WO2021091216A1 - Cable assembly for charging electric vehicle - Google Patents

Cable assembly for charging electric vehicle Download PDF

Info

Publication number
WO2021091216A1
WO2021091216A1 PCT/KR2020/015301 KR2020015301W WO2021091216A1 WO 2021091216 A1 WO2021091216 A1 WO 2021091216A1 KR 2020015301 W KR2020015301 W KR 2020015301W WO 2021091216 A1 WO2021091216 A1 WO 2021091216A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric vehicle
cooling
cooling fluid
connector
cable assembly
Prior art date
Application number
PCT/KR2020/015301
Other languages
French (fr)
Korean (ko)
Inventor
이재복
김현웅
유동균
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200144349A external-priority patent/KR102428044B1/en
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Publication of WO2021091216A1 publication Critical patent/WO2021091216A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • H01B7/421Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation
    • H01B7/423Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation using a cooling fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a cable assembly for charging an electric vehicle having a cooling function. More specifically, the present invention efficiently cools the heat generated from the electric vehicle charging cable and connector when charging the electric vehicle by using a cooling fluid, prevents damage to the internal structure due to heat, prevents safety accidents, and prevents user discomfort.
  • the present invention relates to a cable assembly for electric vehicle charging that can minimize the diameter of the electric vehicle charging cable.
  • the output voltage of the fast charger for fast charging is in the range of 50V to 450V DC
  • the output current is 110A
  • the output current of the recent super fast charging reaches 400A
  • the time required to charge the electric vehicle through the fast charger is It only takes tens of minutes.
  • the output current of the rapid charger is expected to increase according to the battery capacity of the electric vehicle.
  • an electric vehicle charging cable is connected to the main body, a charger connector is mounted at an end of the charging cable, and electricity is supplied from the electric vehicle charger to the electric vehicle by attaching the connector of the charger to the electric vehicle connector provided in the electric vehicle.
  • Heat generated by electric vehicle charging cables can increase the risk of fire.
  • the charging cable may come into contact with the user's body. This is undesirable because it can cause injury, discomfort or anxiety.
  • the terminals of the electric vehicle charging cable and the electric vehicle connector are connected at the electric vehicle connector, and heat generation is high due to the connection of the conductor and the terminal, and the electric vehicle connector is a part that contacts the body such as the user's hand, so the cooling performance is improved. Required.
  • the present invention efficiently cools the heat generated from the electric vehicle charging cable and connector when charging the electric vehicle using a cooling fluid, prevents damage to the internal structure due to heat, prevents safety accidents, and minimizes user discomfort, It is an object to be solved to provide an electric vehicle charging cable assembly that can minimize the diameter of the electric vehicle charging cable.
  • the present invention provides an electric vehicle charging cable assembly for connecting an electric vehicle connector and an electric vehicle charger, comprising: a conductor; An insulating layer surrounding the conductor; And a pair of power units having a cooling tube surrounding the outside of the insulating layer.
  • the chamber housing includes a pair of terminal mounting portions through which the connector terminals are mounted, an inlet through which the cooling fluid through the pair of power units is introduced, and the cooling fluid introduced through the inlet is discharged through the chamber space.
  • the outlet may be provided.
  • the pair of terminal mounting portions are arranged in the form of a pair of spaced pipes that connect and cross the front and rear of the chamber space in the inner chamber space of the chamber housing, and a spacer is formed therebetween, and the chamber housing
  • the inner surface of the inner chamber space and the pair of terminal mounting portions are spaced apart from each other to form a pair of bypass portions for bypassing the cooling fluid
  • the inlet port and the outlet port may be provided at the rear of the chamber housing with the spaced portion therebetween.
  • the cooling fluid introduced into the inlet may be distributed and flowed to the separation portion and the bypass portion, and may be discharged to the outlet after cooling by wrapping the outer peripheral surface of the terminal mounting portion exposed in the chamber space.
  • the inlet may be provided above the chamber housing, and the outlet may be provided below the chamber housing.
  • cooling fluid introduced from the inlet may be discharged to the outlet through the separation portion and the peripheral portion of the terminal mounting portion.
  • the pair of terminal mounting portions are configured in the form of pipes crossing each of the chamber spaces inside the chamber housing, and blades protruding from at least one outer circumferential surface of the pair of terminal mounting portions exposed to the inner space of the chamber housing are provided. At least one may be provided.
  • the area of the inlet port may be 1 to 4 times the size of the outlet port.
  • the inner diameter of the inlet may be larger than the width of the spacer.
  • a cross-sectional shape of the chamber housing in a direction perpendicular to a direction in which the power unit and the recovery unit are connected may be formed in a shape with a rounded corner.
  • it may further include a branched collecting pipe connected to each cooling tube of the pair of power units, and a connecting pipe connecting the collecting pipe and the inlet of the chamber housing.
  • it further includes a closing pipe for connecting the cooling fluid flowing through the cooling tube of each power unit to the collection pipe, the collection pipe may be connected to the closing pipe mounted at the end of each power unit.
  • outlet of the chamber housing may be directly connected to the recovery unit.
  • the insulating layer of the power unit may tightly wrap the conductor so that the conductor is not exposed to the cooling fluid.
  • the conductor covered with the insulating layer of each power unit may pass through the closing tube and be connected to the rear of the connector terminal.
  • the inlet of the chamber housing may be provided in a diagonal direction in the chamber housing, and the connection pipe may be formed in a shape bent to correspond to the inlet angle.
  • the power unit may further include a spacer for preventing contact between the insulating layer and the cooling tube and forming a cooling passage through which a cooling fluid flows.
  • the spacer of the power unit may be configured in a wire shape.
  • the spacer may be spirally wound and disposed between the insulating layer of the power unit and the cooling tube.
  • the spacer may be at least one protrusion integrally formed on the outer surface of the insulating layer or the inner surface of the cooling tube of the conductor.
  • it may further include at least one grounding unit and at least one communication unit together with the power unit.
  • At least one of the cooling tube and the spacer may be made of a Teflon-based or urethane material.
  • heat generated from the electric vehicle charging cable and connector during rapid charging of the electric vehicle can be efficiently cooled using a cooling fluid.
  • a conductor having an insulating layer constituting a power unit is disposed inside a cooling tube through which a cooling fluid flows in a non-contact state to cool the power unit to generate heat. You can maximize performance.
  • the conductor provided with the insulating layer constituting the power unit is disposed in a non-contact state with the inner surface of the cooling tube, so that all surfaces of the insulating layer surrounding the conductor can be cooled. , Melting of a local area of the insulating layer surrounding the conductor can be prevented by the cooling deviation of each area.
  • the conductor provided with the insulating layer constituting the power unit is accommodated in a cooling tube to supply cooling fluid from the charger, and the cooling fluid used for cooling is recovered to the charger. It is possible to uniformly cool the conductor provided with the insulating layer.
  • the cooling fluid in the chamber housing allows the cooling fluid to flow around the terminal mounting portion where the connector terminal is mounted, thereby rapidly cooling the heat of the connector terminal to cool the electric vehicle charging connector. Performance can also be improved.
  • the electric vehicle charging cable assembly according to the present invention, by optimizing the flow path area of the inlet through which the cooling fluid flows into the chamber housing and the outlet through which the cooling fluid is recovered, induces turbulence in the chamber housing to cool the connector terminals. It can improve performance.
  • the electric vehicle charging cable assembly it is possible to cool connector components other than the cable including the power unit, thereby preventing fire due to overheating of the connector or cable, and the connector on the body of electric vehicle charger users. Alternatively, even when the cable is in contact, it is possible to minimize anxiety or discomfort caused by heat generation.
  • the overall diameter of the electric vehicle charging cable can be made more compact than a technology in which a cooling tube is provided separately from the power unit.
  • FIG 1 shows an electric vehicle and an electric vehicle charger.
  • FIG. 2 shows a connector of an electric vehicle and an electric vehicle charger.
  • FIG 3 shows a cross-sectional view of a cable for charging an electric vehicle according to the present invention.
  • FIGS. 4 and 5 show an internal structure and a perspective view of a power unit constituting a cable for charging an electric vehicle according to the present invention.
  • FIG. 6 to 8 show a power unit and a cooling fluid recovery unit and a connector connection structure constituting the electric vehicle charging cable according to the present invention.
  • FIGS. 9 and 10 are perspective views illustrating an assembled state and an exploded state of a connector terminal constituting an electric vehicle charging cable assembly according to the present invention and a chamber housing in which the connector terminal is mounted.
  • 11 and 12 show a front view and a side view of a chamber housing constituting a cable assembly for charging an electric vehicle according to the present invention.
  • FIG. 13 and 14 are cross-sectional views of embodiments of a chamber housing constituting a cable assembly for charging an electric vehicle according to the present invention.
  • an electric car refers to a vehicle that drives an electric motor using electric energy charged in a battery provided in the vehicle and uses the driving force of the motor as the power of the vehicle.
  • the above electric vehicle (ev) should not be limitedly interpreted as a conventional road passenger vehicle, and should be understood as a concept including a cart, a work vehicle, or a two-wheeled vehicle in addition to a road passenger vehicle.
  • 1 shows an electric vehicle ev and an electric vehicle charger 300.
  • the electric vehicle charger 300 is connected with an electric vehicle charging connector 200 and an electric vehicle charging cable 100 to supply power to an electric vehicle, and an electric vehicle charging connector 200 is provided at the end of the electric vehicle charging cable 100 do.
  • the electric vehicle charging connector 200 is mounted on the electric vehicle connector 400 provided in the electric vehicle ev to supply power, and in the case of a rapid charger, charging of the electric vehicle can be completed in a short time.
  • the electric vehicle charging cable 100 electrically connecting the electric vehicle charger 300 and the electric vehicle ev may generate heat due to its large current capacity, and the electric vehicle of the present invention may be used to relieve the risk of fire or user anxiety.
  • the charging cable 100 uses a method of cooling the electric vehicle charging cable 100 using a cooling fluid.
  • FIG. 2 shows an electric vehicle charging connector 200 to which an electric vehicle connector 400 provided in an electric vehicle and an electric vehicle charging cable 100 are connected.
  • the electric vehicle charging connector shown in FIG. 2 is an American-European'combo' type connector, which is one of the unified standards, and is a type of connector capable of slow charging in an alternating current method or rapid charging in a direct current method with one connector.
  • the electric vehicle charging cable 100 can be applied.
  • the electric vehicle charging cable 100 of the present invention is a Japanese'CHAdeMO' method, or a BMW'AC three-phase' method or other method of charging an electric vehicle. It can also be applied to the connector.
  • the electric vehicle charging connector 200 is fixed at the end of the electric vehicle charging cable 100 of the present invention
  • the electric vehicle charging connector 200 is an electric vehicle connector provided in the electric vehicle (ev) It has a structure that can be detachably mounted on the 400.
  • each connector includes an AC charging unit 210 and 410 and a DC charging unit 230 and 430, respectively.
  • the electric vehicle charging cable 100 connected to such an electric vehicle charging connector may cause heat generation due to a large amount of current during rapid charging
  • the electric vehicle charging cable 100 of the present invention uses a cooling fluid to solve the heating problem. I did.
  • a structure for cooling the electric vehicle charging cable 100 using a cooling fluid has already been introduced, but since a separate cooling fluid flow path must be provided in the electric vehicle charging cable 100, cooling efficiency decreases and the electric vehicle charging cable ( There was a problem of increasing the diameter of 100).
  • a cooling unit having a fluid pipe is disposed inside each power unit constituting the electric vehicle charging cable 100, so that heat is absorbed to the entire outer circumference of the cooling unit, thereby improving cooling efficiency. , While minimizing the diameter of the electric vehicle charging cable 100, stable cooling performance was secured. It will be described in detail.
  • FIG. 3 shows a cross-sectional view of the electric vehicle charging cable 100 of the present invention.
  • the electric vehicle charging cable 100 of the present invention includes at least one grounding unit 30; At least one communication unit 50; A conductor 11 provided with an insulating layer 13, a cooling tube 17 accommodating the conductor 11 with an insulating layer, and a spacer 19 provided between the conductor 11 and the inner surface of the cooling tube Power unit 10 comprising a; A recovery unit 20 configured including a recovery tube 27; And an outer jacket surrounding the ground unit, the communication unit, the power unit, and the recovery unit.
  • Each communication unit 50 and the grounding unit 30 may be covered with a coating layer, and if necessary, an intervening 40 for maintaining the original cable shape may be provided, and a central tension for reinforcing tensile force if necessary. Lines may be provided.
  • the grounding unit 30 and the like is composed of one large unit
  • the recovery unit 20 for recovering the cooling fluid is separately provided, in order to minimize the increase in the diameter of the cable.
  • the cable diameter can be minimized by dividing the grounding unit 30 into a plurality and arranging the plurality of grounding units 30 in the air gaps between other units.
  • the communication unit 50 for transmitting sensor data or control data related to charging between the charger and the electric vehicle may also be divided into a plurality of pieces for the same reason as the ground unit 30.
  • the electric vehicle charging cable 100 of the present invention is supplied through the cooling tube 17 of a pair of power units 10a and 10b to recover the cooling fluid used for cooling conductors and connectors back to the electric vehicle charger.
  • the recovery flow path 25 may be provided with a recovery unit 20 including a recovery tube 27 provided therein.
  • the recovery unit 20 may be provided to recover the cooling fluid supplied from the charger to the connector and used for cooling, and to auxiliaryly cool the inner space of the outer jacket constituting the electric vehicle charging cable.
  • the power unit 10 has its own cooling tube to perform its own cooling, but when the internal temperature of the outer jacket 70 rises, for example, in the summer when the external temperature is high, the electric vehicle charging cable itself The temperature of may increase, and the recovery unit 20 may auxiliaryly lower the temperature of the entire cable in the process of recovering the cooling fluid.
  • one recovery unit 20 may be provided, and one recovery unit 20 needs to recover the cooling fluid supplied through the two power units, it is less than the cross-sectional area of the cooling flow path 15 of one power unit. It may be provided with a recovery tube (27) provided with a large recovery passage (25).
  • the cooling tube 17 and the spacer 19 constituting the power unit 10 and the recovery tube 27 constituting the recovery unit 20 are made of a material capable of flowing a cooling fluid and having excellent heat resistance and oil resistance. It is desirable to be.
  • a material may be made of a general resin, polyethylene, urethane, fluorinated polyethylene (PTFE, Polytetrafluoroethylene), or a general resin or polyethylene, and the surface may be coated with a material such as fluorinated polyethylene having excellent heat resistance.
  • Polyurethane has excellent tensile strength and tear strength and is more eco-friendly than PVC materials.
  • the fluorinated polyethylene material may be, for example, Teflon-based. Teflon has excellent heat resistance with a heat resistance of -60°C to +260°C. Therefore, by applying such a Teflon series, it is possible to minimize external heat transfer that causes discomfort or anxiety of the user, and also minimize internal heat transfer in the shell coating process, etc., to prevent melting of the internal configuration, etc., thereby ensuring insulation performance.
  • the electric vehicle charging cable 100 of the present invention includes an outer jacket 70 surrounding the grounding unit 30, the communication unit 50, the power unit 10, and the recovery unit 20.
  • an additional insulating layer 60 may be provided to block heat from inside the cable from being transferred to the outside.
  • the heat insulating layer 60 may be made of a Teflon-based material having excellent heat resistance like the cooling tube, or a fiber braid having low thermal conductivity and good flexibility may be applied.
  • FIGS. 4 and 5 show an internal structure and a perspective view of a power unit constituting a cable for charging an electric vehicle according to the present invention.
  • a pair of power units 10a and 10b in which heat generation is a problem in the electric vehicle charging cable may be cooled by a cooling fluid supplied to circulate the inside, respectively.
  • the power unit 10 includes a conductor 11 provided with an insulating layer 13, a cooling tube 17 in which the conductor 11 is accommodated and a cooling fluid flows in a predetermined direction, and the conductor 11 ) Is accommodated in the cooling tube 17, in order to prevent contact between the insulating layer 13 of the conductor 11 and the inner surface of the cooling tube 17, the conductor 11 and the cooling tube 17 ) It may be configured to include a spacer 19 provided between the inner surface.
  • the insulating layer 13 of the power unit may be configured to tightly surround the conductor 11 so that the conductor 11 is not exposed to the cooling fluid regardless of the insulation of the cooling fluid.
  • the conductors 11 of the power unit 10 may be accommodated in the cooling tube 17 with an insulating layer 13 provided, respectively.
  • the conductor provided with the insulating layer 13 accommodated in the cooling tube 17 is provided with a cooling channel 15 outside it, so that heat that may be generated when power is supplied can be effectively cooled.
  • the conductor 11 may be formed of a copper (Cu) material having high electrical conductivity and low heat generation, and an insulating layer surrounding the conductor 11 may be formed of an XLPE material capable of applying a high voltage.
  • the current supplied through the conductor of the power unit 10 may reach a maximum of 400A.
  • XLPE Crosslinked Polyethylene
  • the cooling fluid that can be supplied to the cooling tube 17 includes at least one of inorganic additives such as ethylene glycol, phosphate, silicate, and borate, freeze inhibitor, corrosion inhibitor, high temperature stability improver, antifoam agent, or alkaline additive. It may be an added type of coolant, and various liquids may be selected and used according to the installation environment of the electric vehicle charger.
  • the cooling fluid may be composed of oil other than water as a base, and various additives may be added accordingly.
  • the electric vehicle charging cable 100 of the present invention connects the electric vehicle charger 300 and the charger connector 200, and the cooling fluid supplied from the electric vehicle charger to the power unit and used for cooling the power unit and the connector is shown in FIG. A method of recovering again to the electric vehicle charger 300 (see FIG. 1) through the collected recovery unit 20, cooling, and then resupplying it may be used.
  • a cooling device for recooling the cooling fluid and a pumping device for flowing the cooling fluid may be provided in the electric vehicle charger 300 (see FIG. 1), may be provided outside the electric vehicle charger 300, and recovered.
  • the cooling fluid recovered through the recovery tube of the unit 20 may be cooled in a cooling device, pumped in a pumping device, and supplied into the cooling tube 17 constituting the power unit 10.
  • a pair of power units 10a and 10b constituting the electric vehicle charging cable 100 connecting the charger connector 200 and the electric vehicle charger 300 are respectively cooled through the cooling tube 17 Is supplied, and the cooling fluid used for cooling may be recovered to the recovery unit 20.
  • the specific recovery structure will be described later.
  • the conductor constituting the power unit 10 In order to uniformly cool the conductor constituting the power unit 10, it must have a structure in which a cooling fluid can flow along the outer surface of the insulating layer 13 of the conductor. That is, when the insulating layer 13 of the conductor and the inner surface of the cooling tube 17 are in contact with each other, the cooling performance may be deteriorated. 15) may be uniformly formed along the outside of the insulating layer 13 of the conductor, and a spacer 19 may be provided to prevent contact between the insulating layer 13 of the conductor and the inner surface of the cooling tube 17.
  • the spacer 19 may be configured in the form of a wire, for example, in the form of a wire or a pipe, or may be configured in the form of a protrusion provided on the outer surface of the insulating layer 13 of the conductor or the inner surface of the cooling tube 17. have.
  • the spacer When the spacer is configured in the form of a wire, the spacer may be configured in the form of an annular wire, but the cross-sectional shape of the wire or pipe is not limited to an annular or circular shape.
  • the present invention can cool all surfaces of the insulating layer of the conductor, so that the cooling deviation for each area of the insulating layer surface occurs. It is possible to minimize the thickness of the electric vehicle charging cable while providing a cooling function by using a cooling fluid by arranging an insulating conductor inside the cooling channel.
  • the spacer 19 of the power unit 10 is configured in an annular wire shape, and is shown to be spirally wound along the outer circumferential surface of the conductor. If it is a structure that can prevent contact, it is not limited thereto. That is, the spacer may be formed in the form of a plurality of protrusions protruding from the outer surface of the insulating layer of the conductor or the inner surface of the cooling tube.
  • the spacer may be configured in the form of a spiral protrusion integrally formed on at least one of the cooling tube or the insulating layer, and the integral protrusion may be configured to be integrally formed during the extrusion process of the cooling tube or the insulating layer.
  • the spacer 19 prevents contact between the conductor provided with the insulating layer and the cooling tube, and at the same time, the flow of the cooling fluid forms a turbulence flow, thereby minimizing the temperature deviation of the cooling fluid in the flow path, thereby reducing the cooling fluid. Since it can be used more efficiently, the cooling performance can be further enhanced by absorbing heat as quickly as possible from the heating conductor as much as possible.
  • the cooling performance of the heating conductor is maximized by arranging a conductor insulated in a non-contact state with the inner surface of the cooling tube inside the cooling tube provided with the cooling flow path through which the cooling fluid flows. I can.
  • FIG. 6 to 8 show a power unit and a cooling fluid recovery unit and a connector connection structure constituting the electric vehicle charging cable according to the present invention.
  • the electric vehicle charging cable assembly comprises a conductor 11; An insulating layer 13 surrounding the conductor 11; A cooling tube 17 surrounding the insulating layer 13; And a pair of power units 10 including spacers 19 for preventing contact between the insulating layer 13 and the cooling tube 17 and forming a cooling passage through which a cooling fluid flows.
  • a pair of connector terminals 231 each connected to the conductor 10 of the power unit 10 and constituting the electric vehicle connector; And the connector terminal 231 is mounted, the power unit 10 and the recovery unit 20 are connected, and the cooling fluid passing through the power unit 10 is collected and recovered to the recovery unit.
  • It may be configured to include a chamber housing 227 having a chamber space 227d (refer to FIGS. 13 and 14) for cooling the connector terminal 231.
  • the electric vehicle charging cable 100 of the present invention has a charger connector 200 connected to one end and an electric vehicle charger 300 connected to the other end, as shown in FIGS. 1 and 2, so that power supply and transmission of control signals are possible. It is done.
  • each power unit is connected to the terminal 231 of the connector to form a connection part. Since the electric vehicle charging connector has a variety of standards, in FIGS. 6 to 8, the connection relationship between the power unit 10 and the terminal 231 of the connector of the recovery unit 20 will be outlined.
  • the cooling fluid supplied through the cooling tube 17 of the pair of power units 10a and 10b cools the conductor of the power unit during the flow process, and is collected from the electric vehicle connector connected to the end of the electric vehicle charging cable 100. It may be recovered to the electric vehicle charger 300 through the recovery unit 20.
  • the electric vehicle charging cable or assembly thereof is provided in the connector to cool heat generation of the pair of connector terminals 231 respectively connected to the conductor in addition to heat generation of the conductor 11 of the power unit 10. This is because the connection part of the conductor of the cable and the terminal of the connector and the terminal of the connector are also heat-generating parts.
  • the cooling fluid supplied through the cooling tube 17 of the pair of power units constituting the electric vehicle charging cable according to the present invention is collected inside the electric vehicle connector to cool the terminals of the electric vehicle connector, and then the recovery unit It may be configured to be recovered by the recovery tube 27 constituting (20).
  • a closing pipe 221 for closing the cooling passage inside the cooling tube 17 of each power unit 10 and the interior of the chamber housing constituting the connector may be provided, respectively, and a pair of closing pipes ( 221)
  • a collection pipe 223 having a branched structure to collect the internal cooling fluid into one, and a connection pipe 225 for transferring the cooling fluid collected in the collection pipe 223 to the chamber housing 227 can do.
  • the closing pipe 221, the collection pipe 223, and the connecting pipe 225 are shown to be configured in the form of individual pipes of separate structures, but at least some of them are integrated. It can also be configured.
  • connection pipe 225 may serve to connect the chamber housing 227 and the collection pipe 223.
  • the cooling fluid supplied through the pair of cooling tubes 17 to perform cooling of the conductor is sequentially passed through the closing pipe 221, the collecting pipe 223, and the connecting pipe 225 to the chamber housing 227.
  • the charging cable can provide cooling effects to the connector terminals in addition to the conductor of the cable.
  • the cooling fluid flowing into the chamber housing 227 may sufficiently cool the terminal of the connector in addition to the conductor of the power unit.
  • the front end of the terminal 231 of the connector is connected to the electric vehicle connector, and the rear end may be connected by inserting a conductor of the power unit.
  • the closing pipe 221 allows the power unit to pass through to the front so that it is connected to the connector terminal, and the fluid flowing through the cooling tube of the power unit forms a flow path to flow into the chamber housing through the collection pipe and the connection pipe. I can.
  • the closing pipe 221 may be composed of a T-shaped pipe, and the power unit passes through the closing pipe in a straight line to the connector terminal direction, and the cooling fluid flowing through the cooling tube of the power unit changes the flow path by 90 degrees.
  • the flow path may be changed to flow into the collection pipe 223.
  • a sealing member (not shown) for sealing the outer circumferential surface of the insulating layer surrounding the conductor and the inner circumferential surface of the cooling tube 17 may be provided inside the power unit 10 passing through the closing pipe 221.
  • the closing pipe 221 is a closing pipe so that the cooling fluid can be supplied to the collection pipe 223 by changing a flow path through an opening (17h, see FIG. 8) formed in the cooling tube 17 of the power unit 10
  • the position of the opening 17h may be determined in consideration of the mounting position of the 221.
  • the cooling fluid flows to the opening 17h of the cooling tube in the longitudinal direction of the conductor, and then the closing pipe 221, the collecting pipe 223, and the connecting pipe (
  • the cooling fluid flowing into the chamber housing 227 through 225 and flowing into the chamber housing 227 may cool a terminal mounting portion equipped with a connector terminal, which will be described later, and be recovered through the recovery unit 20.
  • a cooling tube excluding a cooling fluid and a conductor provided with an insulating layer accommodated in the cooling tube may pass through the closing tube 221 to be connected to the second terminal portion of the connector terminal.
  • the second terminal portion at the rear of the connector terminal 231 is inserted and mounted into the space between the cooling tube 17 where the cooling fluid of the power unit flows and the insulating layer surrounding the conductor, and the conductor has an insulating layer.
  • a clamp member for clamping and fixing the outer circumferential surface of the cooling tube in which the conductor and the connector terminal is inserted by being removed from the rear of the hollow second terminal unit and inserted into the second terminal unit ( 233) and the like may be further provided.
  • the cooling fluid is not immediately recovered from the connection part between the power unit and the connector, but forms a bypass flow path to cool down to the terminal of the connector.
  • the cooling fluid is not immediately recovered from the connection part between the power unit and the connector, but forms a bypass flow path to cool down to the terminal of the connector.
  • FIGS. 9 and 10 are perspective views showing an assembled state and an exploded state of a connector terminal 231 constituting an electric vehicle charging cable assembly according to the present invention and a chamber housing 227 in which the connector terminal 231 is mounted.
  • the electric vehicle charging cable assembly includes a pair of connector terminals 231 each connected to a conductor of the power unit and constituting the electric vehicle connector; And the connector terminal 231 is mounted, the power unit and the recovery unit are connected, and the cooling fluid passing through the power unit is collected and recovered to the recovery unit.
  • a chamber housing 227 having a chamber space 227d (refer to FIGS. 13 and 14) as a cooling space in which a cooling fluid flows and performs a cooling function to cool the terminal mounting portion 227a on which the connector terminal is mounted; It can be configured to include.
  • the electric vehicle charging cable assembly according to the present invention cools the conductor constituting the power unit using the cooling fluid supplied from the electric vehicle charger, and at the same time collects the cooling fluid through the connector of the electric vehicle charger and collects the cooling fluid to the electric vehicle charger. It may be configured to cool the connector terminal 231 constituting the connector or the terminal mounting portion 227a on which the connector terminal is mounted.
  • the charging terminal of the electric vehicle is connected to the front, and the conductor of the power unit may be mounted to the rear.
  • the connector terminal 231 may be configured as a female terminal, and may be divided into a first terminal portion 231a in a region connected to the electric vehicle charging terminal and a second terminal portion 231b on which a conductor of the power unit is mounted.
  • first terminal portion 231a and the second terminal portion 231b may be dividedly configured to be assembled.
  • the first terminal portion 231a and the second terminal portion 231b are configured as pipe-shaped female terminals, and an outer diameter may be determined so that the second terminal portion 231b is inserted behind the first terminal portion 231a.
  • a locking protrusion 231bs for limiting an insertion depth may be provided on an outer circumferential surface of the second terminal part 231b.
  • the connector terminal 231 may have a stepped structure whose diameter is reduced from the rear.
  • the connector terminal 231 having such a structure may be mounted on the terminal mounting portion 227a provided in the chamber housing 227.
  • 11 and 12 show a front view and a side view of a chamber housing 227 constituting a cable assembly for charging an electric vehicle according to the present invention.
  • the chamber housing 227 includes a pair of terminal mounting portions 227a through which the connector terminals 231 are mounted, an inlet 227b through which the cooling fluid via the pair of power units is introduced, and the inlet 227b.
  • An outlet 227c through which the cooling fluid introduced into the chamber is discharged through the chamber space may be provided, and the interior of the chamber housing may have a sealed structure.
  • a pair of the terminal mounting portions 227a are formed while passing through the chamber housing 227 in a spaced state, and as described above, in the inner space of the terminal mounting portion 227a corresponding to the stepped structure of the connector terminal 231 A locking step 227as to which the first terminal part 231a is locked may be provided.
  • a pair of terminal mounting portions 227a may be provided horizontally and in parallel.
  • the inner diameter of the terminal mounting portion 227a and the outer diameter of the connector terminal 231 have a tolerance adjusted to enable press-fitting mounting without a separate fastening member.
  • the terminal mounting portion 227a may be provided with a mounting space 227ah in the form of a through hole through which the front and the rear of the connector terminals can be mounted.
  • the inlet 227b through which the cooling fluid cooled by the conductor of the power unit is introduced through the power unit and the outlet 227c through which the cooling fluid recovered by the electric vehicle charger is discharged after cooling the connector terminal 231 are the terminals. It may be provided above and below the mounting portion 227a, respectively.
  • the cross-sectional shape of the chamber housing 227 in the front direction is rounded.
  • the inlet 227b is provided above the conductor mounting portion so that the introduced cooling fluid falls by its own weight in addition to the pressure of the fluid and flows in the chamber housing 227.
  • the outlet 227c may be provided under the terminal mounting portion 227a.
  • the inlet 227b of the chamber housing 227 is provided in the chamber housing 227 in a diagonal direction, and the connection pipe is bent in correspondence with the angle of the inlet 227b (FIG. 7 And see FIG. 8).
  • connection pipe connected to the inlet 227b may be connected to the above-described collection pipe in a horizontal direction, but in order to prevent the chamber housing 227 from increasing in size, the chamber housing 227 is configured to have a required size, but the inlet 227b ) May be formed to be inclined in a diagonal direction and then connected with a bent pipe in a bent shape may be applied.
  • the inlet 227b may be formed in a horizontal direction without being inclined, and accordingly, the connection pipe may also be configured in a non-bent shape.
  • outlet 227c provided horizontally at the rear of the chamber housing 227 may be directly connected to the recovery unit.
  • FIG. 13 and 14 are cross-sectional views of embodiments for explaining the flow of cooling fluid in the chamber housing 227 constituting the electric vehicle charging cable assembly according to the present invention.
  • the cooling fluid that has cooled the heat generated by the conductor of the power unit through the cooling tube of the power unit may be introduced into the chamber housing 227 through the collection pipe and the connection pipe, and into the chamber housing 227.
  • the introduced cooling fluid is not immediately discharged to the outlet 227c in order to cool the heat of the connector terminal 231, and the connector terminal 231 is mounted in the chamber space 227d in the chamber housing 227 ( A structure that is discharged after cooling the outer peripheral surface of 227a) can be applied.
  • the pair of terminal mounting portions 227a are disposed in a state spaced apart so that a separation portion 227sc is formed therebetween in the chamber space 227d of the chamber housing 227, and the pair of terminal mounting portions 227a ) Is spaced apart from the inner surface of the chamber space of the chamber housing 227 to form a pair of bypass portions 227ss for bypassing a part of the cooling fluid, respectively, and the inlet 227b and the outlet 227c have one A spacer 227sc formed between the pair of terminal mounting portions may be interposed therebetween.
  • the pair of terminal mounting portions 227a may have a structure in which the outer circumferential surfaces 227af of the chamber housing 227 are exposed into the chamber space 227d in all directions.
  • the pair of terminal mounting portions 227a may be formed in the form of a pair of pipes spaced apart in the chamber space 227d to form a spaced portion 227sc therebetween, and the chamber space It is also possible to configure a bypass portion 227ss that is spaced apart from the inner peripheral surface of (227d) to bypass the cooling fluid.
  • a pair of the terminal mounting portions 227a are arranged in the form of a pair of spaced pipes that connect and cross the front and rear of the chamber space in the inner chamber space of the chamber housing 227 to be spaced apart therebetween.
  • a portion 227sc is formed, and the inner chamber space inner surface of the chamber housing and the pair of terminal mounting portions 227a are spaced apart from each other to form a pair of bypass portions 227ss for bypassing the cooling fluid, and the
  • the inlet 227b and the outlet 227c may be provided at the rear of the chamber housing 227 with the spacer 227sc interposed therebetween.
  • the cooling fluid introduced into the inlet 227b is distributed and flows through the separation portion 227sc and the bypass portion 227ss, and after cooling the entire outer peripheral surface 227af of the terminal mounting portion, the outlet 227c ), the cooling fluid can effectively cool the heat generated by the connector terminal, which is conducted through the terminal mounting portion 227a in the chamber space.
  • the pair of terminal mounting portions 227a are formed through and spaced apart in a direction perpendicular to the mounting direction of the connector terminal in the chamber space 227d of the chamber housing 227, Since the inlet 227b and the outlet 227c have a structure provided in the upper and lower portions of the spacer 227sc formed between the pair of terminal mounting portions 227a, cooling introduced from the inlet 227b Part of the fluid flows to the separation part 227sc, and the remaining cooling fluid flows to the bypass part 227ss that bypasses the circumference of the terminal mounting part 227a to cool the outer peripheral surface 227af of the terminal mounting part in the direction of 360 degrees. After that, it may be discharged through the discharge port 227c.
  • the chamber housing 227 is a cooling fluid so that the cooling fluid flowing into the inlet 227b is discharged through bypassing the bypass portion 227ss between the terminal mounting portion 227a and the inner peripheral surface of the chamber housing in addition to the spacing portion 227sc. Cooling performance can be improved by inducing the flow of the connector terminal 231 to evenly cool the outer circumferential surface 227af of the terminal mounting portion 227a through which heat generated from the connector terminal 231 conducts the most.
  • Table 1 below is a test result of testing the cooling performance through temperature change of the connector terminal when a chamber housing with a different outlet area is applied to the inlet of the same area. 227b) This is the test result to determine the ratio of the area.
  • the cooling fluid type 100% ethylene glycol was used as the cooling fluid type, the hourly flow rate of the cooling fluid supplied to the chamber housing of the cooling fluid was 0.1 L/sec, and the inlet temperature of the cooling fluid to the chamber housing was about -7.3 degrees Celsius.
  • the outer diameter of the first terminal portion of the connector terminal mounted on the terminal mounting portion of each chamber housing is 12 mm.
  • the inlet flow rate of the fluid per cooling time through the inlet 227b and the discharge flow rate per hour through the outlet 227c are the same, but the inlet 227b and the outlet 227c ), the flow rate of the cooling fluid may be different.
  • the flow rate of the cooling fluid flowing into the inlet port is set to be the same, the flow rate per hour of the inlet port 227b and the outlet port 227c may be the same, but the flow rate of the outlet port 227c will be inversely proportional to the area ratio. I can.
  • the terminal mounting portion 227a formed through the interior of the chamber housing 227 has the outer peripheral surfaces 227af being spaced apart from each other in the chamber space 227d to form the spaced portion 227sc. And, each terminal mounting portion 227a is spaced apart from the inner surface of the chamber housing 227 to form a bypass portion 227ss, and the area of the inlet port 227b is 3.8 times that of the outlet port 227c.
  • Example 2 which is 1.2 times the temperature of the connector terminal under the same conditions, the temperature of the connector terminal was measured at 86.33°C and 83.84°C, respectively, and the area ratio was greater than 4 or less than 1 and the temperature of the connector terminal compared to Comparative Example 1 and Comparative Example 2. It can be seen that the cooling performance of about 2°C to 5°C is more excellent.
  • the area of the inlet port 227b is 1 to 4 times the area of the outlet port 227c through an additional test including the above test result, it is cooled by a divided flow of the cooling fluid. It was confirmed that a meaningful effect of reducing the temperature of the connector terminal by the performance can be obtained, and furthermore, in order to reduce the temperature deviation of the connector terminal while generating a meaningful cooling effect, the area of the inlet port 227b is the area of the outlet port 227c. It was additionally confirmed that the range of 1 to 3 times should be satisfied.
  • the cooling effect is excellent because the terminal mounting portion 227a is evenly cooled and then discharged to the outlet 227c.
  • the cooling fluid flowing into the chamber housing 227 is different flow resistance. It is mostly discharged through the outlet 227c without the fact that the temperature of the connector terminal is measured to be 88.14 degrees Celsius, which is higher than in Examples 1 and 2, so that it can be confirmed that the cooling performance is relatively low, and in this case, the cooling fluid flowing through the inlet is It can be guessed that the distributed flow to the bypass portion 227ss was not large, and Comparative Example 2 (0.8) and Example 2 (1.2) in which the inlet/outlet area ratio is 1 as a boundary, although the difference in the area ratio is not large. And it was confirmed that the difference in the connector temperature was large, and the split flow of the cooling fluid contributed significantly to the cooling performance.
  • the inner diameter of the inlet 227b is about 1 to 2 times the inner diameter of the outlet 227c It means that it can be configured to a degree.
  • the inner diameter of the inlet 227b may be configured to be about 6 mm to 10 mm, and the inner diameter of the outlet 227c may satisfy the above relationship. Can be configured.
  • the shape of the inlet port and the outlet port is not limited to a circular shape, and may be configured in various shapes such as an elliptical shape or a polygonal shape.
  • a spacer that generates turbulence in the cooling fluid is interposed to supply cooling fluid by separately providing a power unit that can prevent heat concentration due to contact between the cooling tube and the insulator surrounding the conductor, and a dedicated recovery unit for recovering the cooling fluid.
  • the cooling fluid used for cooling the conductor of the power unit once again encloses the entire terminal mounting portion 227a on which the connector terminal 231 is mounted and is utilized for cooling. It can improve the cooling performance of the connector.
  • the inner diameter d1 of the inlet 227b is greater than the width w of the spacing part 227sc in order for the introduced cooling fluid to wrap around the terminal mounting portion 227a and cool the terminal mounting portion 227a. It can be largely configured.
  • the width (w) of the spacing part 227sc refers to the space between the terminal mounting parts 227a provided in the chamber housing 227, and the width of the spacing part 227sc between the terminal mounting parts 227a ( If w) is reduced, the flow rate of the cooling fluid bypassing the terminal mounting portion 227a may be further increased, so the inner diameter of the inlet 227b and the outlet 227c, the flow rate of the cooling fluid per hour, and the connector terminal 231 It is preferable to optimize the width of the spaced portion 227sc in consideration of temperature and the like.
  • terminal mounting portion 227a may be configured in the form of a pipe crossing the chamber housing 227, as shown in FIG. 14, the terminal mounting portion 227a on the outer peripheral surface of at least one of the At least one protruding blade 227e may be provided to form turbulent flow of the cooling fluid passing through the spaced portion 227sc.
  • the terminal mounting portion 227a on the left has two blades 227e protruding
  • the terminal mounting portion 227a on the right has one blade 227e. Is provided with a protrusion to generate turbulence by bending the flow path of the cooling fluid flowing through the spaced portion 227sc between the terminal mounting portions 227a, and the heat exchange efficiency between the cooling fluid and the terminal mounting portion 227a by the generated turbulence. Can improve.
  • the blade is shown to be configured in the form of a protruding partition wall on the outer circumferential surface of the terminal mounting portion 227a.
  • the blade has a structure capable of increasing heat exchange efficiency by forming turbulence during the flow of cooling fluid, There is no limit to the shape.
  • the blade shown in FIG. 14 is shown to extend in a vertical direction with respect to an imaginary line connecting the inlet and the outlet, but if necessary, the end of the blade may be configured to be inclined in the inlet direction or inclined in the outlet direction. have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The present invention relates to a cable assembly for charging an electric vehicle that efficiently cools, by using a cooling fluid, heat generated from a cable for charging an electric vehicle and a connector when an electric vehicle is charged, prevents internal structure damage caused by heat, prevents safety accidents, minimizes user discomfort, and enables the diameter of the cable for charging the electric vehicle to be minimized.

Description

전기차 충전용 케이블 어셈블리Electric vehicle charging cable assembly
본 발명은 냉각 기능을 구비한 전기차 충전용 케이블 어셈블리에 관한 것이다. 보다 구체적으로, 본 발명은 전기차의 충전시 전기차 충전용 케이블 및 커넥터에서 발생되는 열을 냉각 유체를 사용하여 효율적으로 냉각시키고, 열에 의한 내부 구성의 손상을 방지하며, 안전사고를 방지하고 사용자의 불쾌감을 최소화하며, 전기차 충전용 케이블의 직경을 최소화할 수 있는 전기차 충전용 케이블 어셈블리에 관한 것이다.The present invention relates to a cable assembly for charging an electric vehicle having a cooling function. More specifically, the present invention efficiently cools the heat generated from the electric vehicle charging cable and connector when charging the electric vehicle by using a cooling fluid, prevents damage to the internal structure due to heat, prevents safety accidents, and prevents user discomfort. The present invention relates to a cable assembly for electric vehicle charging that can minimize the diameter of the electric vehicle charging cable.
전기차의 보급과 함께 전기차 충전기의 설치가 확대되고 있다. 그리고 단시간 내의 충전이 가능하도록 급속 충전이 가능한 급속 충전기가 보급되고 있다. 완속 충전과 달리 급속 충전을 위한 급속 충전기의 출력 전압은 직류 50V 내지 450V 범위이고, 출력 전류는 110A, 최근 초고속 충전의 출력 전류는 400A에 달하며, 상기 급속 충전기를 통해 전기차를 충전하는데 소요되는 시간은 수십분 정도에 불과하다. 전기차의 배터리 용량에 따라 급속 충전기의 출력 전류도 증가될 것으로 예상된다.With the spread of electric vehicles, the installation of electric vehicle chargers is expanding. In addition, rapid chargers capable of fast charging have been popularized to enable charging within a short period of time. Unlike slow charging, the output voltage of the fast charger for fast charging is in the range of 50V to 450V DC, the output current is 110A, and the output current of the recent super fast charging reaches 400A, and the time required to charge the electric vehicle through the fast charger is It only takes tens of minutes. The output current of the rapid charger is expected to increase according to the battery capacity of the electric vehicle.
이러한 급속 충전기는 본체에 전기차 충전용 케이블이 연결되고, 충전용 케이블 단부에 충전기 커넥터가 장착되며, 충전기의 커넥터를 전기차에 구비된 전기차 커넥터에 장착하여 전기차 충전기로부터 전기차로 전기를 공급하게 된다.In such a rapid charger, an electric vehicle charging cable is connected to the main body, a charger connector is mounted at an end of the charging cable, and electricity is supplied from the electric vehicle charger to the electric vehicle by attaching the connector of the charger to the electric vehicle connector provided in the electric vehicle.
이와 같은 급속 충전기는 출력 전류가 수백 암페어에 이르므로 이를 전기차로 전달하는 전기차 충전용 케이블 또는 전기차 커넥터의 발열이 문제될 수 있다. 전기차 충전용 케이블 및 커넥터에서 발생되는 열을 최소화하기 위해서는 전기차 케이블의 도체의 직경을 증가시키는 등의 방법이 있으나, 발열을 충분히 감소시키기 어렵고, 전기차 충전용 케이블의 무게를 증가시키는 문제가 있다.Since such a rapid charger has an output current of several hundred amperes, heat generation of an electric vehicle charging cable or electric vehicle connector that transmits it to the electric vehicle may be problematic. In order to minimize the heat generated from the electric vehicle charging cable and connector, there is a method such as increasing the diameter of the conductor of the electric vehicle cable, but it is difficult to sufficiently reduce the heat generation, and there is a problem of increasing the weight of the electric vehicle charging cable.
전기차 충전용 케이블에 발생되는 열은 화재의 위험을 증가시킬 수 있다. 또한, 전기차 충전을 위하여 충전기 커넥터를 전기차 커넥터에 장착하거나 전기차 커넥터로부터 충전기 커넥터를 분리하여 충전기에 거치하는 과정에서 충전용 케이블은 사용자의 신체 접촉될 수 있고, 충전용 케이블의 발열이 심한 경우 사용자의 부상, 불쾌감 또는 불안감을 유발할 수 있으므로 바람직하지 않다.Heat generated by electric vehicle charging cables can increase the risk of fire. In addition, in the process of attaching the charger connector to the electric vehicle connector for charging the electric vehicle or detaching the charger connector from the electric vehicle connector and mounting it on the charger, the charging cable may come into contact with the user's body. This is undesirable because it can cause injury, discomfort or anxiety.
그리고, 전기차 충전용 케이블을 구성하는 전력유닛과 전기차 커넥터의 단자는 전기차 커넥터에서 접속되며 도체와 단자의 접속으로 인해 발열이 크고, 전기차 커넥터는 사용자의 손 등의 신체와 접촉되는 부분이므로 냉각 성능이 요구된다.In addition, the terminals of the electric vehicle charging cable and the electric vehicle connector are connected at the electric vehicle connector, and heat generation is high due to the connection of the conductor and the terminal, and the electric vehicle connector is a part that contacts the body such as the user's hand, so the cooling performance is improved. Required.
종래 소개된 전기차 커넥터는 전기차 커넥터를 통한 냉각 유체의 회수 구조는 소개된 바가 있으나, 냉각 유체가 회수되는 과정에서 전기차 커넥터를 구성하는 커넥터 단자를 충분하게 냉각하는 냉각 구조가 소개된 바가 없다.In the conventionally introduced electric vehicle connector, a structure for collecting cooling fluid through the electric vehicle connector has been introduced, but no cooling structure has been introduced that sufficiently cools the connector terminals constituting the electric vehicle connector in the process of recovering the cooling fluid.
본 발명은 전기차의 충전시 전기차 충전용 케이블 및 커넥터에서 발생되는 열을 냉각 유체를 사용하여 효율적으로 냉각시키고, 열에 의한 내부 구성의 손상을 방지하며, 안전사고를 방지하고 사용자의 불쾌감을 최소화하며, 전기차 충전용 케이블의 직경을 최소화할 수 있는 전기차 충전용 케이블 어셈블리를 제공하는 것을 해결하고자 하는 과제로 한다.The present invention efficiently cools the heat generated from the electric vehicle charging cable and connector when charging the electric vehicle using a cooling fluid, prevents damage to the internal structure due to heat, prevents safety accidents, and minimizes user discomfort, It is an object to be solved to provide an electric vehicle charging cable assembly that can minimize the diameter of the electric vehicle charging cable.
상기 과제를 해결하기 위하여, 본 발명은 전기차 커넥터와 전기차 충전기를 연결하는 전기차 충전용 케이블 어셈블리에 있어서, 도체; 상기 도체를 감싸는 절연층; 및 상기 절연층 외측을 감싸는 냉각튜브를 구비하는 한 쌍의 전력유닛; 한 쌍의 상기 전력유닛의 냉각튜브를 통해 공급된 냉각유체가 회수되는 회수유닛; 상기 전력유닛의 도체와 각각 접속되며, 상기 전기차 커넥터를 구성하는 한 쌍의 커넥터 단자; 및 상기 커넥터 단자가 장착되고, 상기 전력유닛 및 상기 회수유닛이 연결되며, 상기 전력유닛의 냉각유로를 통해 냉각 유체가 유입되어 상기 회수유닛으로 회수되는 과정에서 상기 커넥터 단자를 냉각하기 위한 챔버 공간을 구비한 챔버 하우징;을 포함하는 전기차 충전용 케이블 어셈블리를 제공할 수 있다.In order to solve the above problems, the present invention provides an electric vehicle charging cable assembly for connecting an electric vehicle connector and an electric vehicle charger, comprising: a conductor; An insulating layer surrounding the conductor; And a pair of power units having a cooling tube surrounding the outside of the insulating layer. A recovery unit for recovering the cooling fluid supplied through the cooling tubes of the pair of power units; A pair of connector terminals each connected to a conductor of the power unit and constituting the electric vehicle connector; And a chamber space for cooling the connector terminal when the connector terminal is mounted, the power unit and the recovery unit are connected, and a cooling fluid is introduced through the cooling flow path of the power unit to be recovered to the recovery unit. It is possible to provide a cable assembly for charging an electric vehicle including a; chamber housing provided.
또한, 상기 챔버 하우징은 상기 커넥터 단자가 관통 장착되는 한 쌍의 단자 장착부, 한 쌍의 상기 전력유닛을 경유한 냉각 유체가 유입되는 유입구 및 상기 유입구로 유입된 냉각 유체가 상기 챔버 공간을 경유하여 배출되는 배출구가 구비될 수 있다.In addition, the chamber housing includes a pair of terminal mounting portions through which the connector terminals are mounted, an inlet through which the cooling fluid through the pair of power units is introduced, and the cooling fluid introduced through the inlet is discharged through the chamber space. The outlet may be provided.
그리고, 한 쌍의 상기 단자 장착부는 상기 챔버 하우징의 내부 챔버 공간에서 상기 챔버 공간의 전방과 후방을 연결하며 가로지르는 한 쌍의 이격된 파이프 형태로 배치되어 그 사이에 이격부가 형성되고, 상기 챔버 하우징의 내부 챔버 공간 내측면과 한 쌍의 상기 단자 장착부는 각각 이격되어 냉각 유체가 우회하기 위한 한 쌍의 우회부가 형성되고,In addition, the pair of terminal mounting portions are arranged in the form of a pair of spaced pipes that connect and cross the front and rear of the chamber space in the inner chamber space of the chamber housing, and a spacer is formed therebetween, and the chamber housing The inner surface of the inner chamber space and the pair of terminal mounting portions are spaced apart from each other to form a pair of bypass portions for bypassing the cooling fluid,
상기 유입구와 상기 배출구는 상기 이격부를 사이에 두고 챔버 하우징의 후방에 구비될 수 있다.The inlet port and the outlet port may be provided at the rear of the chamber housing with the spaced portion therebetween.
여기서, 상기 유입구로 유입된 냉각 유체는 상기 이격부 및 상기 우회부로 분산되어 유동하며, 상기 챔버 공간 내에서 노출된 상기 단자 장착부의 외주면을 감싸 냉각한 후 상기 배출구로 배출될 수 있다.Here, the cooling fluid introduced into the inlet may be distributed and flowed to the separation portion and the bypass portion, and may be discharged to the outlet after cooling by wrapping the outer peripheral surface of the terminal mounting portion exposed in the chamber space.
이 경우, 상기 유입구는 상기 챔버 하우징 상부에 구비되고, 상기 배출구는 상기 챔버 하우징 하부에 구비될 수 있다.In this case, the inlet may be provided above the chamber housing, and the outlet may be provided below the chamber housing.
그리고, 상기 유입구에서 유입된 냉각 유체는 상기 이격부 및 상기 단자 장착부 둘레를 경유하여 상기 배출구로 배출될 수 있다.In addition, the cooling fluid introduced from the inlet may be discharged to the outlet through the separation portion and the peripheral portion of the terminal mounting portion.
또한, 한 쌍의 상기 단자 장착부는 상기 챔버 하우징 내부의 챔버 공간을 각각 가로지르는 파이프 형태로 구성되고, 상기 챔버 하우징 내부 공간으로 노출되는 한 쌍의 상기 단자 장착부 중 적어도 하나의 외주면에 돌출 형성된 블레이드가 적어도 하나 구비될 수 있다.In addition, the pair of terminal mounting portions are configured in the form of pipes crossing each of the chamber spaces inside the chamber housing, and blades protruding from at least one outer circumferential surface of the pair of terminal mounting portions exposed to the inner space of the chamber housing are provided. At least one may be provided.
그리고, 상기 유입구의 면적은 상기 배출구의 면적의 1배 내지 4배의 크기일 수 있다.In addition, the area of the inlet port may be 1 to 4 times the size of the outlet port.
여기서, 상기 유입구의 내경이 상기 이격부의 폭보다 클 수 있다.Here, the inner diameter of the inlet may be larger than the width of the spacer.
이 경우, 상기 챔버 하우징의 전력유닛 및 회수유닛 연결방향과 수직한 방향 단면 형상은 모서리가 라운드진 형태로 구성될 수 있다.In this case, a cross-sectional shape of the chamber housing in a direction perpendicular to a direction in which the power unit and the recovery unit are connected may be formed in a shape with a rounded corner.
그리고, 한 쌍의 전력유닛의 각각의 냉각튜브와 연결되는 분지된 구조의 수집관 및 상기 수집관과 상기 챔버 하우징의 유입구를 연결하는 연결관을 더 포함할 수 있다.In addition, it may further include a branched collecting pipe connected to each cooling tube of the pair of power units, and a connecting pipe connecting the collecting pipe and the inlet of the chamber housing.
또한, 각각의 전력유닛의 냉각튜브를 유동하는 냉각 유체가 상기 수집관으로 연결되도록 하는 마감관을 더 포함하고, 상기 수집관은 각각의 전력유닛 단부에 장착된 상기 마감관에 연결될 수 있다.In addition, it further includes a closing pipe for connecting the cooling fluid flowing through the cooling tube of each power unit to the collection pipe, the collection pipe may be connected to the closing pipe mounted at the end of each power unit.
또한, 상기 챔버 하우징의 배출구는 상기 회수유닛과 직결될 수 있다.In addition, the outlet of the chamber housing may be directly connected to the recovery unit.
그리고, 상기 전력유닛의 절연층은 상기 도체가 냉각 유체에 노출되지 않도록 상기 도체를 빈틈없이 감쌀 수 있다.In addition, the insulating layer of the power unit may tightly wrap the conductor so that the conductor is not exposed to the cooling fluid.
여기서, 각각의 전력유닛의 절연층으로 피복된 도체는 상기 마감관을 관통하여 상기 커넥터 단자의 후방에 접속될 수 있다.Here, the conductor covered with the insulating layer of each power unit may pass through the closing tube and be connected to the rear of the connector terminal.
이 경우, 상기 챔버 하우징의 유입구는 상기 챔버 하우징에 대각선 방향으로 구비되고, 상기 연결관은 상기 유입구 각도에 대응하여 절곡된 형상으로 구성될 수 있다.In this case, the inlet of the chamber housing may be provided in a diagonal direction in the chamber housing, and the connection pipe may be formed in a shape bent to correspond to the inlet angle.
그리고, 상기 전력유닛은 상기 절연층과 냉각튜브의 접촉을 방지하며, 냉각 유체가 유동하는 냉각 유로를 형성하기 위한 스페이서를 더 구비할 수 있다.In addition, the power unit may further include a spacer for preventing contact between the insulating layer and the cooling tube and forming a cooling passage through which a cooling fluid flows.
또한, 상기 전력유닛의 스페이서는 와이어 형태로 구성될 수 있다.In addition, the spacer of the power unit may be configured in a wire shape.
그리고, 상기 스페이서는 전력유닛의 절연층과 냉각튜브 사이에 나선형으로 횡권되어 배치될 수 있다.In addition, the spacer may be spirally wound and disposed between the insulating layer of the power unit and the cooling tube.
여기서, 상기 스페이서는 상기 도체의 절연층 외면 또는 냉각튜브 내면에 일체로 형성되는 적어도 하나의 돌기일 수 있다.Here, the spacer may be at least one protrusion integrally formed on the outer surface of the insulating layer or the inner surface of the cooling tube of the conductor.
이 경우, 상기 전력유닛과 함께 적어도 하나의 접지유닛 및 적어도 하나의 통신유닛;을 더 포함될 수 있다.In this case, it may further include at least one grounding unit and at least one communication unit together with the power unit.
그리고, 상기 냉각튜브 및 상기 스페이서 중 적어도 하나는 테프론 계열 또는 우레탄 재질로 구성될 수 있다.In addition, at least one of the cooling tube and the spacer may be made of a Teflon-based or urethane material.
본 발명에 따른 전기차 충전용 케이블 어셈블리에 의하면, 전기차의 급속 충전시 전기차 충전용 케이블 및 커넥터에서 발생되는 열을 냉각 유체를 사용하여 효율적으로 냉각시킬 수 있다.According to the electric vehicle charging cable assembly according to the present invention, heat generated from the electric vehicle charging cable and connector during rapid charging of the electric vehicle can be efficiently cooled using a cooling fluid.
보다 구체적으로, 본 발명에 따른 전기차 충전용 케이블 어셈블리에 의하면, 전력유닛을 구성하는 절연층이 구비된 도체를 냉각 유체가 흐르는 냉각튜브 내부에 그 내면과 비접촉 상태로 배치하여 발열하는 전력유닛의 냉각성능을 극대화할 수 있다.More specifically, according to the electric vehicle charging cable assembly according to the present invention, a conductor having an insulating layer constituting a power unit is disposed inside a cooling tube through which a cooling fluid flows in a non-contact state to cool the power unit to generate heat. You can maximize performance.
또한, 본 발명에 따른 전기차 충전용 케이블 어셈블리에 의하면, 전력유닛을 구성하는 절연층이 구비된 도체를 냉각튜브의 내면과 비접촉 상태로 배치하여, 도체를 감싸는 절연층의 모든 면을 냉각시킬 수 있으므로, 영역별 냉각 편차에 의하여 도체를 감싸는 절연층의 국소 부위의 멜팅을 방지할 수 있다.In addition, according to the electric vehicle charging cable assembly according to the present invention, the conductor provided with the insulating layer constituting the power unit is disposed in a non-contact state with the inner surface of the cooling tube, so that all surfaces of the insulating layer surrounding the conductor can be cooled. , Melting of a local area of the insulating layer surrounding the conductor can be prevented by the cooling deviation of each area.
또한, 본 발명에 따른 전기차 충전용 케이블 어셈블리에 의하면, 전력유닛을 구성하는 절연층이 구비된 도체는 냉각튜브에 수용되어 충전기로부터 냉각유체가 공급되며, 냉각에 사용된 냉각유체를 충전기로 회수하여 절연층이 구비된 도체를 균일하게 냉각할 수 있다.In addition, according to the electric vehicle charging cable assembly according to the present invention, the conductor provided with the insulating layer constituting the power unit is accommodated in a cooling tube to supply cooling fluid from the charger, and the cooling fluid used for cooling is recovered to the charger. It is possible to uniformly cool the conductor provided with the insulating layer.
또한, 본 발명에 따른 전기차 충전용 케이블 어셈블리에 의하면, 챔버 하우징 내에서 냉각 유체가 커넥터 단자가 장착되는 단자 장착부 둘레를 냉각 유체가 유동하도록 하여 커넥터 단자의 발열을 빠르게 냉각하여 전기차 충전용 커넥터의 냉각 성능도 향상시킬 수 있다.In addition, according to the electric vehicle charging cable assembly according to the present invention, the cooling fluid in the chamber housing allows the cooling fluid to flow around the terminal mounting portion where the connector terminal is mounted, thereby rapidly cooling the heat of the connector terminal to cool the electric vehicle charging connector. Performance can also be improved.
또한, 본 발명에 따른 전기차 충전용 케이블 어셈블리에 의하면, 챔버 하우징으로 냉각 유체가 유입되는 유입구 및 냉각 유체가 회수되는 배출구의 유로 면적을 최적화하여 챔버 하우징 내에서의 난류 발생을 유도하여 커넥터 단자의 냉각 성능을 향상시킬 수 있다.In addition, according to the electric vehicle charging cable assembly according to the present invention, by optimizing the flow path area of the inlet through which the cooling fluid flows into the chamber housing and the outlet through which the cooling fluid is recovered, induces turbulence in the chamber housing to cool the connector terminals. It can improve performance.
또한, 본 발명에 따른 전기차 충전용 케이블 어셈블리에 의하면, 전력유닛을 포함하는 케이블 이외의 커넥터 구성들의 냉각을 가능하게 하여, 커넥터 또는 케이블 과열로 인한 화재 등을 방지하고, 전기차 충전기 사용자들의 신체에 커넥터 또는 케이블이 접촉되는 경우에도 발열에 따른 불안감 또는 불쾌감 등을 최소화할 수 있다.In addition, according to the electric vehicle charging cable assembly according to the present invention, it is possible to cool connector components other than the cable including the power unit, thereby preventing fire due to overheating of the connector or cable, and the connector on the body of electric vehicle charger users. Alternatively, even when the cable is in contact, it is possible to minimize anxiety or discomfort caused by heat generation.
또한, 본 발명에 따른 전기차 충전용 케이블 어셈블리에 의하면, 전력유닛과 별도로만 냉각관을 구비하는 기술보다 전기차 충전용 케이블의 전체 직경을 컴팩트하게 할 수 있다.In addition, according to the electric vehicle charging cable assembly according to the present invention, the overall diameter of the electric vehicle charging cable can be made more compact than a technology in which a cooling tube is provided separately from the power unit.
도 1은 전기차와 전기차 충전기를 도시한다.1 shows an electric vehicle and an electric vehicle charger.
도 2는 전기차 및 전기차 충전기의 커넥터를 도시한다.2 shows a connector of an electric vehicle and an electric vehicle charger.
도 3은 본 발명에 따른 전기차 충전용 케이블의 단면도를 도시한다.3 shows a cross-sectional view of a cable for charging an electric vehicle according to the present invention.
도 4 및 도 5는 본 발명에 따른 전기차 충전용 케이블을 구성하는 전력 유닛의 내부 구조와 투시도를 도시한다.4 and 5 show an internal structure and a perspective view of a power unit constituting a cable for charging an electric vehicle according to the present invention.
도 6 내지 도 8은 본 발명에 따른 전기차 충전용 케이블을 구성하는 전력 유닛 및 냉각유체 회수유닛과 커넥터 연결구조를 도시한다.6 to 8 show a power unit and a cooling fluid recovery unit and a connector connection structure constituting the electric vehicle charging cable according to the present invention.
도 9 및 도 10은 본 발명에 따른 전기차 충전용 케이블 어셈블리를 구성하는 커넥터 단자 및 상기 커넥터 단자가 장착되는 챔버 하우징의 조립 상태와 분해 상태의 사시도를 도시한다.9 and 10 are perspective views illustrating an assembled state and an exploded state of a connector terminal constituting an electric vehicle charging cable assembly according to the present invention and a chamber housing in which the connector terminal is mounted.
도 11 및 도 12는 본 발명에 따른 전기차 충전용 케이블 어셈블리를 구성하는 챔버 하우징의 정면도와 측면도를 도시한다.11 and 12 show a front view and a side view of a chamber housing constituting a cable assembly for charging an electric vehicle according to the present invention.
도 13 및 도 14는 본 발명에 따른 전기차 충전용 케이블 어셈블리를 구성하는 챔버 하우징의 실시예들의 단면도를 도시한다.13 and 14 are cross-sectional views of embodiments of a chamber housing constituting a cable assembly for charging an electric vehicle according to the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조 번호들은 동일한 구성요소들을 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed content may be thorough and complete, and the spirit of the invention may be sufficiently conveyed to those skilled in the art. The same reference numerals represent the same elements throughout the specification.
또한, 이하의 설명에서 전기차(ev, electric car)란 차량에 구비된 배터리에 충전된 전기 에너지를 이용하여 전기 모터를 구동하고, 모터의 구동력을 차량의 동력으로 사용하는 차량을 의미하며, 구체적으로는 플러그인 방식의 전기차(PEV, Plug-in Electric Vehicle)를 의미한다.In addition, in the following description, an electric car (ev, electric car) refers to a vehicle that drives an electric motor using electric energy charged in a battery provided in the vehicle and uses the driving force of the motor as the power of the vehicle. Means plug-in electric vehicle (PEV).
그러나, 위 전기차(ev)는 통상적인 도로용 승용 자동차로 제한 해석되어서는 안되며, 도로용 승용 자동차 이외에도 카트, 작업용 차량 또는 이륜차 등을 포함하는 개념으로 이해되어야 한다.However, the above electric vehicle (ev) should not be limitedly interpreted as a conventional road passenger vehicle, and should be understood as a concept including a cart, a work vehicle, or a two-wheeled vehicle in addition to a road passenger vehicle.
도 1은 전기차(ev)와 전기차 충전기(300)를 도시한다.1 shows an electric vehicle ev and an electric vehicle charger 300.
전기차 충전기(300)는 전기차로 전력 공급을 위하여 전기차 충전용 커넥터(200)와 전기차 충전용 케이블(100)로 연결되며, 전기차 충전용 케이블(100)의 단부에는 전기차 충전용 커넥터(200)가 구비된다.The electric vehicle charger 300 is connected with an electric vehicle charging connector 200 and an electric vehicle charging cable 100 to supply power to an electric vehicle, and an electric vehicle charging connector 200 is provided at the end of the electric vehicle charging cable 100 do.
전기차 충전용 커넥터(200)는 전기차(ev)에 구비된 전기차 커넥터(400)에 장착되어 전력을 공급할 수 있고, 급속 충전기의 경우 짧은 시간에 전기차의 충전을 완료할 수 있다.The electric vehicle charging connector 200 is mounted on the electric vehicle connector 400 provided in the electric vehicle ev to supply power, and in the case of a rapid charger, charging of the electric vehicle can be completed in a short time.
전기차 충전기(300)와 전기차(ev)를 전기적으로 연결하는 전기차 충전용 케이블(100)은 큰 전류용량으로 인하여 열이 발생될 수 있고, 화재의 위험 또는 사용자 불안감 등의 해소를 위하여 본 발명의 전기차 충전용 케이블(100)은 냉각유체를 사용하여 전기차 충전용 케이블(100)을 냉각시키는 방법을 사용한다.The electric vehicle charging cable 100 electrically connecting the electric vehicle charger 300 and the electric vehicle ev may generate heat due to its large current capacity, and the electric vehicle of the present invention may be used to relieve the risk of fire or user anxiety. The charging cable 100 uses a method of cooling the electric vehicle charging cable 100 using a cooling fluid.
도 2는 전기차에 구비되는 전기차 커넥터(400)와 전기차 충전용 케이블(100)이 연결된 전기차 충전용 커넥터(200)를 도시한다. 도 2에 도시된 전기차 충전용 커넥터는 단일화 표준 중 하나인 미국·유럽형 '콤보' 방식의 커넥터로서 하나의 커넥터로 교류 방식의 완속 충전 또는 직류 방식의 급속 충전이 모두 가능한 형태의 커넥터로서 본 발명의 전기차 충전용 케이블(100)의 적용이 가능하다.FIG. 2 shows an electric vehicle charging connector 200 to which an electric vehicle connector 400 provided in an electric vehicle and an electric vehicle charging cable 100 are connected. The electric vehicle charging connector shown in FIG. 2 is an American-European'combo' type connector, which is one of the unified standards, and is a type of connector capable of slow charging in an alternating current method or rapid charging in a direct current method with one connector. The electric vehicle charging cable 100 can be applied.
그러나, 본 발명의 전기차 충전용 케이블(100)은 도 2에 도시된 미국·유럽형 '콤보' 방식 이외에도 일본 '차데모(CHAdeMO)' 방식, 또는 르노 '교류 3상' 방식 또는 기타 방식의 전기차 충전용 커넥터에도 적용이 가능하다.However, in addition to the US-European'combo' method shown in FIG. 2, the electric vehicle charging cable 100 of the present invention is a Japanese'CHAdeMO' method, or a Renault'AC three-phase' method or other method of charging an electric vehicle. It can also be applied to the connector.
도 2에 도시된 바와 같이, 본 발명의 전기차 충전용 케이블(100)의 단부에는 전기차 충전용 커넥터(200)가 정착되고, 상기 전기차 충전용 커넥터(200)는 전기차(ev)에 구비되는 전기차 커넥터(400)에 착탈 가능하게 장착될 수 있는 구조를 갖는다.As shown in Figure 2, the electric vehicle charging connector 200 is fixed at the end of the electric vehicle charging cable 100 of the present invention, the electric vehicle charging connector 200 is an electric vehicle connector provided in the electric vehicle (ev) It has a structure that can be detachably mounted on the 400.
'콤보' 방식의 전기차 충전용 커넥터는 교류 또는 직류 방식의 커넥터가 일체화되어 각각의 커넥터에는 교류 충전부(210, 410)와 직류 충전부(230, 430)가 각각 구비된다.In the'combo' type electric vehicle charging connector, an AC or DC type connector is integrated, and each connector includes an AC charging unit 210 and 410 and a DC charging unit 230 and 430, respectively.
이와 같은 전기차 충전용 커넥터에 연결된 전기차 충전용 케이블(100)은 급속 충전시 큰 전류량에 의하여 발열이 문제될 수 있으므로, 본 발명의 전기차 충전용 케이블(100)은 냉각유체를 사용하여 발열 문제를 해결하였다.Since the electric vehicle charging cable 100 connected to such an electric vehicle charging connector may cause heat generation due to a large amount of current during rapid charging, the electric vehicle charging cable 100 of the present invention uses a cooling fluid to solve the heating problem. I did.
냉각유체를 사용하여 전기차 충전용 케이블(100)을 냉각하는 구조는 이미 소개된 바가 있으나, 별도의 냉각유체 유로가 전기차 충전용 케이블(100) 내에 구비되어야 하므로, 냉각 효율이 떨어지고 전기차 충전용 케이블(100)의 직경이 커지는 문제가 있었다.A structure for cooling the electric vehicle charging cable 100 using a cooling fluid has already been introduced, but since a separate cooling fluid flow path must be provided in the electric vehicle charging cable 100, cooling efficiency decreases and the electric vehicle charging cable ( There was a problem of increasing the diameter of 100).
본 발명의 전기차 충전용 케이블(100)은 전기차 충전용 케이블(100)을 구성하는 각각의 전력유닛 내부에 유체관을 구비하는 냉각부를 배치하여, 냉각부 외주면 전체로 흡열되도록 하여 냉각 효율을 향상시키고, 전기차 충전용 케이블(100) 직경을 최소화하면서도 안정적인 냉각 성능을 확보하였다. 구체적으로 설명한다.In the electric vehicle charging cable 100 of the present invention, a cooling unit having a fluid pipe is disposed inside each power unit constituting the electric vehicle charging cable 100, so that heat is absorbed to the entire outer circumference of the cooling unit, thereby improving cooling efficiency. , While minimizing the diameter of the electric vehicle charging cable 100, stable cooling performance was secured. It will be described in detail.
도 3은 본 발명의 전기차 충전용 케이블(100)의 단면도를 도시한다.3 shows a cross-sectional view of the electric vehicle charging cable 100 of the present invention.
본 발명의 전기차 충전용 케이블(100)은 적어도 하나의 접지유닛(30); 적어도 하나의 통신유닛(50); 절연층(13)이 구비된 도체(11), 상기 절연층이 구비된 도체(11)가 수용되는 냉각튜브(17) 및 상기 도체(11)와 상기 냉각튜브 내면 사이에 구비되는 스페이서(19)를 포함하는 전력유닛(10); 회수튜브(27)를 포함하여 구성된 회수유닛(20); 및, 상기 접지유닛, 상기 통신유닛, 상기 전력유닛 및 상기 회수유닛;을 감싸는 외부자켓;을 포함하여 구성될 수 있다.The electric vehicle charging cable 100 of the present invention includes at least one grounding unit 30; At least one communication unit 50; A conductor 11 provided with an insulating layer 13, a cooling tube 17 accommodating the conductor 11 with an insulating layer, and a spacer 19 provided between the conductor 11 and the inner surface of the cooling tube Power unit 10 comprising a; A recovery unit 20 configured including a recovery tube 27; And an outer jacket surrounding the ground unit, the communication unit, the power unit, and the recovery unit.
각각의 통신유닛(50)과 접지유닛(30)은 각각 피복층으로 피복될 수 있으며, 필요에 따라 케이블 원형 유지를 위한 개재(40) 등이 구비될 수 있으며, 필요에 따라 인장력 보강을 위한 중심 인장선이 구비될 수도 있다.Each communication unit 50 and the grounding unit 30 may be covered with a coating layer, and if necessary, an intervening 40 for maintaining the original cable shape may be provided, and a central tension for reinforcing tensile force if necessary. Lines may be provided.
종래 접지유닛(30) 등이 하나의 큰 유닛으로 구성되는 전기차 충전용 케이블이 소개된 바가 있으나, 본 발명은 냉각유체 회수를 위한 회수유닛(20)이 별도로 구비되므로 케이블의 직경 증가를 최소화하기 위하여 접지유닛(30)을 복수 개로 분할하고 복수 개의 접지유닛(30)을 다른 유닛 사이의 공극에 배치하여 케이블 직경을 최소화할 수 있다.Conventionally, a cable for charging an electric vehicle in which the grounding unit 30 and the like is composed of one large unit has been introduced, but in the present invention, since the recovery unit 20 for recovering the cooling fluid is separately provided, in order to minimize the increase in the diameter of the cable. The cable diameter can be minimized by dividing the grounding unit 30 into a plurality and arranging the plurality of grounding units 30 in the air gaps between other units.
충전시 충전과 관련된 센서 데이터 또는 제어 데이터를 충전기와 전기차 사이에서 전송하기 위한 통신유닛(50) 역시 접지유닛(30)과 마찬가지 이유로 복수 개로 분할 제공될 수 있다.During charging, the communication unit 50 for transmitting sensor data or control data related to charging between the charger and the electric vehicle may also be divided into a plurality of pieces for the same reason as the ground unit 30.
또한, 본 발명의 전기차 충전용 케이블(100)은 한 쌍의 전력유닛(10a, 10b)의 냉각튜브(17)를 통해 공급되어 도체와 커넥터 등의 냉각에 사용된 냉각유체를 다시 전기차 충전기로 회수하기 위한 회수유로(25)가 내부에 구비된 회수튜브(27)를 포함하여 구성된 회수유닛(20)을 구비할 수 있다.In addition, the electric vehicle charging cable 100 of the present invention is supplied through the cooling tube 17 of a pair of power units 10a and 10b to recover the cooling fluid used for cooling conductors and connectors back to the electric vehicle charger. The recovery flow path 25 may be provided with a recovery unit 20 including a recovery tube 27 provided therein.
상기 회수유닛(20)은 충전기에서 커넥터로 공급되며 냉각에 사용된 냉각 유체를 회수함과 동시에 보조적으로 전기차 충전용 케이블을 구성하는 외부자켓 내부 공간을 냉각하기 위하여 구비될 수 있다.The recovery unit 20 may be provided to recover the cooling fluid supplied from the charger to the connector and used for cooling, and to auxiliaryly cool the inner space of the outer jacket constituting the electric vehicle charging cable.
상기 전력유닛(10)은 자체적인 냉각튜브를 구비하여 자체적인 냉각이 수행되지만, 외부자켓(70)의 내부의 온도가 상승하는 경우, 예를 들면 외부 온도가 높은 하절기 등에는 전기차 충전용 케이블 자체의 온도가 상승할 수 있고, 상기 회수유닛(20)은 냉각 유체를 회수하는 과정에서 보조적으로 전체 케이블의 온도를 낮추는 역할도 수행할 수 있다.The power unit 10 has its own cooling tube to perform its own cooling, but when the internal temperature of the outer jacket 70 rises, for example, in the summer when the external temperature is high, the electric vehicle charging cable itself The temperature of may increase, and the recovery unit 20 may auxiliaryly lower the temperature of the entire cable in the process of recovering the cooling fluid.
상기 회수유닛(20)은 1개가 구비될 수 있고, 1개의 회수유닛(20)으로 2개의 전력유닛을 통해 공급되는 냉각 유체를 회수해야 하므로, 하나의 전력유닛의 냉각유로(15)의 단면적보다 큰 회수유로(25)가 구비된 회수튜브(27)을 구비할 수 있다.Since one recovery unit 20 may be provided, and one recovery unit 20 needs to recover the cooling fluid supplied through the two power units, it is less than the cross-sectional area of the cooling flow path 15 of one power unit. It may be provided with a recovery tube (27) provided with a large recovery passage (25).
상기 전력유닛(10)을 구성하는 냉각튜브(17)와 스페이서(19) 및 상기 회수유닛(20)을 구성하는 회수튜브(27)는 냉각유체 유동이 가능하며, 내열성과 내유성이 우수한 재질로 구성되는 것이 바람직하다. 이러한 재질로는 일반 수지, 폴리 에틸렌, 우레탄, 불화 폴리 에틸렌(PTFE, Polytetrafluoroethylene) 또는 일반 수지나 폴리 에틸렌 재질로 구성된 뒤 표면이 내열성이 우수한 불화 폴리 에틸렌 등의 재질로 코팅될 수도 있다.The cooling tube 17 and the spacer 19 constituting the power unit 10 and the recovery tube 27 constituting the recovery unit 20 are made of a material capable of flowing a cooling fluid and having excellent heat resistance and oil resistance. It is desirable to be. Such a material may be made of a general resin, polyethylene, urethane, fluorinated polyethylene (PTFE, Polytetrafluoroethylene), or a general resin or polyethylene, and the surface may be coated with a material such as fluorinated polyethylene having excellent heat resistance.
폴리우레탄은 인장강도와 인열강도가 매우 우수하고 PVC 재질보다 친환경적이라는 특징을 갖는다. 또한, 불화 폴리 에틸렌 재질은 예를 들면 테프론 계열일 수 있다. 테프론은 내열 온도가 -60℃ ~ +260℃ 수준으로 내열성이 우수하다. 따라서, 이와 같은 테프론 계열을 적용하여 사용자의 불쾌감 또는 불안감을 유발하는 외부 열전달을 최소화할 수 있고, 외피 피복 공정 등에서 내부 열전달 역시 최소화하여 내부 구성의 멜팅 등을 방지하여 절연성능을 보장할 수 있다.Polyurethane has excellent tensile strength and tear strength and is more eco-friendly than PVC materials. In addition, the fluorinated polyethylene material may be, for example, Teflon-based. Teflon has excellent heat resistance with a heat resistance of -60℃ to +260℃. Therefore, by applying such a Teflon series, it is possible to minimize external heat transfer that causes discomfort or anxiety of the user, and also minimize internal heat transfer in the shell coating process, etc., to prevent melting of the internal configuration, etc., thereby ensuring insulation performance.
그리고, 본 발명의 전기차 충전용 케이블(100)은 상기 접지유닛(30), 상기 통신유닛(50), 상기 전력유닛(10) 및 상기 회수유닛(20);을 감싸는 외부자켓(70)을 포함할 수 있으며, 케이블 내부의 열이 외부로 전달되는 것을 차단하기 위하여 추가적인 단열층(60)을 구비할 수도 있다.In addition, the electric vehicle charging cable 100 of the present invention includes an outer jacket 70 surrounding the grounding unit 30, the communication unit 50, the power unit 10, and the recovery unit 20. In addition, an additional insulating layer 60 may be provided to block heat from inside the cable from being transferred to the outside.
상기 단열층(60)은 상기 냉각튜브 등과 마찬가지로 내열성이 우수한 테프론 계열의 재질로 구성되거나, 열전도성이 낮고 유연성이 좋은 섬유편조체 등이 적용되어도 무방하다.The heat insulating layer 60 may be made of a Teflon-based material having excellent heat resistance like the cooling tube, or a fiber braid having low thermal conductivity and good flexibility may be applied.
도 4 및 도 5는 본 발명에 따른 전기차 충전용 케이블을 구성하는 전력 유닛의 내부 구조와 투시도를 도시한다.4 and 5 show an internal structure and a perspective view of a power unit constituting a cable for charging an electric vehicle according to the present invention.
전기차 충전용 케이블에서 발열이 문제되는 한 쌍의 전력유닛(10a, 10b)은 각각 그 내부를 순환하도록 공급되는 냉각 유체에 의하여 냉각될 수 있다.A pair of power units 10a and 10b in which heat generation is a problem in the electric vehicle charging cable may be cooled by a cooling fluid supplied to circulate the inside, respectively.
구체적으로, 상기 전력유닛(10)은 절연층(13)이 구비된 도체(11), 상기 도체(11)가 수용되며 냉각 유체가 미리 결정된 방향으로 유동하는 냉각튜브(17) 및 상기 도체(11)가 상기 냉각튜브(17) 내부에 수용된 상태에서 상기 도체(11)의 절연층(13)과 상기 냉각튜브(17)의 내면의 접촉을 방지하기 위하여 상기 도체(11)와 상기 냉각튜브(17) 내면 사이에 구비되는 스페이서(19)를 포함하여 구성될 수 있다.Specifically, the power unit 10 includes a conductor 11 provided with an insulating layer 13, a cooling tube 17 in which the conductor 11 is accommodated and a cooling fluid flows in a predetermined direction, and the conductor 11 ) Is accommodated in the cooling tube 17, in order to prevent contact between the insulating layer 13 of the conductor 11 and the inner surface of the cooling tube 17, the conductor 11 and the cooling tube 17 ) It may be configured to include a spacer 19 provided between the inner surface.
상기 전력유닛의 절연층(13)은 냉각 유체의 절연성과 무관하게 상기 도체(11)가 냉각 유체에 노출되지 않도록 상기 도체(11)를 빈틈없이 감싸도록 구성될 수 있다.The insulating layer 13 of the power unit may be configured to tightly surround the conductor 11 so that the conductor 11 is not exposed to the cooling fluid regardless of the insulation of the cooling fluid.
상기 전력유닛(10)의 도체(11)는 각각 절연층(13)이 구비된 상태로 상기 냉각튜브(17) 내에 수용될 수 있다. 상기 냉각튜브(17)에 수용된 절연층(13)이 구비된 도체는 그 외부에 냉각 유로(15)가 구비되어 전력 공급시 발생될 수 있는 열을 효과적으로 냉각시킬 수 있다. 상기 도체(11)는 전기전도도가 높아 발열이 적은 구리(Cu) 재질로 구성될 수 있고, 상기 도체(11)를 감싸는 절연층은 높은 전압을 적용할 수 있는 XLPE 재질로 구성될 수 있다.The conductors 11 of the power unit 10 may be accommodated in the cooling tube 17 with an insulating layer 13 provided, respectively. The conductor provided with the insulating layer 13 accommodated in the cooling tube 17 is provided with a cooling channel 15 outside it, so that heat that may be generated when power is supplied can be effectively cooled. The conductor 11 may be formed of a copper (Cu) material having high electrical conductivity and low heat generation, and an insulating layer surrounding the conductor 11 may be formed of an XLPE material capable of applying a high voltage.
상기 전력유닛(10)의 도체를 통해 공급되는 전류는 최대 400A에 이를 수 있다.The current supplied through the conductor of the power unit 10 may reach a maximum of 400A.
XLPE(Crosslinked Polyethylene)는 폴리에틸렌을 가교반응을 통해 그 화학구조를 변형시켜 구성한 절연재이다.XLPE (Crosslinked Polyethylene) is an insulating material formed by modifying the chemical structure of polyethylene through a crosslinking reaction.
상기 냉각튜브(17)로 공급될 수 있는 냉각 유체는 순수한 물 이외에도 에틸렌 글리콜, 인산염, 규산염, 붕산염 등의 무기계 첨가제, 동결 방지제, 부식 방지제, 고온 안정성 향상제, 거품 방지제 또는 알칼리성 첨가물 중 적어도 하나 이상이 첨가된 형태의 냉각액일 수 있으며, 전기차 충전기 설치 환경에 따라 다양한 액체가 선정되어 사용될 수 있다. 또한, 냉각유체는 물 이외의 오일을 베이스로 하여 구성될 수 있으며 그에 따른 다양한 첨가물이 첨가될 수 있다.In addition to pure water, the cooling fluid that can be supplied to the cooling tube 17 includes at least one of inorganic additives such as ethylene glycol, phosphate, silicate, and borate, freeze inhibitor, corrosion inhibitor, high temperature stability improver, antifoam agent, or alkaline additive. It may be an added type of coolant, and various liquids may be selected and used according to the installation environment of the electric vehicle charger. In addition, the cooling fluid may be composed of oil other than water as a base, and various additives may be added accordingly.
본 발명의 전기차 충전용 케이블(100)은 전기차 충전기(300)와 충전기 커넥터(200)를 연결하며, 전기차 충전기에서 전력유닛으로 공급되어 전력유닛 및 커넥터의 냉각에 사용된 냉각 유체는 도 3에 도시된 회수유닛(20)을 통해 전기차 충전기(300, 도 1 참조)로 다시 회수되어 냉각 후 재공급되는 방법이 사용될 수 있다.The electric vehicle charging cable 100 of the present invention connects the electric vehicle charger 300 and the charger connector 200, and the cooling fluid supplied from the electric vehicle charger to the power unit and used for cooling the power unit and the connector is shown in FIG. A method of recovering again to the electric vehicle charger 300 (see FIG. 1) through the collected recovery unit 20, cooling, and then resupplying it may be used.
따라서, 상기 냉각 유체를 재냉각하기 위한 냉각장치와 냉각 유체를 유동시키는 펌핑장치는 전기차 충전기(300, 도 1 참조)에 구비될 수도 있고, 상기 전기차 충전기(300) 외부에 구비될 수도 있으며, 회수유닛(20)의 회수튜브를 통해 회수된 냉각 유체는 냉각장치에서 냉각되고, 펌핑장치에서 펌핑되어 전력유닛(10)을 구성하는 냉각튜브(17) 내부로 공급될 수 있다.Accordingly, a cooling device for recooling the cooling fluid and a pumping device for flowing the cooling fluid may be provided in the electric vehicle charger 300 (see FIG. 1), may be provided outside the electric vehicle charger 300, and recovered. The cooling fluid recovered through the recovery tube of the unit 20 may be cooled in a cooling device, pumped in a pumping device, and supplied into the cooling tube 17 constituting the power unit 10.
정리하면, 충전기 커넥터(200)와 전기차 충전기(300)를 연결하는 전기차 충전용 케이블(100)을 구성하는 한 쌍의 전력유닛(10a, 10b)은 각각 냉각튜브(17)를 통해 냉각된 냉각 유체가 공급되고, 회수유닛(20)으로는 냉각에 사용된 냉각 유체가 회수될 수 있다. 그 구체적인 회수 구조는 후술한다.In summary, a pair of power units 10a and 10b constituting the electric vehicle charging cable 100 connecting the charger connector 200 and the electric vehicle charger 300 are respectively cooled through the cooling tube 17 Is supplied, and the cooling fluid used for cooling may be recovered to the recovery unit 20. The specific recovery structure will be described later.
상기 전력유닛(10)을 구성하는 도체를 균일하게 냉각하기 위해서는 도체의 절연층(13) 외면을 따라 냉각 유체가 흐를 수 있는 구조를 가져야 한다. 즉, 도체의 절연층(13)과 냉각튜브(17)의 내면이 접촉되는 경우에는 냉각 성능이 저하될 수 있으므로, 본 발명의 전력유닛은 도 4 및 도 5에 도시된 바와 같이, 냉각유로(15)가 도체의 절연층(13) 외부를 따라 균일하게 형성되고 도체의 절연층(13)과 냉각튜브(17)의 내면 사이의 접촉을 방지하기 위하여 스페이서(19)가 구비될 수 있다.In order to uniformly cool the conductor constituting the power unit 10, it must have a structure in which a cooling fluid can flow along the outer surface of the insulating layer 13 of the conductor. That is, when the insulating layer 13 of the conductor and the inner surface of the cooling tube 17 are in contact with each other, the cooling performance may be deteriorated. 15) may be uniformly formed along the outside of the insulating layer 13 of the conductor, and a spacer 19 may be provided to prevent contact between the insulating layer 13 of the conductor and the inner surface of the cooling tube 17.
상기 스페이서(19)는 와이어 형태, 예를 들면 와이어 또는 파이프 형태로 구성될 수도 있고, 상기 도체의 절연층(13)의 외면 또는 상기 냉각튜브(17)의 내면에 구비된 돌기 형태로 구성될 수도 있다. 상기 스페이서가 와이어 형태로 구성되는 경우, 상기 스페이서는 환형 와이어 형태로 구성될 수 있으나, 와이어 또는 파이프 단면 형상은 환형 또는 원형으로 제한되지 않는다.The spacer 19 may be configured in the form of a wire, for example, in the form of a wire or a pipe, or may be configured in the form of a protrusion provided on the outer surface of the insulating layer 13 of the conductor or the inner surface of the cooling tube 17. have. When the spacer is configured in the form of a wire, the spacer may be configured in the form of an annular wire, but the cross-sectional shape of the wire or pipe is not limited to an annular or circular shape.
상기 스페이서(19)를 구비하여 상기 도체의 절연층(13)의 외면과 상기 냉각튜브(17) 내면의 면접촉이 방지될 수 있으며, 냉각유체의 유동시 난류가 형성되어 냉각효과가 극대화될 수 있다.By providing the spacer 19, surface contact between the outer surface of the insulating layer 13 of the conductor and the inner surface of the cooling tube 17 can be prevented, and turbulence is formed when the cooling fluid flows to maximize the cooling effect. have.
이와 같은 구조에 의하여, 충전용 케이블 내부에 별도의 냉각 배관을 구비하는 기술과 비교하여 볼 때, 본 발명은 도체의 절연층의 모든 면을 냉각시킬 수 있으므로 절연층 표면의 영역별 냉각 편차의 발생을 최소화할 수 있고, 냉각 유로 내부에 절연도체를 배치하여 냉각 유체를 사용하여 냉각 기능을 제공하면서도 전기차 충전용 케이블의 두께를 최소화할 수 있는 효과도 얻을 수 있다.According to this structure, compared to the technology of providing a separate cooling pipe inside the charging cable, the present invention can cool all surfaces of the insulating layer of the conductor, so that the cooling deviation for each area of the insulating layer surface occurs. It is possible to minimize the thickness of the electric vehicle charging cable while providing a cooling function by using a cooling fluid by arranging an insulating conductor inside the cooling channel.
도 4 및 도 5에 도시된 실시예에서, 상기 전력유닛(10)의 스페이서(19)는 환형 와이어 형태로 구성되고, 상기 도체의 외주면을 따라 나선형으로 횡권되는 것으로 도시되었으나, 도체와 냉각튜브의 접촉을 방지할 수 있는 구조라면, 이에 국한되지 않는다. 즉, 상기 스페이서는 상기 도체의 절연층 외면 또는 상기 냉각 튜브의 내면에 돌출 형성된 복수 개의 돌기 형태로 구성될 수도 있다.In the embodiment shown in FIGS. 4 and 5, the spacer 19 of the power unit 10 is configured in an annular wire shape, and is shown to be spirally wound along the outer circumferential surface of the conductor. If it is a structure that can prevent contact, it is not limited thereto. That is, the spacer may be formed in the form of a plurality of protrusions protruding from the outer surface of the insulating layer of the conductor or the inner surface of the cooling tube.
또한, 상기 스페이서는 냉각튜브 또는 절연층 중 적어도 하나에 일체로 형성된 나선형 돌기 형태로 구성될 수도 있고, 일체형 돌기는 냉각튜브 또는 절연층의 압출 과정에서 일체로 형성되도록 구성할 수도 있다.In addition, the spacer may be configured in the form of a spiral protrusion integrally formed on at least one of the cooling tube or the insulating layer, and the integral protrusion may be configured to be integrally formed during the extrusion process of the cooling tube or the insulating layer.
이와 같은 스페이서(19)에 의해 절연층이 구비된 도체와 냉각튜브의 접촉을 방지함과 동시에 냉각 유체의 흐름이 난류(turbulence flow)를 형성하여 유로 상에서 냉각 유체의 온도 편차를 최소화하여 냉각 유체를 더욱 효율적으로 사용할 수 있으므로, 발열 도체로부터 열을 신속하게 최대한 흡수하여 냉각성능을 더욱 강화할 수 있다.The spacer 19 prevents contact between the conductor provided with the insulating layer and the cooling tube, and at the same time, the flow of the cooling fluid forms a turbulence flow, thereby minimizing the temperature deviation of the cooling fluid in the flow path, thereby reducing the cooling fluid. Since it can be used more efficiently, the cooling performance can be further enhanced by absorbing heat as quickly as possible from the heating conductor as much as possible.
따라서, 본 발명에 따른 전기차 충전용 케이블 어셈블리에 의하면, 냉각 유체가 흐르는 냉각 유로가 구비되는 냉각튜브 내부에 냉각튜브의 내면과 비접촉 상태로 절연된 도체를 배치하여 발열하는 도체의 냉각성능을 극대화할 수 있다.Therefore, according to the electric vehicle charging cable assembly according to the present invention, the cooling performance of the heating conductor is maximized by arranging a conductor insulated in a non-contact state with the inner surface of the cooling tube inside the cooling tube provided with the cooling flow path through which the cooling fluid flows. I can.
도 6 내지 도 8은 본 발명에 따른 전기차 충전용 케이블을 구성하는 전력 유닛 및 냉각유체 회수유닛과 커넥터 연결구조를 도시한다.6 to 8 show a power unit and a cooling fluid recovery unit and a connector connection structure constituting the electric vehicle charging cable according to the present invention.
본 발명에 따른 전기차 충전용 케이블 어셈블리는 도체(11); 상기 도체(11)를 감싸는 절연층(13); 상기 절연층(13)을 감싸고 있는 냉각튜브(17); 및 상기 절연층(13)과 냉각튜브(17)의 접촉을 방지하며, 냉각 유체가 유동하는 냉각 유로를 형성하기 위한 스페이서(19)를 구비하는 한 쌍의 전력유닛(10); 한 쌍의 상기 전력유닛의 냉각튜브를 통해 공급된 냉각유체가 회수되는 하나의 회수유닛(20); 상기 전력유닛(10)의 도체(10)와 각각 접속되며, 상기 전기차 커넥터를 구성하는 한 쌍의 커넥터 단자(231); 및 상기 커넥터 단자(231)가 장착되고, 상기 전력유닛(10) 및 상기 회수유닛(20)이 연결되며, 상기 전력유닛(10)을 경유한 냉각 유체가 수집되어 상기 회수유닛으로 회수되는 과정에서 상기 커넥터 단자(231)를 냉각하기 위한 챔버 공간(227d, 도 13 및 도 14 참조)을 구비한 챔버 하우징(227)을 포함하여 구성될 수 있다.The electric vehicle charging cable assembly according to the present invention comprises a conductor 11; An insulating layer 13 surrounding the conductor 11; A cooling tube 17 surrounding the insulating layer 13; And a pair of power units 10 including spacers 19 for preventing contact between the insulating layer 13 and the cooling tube 17 and forming a cooling passage through which a cooling fluid flows. One recovery unit 20 for recovering the cooling fluid supplied through the pair of cooling tubes of the power unit; A pair of connector terminals 231 each connected to the conductor 10 of the power unit 10 and constituting the electric vehicle connector; And the connector terminal 231 is mounted, the power unit 10 and the recovery unit 20 are connected, and the cooling fluid passing through the power unit 10 is collected and recovered to the recovery unit. It may be configured to include a chamber housing 227 having a chamber space 227d (refer to FIGS. 13 and 14) for cooling the connector terminal 231.
본 발명의 전기차 충전용 케이블(100)은 도 1 및 도 2에 도시된 바와 같이 일단에 충전기 커넥터(200)가 연결되고 타단에 전기차 충전기(300)가 연결되어 전력 공급과 제어신호의 전송이 가능하게 된다.The electric vehicle charging cable 100 of the present invention has a charger connector 200 connected to one end and an electric vehicle charger 300 connected to the other end, as shown in FIGS. 1 and 2, so that power supply and transmission of control signals are possible. It is done.
각각의 전력유닛의 도체(11)는 커넥터의 단자(231)와 접속되어 접속부를 구성하게 된다. 전기차 충전용 커넥터는 그 규격이 다양하므로, 도 6 내지 도 8에서는 전력유닛(10)과 회수유닛(20) 커넥터의 단자(231)의 연결관계에 대하여 개괄적으로 설명한다.The conductor 11 of each power unit is connected to the terminal 231 of the connector to form a connection part. Since the electric vehicle charging connector has a variety of standards, in FIGS. 6 to 8, the connection relationship between the power unit 10 and the terminal 231 of the connector of the recovery unit 20 will be outlined.
한 쌍의 상기 전력유닛(10a, 10b)의 냉각튜브(17)를 통해 공급된 냉각유체는 유동 과정에서 전력유닛의 도체를 냉각시키고, 전기차 충전용 케이블(100) 단부에 연결된 전기차 커넥터에서 수집되어 상기 회수유닛(20)을 통해 상기 전기차 충전기(300)로 회수될 수 있다.The cooling fluid supplied through the cooling tube 17 of the pair of power units 10a and 10b cools the conductor of the power unit during the flow process, and is collected from the electric vehicle connector connected to the end of the electric vehicle charging cable 100. It may be recovered to the electric vehicle charger 300 through the recovery unit 20.
전기차 충전용 케이블 또는 그 어셈블리는 전력유닛(10)의 도체(11)의 발열 이외에도 커넥터에 구비되어 도체와 각각 접속된 한 쌍의 커넥터 단자(231)의 발열도 냉각시키도록 구성되는 것이 바람직하다. 케이블의 도체와 커넥터의 단자의 접속부와 커넥터의 단자 역시 발열이 심한 부분이기 때문이다.It is preferable that the electric vehicle charging cable or assembly thereof is provided in the connector to cool heat generation of the pair of connector terminals 231 respectively connected to the conductor in addition to heat generation of the conductor 11 of the power unit 10. This is because the connection part of the conductor of the cable and the terminal of the connector and the terminal of the connector are also heat-generating parts.
따라서, 본 발명에 따른 전기차 충전용 케이블을 구성하는 한 쌍의 상기 전력유닛의 냉각튜브(17)를 통해 공급된 냉각유체는 상기 전기차 커넥터 내부에서 수집되어 전기차 커넥터의 단자를 냉각한 후 상기 회수유닛(20)을 구성하는 회수튜브(27)로 회수되도록 구성될 수 있다.Therefore, the cooling fluid supplied through the cooling tube 17 of the pair of power units constituting the electric vehicle charging cable according to the present invention is collected inside the electric vehicle connector to cool the terminals of the electric vehicle connector, and then the recovery unit It may be configured to be recovered by the recovery tube 27 constituting (20).
따라서, 각각의 전력유닛(10)의 냉각튜브(17) 내부의 냉각유로와 커넥터를 구성하는 챔버 하우징 내부가 연통되도록 마감하는 마감관(221)이 각각 구비될 수 있고, 한 쌍의 마감관(221) 내부의 냉각 유체를 하나로 수집하기 위하여 분지된 구조의 수집관(223), 상기 수집관(223)에서 수집된 냉각 유체를 챔버 하우징(227) 방향으로 전달하기 위한 연결관(225)을 구비할 수 있다.Accordingly, a closing pipe 221 for closing the cooling passage inside the cooling tube 17 of each power unit 10 and the interior of the chamber housing constituting the connector may be provided, respectively, and a pair of closing pipes ( 221) A collection pipe 223 having a branched structure to collect the internal cooling fluid into one, and a connection pipe 225 for transferring the cooling fluid collected in the collection pipe 223 to the chamber housing 227 can do.
도 6 내지 도 8에 도시된 실시예에서, 상기 마감관(221), 수집관(223) 및 연결관(225)은 각각 분리된 구조의 개별관 형태로 구성되는 것으로 도시되나 적어도 일부는 일체로 구성될 수도 있다.6 to 8, the closing pipe 221, the collection pipe 223, and the connecting pipe 225 are shown to be configured in the form of individual pipes of separate structures, but at least some of them are integrated. It can also be configured.
상기 연결관(225)은 상기 챔버 하우징(227)과 상기 수집관(223)을 연결하는 역할을 수행할 수 있다.The connection pipe 225 may serve to connect the chamber housing 227 and the collection pipe 223.
따라서, 한 쌍의 냉각튜브(17)를 통해 공급되어 도체의 냉각을 수행한 냉각 유체는 순차적으로 마감관(221), 수집관(223) 및 연결관(225)을 경유하여 상기 챔버 하우징(227)으로 공급되어 챔버 하우징(227)을 관통하여 설치되는 커넥터의 단자(231)를 냉각한 후 상기 챔버 하우징(227)에 연결되는 회수유닛(20)을 통해 회수될 수 있으므로, 본 발명에 따른 전기차 충전용 케이블은 케이블의 도체 외에도 커넥터 단자까지 냉각하는 효과를 제공할 수 있다.Therefore, the cooling fluid supplied through the pair of cooling tubes 17 to perform cooling of the conductor is sequentially passed through the closing pipe 221, the collecting pipe 223, and the connecting pipe 225 to the chamber housing 227. ) Is supplied to the chamber housing 227, and after cooling the terminal 231 of the connector installed through the chamber housing 227, it can be recovered through the recovery unit 20 connected to the chamber housing 227, so that the electric vehicle according to the present invention The charging cable can provide cooling effects to the connector terminals in addition to the conductor of the cable.
전력유닛을 통해 공급되는 상기 냉각유체의 유량과 온도 등을 조절하는 경우, 상기 챔버 하우징(227)으로 유입된 냉각유체는 전력유닛의 도체 이외에 커넥터의 단자까지 충분히 냉각할 수 있다.When controlling the flow rate and temperature of the cooling fluid supplied through the power unit, the cooling fluid flowing into the chamber housing 227 may sufficiently cool the terminal of the connector in addition to the conductor of the power unit.
그리고, 계절 또는 충전기 사용 빈도 등에 전기차 충전용 케이블(100)의 냉각 부하의 편차가 존재할 수 있으므로, 회수되는 냉각유체의 온도에 따라 공급되는 냉각 유체의 온도 및 유량을 조절하는 방법으로 냉각 부하에 따라 최적의 냉각 효과를 얻을 수 있다.And, since there may be a variation in the cooling load of the electric vehicle charging cable 100 in the season or the frequency of use of the charger, it is a method of adjusting the temperature and flow rate of the supplied cooling fluid according to the temperature of the recovered cooling fluid. Optimal cooling effect can be obtained.
상기 커넥터의 단자(231)의 전단은 전기차 커넥터에 접속되는 구성이며, 후단은 전력유닛의 도체가 삽입되어 접속될 수 있다.The front end of the terminal 231 of the connector is connected to the electric vehicle connector, and the rear end may be connected by inserting a conductor of the power unit.
즉, 상기 마감관(221)은 전력유닛이 전방으로 관통되도록 하여 커넥터 단자와 접속되도록 하고, 전력유닛의 냉각튜브를 유동한 유체는 수집관, 연결관을 통해 챔버 하우징으로 유동하도록 유로를 형성할 수 있다.That is, the closing pipe 221 allows the power unit to pass through to the front so that it is connected to the connector terminal, and the fluid flowing through the cooling tube of the power unit forms a flow path to flow into the chamber housing through the collection pipe and the connection pipe. I can.
상기 마감관(221)은 T자형 파이프로 구성될 수 있으며, 전력유닛은 마감관을 직선으로 관통하여 커넥터 단자 방향으로 관통하고 전력유닛의 냉각튜브를 통해 유동하는 냉각 유체는 유로가 90도 변경되어 수집관(223)으로 유동하도록 유로가 변경될 수 있다.The closing pipe 221 may be composed of a T-shaped pipe, and the power unit passes through the closing pipe in a straight line to the connector terminal direction, and the cooling fluid flowing through the cooling tube of the power unit changes the flow path by 90 degrees. The flow path may be changed to flow into the collection pipe 223.
따라서, 상기 마감관(221)을 통과하는 전력유닛(10) 내부에 도체를 감싸는 절연층 외주면과 냉각튜브(17) 내주면을 실링하기 위한 실링부재(미도시) 등이 구비될 수 있다. 상기 마감관(221)은 상기 전력유닛(10)의 냉각튜브(17)에 형성된 개구부(17h, 도 8 참조)를 통해 냉각유체가 유로가 변경되며 수집관(223)으로 공급될 수 있도록 마감관(221)의 장착 위치를 고려하여 개구부(17h) 위치가 결정될 수 있다.Accordingly, a sealing member (not shown) for sealing the outer circumferential surface of the insulating layer surrounding the conductor and the inner circumferential surface of the cooling tube 17 may be provided inside the power unit 10 passing through the closing pipe 221. The closing pipe 221 is a closing pipe so that the cooling fluid can be supplied to the collection pipe 223 by changing a flow path through an opening (17h, see FIG. 8) formed in the cooling tube 17 of the power unit 10 The position of the opening 17h may be determined in consideration of the mounting position of the 221.
이와 같은 구조에 의하여 도 7에 도시된 바와 같이, 상기 냉각유체는 도체의 길이방향으로는 상기 냉각튜브의 개구부(17h)까지 유동한 후 마감관(221), 수집관(223) 및 연결관(225)을 통해 챔버 하우징(227)으로 유동하고, 챔버 하우징(227) 내로 유입된 냉각 유체는 후술하는 커넥터 단자가 장착된 단자 장착부를 냉각하고 회수유닛(20)을 통해 회수될 수 있다.With this structure, as shown in FIG. 7, the cooling fluid flows to the opening 17h of the cooling tube in the longitudinal direction of the conductor, and then the closing pipe 221, the collecting pipe 223, and the connecting pipe ( The cooling fluid flowing into the chamber housing 227 through 225 and flowing into the chamber housing 227 may cool a terminal mounting portion equipped with a connector terminal, which will be described later, and be recovered through the recovery unit 20.
상기 전력유닛은 냉각유체를 제외한 냉각튜브 및 냉각튜브 내에 수용된 절연층이 구비된 도체는 상기 마감관(221)을 관통하여 커넥터 단자의 제2 단자부와 접속될 수 있다.In the power unit, a cooling tube excluding a cooling fluid and a conductor provided with an insulating layer accommodated in the cooling tube may pass through the closing tube 221 to be connected to the second terminal portion of the connector terminal.
전술한 바와 같이, 상기 커넥터 단자(231)의 후방의 제2 단자부는 전력유닛의 냉각유체가 유동하던 냉각튜브(17)와 도체를 감싸는 절연층 사이 공간으로 삽입되어 장착되고, 도체는 절연층이 탈피된 상태로 중공형 제2 단자부 후방에서 제2 단자부 내측으로 삽입되어 도체와 커넥터 단자의 접속이 완료될 수 있으며, 내측에 제2 단자부가 삽입된 냉각튜브의 외주면을 클램핑 고정하기 위한 클램프 부재(233) 등이 더 구비될 수 있다.As described above, the second terminal portion at the rear of the connector terminal 231 is inserted and mounted into the space between the cooling tube 17 where the cooling fluid of the power unit flows and the insulating layer surrounding the conductor, and the conductor has an insulating layer. A clamp member for clamping and fixing the outer circumferential surface of the cooling tube in which the conductor and the connector terminal is inserted by being removed from the rear of the hollow second terminal unit and inserted into the second terminal unit ( 233) and the like may be further provided.
또한, 도 7에 도시된 커넥터 연결 구조에 의하여, 본 발명에 따른 전기차 충전용 케이블 어셈블리에 의하면, 냉각유체가 전력유닛과 커넥터의 연결부위에서 즉시 회수되는 것이 아니라 우회 유로를 형성하여 커넥터의 단자까지 냉각시켜 케이블의 도체와 커넥터의 단자까지 냉각하는 효과를 얻을 수 있으므로 장비의 신뢰성과 안전성을 향상시킬 수 있다. 이하 전기차 충전용 커넥터를 구성하는 챔버 하우징과 커넥터 단자의 구조에 대하여 설명한다.In addition, by the connector connection structure shown in FIG. 7, according to the electric vehicle charging cable assembly according to the present invention, the cooling fluid is not immediately recovered from the connection part between the power unit and the connector, but forms a bypass flow path to cool down to the terminal of the connector. As a result, it is possible to obtain an effect of cooling the conductor of the cable and the terminal of the connector, so that the reliability and safety of the equipment can be improved. Hereinafter, a structure of a chamber housing and a connector terminal constituting a connector for charging an electric vehicle will be described.
도 9 및 도 10은 본 발명에 따른 전기차 충전용 케이블 어셈블리를 구성하는 커넥터 단자(231) 및 상기 커넥터 단자(231)가 장착되는 챔버 하우징(227)의 조립 상태와 분해 상태의 사시도를 도시한다.9 and 10 are perspective views showing an assembled state and an exploded state of a connector terminal 231 constituting an electric vehicle charging cable assembly according to the present invention and a chamber housing 227 in which the connector terminal 231 is mounted.
본 발명에 따른 전기차 충전용 케이블 어셈블리는 상기 전력유닛의 도체와 각각 접속되며, 상기 전기차 커넥터를 구성하는 한 쌍의 커넥터 단자(231); 및 상기 커넥터 단자(231)가 장착되고, 상기 전력유닛 및 상기 회수유닛이 연결되며, 상기 전력유닛을 경유한 냉각 유체가 수집되어 상기 회수유닛으로 회수되는 과정에서 상기 커넥터 단자(231), 구체적으로는 커넥터 단자가 장착되는 단자 장착부(227a)를 냉각하기 위하여 냉각 유체가 유동하며 냉각 기능을 수행하는 냉각 공간으로서의 챔버 공간(227d, 도 13 및 도 14 참조)을 구비한 챔버 하우징(227);을 포함하여 구성될 수 있다.The electric vehicle charging cable assembly according to the present invention includes a pair of connector terminals 231 each connected to a conductor of the power unit and constituting the electric vehicle connector; And the connector terminal 231 is mounted, the power unit and the recovery unit are connected, and the cooling fluid passing through the power unit is collected and recovered to the recovery unit. A chamber housing 227 having a chamber space 227d (refer to FIGS. 13 and 14) as a cooling space in which a cooling fluid flows and performs a cooling function to cool the terminal mounting portion 227a on which the connector terminal is mounted; It can be configured to include.
본 발명에 따른 전기차 충전용 케이블 어셈블리는 전기차 충전기에서 공급된 냉각 유체를 이용하여 전력유닛을 구성하는 도체를 냉각함과 동시에 전기차 충전기의 커넥터를 통해 냉각 유체를 수집 후 전기차 충전기로 회수하는 과정에서 전기차 커넥터를 구성하는 커넥터 단자(231) 또는 커넥터 단자가 장착되는 단자 장착부(227a)를 냉각하도록 구성될 수 있다.The electric vehicle charging cable assembly according to the present invention cools the conductor constituting the power unit using the cooling fluid supplied from the electric vehicle charger, and at the same time collects the cooling fluid through the connector of the electric vehicle charger and collects the cooling fluid to the electric vehicle charger. It may be configured to cool the connector terminal 231 constituting the connector or the terminal mounting portion 227a on which the connector terminal is mounted.
상기 커넥터 단자(231)는 전방으로 전기차의 충전단자가 접속되고 후방으로 전력유닛의 도체가 장착될 수 있다.In the connector terminal 231, the charging terminal of the electric vehicle is connected to the front, and the conductor of the power unit may be mounted to the rear.
상기 커넥터 단자(231)는 암형 단자로 구성될 수 있고, 전기차 충전단자와 접속되는 영역의 제1 단자부(231a)와 전력유닛의 도체가 장착되는 제2 단자부(231b)로 분할 구성될 수 있다.The connector terminal 231 may be configured as a female terminal, and may be divided into a first terminal portion 231a in a region connected to the electric vehicle charging terminal and a second terminal portion 231b on which a conductor of the power unit is mounted.
또한, 도 10에 도시된 바와 같이, 상기 제1 단자부(231a)와 제2 단자부(231b)는 조립 가능하도록 분할 구성될 수 있다.In addition, as shown in FIG. 10, the first terminal portion 231a and the second terminal portion 231b may be dividedly configured to be assembled.
상기 제1 단자부(231a)와 제2 단자부(231b)는 파이프 형태의 암형 단자로 구성되되 상기 제2 단자부(231b)가 제1 단자부(231a) 후방에 삽입되도록 외경이 결정될 수 있다.The first terminal portion 231a and the second terminal portion 231b are configured as pipe-shaped female terminals, and an outer diameter may be determined so that the second terminal portion 231b is inserted behind the first terminal portion 231a.
이 경우, 상기 제2 단자부(231b)의 외주면에 삽입 깊이를 제한하기 위한 걸림턱(231bs)이 구비될 수 있다.In this case, a locking protrusion 231bs for limiting an insertion depth may be provided on an outer circumferential surface of the second terminal part 231b.
따라서, 상기 제1 단자부(231a)와 제2 단자부(231b)가 조립된 상태에서의 상기 커넥터 단자(231)는 후방에서 직경이 축소되는 단차 구조로 구성될 수 있다.Accordingly, in a state in which the first terminal portion 231a and the second terminal portion 231b are assembled, the connector terminal 231 may have a stepped structure whose diameter is reduced from the rear.
이와 같은 구조의 커넥터 단자(231)는 챔버 하우징(227)에 구비된 단자 장착부(227a)에 장착될 수 있다.The connector terminal 231 having such a structure may be mounted on the terminal mounting portion 227a provided in the chamber housing 227.
도 11 및 도 12는 본 발명에 따른 전기차 충전용 케이블 어셈블리를 구성하는 챔버 하우징(227)의 정면도와 측면도를 도시한다.11 and 12 show a front view and a side view of a chamber housing 227 constituting a cable assembly for charging an electric vehicle according to the present invention.
상기 챔버 하우징(227)은 상기 커넥터 단자(231)가 관통 장착되는 한 쌍의 단자 장착부(227a), 한 쌍의 상기 전력유닛을 경유한 냉각 유체가 유입되는 유입구(227b) 및 상기 유입구(227b)로 유입된 냉각 유체가 상기 챔버 공간을 경유하여 배출되는 배출구(227c)가 구비되며, 챔버 하우징 내부는 밀봉된 구조를 가질 수 있다.The chamber housing 227 includes a pair of terminal mounting portions 227a through which the connector terminals 231 are mounted, an inlet 227b through which the cooling fluid via the pair of power units is introduced, and the inlet 227b. An outlet 227c through which the cooling fluid introduced into the chamber is discharged through the chamber space may be provided, and the interior of the chamber housing may have a sealed structure.
한 쌍의 상기 단자 장착부(227a)는 상기 챔버 하우징(227)을 이격된 상태로 관통하며 형성되며, 전술한 바와 같이, 커넥터 단자(231)의 단차구조에 대응하여 단자 장착부(227a) 내부 공간에 제1 단자부(231a)가 걸림 고정되는 걸림단차(227as)가 구비될 수 있다. 또한, 한 쌍의 단자 장착부(227a)는 수평 및 평행하게 구비될 수 있다.A pair of the terminal mounting portions 227a are formed while passing through the chamber housing 227 in a spaced state, and as described above, in the inner space of the terminal mounting portion 227a corresponding to the stepped structure of the connector terminal 231 A locking step 227as to which the first terminal part 231a is locked may be provided. In addition, a pair of terminal mounting portions 227a may be provided horizontally and in parallel.
따라서, 상기 커넥터 단자(231)를 챔버 하우징(227)의 전방에서 후방으로 장착시 장착 깊이가 제한되면 조립이 완성될 수 있다.Accordingly, when the connector terminal 231 is mounted from the front to the rear of the chamber housing 227, if the mounting depth is limited, assembly may be completed.
상기 단자 장착부(227a)의 내경과 상기 커넥터 단자(231)의 외경은 별도의 체결부재 없이 압입 장착이 가능하도록 공차가 조절되는 것이 바람직하다.It is preferable that the inner diameter of the terminal mounting portion 227a and the outer diameter of the connector terminal 231 have a tolerance adjusted to enable press-fitting mounting without a separate fastening member.
상기 단자 장착부(227a)는 내부에 커넥터 단자가 장착될 수 있는 전방과 후방이 연통되는 관통구 형태의 장착공간(227ah)이 구비될수 있다.The terminal mounting portion 227a may be provided with a mounting space 227ah in the form of a through hole through which the front and the rear of the connector terminals can be mounted.
그리고, 상기 전력유닛을 경유하여 전력유닛의 도체를 냉각한 냉각 유체가 유입되는 유입구(227b)와 커넥터 단자(231)를 냉각 후 전기차 충전기로 회수되는 냉각 유체가 배출되는 배출구(227c)는 상기 단자 장착부(227a) 상부와 하부에 각각 구비될 수 있다.In addition, the inlet 227b through which the cooling fluid cooled by the conductor of the power unit is introduced through the power unit and the outlet 227c through which the cooling fluid recovered by the electric vehicle charger is discharged after cooling the connector terminal 231 are the terminals. It may be provided above and below the mounting portion 227a, respectively.
이와 같은 단자 장착부(227a), 유입구(227b) 또는 유출구의 배치 형상에 의하여 상기 챔버 하우징(227)의 정면 방향(전력유닛 및 회수유닛 연결방향과 수직한 방향) 단면 형상은 모서리가 라운드진 형태로 구성될 수 있다.According to the arrangement shape of the terminal mounting portion 227a, the inlet port 227b, or the outlet port, the cross-sectional shape of the chamber housing 227 in the front direction (a direction perpendicular to the connection direction of the power unit and the recovery unit) is rounded. Can be configured.
도 11 및 도 12에 도시된 실시예에서, 유입된 냉각 유체가 유체의 압력 이외에도 자중에 의하여 낙하하며 챔버 하우징(227) 내에서 유동될 수 있도록 상기 유입구(227b)는 도체 장착부 상부에 구비되고 상기 배출구(227c)는 상기 단자 장착부(227a) 하부에 구비될 수 있다.In the embodiment shown in FIGS. 11 and 12, the inlet 227b is provided above the conductor mounting portion so that the introduced cooling fluid falls by its own weight in addition to the pressure of the fluid and flows in the chamber housing 227. The outlet 227c may be provided under the terminal mounting portion 227a.
도 12에 도시된 바와 같이, 상기 챔버 하우징(227)의 유입구(227b)는 상기 챔버 하우징(227)에 대각선 방향으로 구비되고, 상기 연결관은 상기 유입구(227b) 각도에 대응하여 절곡(도 7 및 도 8 참조)된 형상으로 구성될 수 있다.As shown in FIG. 12, the inlet 227b of the chamber housing 227 is provided in the chamber housing 227 in a diagonal direction, and the connection pipe is bent in correspondence with the angle of the inlet 227b (FIG. 7 And see FIG. 8).
상기 유입구(227b)에 연결되는 연결관은 전술한 수집관과 수평방향으로 연결될 수 있으나, 챔버 하우징(227)의 크기가 커지는 것을 방지하기 위하여 챔버 하우징(227)을 필요한 크기로 구성하되 유입구(227b)를 대각선 방향으로 경사지게 형성한 후 절곡된 형태의 절곡관으로 연결하는 구조가 적용될 수 있다.The connection pipe connected to the inlet 227b may be connected to the above-described collection pipe in a horizontal direction, but in order to prevent the chamber housing 227 from increasing in size, the chamber housing 227 is configured to have a required size, but the inlet 227b ) May be formed to be inclined in a diagonal direction and then connected with a bent pipe in a bent shape may be applied.
물론, 상기 챔버 하우징(227)의 형상 또는 유입구가 형성될 위치에 따라 상기 유입구(227b)는 경사지지 않고 수평방향으로 형성될 수 있으며, 그에 따라 연결관 역시 절곡되지 않은 형태로 구성될 수도 있다.Of course, depending on the shape of the chamber housing 227 or the position where the inlet is to be formed, the inlet 227b may be formed in a horizontal direction without being inclined, and accordingly, the connection pipe may also be configured in a non-bent shape.
그리고, 상기 챔버 하우징(227)의 후방에 수평하게 구비되는 배출구(227c)는 상기 회수유닛과 직결될 수 있음은 전술한 바와 같다.In addition, as described above, the outlet 227c provided horizontally at the rear of the chamber housing 227 may be directly connected to the recovery unit.
도 13 및 도 14는 본 발명에 따른 전기차 충전용 케이블 어셈블리를 구성하는 챔버 하우징(227) 내에서 냉각 유체의 흐름을 설명하기 위한 실시예들의 단면도를 도시한다.13 and 14 are cross-sectional views of embodiments for explaining the flow of cooling fluid in the chamber housing 227 constituting the electric vehicle charging cable assembly according to the present invention.
상기 전력유닛의 냉각튜브를 경유하며 전력유닛의 도체의 발열을 냉각한 냉각 유체는 상기 수집관, 상기 연결관을 경유하여 상기 챔버 하우징(227) 내로 유입될 수 있고, 상기 챔버 하우징(227) 내로 유입된 냉각 유체는 커넥터 단자(231)의 발열도 냉각하기 위하여 즉시 배출구(227c)로 배출되지 않고, 챔버 하우징(227) 내의 챔버 공간(227d)에서 커넥터 단자(231)가 장착되는 단자 장칙부(227a)의 외주면을 냉각한 후 배출되는 구조가 적용될 수 있다.The cooling fluid that has cooled the heat generated by the conductor of the power unit through the cooling tube of the power unit may be introduced into the chamber housing 227 through the collection pipe and the connection pipe, and into the chamber housing 227. The introduced cooling fluid is not immediately discharged to the outlet 227c in order to cool the heat of the connector terminal 231, and the connector terminal 231 is mounted in the chamber space 227d in the chamber housing 227 ( A structure that is discharged after cooling the outer peripheral surface of 227a) can be applied.
한 쌍의 상기 단자 장착부(227a)는 상기 챔버 하우징(227)의 챔버 공간(227d) 내에서 그 사이에 이격부(227sc)가 형성되도록 이격된 상태로 배치되며, 한 쌍의 상기 단자 장착부(227a)는 상기 챔버 하우징(227)의 챔버 공간 내측면과 이격되어 각각 냉각 유체의 일부가 우회하기 위한 한 쌍의 우회부(227ss)가 형성되고, 상기 유입구(227b)와 상기 배출구(227c)는 한 쌍의 상기 단자 장착부 사이에 형성되는 이격부(227sc)를 사이에 두고 구비될 수 있다.The pair of terminal mounting portions 227a are disposed in a state spaced apart so that a separation portion 227sc is formed therebetween in the chamber space 227d of the chamber housing 227, and the pair of terminal mounting portions 227a ) Is spaced apart from the inner surface of the chamber space of the chamber housing 227 to form a pair of bypass portions 227ss for bypassing a part of the cooling fluid, respectively, and the inlet 227b and the outlet 227c have one A spacer 227sc formed between the pair of terminal mounting portions may be interposed therebetween.
따라서, 한 쌍의 상기 단자 장착부(227a)는 상기 챔버 하우징(227)의 챔버 공간(227d) 내에서 그 외주면(227af)이 모든 방향으로 챔버 공간(227d) 내로 노출되는 구조로 구성될 수 있다.Accordingly, the pair of terminal mounting portions 227a may have a structure in which the outer circumferential surfaces 227af of the chamber housing 227 are exposed into the chamber space 227d in all directions.
또한, 상기 한 쌍의 상기 단자 장착부(227a)는 상기 챔버 공간(227d) 내에서 이격되어 그 사이에 이격부(227sc)를 형성하도록 배치된 한 쌍의 파이프 형태로 구성될 수 있고, 상기 챔버 공간(227d)의 내주면과도 이격되어 냉각 유체가 우회하는 우회부(227ss)를 구성할 수 있다.In addition, the pair of terminal mounting portions 227a may be formed in the form of a pair of pipes spaced apart in the chamber space 227d to form a spaced portion 227sc therebetween, and the chamber space It is also possible to configure a bypass portion 227ss that is spaced apart from the inner peripheral surface of (227d) to bypass the cooling fluid.
구체적으로, 한 쌍의 상기 단자 장착부(227a)는 상기 챔버 하우징(227)의 내부 챔버 공간에서 상기 챔버 공간의 전방과 후방을 연결하며 가로지르는 한 쌍의 이격된 파이프 형태로 배치되어 그 사이에 이격부(227sc)가 형성되고, 상기 챔버 하우징의 내부 챔버 공간 내측면과 한 쌍의 상기 단자 장착부(227a)는 각각 이격되어 냉각 유체가 우회하기 위한 한 쌍의 우회부(227ss)가 형성되고, 상기 유입구(227b)와 상기 배출구(227c)는 상기 이격부(227sc)를 사이에 두고 챔버 하우징(227)의 후방에 구비될 수 있다.Specifically, a pair of the terminal mounting portions 227a are arranged in the form of a pair of spaced pipes that connect and cross the front and rear of the chamber space in the inner chamber space of the chamber housing 227 to be spaced apart therebetween. A portion 227sc is formed, and the inner chamber space inner surface of the chamber housing and the pair of terminal mounting portions 227a are spaced apart from each other to form a pair of bypass portions 227ss for bypassing the cooling fluid, and the The inlet 227b and the outlet 227c may be provided at the rear of the chamber housing 227 with the spacer 227sc interposed therebetween.
따라서, 상기 유입구(227b)로 유입된 냉각 유체는 상기 이격부(227sc) 및 상기 우회부(227ss)로 분산되어 유동하며, 상기 단자 장착부의 외주면(227af) 전체를 감싸 냉각한 후 상기 배출구(227c)로 배출되므로, 냉각 유체가 챔버 공간 내에서 단자 장착부(227a)를 통해 전도되는 커넥터 단자의 발열을 효과적으로 냉각할 수 있다.Therefore, the cooling fluid introduced into the inlet 227b is distributed and flows through the separation portion 227sc and the bypass portion 227ss, and after cooling the entire outer peripheral surface 227af of the terminal mounting portion, the outlet 227c ), the cooling fluid can effectively cool the heat generated by the connector terminal, which is conducted through the terminal mounting portion 227a in the chamber space.
즉, 도 13에 도시된 바와 같이, 한 쌍의 상기 단자 장착부(227a)는 상기 챔버 하우징(227)의 챔버 공간(227d) 내부에서 커넥터 단자의 장착 방향과 수직한 방향으로 이격되어 관통 형성되며, 상기 유입구(227b)와 상기 배출구(227c)는 한 쌍의 상기 단자 장착부(227a) 사이에 형성되는 이격부(227sc) 상부와 하부에 구비되는 구조를 가지므로, 상기 유입구(227b)에서 유입된 냉각 유체의 일부는 상기 이격부(227sc)로 유동하고, 나머지 냉각 유체는 상기 단자 장착부(227a) 둘레를 우회하는 우회부(227ss)로 유동하여 상기 단자 장착부의 외주면(227af)을 360도 방향에서 냉각한 후 상기 배출구(227c)로 배출될 수 있다.That is, as shown in FIG. 13, the pair of terminal mounting portions 227a are formed through and spaced apart in a direction perpendicular to the mounting direction of the connector terminal in the chamber space 227d of the chamber housing 227, Since the inlet 227b and the outlet 227c have a structure provided in the upper and lower portions of the spacer 227sc formed between the pair of terminal mounting portions 227a, cooling introduced from the inlet 227b Part of the fluid flows to the separation part 227sc, and the remaining cooling fluid flows to the bypass part 227ss that bypasses the circumference of the terminal mounting part 227a to cool the outer peripheral surface 227af of the terminal mounting part in the direction of 360 degrees. After that, it may be discharged through the discharge port 227c.
상기 챔버 하우징(227)은 상기 유입구(227b)로 유입된 냉각 유체가 상기 이격부(227sc) 이외에도 상기 단자 장착부(227a)와 챔버 하우징 내주면 사이의 우회부(227ss)를 우회 경유하여 배출되도록 냉각 유체의 흐름을 유도하여 상기 커넥터 단자(231)에서 발생되는 열이 가장 많이 전도되는 단자 장착부(227a)의 외주면(227af) 둘레를 골고루 냉각하도록 하여 냉각 성능을 향상시킬 수 있다.The chamber housing 227 is a cooling fluid so that the cooling fluid flowing into the inlet 227b is discharged through bypassing the bypass portion 227ss between the terminal mounting portion 227a and the inner peripheral surface of the chamber housing in addition to the spacing portion 227sc. Cooling performance can be improved by inducing the flow of the connector terminal 231 to evenly cool the outer circumferential surface 227af of the terminal mounting portion 227a through which heat generated from the connector terminal 231 conducts the most.
그리고 상기 유입구에서 유입된 냉각 유체 중 각각 상기 유입구(227b) 및 상기 이격부(227sc)와 상기 우회부(227ss)로 분할되는 냉각 유체의 양은 상기 유입구의 면적과 상기 배출구의 면적의 비율에도 영향을 받는 것으로 확인되어 아래의 표 1과 같은 실험을 수행하였다.And the amount of the cooling fluid divided into the inlet 227b, the separation part 227sc, and the bypass part 227ss among the cooling fluid introduced from the inlet also affects the ratio of the area of the inlet port and the area of the outlet port. It was confirmed to receive, and an experiment as shown in Table 1 below was performed.
아래의 표 1은 동일한 면적의 유입구에 대하여 배출구의 면적이 다른 챔버 하우징을 적용하는 경우 커넥터 단자의 온도 변화를 통해 냉각 성능을 시험한 시험결과로서, 구체적으로 바람직한 배출구(227c) 면적에 대한 유입구(227b) 면적의 비율을 결정하기 위한 시험결과이다.Table 1 below is a test result of testing the cooling performance through temperature change of the connector terminal when a chamber housing with a different outlet area is applied to the inlet of the same area. 227b) This is the test result to determine the ratio of the area.
아래의 시험에서 냉각 유체 종류는 100% 에틸렌 글리콜이 사용되었고, 냉각 유체의 챔버 하우징으로 공급되는 냉각 유체의 시간당 유량은 0.1 L/sec이며, 냉각 유체의 챔버 하우징 유입 온도는 약 -7.3도씨이고, 각각의 챔버 하우징의 단자 장착부에 장착된 커넥터 단자의 제1 단자부 외경은 12 밀리미터이다.In the test below, 100% ethylene glycol was used as the cooling fluid type, the hourly flow rate of the cooling fluid supplied to the chamber housing of the cooling fluid was 0.1 L/sec, and the inlet temperature of the cooling fluid to the chamber housing was about -7.3 degrees Celsius. , The outer diameter of the first terminal portion of the connector terminal mounted on the terminal mounting portion of each chamber housing is 12 mm.
Figure PCTKR2020015301-appb-img-000001
Figure PCTKR2020015301-appb-img-000001
상기 유입구(227b)와 상기 배출구(227c)의 면적이 다르면, 유입구(227b)를 통한 냉각 시간당 유체의 유입 유량과 배출구(227c)를 통한 시간당 배출 유량은 동일하더라도, 유입구(227b)와 배출구(227c)에서 냉각 유체의 유속이 다를 수 있다.If the area of the inlet 227b and the outlet 227c are different, the inlet flow rate of the fluid per cooling time through the inlet 227b and the discharge flow rate per hour through the outlet 227c are the same, but the inlet 227b and the outlet 227c ), the flow rate of the cooling fluid may be different.
여기서, 유입구(227b)의 면적이 배출구(227c) 면적보다 크면, 챔버 하우징(227) 내에서 순간적인 유로 저항이 발생되는 효과가 발생하고, 이러한 유로 저항에 의하여 챔버 내에서 냉각 유체가 이격부 외에도 우회부로 분산 유동하여 냉각 유체가 흐르는 유로가 다각화될 수 있다는 가정하에 실험이 수행되었다.Here, when the area of the inlet port 227b is larger than the area of the outlet port 227c, the effect of generating an instantaneous flow path resistance in the chamber housing 227 occurs, and the cooling fluid in the chamber by this flow resistance The experiment was conducted under the assumption that the flow path through which the cooling fluid flows by distributed flow to the bypass portion can be diversified.
이 경우, 상기 유입구로 유입되는 냉각 유체의 유량은 동일하게 세팅 되었으므로, 상기 유입구(227b)와 상기 배출구(227c)의 시간당 유량은 동일할 수 있으나, 배출구(227c)의 유속은 그 면적비에 반비례할 수 있다.In this case, since the flow rate of the cooling fluid flowing into the inlet port is set to be the same, the flow rate per hour of the inlet port 227b and the outlet port 227c may be the same, but the flow rate of the outlet port 227c will be inversely proportional to the area ratio. I can.
따라서, 이와 같은 시험결과를 통해, 상기 챔버 하우징(227) 내부를 관통하여 형성되는 단자 장착부(227a)는 챔버 공간(227d) 내에서 각각의 외주면(227af)이 상호 이격되어 이격부(227sc)를 구성하고, 각각의 단자 장착부(227a)는 챔버 하우징(227) 내측면과 이격되어 우회부(227ss)가 형성되고, 상기 유입구(227b)의 면적은 상기 배출구(227c)의 3.8배인 실시예 1과 1.2배인 실시예 2의 경우, 동일한 조건에서의 커넥터 단자의 온도가 각각 86.33도씨와 83.84도씨로 측정되어, 면적비가 4보다 크거나 1보다 작은 비교예 1 및 비교예 2보다 커넥터 단자의 온도가 2도씨 내지 5도씨 정도의 냉각 성능이 더 우수함을 확인할 수 있다.Therefore, through the test result as described above, the terminal mounting portion 227a formed through the interior of the chamber housing 227 has the outer peripheral surfaces 227af being spaced apart from each other in the chamber space 227d to form the spaced portion 227sc. And, each terminal mounting portion 227a is spaced apart from the inner surface of the chamber housing 227 to form a bypass portion 227ss, and the area of the inlet port 227b is 3.8 times that of the outlet port 227c. In the case of Example 2, which is 1.2 times the temperature of the connector terminal under the same conditions, the temperature of the connector terminal was measured at 86.33°C and 83.84°C, respectively, and the area ratio was greater than 4 or less than 1 and the temperature of the connector terminal compared to Comparative Example 1 and Comparative Example 2. It can be seen that the cooling performance of about 2°C to 5°C is more excellent.
상기 표 1에서는 기재되지 않았으나, 위 시험 결과를 포함한 추가적인 시험을 통해 상기 유입구(227b)의 면적이 상기 배출구(227c)의 면적의 1배 내지 4배 조건이 되는 경우, 냉각 유체의 분할 유동으로 냉각 성능에 의한 의미있는 커넥터 단자의 온도 감소 효과를 얻을 수 있음을 확인하였고, 더 나아가 의미 있는 냉각 효과가 발생되면서도 커넥터 단자의 온도 편차까지 감소되려면 유입구(227b)의 면적이 상기 배출구(227c)의 면적의 1배 내지 3배 범위를 만족해야 함을 추가적으로 확인하였다.Although not described in Table 1, when the area of the inlet port 227b is 1 to 4 times the area of the outlet port 227c through an additional test including the above test result, it is cooled by a divided flow of the cooling fluid. It was confirmed that a meaningful effect of reducing the temperature of the connector terminal by the performance can be obtained, and furthermore, in order to reduce the temperature deviation of the connector terminal while generating a meaningful cooling effect, the area of the inlet port 227b is the area of the outlet port 227c. It was additionally confirmed that the range of 1 to 3 times should be satisfied.
그리고, 유입구(227b)의 면적보다 배출구(227c)의 면적이 작으면서, 상기 유입구(227b)의 면적이 상기 배출구(227c)의 면적의 약 1배 내지 4배의 크기를 가지도록 구성되면, 상기 챔버 하우징(227)으로 유입된 냉각 유체는 배출구(227c)의 면적에 의한 유로 저항에 의하여 일부는 바로 배출되지만 다른 일부는 챔버 하우징(227)에서 상기 단자 장착부(227a) 둘레를 우회하는 우회부를 경유하여 유동하므로써, 단자 장착부(227a)를 골고루 냉각후 배출구(227c)로 배출되어 냉각효과가 우수한 것임을 이해할 수 있다.And, when the area of the outlet 227c is smaller than the area of the inlet 227b, and the area of the inlet 227b is configured to have a size of about 1 to 4 times the area of the outlet 227c, the A part of the cooling fluid flowing into the chamber housing 227 is immediately discharged due to the flow resistance due to the area of the discharge port 227c, but the other part passes through a bypass part bypassing the circumference of the terminal mounting part 227a in the chamber housing 227. Thus, it can be understood that the cooling effect is excellent because the terminal mounting portion 227a is evenly cooled and then discharged to the outlet 227c.
그리고, 비교예 2와 같이 유입구/배출구 면적비가 0.8인 경우와 같이, 상기 배출구(227c)의 면적이 상기 유입구(227b)의 면적보다 크면, 챔버 하우징(227)으로 유입된 냉각 유체는 별다른 유로 저항없이 배출구(227c)로 대부분 배출되어 커넥터 단자의 온도가 88.14도씨로 실시예 1 및 실시예 2보다 높게 측정되어 상대적으로 냉각성능이 떨어짐을 확인할 수 있으며, 이 경우 상기 유입구로 유입된 냉각 유체의 상기 우회부(227ss)로의 분산 유동이 크지 않았음을 짐작할 수 있고, 유입구/배출구 면적비가 1을 경계로 하는 비교예 2(0.8)와 실시예 2(1.2)는 면적비의 차이가 크지 않음에도 불구하고 커넥터 온도의 차이가 커, 냉각 성능에 냉각 유체의 분할 유동이 기여하는 바가 상당함을 확인할 수 있었다.And, as in the case where the inlet/outlet area ratio is 0.8 as in Comparative Example 2, when the area of the outlet 227c is larger than the area of the inlet 227b, the cooling fluid flowing into the chamber housing 227 is different flow resistance. It is mostly discharged through the outlet 227c without the fact that the temperature of the connector terminal is measured to be 88.14 degrees Celsius, which is higher than in Examples 1 and 2, so that it can be confirmed that the cooling performance is relatively low, and in this case, the cooling fluid flowing through the inlet is It can be guessed that the distributed flow to the bypass portion 227ss was not large, and Comparative Example 2 (0.8) and Example 2 (1.2) in which the inlet/outlet area ratio is 1 as a boundary, although the difference in the area ratio is not large. And it was confirmed that the difference in the connector temperature was large, and the split flow of the cooling fluid contributed significantly to the cooling performance.
또한, 위 시험에서 비교예 1과 같이 유입구/배출구 면적비가 4.4로 4보다 큰 경우에 해당되고, 이 경우 유로 저항이 과도하게 발생하여 오히려 유입구에서 신규 유입되는 냉각 유체 유량이 줄어들어 커넥터 단자의 냉각이 원활하지 않아 커넥터 단자의 온도가 88.63도씨로 가장 높게 측정되어 실시예 및 비교예 중 가장 냉각성능이 떨어지는 것으로 확인되었다.In addition, in the above test, as in Comparative Example 1, this corresponds to the case where the inlet/outlet area ratio is greater than 4 (4.4).In this case, the flow rate of the cooling fluid newly introduced from the inlet is decreased due to excessive flow resistance. As it was not smooth, the temperature of the connector terminal was measured at the highest of 88.63 degrees Celsius, and it was confirmed that the cooling performance was the lowest among Examples and Comparative Examples.
이 경우, 냉각 성능 저하 이외에도 전기차 충전기 내의 냉각 유체의 순환을 위한 펌프에 과도하게 부하가 발생하거나, 배관의 연결 부위가 파열되는 문제가 발생될 수 있음을 확인하였다.In this case, it was confirmed that in addition to deterioration of cooling performance, an excessive load may occur on the pump for circulation of the cooling fluid in the electric vehicle charger, or a problem of rupture of a connection part of a pipe may occur.
도 11 내지 도 14에 도시된 바와 같이, 상기 유입구(227b)와 상기 배출구(227c)가 원형으로 구성되는 경우 상기 유입구(227b)의 내경은 상기 배출구(227c)의 내경의 약 1배 내지 2배 정도로 구성될 수 있음을 의미한다.11 to 14, when the inlet 227b and the outlet 227c are formed in a circular shape, the inner diameter of the inlet 227b is about 1 to 2 times the inner diameter of the outlet 227c It means that it can be configured to a degree.
이 경우, 상기 커넥터 단자의 제1 단자부의 외경이 12밀리미터인 경우, 상기 유입구(227b)의 내경은 6밀리미터 내지 10밀리미터 정도로 구성될 수 있고, 상기 배출구(227c)의 내경은 위 관계를 만족하도록 구성될 수 있다.In this case, when the outer diameter of the first terminal portion of the connector terminal is 12 mm, the inner diameter of the inlet 227b may be configured to be about 6 mm to 10 mm, and the inner diameter of the outlet 227c may satisfy the above relationship. Can be configured.
그리고, 상기 유입구 및 상기 배출구의 형상은 원형으로 제한되지 않고, 타원형 또는 다각형 등 다양한 형상으로 구성될 수 있다.Further, the shape of the inlet port and the outlet port is not limited to a circular shape, and may be configured in various shapes such as an elliptical shape or a polygonal shape.
표 1에 도시된 전기차 충전용 케이블이 적용된 어셈블리를 통한 실험 결과, 상온 환경의 충전기에서 최대 400A급 고속 충전을 수행하며 회수유닛(20)을 구성하는 회수튜브(27)로 냉각 유체를 회수하여 전기차 충전기에서 회수되는 냉각 유체의 온도를 측정한 결과에 의하면, 전기차 충전용 케이블의 외부자켓(70) 등이 신체에 접촉되는 일이 발생되어도 불쾌감 또는 불안감이 크지 않은 정도로 확인할 수 있었다.As a result of the experiment through the assembly to which the electric vehicle charging cable shown in Table 1 was applied, a maximum of 400A class high-speed charging was performed in a charger in a room temperature environment, and the cooling fluid was recovered through the recovery tube 27 constituting the recovery unit 20 to recover the electric vehicle. According to the results of measuring the temperature of the cooling fluid recovered from the charger, even if the outer jacket 70 of the electric vehicle charging cable comes into contact with the body, it was confirmed to the extent that the feeling of discomfort or anxiety is not great.
또한, 냉각 유체에 난류를 발생시키는 스페이서가 개재되어 냉각 튜브와 도체를 감싸는 절연체의 접촉에 의한 열집중을 방지할 수 있는 전력유닛 및 냉각 유체 회수를 위한 전용 회수유닛을 별도로 구비하여 냉각유체를 공급하는 방법으로 충분한 냉각 성능을 확보할 수 있다는 결론에 도달하였다.In addition, a spacer that generates turbulence in the cooling fluid is interposed to supply cooling fluid by separately providing a power unit that can prevent heat concentration due to contact between the cooling tube and the insulator surrounding the conductor, and a dedicated recovery unit for recovering the cooling fluid. We came to the conclusion that sufficient cooling performance can be secured by this method.
이와 같이, 상기 유입구와 상기 배출구의 면적비를 결정하는 방법으로, 전력유닛의 도체 냉각에 사용된 냉각 유체가 다시 한번 커넥터 단자(231)가 장착된 단자 장착부(227a) 전체를 감싸며 냉각에 활용되어 전기차 커넥터의 냉각 성능을 향상시킬 수 있다.In this way, as a method of determining the area ratio between the inlet and the outlet, the cooling fluid used for cooling the conductor of the power unit once again encloses the entire terminal mounting portion 227a on which the connector terminal 231 is mounted and is utilized for cooling. It can improve the cooling performance of the connector.
마찬가지 이유로, 유입된 냉각 유체가 단자 장착부(227a)를 감싸 우회하여 단자 장착부(227a)를 냉각하도록 하기 위하여 상기 유입구(227b)의 내경(d1)이 상기 이격부(227sc)의 폭(w)보다 크게 구성될 수 있다.For the same reason, the inner diameter d1 of the inlet 227b is greater than the width w of the spacing part 227sc in order for the introduced cooling fluid to wrap around the terminal mounting portion 227a and cool the terminal mounting portion 227a. It can be largely configured.
상기 이격부(227sc)의 폭(w)은 상기 챔버 하우징(227)에 구비된 상기 단자 장착부(227a) 사이의 공간을 의미하는 것으로 상기 단자 장착부(227a) 사이의 이격부(227sc)의 폭(w)을 줄이면 단자 장착부(227a)를 우회하는 냉각 유체의 유량이 더 증가될 수 있으므로, 상기 유입구(227b) 및 상기 배출구(227c)의 내경과 시간당 냉각 유체의 유량 및 상기 커넥터 단자(231)의 온도 등을 고려하여 상기 이격부(227sc)의 폭을 최적화 설계하는 것이 바람직하다.The width (w) of the spacing part 227sc refers to the space between the terminal mounting parts 227a provided in the chamber housing 227, and the width of the spacing part 227sc between the terminal mounting parts 227a ( If w) is reduced, the flow rate of the cooling fluid bypassing the terminal mounting portion 227a may be further increased, so the inner diameter of the inlet 227b and the outlet 227c, the flow rate of the cooling fluid per hour, and the connector terminal 231 It is preferable to optimize the width of the spaced portion 227sc in consideration of temperature and the like.
또한, 상기 단자 장착부(227a)는 상기 챔버 하우징(227)을 가로지르는 파이프 형태로 구성될 수 있으므로, 도 14에 도시된 바와 같이, 한 쌍의 상기 단자 장착부(227a) 중 적어도 하나의 외주면에 상기 이격부(227sc)를 경유하는 냉각 유체의 난류 형성을 위하여 돌출 형성된 블레이드(227e)가 적어도 하나 구비될 수 있다.In addition, the terminal mounting portion 227a may be configured in the form of a pipe crossing the chamber housing 227, as shown in FIG. 14, the terminal mounting portion 227a on the outer peripheral surface of at least one of the At least one protruding blade 227e may be provided to form turbulent flow of the cooling fluid passing through the spaced portion 227sc.
도 14에 도시된 실시예에서 한 쌍의 단자 장착부(227a) 중 좌측의 단자 장착부(227a)는 2개의 블레이드(227e)가 돌출 구비되고, 우측의 단자 장착부(227a)에는 1개의 블레이드(227e)가 돌출 구비되어, 상기 단자 장착부(227a) 사이의 이격부(227sc)를 유동하는 냉각 유체의 유로를 절곡시켜 난류를 발생시키고, 발생된 난류에 의하여 냉각 유체와 단자 장착부(227a) 사이의 열교환 효율을 향상시킬 수 있다.In the embodiment shown in FIG. 14, of the pair of terminal mounting portions 227a, the terminal mounting portion 227a on the left has two blades 227e protruding, and the terminal mounting portion 227a on the right has one blade 227e. Is provided with a protrusion to generate turbulence by bending the flow path of the cooling fluid flowing through the spaced portion 227sc between the terminal mounting portions 227a, and the heat exchange efficiency between the cooling fluid and the terminal mounting portion 227a by the generated turbulence. Can improve.
도 14를 참조한 실시예에서, 상기 블레이드는 단자 장착부(227a) 외주면에 돌출 격벽 형태로 구성되는 것으로 도시되나 냉각 유체의 유동 과정에서 난류 등을 형성하여 열교환 효율을 증대시킬 수 있는 구조라면 상기 블레이드의 형상의 제한은 없다.In the embodiment shown in FIG. 14, the blade is shown to be configured in the form of a protruding partition wall on the outer circumferential surface of the terminal mounting portion 227a. However, if the blade has a structure capable of increasing heat exchange efficiency by forming turbulence during the flow of cooling fluid, There is no limit to the shape.
또한, 도 14에 도시된 블레이드는 유입구와 배출구를 연결하는 가상의 선에 대하여 수직방향으로 연장되는 것으로 도시되나, 필요에 따라 블레이드의 단부가 유입구 방향으로 경사지게 구성하거나, 배출구 방향으로 경사지게 구성할 수도 있다.In addition, the blade shown in FIG. 14 is shown to extend in a vertical direction with respect to an imaginary line connecting the inlet and the outlet, but if necessary, the end of the blade may be configured to be inclined in the inlet direction or inclined in the outlet direction. have.
전자의 경우, 유로 저항이 더욱 커지는 경우에 해당되고, 후자의 경우 그 반대의 효과가 있다. 즉, 블레이드의 경사각은 유입구와 배출구의 면적비 조절이 어려운 경우에 적용하여 냉각 조건을 개선할 수 있는 것으로 확인되었다.In the former case, it corresponds to a case where the flow path resistance becomes larger, and in the case of the latter, the opposite effect is obtained. That is, it was confirmed that the inclination angle of the blade can be applied to the case where it is difficult to control the area ratio of the inlet and the outlet to improve the cooling condition.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.Although the present specification has been described with reference to preferred embodiments of the present invention, those skilled in the art will variously modify and change the present invention within the scope not departing from the spirit and scope of the present invention described in the claims described below. You will be able to do it. Therefore, if the modified implementation basically includes the elements of the claims of the present invention, it should be seen that all are included in the technical scope of the present invention.

Claims (22)

  1. 전기차 커넥터와 전기차 충전기를 연결하는 전기차 충전용 케이블 어셈블리에 있어서,In the electric vehicle charging cable assembly connecting the electric vehicle connector and the electric vehicle charger,
    도체; 상기 도체를 감싸는 절연층; 및 상기 절연층 외측을 감싸는 냉각튜브를 구비하는 한 쌍의 전력유닛;Conductor; An insulating layer surrounding the conductor; And a pair of power units having a cooling tube surrounding the outside of the insulating layer.
    한 쌍의 상기 전력유닛의 냉각튜브를 통해 공급된 냉각유체가 회수되는 회수유닛;A recovery unit for recovering the cooling fluid supplied through the cooling tubes of the pair of power units;
    상기 전력유닛의 도체와 각각 접속되며, 상기 전기차 커넥터를 구성하는 한 쌍의 커넥터 단자; 및A pair of connector terminals each connected to a conductor of the power unit and constituting the electric vehicle connector; And
    상기 커넥터 단자가 장착되고, 상기 전력유닛 및 상기 회수유닛이 연결되며, 상기 전력유닛의 냉각유로를 통해 냉각 유체가 유입되어 상기 회수유닛으로 회수되는 과정에서 상기 커넥터 단자를 냉각하기 위한 챔버 공간을 구비한 챔버 하우징;을 포함하는 전기차 충전용 케이블 어셈블리.The connector terminal is mounted, the power unit and the recovery unit are connected, and a chamber space is provided for cooling the connector terminal in the process of flowing a cooling fluid through the cooling passage of the power unit and recovered to the recovery unit. A cable assembly for charging an electric vehicle including a chamber housing.
  2. 제1항에 있어서,The method of claim 1,
    상기 챔버 하우징은 상기 커넥터 단자가 관통 장착되는 한 쌍의 단자 장착부, 한 쌍의 상기 전력유닛을 경유한 냉각 유체가 유입되는 유입구 및 상기 유입구로 유입된 냉각 유체가 상기 챔버 공간을 경유하여 배출되는 배출구가 구비되는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.The chamber housing includes a pair of terminal mounting portions through which the connector terminals are mounted, an inlet through which the cooling fluid through the pair of power units is introduced, and an outlet through which the cooling fluid introduced into the inlet is discharged through the chamber space. Electric vehicle charging cable assembly, characterized in that provided.
  3. 제2항에 있어서,The method of claim 2,
    한 쌍의 상기 단자 장착부는 상기 챔버 하우징의 내부 챔버 공간에서 상기 챔버 공간의 전방과 후방을 연결하며 가로지르는 한 쌍의 이격된 파이프 형태로 배치되어 그 사이에 이격부가 형성되고, 상기 챔버 하우징의 내부 챔버 공간 내측면과 한 쌍의 상기 단자 장착부는 각각 이격되어 냉각 유체가 우회하기 위한 한 쌍의 우회부가 형성되고,The pair of terminal mounting portions are arranged in the form of a pair of spaced pipes that connect and cross the front and rear of the chamber space in the inner chamber space of the chamber housing, and a spacer is formed therebetween, and the interior of the chamber housing The inner surface of the chamber space and the pair of terminal mounting portions are spaced apart from each other to form a pair of bypass portions for bypassing the cooling fluid,
    상기 유입구와 상기 배출구는 상기 이격부를 사이에 두고 챔버 하우징의 후방에 구비되는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.The electric vehicle charging cable assembly, characterized in that the inlet and the outlet are provided at the rear of the chamber housing with the spaced portion therebetween.
  4. 제3항에 있어서,The method of claim 3,
    상기 유입구로 유입된 냉각 유체는 상기 이격부 및 상기 우회부로 분산되어 유동하며, 상기 챔버 공간 내에서 노출된 상기 단자 장착부의 외주면을 감싸 냉각한 후 상기 배출구로 배출되는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.The cooling fluid introduced into the inlet port is distributed to and flows through the separation part and the bypass part, wraps around the outer peripheral surface of the terminal mounting part exposed in the chamber space, and cools it, and then discharged through the discharge port. assembly.
  5. 제3항에 있어서,The method of claim 3,
    상기 유입구는 상기 챔버 하우징 상부에 구비되고, 상기 배출구는 상기 챔버 하우징 하부에 구비되는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.The inlet is provided in the upper chamber housing, and the outlet is provided in the chamber housing lower portion of the electric vehicle charging cable assembly.
  6. 제3항에 있어서,The method of claim 3,
    상기 유입구에서 유입된 냉각 유체는 상기 이격부 및 상기 단자 장착부 둘레를 경유하여 상기 배출구로 배출되는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.A cable assembly for charging an electric vehicle, characterized in that the cooling fluid introduced from the inlet is discharged to the outlet through the spaced portion and around the terminal mounting portion.
  7. 제3항에 있어서,The method of claim 3,
    한 쌍의 상기 단자 장착부는 상기 챔버 하우징 내부의 챔버 공간을 각각 가로지르는 파이프 형태로 구성되고, 상기 챔버 하우징 내부 공간으로 노출되는 한 쌍의 상기 단자 장착부 중 적어도 하나의 외주면에 돌출 형성된 블레이드가 적어도 하나 구비되는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.The pair of terminal mounting portions are configured in the form of pipes crossing each of the chamber spaces inside the chamber housing, and at least one blade protruding from the outer circumferential surface of at least one of the pair of terminal mounting portions exposed to the inner space of the chamber housing Electric vehicle charging cable assembly, characterized in that provided.
  8. 제2항에 있어서,The method of claim 2,
    상기 유입구의 면적은 상기 배출구의 면적의 1배 내지 4배의 크기인 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.The electric vehicle charging cable assembly, characterized in that the area of the inlet port is 1 to 4 times the area of the outlet port.
  9. 제3항에 있어서,The method of claim 3,
    상기 유입구의 내경이 상기 이격부의 폭보다 큰 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.Electric vehicle charging cable assembly, characterized in that the inner diameter of the inlet is greater than the width of the spacer.
  10. 제3항에 있어서,The method of claim 3,
    상기 챔버 하우징의 전력유닛 및 회수유닛 연결방향과 수직한 방향 단면 형상은 모서리가 라운드진 형태로 구성되는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.The electric vehicle charging cable assembly, characterized in that the cross-sectional shape of the chamber housing in a direction perpendicular to the connection direction of the power unit and the recovery unit has a rounded corner.
  11. 제2항에 있어서,The method of claim 2,
    한 쌍의 전력유닛의 각각의 냉각튜브와 연결되는 분지된 구조의 수집관 및 상기 수집관과 상기 챔버 하우징의 유입구를 연결하는 연결관을 더 포함하는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.A cable assembly for charging an electric vehicle, further comprising a branched collecting pipe connected to each of the cooling tubes of the pair of power units, and a connecting pipe connecting the collecting pipe and the inlet of the chamber housing.
  12. 제11항에 있어서,The method of claim 11,
    각각의 전력유닛의 냉각튜브를 유동하는 냉각 유체가 상기 수집관으로 연결되도록 하는 마감관을 더 포함하고, 상기 수집관은 각각의 전력유닛 단부에 장착된 상기 마감관에 연결되는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.Electric vehicle, characterized in that it further comprises a closing pipe to allow the cooling fluid flowing through the cooling tube of each power unit to be connected to the collection pipe, wherein the collection pipe is connected to the closing pipe mounted at the end of each power unit Cable assembly for charging.
  13. 제12항에 있어서,The method of claim 12,
    각각의 전력유닛의 절연층으로 피복된 도체는 상기 마감관을 관통하여 상기 커넥터 단자의 후방에 접속되는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.The electric vehicle charging cable assembly, characterized in that the conductor covered with the insulating layer of each power unit passes through the closing tube and is connected to the rear of the connector terminal.
  14. 제11항에 있어서,The method of claim 11,
    상기 챔버 하우징의 유입구는 상기 챔버 하우징에 대각선 방향으로 구비되고, 상기 연결관은 상기 유입구 각도에 대응하여 절곡된 형상으로 구성되는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.The inlet of the chamber housing is provided in a diagonal direction in the chamber housing, and the connection pipe is a cable assembly for charging an electric vehicle, characterized in that it is formed in a curved shape corresponding to the angle of the inlet.
  15. 제2항에 있어서,The method of claim 2,
    상기 챔버 하우징의 배출구는 상기 회수유닛과 직결되는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.An electric vehicle charging cable assembly, characterized in that the outlet of the chamber housing is directly connected to the recovery unit.
  16. 제1항에 있어서,The method of claim 1,
    상기 전력유닛의 절연층은 상기 도체가 냉각 유체에 노출되지 않도록 상기 도체를 빈틈없이 감싸는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.The electric vehicle charging cable assembly, characterized in that the insulating layer of the power unit tightly surrounds the conductor so that the conductor is not exposed to a cooling fluid.
  17. 제1항에 있어서,The method of claim 1,
    상기 전력유닛은 상기 절연층과 냉각튜브의 접촉을 방지하며, 냉각 유체가 유동하는 냉각 유로를 형성하기 위한 스페이서를 더 구비하는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.The power unit further comprises a spacer for preventing contact between the insulating layer and the cooling tube and forming a cooling passage through which a cooling fluid flows.
  18. 제17항에 있어서,The method of claim 17,
    상기 전력유닛의 스페이서는 와이어 형태로 구성되는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.The electric vehicle charging cable assembly, characterized in that the spacer of the power unit is configured in the form of a wire.
  19. 제18항에 있어서,The method of claim 18,
    상기 스페이서는 전력유닛의 절연층과 냉각튜브 사이에 나선형으로 횡권되어 배치되는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.The spacer is a cable assembly for charging an electric vehicle, characterized in that the spacer is disposed in a spiral shape between the insulating layer and the cooling tube of the power unit.
  20. 제1항에 있어서,The method of claim 1,
    상기 스페이서는 상기 도체의 절연층 외면 또는 냉각튜브 내면에 일체로 형성되는 적어도 하나의 돌기인 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.The spacer is at least one protrusion integrally formed on an outer surface of the insulating layer or an inner surface of the cooling tube of the conductor.
  21. 제1항에 있어서,The method of claim 1,
    상기 전력유닛과 함께 적어도 하나의 접지유닛 및 적어도 하나의 통신유닛;을 더 포함하는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.And at least one grounding unit and at least one communication unit together with the power unit.
  22. 제17항에 있어서,The method of claim 17,
    상기 냉각튜브 및 상기 스페이서 중 적어도 하나는 테프론 계열 또는 우레탄 재질로 구성되는 것을 특징으로 하는 전기차 충전용 케이블 어셈블리.At least one of the cooling tube and the spacer is made of a Teflon-based or urethane material.
PCT/KR2020/015301 2019-11-06 2020-11-04 Cable assembly for charging electric vehicle WO2021091216A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0140662 2019-11-06
KR20190140662 2019-11-06
KR10-2020-0144349 2020-11-02
KR1020200144349A KR102428044B1 (en) 2019-11-06 2020-11-02 Charging cable assembly for electric vehicle

Publications (1)

Publication Number Publication Date
WO2021091216A1 true WO2021091216A1 (en) 2021-05-14

Family

ID=75848531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015301 WO2021091216A1 (en) 2019-11-06 2020-11-04 Cable assembly for charging electric vehicle

Country Status (2)

Country Link
KR (1) KR102667074B1 (en)
WO (1) WO2021091216A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200350098A1 (en) * 2019-05-01 2020-11-05 Prysmian S.P.A. Cable assembly
CN113299428A (en) * 2021-05-20 2021-08-24 深圳宝兴电线电缆制造有限公司 Electric automobile heat conduction cable and preparation method thereof
US11220188B2 (en) * 2019-05-16 2022-01-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Motor vehicle charging cable
CN114374110A (en) * 2021-12-01 2022-04-19 华为数字能源技术有限公司 Charging terminal, rifle that charges, fill electric pile and vehicle
US11433773B2 (en) * 2018-09-18 2022-09-06 Bayerische Motoren Werke Aktiengesellschaft Charging harness unit for a battery of a motor vehicle
WO2023030445A1 (en) * 2021-09-02 2023-03-09 长春捷翼汽车零部件有限公司 Electric energy transmission system for vehicle, and charging apparatus and electric vehicle
WO2023185240A1 (en) * 2022-03-31 2023-10-05 深圳市道通合创数字能源有限公司 Electrical connector, charging pile, and charging system
DE102022109244A1 (en) 2022-04-14 2023-10-19 Amphenol Tuchel Industrial GmbH Connectors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240039240A (en) 2022-09-19 2024-03-26 주식회사 현대케피코 Fluid cooling type charging cable for fast charging of electric vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160119147A (en) * 2014-02-05 2016-10-12 테슬라 모터스, 인크. Cooling of Charging Cable
US20170144558A1 (en) * 2015-11-19 2017-05-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Electric line arrangement
WO2017133893A1 (en) * 2016-02-01 2017-08-10 Huber+Suhner Ag Cable assembly
KR20180096259A (en) * 2017-02-21 2018-08-29 엘에스전선 주식회사 Charging cable for electric vehicle
US20190176653A1 (en) * 2016-09-16 2019-06-13 Phoenix Contact E-Mobility Gmbh Plug connector part having cooled contact elements for charging electrical vehicles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108376A (en) * 1996-08-07 1998-04-24 Sumitomo Wiring Syst Ltd Charging system for electric vehicle
DE102016105347A1 (en) * 2016-03-22 2017-09-28 Phoenix Contact E-Mobility Gmbh Connector part with a cooled contact element
DK3459087T3 (en) * 2016-05-20 2021-03-22 Southwire Co Llc Liquid-cooled charging cable system
US11084390B2 (en) * 2018-03-22 2021-08-10 Tesla, Inc. Liquid-cooled charging connector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160119147A (en) * 2014-02-05 2016-10-12 테슬라 모터스, 인크. Cooling of Charging Cable
US20170144558A1 (en) * 2015-11-19 2017-05-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Electric line arrangement
WO2017133893A1 (en) * 2016-02-01 2017-08-10 Huber+Suhner Ag Cable assembly
US20190176653A1 (en) * 2016-09-16 2019-06-13 Phoenix Contact E-Mobility Gmbh Plug connector part having cooled contact elements for charging electrical vehicles
KR20180096259A (en) * 2017-02-21 2018-08-29 엘에스전선 주식회사 Charging cable for electric vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11433773B2 (en) * 2018-09-18 2022-09-06 Bayerische Motoren Werke Aktiengesellschaft Charging harness unit for a battery of a motor vehicle
US20200350098A1 (en) * 2019-05-01 2020-11-05 Prysmian S.P.A. Cable assembly
US11804315B2 (en) * 2019-05-01 2023-10-31 Prysmian S.P.A. EV charging cable system with cooling
US11220188B2 (en) * 2019-05-16 2022-01-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Motor vehicle charging cable
CN113299428A (en) * 2021-05-20 2021-08-24 深圳宝兴电线电缆制造有限公司 Electric automobile heat conduction cable and preparation method thereof
WO2023030445A1 (en) * 2021-09-02 2023-03-09 长春捷翼汽车零部件有限公司 Electric energy transmission system for vehicle, and charging apparatus and electric vehicle
CN114374110A (en) * 2021-12-01 2022-04-19 华为数字能源技术有限公司 Charging terminal, rifle that charges, fill electric pile and vehicle
WO2023185240A1 (en) * 2022-03-31 2023-10-05 深圳市道通合创数字能源有限公司 Electrical connector, charging pile, and charging system
DE102022109244A1 (en) 2022-04-14 2023-10-19 Amphenol Tuchel Industrial GmbH Connectors

Also Published As

Publication number Publication date
KR20220112722A (en) 2022-08-11
KR102667074B1 (en) 2024-05-20

Similar Documents

Publication Publication Date Title
WO2021091216A1 (en) Cable assembly for charging electric vehicle
WO2018155895A1 (en) Electric vehicle charging cable
WO2021107502A1 (en) Electric vehicle charging connector and electric vehicle charging assembly comprising same
WO2021107503A2 (en) Electric vehicle charging connector and electric vehicle charging assembly comprising same
WO2021045560A1 (en) Electric vehicle charging cable
KR20210055001A (en) Charging cable assembly for electric vehicle
KR20210029117A (en) Charging cable for electric vehicle
KR20200074931A (en) Charging cable for electric vehicle
CN108879823A (en) Liquid-cooled charging system for electric automobile and its liquid cooling method
WO2020116721A1 (en) Connection conductor for connecting different conductors and connection structure of power cables
US20230030269A1 (en) Power cable assembly for a power distribution system having an integrated cooling system
US11935672B2 (en) Power cable assembly for a power distribution system having an integrated cooling system
CN208754008U (en) Liquid-cooled charging system for electric automobile
US11705710B2 (en) Devices and methods for electrical cable splices
US20230103931A1 (en) Power cable assembly for a power distribution system having an integrated cooling system
WO2011002191A2 (en) Thermoelectric power-generating system using the waste heat of a cooling fluid
WO2022045599A1 (en) Cooled charging cable for electric vehicle
WO2022265238A1 (en) Electric vehicle charging connector and electric vehicle charging assembly including same
WO2024106575A1 (en) Charging cable
CN217134016U (en) Cable, rifle and fill electric pile charge
WO2023249399A1 (en) Direct-current power cable system
WO2023249398A1 (en) Direct current cable system
WO2024122665A1 (en) Charging cable
WO2024106574A1 (en) Charging system
CN220106098U (en) New energy automobile charges rifle with water-cooling cable and rifle that charges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884761

Country of ref document: EP

Kind code of ref document: A1