말의 능력을 고려하지 않고 결정할 수 있다. 따라서, 기지국은 상기 제1 PDSCH 및 제2 PDSCH를 할당하는 PDCCH의 TCI 필드 정보를 기반으로 상기 PDSCH들을 전송할 수 있다. 다른 예로, 기지국은 특정 단말에게 tci-PresentinDCI가 'enabled'로 설정된 경우, 기지국은 NC-JT 기반 전송을 위해 scheduling time offset (t_so)과 단말 능력 보고로 보고된 timeDurationForQCL을 고려하여 스케줄링 할 수 있다. 기지국은 NC-JT 기반의 제1 PDSCH 및 제2 PDSCH 전송 빔의 변경 여부에 따라 상기 PDSCHs 빔 방향을 결정할 수 있다.
예를 들어, 도 12처럼 기지국이 두 개의 CORESET group #0, CORESET group #1 (예: CORESET group #0은 CORESET #0, #2 포함, CORESET group #1은 CORESET #1, #3, #5 포함) 중에서 NC-JT 목적으로 CORESET group #0 내 CORESET #0과 CORESET group #1 내 CORESET #1을 단말에 설정하고, 상기 CORESETs 내 PDCCH에 연계하여 전송할 PDSCHs 중에서 제1 PDSCH 및 제2 PDSCH의 빔 변경이 발생하는 경우를 설명한다. 여기서 기지국은 특정 단말에게 PDSCH의 빔이 변경이 발생하는 제1 PDCCH와 제1 PDSCH 사이의 시간(duration)인 제1 scheduling time offset과 timeDurationForQCL을 비교하거나 제2 PDCCH와 제2 PDSCH 사이의 시간(duration)인 제2 scheduling time offset과 timeDurationForQCL 을 비교하는 동작 중 적어도 하나를 수행할 수 있다. 따라서, 기지국은 빔 변경이 발생하는 제1 scheduling time offset 및 제2 scheduling time offset이 timeDurationForQCL보다 작으면 아래와 같이 동작할 수 있다.
일 실시예로, 각 CORESET group (예: CORESET group #0, CORESET group #1) 내 가장 최근 slot에서 lowest CORESET ID (예: CORESET #0 및 CORESET #1)를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH 송신하는데 사용된 QCL parameter를 제1 PDSCH 송신에 적용하고, N+1 PDCCH 송신하는데 사용된 QCL parameter를 제2 PDSCH 송신에 각각 동일하게 적용할 수 있다.
구체적으로, 도 12에서 PDSCH#1이 CORESET group #0으로부터 스케줄된 경우, 해당 CORESET group 내 가장 최근 slot, lowest CORESET ID에 대한 monitored search space 에 대응하는 PDCCH #N에 사용된 QCL parameter가 PDSCH#1 송신에 사용된다. 한편 PDSCH#2가 CORESET group #1로부터 스케줄된 경우, 상기 설명과 유사하게 PDCCH #N+1에 사용된 QCL parameter가 PDSCH#2 송신에 사용된다. 즉, 기지국은 NC-JT를 위해 2 개의 CORESET group을 세팅하고, 각각의 CORESET group을 각각의 TRP에 대응시킬 수 있다. 상기 각 PDSCH를 위한 QCL 가정은 상기 CORESET group 내 대응되는 lowest CORESET-ID로부터 참고될 수 있다.
다른 실시예로, lowest CORESET group (예: CORESET group #0) 내 가장 최근 slot에서 lowest CORESET ID (예: CORESET #0)를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH 송신하는데 사용된 QCL parameter를 제1 PDSCH 및 제2 PDSCH 송신에 각각 동일하게 적용할 수 있다.
다른 실시예로, lowest CORESET group (COREST group #0) 내 가장 최근 slot에서 lowest CORESET ID (CORESET #0)를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH 송신하는데 사용된 QCL parameter를 제1 PDSCH 송신에 적용하고, 제2 PDSCH 송신은 드롭(drop) 또는 미수행할 수 있다. 즉, lowest CORESET ID에 따라 PDSCH의 송신이 우선 수행(prioritize)될 수 있다.
다른 예를 들어, 기지국이 한 개의 CORESET group #0 (예: CORESET group #0은 CORESET #0 및 CORESET #1 포함)내에서 NC-JT 목적으로 CORESET을 설정할 수 있으며 (도 12의 CORESET #0과 CORESET #1), 상기 CORESETs 내 PDCCH에 연계하여 전송할 PDSCHs 중에서 제1 PDSCH 및 제2 PDSCH의 빔 변경이 발생하는 경우를 설명한다. 여기서 기지국은 특정 단말에게 PDSCH의 빔이 변경이 발생하는 제1 PDCCH와 제1 PDSCH 사이의 시간(duration)인 제1 scheduling time offset과 timeDurationForQCL을 비교하고, 제2 PDCCH와 제2 PDSCH 사이의 시간(duration)인 제2 scheduling time offset과 timeDurationForQCL 을 비교할 수 있다. 따라서, 기지국은 PDSCH의 빔 변경이 발생하는 제1 scheduling time offset 또는 제2 scheduling time offset이 timeDurationForQCL보다 작으면, 아래와 같이 다양한 실시예처럼 동작할 수 있다.
일 실시예로, 기지국은 빔 변경이 발생하는 상기 CORESET group (예: CORESET group #0)내 가장 최근 slot에서 lowest ID (예: CORESET #0) 또는 그 다음으로 작은 ID(예: CORESET #1) 정보를 기반으로 monitored search space와 연계된 CORESET내의 제N PDCCH 송신하는데 사용된 QCL parameter를 제1 PDSCH 송신에 적용하고, 또는 N+1 PDCCH 송신하는데 사용된 QCL parameter를 제2 PDSCH 송신에 각각 동일하게 적용할 수 있다.
다른 실시예로, 기지국은 빔 변경이 발생하는 상기 CORESET group(예: CORESET group #0) 내 가장 최근 slot에서 lowest ID (예: CORESET #0) 정보를 기반으로 monitored search space와 연계된 CORESET내의 제N PDCCH 송신하는데 사용된 QCL parameter를 빔 변경이 발생한 제1 PDSCH 또는 제2 PDSCH 송신에 각각 동일하게 적용할 수 있다.
다른 실시예로, 기지국은 빔 변경이 발생하는 상기 CORESET group(예: CORESET group #0) 내 가장 최근 slot에서 lowest ID (예: CORESET #0) 정보를 기반으로 monitored search space와 연계된 CORESET내의 제N PDCCH 송신하는데 사용된 QCL parameter를 제1 PDSCH 송신에 적용하고, 제2 PDSCH 송신은 드롭(drop) 또는 미수행할 수 있다. 즉, lowest CORESET ID에 따라서 PDSCH의 송신이 우선 수행(prioritize)될 수 있다.
또한, 상기 실시예에서는 CORESET group(예: CORESET group #0은 CORESET #0 및 CORESET #2 포함)이 존재하는 것으로 설명하였으나 경우에 따라 CORESET group의 개념 또는 설정 없이 CORESET 만 존재할 수도 있으며, 이에 따른 해결책들은 상기 설명에서 CORESET group만 제외될 뿐, CORESET ID의 설명으로 해석되는 것은 자명할 수 있다.
상기 설명된 복수의 실시예들은 lowest CORESET/CORSET group ID를 가지는 경우를 설명하였으나, highest COREST/CORSET group ID의 경우 등의 확장도 고려될 수 있다.
다른 예를 들어, 기지국은 상기 전송할 PDSCHs 중에서 적어도 하나의 PDSCH의 빔 변경이 발생하는 경우, 기지국은 특정 단말에게 제1 PDCCH와 제1 PDSCH 사이의 시간(duration)인 제1 scheduling time offset과 timeDurationForQCL를 비교하거나 제2 PDCCH와 제2 PDSCH 사이의 시간(duration)인 제2 scheduling time offset과 timeDurationForQCL를 비교하는 동작 중 적어도 하나를 수행하여 제1 또는 제2 scheduling time offset이 모두 timeDurationForQCL보다 작고 상기 timeDurationForQCL이 특정한 값인 경우(예:s7), 기지국은 제N PDCCH 및 N+1 PDCCH 송신하는데 사용된 QCL parameter 중 하나를 선택하여 제1 PDSCH 및 제2 PDSCH의 빔의 방향을 공통적으로 적용할 수 있다. 상기 선택하는 방법은 구체적으로 lowest/highest CORESET ID를 선택, 가장 최근의 search space에서 할당된 PDCCH 인덱스를 선택 또는 상기 PDSCH와 상기 PDSCH의 ACK/NACK을 전송하는 PUCCH 전송의 시간차를 고려하여 가장 긴 것으로 선택하는 방법을 포함할 수 있다. 구현에 따라서 상기 복수의 PDSCHs는 TRP-A 또는 TRP-B에서 전송될 수 있다.
단말이 기지국으로부터 tci-PresentinDCI가 'enable'로 설정된 메시지를 수신하고 제1 PDCCH의 DCI format 1_1를 수신한 경우, scheduling time offset(t_so)를 계산하여 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예: S14)과 비교할 수 있다. 도 12는 단말이 계산한 t_so1의 값과 t_so2의 값이 모두 14 미만인 경우를 도시한다. 상기 t_so의 계산 값이 14 미만인 경우, 단말은 아래에서 제안하는 방법으로 판단 및 동작할 수 있다.
[실시예6-1]
일 예로, 단말은 기지국으로부터 tci-PresentinDCI가 'enabled'로 설정되고 제1 PDCCH 또는 제2 PDCCH의 DCI format 1_1를 수신한 경우, 단말은 계산한 scheduling time offset(t_so) 값이 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예: S14) 보다 모두 작으면 단말은 기지국의 NC-JT 기반의 전송을 기대하지 않을 수 있다. 예를 들어, 단말은 PDSCH를 위한 빔포밍 방향을 지시하는 TCI state 관련 QCL parameter를 적용하는데 필요한 timeDurationForQCL이 만족되지 않으면, 단말은 상기 PDCCH에서 지시된 모든 PDSCH 수신 동작을 스킵(skip)할 수 있다.
다른 예를 들어, 단말은 빔 변경이 발생하는 제1 PDSCH 및 제2 PDSCH를 위한 빔포밍 방향을 지시하는 TCI state 관련 QCL parameter를 적용하는데 필요한 timeDurationForQCL이 모두 만족되지 않으면, 실시예 5-2에 대응하여 아래와 같이 동작할 수 있다. 상기 단말은 복수의 CORESET group이 설정될 수 있는데, 본 실시예에서는 제1 PDSCH는 CORESET group#0 내의 CORESET 내 PDCCH에 연계되어 할당된 것이고, 제2 PDSCH는 CORESET group#1 내의 CORESET 내 PDCCH에 연계되어 할당된 것으로 가정한다.
일 실시예로, 단말은 빔 변경이 발생하는 CORESET group(예: CORESET group #0, CORESET group #1) 내 가장 최근 slot에서 lowest CORESET ID (예: CORESET #0, CORESET #1)를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH를 수신하는데 사용된 제1 QCL parameter 관련 정보를 제1 PDSCH 수신에 적용하고, 또는 제N+1 PDCCH를 수신하는데 사용된 제2 QCL parameter 관련 정보를 제2 PDSCH 수신에 각각 적용할 수 있다. 구체적으로 단말은 상기 QCL parameter 관련 정보들을 제1 PDSCH와 제2 PDSCH에 각각 적용하여 디코딩을 수행할 수 있다.
다른 실시예로, 단말은 빔 변경이 발생하는 CORESET group(예: CORESET group #0, CORESET group #1)중에서 lowest CORESET group 내 가장 최근 slot에서 lowest CORESET ID (예: CORESET #0)를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH를 수신하는데 사용된 제1 QCL parameter 관련 정보를 제1 PDSCH 수신 및 제2 PDSCH 수신에 모두 적용할 수 있다.
다른 실시예로, 단말은 빔 변경이 발생하는 CORESET group(예: CORESET group #0, CORESET group #1) 중에서 lowest CORESET group 내 가장 최근 slot에서 lowest CORESET ID (예: CORESET #0)를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH를 수신하는데 사용된 제1 QCL parameter 관련 정보를 제1 PDSCH 수신에 적용하고, 제2 PDSCH 수신은 드롭(drop) 또는 미수행 할 수 있다. 즉, lowest CORESET ID에 따라 PDSCH의 수신이 우선 수행(prioritize)될 수 있다.
다른 예를 들어, 단말은 빔 변경이 발생하는 제1 PDSCH 및 제2 PDSCH를 위한 빔포밍 방향을 지시하는 TCI state 관련 QCL parameter를 적용하는데 필요한 timeDurationForQCL이 모두 만족되지 않으면, 실시예 5-2에 대응하여 아래와 같이 동작할 수 있다. 상기 단말은 복수의 CORESET group이 설정될 수 있는데, 본 실시예에서는 제1 PDSCH 및 제 2 PDSCH는 CORESET group #0(예: CORESET group #0은 CORESET #0 내지 CORESET #4 포함)내 PDCCH에 연계되어 할당된 것으로 가정한다.
일 실시예로, 단말은 빔 변경이 발생하는 CORESET group(예: CORESET group #0) 내 가장 최근 slot에서 lowest CORESET ID (예: CORESET #0) 또는/및 그 다음으로 작은 ID(예: CORESET #1) 정보를 기반으로 monitored search space와 연계된 CORESET내의 제N PDCCH 수신하는데 사용된 QCL parameter를 제1 PDSCH 수신에 적용하고, 또는/및 N+1 PDCCH 송신하는데 사용된 QCL parameter를 제2 PDSCH 송신에 각각 동일하게 적용할 수 있다. 구체적으로, 도 12에서 단말은 PDSCH#1이 CORESET group #0으로부터 스케줄 된 경우, 해당 CORESET group 내 가장 최근 slot, lowest CORESET ID에 대한 monitored search space 에 대응하는 PDCCH #N에 사용된 QCL parameter를 PDSCH#1 수신에 사용한다. 한편 단말은 PDSCH#2가 CORESET group #1로부터 스케줄 된 경우, 상기 설명과 유사하게 PDCCH #N+1에 사용된 QCL parameter를 PDSCH#2 수신에 사용한다.
다른 실시예로, 단말은 빔 변경이 발생하는 CORESET group(예: CORESET group #0) 내 가장 최근 slot에서 lowest ID (예: CORESET #0) 정보를 기반으로 monitored search space와 연계된 CORESET내의 제N PDCCH 송신하는데 사용된 QCL parameter를 빔 변경이 발생한 제1 PDSCH 또는/및 제2 PDSCH 송신에 각각 동일하게 적용할 수 있다.
다른 실시예로, 기지국은 빔 변경이 발생하는 상기 CORESET group(예: CORESET group #0) 내 가장 최근 slot에서 lowest ID (예: CORESET #0) 정보를 기반으로 monitored search space와 연계된 CORESET내의 제N PDCCH 송신하는데 사용된 QCL parameter를 제1 PDSCH 수신에 적용하고, 제2 PDSCH 수신은 드롭(drop) 또는 미수행할 수 있다. 즉, lowest CORESET ID에 따라서 PDSCH의 수신이 우선 수행(prioritize)될 수 있다.
상기 설명된 복수의 실시예들은 lowest CORESET ID를 가지는 경우를 설명하였으나, highest COREST ID의 경우 등의 확장도 고려될 수 있다.
또한, 상기 실시예에서는 CORESET group(예: CORESET group #0은 CORESET #0 내지 CORESET #4 포함)이 존재하는 것으로 설명하였으나 경우에 따라 CORESET group의 개념 또는 설정 없이 CORESET 만 존재할 수도 있으며, 이에 따른 해결책들은 상기 설명에서 CORESET group만 제외될 뿐, CORESET ID의 설명으로 해석되는 것은 자명할 수 있다.
다른 예를 들어, 단말이 제1 PDSCH 및 제2 PDSCH를 위한 빔포밍 방향을 지시하는 TCI state 관련 QCL parameter를 적용하는데 필요한 timeDurationForQCL이 모두 만족되지 않으면, 단말은 각각의 CORESET에서 가장 최근 slot에서 lowest CORESET ID를 가지는 monitored search space와 연계된 CORESET내 제N PDCCH를 수신하는데 사용된 제1 QCL parameter 관련 정보와 제2 QCL parameter 관련 정보 중 적어도 하나를 선택하여 제1 PDSCH 및 제2 PDSCH에 모두 적용하여 디코딩을 수행할 수 있다. 상기 선택하는 방법은 구체적으로 복수의 CORESETs 중에서 lowest/highest CORESET ID를 선택, 가장 최근의 search space에서 할당된 PDCCH 인덱스를 선택 또는 상기 PDSCH와 상기 PDSCH의 ACK/NACK을 전송하는 PUCCH 전송의 시간차를 고려하여 가장 긴 것으로 선택하는 것으로 결정할 수 있다. 구현에 따라서 상기 복수의 PDCSHs는 TRP-A 또는 TRP-B에서 전송될 수 있다.
[실시예6-2]
일례로, 단말은 기지국으로부터 tci-PresentinDCI가 'enabled'로 설정되지 않거나 DCI format 1_0을 수신한 경우, scheduling time offset (t_so)과 단말 능력 보고로 보고된 timeDurationForQCL을 고려하지 않고 NC-JT 전송 기반의 복수의 PDSCH를 수신할 수 있다. 즉, 단말은 기지국으로부터 tci-PresentinDCI가 'enabled'로 설정되지 않거나 DCI format 1_0을 수신한 경우 하나의 PDCCH에서는 하나의 PDSCH만 할당되어 전송되는 것으로 간주할 수 있다. 예를 들어, 단말은 제1 PDCCH 빔포밍 방향과 제1 PDCCH가 지시하는 제1 PDSCH의 빔포밍 방향이 동일하고, 제2 PDCCH 빔포밍 방향과 제2 PDCCH가 지시하는 제2 PDSCH의 빔포밍 방향이 동일한 것으로 판단할 수 있다.
다른 예로, 단말은 기지국으로부터 tci-PresentinDCI가 'enabled'로 설정되지 않은 경우, NC-JT 전송 기반의 PDSCH 전송을 미지원 하는 것으로 판단할 수도 있다.
도 13의 13-00은 단말이 계산한 t_so1의 값 및 t_so2의 값 중 하나의 값이 14 미만인 경우를 도시한다. 본 실시예에 따르면, 상기 복수의 t_so 값들 중 t_so2 값이 14 미만인 경우, 기지국과 단말은 아래에서 제안하는 방법으로 판단 및 동작할 수 있다.
[실시예7-1]
기지국은 실시예 5-1과 같이 특정 단말에게 tci-PresentinDCI가 'enabled'로 설정되지 않은 경우, 기지국은 NC-JT 기반 전송을 위해 scheduling time offset (t_so)과 단말 능력 보고로 보고된 timeDurationForQCL을 고려하지 않고 스케줄링 할 수 있다.
[실시예7-2]
일례로, 기지국은 실시예 5-2와 같이 특정 단말에게 tci-PresentinDCI가 'enabled'로 설정된 경우, 기지국은 NC-JT 기반 전송을 위해 scheduling time offset (t_so)과 단말 능력 보고로 보고된 timeDurationForQCL을 고려하지 않고 스케줄링 할 수 있다.
다른 예로, 기지국은 특정 단말에게 tci-PresentinDCI가 'enabled'로 설정된 경우, 기지국은 NC-JT 기반 전송을 위해 scheduling time offset (t_so)과 단말 능력 보고로 보고된 timeDurationForQCL을 고려하여 스케줄링 할 수 있다. 기지국은 NC-JT 기반의 제1 PDSCH 및 제2 PDSCH 전송 빔의 변경 여부에 따라 상기 PDSCHs 빔 방향을 결정할 수 있다.
예를 들어, 도 13처럼 기지국이 두 개의 CORESET group #0, CORESET group #1 (예: CORESET group #0은 CORESET #0, #2 포함, CORESET group #1은 CORESET #1, #3, #5 포함) 중에서 NC-JT 목적으로 CORESET group #0에 포함된 CORESET #0과 CORESET group #1에 포함된 CORESET #1을 단말의 CORESET으로 설정하고, 상기 CORESETs 내 PDCCH에 연계하여 전송할 PDSCHs 중에서 제1 PDSCH 및 제2 PDSCH의 빔 변경이 발생하는 경우를 설명한다. 여기서 기지국은 제1 PDCCH와 제1 PDSCH 사이의 시간(duration)인 제1 scheduling time offset(t_so1)과 timeDurationForQCL를 비교하거나 제2 PDCCH와 제2 PDSCH 사이의 시간(duration)인 제2 scheduling time offset(t_so2)과 timeDurationForQCL을 비교하는 동작 중 적어도 하나를 수행할 수 있다. 제1 또는 제2 scheduling time offset 중 하나의 offset 값이 timeDurationForQCL보다 작으면 아래와 같이 동작할 수 있다. 본 실시예서는 t_so2가 timeDurationForQCL보다 작은 경우를 가정한다.
일 실시예로, 기지국은 각 CORESET group (예: CORESET group #0, CORESET group #1) 내 상기 offset 값이 timeDurationForQCL 보다 작은 쪽의 CORESET group(예: CORESET group #1)과 상기 group 내 CORESET ID를 기반으로 가장 최근 slot에서 lowest CORESET ID (예: CORESET #1)를 가지는 monitored search space와 연계된 CORESET내의 제N+1 PDCCH 송신하는데 사용된 QCL parameter를 제2 PDSCH 송신에 적용할 수 있다.
구체적으로, 도 13에서 PDSCH#2이 CORESET group #1으로부터 스케줄된 경우, 해당 CORESET group 내 가장 최근 slot, lowest CORESET ID에 대한 monitored search space 에 대응하는 PDCCH #N+1에 사용된 QCL parameter가 PDSCH#2 송신에 사용된다.
다른 실시예로, 기지국은 각 CORESET group (예: CORESET group #0, CORESET group #1)중에서 상기 lowest CORESET group (CORESET group #0) 내 가장 최근 slot에서 lowest CORESET ID (예: CORESET #0)를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH 송신하는데 사용된 QCL parameter를 제2 PDSCH 송신에 적용할 수 있다.
다른 실시예로, 기지국은 상기 offset 값이 timeDurationForQCL보다 작은 쪽의 CORESET group(예: CORESET group #1) 내 CORESET(예: CORESET #1)에서 스케줄링되는 PDSCH(제2 PDSCH)의 빔방향을 상기 offset 값이 timeDurationForQCL보다 크거나 같은 쪽의 CORESET group(예: CORESET group #0) 내 CORESET (예: CORESET #0)에서 지시한 빔포밍 방향, 즉 제2 PDCCH에서 지시한 TCI 필드의 정보에 따라 QCL parameter를 적용할 수 있다. 이때, 만약 상기 제1 PDCCH에서 빔의 방향이 변경되지 않으면, 기지국은 상기 제2 PDSCH에 제1 PDCCH (또는 제1 PDSCH)의 QCL parameter를 적용할 수 있다.
다른 실시예로, 기지국은 각 CORESET group과 상관없이 기지국은 특정 단말에게 t_so1과 timeDurationForQCL 또는 t_so2과 timeDurationForQCL을 각각 비교하여 t_so1 또는 t_so2 중 하나가 timeDurationForQCL보다 작으면, 기지국은 상기 offset 값이 timeDurationForQCL보다 작은 쪽의 CORESET(예: CORESET #1)에서 스케줄링되는 PDSCH(제2 PDSCH)를 전송하지 않을 (stop 혹은 skip) 수 있다.
다른 예를 들어, 특정 단말에게 기지국이 한 개의 CORESET group #0 (예: CORESET group #0은 CORESET #0 및 CORESET #1 포함) 내에서 NC-JT 목적으로 CORESET (CORESET #0과 CORESET #1)을 설정하고, 상기 CORESETs 내 PDCCH에 연계하여 전송할 PDSCHs 중에서 적어도 하나의 PDSCH의 빔 변경이 발생하는 경우를 설명한다. 여기서 기지국은 PDSCH의 빔이 변경이 발생하는 제1 PDCCH와 제1 PDSCH 사이의 시간(duration)인 제1 scheduling time offset과 timeDurationForQCL를 비교하거나 제2 PDCCH와 제2 PDSCH 사이의 시간(duration)인 제2 scheduling time offset과 timeDurationForQCL 을 비교하는 동작 중 적어도 하나를 수행할 수 있다. PDSCH의 빔 변경이 발생하는 제1 scheduling time offset 또는 제2 scheduling time offset이 timeDurationForQCL보다 작으면, 아래와 같이 다양한 실시예처럼 동작할 수 있다.
일 실시예로, 기지국은 CORESET group (예: CORESET group #0) 내 상기 offset 값이 timeDurationForQCL 보다 작은 쪽의 CORESET ID를 기반으로 가장 최근 slot에서 lowest CORESET ID (예: CORESET #0)를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH 송신하는데 사용된 QCL parameter를 제2 PDSCH 송신에 적용할 수 있다.
다른 실시예로, 기지국은 CORESET group (예: CORESET group #0)중에서 상기 lowest CORESET group (CORESET group #0) 내 가장 최근 slot에서 lowest CORESET ID (예: CORESET #0)를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH 송신하는데 사용된 QCL parameter를 제2 PDSCH 송신에 적용할 수 있다. 다
른 실시예로, 기지국은 NC-JT 전송을 위해 상기 offset 값이 timeDurationForQCL보다 작은 쪽의 CORESET(예: CORESET #1)에서 스케줄링되는 PDSCH(제2 PDSCH)의 빔방향을 상기 offset 값이 timeDurationForQCL보다 크거나 같은 쪽의 CORESET (예: CORESET #0)에서 지시한 빔포밍 방향, 즉 제2 PDCCH에서 지시한 TCI 필드의 정보에 따라 QCL parameter를 적용할 수 있다. 이때, 만약 기지국이 상기 제1 PDCCH에서 빔의 방향이 변경되지 않으면, 상기 제2 PDSCH는 제1 PDCCH (또는 제1 PDSCH)의 QCL parameter를 적용할 수 있다.
다른 실시예로, 기지국은 NC-JT 전송을 위해 각 CORESET group과 상관없이 기지국은 특정 단말에게 t_so1과 timeDurationForQCL 또는 t_so2과 timeDurationForQCL을 각각 비교하여 t_so1 또는 t_so2 중 하나가 timeDurationForQCL보다 작으면, 기지국은 상기 offset 값이 timeDurationForQCL보다 작은 쪽의 CORESET(예: CORESET #1)에서 스케줄링되는 PDSCH(제2 PDSCH)을 미전송 할 수 있다.
또한, 상기 실시예에서는 CORESET group(예: CORESET group #0은 CORESET #0 및 CORESET #2 포함)이 존재하는 것으로 설명하였으나 경우에 따라 CORESET group의 개념 또는 설정 없이 CORESET 만 존재할 수도 있으며, 이에 따른 해결책들은 상기 설명에서 CORESET group만 제외될 뿐, CORESET ID의 설명으로 해석되는 것은 자명할 수 있다
상기 설명된 복수의 실시예들은 lowest CORESET/CORSET group ID를 가지는 경우를 설명하였으나, highest COREST/CORSET group ID의 경우 등의 확장도 고려될 수 있다.
[실시예8-1]
단말은 기지국으로부터 tci-PresentinDCI가 'enabled'로 설정되고 제1 PDCCH 또는 제2 PDCCH의 DCI format 1_1를 수신한 경우, 단말은 계산한 scheduling time offset(t_so) 값이 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예: S14) 보다 하나의 CORESET에서 작으면 단말은 기지국의 NC-JT 기반의 전송을 기대하지 않을 수 있다. 예를 들어, t_so1의 값이 14 이상이고 t_so2의 값이 14 미만인 경우, 단말은 기지국에서 NC-JT 기반의 전송을 하지 않는 것으로 판단할 수 있다. 즉, 단말은 제2 PDSCH를 위한 빔포밍 방향을 지시하는 TCI state 관련 QCL parameter를 적용하는데 필요한 timeDurationForQCL이 만족되지 않으면, 단말은 상기 제2 PDCCH에서 지시된 제2 PDSCH 수신 동작을 스킵(skip)할 수 있다.
[실시예8-2]
단말은 기지국으로부터 tci-PresentinDCI가 'enabled'로 설정되고 제1 PDCCH 또는 제2 PDCCH의 DCI format 1_1를 수신한 경우, 단말은 하나의 CORESET 에서 계산한 scheduling time offset(t_so) 값이 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예: S14) 보다 작으면, 단말은 실시예 7-2에 대응하여 아래와 같이 기지국의 NC-JT 기반의 전송을 고려할 수 있다. 상기 단말은 복수의 CORESET group이 설정될 수 있는데, 본 실시예에서는 제1 PDSCH는 CORESET group#0 내의 CORESET 내 PDCCH에 연계되어 할당된 것이고, 제2 PDSCH는 CORESET group#1 내의 CORESET 내 PDCCH에 연계되어 할당된 것으로 가정한다.
일 실시예로, 단말은 CORESET group#0 내의 CORESET에서 t_so1의 값이 14 이상이고 CORESET group#1 내의 CORESET에서 t_so2의 값이 14 미만인 경우, 단말은 기지국에서 NC-JT 기반의 전송으로 판단할 수 있다. 즉, 단말은 제2 PDSCH를 위한 빔포밍 방향을 지시하는 TCI state 관련 QCL parameter를 적용하는데 필요한 timeDurationForQCL이 만족되지 않으면, 단말은 상기 t_so2 값이 timeDurationForQCL 보다 작은 쪽의 CORESET group(예: CORESET group #1)과 CORESET ID를 기반으로 가장 최근 slot에서 lowest CORESET ID (예: CORESET #1)를 가지는 monitored search space와 연계된 CORESET내의 제N+1 PDCCH 수신하는데 사용된 QCL parameter를 제2 PDSCH 수신에 적용(override)할 수 있다.
다른 실시예로, 단말은 CORESET group#0 내의 CORESET에서 t_so1의 값이 14 이상이고 CORESET group#1 내의 CORESET에서 t_so2의 값이 14 미만인 경우, 단말은 기지국에서 NC-JT 기반의 전송으로 판단할 수 있다. 즉, 단말은 각 CORESET group (예: CORESET group #0, CORESET group #1)중에서 상기 lowest CORESET group (CORESET group #0) 내 가장 최근 slot에서 lowest CORESET ID (예: CORESET #0)를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH 수신하는데 사용된 QCL parameter를 제2 PDSCH 수신에 적용할 수 있다.
다른 실시예로, 단말은 CORESET group#0 내의 CORESET에서 t_so1의 값이 14 이상이고 CORESET group#1 내의 CORESET에서 t_so2의 값이 14 미만인 경우, 단말은 기지국에서 NC-JT 기반의 전송으로 판단할 수 있다. 즉, 단말은 상기 offset 값이 timeDurationForQCL보다 작은 쪽의 CORESET group(예: CORESET group #1) 내 CORESET(예: CORESET #1)에서 스케줄링되는 PDSCH(제2 PDSCH)의 빔방향을 상기 offset 값이 timeDurationForQCL보다 크거나 같은 쪽의 CORESET group(예: CORESET group #0) 내 CORESET (예: CORESET #0)에서 지시한 빔포밍 방향, 즉 제2 PDCCH에서 지시한 TCI 필드의 정보에 따라 QCL parameter를 적용할 수 있다. 이때, 단말은 만약 기지국이 상기 제1 PDCCH에서 빔의 방향이 변경되지 않으면, 상기 제2 PDSCH는 제1 PDCCH (또는 제1 PDSCH)의 QCL parameter를 적용할 수 있다.
다른 실시예로, 기지국은 각 CORESET group과 상관없이 기지국은 특정 단말에게 t_so1과 timeDurationForQCL 또는 t_so2과 timeDurationForQCL을 각각 비교하여 t_so1 또는 t_so2 중 하나가 timeDurationForQCL보다 작으면, 기지국은 상기 offset 값이 timeDurationForQCL보다 작은 쪽의 CORESET(예: CORESET #1)에서 스케줄링되는 PDSCH(제2 PDSCH)을 미전송 할 수 있다.
다른 예를 들어, 단말은 기지국으로부터 tci-PresentinDCI가 'enabled'로 설정되고 제1 PDCCH 또는 제2 PDCCH의 DCI format 1_1를 수신한 경우, 단말은 하나의 CORESET 에서 계산한 scheduling time offset(t_so) 값이 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예: S14) 보다 작으면, 단말은 실시예 7-2에 대응하여 아래와 같이 기지국의 NC-JT 기반의 전송을 고려할 수 있다. 상기 단말에는 한 개의 CORESET group #0 (예: CORESET group #0은 CORESET #0 내지 CORESET #4 포함) 내에서 NC-JT 목적으로 CORESET (예를 들어, CORESET #0과 CORESET #1)이 설정될 수 있고, 상기 CORESETs 내 PDCCH에 연계하여 전송할 PDSCHs 중에서 적어도 하나의 PDSCH의 빔 변경이 발생하는 경우를 설명한다. 다만, 본 개시가 이에 한정되는 것은 아니며, 단말에 설정되는 CORESET의 개수는 기지국의 설정에 따라 변경될 수 있다.
일 실시예로, 단말은 설정된 CORESET group (예: CORESET group #0) 내 상기 offset 값이 timeDurationForQCL 보다 작은 쪽의 CORESET ID를 기반으로 가장 최근 slot에서 lowest CORESET ID (예: CORESET #0)를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH 수신하는데 사용된 QCL parameter를 제2 PDSCH 수신에 적용할 수 있다.
다른 실시예로, 단말은 CORESET group (예: CORESET group #0)중에서 상기 lowest CORESET group (CORESET group #0) 내 가장 최근 slot에서 lowest CORESET ID (예: CORESET #0)를 가지는 monitored search space와 연계된 CORESET내의 제N PDCCH 수신하는데 사용된 QCL parameter를 제2 PDSCH 수신에 적용할 수 있다.
다른 실시예로, 단말은 NC-JT 전송을 위해 상기 offset 값이 timeDurationForQCL보다 작은 쪽의 CORESET(예: CORESET #1)에서 스케줄링되는 PDSCH(제2 PDSCH)의 빔방향을 상기 offset 값이 timeDurationForQCL보다 크거나 같은 쪽의 CORESET (예: CORESET #0)에서 지시한 빔포밍 방향, 즉 제2 PDCCH에서 지시한 TCI 필드의 정보에 따라 QCL parameter를 적용할 수 있다. 이때, 만약 기지국이 상기 제1 PDCCH에서 빔의 방향이 변경되지 않으면, 상기 제2 PDSCH는 제1 PDCCH (또는 제1 PDSCH)의 QCL parameter를 적용할 수 있다.
다른 실시예로, 기지국은 NC-JT 전송을 위해 각 CORESET group과 상관없이 기지국은 특정 단말에게 t_so1과 timeDurationForQCL 또는 t_so2과 timeDurationForQCL을 각각 비교하여 t_so1 또는 t_so2 중 하나가 timeDurationForQCL보다 작으면, 기지국은 상기 offset 값이 timeDurationForQCL보다 작은 쪽의 CORESET(예: CORESET #1)에서 스케줄링되는 PDSCH(제2 PDSCH)을 미전송 할 수 있다.
또한, 상기 실시예에서는 CORESET group(예: CORESET group #0은 CORESET #0 및 CORESET #2 포함)이 존재하는 것으로 설명하였으나 경우에 따라 CORESET group의 개념 또는 설정 없이 CORESET 만 존재할 수도 있으며, 이에 따른 해결책들은 상기 설명에서 CORESET group만 제외될 뿐, CORESET ID의 설명으로 해석되는 것은 자명할 수 있다
상기 설명된 복수의 실시예들은 lowest CORESET/CORSET group ID를 가지는 경우를 설명하였으나, highest COREST/CORSET group ID의 경우 등의 확장도 고려될 수 있다.
[실시예8-3]
일례로, 단말은 기지국으로부터 tci-PresentinDCI가 'enabled'로 설정되지 않거나 DCI format 1_0를 수신하는 경우, scheduling time offset (t_so)과 단말 능력 보고로 보고된 timeDurationForQCL을 고려하지 않고 NC-JT 전송 기반의 복수의 PDSCH를 수신할 수 있다. 즉, 단말은 DCI format 1_0이 수신되면 기지국이 하나의 PDCCH에서 할당된 하나의 PDSCH만이 전송되는 것으로 간주할 수 있다. 예를 들어, 단말은 제1 PDCCH 빔포밍 방향과 제1 PDCCH가 지시하는 제1 PDSCH의 빔포밍 방향이 동일하고, 제2 PDCCH 빔포밍 방향과 제2 PDCCH가 지시하는 제2 PDSCH의 빔포밍 방향이 동일한 것으로 판단할 수 있다.
다른 예로, 단말은 기지국으로부터 tci-PresentinDCI가 'enabled'로 설정되지 않은 경우, NC-JT 전송 기반의 PDSCH 전송을 미지원 하는 것으로 판단할 수도 있다.
도 14의 13-50은 단말이 계산한 제1 PDCCH의 마지막 심볼과 제1 PDSCH의 시작 심볼 사이의 시간(duration: t_so1)의 값 및 제1 PDCCH의 마지막 심볼과 제1 PDSCH의 시작 심볼 사이의 시간(duration: t_so2)의 값 모두 14 이상인 경우로 기지국과 단말은 아래에서 제안하는 방법 중 적어도 하나의 방법에 따라 판단 및 동작할 수 있다.
[실시예9-1]
일례로, 기지국은 상기 조건을 만족하는 경우, NC-JT 전송시 tci-PresentinDCI를 항상 'enabled'로 설정할 수 있다. 또는 tci-PresentinDCI가 'enabled'로 설정되는 경우, 기지국은 NC-JT 전송 시 항상 상기 시간 조건이 만족되도록 스케줄링 시점을 설정할 수 있다.
기지국으로부터 tci-PresentinDCI가 'enabled'로 설정되고 제1 PDCCH 또는 제2 PDCCH의 DCI format 1_1를 수신한 경우, 단말이 계산한 scheduling time offset(t_so) 값이 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예: S14) 보다 모두 크거나 같은 경우 단말은 해당 PDCCH(DCI) 내 TCI field가 지시하는 QCL assumption을 해당 PDSCH DMRS port에 적용한다. 예를 들어, 단말은 PDSCH 빔포밍 방향을 변경하기 위해 제1 PDCCH 및 제2 PDCCH 내 각 DCI의 TCI 필드 정보를 기반으로 제1 PDSCH 및 제2 PDSCH를 위한 TCI state 관련 QCL parameter를 적용할 수 있다. 만일 CORESET group이 설정되어도 상기 동작은 실시예 8과 같이 유추하여 쉽게 적용될 수 있다.
[실시예9-2]
일례로 기지국은 단말에게 tci-PresentinDCI을 'enabled'로 설정하지 않거나 DCI format 1_0으로 지시 하는 경우, NC-JT 전송을 위한 스케줄링을 수행하지 않을 수 있다. 결국 단말은 기지국으로부터 tci-PresentinDCI가 'enabled'로 설정되지 않거나 DCI format 1_0이 수신되면 기지국이 하나의 PDCCH에서 할당된 하나의 PDSCH만이 전송되는 것으로 간주할 수 있다. 예를 들어, 단말은 제1 PDCCH 빔포밍 방향과 제1 PDCCH가 지시하는 제1 PDSCH의 빔포밍 방향이 동일하고, 제2 PDCCH 빔포밍 방향과 제2 PDCCH가 지시하는 제2 PDSCH의 빔포밍 방향이 동일한 것으로 판단할 수 있다.
상기 실시예들에서 단말은 하나의 CORESET 내 Multiple PDCCH 기반의 NC-JT 전송에서 하나 또는 둘 이상의 default QCL의 설정을 기대할 수 있다.
도 15는 본 개시의 일 실시예에 따른 단말의 동작 방법을 나타내는 순서도이다.
도 15를 참조하면, 본 개시의 실시예에 따라 단말이 NC-JT전송 기반의 PDSCH를 수신하는 방법 및 default QCL 가정을 설명한다.
단말은 기지국과 RRC 설정 과정에서 기지국 빔포밍에 관련된 파라미터 (tci-PresentinDCI), 제어채널과 데이터 채널을 위한 파라미터 또는 설정 정보(PDDCH-config, PDSCH-config) 중 적어도 하나를 포함하는 적어도 하나의 설정 정보를 수신(15-00)할 수 있다.
또한, 단말은 기지국에게 UE capability 정보 (timeDurationForQCL)를 송신(15-00)할 수 있다. 단말은 기지국의 요청에 의해 또는 미리 정해진 시점 (예를 들어, 기지국과의 RRC 설정 과정에서)에 상기 UE capability 정보를 송신할 수 있다. 따라서, 기지국이 단말의 Capability 정보를 수신한 경우 상기 Capability의 수신 과정은 생략될 수 있다. 혹은 상기 설정 정보에 따라 Capability를 수신하는 단계 자체가 생략될 수도 있다.
이후 단말은 기지국으로부터 상기 설정 정보를 기반으로 특정 CORESET에서 제1 PDCCH 또는 제2 PDCCH를 수신한다.
또한 단말은 상기 제1 PDCCH 또는 제2 PDCCH에 기반하여 제1 PDSCH 또는 제2 PDSCH를 위한 자원 할당 정보, TCI 관련 정보, 안테나 포트 정보 등 중에서 적어도 하나를 확인(15-10)할 수 있다.
상기 확인된 정보를 기반으로 단말은 상기 PDCCH와 상기 PDSCH 사이 (제1 PDDCH와 제1 PDSCH 사이 또는 제2 PDCCH와 제2 PDSCH 사이 중 적어도 하나)의 scheduling time offset 계산하고, 상기 계산 결과를 기반으로 제1 PDSCH 또는 제2 PDSCH의 수신 동작 (또는 수신 동작 방법) 또는 수신 빔포밍 방향 중 적어도 하나를 결정(15-20)할 수 있다. 이 때, 단말이 수신 동작 방법을 결정하는 것은 제1 PDSCH 또는 제2 PDSCH 중 적어도 하나를 통해 데이터를 수신할지 여부를 결정하는 것 또는 데이터를 수신하기로 결정한 경우 데이터를 수신하기 위한 방법 중 적어도 하나를 결정하는 것을 포함할 수 있다.
단말은 상기 확인된 정보(15-10) 및 상기 결정(15-20) 결과 중 적어도 하나를 기반으로 상기 제1 PDCCH 또는 제2 PDCCH에 상응하는 제1PDSCH 및 제1PDSCH를 통해 데이터를 수신할 수 있다 (15-30).
그리고, 단말은 상기 수신된 데이터의 디코딩을 수행할 수 있다.
표 16은 서빙 셀의 간단히 정리된 Abstract syntax notation (ASN. 1) 구조를 보여준다. 이하 실시예는 Mutli-TRP의 구성과 NC-JT 기반의 전송을 위한 multi-TRP 간의 구분을 위하여 표 16에서 설명하는 상위 레벨 information element와 필드 정보 기반으로 설명하고자 한다.
표 16에서 ServingCell은 ServingCellIndex를 통해 각각의 cell index에 매핑될 수 있다. 여기서 ServingCellIndex는 serving cell의 ID를 의미하며, 해당 serving cell이 마스터 셀 그룹의 PCell인 경우 0인 값, PSCell인 경우 SpCellConfig information element(IE)의 servCellIndex 로 설정된 값, SCell인 경우 SCellConfig IE의 sCellIndex를 의미할 수 있다.
또한 physCellId는 Serving cell에 대한 물리적인 셀 식별자를 가리키며, 해당 아이디는 ServingCellConfigCommon IE 에 설정되는 값일 수 있다. 해당 serving cell의 downlink 전송 채널 관련 설정 및 BWP 등 전송 자원 구성은 ARFCN, PDSCH-ServingCellConfig, BWP, PDCCH-Config, PDSCH-Config 등의 IE들에 의해 정의될 수 있다. 이와 유사하게 해당 serving cell의 uplink 전송 관련 구성은 ARFCN, PUSCH-ServingCellConfig, BWP, PUCCH-Config, PUSCH-Config 등의 IE들에 의해 정의될 수 있다. NC-JT 기반의 multi-TRP 전송을 위해 TRP의 쌍(pair) 또는 집합(set)의 구성은 표 16의 파라미터 또는 IE를 기준으로 구성할 수 있다.
일례로, NC-JT 기반의 mutli-TRP 전송을 위해 TRP의 쌍 또는 집합의 구성은 ServingCell IE 단위로 TRP를 구성하거나 구분할 수 있다. 이 경우 각각의 ServingCell 기준으로 TRP를 구분하게 되면 NC-JT 기반의 전송은 서로 다른 ServingCell끼리 쌍 또는 집합을 구성하고, 만일 변경이 필요하면 이를 추가적으로 조합 및 변경을 수행할 수 있다. 즉, 각각의 TRP 마다 서로 상이한 ServingCell object에 매핑시켜 복수의 기지국을 동작 시킬 수 있다. 또한, ServingCell 끼리 쌍 또는 집합을 구성하고 이를 별도의 상위 레이어 파라미터를 설정할 수도 있다. 여기서 NC-JT를 위한 multi-TRP 들은 동일한 SSB carrier 또는 SCS-SpecificCarrier를 가질 수 있다. 또한, 상기 multi-TRP 들은 동일한 SCS, 동일한 carrier BW 및 동일한 point A (a common reference point for resource block grids 또는 common RB 0의 lowest subcarrier)를 포함할 수 있다.
다른 예로, NC-JT 기반의 mutli-TRP 전송을 위해 TRP의 쌍 또는 집합의 구성은 PDCCH-config 단위로 TRP를 구성하거나 구분할 수 있다. 이 경우 상기 multi-TRP들은 이미 동일한 ServingCell로 구성되어 있기 때문에 단말은 상기 multi-TRP들이 동일한 cell인 것으로 판단할 수 있다. 만일 기지국이 PDDCH-config 단위로 상기 NC-JT를 위한 TRP들의 쌍 또는 집합을 구성하면, 단말은 RRC 설정 또는 재설정 과정을 통해 PDCCH-config의 설정 및 변경을 통해 상기 TRP의 구성 및 변경을 판단할 수 있다. 즉, 적어도 2개 이상의 복수의 TRP는 PDCCH-config를 통해 복수의 CORESETs 및 SearchSpaces 을 설정할 수 있고, 상기 추가적으로 상이한 scrambling ID 또는 상이한 시간/주파수 자원들을 할당할 수 있다. 이때 URLLC 목적으로 PDCCH-config 마다 최대 5개의 CORESET이 사용될 수 있고, 상기 TRP들은 PDCCH diversity 성능을 위해서 서로 독립적인 TCI states가 설정될 수 있다.
다른 예로, NC-JT 기반의 mutli-TRP 전송을 위해 TRP의 쌍 또는 집합의 구성은 PDCCH-config 이하 CORESET 또는 CORESET group 단위로 TRP를 구성하거나 구분할 수 있다. 이 경우 상기 multi-TRP들은 이미 동일한 ServingCell로 구성되어 단말은 상기 multi-TRP들이 동일한 cell인 것으로 판단할 수 있다. 만일 기지국이 CORESET 또는 CORESET group 단위로 상기 NC-JT를 위한 TRP들의 쌍 또는 집합을 구성하면, 단말은 RRC 설정 또는 재설정 과정을 통해 PDCCH-config 이하 CORESET (index) 또는 CORESET group (index)의 설정 및 변경을 통해 상기 TRP의 구성 및 변경을 판단할 수 있다. 즉, 적어도 2개 이상의 복수의 TRP 전송을 위해서 각각의 CORESET index를 서로 연계하거나 각각의 CORESET에 설정된 CORESET group index를 활용하여 TRP들의 CORESET들이 서로 연계되어 동작될 수 있도록 매핑할 수 있다.
동일한 TRP에 설정될 수 있는 CORESETs의 최대 개수는 단말의 능력(capability)에 의해 결정되고, 기지국은 단말의 능력 값을 고려하여 상기 CORESET의 최대 개수 후보 값을 최소 3에서 최대 5(예: URLLC 시나리오)까지 설정할 수 있다. 또한, 단말이 지원하는 CORESET group (index)의 최대 개수는 단말에게 설정된 CORESET의 최대 개수 이하로 설정될 수 있다. Rel-16에서 NC-JT를 지원하는 단말은 최대 2개의 CORESET group을 지원한다. 단말은 상기 설정된 CORESET group (index)를 단말의 능력 값에 따라 메모리에 저장하고, 이를 기반으로 관리할 수 있다.
CORESET 마다 상위 레이어 인덱스가 설정되면 multi-DCI 기반 동작의 경우, 복수의 dataScramblingIdentityPDSCH parameters가 설정되면 각각의 dataScramblingIdentityPDSCH 는 CORESET 마다 상위 레이어 인덱스와 연계되고, 동일한 상위 레리어 인덱스를 가지는 CORESET에서 확인된 DCI를 스케줄링한 PDSCH에 적용된다.
[표 16]
Figure PCTKR2020015658-appb-img-000051
본 발명의 다양한 실시예는 기지국과 단말에서 default QCL을 결정하기 위한 동작을 설명한다. 상기 다양한 실시예에서는 PDCCH를 전송하는 빔과 PDSCH를 전송하는 빔이 동일한 상황을 고려하여 설명하였다. 한편, 기지국 또는 TRP의 설정에 따라서 TRP는 PDCCH 빔(PDCCH를 전송하는 빔)과 PDSCH 빔(PDSCH를 전송하는 빔)이 동일하지 않게 설정(decoupled)될 수 있다. 일례로, 상기 동일하지 않게 설정된 빔은 PDCCH 빔 폭이 넓고 PDSCH 빔 폭이 좁은 빔으로 설정되는 경우와 같이 빔 폭(beam width)이 상이한 경우 또는 빔 폭은 동일하고 서로 상이하거나 인접한 빔이 설정되는 경우를 포함할 수 있다. 기지국이 운용하는 빔의 폭은 적어도 2개 이상(예: level 1: 넓은 빔, level 2: 보통 빔, level 3: 좁은 빔, ... 등) 설정될 수 있으며, 이 때 기지국은 PDCCH를 전송하는 빔은 주로 level 1과 같이 넓은 빔을 설정하여 사용하고 PDSCH를 전송하는 빔은 throughput 증대가 필요한 단말(들)을 위해 level 1 이외에도 추가로 level 2, 3 등의 좁은 빔을 설정하여 사용할 수 있다.
이와 같이 TRP가 PDCCH를 전송하는 빔과 PDSCH를 전송하는 빔이 동일하지 않게 설정되더라도, 단말은 rel-15와 유사한 방법으로 PDSCH 수신 동작을 수행할 수 있다. 일례로, 단말은 PDSCH를 할당하는 정보를 포함한 제어 정보를 CORESET을 통해 수신한 시점부터 할당된 PDSCH의 수신 시점까지 계산된 scheduling time offset(t_so) 값이 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예:14 심볼)보다 작으면, 최근 모니터링 시점(slot 또는 occasion)에서 가장 낮은 CORESEST ID에서 적용된 QCL 가정 (즉, 동일한 QCL parameter)를 PDSCH 수신에 적용할 수 있다.
그러나 상기 실시예는 상이한 PDCCH를 전송하는 빔과 PDSCH를 전송하는 빔이 동일한 상황에서 적합할 수 있다. Throughput 향상을 위해 기지국이 PDCCH를 전송하는 빔과 PDSCH를 전송하는 빔을 서로 상이하게 설정하면, 상기 t_so 값이 timeDurationForQCL보다 작은 경우, 단말이 PDSCH 수신을 위한 default spatial QCL을 사용할 수 있으며, 본 개시에서는 상기 default spatial QCL을 결정하는 방법을 제안한다.
[실시예 1]
기지국과 단말은 MAC CE 기반의 signaling을 통해 상기 default QCL에 적용되는 빔을 설정할 수 있다. 상기 단말은 기지국으로부터 수신된 MAC CE의 default (spatial) QCL 관련 정보를 확인하고, 상기 확인된 정보를 PDSCH를 수신하는 동작에서 적용할 수 있다. 즉, 단말은 기지국으로부터 MAC CE를 수신하여 default QCL에 관련된 정보를 확인하고, 상술한 PDCCH 및 PDSCH 간의 수신 t_so 값이 timeDurationForQCL보다 작은 경우, PDSCH 수신을 위해 MAC CE에서 설정된 default QCL에 관련된 정보를 PDSCH를 수신하는 빔에 적용하여 PDSCH를 수신할 수 있다. 이때, 상기 default QCL에 관련된 정보는 QCL parameter, TCI states 관련 정보, DL-RS 또는 UL-RS와 연계된 정보들 중 적어도 하나가 포함될 수 있다.
기지국이 설정하는 상기 MAC CE 구조는 기존의 rel-15/16에서 논의된 MAC CE의 구조 중에서 적어도 하나를 (재)사용 및 (재)해석 할 수 있다.
일례로, 단말은 도 10a의 도 10-00과 같이 rel-15 기반의 PDSCH를 위한 TCI States Activation /Deactivation MAC CE 메시지를 수신하면, PDSCH의 default QCL로 지시된 빔과 PDCCH를 전송하는 빔이 서로 상이하게 설정한 것으로 판단할 수 있다. 구체적으로 단말은 상기 TCI States Activation/Deactivation 메시지를 수신하면 activated TCI states 중 정해진 규칙(rule)에 따라 하나의 TCI state를 default QCL에 대응되는 TCI state로 이해할 수 있다. 예를 들어, 상기 정해진 규칙에 따라 default QCL에 대응되는 TCI state는 상기 MAC CE 메시지에서 activated TCI states 중에서 인덱스 값이 가장 낮은(lowest)/높은(highest) 인덱스가 지시하는 TCI state로 정의할 수 있다. 단말은 서빙 셀ID #2, BWP #4, T0내지 T7의 값이 모두 activated 된 상태(1)로 지시된 MAC CE 메시지를 수신하면, 서빙 셀 #2 및 BWP #4에서 default QCL에 대응되는 TCI state를 activated TCI index 중에 가장 낮은 TCI index(T0) 또는 가장 높은 인덱스인(T7)으로 설정된 것으로 판단할 수 있다.
다른 예로, 단말은 도 10a의 도 10-50와 같이 rel-15 기반의 PDCCH를 위한 TCI State Indication MAC CE 메시지를 수신하여 메시지 내 CORESET 0과 함께 지시되는 TCI state ID가 PDSCH를 전송하는 빔을 위한 default QCL에 해당하는 TCI state로 이해할 수 있다. 여기서 상기 MAC CE 메시지의 TCI state ID는 상위 레이어에서 설정되는 PDSCH를 위한 TCI states의 ID(예: tci-States-ToAddModList에 포함된 TCI states ID)를 의미한다. 즉, 단말은 기지국으로부터 PDCCH를 위한 TCI State Indication MAC CE를 수신하여 default QCL에 관련된 정보를 확인하고, PDDCH 및 PDSCH의 수신 t_so 값이 timeDurationForQCL보다 작은 경우, PDSCH 수신을 위해 상기 CORESET 0과 함께 지시되는 TCI state를 PDSCH를 수신하는 빔에 적용할 수 있다. 결과적으로 단말이 CORESET 0에서 전송된 PDCCH를 통해 스케줄링 되는 PDSCH를 수신 시, 상기 PDSCH에 대한 default QCL 빔은 CORESET 0을 위해 설정된 빔과 동일할 수 있다. 한편, 단말은 CORESET 0에 대한 빔이 MAC-CE로 설정되지 않는 경우, PDSCH 수신을 위한 default 빔은 상기 다양한 실시예들과 같이 기설정된 TCI state일 수 있다.
다른 예로, 단말에 설정된 PDCCH 수신을 위한 빔 목록(예:tci-StatesPDCCH-ToAddList 및 tci-StatesPDCCH-ToReleaseList를 통해 설정 및 해제된 빔 목록) 중 일부가 PDSCH 수신을 위한 빔 목록(예:tci-StatesToAddModList 및 tci-StatesTo ReleaseList를 통해 설정 및 해제된 빔 목록)으로 중복 설정된 경우, 기지국 및 단말은 PDSCH 수신을 위한 default QCL 설정 시 상기 중복으로 설정된 빔을 제외 할 수 있다. 즉, 단말은 상기 PDCCH 수신을 위해 설정된 빔 각각에 대한 reference RS 및 QCL type과 상기 PDSCH 수신을 위해 설정된 빔 각각에 대한 reference RS 및 QCL type을 비교하고, reference RS 및 QCL type이 PDCCH 수신 빔 목록과 PDSCH 수신 빔 목록에 중복해서 존재하는 경우 상기 빔은 PDSCH 수신을 위한 default QCL 설정에서 제외시킬 수 있다. 또는 단말은 기지국이 상기 PDCCH 수신과 PDSCH 수신을 위해 중복으로 사용될 수 있는 빔을 PDSCH 수신을 위한 default QCL로 설정하는 것을 기대하지 않을 수 있다.
기지국이 설정하는 상기 MAC CE 구조는 새로운 신규 control element 메시지(시그널링) 구조로 구성될 수 있다.
여기서 상기 신규 메시지는 single-TRP를 지원하기 위한 default QCL을 설정하는 메시지 형태로 구성될 수도 있다. 예를 들어, default QCL을 설정하는 MAC CE 메시지는 PDSCH의 default QCL 가정을 위한 TCI states 중에서 적어도 하나의 state를 지시하는 정보(예: TCI index)를 포함할 수 있다. 다른 예를 들어, 상기 메시지는 QCL type A/B/C/D 또는 DL-RS/UL-RS index 등의 정보를 이용하여 기지국이 전송하는 빔의 방향을 직접 또는 간접적으로 지시할 수 있다. 상기 정보는 하나의 TRP가 전송한 PDSCH 수신을 위한 빔 정보가 포함된 DCI를 단말의 디코딩 시간이 충분하지 않은 경우 또는 단말이 빔을 스위칭하여 상기 PDSCH를 수신하는데 시간이 충분하지 않은 경우, 기지국과 단말이 PDSCH의 수신을 위해 가정한 빔의 방향을 의미한다.
또한, 상기 메시지는 multi-TRP를 지원하기 위한 default QCL을 설정하는 메시지 형태로 구성될 수 있다. 예를 들어, default QCL을 설정하는 MAC CE 메시지는 PDSCH(s)의 default QCL 가정을 위한 TCI states 중 적어도 하나의 TCI state를 지시하는 정보(예: TCI index #1 또는 TCI index #2 등)를 포함할 수 있다. 이때, 단말은 상기 메시지에 하나의 TCI state가 포함되는 경우 multi-TRP에서 동일한 하나의 default QCL을 지시하거나 single-TRP에서의 하나의 default QCL을 지시하는 것으로 판단할 수 있으며, 상기 메시지에 둘 이상의 TCI states가 포함되고 이때 TCI states가 상이하면 multi-TRP에서 둘 이상의 상이한 default QCL을 지시하는 것으로 판단할 수 있다. 구체적으로 상기 메시지에 2개 이상의 TCI indexes가 지시되는 경우, 단말은 TCI indexes의 순서가 TRP의 순서 또는 HigherLayerIndexPerCORESET index의 순서에 따라 매핑된 것으로 판단할 수 있다. 또는 TRP index/HigherLayerIndexPerCORESET index와 이에 해당하는 TCI index가 각각 지시될 수도 있다. 또한, 단말은 상기 메시지에 둘 이상의 TCI states가 포함되고 이때 지시된 TCI states가 동일하면, 동일한 default QCL을 지시하는 것으로 판단할 수 있다.
다른 예를 들어, default QCL을 설정하는 MAC CE 메시지는 multi-TRP에서 전송되는 PDSCH(s)의 default QCL 가정을 위한 TCI states 중에서 적어도 하나의 TCI set(예: 2개를 구성하는 하나의 pair, 3개를 구성하는 하나의 set)을 지시하는 정보(예: TCI set index)를 포함할 수 있다. 이때, 단말이 상기 TCI set index를 수신하면 단말은 multi-TRP에서 미리 지정된 TCI states를 default QCL로 지시한 것으로 판단할 수 있다.
다른 예를 들어, 상기 메시지는 복수의 QCL type A/B/C/D 또는 DL-RS/UL-RS index 등의 정보를 이용하여 기지국이 전송하는 빔의 방향을 직접 또는 간접적으로 지시할 수 있다. 상기 정보는 하나의 TRP가 전송한 PDSCH를 단말이 빔 스위칭을 수행하여 상기 PDSCH를 수신하는데 시간이 충분하지 않은 경우, 기지국과 단말이 PDSCH의 수신을 위해 가정한 빔의 방향을 의미한다.
추가적으로 상기 메시지는 single-TRP와 multi-TRP를 위해 별도의 구분되는 메시지로 각각 설정될 수 있고 또는 하나의 타입으로 구성되는 통합된 메시지로 각각 설정될 수 있다.
또한, 일례로 multi-TRP 기반의 default beam을 설정하기 위한 MAC CE 메시지는 single-DCI 기반의 multi-TRP를 위해 별도로 설정될 수 있다. 다른 예로, 일례로 multi-TRP 기반의 default beam을 설정하기 위한 MAC CE 메시지는 multi-DCI 기반의 multi-TRP를 위해 별도로 설정될 수 있다.
이외에도 상기 single-TRP와 multi-TRP를 위해 별도의 구분되는 메시지는 단말의 지원되는 TRP 송수신의 capability 에 따라 결정될 수 있다. 또한, 상기 MAC CE는 초기 default QCL을 설정하는데 사용될 수도 있고 추가적으로 업데이트 되는 형태에도 고려될 수 있다.
[실시예2]
실시예1에서 MAC CE 메시지 구성 및 설정은 CC 마다(per component carrier) 또는 BWP 마다 (per BWP) 설정될 수 있다.
첫째로, 상기 MAC 메시지 구성 및 설정은 하나의 CC 단위로 설정될 수 있다. 일례로, 상기 MAC CE 메시지는 하나의 CC(예: Primary CC/PCell/PSCell, secondary CC/SCell 또는 across CC) 및 activated BWP에서 적용되는 default QCL 관련 정보를 지시할 수 있다. 다른 예로, 상기 MAC CE 메시지는 하나의 CC 및 설정된(configured) 적어도 하나 이상의 BWP(s)에서 적용되는 default QCL 관련 정보들을 지시할 수 있다. 다른 예로, 상기 MAC CE 메시지는 하나의 CC 및 CC에서 지원하는 모든 BWP(s)에서 적용되는 default QCL 관련 정보들을 지시할 수 있다.
둘째로, 상기 MAC 메시지 구성 및 설정은 복수의 CC에 대해 한번에 설정될 수 있다. 일례로, 상기 MAC CE 메시지는 적어도 둘 이상의 CC(예: Primary CC/PCell/PSCell, secondary CC/SCell 또는 across CC 포함) 및 activated BWP에서 적용되는 default QCL 관련 정보를 지시할 수 있다. 다른 예로, 상기 MAC CE 메시지는 적어도 둘 이상의 CC 및 설정된(configured) 적어도 하나 이상의 BWP(s)에서 적용되는 default QCL 관련 정보들을 지시할 수 있다. 다른 예로, 상기 MAC CE 메시지는 적어도 둘 이상의 CC 및 CC에서 지원하는 모든 BWP(s)에서 적용되는 default QCL 관련 정보들을 지시할 수 있다.
셋째로, 상기 실시예에서 MAC CE 메시지 구성 및 설정은 단말에게 설정되는 CC의 조합(combination of CCs) 및/또는 BWP의 조합 (combination of BWPs)별로 설정될 수 있다. 구체적으로 상기 MAC CE 메시지에서 상위 레이어 시그널링에 의해 기설정된 CC(s)/activated CCs(s) 중 일부 혹은 전부를 지시하는 인자가 설정될 수 있다. 상기 CC 지시 인자는 적어도 표 17과 같이 하나를 가리킬 수 있다.
[표 17]
Figure PCTKR2020015658-appb-img-000052
상기 MAC CE 메시지는 상기와 같이 지시된 CC에 적용되는 default QCL 관련 정보를 포함할 수 있다. 또한 상기 MAC CE 메시지는 상기 지시된 CC 내 모든 BWP/activated BWP/BWP 집합에 대하여 적용될 수 있다. 여기에서 상기 BWP 집합은 명시적으로 지시되거나 혹은 암묵적으로 약속된 BWP 집합일 수 있으며, 명시적으로 지시되는 경우 상위 레이어 설정 또는 MAC CE를 통해 지시될 수 있다.
넷째로, 상기 실시예에서 MAC CE 메시지 구성 및 설정은 단말이 CC 또는 BWP를 스위칭(switching) 하는 경우 설정되거나 추가적으로 업데이트 될 수 있다. 구체적으로, 상기 MAC CE 메시지는 단말에게 추가적인 CC가 activated 되거나, 연결 중인 CC가 deactivated 되고 새로운 CC가 activated 되는 경우처럼 CC의 스위칭이 발생하는 경우, BWP 마다 default QCL 관련 정보를 지시할 수 있다. 일례로, 상기 MAC CE 메시지는 단말과 기지국이 현재 통신 중인 CC외에 스위칭 또는 업데이트되는 CC(s) 및 activated BWP에서 적용되는 default QCL 관련 정보를 지시할 수 있다. 다른 예를 들어, 상기 MAC CE 메시지는 스위칭 또는 업데이트되는 CC(s) 및 설정된(configured) 적어도 하나 이상의 BWP(s)에서 적용되는 default QCL 관련 정보들을 지시할 수 있다. 다른 예를 들어, 상기 MAC CE 메시지는 스위칭 또는 업데이트되는 CC(s)에서 지원하는 모든 BWP(s)에서 적용되는 default QCL 관련 정보들을 지시할 수 있다.
[실시예 3]
상기 MAC CE 메시지 기반으로 default QCL을 위한 빔을 지정하고 업데이트하는 방법은 MAC CE 메시가 설정된 시점 이후부터 유효하게 사용될 수 있다. 예를 들어, 단말이 초기 접속 절차(initial access process) 이후, 기지국으로부터 default QCL 설정 관련 MAC CE 메시지가 activation 되지 않은 기간(duration)이 발생할 수 있다. 상기 기간은 default QCL 설정 관련 MAC CE 메시지를 수신하지 않은 기간 및 단말이 MAC CE 메시지를 수신한 시간으로부터 해당 수신 MAC CE를 activation하기까지의 미리 정의된 기간을 포함할 수 있다. 상술한 기간 이전과 이후 각각의 PDSCH 수신 시 default QCL은 다음과 같이 설정될 수 있다.
첫째로, 단말은 기지국이 전송하는 default QCL 관련 정보를 설정하는 MAC CE 메시지를 activation하기 이전까지는 기지국이 전송하는 PDCCH를 전송하는 빔과 PDSCH를 전송하는 빔이 동일한 것으로 판단할 수 있다. 단말은 PDSCH를 할당하는 PDCCH를 포함하는 COORESET을 수신한 시점부터 할당된 PDSCH의 수신 시점까지 계산된 scheduling time offset(t_so) 값이 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예: 14 심볼)보다 작으면, 최근 모니터링 시점(slot 또는 occasion)에서 가장 낮은 CORESEST ID에서 적용된 QCL 가정을 PDSCH 수신에 동일하게 적용할 수 있다. 또는 상기 조건이 만족되는 경우, 상기 PDSCH를 할당하는 PDCCH가 전송되는 CORESET 그룹 내에서, 가장 최근 모니터링 시점(slot 또는 occasion)에서 가장 낮은 CORESEST ID에 적용된 QCL 가정을 PDSCH 수신에 동일하게 적용할 수 있다. 상기 동작은 만일 특정 CC 또는 BWP에는 PDSCH default QCL 설정을 위한 MAC CE 메시지가 activation 되었으나 나머지 CC 또는 BWP에는 상기 MAC CE 메시지가 activation 되지 않은 경우, 상기 activation 되지 않은 CC 또는 BWP에도 적용될 수 있다.
둘째로, 단말은 기지국에서 전송하는 default QCL 관련 정보를 설정하는 MAC CE 메시지의 activation 이후부터는 실시예 1, 2에서 설명한 바와 같이 MAC CE 메시지에 설정된 default QCL 관련 정보를 기반으로 PDSCH를 수신할 수 있다. 즉, 단말은 PDSCH를 할당하는 제어 정보를 CORESET를 통해 수신한 시점부터 할당된 PDSCH의 수신 시점까지 계산된 scheduling time offset(t_so) 값이 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예:14 심볼)보다 작으면, MAC CE에서 지시된 QCL 관련 정보를 기반으로 PDSCH 수신하도록 QCL parameter를 적용할 수 있다.
셋째로, 단말은 기지국에서 전송하는 default QCL 관련 정보를 설정하는 MAC CE 메시지를 수신 이후 DCI format 1_1에서 TCI(Transmission configuration indication)필드의 code point 값이 지시되면 실시예 1, 2에서 설명한 바와 같이 MAC CE 메시지에 설정된 default QCL 관련 정보를 기반으로 PDSCH를 수신할 수 있다. 상기 TCI 필드는 상위 레이어 파라미터 (higher layer parameter) tci-PresentInDCI 가 enable된 상태인 경우에 적용될 수 있다.
넷째로, 기지국이 단말에게 상위 레이어 파라미터 (higher layer parameter) tci-PresentInDCI를 enable로 설정하지 않거나 disable로 변경하여 설정된 경우, 단말은 MAC CE 메시지 기반의 default QCL 설정을 기대하지 않을 수 있다. 또는 기지국이 단말에게 상위 레이어 파라미터 (higher layer parameter) tci-PresentInDCI를 enable로 설정하지 않으면 단말은 기지국이 전송한 default QCL 설정을 위한 MAC CE 메시지를 수신하여도 PDSCH를 수신하는데 상기 MAC CE로 지시된 default QCL 관련 정보를 적용하지 않을 수 있다. 결과적으로 단말은 PDSCH를 할당하는 제어 정보를 CORESET을 통해 수신한 시점부터 할당된 PDSCH의 수신 시점까지 계산된 scheduling time offset(t_so) 값이 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예: 14 심볼)보다 작으면, 최근 모니터링 시점(slot 또는 occasion)에서 가장 낮은 CORESET ID에서 적용된 QCL 가정을 PDSCH 수신에 동일하게 적용할 수 있다. 또는 상기 조건이 만족되는 경우, 상기 PDSCH를 할당하는 PDCCH가 전송되는 CORESET 그룹 내에서, 가장 최근 모니터링 시점(slot 또는 occasion)에서 가장 낮은 CORESEST ID에 적용된 QCL 가정을 PDSCH 수신에 동일하게 적용할 수 있다.
다섯째로, 기지국이 PDSCH에 대한 cross-carrier scheduling 또는 cross-BWP scheduling을 수행하고, 특정 CC 또는 BWP에 MAC CE를 통한 PDSCH default QCL이 설정되지 않은 경우, 단말은 특정 CC 또는 BWP에서 상기 서술된 MAC CE 메시지 activation 이전의 동작과 동일한 동작을 수행할 수 있다.
예를 들어, 단말은 cross-carrier 또는 cross-BWP에 할당된 PDSCH를 스케줄링하는 제어 정보를 CORESET를 통해 수신한 시점부터 cross-carrier 또는 cross-BWP에 할당된 PDSCH의 수신 시점까지 계산된 scheduling time offset(t_so) 값이 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예:14 심볼)보다 작으면, 최근 모니터링 시점(slot 또는 occasion)에서 가장 낮은 CORESET ID에서 적용된 QCL 가정을 PDSCH 수신에 동일한 QCL parameter를 적용할 수 있다. 또는 단말은 cross-carrier 또는 cross-BWP에 할당된 PDSCH를 스케줄링하는 PDCCH를 포함하는 CORESET group 내 CORESET을 수신한 시점부터 cross-carrier 또는 cross-BWP에 할당된 PDSCH의 수신 시점까지 계산된 scheduling time offset(t_so) 값이 기지국에 보고한 단말 능력 파라미터 timeDurationForQCL(예:14 심볼)보다 작으면, 상기 PDSCH를 할당하는 PDCCH가 전송되는 CORESET 그룹 내에서, 가장 최근 모니터링 시점(slot 또는 occasion)에서 가장 낮은 CORESEST ID에 적용된 QCL 가정을 PDSCH 수신에 동일한 QCL parameter를 적용할 수 있다.
도 11, 16 내지 18은 복수의 TRPs가 특정 단말에게 single PDCCH를 통해 복수의 PDSCH를 전송하는 것을 보여준다. 여기서, TRPs가 단말에게 할당하는 PDSCHs의 양상에 따라서 다양한 방법(schemes)이 존재할 수 있다. 아래와 같이 PDSCH 전송에 따른 방법(scheme)을 구분할 수 있다.
방법(Scheme) 1 (Spatial Domain Multiplexing; SDM): 기지국이 단말에게 단일 슬롯 내에서 N s(최대 지원 가능한 TCI states 개수)보다 작은 n개의 TCI states에 기반한 PDSCH를 할당하는 방법으로 전송되는 각 PDSCH가 시간 및 주파수 측(domain)에서 서로 겹치는(overlapped) 경우
방법(Scheme) 2 (Frequency Domain Multiplexing; FDM): 기지국이 단말에게 단일 슬롯 내에서 N f(최대 지원 가능한 TCI states 개수)보다 작은 n개의 TCI states에 기반한 PDSCH를 할당하는 방법으로 전송되는 각 PDSCH가 주파수 측에서 서로 겹치지 않는(non-overlapped) 경우
방법(Scheme) 3 (Time Domain Multiplexing; TDM): 기지국이 단말에게 단일 슬롯 내에서 N t1(최대 지원 가능한 TCI states 개수)보다 작은 n개의 TCI states에 기반한 PDSCH를 할당하는 방법으로 전송되는 각 PDSCH가 시간 측에서 서로 겹치지 않는(non-overlapped) 경우
방법(Scheme) 4 (Time Domain Multiplexing; TDM): 기지국이 단말에게 다수 슬롯에 걸쳐 N t2(최대 지원 가능한 TCI states 개수)보다 작은 n개의 TCI states에 기반한 PDSCH를 할당하는 방법으로 전송되는 각 PDSCH가 시간 측에서 서로 겹치지 않는(non-overlapped) 경우
방법(scheme) 3 또는 4에서 TCI States의 최대 개수는, 예를 들어, 3GPP rel-16 기준으로, 2 이상이 될 수 있다. 또한, TRP에서 한 번 전송 시 연속하는 동일 심볼 수를 지원할 수 있다. 예를 들어, 단말에게 전송되는 첫 번째 PDSCH가 2개의 심볼로 구성되면, 두 번째와 그 이후부터 전송되는 PDSCH는 모두 2개의 심볼로 구성될 수 있다. 또한, TRP 마다 최대 전송되는 레이어 수는 적어도 2개 이상이 될 수 있다. 지원되는 최대 TB size는 단말의 능력(capability)에 기반하여 결정될 수 있다.
방법(scheme) 3에서 PDSCH를 전송하는 횟수는 DCI 내 TCI 필드의 codepoint에서 지시된 TCI states의 개수로 판단할 수 있다. 예를 들어, 단말이 수신한 DCI 내 TCI 필드를 확인하여 states의 개수가 1개이면 단말은 기지국이 할당한 PDSCH가 1회 전송되고, 2개이면 2회 전송되는 것을 의미할 수 있다. 이때, 첫 번째 PDSCH 전송과 두 번째 및 그 이후 PDSCH 전송에서 시간 측에서 PDSCH 간 일정한 심볼 또는 slot 만큼의 오프셋(offset)을 나타내는 offset 값(Koffset)이 설정될 수 있다. 예를 들어, 두 번째 전송의 첫번째 심볼은 첫 번째 전송의 마지막 심볼에서 Koffset 심볼 개수만큼 떨어져 할당될 수 있다. 이때, Koffset 값은 관련 RRC 파라미터에 의해 설정될 수 있고, 이때, RRC에서 Koffset가 별도 설정이 없으면 단말은 Koffset가 0으로 간주한다.
방법(scheme) 4에서 기지국은 Time Domain Resource Allocation(TDRA)을 위해 단말에게 PDSCH-TimeDomainResourceAllocation 필드를 사용하여 PDSCH를 전송하는 횟수를 지시할 수 있다. 이때 PDSCH 자원 할당을 지시하는 방법으로 PDSCH 심볼의 시작 위치, 길이 및 offset 등을 나타내는 SLIV 필드의 정보를 직접 또는 간접적으로 활용할 수 있다. 또한, 기지국인 할당한 첫 번째 PDSCH에 적용되는 상기 SLIV 값은 두 번째 및 그 이후에 전송되는 복수의 PDSCH에도 동일하게 적용될 수 있다.
DCI에 의해 지시되는 RVid는 하나의 RV(Redundancy version) 시퀀스를 선택을 지시할 수 있다. 기지국은 설정된 RVid에 따라 데이터를 전송하고, 이때, 동일한 RV id를 가지는 데이터는 동일한 데이터를 갖는 것이다. 일반적으로 RV의 전송 시퀀스는 4회 반복 전송하는 것을 기본으로 매번 전송시 마다 0, 2, 3, 1 또는 0, 0, 0, 0 또는 0, 3, 0, 3 번의 RV id를 가지는 데이터를 전송할 수 있다. 이와 같은 시퀀스는 단말이 재전송된 데이터를 수신하는데 soft combining을 통해 gain을 얻고자 수행될 수 있다. 각 TRP에서 전송되는 RV 시퀀스는 아래와 같이 정의할 수 있다.
- 선택된 RV 시퀀스는 첫 번째 TRP에 연계(첫번째 TCI state), 두 번째 TRP에 연계된 RV 시퀀스는 선택된 RV 시퀀스로부터 RV offset에 의해 결정
- RV offset은 설정된 RRC 값에 의해 결정
- PDSCH 전송을 위한 TCI state 매핑은 2개 옵션 지원, RRC로 스위칭 결정
- 옵션1: cyclical 매핑 (2개의 TCI states가 지시되면 #1#2#1#2로 매핑)
- 옵션2: sequential 매핑 (2개의 TCI states가 지시되면 #1#1#2#2로 매핑)
도 16 내지 도 18은 본 개시의 일 실시 예에 따른 복수의 TRPs가 특정 단말에게 single PDCCH를 통해 복수의 PDSCH를 전송하는 과정을 설명하는 도면이다.
도 16 내지 도 18을 참조하면, 도 16-00, 17-00, 18-00은 방법(scheme) 3, 4)에 기반하여 기지국이 단말에게 할당한 복수의 PDSCH 간의 Koffset이 0인 경우에 해당된다. 특히, 기지국은 단말에게 제1 PDCCH 과 이에 대응되는 제1, 제2 PDSCH를 전송하고, 경우에 따라 이어서 또는 일정 시간 이후에 제2 PDCCH와 이에 대응되는 제1 내지 제4 PDSCH를 전송할 수 있다. 단말은 복수의 PDSCHs를 수신하여 디코딩 성공 여부에 따라 상기 기지국이 설정한 PDCCH에 지시한 PUCCH #1, #2에 HARQ ACK/NACK을 전송할 수 있다. 단일(single) PDCCH에서 스케줄링하는 복수의 PDSCHs는 동일한 데이터(예: 지시된 RV값이 동일)를 반복하여 전송할 수 있다.
[Alt 1-1]
구체적으로 TRPs가 전송하는 TCI states의 수 또는 PDSCH를 전송하는 TRP의 수는 패턴 1과 같이 반복되어 전송되는 PDSCH의 개수와 동일할 수 있다.
여기서, 패턴 1은 다음과 같다.
- 패턴 1(pattern 1): TCI states의 수(TRP들의 수) = 반복 횟수
(Pattern 1 : Number of TCI states (number of TRPs) = number of repetitions)
예를 들어, 단말은 DCI 내 TCI codepoint를 통해 TCI states {#1, #2, #3, #4}가 지시되는 것을 확인하여 16-00처럼 제1 PDSCH에는 TCI state #1, 제2 PDSCH에는 TCI state #2, 제3 PDSCH에는 TCI state #3, 제4 PDSCH에는 TCI state #4를 적용하도록 지시하는 것을 알 수 있다. 위와 같이 DCI를 확인한 단말은 지시된 states의 적용 여부를 아래와 같은 판단 과정을 거쳐 수신 빔의 방향을 결정할 수 있다.
우선, 기지국으로부터 DCI 내 TCI가 지시하는 TCI states의 개수와 반복 전송되는 PDSCH의 개수가 같은 경우, TCI states가 적용되는 PDSCH(s)의 시간측 자원의 위치와 timeDurationForQCL을 비교하여 TCI states의 적용 여부를 판단할 수 있다.
일례로, 단말은 TCI states가 PDSCHs에 적용되는 시점이 설정된 timeDurationForQCL에 기반한 위치보다 이후이면 단말은 DCI에서 지시된 모든 TCI state 정보를 순차적으로 PDSCH에 할당할 수 있다. 즉, 기지국이 전송한 PDCCH의 마지막 심볼 인덱스가 2번이고 설정된 timeDurationForQCL 값이 7인 것을 확인한 단말은 TCI states가 적용되도록 스케줄 된 PDSCHs의 전송 시점(시작 시점)이 9번 심볼과 크거나 같으면, 순차적으로 제1 PDSCH에는 TCI state #1, 제2 PDSCH에는 TCI state #2, 제3 PDSCH에는 TCI state #3, 제4 PDSCH에는 TCI state #4를 적용하여 수신할 수 있다.
다른 예로, 기지국이 전송한 PDCCH의 마지막 심볼 인덱스가 2번이고 설정된 timeDurationForQCL 값이 14인 것을 확인한 단말은 TCI states가 적용되도록 스케줄 된 PDSCH(s)의 전송 시점(시작 시점)이 다음 슬롯의 1번 심볼과 크거나 같으면, 순차적으로 제1 PDSCH에는 TCI state #1, 제2 PDSCH에는 TCI state #2, 제3 PDSCH에는 TCI state #3, 제4 PDSCH에는 TCI state #4를 적용하여 수신할 수 있다.
[Alt 1-2]
기지국으로부터 TCI states가 지시된 복수의 PDSCH를 수신하는 단말은 TCI states가 PDSCHs에 적용되는 시점이 설정된 timeDurationForQCL에 기반한 위치보다 이전이면 단말은 DCI에서 지시된 모든 TCI state 정보를 완벽히 순차적으로 PDSCH에 할당할 수는 없을 수 있다.
일례로, 기지국으로부터 TCI states가 지시된 복수의 PDSCH를 수신하는 단말은 복수의 PDSCH 중 첫 PDSCH(예: 제1 PDSCH)의 적어도 하나의 심볼이 timeDurationForQCL에 기반한 위치에 존재하면, 단말은 제1 PDSCH에서 지시한 TCI state #1을 적용하지 않고, default spatial QCL을 적용할 수 있다. default spatial QCL은 가장 최근 슬롯(slot)에서 lowest CORESET ID를 가지는 모니터링 되는 탐색 공간(monitored search space)과 연계된 CORESET내의 PDCCH를 수신하는데 사용된 QCL 파라미터(parameter)를 의미한다. 그리고, 단말은 순차적으로 제2 PDSCH에는 TCI state #2, 제3 PDSCH에는 TCI state #3, 제4 PDSCH에는 TCI state #4를 적용하여 수신할 수 있다. 즉, 16-30과 같이 기지국이 단말에게 제1 PDSCH에 TCI state #1이 적용하도록 지시하였지만, 제1 PDSCH의 시작 심볼이 4번 심볼이고 심볼 길이가 5인 경우, PDCCH의 마지막 심볼 인덱스가 2번이고 timeDurationForQCL 값이 7인 것을 확인한 단말은 제1 PDSCH는 default spatial QCL을 따르고, 나머지 제2 PDSCH 내지 제4 PDSCH는 DCI내 TCI에서 지시한 TCI states #2내지 #4를 적용하여 PDSCH 수신을 위해 빔포밍을 수행한다.
다른 예로, 기지국으로부터 TCI states가 지시된 복수의 PDSCH를 수신하는 단말은 복수의 PDSCH 중 두 번째 PDSCH(예: 제1 PDSCH)의 적어도 하나의 심볼이 timeDurationForQCL에 기반한 위치에 존재하면, 단말은 제1, 제2 PDSCH에서 지시한 TCI state #1, #2를 적용하지 않고, default spatial QCL을 적용할 수 있다. default spatial QCL은 가장 최근 슬롯(slot)에서 lowest CORESET ID를 가지는 모니터링 되는 탐색 공간(monitored search space)과 연계된 CORESET내의 PDCCH를 수신하는데 사용된 QCL 파라미터(parameter)를 의미한다. 그리고, 단말은 순차적으로 제3 PDSCH에는 TCI state #3, 제4 PDSCH에는 TCI state #4를 적용하여 수신할 수 있다. 즉, 기지국이 단말에게 제1, 제2 PDSCH에 TCI state #1, #2이 적용하도록 지시하였지만, 제1 PDSCH의 시작 심볼이 5번 심볼이고 심볼 길이가 3인 경우, PDCCH의 마지막 심볼 인덱스가 2번이고 timeDurationForQCL 값이 7인 것을 확인한 단말은 제1, 제2 PDSCH는 default spatial QCL을 따르고, 나머지 제3, 제4 PDSCH는 DCI내 TCI에서 지시한 TCI states #3, #4를 적용하여 PDSCH 수신을 위해 빔포밍을 수행한다.
default spatial QCL은 상술한 의미 외에도 다음과 같이 확장될 수 있다.
1) 상술한 의미, 즉 가장 최근 slot에서 lowest CORESET ID를 가지는 모니터링 되는 탐색 공간(monitored search space)과 연계된 CORESET내의 PDCCH를 수신하는데 사용된 QCL 파라미터(parameter)
2) MAC-CE 등으로 설정된 default spatial QCL for PDSCH. 이 때 default spatial QCL은 모든 TRP에 대해 동일한 값이 설정되거나, TRP별로 서로 다르게 설정될 수 있다.
3) Default spatial QCL for PDSCH는 RRC로 설정된 PDSCH용 TCI state 중 lowest ID를 갖는 값이나 MAC-CE로 activate된 PDSCH용 TCI state 중 lowest ID를 갖는 값을 의미할 수 있다.
상황에 따라 서로 다른 default spatial QCL이 적용될 수 있다. 예컨대 cross-carrier scheduling 혹은 cross-BWP scheduling의 경우 3)이 적용되며, 이외의 경우에는 1) 또는 2)가 적용될 수 있다. 만일 default spatial QCL for PDSCH를 설정하는 MAC-CE를 지원하는 단말의 경우, 해당 MAC-CE를 activation시키기 전에는 1)이 적용되며 이후에는 2)가 적용될 수 있다.
[Alt 1-3]
다른 예로, 특히 scheme 3의 경우 16-00의 slot 0/1에서 기지국으로부터 TCI states가 지시된 상기 PDSCH를 수신하는 단말은 반복되는 모든 복수의 PDSCHs의 시작 위치가 timeDurationForQCL보다 작으면, 단말은 제1 PDSCH - 제2 PDSCH 또는 제1 PDSCH - 제4 PDSCH를 위해 지시된 TCI states 들을 적용하지 않고, default spatial QCL을 적용할 수 있다. 여기서 default QCL은 single-PDCCH default QCL enhancement에 기반하여 1개, 2개 또는 4개가 설정되어 동작될 수 있다. 즉, slot 1에서 기지국이 단말에게 제1내지 제4 PDSCH에 TCI state #1 내지 #4가 적용하도록 지시하였지만, 상기 제1 PDSCH의 시작 심볼이 4번 심볼이고 심볼 길이가 1인 경우, PDCCH의 마지막 심볼 인덱스가 2번이고 timeDurationForQCL 값이 7인 것을 확인한 단말은 반복되는 모든 복수의 PDSCHs의 시작 위치의 심볼 인덱스가(4,5,6,7번 심볼)가 timeDurationForQCL을 고려한 위치의 심볼 인덱스(9번)보다 작으므로 제1 내지 제4 PDSCH는 default spatial QCL을 따를 수 있다. 이때, 설정된 default QCL은 1개, 2개 또는 4개로 설정되거나 결정할 수 있으며 이를 적용하여 상기 PDSCHs를 수신할 수 있다.
[Alt 1-4]
기지국으로부터 TCI states가 지시된 상기 복수의 PDSCH를 수신하는 단말은 TCI states가 PDSCHs에 적용되는 시점이 설정된 timeDurationForQCL에 기반한 위치보다 이전이면 단말은 겹친 PDSCH의 위치에 상관없이 제1 PDSCH 내지 제4 PDSCH를 위해 지시된 TCI state를 적용하지 않고, 제1 PDSCH내지 제4 PDSCH에 default spatial QCL을 적용할 수 있다.
[Alt 2]
일례로, 기지국으로부터 TCI states가 지시된 상기 복수의 PDSCH를 수신하는 단말은 복수의 PDSCH 중 첫 PDSCH(예: 제1 PDSCH)의 적어도 하나의 심볼이 timeDurationForQCL에 기반한 위치에 존재하면, 단말은 제1 PDSCH에서 지시한 TCI state #1을 적용하지 않고, default spatial QCL을 적용하고, 단말은 순차적으로 제2 PDSCH에는 TCI state #1, 제3 PDSCH에는 TCI state #2, 제4 PDSCH에는 TCI state #3를 적용하여 수신할 수 있다. 즉, 16-30과 같이 기지국이 단말에게 제1 PDSCH에 TCI state #1이 적용하도록 지시하였지만, 제1 PDSCH의 시작 심볼이 4번 심볼이고 심볼 길이가 5인 경우, PDCCH의 마지막 심볼 인덱스가 2번이고 timeDurationForQCL 값이 7인 것을 확인한 단말은 제1 PDSCH는 default spatial QCL을 따르고, 나머지 제2 PDSCH 내지 제4 PDSCH는 DCI내 TCI에서 지시한 TCI states #1내지 #3를 적용하여 PDSCH 수신을 위해 빔포밍을 수행한다. 위와 같이 기지국은 단말의 default QCL을 사전에 고려하여 DCI에서 TCI 관련 정보를 가변하여 지시할 수 있다. 즉, 기지국은 단말이 동작되는 default QCL을 예상하여 TCI state를 {#1, #2, #3, #4}가 아닌 default QCL을 고려하여 {#1, #2, #3}, {#1, #2} 또는 {#1}를 지시할 수 있다. 이때, 기지국은 TCI 필드 또는 TCI stats 관련 상위 레이어 파라미터 필드를 dummy-padded 할 수 있다.
도 16-60은 Alt1 및 Alt2의 다양한 실시예에서 기지국이 단말에게 할당한 복수의 PDSCH 간의 Koffset이 0이 아닌 경우(Koffset의 값이 2로 설정)를 보여준다. 여기서, Koffset으로 변경되는 조건은 timeDurationForQCL에 기반한 위치가 시간측에서 PDSCHs 사이에 위치한 offset 영역에 존재하면, 단말은 offset 이전에 존재하는 PDSCH(s)를 default QCL의 적용 여부를 판단하는 영역으로 고려할 수 있다. 일례로, 기지국이 전송한 PDCCH의 마지막 심볼 인덱스가 2번이고 설정된 timeDurationForQCL 값이 7인 것을 확인한 단말은 TCI states가 적용되도록 스케줄 된 PDSCHs의 전송 시점(시작 시점)이 9번 심볼과 크거나 같으면, 순차적으로 제1 PDSCH에는 TCI state #1, 제2 PDSCH에는 TCI state #2, 제3 PDSCH에는 TCI state #3, 제4 PDSCH에는 TCI state #4를 적용하여 수신할 수 있다.
다른 예로, 기지국이 단말에게 제1 PDSCH에 TCI state #1이 적용하도록 지시하였지만, 제1 PDSCH의 시작 심볼이 4번 심볼이고, 심볼 길이가 4, Koffset이 2인 경우, PDCCH의 마지막 심볼 인덱스가 2번이고 timeDurationForQCL 값이 7인 것을 확인한 단말은 timeDurationForQCL이 제1 PDSCH와 제 2PDSCH 사이의 offset 영역 또는 제2 PDSCH 이전 영역에 존재함을 추가로 확인하여, 제1 PDSCH는 default spatial QCL을 따르고 나머지 제2 PDSCH 내지 제4 PDSCH는 상기 다양한 실시예(alt 1-2)에 따라 각각 반영될 수 있다.
다른 예로, 특히 방법(scheme) 3의 경우 17-00의 slot 0/1에서 기지국으로부터 TCI states가 지시된 상기 PDSCH를 수신하는 단말은 반복되는 모든 복수의 PDSCHs의 시작 위치가 timeDurationForQCL보다 작으면, 단말은 제1 PDSCH - 제2 PDSCH 또는 제1 PDSCH - 제4 PDSCH를 위해 지시된 TCI states 들을 적용하지 않고, default spatial QCL을 적용할 수 있다. 여기서, default QCL은 single-PDCCH default QCL enhancement에 기반하여 1개, 2개가 설정되어 동작될 수 있다. 즉, slot 1에서 기지국이 단말에게 제1내지 제4 PDSCH에 TCI state #1 내지 #2가 적용하도록 지시하였지만, 상기 제1 PDSCH의 시작 심볼이 4번 심볼이고 심볼 길이가 1인 경우, PDCCH의 마지막 심볼 인덱스가 2번이고 timeDurationForQCL 값이 7인 것을 확인한 단말은 반복되는 모든 복수의 PDSCHs의 시작 위치의 심볼 인덱스가(4,5,6,7번 심볼)가 timeDurationForQCL을 고려한 위치의 심볼 인덱스(9번)보다 작으므로 제1 내지 제4 PDSCH는 default spatial QCL을 따를 수 있다. 이때, 설정된 default QCL은 2개로 설정되거나 결정될 수 있으며 이를 적용하여 상기 PDSCHs를 수신할 수 있다.
default spatial QCL은 상술한 의미 외에도 다음과 같이 확장될 수 있다.
1) 상술한 의미, 즉 가장 최근 slot에서 lowest CORESET ID를 가지는 모니터링 되는 탐색 공간(monitored search space)와 연계된 CORESET내의 PDCCH를 수신하는데 사용된 QCL 파라미터(parameter)
2) MAC-CE 등으로 설정된 default spatial QCL for PDSCH. 이 때 default spatial QCL은 모든 TRP에 대해 동일한 값이 설정되거나, TRP별로 서로 다르게 설정될 수 있다.
3) Default spatial QCL for PDSCH는 RRC로 설정된 PDSCH용 TCI state 중 lowest ID를 갖는 값이나 MAC-CE로 activate된 PDSCH용 TCI state 중 lowest ID를 갖는 값을 의미할 수 있다.
상황에 따라 서로 다른 default spatial QCL이 적용될 수 있다. 예컨대 cross-carrier scheduling 혹은 cross-BWP scheduling의 경우 3)이 적용되며, 이외의 경우에는 1) 또는 2)가 적용될 수 있다. 만일 default spatial QCL for PDSCH를 설정하는 MAC-CE를 지원하는 단말의 경우, 해당 MAC-CE를 activation시키기 전에는 1) 가 적용되며 이후에는 2) 가 적용될 수 있다.
[Alt 3, 4]
도 17 및 18처럼 구체적으로 TRPs가 전송하는 TCI states의 수 또는 PDSCH를 전송하는 TRP의 수는 패턴 2와 같이 반복되어 전송되는 PDSCH의 수보다 작을 수 있다.
여기서, 패턴 2d는 다음과 같다.
- 패턴 2(pattern 2): TCI states의 수(TRP들의 수) < 반복 횟수
(Pattern 2 : Number of TCI states (number of TRPs) < number of repetitions)
예를 들어, 단말은 PDCCH를 확인하여 DCI 내 TCI codepoint를 통해 TCI states {#1, #2}가 지시되는 것을 확인하고, PDSCH가 반복하여 총 4회 전송되는 것을 확인할 수 있다. 이처럼 기지국이 PDSCH를 4회 전송하는 방법은 TCI states 적용하는 방법에 따라 아래와 같이 구분될 수 있다
방법 1: Cyclical mapping 방법 (예: 1 st occasion - #1 for TRP1, 2 nd occasion - #2 for TRP2, 3 rd occasion - #1 for TRP1, 4 th ocassion - #2 for TRP2), 각 TRP가 반복 전송하는 횟수만큼(예: 2회) 대응되는 TCI states가 지시되는 경우
방법 2: Sequential mapping 방법 (예: 1 st occasion - #1 for TRP1, 2 nd occasion - #1 for TRP1, 3 rd occasion - #2 for TRP1, 4 th occasion - #2 for TRP2), 각 TRP가 하나의 TCI state에 대응되어 반복(예: 2회) 전송하는 경우
도 17처럼 방법 1 (Cyclical mapping 방법)인 경우에는 TRP 1은 단말에게 제1 PDSCH에 TCI state #1를 적용하여 전송하고, TRP 2는 이어서 제2 PDSCH에 TCI state #2를 적용하여 전송할 수 있다. 연속하여 TRP 1은 제3 PDSCH에 TCI state #1, TRP 2는 제4 PDSCH에 TCI state #2를 적용하여 전송할 수 있다.
이와 달리 도 18처럼 방법 2 (Sequential mapping 방법)인 경우, TRP 1은 단말에게 제1 PDSCH, 제2 PDSCH에 TCI state #1을 적용하여 2회 전송할 수 있다. 이어서 TRP 2는 제3 PDSCH, 제4 PDSCH에 TCI state #2를 적용하여 2회 전송할 수 있다.
기지국은 단말이 방법 1과 방법 2를 구분하도록 상위 레이어 파라미터를 설정할 수 있다. 예컨대, 기지국은 단말에게 RRC 파라미터 RepTCIMapping 에 대한 값을 'CycMapping' 으로 설정한 경우 단말은 방법 1로 동작하며, 파라미터에 대한 값을 'SeqMapping' 으로 설정한 경우 단말은 방법 2로 동작할 수 있다.
기지국은 방법 1 과 방법 2를 구분하기 위해 DCI 내 별도 필드를 활용할 수도 있고, 기존에 있는 TCI 필드를 활용할 수 있다. 또는 RRC에서 방법 1 과 방법 2를 구분할 수 있는 파라미터 또는 비트 자원을 활용할 수 있다. 즉, DCI를 확인한 단말은 지시된 states의 적용 여부를 아래와 같은 판단 과정을 거쳐 수신 빔의 방향을 결정할 수 있다.
[Alt 3-1]
각 TRP에 지시된 TCI states의 값이 반복하여 전송되는 PDSCH의 개수보다 작은 경우, 단말은 방법 1인지를 확인하고 TCI states가 적용되는 PDSCH(s)의 시간측 자원의 위치와 timeDurationForQCL을 비교하여 TCI states의 적용 여부를 판단할 수 있다.
일례로, 단말은 방법 1에서 TCI states가 PDSCHs에 적용되는 시점이 설정된 timeDurationForQCL에 기반한 위치보다 이후이면 단말은 DCI에서 지시된 모든 TCI state 정보가 cyclical하게 PDSCH에 매핑된 것으로 고려할 수 있다. 즉, 기지국이 전송한 PDCCH의 마지막 심볼 인덱스가 2번이고 설정된 timeDurationForQCL 값이 7인 것을 확인한 단말은 TCI states가 적용되도록 스케줄 된 PDSCHs의 전송 시점(시작 시점)이 9번 심볼과 크거나 같으면, 순차적으로 TRP 1에서 할당된 제1 PDSCH에는 TCI state #1, TRP 2에서 할당된 제2 PDSCH에는 TCI state #2, TRP 1에서 할당된 제3 PDSCH에는 TCI state #1, TRP 2에서 할당된 제4 PDSCH에는 TCI state #2 적용하여 수신할 수 있다.
다른 예로, 기지국이 전송한 PDCCH의 마지막 심볼 인덱스가 2번이고 설정된 timeDurationForQCL 값이 14인 것을 확인한 단말은 TCI states가 적용되도록 스케줄 된 PDSCH(s)의 전송 시점(시작 시점)이 다음 슬롯의 1번 심볼과 크거나 같으면, 순차적으로 TRP 1에서 할당된 제1 PDSCH에는 TCI state #1, TRP 2에서 할당된 제2 PDSCH에는 TCI state #2, TRP 1에서 할당된 제3 PDSCH에는 TCI state #1, TRP 2에서 할당된 제4 PDSCH에는 TCI state #2 적용하여 수신할 수 있다.
[Alt 3-2]
기지국으로부터 TCI states가 지시된 복수의 PDSCH를 수신하는 단말은 TCI states가 PDSCHs에 적용되는 시점이 설정된 timeDurationForQCL에 기반한 위치보다 이전이면 단말은 DCI에서 지시된 모든 TCI state 정보를 완벽히 순차적으로 PDSCH에 할당할 수는 없을 수 있다.
일례로, 도 17-00처럼 기지국으로부터 TCI states가 지시된 복수의 PDSCH를 수신하는 단말은 복수의 PDSCH 중 첫 PDSCH(예: 제1 PDSCH)의 적어도 하나의 심볼이 timeDurationForQCL에 기반한 위치에 존재하면, 단말은 제1 PDSCH에서 지시한 TCI state #1을 적용하지 않고, default spatial QCL을 적용할 수 있다. Default spatial QCL은 가장 최근 slot에서 lowest CORESET ID를 가지는 모니터링 되는 탐색 공간(monitored search space)와 연계된 CORESET내의 PDCCH를 수신하는데 사용된 QCL 파라미터(parameter)를 의미한다. 그리고 단말은 순차적으로 TRP 2에서 할당된 제2 PDSCH에는 TCI state #2, TRP 1에서 할당된 제3 PDSCH에는 TCI state #1, TRP 2에서 할당된 제4 PDSCH에는 TCI state #2 적용하여 수신할 수 있다. 즉, 도 17-30처럼 기지국이 단말에게 제1 PDSCH에 TCI state #1이 적용하도록 지시하였지만, 제1 PDSCH의 시작 심볼이 4번 심볼이고 심볼 길이가 5인 경우, PDCCH의 마지막 심볼 인덱스가 2번이고 timeDurationForQCL 값이 7인 것을 확인한 단말은 제1 PDSCH는 default spatial QCL을 따르고, TRP 2에서 할당된 심볼 인덱스가 9번에서 시작되는 제2 PDSCH에는 TCI state #2, TRP 1에서 할당된 다음 슬롯 0번 심볼에서 시작되는 제3 PDSCH에는 TCI state #1, 다음 슬롯 5번 심볼에서 시작되는 TRP 2에서 할당된 제4 PDSCH에는 TCI state #2 적용하여 수신할 수 있다.
제1 PDSCH 또는 제2 PDSCH의 default spatial QCL은 TRP1, TRP2 또는 DCI를 전송한 TRP 중 적어도 하나에 해당되는 것일 수 있다.
[Alt 3-3]
일례로, 기지국으로부터 TCI states가 지시된 복수의 PDSCH를 수신하는 단말은 복수의 PDSCH 중 첫 PDSCH(예: 제1 PDSCH)의 적어도 하나의 심볼이 timeDurationForQCL에 기반한 위치에 존재하면, 단말은 제1 PDSCH에서 지시한 TCI state #1을 적용하지 않고, default spatial QCL을 적용할 수 있다. 그리고 단말은 순차적으로 TRP 2에서 할당된 제2 PDSCH에는 TCI state #2, TRP 1에서 할당된 제3 PDSCH에는 TCI state #1이 아닌 제1 PDSCH에 적용한 default QCL을 적용하고, TRP 2에서 할당된 제4 PDSCH에는 TCI state #2 적용하여 수신할 수 있다.
다른 예로, 기지국으로부터 TCI states가 지시된 복수의 PDSCH를 수신하는 단말은 복수의 PDSCH 중 두 번째 PDSCH(예: 제1 PDSCH)의 적어도 하나의 심볼이 timeDurationForQCL에 기반한 위치에 존재하면, 단말은 제1, 제2 PDSCH에서 지시한 TCI state #1, #2를 적용하지 않고, default spatial QCL을 적용할 수 있다. 그리고 단말은 순차적으로 TRP 1에서 할당된 제3 PDSCH에는 TCI state #1이 아닌 제1 PDSCH에 적용한 default QCL을 적용하고, TRP 2에서 할당된 제4 PDSCH에는 TCI state #2 가 아닌 제2 PDSCH에 적용한 default spatial QCL을 적용할 수 있다. 제1 PDSCH에 적용한 default spatial QCL과 제2 PDSCH에 적용한 default spatial QCL은 서로 동일하면 동일하게 적용되고, 각각 다르게 설정되면 다르게 적용될 수 있다. 또는 제1 PDSCH의 default spatial QCL은 TRP1, TRP2 또는 DCI를 전송한 TRP 중 적어도 하나에 해당되는 것일 수 있다.
[Alt 3-4]
예를 들어, 특히, 방법(scheme) 3의 경우 18-00의 slot 0/1에서 기지국으로부터 TCI states가 지시된 상기 PDSCH를 수신하는 단말은 반복되는 모든 복수의 PDSCHs의 시작 위치가 timeDurationForQCL보다 작으면, 단말은 제1 PDSCH - 제2 PDSCH 또는 제1 PDSCH - 제4 PDSCH를 위해 지시된 TCI states 들을 적용하지 않고, default spatial QCL을 적용할 수 있다. 여기서 default QCL은 single-PDCCH default QCL enhancement에 기반하여 1개, 2개가 설정되어 동작될 수 있다. 즉, slot 1에서 기지국이 단말에게 제1내지 제4 PDSCH에 TCI state #1 내지 #2가 적용하도록 지시하였지만, 상기 제1 PDSCH의 시작 심볼이 4번 심볼이고 심볼 길이가 1인 경우, PDCCH의 마지막 심볼 인덱스가 2번이고 timeDurationForQCL 값이 7인 것을 확인한 단말은 반복되는 모든 복수의 PDSCHs의 시작 위치의 심볼 인덱스가(4,5,6,7번 심볼)가 timeDurationForQCL을 고려한 위치의 심볼 인덱스(9번)보다 작으므로 제1 내지 제4 PDSCH는 default spatial QCL을 따를 수 있다. 이때, 설정된 default QCL은 2개로 설정되거나 결정될 수 있으며 이를 적용하여 상기 PDSCHs를 수신할 수 있다.
[Alt 4-1]
각 TRP에 지시된 TCI states의 값이 반복하여 전송되는 PDSCH의 개수보다 작은 경우, 단말은 방법 2인지를 확인하고 TCI states가 적용되는 PDSCH(s)의 시간측 자원의 위치와 timeDurationForQCL을 비교하여 TCI states의 적용 여부를 판단할 수 있다.
일례로, 단말은 case 1에서 TCI states가 PDSCHs에 적용되는 시점이 설정된 timeDurationForQCL에 기반한 위치보다 이후이면 단말은 DCI에서 지시된 모든 TCI state 정보가 sequential하게 PDSCH에 매핑 된 것으로 고려할 수 있다. 즉, 기지국이 전송한 PDCCH의 마지막 심볼 인덱스가 2번이고 설정된 timeDurationForQCL 값이 7인 것을 확인한 단말은 TCI states가 적용되도록 스케줄 된 PDSCHs의 전송 시점(시작 시점)이 9번 심볼과 크거나 같으면, 순차적으로 TRP 1에서 할당된 제1 PDSCH에는 TCI state #1, TRP 1에서 할당된 제2 PDSCH에는 TCI state #1, TRP 2에서 할당된 제3 PDSCH에는 TCI state #2, TRP 2에서 할당된 제4 PDSCH에는 TCI state #2 적용하여 수신할 수 있다.
다른 예로, 기지국이 전송한 PDCCH의 마지막 심볼 인덱스가 2번이고 설정된 timeDurationForQCL 값이 14인 것을 확인한 단말은 TCI states가 적용되도록 스케줄 된 PDSCH(s)의 전송 시점(시작 시점)이 다음 슬롯의 1번 심볼과 크거나 같으면, 순차적으로 TRP 1에서 할당된 제1 PDSCH에는 TCI state #1, TRP 1에서 할당된 제2 PDSCH에는 TCI state #1, TRP 1에서 할당된 제3 PDSCH에는 TCI state #2, TRP 2에서 할당된 제4 PDSCH에는 TCI state #2 적용하여 수신할 수 있다.
[Alt 4-2]
기지국으로부터 TCI states가 지시된 복수의 PDSCH를 수신하는 단말은 TCI states가 PDSCHs에 적용되는 시점이 설정된 timeDurationForQCL에 기반한 위치보다 이전이면 단말은 DCI에서 지시된 모든 TCI state 정보를 완벽히 순차적으로 PDSCH에 할당할 수는 없을 수 있다.
일례로, 도 18-00과 같이 기지국으로부터 TCI states가 지시된 복수의 PDSCH를 수신하는 단말은 복수의 PDSCH 중 첫 PDSCH(예: 제1 PDSCH)의 적어도 하나의 심볼이 timeDurationForQCL에 기반한 위치에 존재하면, 단말은 제1 PDSCH에서 지시한 TCI state #1을 적용하지 않고, default spatial QCL을 적용할 수 있다. default spatial QCL은 가장 최근 slot에서 lowest CORESET ID를 가지는 모니터링 되는 탐색 공간(monitored search space)와 연계된 CORESET내의 PDCCH를 수신하는데 사용된 QCL 파라미터(parameter)를 의미한다. 그리고 단말은 순차적으로 TRP 1에서 할당된 제2 PDSCH에는 TCI state #1, TRP 2에서 할당된 제3 PDSCH에는 TCI state #2, TRP 2에서 할당된 제4 PDSCH에는 TCI state #2 적용하여 수신할 수 있다. 즉, 도 18-30과 같이 기지국이 단말에게 제1 PDSCH에 TCI state #1이 적용하도록 지시하였지만, 제1 PDSCH의 시작 심볼이 4번 심볼이고 심볼 길이가 5인 경우, PDCCH의 마지막 심볼 인덱스가 2번이고 timeDurationForQCL 값이 7인 것을 확인한 단말은 제1 PDSCH는 default spatial QCL을 따르고, TRP 1에서 할당된 심볼 인덱스가 9번에서 시작되는 제2 PDSCH에는 TCI state #1, TRP 2에서 할당된 다음 슬롯 0번 심볼에서 시작되는 제3, 제4 PDSCH에는 TCI state #2를 적용하여 수신할 수 있다. 상기 제1 PDSCH의 default QCL은 TRP1, TRP2 또는 DCI를 전송한 TRP 중 적어도 하나에 해당되는 것일 수 있다. default spatial QCL은 [Alt 3-2]에서 언급한 default spatial QCL일 수 있다.
[Alt 4-3]
일례로, 기지국으로부터 TCI states가 지시된 복수의 PDSCH를 수신하는 단말은 복수의 PDSCH 중 첫 또는 두 번째 PDSCH (예: 제1 PDSCH 또는 제2 PDSCH)의 적어도 하나의 심볼이 timeDurationForQCL에 기반한 위치에 존재하면, 단말은 제1 PDSCH에서 지시한 TCI state #1을 적용하지 않고, default spatial QCL을 적용할 수 있다. 그리고 단말은 순차적으로 TRP 1에서 할당된 제2 PDSCH에 default spatial QCL을 적용하고, TRP 2에서 할당된 제3, 제4 PDSCH에는 TCI state #2를 적용하여 수신할 수 있다.
다른 예로, 기지국으로부터 TCI states가 지시된 복수의 PDSCH를 수신하는 단말은 복수의 PDSCH 중 두 번째 PDSCH(예: 제1 PDSCH)의 적어도 하나의 심볼이 timeDurationForQCL에 기반한 위치에 존재하면, 단말은 제1 내지 제4 PDSCH에서 공통적으로 default spatial QCL을 적용할 수 있다. 제1, 제3 PDSCH의 default QCL은 TRP1, TRP2 또는 DCI를 전송한 TRP 중 적어도 하나에 해당되는 것일 수 있다.
[Alt 4-4]
예를 들어, 특히, 방법(scheme) 3의 경우 18-00의 slot 0/1에서 기지국으로부터 TCI states가 지시된 상기 PDSCH를 수신하는 단말은 반복되는 모든 복수의 PDSCHs의 시작 위치가 timeDurationForQCL보다 작으면, 단말은 제1 PDSCH - 제2 PDSCH 또는 제1 PDSCH - 제4 PDSCH를 위해 지시된 TCI states 들을 적용하지 않고, default spatial QCL을 적용할 수 있다. 여기서 default QCL은 single-PDCCH default QCL enhancement에 기반하여 1개, 2개가 설정되어 동작될 수 있다. 즉, slot 1에서 기지국이 단말에게 제1내지 제4 PDSCH에 TCI state #1 내지 #2가 적용하도록 지시하였지만, 상기 제1 PDSCH의 시작 심볼이 4번 심볼이고 심볼 길이가 1인 경우, PDCCH의 마지막 심볼 인덱스가 2번이고 timeDurationForQCL 값이 7인 것을 확인한 단말은 반복되는 모든 복수의 PDSCHs의 시작 위치의 심볼 인덱스가(4,5,6,7번 심볼)가 timeDurationForQCL을 고려한 위치의 심볼 인덱스(9번)보다 작으므로 제1 내지 제4 PDSCH는 default spatial QCL을 따를 수 있다. 이때, 설정된 default QCL은 2개로 설정되거나 결정될 수 있으며 이를 적용하여 상기 PDSCHs를 수신할 수 있다.
상기 Alt 3/4에서 서술된 default spatial QCL은 상술한 의미 외에도 다음과 같이 확장되어 모든 실시예에 적용될 수 있다.
1) 상술한 의미, 즉 가장 최근 slot에서 lowest CORESET ID를 가지는 모니터링 되는 탐색 공간(monitored search space)과 연계된 CORESET내의 PDCCH를 수신하는데 사용된 QCL 파라미터(parameter)
2) MAC-CE 등으로 설정된 default spatial QCL for PDSCH. 이 때 default spatial QCL은 모든 TRP에 대해 동일한 값이 설정되거나, TRP별로 서로 다르게 설정될 수 있다.
3) Default spatial QCL for PDSCH는 RRC로 설정된 PDSCH용 TCI state 중 lowest ID를 갖는 값이나 MAC-CE로 activate된 PDSCH용 TCI state 중 lowest ID를 갖는 값을 의미할 수 있다.
상황에 따라 서로 다른 default spatial QCL이 적용될 수 있다. 예컨대 cross-carrier scheduling 혹은 cross-BWP scheduling의 경우 3)이 적용되며, 이외의 경우에는 1) 또는 2)가 적용될 수 있다. 만일 default spatial QCL for PDSCH를 설정하는 MAC-CE를 지원하는 단말의 경우, 해당 MAC-CE를 activation시키기 전에는 1)이 적용되며 이후에는 2)가 적용될 수 있다.
4) DCI 필드 내 TCI로써 설정된 TCI states 중에서 가장 작은(lowest) codepoint에 대응 하는 TCI state(s)를 default QCL로 사용할 수 있다. 일례로, lowest codepoint는 TCI필드의 codepoints 중에서 codepoint의 index 값 자체가 가장 작은 값을 갖는 것을 의미할 수 있다. 이때, lowest codepoint는 2개 또는 그 이상의 TCI states를 포함할 수 있다. 다른 예로, lowest codepoint는 TCI필드의 복수의 codepoint 중에서의 적어도 2개 이상의 TCI states를 포함하는 codepoints 중에서 가장 작은 값(index)를 갖는 것을 의미할 수도 있다.
예를 들어, lowest codepoint가 지시하는 TCI states가 2개인 경우, 첫 번째 위치하는 TCI state와 두 번째 위치하는 TCI state 모두를 default QCL로 결정할 수 있다. 즉, 결정된 첫 번째, 두 번째 TCI state 모두가 default QCL로 결정되면, 단말은 첫 번째, 두 번째 TCI states 모두를 따라서 빔포밍을 수행할 수 있다. 다른 예로, lowest codepoint가 지시하는 TCI states가 2개인 경우, 첫 번째 위치하는 TCI state와 두 번째 위치하는 TCI state 중 적어도 하나를 default QCL로 결정할 수 있다. 즉, 첫 번째 위치하는 TCI state만을 default QCL로 결정되면, 단말은 첫 번째 TCI state만을 따라 빔포밍을 수행할 수 있고, 두 번째 위치하는 TCI state만을 default QCL로 결정되면, 단말은 두 번째 TCI state만을 따라 빔포밍을 수행할 수 있다. 위에서 설명한 둘 중 하나의 TCI state를 default QCL로 결정하는 방법은 기지국과 단말의 설정 또는 사전에 결정된 동작을 따를 수 있다.
5) 모든 TCI codepoints가 하나의 single TCI state를 포함하고 매핑이 되는 경우, Rel-15 기반의 기지국/단말 동작을 따른다.
위에서 설명한 default QCL 동작은 UE capability에서 정의되는 특징일 수 있다.
6) 상기 1) ~ 5)에서 설명한 default QCL 동작은 UE capability에서 정의되는 특징일 수 있다. 일례로, 단말은 2 개의 TCI state를 포함하는 default QCL 동작을 수행할 수 있음을 UE capability로 보고할 수 있고, 기지국은 해당 단말에 대해 상위 레이어 시그널링으로 2 개의 TCI state를 포함하는 default QCL 동작 수행 가능 여부를 설정할 수 있다. 따라서, 보고된 UE capability에 따라 default QCL 동작이 달라질 수 있다. 만약, 단말이 UE capability를 통해 2 개의 TCI state를 포함하는 default QCL 동작 수행이 가능함을 기지국으로 보고하고, 기지국이 해당 단말에 대해 상위 레이어 시그널링으로 2 개의 TCI state를 포함하는 default QCL 동작을 수행하도록 설정하며, TCI codepoint 중 2 개의 TCI state를 포함하는 codepoint가 적어도 1개 활성화 되어있고, 해당 서빙 셀 내의 PDSCH에 설정된 TCI state 중 적어도 1개가 QCL-TypeD를 포함하는 경우, default QCL 동작 수행 조건이 적용되는 상황에서 2개의 TCI state를 포함하는 codepoint들 중 가장 낮은 index의 TCI codepoint를 이용한다. 일례로, 특히 scheme 3 또는 4에 대해, 만약 scheme 3 또는 4를 지시하기 위한 PDCCH를 수신한 후, 해당 PDCCH가 지시한 복수 개의 PDSCH 중 적어도 1개와 PDCCH 간의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧으면, 단말은 해당 PDCCH로 스케줄링된 모든 PDSCH에 대해 2개의 TCI state를 포함하는 default QCL 동작을 적용하여 수신할 수 있다. 이 때, 첫번째 PDSCH를 수신할 때는 default QCL 동작에 포함된 2개의 TCI state 중 첫번째 TCI state를 적용하고, 두번째 PDSCH를 수신할 때는 포함된 2개의 TCI state 중 두번째 TCI state를 적용할 수 있다. 또한, 모든 PDSCH를 수신할 때 단말 구현으로 default QCL 동작에 포함된 2개의 TCI state 중 임의의 TCI state를 적용하여 수신할 수도 있다. 일례로, scheme 4에 대해, cyclical 매핑이 설정된 단말에게 4개의 PDSCH 전송이 스케줄링된 경우, 제1, 제3 PDSCH에는 default TCI codepoint의 첫번째 TCI state를 적용하고, 제2, 제4 PDSCH에는 default TCI codepoint의 두번째 TCI state를 적용하여 수신할 수 있다. 또한, scheme 4에 대해, sequential 매핑이 설정된 단말에게 4개의 PDSCH 전송이 스케줄링 된 경우, 제1, 제2 PDSCH에는 default TCI codepoint의 첫번째 TCI state를 적용하고, 제3, 제4 PDSCH에는 default TCI codepoint의 두번째 TCI state를 적용하여 수신할 수도 있다. 또다른 일례로, scheme 3 또는 4에 대해, 만약 scheme 3 또는 4를 지시하기 위한 PDCCH를 수신한 후, 해당 PDCCH가 지시한 복수 개의 PDSCH 중 일부와 PDCCH 간의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧고 나머지 PDSCH와 PDCCH 간의 시간 간격이 단말이 보고한 beam 변경 시간 제한 (일례로, timeDurationForQCL)보다 길다면, 단말은 PDCCH 수신과의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧은 일부 PDSCH들의 수신에 대해 2개의 TCI state를 포함하는 default QCL 동작을 적용하여 수신할 수 있다. 또한, PDCCH 수신과의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 긴 일부 PDSCH들의 수신에 대해서는 PDCCH에서 지시된 TCI state를 적용하여 수신할 수 있다. 이 때, scheme 3를 위한 복수 개의 PDSCH 전송을 지시하는 PDCCH를 수신한 후, PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧은 PDSCH들에 대해 2개의 default TCI를 순서대로 적용하다가, PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 긴 PDSCH들에 대해 2개의 indicated TCI를 순서대로 적용할 수 있다. 보다 구체적으로, scheme 3로 스케줄된 2개의 PDSCH 전송을 지시하는 PDCCH를 수신한 후, 첫 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧고, 두 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 길다면, 단말은 첫 번째 PDSCH에 대해 default TCI#1을 적용하고, default TCI에서 적용된 인덱스를 초기화하고 두 번째 PDSCH에 대해 indicated TCI#1을 적용하여 수신할 수 있다. 같은 예시에서, 단말은 첫 번째 PDSCH에 대해 default TCI#1을 적용하고, default TCI에서 적용된 마지막 인덱스를 고려하여 두 번째 PDSCH에 대해서는 indicated TCI#2를 적용하여 수신할 수 있다. 또한, scheme 4에 대해 cyclical 매핑이 설정된 스케줄된 PDSCH의 개수가 4개이고 첫 번째 및 두 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧고, 세 번째 및 네 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 긴 경우에는, 단말은 첫 번째 및 두 번째 PDSCH에 대해 각각 default TCI#1, default TCI#2를 적용하여 수신할 수 있고, 세 번째 및 네 번째 PDSCH에 대해 각각 indicated TCI state#1, indicated TCI state#2를 적용하여 수신할 수 있다. 이 때, scheme 3와 4에 대해 단말이 사용할 수 있는 최대 TCI state 개수는 2개이고, 상기의 예시에서는 복수 개의 PDSCH 수신에 default TCI#1, default TCI#2, indicated TCI#1, indicated TCI#2의 총 4개의 TCI state가 사용되었으므로, 단말은 default TCI#1 = indicated TCI#1이고 default TCI#2 = indicated TCI#2이거나, 혹은 default TCI#1 = indicated TCI#2이고 default TCI#2 = indicated TCI#1인 것을 기대할 수 있다. 또 다른 예로, scheme 4에 대해 cyclical 매핑이 설정된 스케줄된 PDSCH의 개수가 4개이고 첫 번째 내지 세 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧고, 네 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 긴 경우에는, 단말은 첫 번째, 두 번째, 세 번째 PDSCH에 대해 각각 default TCI#1, default TCI#2, default TCI#1을 적용하여 수신할 수 있고, default TCI에서 적용된 인덱스를 초기화하고 네 번째 PDSCH에 대해서는 indicated TCI state#1를 적용하여 수신할 수 있다. 이 때, scheme 3와 4에 대해 단말이 사용할 수 있는 최대 TCI state 개수는 2개이고, 상기의 예시에서는 복수 개의 PDSCH 수신에 default TCI#1, default TCI#2, indicated TCI#1의 총 3개의 TCI state가 사용되었으므로, 단말은 indicated TCI#1는 default TCI#1 혹은 default TCI#2와 같은 것을 기대할 수 있다. 즉, indicated TCI#1= default TCI#1 이거나, 혹은 indicated TCI#1 = default TCI#2인 것을 기대할 수 있다. 같은 예시에서, 단말은 첫 번째, 두 번째, 세 번째 PDSCH에 대해 각각 default TCI#1, default TCI#2, default TCI#1을 적용하여 수신할 수 있고, default TCI에서 적용된 마지막 인덱스를 고려하여 네 번째 PDSCH에 대해서는 indicated TCI state#2를 적용하여 수신할 수 있다. 이 때, scheme 3와 4에 대해 단말이 사용할 수 있는 최대 TCI state 개수는 2개이고, 상기의 예시에서는 복수 개의 PDSCH 수신에 default TCI#1, default TCI#2, indicated TCI#2의 총 3개의 TCI state가 사용되었으므로, 단말은 indicated TCI#2는 default TCI#1 혹은 default TCI#2와 같은 것을 기대할 수 있다. 즉, indicated TCI#2= default TCI#1 이거나, 혹은 indicated TCI#2 = default TCI#2인 것을 기대할 수 있다. 또 다른 예를 들어, sequential 매핑이 설정된 스케줄된 PDSCH의 개수가 4개이고 첫 번째 내지 세 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧고, 네 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 긴 경우에는, 단말은 첫 번째, 두 번째, 세 번째 PDSCH에 대해 각각 default TCI#1, default TCI#1, default TCI#2을 적용하여 수신할 수 있고, default TCI에서 적용된 인덱스를 초기화하고 네 번째 PDSCH에 대해서는 indicated TCI state#1를 적용하여 수신할 수 있다. 이 때, scheme 3와 4에 대해 단말이 사용할 수 있는 최대 TCI state 개수는 2개이고, 상기의 예시에서는 복수 개의 PDSCH 수신에 default TCI#1, default TCI#2, indicated TCI#1의 총 3개의 TCI state가 사용되었으므로, 단말은 indicated TCI#1는 default TCI#1 혹은 default TCI#2와 같은 것을 기대할 수 있다. 즉, indicated TCI#1= default TCI#1 이거나, 혹은 indicated TCI#1 = default TCI#2인 것을 기대할 수 있다. 같은 예시에서, 단말은 첫 번째, 두 번째, 세 번째 PDSCH에 대해 각각 default TCI#1, default TCI#1, default TCI#2을 적용하여 수신할 수 있고, default TCI에서 적용된 마지막 인덱스를 고려하여 네 번째 PDSCH에 대해서는 indicated TCI state#2를 적용하여 수신할 수 있다. 이 때, scheme 3와 4에 대해 단말이 사용할 수 있는 최대 TCI state 개수는 2개이고, 상기의 예시에서는 복수 개의 PDSCH 수신에 default TCI#1, default TCI#2, indicated TCI#2의 총 3개의 TCI state가 사용되었으므로, 단말은 indicated TCI#2는 default TCI#1 혹은 default TCI#2와 같은 것을 기대할 수 있다. 즉, indicated TCI#2= default TCI#1 이거나, 혹은 indicated TCI#2 = default TCI#2인 것을 기대할 수 있다.
만약, 단말이 2개의 TCI state를 포함하는 default QCL 동작 수행에 대해 UE capability로 불가능함을 보고하고, 기지국이 해당 단말에 대해 상위 레이어 시그널링으로 2개의 TCI state를 포함하는 default QCL 동작을 수행하지 않도록 설정하며, TCI codepoint 중 2개의 TCI state를 포함하는 codepoint가 없는 경우, default QCL 동작 수행 조건이 적용되는 상황에서 가장 최근 슬롯에서 가장 낮은 controlResourceSetId에 해당하는 CORESET을 수신할 때 사용하는 QCL 가정을 따를 수 있다 또한, 이 외에도 상기 언급한 다양한 default QCL 동작을 적용할 수 있으며 이 때 적용할 수 있는 default QCL의 개수가 1개로 제한될 수 있다. 일례로, scheme 3 또는 4에 대해, 만약 scheme 3 또는 4를 지시하기 위한 PDCCH를 수신한 후, 해당 PDCCH가 지시한 복수 개의 PDSCH 중 적어도 1개와 PDCCH 간의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧으면, 단말은 해당 PDCCH로 스케줄링된 모든 PDSCH에 대해 1개의 TCI만을 적용할 수 있는 default QCL 동작을 적용하여 수신할 수 있다. 일례로, scheme 4에 대해, cyclical 매핑 혹은 sequential 매핑이 설정된 단말에게 4개의 PDSCH 전송이 스케줄링된 경우, 제1 ~ 제4 PDSCH에 모두 1개의 TCI만을 적용할 수 있는 default QCL 동작을 적용하여 수신할 수 있다. 또다른 일례로, scheme 3 또는 4에 대해, 만약 scheme 3 또는 4를 지시하기 위한 PDCCH를 수신한 후, 해당 PDCCH가 지시한 복수 개의 PDSCH 중 일부와 PDCCH 간의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧고 나머지 PDSCH와 PDCCH 간의 시간 간격이 단말이 보고한 beam 변경 시간 제한 (일례로, timeDurationForQCL)보다 길다면, 단말은 PDCCH 수신과의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧은 일부 PDSCH들의 수신에 대해 1개의 TCI만을 적용할 수 있는 default QCL 동작을 적용하여 수신할 수 있다. 또한, PDCCH 수신과의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 긴 일부 PDSCH들의 수신에 대해서는 PDCCH에서 지시된 TCI state를 적용하여 수신할 수 있다. 이 때, scheme 3를 위한 복수 개의 PDSCH 전송을 지시하는 PDCCH를 수신한 후, PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧은 PDSCH들에 대해 1개의 TCI만을 적용할 수 있는 default TCI를 적용하다가, PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 긴 PDSCH들에 대해 2개의 indicated TCI를 순서대로 적용할 수 있다. 보다 구체적으로, scheme 3로 스케줄된 2개의 PDSCH 전송을 지시하는 PDCCH를 수신한 후, 첫 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧고, 두 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 길다면, 단말은 첫 번째 PDSCH에 대해 default TCI#1을 적용하고, default TCI에서 적용된 인덱스를 초기화하고 두 번째 PDSCH에 대해 indicated TCI#1을 적용하여 수신할 수 있다. 같은 예시에서, 단말은 첫 번째 PDSCH에 대해 default TCI#1을 적용하고, default TCI에서 적용된 마지막 인덱스를 고려하여 두 번째 PDSCH에 대해서는 indicated TCI#2를 적용하여 수신할 수 있다. 또한, scheme 4에 대해 cyclical 매핑이 설정된 스케줄된 PDSCH의 개수가 4개이고 첫 번째 및 두 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧고, 세 번째 및 네 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 긴 경우에는, 단말은 첫 번째 및 두 번째 PDSCH에 대해 모두 default TCI#1을 적용하여 수신할 수 있고, default TCI로 적용된 인덱스를 초기화하고 세 번째 및 네 번째 PDSCH에 대해 각각 indicated TCI state#1, indicated TCI state#2를 적용하여 수신할 수 있다. 같은 예시에서, 단말은 첫 번째 및 두 번째 PDSCH에 대해 모두 default TCI#1을 적용하여 수신할 수 있고, default TCI로 적용된 인덱스를 고려하여 세 번째 및 네 번째 PDSCH에 대해 각각 indicated TCI state#2, indicated TCI state#1를 적용하여 수신할 수 있다. 이 때, scheme 3와 4에 대해 단말이 사용할 수 있는 최대 TCI state 개수는 2개이고, 상기의 예시에서는 복수 개의 PDSCH 수신에 default TCI#1, indicated TCI#1, indicated TCI#2의 총 3개의 TCI state가 사용되었으므로, 단말은 default TCI#1는 indicated TCI#1 혹은 indicated TCI#2와 같은 것을 기대할 수 있다. 즉, default TCI#1= indicated TCI#1 이거나, 혹은 default TCI#1 = indicated TCI#2인 것을 기대할 수 있다. 또 다른 예로, scheme 4에 대해 cyclical 매핑이 설정된 스케줄된 PDSCH의 개수가 4개이고 첫 번째 내지 세 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧고, 네 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 긴 경우에는, 단말은 첫 번째, 두 번째, 세 번째 PDSCH에 대해 모두 default TCI#1을 적용하여 수신할 수 있고, default TCI에서 적용된 인덱스를 초기화하고 네 번째 PDSCH에 대해서는 indicated TCI state#1를 적용하여 수신할 수 있다. 같은 예시에서, 단말은 첫 번째, 두 번째, 세 번째 PDSCH에 대해 모두 default TCI#1을 적용하여 수신할 수 있고, default TCI에서 적용된 마지막 인덱스를 고려하여 네 번째 PDSCH에 대해서는 indicated TCI state#2를 적용하여 수신할 수 있다. 또 다른 예로, sequential 매핑이 설정된 스케줄된 PDSCH의 개수가 4개이고 첫 번째 내지 세 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧고, 네 번째 PDSCH는 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 긴 경우에는, 단말은 첫 번째, 두 번째, 세 번째 PDSCH에 대해 모두 default TCI#1을 적용하여 수신할 수 있고, default TCI에서 적용된 인덱스를 초기화하고 네 번째 PDSCH에 대해서는 indicated TCI state#1를 적용하여 수신할 수 있다. 같은 예시에서, 단말은 첫 번째, 두 번째, 세 번째 PDSCH에 대해 모두 default TCI#1을 적용하여 수신할 수 있고, default TCI에서 적용된 마지막 인덱스를 고려하여 네 번째 PDSCH에 대해서는 indicated TCI state#2를 적용하여 수신할 수 있다. 또한, 만약 단말이 2개의 TCI state를 포함하는 default QCL 동작 수행에 대해 UE capability로 불가능함을 보고하고, 기지국이 해당 단말에 대해 상위 레이어 시그널링으로 2개의 TCI state를 포함하는 default QCL 동작 수행을 하지 않도록 설정한 경우, 단말은 scheme 3 또는 4로 스케줄되는 모든 PDSCH에 대해 PDCCH와의 시간 간격이 단말이 보고한 beam 변경 시간 제한(일례로, timeDurationForQCL)보다 짧은 것을 기대하지 않을 수 있다. 또한, 상기 언급한 동작은 만약 단말이 2개의 TCI state를 포함하는 default QCL 동작 수행에 대해 UE capability로 가능함을 보고하고, 기지국이 해당 단말에 대해 상위 레이어 시그널링으로 2개의 TCI state를 포함하는 default QCL 동작 수행이 불가능함을 설정한 경우에 대해서도 동일하게 적용이 가능할 수 있다.
일례로, 도 17과 같이 cyclical 매핑이 설정된(CycMapping is enabled) 단말은 Alt 3-2내지 4의 경우 TRP 1에서 전송한 제1 PDSCH에 적용한 default spatial QCL로서 lowest codepoint의 첫 번째 위치하는 TCI state를 적용하고, TRP 2에서 전송한 제2 PDSCH에 적용한 default spatial QCL로서 lowest codepoint의 두 번째 위치하는 TCI state를 적용할 수 있다. 또한, TRP 3에서 전송한 제1 PDSCH에 적용한 default spatial QCL로써 첫 번째 위치하는 TCI state 또는 scheduling DCI에서 지시한 TCI states를 적용하고, TRP 4에서 전송한 제2 PDSCH에 적용한 default spatial QCL로서 두 번째 위치하는 TCI state 또는 scheduling DCI에서 지시한 TCI states를 적용할 수 있다.
다른 예로, 도 18과 같이 cyclical 매핑이 설정된(CycMapping is enabled) 단말은 Alt 4-2내지 4의 조건에서, TRP 1에서 전송한 제1, 2 PDSCH에 적용한 default spatial QCL로서 lowest codepoint의 첫 번째 위치하는 TCI state를 적용하고, TRP 3, 4에서 전송한 제2 PDSCH에 적용한 default spatial QCL로서 lowest codepoint의 두 번째 위치하는 TCI state 또는 scheduling DCI에서 지시한 TCI states를 적용할 수 있다.
단말은 PDSCH 전송이 2개보다 큰 레이어(layers)을 수신할 것을 기대하지 않는다. 즉, 최대 2개의 레이어를 수신하도록 제한될 것이다. 이때, 만일 모든 PDSCH occasion이 첫번째 TCI state를 적용하는 경우, 적용되는 RV는 pdsch-AggregationFactor가 설정되면 표18-1과 같이 적용되며, 여기서 n 값은 첫 번째 TCI state와 연계된 PDSCH 전송 occasions 만을 고려하여 계산(count) 한다. 또한, 만일 두 번째 TCI state와 연계된 PDSCH 전송 occasion에 적용되는 RV는 pdsch-AggregationFactor가 설정되면 표18-2과 같이 적용되고 각각의 rv s를 위한 추가적인 shifting 계산은 상위 레이어 RVSeqOffset에 의해 설정된다. 여기서, n 값은 두 번째 TCI state와 연계된 PDSCH 전송 occasions 만을 고려하여 계산(count)한다.
[표 18-1] 적용된 redundancy version
Figure PCTKR2020015658-appb-img-000053
[표 18-2] 2번째 TCI에 적용된 redundancy version
Figure PCTKR2020015658-appb-img-000054
도 18-60은 Alt3 및 Alt4의 다양한 실시예에서 기지국이 단말에게 할당한 복수의 PDSCH 간의 Koffset이 0이 아닌 경우(Koffset의 값이 2로 설정)를 보여준다. 여기서, Koffset으로 변경되는 조건은 timeDurationForQCL에 기반한 위치가 시간축에서 PDSCHs 사이에 위치한 offset 영역(경계 포함)에 존재하면, 단말은 offset 이전에 존재하는 PDSCH(s)를 default QCL의 적용 여부를 판단하는 영역으로 고려할 수 있다. 일례로, 기지국이 전송한 PDCCH의 마지막 심볼 인덱스가 2번이고 설정된 timeDurationForQCL 값이 7인 것을 확인한 단말은 TCI states가 적용되도록 스케줄 된 PDSCHs의 전송 시점(시작 시점)이 9번 심볼과 크거나 같으면, TRP 1에서 할당된 제1 PDSCH에는 TCI state #1, TRP 2에서 할당된 제2 PDSCH에는 TCI state #2, TRP 1에서 할당된 제3 PDSCH에는 TCI state #1, TRP 2에서 할당된 제4 PDSCH에는 TCI state #2 적용하여 수신할 수 있다.
다른 예로, 기지국이 단말에게 제1 PDSCH에 TCI state #1이 적용하도록 지시하였지만, 제1 PDSCH의 시작 심볼이 4번 심볼이고, 심볼 길이가 4, Koffset이 2인 경우, PDCCH의 마지막 심볼 인덱스가 2번이고 timeDurationForQCL 값이 7인 것을 확인한 단말은 timeDurationForQCL이 제1 PDSCH와 제 2PDSCH 사이의 offset 영역 또는 제2 PDSCH 이전 영역에 존재함을 추가로 확인하여, 제1 PDSCH는 default spatial QCL을 따르고 나머지 제2 PDSCH 내지 제4 PDSCH는 상기 다양한 실시예(alt 3 및 4)에 따라 각각 반영될 수 있다.
도 19는 본 개시의 실시예에 따른 단말의 동작 방법을 나타내는 순서도이다.
도 19를 참조하면, 단말이 NC-JT전송 기반의 PDSCH를 수신하는 방법 및 default QCL 가정을 설명한다.
단말은 기지국과 RRC 설정 과정에서 기지국 빔포밍에 관련된 파라미터 (tci-PresentinDCI, RepTCIMapping), 제어채널과 데이터 채널을 위한 파라미터 또는 설정 정보(PDDCH-config, PDSCH-config) 중 적어도 하나를 포함하는 적어도 하나의 설정 정보를 수신(19-00)할 수 있다. 상기 RepTCIMapping 파라미터의 설정 값에 따라 단말은 기지국의 반복 전송되는 데이터, 자원관련 정보, 빔포밍 패턴 등 확인할 수 있다.
또한, 단말은 기지국에게 UE capability 정보 (timeDurationForQCL)를 송신(19-00)할 수 있다. 단말은 기지국의 요청에 의해 또는 미리 정해진 시점 (예를 들어, 기지국과의 RRC 설정 과정에서)에 상기 UE capability 정보를 송신할 수 있다. 따라서, 기지국이 단말의 Capability 정보를 수신한 경우 상기 Capability의 수신 과정은 생략될 수 있다. 혹은 상기 설정 정보에 따라 Capability를 수신하는 단계 자체가 생략될 수도 있다.
이후 단말은 기지국으로부터 상기 설정 정보를 기반으로 특정 CORESET에서 제1 PDCCH를 수신한다.
또한 단말은 상기 PDCCH 및 복수의 PDSCHs를 위한 자원 할당 정보, TCI 관련 정보, 안테나 포트 정보 등 중에서 적어도 하나를 확인(19-10)할 수 있다. 상기 복수의 PDSCHs(예: 2개의 PDSCHs, 4개의 PDSCHs 등)는 도 16내지 18에서 설명한 반복 전송되는 데이터, 자원관련 정보, 빔포밍 패턴 기반으로 반복 전송될 수 있다.
상기 확인된 정보를 기반으로 단말은 상기 PDCCH와 상기 PDSCHs 중 적어도 하나의 PDSCH 사이 (예: PDDCH와 각 제N PDSCH 사이 중 적어도 하나, N 값은 2, 4 또는 그 이상의 정수)의 scheduling time offset 계산하고, 상기 계산 결과를 기반으로 각 제N PDSCH (예: N 값은 2, 4 또는 그 이상의 정수) 수신 동작 (또는 수신 동작 방법) 또는 수신 빔포밍 방향 중 적어도 하나를 결정(19-20)할 수 있다. 일례로, 단말이 수신 동작 방법을 결정하는 것은 각 제1 PDSCH 또는 제2 PDSCH 중 적어도 하나를 통해 데이터를 수신할지 여부를 결정하는 것 또는 데이터를 수신하기로 결정한 경우 데이터를 수신하기 위한 방법 중 적어도 하나를 결정하는 것을 포함할 수 있다. 다른 예로, 단말이 수신 동작 방법을 결정하는 것은 각 제N PDSCH 중 적어도 하나를 통해 데이터를 수신할지 여부를 결정하는 것 또는 각 제N PDSCH 데이터를 수신하기로 결정한 경우 데이터를 수신을 위한 반복 전송되는 데이터, 자원관련 정보, 빔포밍 패턴을 결정하는 것을 포함할 수 있다.
단말은 상기 확인된 정보(19-10) 및 상기 결정(19-20) 결과 중 적어도 하나를 기반으로 상기 제1 PDCCH 또는 제2 PDCCH에 상응하는 제1PDSCH 및 제1PDSCH를 통해 데이터를 수신할 수 있다 (19-30).
그리고, 단말은 상기 수신된 데이터의 디코딩을 수행할 수 있다.
도 20은 본 개시의 실시예에 따라 단말이 NC-JT전송 기반의 PDSCH를 수신하는 방법 및 default QCL 가정을 설명한다.
UE feature에 따라 maxNumberActiveTCI-PerBWP가 1인 단말은 관련 UE capability 관련 정보를 기지국에게 보고 할 수 있다. 상기 단말은 각 CC 마다, 각 BWP 마다 하나의 active TCI 상태를 지원하고 단말은 PDCCH, PDSCH 수신을 위해서 기본적으로 하나의 active TCI state를 tracking 할 수 있다. 단말은 추가적으로 RLM 목적의 CSI-RS(s)(예: 슬롯 #0), 빔 관리 목적의 CSI-RS(s)(예: 슬롯 #1), beam failure detection 목적의 CSI-RS(s), 또는 tracking 목적의 CSI-RS(s)가 설정되면 단말은 상기 periodic CSI-RS, SPS CSI-RS, aperiodic CSI-RS를 수신하여 채널을 측정할 수 있다.
한편, 도 20-00과 같이 단말에게 제1 PDCCH에서 빔스위칭이 지시되고 스케줄링 된 제1 PDSCH와 채널 측정을 위한 제1 CSI-RS가 동일한 OFDM 심볼에서 겹치게 되면, 단말은 default QCL 기반 default PDSCH beam과 RRC에서 설정된 CSI-RS QCL type-D 가정이 서로 충돌(conflicts)되는 경우가 발생할 수 있다. 이때, 상기 설정된 timeDurationForQCL 값(예: SCS 60 kHz의 경우 7, 14, 28 심볼, SCS 120 kHz의 경우 14, 28 kHz)을 고려하여 단말은 빔 스위칭을 지시하는 PDCCH로부터 할당된 PDSCH를 수신하기 위해 PDSCH의 시작 시점이 timeDurationForQCL에 기반한 시점 보다 이전에 위치하면, 단말은 설정된 default QCL(또는 enhanced default QCL)에 따라서 PDSCH를 수신할 수 있다.
상기 (enhanced) default QCL은 다음과 같이 다양한 방법 중 적어도 하나를 기반으로 동작할 수 있다.
1) 상술한 의미, 즉 가장 최근 slot에서 lowest CORESET ID를 가지는 모니터링 되는 탐색 공간(monitored search space)과 연계된 CORESET내의 PDCCH를 수신하는데 사용된 QCL 파라미터(parameter)
2) MAC-CE 등으로 설정된 default spatial QCL for PDSCH. 이 때 default spatial QCL은 모든 TRP에 대해 동일한 값이 설정되거나, TRP별로 서로 다르게 설정될 수 있다.
3) Default spatial QCL for PDSCH는 RRC로 설정된 PDSCH용 TCI state 중 lowest ID를 갖는 값이나 MAC-CE로 activate된 PDSCH용 TCI state 중 lowest ID를 갖는 값을 의미할 수 있다.
상황에 따라 서로 다른 default spatial QCL이 적용될 수 있다. 예컨대 cross-carrier scheduling 혹은 cross-BWP scheduling의 경우 3)이 적용되며, 이외의 경우에는 1) 또는 2)가 적용될 수 있다. 만일 default spatial QCL for PDSCH를 설정하는 MAC-CE를 지원하는 단말의 경우, 해당 MAC-CE를 activation시키기 전에는 1)이 적용되며 이후에는 2)가 적용될 수 있다.
4) 시간 측 자원 상 겹친(overlapped) CSI-RS 심볼(들)의 QCL type-D 가정을 스케줄링 된 PDSCH 수신을 위해 enhanced default QCL로 적용하여 수신할 수 있다.
5) DCI 필드 내 TCI로써 설정된 TCI states 중에서 가장 작은(lowest) codepoint에 대응 하는 TCI state(s)를 default QCL로 사용할 수 있다. 일례로, lowest codepoint는 TCI필드의 codepoints 중에서 codepoint의 index 값 자체가 가장 작은 값을 갖는 것을 의미할 수 있다. 여기서 PDSCH를 전송하는 layers가 2내지 4인 경우, lowest codepoint는 2개 또는 그 이상의 TCI states를 포함할 수 있다. 다른 예로, lowest codepoint는 TCI필드의 복수의 codepoint 중에서의 적어도 2개 이상의 TCI states를 포함하는 codepoints 중에서 가장 작은 값(index)를 갖는 것을 의미할 수도 있다.
본 실시예는 도 16내지 18에서 서술된 다양한 실시예에도 충분히 적용될 수 있다.
일례로, 단일 PDCCH에서 복수의 TRP를 통해 복수의 PDSCHs 자원과 상기 CSI-RS가 서로 시간 측 자원 상 겹치면 CSI-RS의 QCL type-D 가정을 PDSCH 수신하는데 적용할 수 있다.
다른 예로, 도 12, 13처럼 복수(예: 2개)의 PDCCH에서 스케줄링 된 각각의 PDSCH가 할당된 경우, 기지국은 특정 단말에게 상기 PDSCHs가 할당된 각 CORESET index 또는 TRP index 등에 연계하여 CSI-RS를 설정할 수 있다. 상기 연계 설정 방법은 CSI-RS에 직접 상기 CORESET index 또는 TRP index를 지시하거나 CSI-RS에서 QCL 관계로 참조하는 SSB 또는 RS에 상기 CORESET index 또는 TRP index를 지시하는 방법이 포함될 수 있다.
이때, 상기 설정된 CSI-RS자원이 동일한 TRP에서 전송된 PDSCH와 겹치면(overlapped), 단말은 상기 겹친 PDSCH 수신을 위해 CSI-RS의 QCL type-D 가정을 적용할 수 있다. 만일, 상기 설정된 CSI-RS자원이 상이한 TRP에서 전송된 PDSCH(s)와 겹치면(overlapped), 단말은 상기 PDSCH 자원의 default spatial QCL (예: 상기 enhance default QCL 1), 2), 3) 중 적어도 하나를 따름)가정을 적용하거나 CSI-RS의 QCL type-D 가정을 적용할 수 있다.
추가적으로, 상기 설정된 CSI-RS자원이 적어도 하나의 TRP에서 전송된 PDSCH와 겹치면, 단말은 각 TRP에서 전송된 모든 PDSCHs 수신을 위해 공통적으로 default spatial QCL (예: 상기 enhance default QCL 1), 2), 3) 중 적어도 하나를 따름)가정을 적용하거나 CSI-RS의 QCL type-D 가정을 적용할 수 있다.
또한, 16-60, 17-60, 18-60과 같이 offset이 존재하도록 복수의 PDSCHs이 반복 할당된 경우, 복수의 PDSCHs 자원과 상기 CSI-RS가 서로 시간 측 자원 상에는 서로 겹치지 않지만 offset 심볼 자원에 겹치면, 상기 CSI-RS의 QCL type-D 가정을 PDSCH 수신하는데 적용할 수 있다.
도 21은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 단말의 구조를 도시하는 블록도이다.
도 21을 참조하면, 단말은 단말기 수신부(21-00), 단말기 송신부(21-10) 및 단말기 처리부(제어부)(21-05)를 포함할 수 있다.
단말기 수신부(21-00)와 단말기 송신부(21-10)는 함께 송수신부라 칭해질 수 있다. 전술한 단말의 통신 방법에 따라, 단말의 단말기 수신부(21-00), 단말기 송신부(21-10) 및 단말기 처리부(21-05)가 동작할 수 있다. 다만, 단말의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 단말은 전술한 구성 요소들 보다 더 많은 구성 요소(예를 들어, 메모리 등)를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 단말기 수신부(21-00), 단말기 송신부(21-10) 및 단말기 처리부(21-05)가 하나의 칩(chip) 형태로 구현될 수도 있다.
단말기 수신부(21-00) 및 단말기 송신부(21-10)(또는, 송수신부)는 기지국과 신호를 송수신할 수 있다. 여기에서, 신호는 제어 정보 및 데이터를 포함할 수 있다. 이를 위해, 송수신부는 전송되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부의 일 실시예일뿐이며, 송수신부의 구성 요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다.
또한, 송수신부는 무선 채널을 통해 신호를 수신하여 단말기 처리부(21-05)로 출력하고, 단말기 처리부(21-05)로부터 출력되는 신호를 무선 채널을 통해 전송할 수 있다.
메모리(미도시)는 단말의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리는 단말에서 획득되는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 메모리는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다.
단말기 처리부(21-05)는 전술한 본 개시의 실시 예에 따라 단말이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 단말기 처리부(21-05)는 제어부나 하나 이상의 프로세서로 구현될 수 있다.
*도 22은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 기지국의 구조를 도시하는 블록도이다.
도 22을 참조하면, 기지국은 기지국 수신부(22-00), 기지국 송신부(22-10), 기지국 처리부(제어부)(22-05)를 포함할 수 있다.
기지국 수신부(22-00)와 기지국 송신부(22-10)는 함께 송수신부라 칭해질 수 있다. 전술한 기지국의 통신 방법에 따라, 기지국의 기지국 수신부(22-00), 기지국 송신부(22-10), 기지국 처리부(22-05)가 동작할 수 있다. 다만, 기지국의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 기지국은 전술한 구성 요소들 보다 더 많은 구성 요소(예를 들어, 메모리 등)를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 기지국 수신부(22-00), 기지국 송신부(22-10), 기지국 처리부(22-05)가 하나의 칩(chip) 형태로 구현될 수도 있다.
기지국 수신부(22-00) 및 기지국 송신부(22-10)(또는, 송수신부)는 단말과 신호를 송수신할 수 있다. 여기에서, 신호는 제어 정보 및 데이터를 포함할 수 있다. 이를 위해, 송수신부는 전송되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부의 일 실시예일뿐이며, 송수신부의 구성 요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다.
또한, 송수신부는 무선 채널을 통해 신호를 수신하여 기지국 처리부(22-05)로 출력하고, 기지국 처리부(22-05)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다.
메모리(미도시)는 기지국의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리는 기지국에서 획득되는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 메모리는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다.
기지국 처리부(22-05)는 전술한 본 개시의 실시 예에 따라 기지국이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 기지국 처리부(22-05)는 제어부나 하나 이상의 프로세서로 구현될 수 있다.
본 개시의 청구항 또는 명세서에 기재된 실시예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다.
소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 전자 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함한다.
이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리 (random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(ROM: Read Only Memory), 전기적 삭제가능 프로그램가능 롬(EEPROM: Electrically Erasable Programmable Read Only Memory), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(CD-ROM: Compact Disc-ROM), 디지털 다목적 디스크(DVDs: Digital Versatile Discs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 다수 개 포함될 수도 있다.
또한, 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(Local Area Network), WLAN(Wide LAN), 또는 SAN(Storage Area Network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시 예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크상의 별도의 저장장치가 본 개시의 실시 예를 수행하는 장치에 접속할 수도 있다.
한편, 본 발명의 방법을 설명하는 도면에서 설명의 순서가 반드시 실행의 순서와 대응되지는 않으며, 선후 관계가 변경되거나 병렬적으로 실행 될 수도 있다.
또는, 본 발명의 방법을 설명하는 도면은 본 발명의 본질을 해치지 않는 범위 내에서 일부의 구성 요소가 생략되고 일부의 구성요소만을 포함할 수 있다.
또한, 본 발명의 방법은 발명의 본질을 해치지 않는 범위 내에서 각 실시예에 포함된 내용의 일부 또는 전부가 조합되어 실행될 수도 있다.
또한, 본 발명에 개시되지는 않았지만, 본 개시에서 제안하는 table에 포함된 적어도 하나의 구성요소를 포함한 별도의 table 또는 정보가 사용되는 방법도 가능하다.
한편, 본 명세서와 도면에 개시된 본 개시의 실시 예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다. 예컨대, 본 개시의 실시 예 1 내지 실시 예 9의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 단말의 PDSCH(Physical Downlink Shared CHannel)의 수신 방법에 있어서,
    기지국으로부터 상위 레이어 시그널링을 통해 DCI(Downlink Control Information)에 포함된 TCI(Transmission configuration indication) 필드의 정보를 적용하도록 할 것인지 여부에 대한 설정 정보를 수신하는 단계;
    상기 기지국으로부터, 서로 다른 기지국으로부터 전송되는 제1 PDSCH 및 제2 PDSCH를 스케줄링하는 적어도 하나 이상의 PDCCH(Physical Downlink Control CHannel)를 수신하는 단계; 및
    상기 TCI 필드를 적용하도록 설정되고, 상기 적어도 하나 이상의 PDCCH와 상기 제1 PDSCH 및 상기 제2 PDSCH 중 적어도 하나 사이의 스케줄링 시간 오프셋이 빔(beam) 변경 시간 제한보다 길거나 같은 경우, 상기 적어도 하나 이상의 PDCCH를 통해 전송되는 DCI에 포함된 TCI 필드의 코드포인트(codepoint)가 지시하는 TCI 상태(TCI state)의 QCL 파라미터(quasi co-location parameter)에 기초하여 상기 제1 PDSCH 및 상기 제2 PDSCH를 각각 수신하는 단계를 포함하는, 방법.
  2. 제1항에 있어서,
    상기 스케줄링 시간 오프셋이 빔(beam) 변경 시간 제한보다 짧은 경우, 상기 적어도 하나 이상의 PDCCH를 수신하는데 사용된 QCL 파라미터에 기초하여 상기 제1 PDSCH 및 상기 제2 PDSCH를 각각 수신하는 단계를 포함하는, 방법.
  3. 제2항에 있어서,
    상기 적어도 하나 이상의 PDCCH를 수신하는데 사용된 QCL 파라미터는,
    가장 최근 슬롯(slot)에서 lowest CORESET ID(ControlResourceSET ID)를 갖는 탐색 공간(search space)과 관련된 CORESET의 PDCCH를 수신하는데 사용된 QCL 파라미터를 포함하는, 방법.
  4. 제1항에 있어서,
    상기 빔(beam) 변경 시간 제한은,
    단말 능력 정보(UE capability)에 포함되어 상기 기지국으로 전송되는, 방법.
  5. 제1항에 있어서,
    상기 기지국으로부터 상위 레이어 시그널링을 통해 전송되는 TCI 상태들 중, PDSCH를 위한 적어도 하나 이상의 TCI 상태 후보와 관련된 정보를 포함하는 MAC CE를 수신하는 단계를 더 포함하고,
    상기 DCI에 포함된 TCI 필드의 코드포인트(codepoint)가 지시하는 TCI 상태는 상기 적어도 하나 이상의 TCI 상태 후보 중 하나를 지시하는, 방법.
  6. 무선 통신 시스템에서 기지국의 PDSCH(Physical Downlink Shared CHannel)의 전송 방법에 있어서,
    상위 레이어 시그널링을 통해 DCI(Downlink Control Information)에 포함된 TCI(Transmission configuration indication) 필드의 정보를 적용하도록 할 것인지 여부에 대한 설정 정보를 단말로 전송하는 단계;
    서로 다른 기지국으로부터 전송되는 복수의 PDSCH들을 스케줄링하는 PDCCH(Physical Downlink Control CHannel)를 단말로 전송하는 단계; 및
    상기 TCI 필드를 적용하도록 설정되고, 상기 PDCCH와 상기 복수의 PDSCH 중 적어도 하나 사이의 스케줄링 시간 오프셋이 빔(beam) 변경 시간 제한보다 길거나 같은 경우, 상기 PDCCH를 통해 전송되는 DCI에 포함된 TCI 필드의 코드포인트(codepoint)가 지시하는 TCI 상태(TCI state)의 QCL 파라미터(quasi co-location parameter)에 기초하여 PDSCH를 전송하는 단계를 포함하는, 방법.
  7. 제6항에 있어서,
    상기 스케줄링 시간 오프셋이 빔(beam) 변경 시간 제한보다 짧은 경우, 상기 PDCCH를 전송하는데 사용된 QCL 파라미터에 기초하여 상기 PDSCH를 전송하는 단계를 포함하는, 방법.
  8. 제7항에 있어서,
    상기 적어도 하나 이상의 PDCCH를 전송하는데 사용된 QCL 파라미터는,
    가장 최근 슬롯(slot)에서 lowest CORESET ID(ControlResourceSET ID)를 갖는 탐색 공간(search space)과 관련된 CORESET의 PDCCH를 전송하는데 사용된 QCL 파라미터를 포함하는, 방법.
  9. 제6항에 있어서,
    상기 빔(beam) 변경 시간 제한은,
    단말 능력 정보(UE capability)에 포함되어 상기 단말로부터 수신되는, 방법.
  10. 제6항에 있어서,
    상위 레이어 시그널링을 통해 전송되는 TCI 상태들 중, PDSCH를 위한 적어도 하나 이상의 TCI 상태 후보와 관련된 정보를 포함하는 MAC CE를 단말로 전송하는 단계를 더 포함하고,
    상기 DCI에 포함된 TCI 필드의 코드포인트가 지시하는 TCI 상태는 상기 적어도 하나 이상의 TCI 상태 후보 중 하나를 지시하는, 방법.
  11. 무선 통신 시스템에서 PDSCH(Physical Downlink Shared CHannel)의 수신하는 단말의 동작 방법에 있어서,
    송수신부; 및
    기지국으로부터 상위 레이어 시그널링을 통해 DCI(Downlink Control Information)에 포함된 TCI(Transmission configuration indication) 필드의 정보를 적용하도록 할 것인지 여부에 대한 설정 정보를 수신하고, 상기 기지국으로부터 서로 다른 기지국으로부터 전송되는 제1 PDSCH 및 제2 PDSCH를 스케줄링하는 적어도 하나 이상의 PDCCH(Physical Downlink Control CHannel)를 수신하며, 상기 TCI 필드를 적용하도록 설정되고, 상기 적어도 하나 이상의 PDCCH와 상기 제1 PDSCH 및 상기 제2 PDSCH 중 적어도 하나 사이의 스케줄링 시간 오프셋이 빔(beam) 변경 시간 제한보다 길거나 같은 경우, 상기 적어도 하나 이상의 PDCCH를 통해 전송되는 DCI에 포함된 TCI 필드의 코드포인트(codepoint)가 지시하는 TCI 상태(TCI state)의 QCL 파라미터(quasi co-location parameter)에 기초하여 상기 제1 PDSCH 및 상기 제2 PDSCH를 각각 수신하도록 제어하는 제어부를 포함하는, 단말.
  12. 제1항에 있어서,
    상기 제어부는,
    상기 스케줄링 시간 오프셋이 빔(beam) 변경 시간 제한보다 짧은 경우, 상기 적어도 하나 이상의 PDCCH를 수신하는데 사용된 QCL 파라미터에 기초하여 상기 제1 PDSCH 및 상기 제2 PDSCH를 각각 수신하는, 단말.
  13. 제12항에 있어서,
    상기 적어도 하나 이상의 PDCCH를 수신하는데 사용된 QCL 파라미터는,
    가장 최근 슬롯(slot)에서 lowest CORESET ID(ControlResourceSET ID)를 갖는 탐색 공간(search space)과 관련된 CORESET의 PDCCH를 수신하는데 사용된 QCL 파라미터를 포함하는, 단말.
  14. 제11항에 있어서,
    상기 제어부는,
    상기 기지국으로부터 상위 레이어 시그널링을 통해 전송되는 TCI 상태들 중, PDSCH를 위한 적어도 하나 이상의 TCI 상태 후보와 관련된 정보를 포함하는 MAC CE를 수신하고,
    상기 DCI에 포함된 TCI 필드의 코드포인트(codepoint)가 지시하는 TCI 상태는 상기 적어도 하나 이상의 TCI 상태 후보 중 하나를 지시하는, 단말.
  15. 무선 통신 시스템에서 PDSCH(Physical Downlink Shared CHannel)를 전송하는 기지국에 있어서,
    송수신부; 및
    상위 레이어 시그널링을 통해 DCI(Downlink Control Information)에 포함된 TCI(Transmission configuration indication) 필드의 정보를 적용하도록 할 것인지 여부에 대한 설정 정보를 단말로 전송하고, 서로 다른 기지국으로부터 전송되는 복수의 PDSCH들을 스케줄링하는 PDCCH(Physical Downlink Control CHannel)를 단말로 전송하며, 상기 TCI 필드를 적용하도록 설정되고, 상기 PDCCH와 상기 복수의 PDSCH 중 적어도 하나 사이의 스케줄링 시간 오프셋이 빔(beam) 변경 시간 제한보다 길거나 같은 경우, 상기 PDCCH를 통해 전송되는 DCI에 포함된 TCI 필드의 코드포인트(codepoint)가 지시하는 TCI 상태(TCI state)의 QCL 파라미터(quasi co-location parameter)에 기초하여 PDSCH를 전송하도록 제어하는 제어부를 포함하는, 기지국.
PCT/KR2020/015658 2019-11-07 2020-11-09 무선 협력 통신 시스템에서 다중 데이터를 송수신하는 방법 및 장치 WO2021091361A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20885908.2A EP4044741A4 (en) 2019-11-07 2020-11-09 METHOD AND DEVICE FOR TRANSMITTING OR RECEIVING MULTIPLE DATA IN A WIRELESS COOPERATIVE COMMUNICATION SYSTEM
US17/775,123 US20220408470A1 (en) 2019-11-07 2020-11-09 Method and device for transmitting or receiving multiple data in wireless cooperative communication system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20190142139 2019-11-07
KR10-2019-0142139 2019-11-07
KR1020200035748A KR20210055566A (ko) 2019-11-07 2020-03-24 무선 협력 통신 시스템에서 다중 데이터를 송수신하는 방법 및 장치
KR10-2020-0035748 2020-03-24
KR10-2020-0058633 2020-05-15
KR1020200058633A KR20210055575A (ko) 2019-11-07 2020-05-15 무선 협력 통신 시스템에서 다중 데이터를 송수신하는 방법 및 장치
KR10-2020-0063267 2020-05-26
KR1020200063267A KR20210055577A (ko) 2019-11-07 2020-05-26 무선 협력 통신 시스템에서 다중 데이터를 송수신하는 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2021091361A1 true WO2021091361A1 (ko) 2021-05-14

Family

ID=75848951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015658 WO2021091361A1 (ko) 2019-11-07 2020-11-09 무선 협력 통신 시스템에서 다중 데이터를 송수신하는 방법 및 장치

Country Status (3)

Country Link
US (1) US20220408470A1 (ko)
EP (1) EP4044741A4 (ko)
WO (1) WO2021091361A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151167A1 (en) * 2021-01-14 2022-07-21 Apple Inc. Bandwidth part and transmission configuration indication switching in non-terrestrial networks
US11831570B2 (en) * 2022-01-11 2023-11-28 Qualcomm Incorporated Redundancy version cross carrier interleaving

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140321382A1 (en) * 2011-12-23 2014-10-30 Huawei Technologies Co., Ltd. Communication Method, Base Station, and User Equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102650783B1 (ko) * 2017-11-15 2024-03-22 인터디지탈 패튼 홀딩스, 인크 무선 네트워크에서의 빔 관리
ES2837757T3 (es) * 2018-03-26 2021-07-01 Asustek Comp Inc Método y aparato para la indicación de haz que considera la programación de portadora cruzada en un sistema de comunicación inalámbrica

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140321382A1 (en) * 2011-12-23 2014-10-30 Huawei Technologies Co., Ltd. Communication Method, Base Station, and User Equipment

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.214, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V15.7.0, 28 September 2019 (2019-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 106, XP051785090 *
HUAWEI HISILICON: "Feature Summary of Enhancements on Multi-TRP/Panel Transmission", 3GPP DRAFT; R1-1911425_FLSUMMARY_MTRP_98BIS_V2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 22 October 2019 (2019-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051798694 *
HUAWEI, HISILICON: "Enhancements on multi-TRP/panel transmission", 3GPP DRAFT; R1-1910073, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051788880 *
SAMSUNG: "Enhancements on Multi-TRP/Panel Transmission", 3GPP DRAFT; R1-1910493 NCJT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789298 *

Also Published As

Publication number Publication date
EP4044741A1 (en) 2022-08-17
US20220408470A1 (en) 2022-12-22
EP4044741A4 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
WO2021040338A1 (en) Method and apparatus for transmitting or receiving multiple pieces of data in wireless cooperative communication system
WO2021206485A1 (en) Method and device for transmitting and receiving signal in wireless communication system
WO2021054726A1 (ko) 네트워크 협력 통신을 위한 상향링크 반복 전송 방법 및 장치
WO2021034120A1 (en) Method and apparatus for indicating beam failure recovery operation of terminal in wireless communication system
WO2020017893A1 (en) Adaptation of communication parameters for a user equipment
WO2021060766A1 (ko) 무선 통신 시스템에서 단말의 빔 변경 방법 및 장치
WO2019066478A1 (en) METHOD AND NETWORK NODE FOR PERFORMING DATA TRANSMISSION AND MEASUREMENTS ON MULTIPLE BANDWIDTH PARTS
WO2018062976A1 (ko) 무선 셀룰라 통신 시스템에서 상향링크 제어신호 전송 방법 및 장치
WO2021075939A1 (ko) 무선 협력 통신 시스템에서 다중 데이터를 송수신하는 방법 및 장치
WO2021210946A1 (en) Method and apparatus for transmitting and receiving uplink reference signal in wireless communication system
WO2019194664A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치
WO2021133121A1 (ko) 네트워크 협력통신을 위한 상향링크 데이터 반복 전송 방법 및 장치
WO2022146082A1 (en) Method and apparatus for determining processing time of ue in wireless communication system
WO2022025628A1 (ko) 무선 협력 통신 시스템에서 제어 정보 송수신 방법 및 장치
WO2021066536A1 (ko) 무선 통신을 위한 데이터 전송 방법 및 장치
WO2023068709A1 (en) Method and device for estimating self-interference channel in full-duplex communication system
WO2021091361A1 (ko) 무선 협력 통신 시스템에서 다중 데이터를 송수신하는 방법 및 장치
WO2021010657A1 (ko) 무선 통신 시스템에서 단말의 채널 상태 정보 처리 유닛의 점유 시간을 설정하는 방법 및 장치
WO2021221428A1 (ko) 무선 통신 시스템에서 사운딩 방법 및 장치
WO2021060954A1 (ko) 네트워크 협력통신을 위한 데이터 송수신 방법 및 장치
WO2023075526A1 (en) Method and apparatus for multiple physical shared channel scheduling in wireless communication systems
WO2022260471A1 (en) Method and apparatus for data transmission and reception in network cooperative communication
WO2022211536A1 (en) Method and apparatus for uplink transmission in wireless communication system
WO2022086169A1 (ko) 무선 통신 시스템에서 셀 간 협력 통신을 위한 빔 관리 방법 및 장치
WO2022103151A1 (ko) 무선 통신 시스템에서 pdcch 반복 송수신을 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020885908

Country of ref document: EP

Effective date: 20220510

NENP Non-entry into the national phase

Ref country code: DE