WO2021090705A1 - Microstructure and method for producing same - Google Patents

Microstructure and method for producing same Download PDF

Info

Publication number
WO2021090705A1
WO2021090705A1 PCT/JP2020/039860 JP2020039860W WO2021090705A1 WO 2021090705 A1 WO2021090705 A1 WO 2021090705A1 JP 2020039860 W JP2020039860 W JP 2020039860W WO 2021090705 A1 WO2021090705 A1 WO 2021090705A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstructure
resin
energy ray
resin layer
equation
Prior art date
Application number
PCT/JP2020/039860
Other languages
French (fr)
Japanese (ja)
Inventor
水谷康弘
高谷裕浩
中西弘樹
江崎隆
牧浦良彦
Original Assignee
国立大学法人大阪大学
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 倉敷紡績株式会社 filed Critical 国立大学法人大阪大学
Priority to JP2021554886A priority Critical patent/JPWO2021090705A1/ja
Publication of WO2021090705A1 publication Critical patent/WO2021090705A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a microstructure to be processed using the Talbot effect and a method for producing the same.
  • microstructured parts in semiconductor devices and microelectromechanical systems (MEMS), biomimetic structures that imitate the functional microstructures of living organisms, and substances with different refractive indexes arranged at intervals similar to the wavelength of light. Examples include nanostructured photonic crystals. These submicron-order three-dimensional structures, particularly those having a periodic structure, are attracting attention as functional materials.
  • Techniques for producing microstructures include lithography, etching, nanoimprint, laser microfabrication, atomic manipulation with an atomic force microscope (AFM), and self-assembling techniques.
  • a method for easily manufacturing a fine structure there is a method of manufacturing a resist resin as a material by using a three-dimensional lithography technique.
  • a three-dimensional lithography process using a Talbot effect has a specific wavelength.
  • lithography using the Talbot effect has a problem that the degree of freedom of processing is low because the parameters for controlling the period are wavelength and lattice pitch and the period control is limited to two dimensions, and the processing area is a three-dimensional structure. No technology has been established for processing arbitrary shapes without limiting to the "surface" and "inside" of.
  • Patent Document 1 discloses a technique for lithography processing using the Talbot effect, but since it is a technique for processing a screen mask for etching, internal processing of the structure is not performed.
  • Patent Document 2 discloses a mask capable of forming a highly accurate pattern using the Talbot effect and a method for forming the pattern, but this is not a technique for producing a structure.
  • Patent Document 3 recesses or holes having a periodic structure are formed by etching, but it is difficult to easily produce a microstructure.
  • Non-Patent Document 1 proposes a structure in which metal nanoparticles are dispersed by applying a stereolithography method based on the Talbot effect, but has not actually produced a clear hierarchical structure by the Talbot effect.
  • Non-Patent Document 2 discloses that a wide range of nanostructures in a one-dimensional layer structure and a two-dimensional periodic structure are produced, but there are problems in the accuracy and structure maintenance of the structure, and the structure has periodicity. Has not been reached.
  • Non-Patent Document 3 and Non-Patent Document 4 suggest that a three-dimensional nanoperiodic structure can be produced from the results of numerical analysis of multiple exposures, but there are problems in the accuracy and structure maintenance of the structure, and it is practically used. It has not reached the level structure.
  • the present invention provides a three-dimensional structure capable of micromolding in which the periodicity of the surface and the inside of the structure is controlled.
  • the present invention is a microstructure having holes inside, the structure is a sheet containing an energy ray active resin, and holes having an inclination are formed at least to the inside, and the holes inside the structure.
  • the method for producing a microstructure of the present invention is (1) A process of applying an energy ray active resin on a substrate to a uniform thickness, and (2) A step of prebaking (heating) the coated energy ray active resin layer and (3) A step of installing a diffraction grating on the upper surface of the resin layer obtained in (2) above and irradiating energy rays from an oblique direction to generate a pattern on the resin layer. (4) A step of chemically reacting the resin layer obtained in (3) above with a developing solution, dissolving a portion that has been irradiated with energy rays exceeding the curing threshold, and curing a portion that does not meet the energy ray curing threshold.
  • a step of curing a portion that has been irradiated with energy rays exceeding the curing threshold value and dissolving a portion that does not meet the energy ray curing threshold value includes a step of eluting the dissolved portion by washing the substrate obtained in (4) above with pure water to obtain a fine structure.
  • the microstructure of the present invention can be perforated on the surface and inside of the structure by adjusting the incident angle of exposure and the Talbot distance, and the microstructure can be microformed by controlling the periodicity to the surface and inside of the structure.
  • FIG. 1A is a schematic cross-sectional view in which an exposure mask is placed on the upper surface of the photoresist resin and irradiated with ultraviolet rays (UV) in order to explain the basic concept of the present invention.
  • FIG. 2A is a schematic cross-sectional view showing an exposure of a conventional example
  • FIG. 2B is a schematic cross-sectional view of an exposure according to an embodiment of the present invention.
  • 3A-E are schematic cross-sectional views showing a manufacturing method according to an embodiment of the present invention
  • FIG. 3F is a schematic perspective view.
  • FIG. 4A is a schematic perspective view showing the inside of the microstructure of Example 1 of the present invention
  • FIG. 4B is a photograph of the same.
  • FIG. 5A is a schematic perspective view showing the inside of the microstructure of the comparative example
  • FIG. 5B is a photograph of the same.
  • a hole having an inclination is formed in a sheet containing an energy ray active resin.
  • the inclined hole is preferably inclined in the range of 15 to 30 ° from the vertical direction. More preferably, the range is 16 ° to 27 °.
  • continuous holes can be formed.
  • the holes inside the structure have the shape of a modeling pattern in which the Talbot distance is specified in (Equation 1) above, and the relational expressions with the adjacent Talbot structures (holes) are as follows (Equation 2) and (Equation 3). ), And has a shape with periodicity in the plane direction.
  • the energy ray active resin is preferably a resin for resist, and more preferably a resin for positive resist.
  • the resin for positive resist has a property that the exposed portion dissolves in a solution when exposed to energy rays, and is suitable for microfabrication. Since the negative resist resin is exposed to a high temperature due to the post-baking treatment, the resin is distorted and it is difficult to obtain a fine structure having accurate periodicity.
  • the periodic shape preferably has a lattice pitch: wavelength ⁇ ⁇ lattice pitch d and a pitch duty ratio of 0.2 to 0.7. As a result, finer processing can be performed.
  • the periodic shape is preferably a regular shape. As a result, a fine structure having high uniformity is obtained.
  • the holes inside the structure may exist from the front surface to the inside, or may penetrate the front and back surfaces.
  • This hole is a concept that includes a groove and / or a hole.
  • the method for producing a microstructure of the present invention includes the following steps. (1) A step of applying an energy ray active resin on a substrate to a uniform thickness. (2) A step of prebaking (heating) the coated energy ray active resin layer. (3) A step of installing a diffraction grating on the upper surface of the resin layer obtained in (2) above, irradiating an energy ray capable of obtaining a talbot effect from an oblique direction, and generating a pattern on the resin layer. (4) The resin layer obtained in (3) above is chemically reacted with a developing solution to dissolve the resin portion that has been irradiated with energy rays exceeding the curing threshold, and cure the resin portion that does not meet the energy ray curing threshold.
  • the spin coating method can be used as the means for applying the energy ray-active resin of the above (1) to a uniform thickness.
  • the spin coating method can be applied in a relatively small area with a thin and uniform film thickness.
  • the prebaking (heating) condition of (2) is preferably about 1 to 5 minutes at 0 to 100 ° C., which is a value recommended by the manufacturer.
  • the irradiation of the energy rays in the process of generating the pattern (3) from an oblique direction is preferably at an angle of 30 to 50 ° from the vertical direction, and more preferably at an angle of 35 to 45 °. As a result, continuous holes can be formed.
  • the exposure amount is preferably 100 to 300 mJ / cm 2 , and the number of exposures is preferably once. It is preferable to post-bake (heat) between (3) and (4) in order to stabilize the resist after exposure.
  • the post-baking condition is preferably about 1 to 60 minutes at 30 to 100 ° C.
  • the spin coating method can be used for the cleaning treatment of (5).
  • the processing area can be up to an area of 20 mm on a side with one exposure. When processing a wider area, it is possible by repeating the exposure.
  • the thickness of the structure can be 500 nm to 100 ⁇ m. It is more preferably 700 nm to 50 ⁇ m, still more preferably 1 to 20 ⁇ m.
  • the length (length in the depth direction) of the holes that can be microfabricated is preferably 10 nm to 3000 nm. More preferably, it is 100 to 1500 nm.
  • the periodicity can be from 1 to 20 cycles, preferably about 2 to 10 laps.
  • the Talbot effect used in the present invention is as follows. (1) When a plane wave is incident on a diffraction grating, the diffracted light in the Fresnel region interferes with each other, so that a periodic light intensity distribution is repeated three-dimensionally. (2) By generating a periodic light intensity distribution with a diffraction grating and using it for lithography exposure, it is possible to process a large area of periodic microstructures in a batch in three dimensions.
  • FIG. 1A is a drawing for explaining the basic concept of the present invention, and is a schematic cross-sectional view in which an optical filter (exposure mask) 2 is installed on the upper surface of the photoresist resin 3 and ultraviolet rays (UV) 1 are irradiated.
  • the photoresist resin 3 uses a positive photoresist resin
  • the optical filter (exposure mask) 2 uses a polycarbonate diffraction grating as an example.
  • the distance between the photoresist resin 3 and the optical filter (exposure mask) 2 is set to l.
  • X and Y are in the plane direction, and Z is in the depth direction. Details are as shown in the drawings.
  • FIG. 1A is a drawing for explaining the basic concept of the present invention, and is a schematic cross-sectional view in which an optical filter (exposure mask) 2 is installed on the upper surface of the photoresist resin 3 and ultraviolet rays (UV) 1 are irradiated.
  • the photoresist resin 3 uses
  • 1B is a schematic cross-sectional view illustrating the exposed portion 4 in which the photoresist resin 3 is irradiated with light.
  • the exposed light intensity distribution is shown by a dot pattern, and the larger the number of dots, the higher the exposure intensity.
  • the exposure intensity is an arbitrary unit (denoted as a.u.) because it is standardized with the strongest light intensity.
  • FIG. 2A is a schematic cross-sectional view showing the exposure of a conventional example.
  • UV ultraviolet rays
  • Z T is the Talbot distance (nm). That is, it is the vertical distance (nm) between the center point of the irradiation spot portion in the first row and the center point of the irradiation spot portion in the third row when viewed from the irradiation surface.
  • FIG. 2B is a schematic cross-sectional view of the exposure of one embodiment of the present invention.
  • the irradiation angle ⁇ i of ultraviolet (UV) 1 is preferably 30 to 50 °.
  • a continuous exposed portion 6 is formed inside the photoresist resin 3.
  • ⁇ x is the horizontal distance (nm) between the center point P1 of the irradiation spot portion in the first row and the center point P2 of the irradiation spot portion in the third row adjacent to each other when viewed from the irradiation surface.
  • FIG. 3A-E are schematic cross-sectional views showing a manufacturing method according to an embodiment of the present invention
  • FIG. 3F is a schematic perspective view.
  • a sheet obtained by curing a photoresist resin having a thickness of 10 ⁇ m is placed on the substrate 10 as a buffer layer 11, and the photoresist resin liquid 13 is coated on the sheet by spin coating.
  • the state in which the photoresist resin layer 12a is formed is shown.
  • FIG. 3B shows a state in which the coated photoresist resin layer 12a is prebaked (heated) on the hot plate 14 to form the photoresist resin layer 12b.
  • FIG. 3A a sheet obtained by curing a photoresist resin having a thickness of 10 ⁇ m is placed on the substrate 10 as a buffer layer 11, and the photoresist resin liquid 13 is coated on the sheet by spin coating.
  • the state in which the photoresist resin layer 12a is formed is shown.
  • FIG. 3B shows a state in which the coated
  • FIG. 3C shows a state in which the photoresist resin layer 12c obtained in (3) above is post-baked (heated) in order to stabilize it.
  • FIG. 3E the post-baked (heated) photoresist resin layer 12d is chemically reacted with a developing solution by spin coating to dissolve the portion 17 irradiated with ultraviolet rays (UV) exceeding the curing threshold, and energy ray curing is performed.
  • FIG. 3F shows a state in which the resin 19 obtained in (4) above is washed with pure water to elute the dissolved portion to form a fine structure.
  • the preferred processing conditions of the present invention are as follows.
  • Resin material It is preferable to use a positive resist.
  • a positive UV curable resin is preferable.
  • the resin processing temperature (prebake) is preferably 0 to 100 ° C. This is the resin curing temperature range recommended by the resin manufacturer.
  • Cleaning liquid Any liquid that is non-invasive to the resin is possible. It is preferable to use pure water.
  • Light wavelength UV light from a laser is used.
  • 360 nm.
  • 0.1 nm to 380 nm can be used.
  • energy beam ultraviolet rays (UV-A, B, C), X-rays, electron beams and the like are used.
  • Diffraction grating Use one or more optical filters.
  • Lattice pitch Specified by wavelength ⁇ ⁇ lattice pitch d.
  • Pitch duty ratio 0.2 to 0.7, preferably 0.4 to 0.6.
  • a grid pitch of 747 nm and a grid height of 150 nm are used. It can utilize the DVD surface.
  • the diffraction grating other than DVD the one shown in Table 1 can be used.
  • Machining pattern A regular groove structure can be formed. It has periodicity and can be arbitrarily changed from 1 to 20 cycles. The surface can be shaped at an acute angle or on a flat surface.
  • Machining features (a) Perform one-shot exposure and perform precise machining without phase shift. (B) The processing state can be changed depending on the exposure state and time. When the optical threshold is exceeded, resin curing occurs. Curing is controlled by the exposure time. (C) The irradiation light has an incident angle of 30 to 50 ° from the vertical direction of the base material surface. (D) The Talbot distance is calculated by the formula specified in (Equation 1) above. This is the range of the Talbot effect. The processing characteristics are specified in (Equation 2) and (Equation 3) above. As a result, it becomes as follows. (I) By extending the distance between adjacent Talbots, adjacent processing regions are combined. (Ii) By controlling the adjacent wavelength distances X, the front and rear processing regions are combined.
  • Example 1 The experiment was conducted as follows. (1) Using a spin coater, a uniform thickness UV curable resin SIPR-3251-6.0 (manufactured by ShinEtsu MicroSi) resin layer 12a was formed on the Bacher layer 11 on the substrate 10. The thickness was 6 ⁇ m (Fig. 3A). (2) The resin layer 12a formed in (1) was placed on a hot plate 14 and prebaked (heated) at 100 ° C. for 2 minutes to volatilize the solvent contained in the resin layer 12a to obtain a resin layer 12b (2). FIG. 3B).
  • SIPR-3251-6.0 manufactured by ShinEtsu MicroSi
  • the resin layer 12c obtained in (3) was chemically reacted with a developer for SIPR-3251 (the developer was attached at the time of purchasing the resin), and the portion subjected to light irradiation exceeding the photocuring threshold of SIPR-3251 was subjected to light irradiation. It was dissolved to form a resin layer 12d (FIG. 3D).
  • the resin layer 12d was chemically reacted with a developing solution by spin coating to dissolve the portion 18 irradiated with ultraviolet rays (UV) exceeding the curing threshold, and cured the resin portion 19 that did not meet the energy ray curing threshold. ..
  • the photoresist resin layer 12e is in a state in which holes 18 are formed in the resin portion 19 (FIG. 3E).
  • the resin 19 obtained in (4) above was washed with pure water to elute the dissolved portion to obtain a fine structure (FIG. 3F).
  • Table 2 summarizes the above conditions and results.
  • the microstructure of the present invention has grooves, through holes, open cells, etc. formed inside the resin layer, and can be applied to a photonic structure including a filter, a biomimetics structure, a functional member, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

The present invention is a microstructure which is a sheet 20 comprising an energy ray active resin 21. The microstructure has inclined holes 22 that are shaped so as to at least reach the interior. The holes 22 of the structure interior make a modeled pattern shape where the Talbot distance is stipulated by formula 1; the relational expression with an adjacent Talbot structure satisfies formula 2 and formula 3; and the shape of the microstructure has periodicity in the planar direction. Where ZT is Talbot distance (nm), n is refractive index, d is pitch distance (nm), λ = light wavelength (nm), and ΔX is horizontal distance (nm) between an irradiation spot portion of a column 1 as seen from an irradiation surface and an irradiation spot portion of an adjacent column 3. Due to the foregoing, provided is a three-dimensional structure enabling periodic micromolding such that control is carried out up to to the interior of the structure.

Description

微細構造体及びその製造方法Microstructure and its manufacturing method
 本発明は、タルボット効果を用いて加工する微細構造体及びその製造方法に関する。 The present invention relates to a microstructure to be processed using the Talbot effect and a method for producing the same.
 近年、サブミクロンオーダーの3次元構造体に注目が集まっている。半導体デバイスおよび微小電気機械システム(MEMS)における微細構造の部品や生物が有する機能性微細構造を模したバイオミメティクス構造体、屈折率が異なる物質を光の波長と同程度の間隔で並べることで構成される、ナノ構造のフォトニック結晶があげられる。これらのサブミクロンオーダーの3次元構造体、特に周期構造を持つ構造体は、機能性の材料として注目が集まっている。微細構造体を作製する手法としては、リソグラフィ、エッチング、ナノインプリント、レーザー微細加工、原子間力顕微鏡(AFM)による原子操作及び自己組織化手法、等がある。これらの方法において、構造の多次元化に伴い、加工に要する時間が長くなり、加工効率を向上させることが求められている。また、複雑な構造の作製も要求されており、周期性を任意に制御可能な高い加工自由度と加工精度も求められている。しかしながら、加工効率と加工自由度はトレードオフの関係にあり、簡易な手法でありながら多次元加工成形を実現する技術が確立されておらず、構造体の開発が行われている。また、加工精度を高めるだけでなく、加工領域をミリメートルオーダーの広範囲の領域とすることも構造体を製造する上で求められている。 In recent years, attention has been focused on three-dimensional structures on the order of submicrons. It consists of microstructured parts in semiconductor devices and microelectromechanical systems (MEMS), biomimetic structures that imitate the functional microstructures of living organisms, and substances with different refractive indexes arranged at intervals similar to the wavelength of light. Examples include nanostructured photonic crystals. These submicron-order three-dimensional structures, particularly those having a periodic structure, are attracting attention as functional materials. Techniques for producing microstructures include lithography, etching, nanoimprint, laser microfabrication, atomic manipulation with an atomic force microscope (AFM), and self-assembling techniques. In these methods, as the structure becomes multidimensional, the time required for processing becomes longer, and it is required to improve the processing efficiency. Further, the production of a complicated structure is also required, and a high degree of freedom in processing and a processing accuracy in which the periodicity can be arbitrarily controlled are also required. However, there is a trade-off relationship between machining efficiency and machining freedom, and although it is a simple method, a technique for realizing multidimensional machining and molding has not been established, and a structure is being developed. Further, in order to manufacture a structure, it is required not only to improve the processing accuracy but also to set the processing area to a wide area on the order of millimeters.
 微細構造体を簡便に製造する方法には、レジスト用樹脂を材料として、3次元リソグラフィ技術を用いて作製する手法があげられ、特に,タルボット効果を用いた3次元リソグラフィ加工は、特定の波長と回折格子を用いることで、周期的なパターンを大面積に一括して成形することが容易となり、加工効率は極めて高い。しかし、タルボット効果を用いたリソグラフィは、周期を制御するパラメータが波長と格子ピッチとなり、周期の制御が2次元に限定されるため加工自由度が低いという問題があり、加工領域を3次元構造体の「表面」や「内部」に限定せずに任意の形状を加工する技術は確立されてなかった。 As a method for easily manufacturing a fine structure, there is a method of manufacturing a resist resin as a material by using a three-dimensional lithography technique. In particular, a three-dimensional lithography process using a Talbot effect has a specific wavelength. By using a diffraction grating, it becomes easy to form a periodic pattern in a large area at once, and the processing efficiency is extremely high. However, lithography using the Talbot effect has a problem that the degree of freedom of processing is low because the parameters for controlling the period are wavelength and lattice pitch and the period control is limited to two dimensions, and the processing area is a three-dimensional structure. No technology has been established for processing arbitrary shapes without limiting to the "surface" and "inside" of.
 特許文献1には、タルボット効果を用いたリソグラフィ加工の技術が開示されているが、エッチング用スクリーンマスクの加工を目的とした技術であるため、構造体の内部加工は行われていない。特許文献2には、タルボット効果を用いて高精度のパターンが形成可能なマスク及びパターン形成する方法が開示されているが、構造体を作製する技術ではない。特許文献3には、エッチングにより周期構造の凹部又は孔を形成することがされているが、微細構造を簡易に作製することは困難である。非特許許文献1には、タルボット効果による光造形手法を応用して金属ナノ粒子を分散させる構造の提案であるが、実際タルボット効果による明確な階層構造を作製するまでは至っていない。非特許文献2には、1次元層構造および2次元周期構造における広範囲のナノ構造を作製することが開示されているが、構造体の精度や構造維持に問題があり、周期性のある構造体には至っていない。非特許文献3および非特許文献4には、多重露光の数値解析の結果から3次元ナノ周期構造が作製できる可能性が示唆されているが、構造体の精度や構造維持に問題があり、実用レベル構造体には至っていない。 Patent Document 1 discloses a technique for lithography processing using the Talbot effect, but since it is a technique for processing a screen mask for etching, internal processing of the structure is not performed. Patent Document 2 discloses a mask capable of forming a highly accurate pattern using the Talbot effect and a method for forming the pattern, but this is not a technique for producing a structure. In Patent Document 3, recesses or holes having a periodic structure are formed by etching, but it is difficult to easily produce a microstructure. Non-Patent Document 1 proposes a structure in which metal nanoparticles are dispersed by applying a stereolithography method based on the Talbot effect, but has not actually produced a clear hierarchical structure by the Talbot effect. Non-Patent Document 2 discloses that a wide range of nanostructures in a one-dimensional layer structure and a two-dimensional periodic structure are produced, but there are problems in the accuracy and structure maintenance of the structure, and the structure has periodicity. Has not been reached. Non-Patent Document 3 and Non-Patent Document 4 suggest that a three-dimensional nanoperiodic structure can be produced from the results of numerical analysis of multiple exposures, but there are problems in the accuracy and structure maintenance of the structure, and it is practically used. It has not reached the level structure.
WO2016-190247号明細書WO 2016-190247 特開2015-169803号公報Japanese Unexamined Patent Publication No. 2015-169803 特開2006-343671号公報Japanese Unexamined Patent Publication No. 2006-343671
 以上説明のとおり、レジスト用樹脂による3次元構造体に関して、有用な技術として着目され従来から研究がなされているが、本格的な実用化には至っていない。これは、3次元構造の周期性を制御することが難しいためである。
 本発明は、これら従来の課題を解決するため、構造体の表面及び内部の周期性まで制御した微細成形加工ができる3次元構造体を提供する。
As described above, a three-dimensional structure made of a resin for resist has been focused on as a useful technique and has been studied conventionally, but it has not been put into full-scale practical use. This is because it is difficult to control the periodicity of the three-dimensional structure.
In order to solve these conventional problems, the present invention provides a three-dimensional structure capable of micromolding in which the periodicity of the surface and the inside of the structure is controlled.
 本発明は、内部に孔を含む微細構造体であって、前記構造体はエネルギー線活性樹脂を含むシートであり、少なくとも内部まで、傾斜を有する孔が造形されており、前記構造体内部の孔は、タルボット距離が下記(数1)で規定される造形パターンの形状をしており、隣り合うタルボット構造との関係式が下記(数2)及び(数3)を満たし、平面方向に周期性のある形状を有する微細構造体である。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
但し、(数1)~(数3)において、
T:タルボット距離(nm)
n:屈折率
d:ピッチ距離(nm)
λ:光波長(nm)
ΔX:照射面から見て1列目の照射スポット部分と、隣り合う3列目の照射スポット部分の水平距離(nm)
The present invention is a microstructure having holes inside, the structure is a sheet containing an energy ray active resin, and holes having an inclination are formed at least to the inside, and the holes inside the structure. Has a shape of a modeling pattern in which the Talbot distance is defined by the following (Equation 1), the relational expression with the adjacent Talbot structure satisfies the following (Equation 2) and (Equation 3), and is periodic in the plane direction. It is a microstructure having a certain shape.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
However, in (Equation 1) to (Equation 3),
Z T : Talbot distance (nm)
n: Refractive index d: Pitch distance (nm)
λ: Light wavelength (nm)
ΔX: Horizontal distance (nm) between the irradiation spot portion in the first row and the irradiation spot portion in the adjacent third row when viewed from the irradiation surface.
 本発明の微細構造体の製造方法は、
(1)基板上にエネルギー線活性樹脂を均一厚みに塗工する工程と、
(2)前記塗工したエネルギー線活性樹脂層をプリベーク(加熱)する工程と、
(3)前記(2)で得られた樹脂層に対し回折格子を上面に設置し、エネルギー線を斜め方向から照射し、樹脂層にパターンを生成する工程と、
(4)前記(3)で得られた樹脂層を現像液により化学反応させ、硬化閾値を超えるエネルギー線照射を受けた部分を溶解させ、エネルギー線硬化閾値に満たなかった部分を硬化させる工程、または硬化閾値を超えるエネルギー線照射を受けた部分を硬化させ、エネルギー線硬化閾値に満たなかった部分を溶解させる工程と、
(5)前記(4)により得られた基板を純水にて洗浄処理することにより溶解部を溶出させ、微細構造体を得る工程を含む。
The method for producing a microstructure of the present invention is
(1) A process of applying an energy ray active resin on a substrate to a uniform thickness, and
(2) A step of prebaking (heating) the coated energy ray active resin layer and
(3) A step of installing a diffraction grating on the upper surface of the resin layer obtained in (2) above and irradiating energy rays from an oblique direction to generate a pattern on the resin layer.
(4) A step of chemically reacting the resin layer obtained in (3) above with a developing solution, dissolving a portion that has been irradiated with energy rays exceeding the curing threshold, and curing a portion that does not meet the energy ray curing threshold. Alternatively, a step of curing a portion that has been irradiated with energy rays exceeding the curing threshold value and dissolving a portion that does not meet the energy ray curing threshold value.
(5) The present invention includes a step of eluting the dissolved portion by washing the substrate obtained in (4) above with pure water to obtain a fine structure.
 本発明の微細構造体は、露光の入射角とタルボット距離の調整により、構造体の表面や内部に孔空け加工でき、構造体の表面及び内部まで周期性を制御して微細成形加工ができる。 The microstructure of the present invention can be perforated on the surface and inside of the structure by adjusting the incident angle of exposure and the Talbot distance, and the microstructure can be microformed by controlling the periodicity to the surface and inside of the structure.
図1Aは本発明の基本概念を説明するため、フォトレジスト樹脂の上面に露光マスクを設置し、紫外線(UV)を照射する模式的断面図、図1Bは同、フォトレジスト樹脂内に光が照射された部分を説明する模式的断面図である。FIG. 1A is a schematic cross-sectional view in which an exposure mask is placed on the upper surface of the photoresist resin and irradiated with ultraviolet rays (UV) in order to explain the basic concept of the present invention. FIG. It is a schematic cross-sectional view explaining the part. 図2Aは従来例の露光を示す模式的断面図、図2Bは本発明の一実施形態の露光の模式的断面図である。FIG. 2A is a schematic cross-sectional view showing an exposure of a conventional example, and FIG. 2B is a schematic cross-sectional view of an exposure according to an embodiment of the present invention. 図3A-Eは本発明の一実施形態の製造方法を示す模式的断面図であり、図3Fは模式的斜視図である。3A-E are schematic cross-sectional views showing a manufacturing method according to an embodiment of the present invention, and FIG. 3F is a schematic perspective view. 図4Aは本発明の実施例1の微細構造体の内部を示す模式的斜視図、図4Bは同、写真である。FIG. 4A is a schematic perspective view showing the inside of the microstructure of Example 1 of the present invention, and FIG. 4B is a photograph of the same. 図5Aは比較例の微細構造体の内部を示す模式的斜視図、図5Bは同、写真である。FIG. 5A is a schematic perspective view showing the inside of the microstructure of the comparative example, and FIG. 5B is a photograph of the same.
 本発明は、エネルギー線活性樹脂を含むシートに傾斜を有する孔が造形されている。前記傾斜を有する孔は、垂直方向から15~30°の範囲で傾斜しているのが好ましい。さらに好ましくは、16°~27°の範囲がよい。これにより連続孔が形成できる。構造体の内部の孔は、タルボット距離が前記(数1)で規定される造形パターンの形状をしており、隣り合うタルボット構造(孔)との関係式が下記(数2)及び(数3)を満たし、平面方向に周期性のある形状を有する。 In the present invention, a hole having an inclination is formed in a sheet containing an energy ray active resin. The inclined hole is preferably inclined in the range of 15 to 30 ° from the vertical direction. More preferably, the range is 16 ° to 27 °. As a result, continuous holes can be formed. The holes inside the structure have the shape of a modeling pattern in which the Talbot distance is specified in (Equation 1) above, and the relational expressions with the adjacent Talbot structures (holes) are as follows (Equation 2) and (Equation 3). ), And has a shape with periodicity in the plane direction.
 エネルギー線活性樹脂はレジスト用樹脂が好ましく、より好ましくはポジ型レジスト用樹脂である。ポジ型レジスト用樹脂はエネルギー線を露光させることにより、露光部は溶液に溶ける性質を有し、微細加工に好適である。ネガ型レジスト用樹脂は、ポストベーク処理による高温に曝されるため、樹脂にひずみが生じ、正確な周期性を持った微細構造体を得にくい。 The energy ray active resin is preferably a resin for resist, and more preferably a resin for positive resist. The resin for positive resist has a property that the exposed portion dissolves in a solution when exposed to energy rays, and is suitable for microfabrication. Since the negative resist resin is exposed to a high temperature due to the post-baking treatment, the resin is distorted and it is difficult to obtain a fine structure having accurate periodicity.
 前記周期性のある形状は、格子ピッチ:波長λ≦格子ピッチdであり、かつピッチデューティ比:0.2~0.7が好ましい。これにより、より微細な加工ができる。前記周期性のある形状は、規則性のある形状が好ましい。これにより均一性の高い微細構造体となる。 The periodic shape preferably has a lattice pitch: wavelength λ ≤ lattice pitch d and a pitch duty ratio of 0.2 to 0.7. As a result, finer processing can be performed. The periodic shape is preferably a regular shape. As a result, a fine structure having high uniformity is obtained.
 前記構造体内部の孔は、表面から内部まで存在していてもよいし、表裏面に貫通していてもよい。この孔は、溝及び/又は穴を含む概念である。 The holes inside the structure may exist from the front surface to the inside, or may penetrate the front and back surfaces. This hole is a concept that includes a groove and / or a hole.
 本発明の微細構造体の製造方法は、下記の工程を含む。
(1)基板上にエネルギー線活性樹脂を均一厚みに塗工する工程。
(2)前記塗工したエネルギー線活性樹脂層をプリベーク(加熱)する工程。
(3)前記(2)で得られた樹脂層に対し回折格子を上面に設置し、タルボット効果が得られるエネルギー線を斜め方向から照射し、樹脂層にパターンを生成する工程。
(4)前記(3)で得られた樹脂層を現像液により化学反応させ、硬化閾値を超えるエネルギー線照射を受けた樹脂部分を溶解させ、エネルギー線硬化閾値に満たなかった樹脂部分を硬化させる工程、または硬化閾値を超えるエネルギー線照射を受けた部分を硬化させ、エネルギー線硬化閾値に満たなかった部分を溶解させる工程。
(5)前記(4)により得られた樹脂を純水にて洗浄処理することにより溶解部を溶出させ、微細構造体を得る工程。
The method for producing a microstructure of the present invention includes the following steps.
(1) A step of applying an energy ray active resin on a substrate to a uniform thickness.
(2) A step of prebaking (heating) the coated energy ray active resin layer.
(3) A step of installing a diffraction grating on the upper surface of the resin layer obtained in (2) above, irradiating an energy ray capable of obtaining a talbot effect from an oblique direction, and generating a pattern on the resin layer.
(4) The resin layer obtained in (3) above is chemically reacted with a developing solution to dissolve the resin portion that has been irradiated with energy rays exceeding the curing threshold, and cure the resin portion that does not meet the energy ray curing threshold. A step, or a step of curing a portion that has been irradiated with energy rays exceeding the curing threshold and dissolving a portion that does not meet the energy ray curing threshold.
(5) A step of eluting the dissolved portion by washing the resin obtained in (4) above with pure water to obtain a fine structure.
 前記(1)のエネルギー線活性樹脂を均一厚みに塗工する手段は、一例としてスピンコート法が使用できる。スピンコート法は比較的小さな面積で薄く均一膜厚で塗工できる。
 前記(2)のプリベーク(加熱)条件は、メーカー推奨値の0~100℃で1~5分程度が好ましい。
 前記(3)のパターンを生成工程のエネルギー線の斜め方向からの照射は、垂直方向から30~50°の角度が好ましく、より好ましくは35~45°の角度である。これにより連続孔が形成できる。また、露光量は100~300mJ/cm2、露光回数は1回がそれぞれ好ましい。
 前記(3)と(4)の間に、露光後のレジストを安定化させるためにポストベーク(加熱)するのが好ましい。ポストベーク条件は、30~100℃で1~60分程度が好ましい。
 前記(5)の洗浄処理は、一例としてスピンコート法が使用できる。
As an example, the spin coating method can be used as the means for applying the energy ray-active resin of the above (1) to a uniform thickness. The spin coating method can be applied in a relatively small area with a thin and uniform film thickness.
The prebaking (heating) condition of (2) is preferably about 1 to 5 minutes at 0 to 100 ° C., which is a value recommended by the manufacturer.
The irradiation of the energy rays in the process of generating the pattern (3) from an oblique direction is preferably at an angle of 30 to 50 ° from the vertical direction, and more preferably at an angle of 35 to 45 °. As a result, continuous holes can be formed. The exposure amount is preferably 100 to 300 mJ / cm 2 , and the number of exposures is preferably once.
It is preferable to post-bake (heat) between (3) and (4) in order to stabilize the resist after exposure. The post-baking condition is preferably about 1 to 60 minutes at 30 to 100 ° C.
As an example, the spin coating method can be used for the cleaning treatment of (5).
 本発明の微細構造体の一例は次のとおりである。
(1)加工領域は1回の露光で1辺が20mmの面積まで可能である。さらに広い面積を加工する場合は、露光を繰り返すことにより可能である。
(2)構造体の厚みは500nm~100μmが可能である。より好ましくは700nm~50μm、さらに好ましくは1~20μmである。
(3)微細加工できる孔の長さ(深さ方向の長さ)は、10nm~3000nmが好ましい。より好ましくは100~1500nmである。
(4)周期性は、1~20周期まで可能であり、好ましくは2周~10周程度である。
An example of the microstructure of the present invention is as follows.
(1) The processing area can be up to an area of 20 mm on a side with one exposure. When processing a wider area, it is possible by repeating the exposure.
(2) The thickness of the structure can be 500 nm to 100 μm. It is more preferably 700 nm to 50 μm, still more preferably 1 to 20 μm.
(3) The length (length in the depth direction) of the holes that can be microfabricated is preferably 10 nm to 3000 nm. More preferably, it is 100 to 1500 nm.
(4) The periodicity can be from 1 to 20 cycles, preferably about 2 to 10 laps.
 本発明で使用するタルボット効果は次のとおりである。
(1)平面波が回折格子に入射した際に,フレネル領域の回折光同士が干渉することで周期的な光強度分布が3次元的に繰り返される現象である。
(2)周期的な光強度分布を回折格子で発生させ,リソグラフィの露光に用いることで,大面積に周期的な微細構造を一括で3次元的に加工することが可能である。
The Talbot effect used in the present invention is as follows.
(1) When a plane wave is incident on a diffraction grating, the diffracted light in the Fresnel region interferes with each other, so that a periodic light intensity distribution is repeated three-dimensionally.
(2) By generating a periodic light intensity distribution with a diffraction grating and using it for lithography exposure, it is possible to process a large area of periodic microstructures in a batch in three dimensions.
 以下図面を用いて説明する。以下の図面において、同一符号は同一物を示す。図1Aは本発明の基本概念を説明するための図面であり、フォトレジスト樹脂3の上面に光学フィルター(露光マスク)2を設置し、紫外線(UV)1を照射する模式的断面図である。フォトレジスト樹脂3はポジ型フォトレジスト用樹脂を使用し、光学フィルター(露光マスク)2は一例としてポリカーボネート製の回折格子を使用する。フォトレジスト樹脂3と光学フィルター(露光マスク)2の間隔を距離lとする。X,Yは面方向、Zは深さ方向である。詳細は図面内に示すとおりである。図1Bは同、フォトレジスト樹脂3内に光が照射された露光部分4を説明する模式的断面図である。露光された光強度分布はドット模様で示しており、ドット数が多いほど露光強度が高い。露光強度は,一番強い光強度で規格化しているため任意単位(a.u.と表記)とした。 The following will be explained using drawings. In the drawings below, the same reference numerals indicate the same thing. FIG. 1A is a drawing for explaining the basic concept of the present invention, and is a schematic cross-sectional view in which an optical filter (exposure mask) 2 is installed on the upper surface of the photoresist resin 3 and ultraviolet rays (UV) 1 are irradiated. The photoresist resin 3 uses a positive photoresist resin, and the optical filter (exposure mask) 2 uses a polycarbonate diffraction grating as an example. The distance between the photoresist resin 3 and the optical filter (exposure mask) 2 is set to l. X and Y are in the plane direction, and Z is in the depth direction. Details are as shown in the drawings. FIG. 1B is a schematic cross-sectional view illustrating the exposed portion 4 in which the photoresist resin 3 is irradiated with light. The exposed light intensity distribution is shown by a dot pattern, and the larger the number of dots, the higher the exposure intensity. The exposure intensity is an arbitrary unit (denoted as a.u.) because it is standardized with the strongest light intensity.
 図2Aは従来例の露光を示す模式的断面図である。フォトレジスト樹脂3の表面に対して垂直方向から紫外線(UV)1を照射すると、露光部分5a,5bができる。ZTはタルボット距離(nm)である。すなわち、照射面から見て同一照射線の1列目の照射スポット部分の中心点と、3列目の照射スポット部分の中心点の垂直距離(nm)である。 FIG. 2A is a schematic cross-sectional view showing the exposure of a conventional example. When the surface of the photoresist resin 3 is irradiated with ultraviolet rays (UV) 1 from a vertical direction, exposed portions 5a and 5b are formed. Z T is the Talbot distance (nm). That is, it is the vertical distance (nm) between the center point of the irradiation spot portion in the first row and the center point of the irradiation spot portion in the third row when viewed from the irradiation surface.
 図2Bは本発明の一実施形態の露光の模式的断面図である。紫外線(UV)1の照射角度Θiは30~50°が好ましい。この範囲で照射すると、フォトレジスト樹脂3内部には連続した露光部6が形成される。露光部6を後に溶解させると、この部分は連続孔となる。Δxは照射面から見て1列目の照射スポット部分の中心点P1と、隣り合う3列目の照射スポット部分の中心点P2の水平距離(nm)である。 FIG. 2B is a schematic cross-sectional view of the exposure of one embodiment of the present invention. The irradiation angle Θ i of ultraviolet (UV) 1 is preferably 30 to 50 °. When irradiated in this range, a continuous exposed portion 6 is formed inside the photoresist resin 3. When the exposed portion 6 is later melted, this portion becomes a continuous hole. Δx is the horizontal distance (nm) between the center point P1 of the irradiation spot portion in the first row and the center point P2 of the irradiation spot portion in the third row adjacent to each other when viewed from the irradiation surface.
 図3A-Eは本発明の一実施形態の製造方法を示す模式的断面図であり、図3Fは模式的斜視図である。
(1)図3Aは、基板10上にバッハー層(buffer layer)11として、厚み10μmのフォトレジスト樹脂を硬化させたシートを配置し、その上にスピンコートにより、フォトレジスト樹脂液13を塗工し、フォトレジスト樹脂層12aとした状態を示す。
(2)図3Bは、前記塗工したフォトレジスト樹脂層12aをホットプレート14上でプリベーク(加熱)し、フォトレジスト樹脂層12bとした状態を示す。
(3)図3Cは、前記(2)で得られたフォトレジスト樹脂層12bの上に光学フィルター(露光マスク)15を載せ、紫外線(UV)16を斜め方向から照射し、フォトレジスト樹脂層12cに露光パターン17を形成した状態を示す。
(4)図3Dは、前記(3)で得られたフォトレジスト樹脂層12cを安定化させるためにポストベーク(加熱)する状態を示す。次いで、図3Eは、ポストベーク(加熱)したフォトレジスト樹脂層12dをスピンコートにより、現像液で化学反応させ、硬化閾値を超える紫外線(UV)照射を受けた部分17を溶解させ、エネルギー線硬化閾値に満たなかった樹脂部分19を硬化させる状態を示す。フォトレジスト樹脂層12eは孔18が空いた状態となる。
(5)図3Fは、前記(4)により得られた樹脂19を純水にて洗浄処理することにより溶解部を溶出させ、微細構造体となった状態を示す。
3A-E are schematic cross-sectional views showing a manufacturing method according to an embodiment of the present invention, and FIG. 3F is a schematic perspective view.
(1) In FIG. 3A, a sheet obtained by curing a photoresist resin having a thickness of 10 μm is placed on the substrate 10 as a buffer layer 11, and the photoresist resin liquid 13 is coated on the sheet by spin coating. The state in which the photoresist resin layer 12a is formed is shown.
(2) FIG. 3B shows a state in which the coated photoresist resin layer 12a is prebaked (heated) on the hot plate 14 to form the photoresist resin layer 12b.
(3) In FIG. 3C, an optical filter (exposure mask) 15 is placed on the photoresist resin layer 12b obtained in (2) above, and ultraviolet rays (UV) 16 are irradiated from an oblique direction to form a photoresist resin layer 12c. The state in which the exposure pattern 17 is formed is shown in 1.
(4) FIG. 3D shows a state in which the photoresist resin layer 12c obtained in (3) above is post-baked (heated) in order to stabilize it. Next, in FIG. 3E, the post-baked (heated) photoresist resin layer 12d is chemically reacted with a developing solution by spin coating to dissolve the portion 17 irradiated with ultraviolet rays (UV) exceeding the curing threshold, and energy ray curing is performed. The state which cures the resin part 19 which did not meet the threshold is shown. The photoresist resin layer 12e is in a state where the holes 18 are open.
(5) FIG. 3F shows a state in which the resin 19 obtained in (4) above is washed with pure water to elute the dissolved portion to form a fine structure.
 本発明の好ましい加工条件は次のとおりである。
(1)樹脂材料
 ポジ型レジストを用いるのが好ましい。例えばポジ型UV硬化樹脂が好ましい。ネガ型を用いると、バッハー層を配置させる工程が必要となる。また、ネガ型を用いると、ポストベーク処理による高温に曝されるため、樹脂にひずみが生じ、正確な周期性を持った微細構造体の製造ができにくい。樹脂加工温度(プリベーク)は、0~100℃が好ましい。これは樹脂メーカーの推奨される樹脂硬化温度域である。
(2)洗浄液:樹脂に非侵襲な液体であれば可能である。純水を使用するのが好ましい。
(3)光波長:レーザーによるUV光を用いる。例えばλ=360nmである。波長領域としては0.1nm~380nmが使用できる。エネルギー線は、紫外線(UV-A,B,C)、X線、電子線等が用いられる。
(4)回折格子:1枚以上の光学フィルターを使用する。例えばポリカーボネートの光学フィルターを用いる。格子ピッチ:波長λ≦格子ピッチdで規定される。ピッチデューティ比:0.2~0.7であり、好ましくは0.4~0.6である。一例として、格子ピッチ:747nm、格子高さ:150nmを使用する。これはDVD表面を利用できる。DVD以外の回折格子としては、表1に記載のものを使用できる。
The preferred processing conditions of the present invention are as follows.
(1) Resin material It is preferable to use a positive resist. For example, a positive UV curable resin is preferable. When the negative type is used, a step of arranging the Bacher layer is required. Further, when the negative type is used, since it is exposed to a high temperature due to the post-baking treatment, the resin is distorted, and it is difficult to manufacture a fine structure having accurate periodicity. The resin processing temperature (prebake) is preferably 0 to 100 ° C. This is the resin curing temperature range recommended by the resin manufacturer.
(2) Cleaning liquid: Any liquid that is non-invasive to the resin is possible. It is preferable to use pure water.
(3) Light wavelength: UV light from a laser is used. For example, λ = 360 nm. As the wavelength region, 0.1 nm to 380 nm can be used. As the energy beam, ultraviolet rays (UV-A, B, C), X-rays, electron beams and the like are used.
(4) Diffraction grating: Use one or more optical filters. For example, a polycarbonate optical filter is used. Lattice pitch: Specified by wavelength λ ≤ lattice pitch d. Pitch duty ratio: 0.2 to 0.7, preferably 0.4 to 0.6. As an example, a grid pitch of 747 nm and a grid height of 150 nm are used. It can utilize the DVD surface. As the diffraction grating other than DVD, the one shown in Table 1 can be used.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(5)加工パターン
 規則性のある溝構造が形成できる。周期性があり、1~20周期まで任意に変更可能である。表面は鋭角にも平面にも造形可能である。
(6)加工特徴
(a)1ショット露光を行い、位相シフトによらない精密な加工を行う。
(b)露光状態・時間によって、加工状態を変更できる。光閾値を越えたら樹脂硬化が起こる。硬化は露光時間で制御する。
(c)照射光は、基材面の垂直方向から30~50°の入射角とする。
(d)タルボット距離を前記(数1)に規定する式で求める。これがタルボット効果の及ぼす範囲となる。加工特性は、前記(数2)及び(数3)で規定する。
 この結果、下記のようになる。
(i)隣り合うタルボット距離を伸ばすことで、隣り合う加工領域を結合する。
(ii)隣り合う波長距離Xを制御することで、前後の加工領域を結合する。
(5) Machining pattern A regular groove structure can be formed. It has periodicity and can be arbitrarily changed from 1 to 20 cycles. The surface can be shaped at an acute angle or on a flat surface.
(6) Machining features (a) Perform one-shot exposure and perform precise machining without phase shift.
(B) The processing state can be changed depending on the exposure state and time. When the optical threshold is exceeded, resin curing occurs. Curing is controlled by the exposure time.
(C) The irradiation light has an incident angle of 30 to 50 ° from the vertical direction of the base material surface.
(D) The Talbot distance is calculated by the formula specified in (Equation 1) above. This is the range of the Talbot effect. The processing characteristics are specified in (Equation 2) and (Equation 3) above.
As a result, it becomes as follows.
(I) By extending the distance between adjacent Talbots, adjacent processing regions are combined.
(Ii) By controlling the adjacent wavelength distances X, the front and rear processing regions are combined.
  以下実施例により、本発明をさらに具体的に説明する。なお本発明は下記の実施例に限定されるものではない。
 (実施例1)
 次のとおり実験した。
(1)スピンコーターを用い、基板10の上のバッハー層11上に厚みが均一なUV硬化樹脂のSIPR-3251-6.0(ShinEtsuMicroSi社製)樹脂層12aを形成した。厚みは6μmであった(図3A)。
(2)(1)により形成した樹脂層12aをホットプレート14に載せて、100℃で2分間プリベーク(加熱)処理を行い、樹脂層12aに含まれる溶媒を揮発させ、樹脂層12bとした(図3B)。
(3)(2)で得られた樹脂層12bに対し、ポリカーボネート製、屈折率n=1.59の回折格子15(ピッチ幅:747nm)を上面に設置した。紫外線LED面光源(波長λ=360nm)の光16を垂直方向から40°の角度で1ショット露光し、樹脂層12cにパターンを生成した(図3C)。このとき、前記数式1~3を満たすようにした。
(4)(3)で得られた樹脂層12cをSIPR-3251用現像液(現像液は樹脂購入時に付属)により化学反応させ、SIPR-3251の光硬化閾値を超える光照射を受けた部分を溶解させ、樹脂層12dとした(図3D)。次いで、樹脂層12dをスピンコートにより、現像液で化学反応させ、硬化閾値を超える紫外線(UV)照射を受けた部分18を溶解させ、エネルギー線硬化閾値に満たなかった樹脂部分19を硬化させた。フォトレジスト樹脂層12eは樹脂部19に孔18が形成された状態となった(図3E)。
(5)前記(4)により得られた樹脂19を純水にて洗浄処理することにより溶解部を溶出させ、微細構造体を得た(図3F)。
Hereinafter, the present invention will be described in more detail with reference to Examples. The present invention is not limited to the following examples.
(Example 1)
The experiment was conducted as follows.
(1) Using a spin coater, a uniform thickness UV curable resin SIPR-3251-6.0 (manufactured by ShinEtsu MicroSi) resin layer 12a was formed on the Bacher layer 11 on the substrate 10. The thickness was 6 μm (Fig. 3A).
(2) The resin layer 12a formed in (1) was placed on a hot plate 14 and prebaked (heated) at 100 ° C. for 2 minutes to volatilize the solvent contained in the resin layer 12a to obtain a resin layer 12b (2). FIG. 3B).
(3) A diffraction grating 15 (pitch width: 747 nm) made of polycarbonate and having a refractive index of n = 1.59 was placed on the upper surface of the resin layer 12b obtained in (2). Light 16 of an ultraviolet LED surface light source (wavelength λ = 360 nm) was exposed to one shot at an angle of 40 ° from the vertical direction to generate a pattern on the resin layer 12c (FIG. 3C). At this time, the above formulas 1 to 3 were satisfied.
(4) The resin layer 12c obtained in (3) was chemically reacted with a developer for SIPR-3251 (the developer was attached at the time of purchasing the resin), and the portion subjected to light irradiation exceeding the photocuring threshold of SIPR-3251 was subjected to light irradiation. It was dissolved to form a resin layer 12d (FIG. 3D). Next, the resin layer 12d was chemically reacted with a developing solution by spin coating to dissolve the portion 18 irradiated with ultraviolet rays (UV) exceeding the curing threshold, and cured the resin portion 19 that did not meet the energy ray curing threshold. .. The photoresist resin layer 12e is in a state in which holes 18 are formed in the resin portion 19 (FIG. 3E).
(5) The resin 19 obtained in (4) above was washed with pure water to elute the dissolved portion to obtain a fine structure (FIG. 3F).
 (比較例1)
 紫外線LED面光源(波長λ=360nm)の光16を垂直方向から照射した以外は実施例1と同様に実施した。
 以上の条件と結果を表2にまとめて示す。
(Comparative Example 1)
The same procedure as in Example 1 was carried out except that the light 16 of the ultraviolet LED surface light source (wavelength λ = 360 nm) was irradiated from the vertical direction.
Table 2 summarizes the above conditions and results.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 図4A-Bに示すとおり、実施例1で得られた微細構造体(シート)20は、樹脂部21の内部まで、傾斜を有する連続孔22が周期性をもって造形されていた。
 これに対して比較例1で得られた微細構造体(シート)23は、図5A-Bに示すとおり、樹脂部24の内部に独立気泡状態の孔25が造形されていた。
As shown in FIGS. 4A-B, in the microstructure (sheet) 20 obtained in Example 1, continuous holes 22 having an inclination were formed with periodicity up to the inside of the resin portion 21.
On the other hand, in the microstructure (sheet) 23 obtained in Comparative Example 1, as shown in FIGS. 5A-B, holes 25 in a closed cell state were formed inside the resin portion 24.
 本発明の微細構造体は、樹脂層内部に溝、貫通孔、連続気泡などが形成されており、フィルターを含むフォトニック構造体、バイオミメティクス構造体、機能性部材等に応用可能である。 The microstructure of the present invention has grooves, through holes, open cells, etc. formed inside the resin layer, and can be applied to a photonic structure including a filter, a biomimetics structure, a functional member, and the like.
1,16 紫外線(UV)
2,15 光学フィルター(露光マスク)
3 フォトレジスト樹脂
4,5a,5b 露光部分
6 連続した露光部
10 基板
11 バッハー層
12a-12f フォトレジスト樹脂層
13 フォトレジスト樹脂液
14 ホットプレート
17 露光パターン
18 孔
19 樹脂部
20,23 微細構造体
21,24 樹脂部(シート)
22 傾斜を有する連続孔
25 独立気泡状態の孔
1,16 Ultraviolet rays (UV)
2,15 Optical filter (exposure mask)
3 Photoresist resin 4, 5a, 5b Exposed part 6 Continuous exposure part 10 Substrate 11 Bacher layer 12a-12f Photoresist resin layer 13 Photoresist resin liquid 14 Hot plate 17 Exposure pattern 18 Hole 19 Resin part 20, 23 Microstructure 21,24 Resin part (sheet)
22 Continuous holes with inclination 25 Holes in a closed cell state

Claims (11)

  1.  内部に孔を含む微細構造体であって、
     前記構造体はエネルギー線活性樹脂を含むシートであり、
     少なくとも内部まで、傾斜を有する孔が造形されており、
     前記構造体内部の孔は、タルボット距離が下記(数1)で規定される造形パターンの形状をしており、
     隣り合うタルボット構造との関係式が下記(数2)及び(数3)を満たし、
     平面方向に周期性のある形状を有することを特徴とする微細構造体。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    但し、(数1)~(数3)において、
    T:タルボット距離(nm)
    n:屈折率
    d:ピッチ距離(nm)
    λ:光波長(nm)
    ΔX:照射面から見て1列目の照射スポット部分と、隣り合う3列目の照射スポット部分の水平距離(nm)
    It is a microstructure that contains holes inside.
    The structure is a sheet containing an energy ray active resin, and is
    At least to the inside, a hole with a slope is formed,
    The holes inside the structure have the shape of a modeling pattern in which the Talbot distance is defined by the following (Equation 1).
    The relational expression with the adjacent Talbot structure satisfies the following (Equation 2) and (Equation 3).
    A microstructure characterized by having a shape with periodicity in the plane direction.
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    However, in (Equation 1) to (Equation 3),
    Z T : Talbot distance (nm)
    n: Refractive index d: Pitch distance (nm)
    λ: Light wavelength (nm)
    ΔX: Horizontal distance (nm) between the irradiation spot portion in the first row and the irradiation spot portion in the adjacent third row when viewed from the irradiation surface.
  2.  前記エネルギー線活性樹脂がレジスト用樹脂である請求項1に記載の微細構造体。 The microstructure according to claim 1, wherein the energy ray-active resin is a resin for resist.
  3.  前記エネルギー線活性樹脂がポジ型レジスト用樹脂である請求項1又は2に記載の微細構造体。 The microstructure according to claim 1 or 2, wherein the energy ray-active resin is a resin for a positive resist.
  4.  前記周期性のある形状が、格子ピッチ:波長λ≦格子ピッチdであり、かつピッチデューティ比:0.2~0.7である請求項1~3のいずれかに記載の微細構造体。 The microstructure according to any one of claims 1 to 3, wherein the periodic shape has a lattice pitch: wavelength λ ≤ lattice pitch d and a pitch duty ratio: 0.2 to 0.7.
  5.  前記構造体内部の孔は、表裏面に貫通している請求項1~4のいずれかに記載の微細構造体。 The microstructure according to any one of claims 1 to 4, wherein the hole inside the structure penetrates the front and back surfaces.
  6.  前記構造体内部の孔は、溝及び/又は穴を含む請求項1~5のいずれに記載の微細構造体。 The microstructure according to any one of claims 1 to 5, wherein the hole inside the structure includes a groove and / or a hole.
  7.  前記構造体内部の孔は、独立気泡状態である請求項1~4のいずれかに記載の微細構造体。 The microstructure according to any one of claims 1 to 4, wherein the holes inside the structure are in a closed cell state.
  8.  前記周期性のある形状が、規則性のある形状である請求項1~7のいずれかに記載の微細構造体。 The microstructure according to any one of claims 1 to 7, wherein the periodic shape is a regular shape.
  9.  前記傾斜を有する孔は、垂直方向から15~30°傾斜している請求項1~8のいずれかに記載の微細構造体。 The microstructure according to any one of claims 1 to 8, wherein the inclined hole is inclined by 15 to 30 ° from the vertical direction.
  10.  請求項1~9のいずれかに記載の微細構造体の製造方法であって、
    (1)基板上にエネルギー線活性樹脂を均一厚みに塗工する工程と、
    (2)前記塗工したエネルギー線活性樹脂層をプリベーク(加熱)する工程と、
    (3)前記(2)で得られた樹脂層に対し回折格子を上面に設置し、エネルギー線を斜め方向から照射し、樹脂層にパターンを生成する工程と、
    (4)前記(3)で得られた樹脂層を現像液により化学反応させ、硬化閾値を超えるエネルギー線照射を受けた部分を溶解させ、エネルギー線硬化閾値に満たなかった部分を硬化させる工程、または硬化閾値を超えるエネルギー線照射を受けた部分を硬化させ、エネルギー線硬化閾値に満たなかった部分を溶解させる工程と、
    (5)前記(4)により得られた基板を純水にて洗浄処理することにより溶解部を溶出させ、微細構造体を得る工程
    を含むことを特徴とする微細構造体の製造方法。
    The method for producing a microstructure according to any one of claims 1 to 9.
    (1) A process of applying an energy ray active resin on a substrate to a uniform thickness, and
    (2) A step of prebaking (heating) the coated energy ray active resin layer and
    (3) A step of installing a diffraction grating on the upper surface of the resin layer obtained in (2) above and irradiating energy rays from an oblique direction to generate a pattern on the resin layer.
    (4) A step of chemically reacting the resin layer obtained in (3) above with a developing solution, dissolving a portion that has been irradiated with energy rays exceeding the curing threshold, and curing a portion that does not meet the energy ray curing threshold. Alternatively, a step of curing a portion that has been irradiated with energy rays exceeding the curing threshold value and dissolving a portion that does not meet the energy ray curing threshold value.
    (5) A method for producing a microstructure, which comprises a step of eluting a dissolved portion by washing the substrate obtained in (4) with pure water to obtain a microstructure.
  11.  前記エネルギー線の斜め方向からの照射が、垂直方向から30~50°の傾斜位置である請求項10に記載の微細構造体の製造方法。 The method for manufacturing a fine structure according to claim 10, wherein the irradiation of the energy rays from the oblique direction is at an inclined position of 30 to 50 ° from the vertical direction.
PCT/JP2020/039860 2019-11-08 2020-10-23 Microstructure and method for producing same WO2021090705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021554886A JPWO2021090705A1 (en) 2019-11-08 2020-10-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019203525 2019-11-08
JP2019-203525 2019-11-08

Publications (1)

Publication Number Publication Date
WO2021090705A1 true WO2021090705A1 (en) 2021-05-14

Family

ID=75848356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039860 WO2021090705A1 (en) 2019-11-08 2020-10-23 Microstructure and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2021090705A1 (en)
WO (1) WO2021090705A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523468A (en) * 2003-12-01 2007-08-16 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Method and apparatus for forming a three-dimensional nanoscale structure
US20140226139A1 (en) * 2011-08-23 2014-08-14 University Of Szeged Novel Lithographic Method with the Capability of Spectrum Engineering to Create Complex Microstructures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523468A (en) * 2003-12-01 2007-08-16 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Method and apparatus for forming a three-dimensional nanoscale structure
US20140226139A1 (en) * 2011-08-23 2014-08-14 University Of Szeged Novel Lithographic Method with the Capability of Spectrum Engineering to Create Complex Microstructures

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHAUSSE P. J. P., LE BOULBAR E. D., LIS S. D., SHIELDS P. A.: "Understanding resolution limit of displacement Talbot lithography", OPTICS EXPRESS, vol. 27, no. 5, 4 March 2019 (2019-03-04), pages 5918 - 5930, XP055821378, DOI: https://doi.org/10.1364/0E.27.005918 *
EZAKI RYU ET A.: "Large-area nanofabrication by three dimensional lithography using talbot effect (3rd Report): development of structural transcription method to the polymer membrane", ACADEMIC LECTURE PROCEEDINGS OF THE 2019 JSPE AUTUMN CONFERENCE, 20 August 2019 (2019-08-20), pages 542 - 543 *
NAKANISHI HIROKI ET AL.: "Fabrication of 3D Nano-periodic structure using multiple exposure lithography by Talbot Effect", JOURNAL OF THE JAPAN SOCIETY FOR PRECISION ENGINEERING, vol. 85, no. 8, 5 August 2019 (2019-08-05), pages 710 - 716 *
SOLAK, HARUN H.: "Displacement Talbot lithography: a new method for high- resolution patterning of large areas", OPTICS EXPRESS, vol. 19, no. 11, 23 May 2011 (2011-05-23), pages 10686 - 10691, XP055520818, DOI: 10.1364/OE.19.010686 *

Also Published As

Publication number Publication date
JPWO2021090705A1 (en) 2021-05-14

Similar Documents

Publication Publication Date Title
TWI721221B (en) Fabricating non-uniform diffraction gratings
KR100827741B1 (en) Method and system of automatic fluid dispensing for imprint lithography processes
CN1890603A (en) Methods and devices for fabricating three-dimensional nanoscale structures
Poleshchuk et al. Laser technologies in micro-optics. Part 2. Fabrication of elements with a three-dimensional profile
Liu et al. Novel optical technologies for nanofabrication
KR100717851B1 (en) Microlens Array Sheet using MEMS and Manufacturing Method thereof
WO2021090705A1 (en) Microstructure and method for producing same
Stokes et al. Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications
Ding et al. Fabrication of microarrays on fused silica plates using the laser-induced backside wet etching method
US20220299685A1 (en) Fabrication of blazed diffractive optics by through-mask oxidation
WO2021090706A1 (en) Microstructure and method for manufacturing same
JPH06201907A (en) Production of blaze grating
KR20070095362A (en) Exposure method, method for forming projecting and recessed pattern, and method for manufacturing optical element
US10317799B2 (en) Patterned multi-beam nanoshift lithography for on-the-fly, high throughput production of customizable shape-designed microparticles, nanoparticles, and continuous films
JP6113990B2 (en) Manufacturing method of fine structure
JP6547283B2 (en) Method of manufacturing structure on substrate
US8192922B2 (en) Method of optical fabrication of three-dimensional polymeric structures with out of plane profile control
JP2019206180A (en) Resin mold, method of producing replica mold, and method of producing optical device
JP6146645B2 (en) Hydrophilic control element and manufacturing method thereof
JP3521205B1 (en) Method for producing fine structure and fine structure produced thereby
US10969679B2 (en) System and method for producing an optical mask for surface microtexturing, and surface microtexturing plant and method
US10969678B2 (en) System and method for producing an optical mask for surface treatment, and surface treatment plant and method
KR20230068563A (en) Phase mask and method of manufacturing three-dementional micro-structre
JP6057156B2 (en) Wetting control element and manufacturing method thereof
KR100441881B1 (en) Method for manufacturing mold of micro-structure array for optics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554886

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883726

Country of ref document: EP

Kind code of ref document: A1