WO2021090632A1 - Battery diagnosis device, forklift, charger, battery diagnosis method, and program - Google Patents

Battery diagnosis device, forklift, charger, battery diagnosis method, and program Download PDF

Info

Publication number
WO2021090632A1
WO2021090632A1 PCT/JP2020/038108 JP2020038108W WO2021090632A1 WO 2021090632 A1 WO2021090632 A1 WO 2021090632A1 JP 2020038108 W JP2020038108 W JP 2020038108W WO 2021090632 A1 WO2021090632 A1 WO 2021090632A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
impedance
frequency
diagnostic device
performance
Prior art date
Application number
PCT/JP2020/038108
Other languages
French (fr)
Japanese (ja)
Inventor
小林 克明
敏康 木藪
田島 英彦
小城 育昌
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2021090632A1 publication Critical patent/WO2021090632A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Definitions

  • the battery performance determines the performance (driving time, etc.) of the device. Since the capacity of a battery (lead battery) decreases due to deterioration as the battery is operated, it is important to diagnose the deterioration status of the battery. Generally, as a performance evaluation of a battery (lead battery), the deterioration status can be evaluated by measuring the battery capacity of the battery, but when measuring the battery capacity by actual charging / discharging, it takes a long time of about 5 to 10 hours. .. Therefore, in the maintenance of equipment, a method of quickly diagnosing the performance of the battery by evaluating the internal resistance of the battery is adopted.
  • Patent Document 1 discloses that the internal resistance of a battery is estimated by using an equivalent circuit composed of a parallel circuit of a charge transfer resistance value and an electric double layer capacitance value and a series circuit of an electrolyte resistance value. ..
  • the conduction / contact resistance (ohmic resistance component; measured in the high frequency range of 100 Hz or higher) of the terminal portion is measured. It is affected by the variation of). Although a certain correlation is observed between the battery capacity and the impedance, the conduction / contact resistance of the terminal portion does not necessarily have a correlation with the capacity, and thus there is a problem in the accuracy of diagnosis in this respect.
  • An object of the present disclosure is to provide a battery diagnostic device, a forklift, a charger, a battery diagnostic method and a program capable of diagnosing battery performance with high accuracy.
  • the battery diagnostic apparatus has a first impedance acquisition unit that acquires impedance at the first frequency of the battery to be diagnosed, and a second impedance acquisition unit that acquires impedance at the second frequency of the battery. It includes an impedance acquisition unit and a battery capacity calculation unit that calculates the battery capacity or the degree of deterioration of the battery based on the difference value between the impedance at the first frequency and the impedance at the second frequency.
  • the battery performance can be diagnosed with high accuracy.
  • FIG. It is a figure which shows the difference of impedance at each frequency shown in FIG. It is a figure which shows the processing flow executed by the CPU which concerns on 1st Embodiment. It is a figure which shows the example of the battery capacity table which concerns on 1st Embodiment. It is a figure which shows the structure of the battery diagnostic apparatus which concerns on 2nd Embodiment. It is a figure which shows the functional structure of the CPU which concerns on 2nd Embodiment. It is a figure which shows the example of the temperature compensation table which concerns on 2nd Embodiment. It is a figure which shows the outline of the battery diagnostic apparatus which concerns on other embodiment.
  • FIG. 1 is a diagram showing an outline of the battery diagnostic apparatus according to the first embodiment.
  • the forklift F shown in FIG. 1 is a forklift equipped with a battery B, which is a lead storage battery, and uses the battery B as a power source.
  • the forklift F according to the present embodiment includes a battery diagnostic device 1 for diagnosing the performance of the battery B.
  • the battery diagnostic device 1 transmits the diagnosis result to the server device S installed at a remote location, for example, by wireless communication.
  • the server device S accumulates the diagnosis results of the battery performance of the plurality of forklifts F (battery diagnostic device 1). According to this server device S, the battery performance of the plurality of forklifts F is centrally managed.
  • FIG. 2 is a diagram showing a configuration of a battery diagnostic device according to the first embodiment.
  • the battery diagnostic device 1 includes a CPU 10, a power supply circuit 11, oscillation circuits 12A and 12B, a selector 13, an impedance measurement circuit 14, a memory 15, and a transceiver 16.
  • the CPU 10 is a processor that controls the operation of the entire battery diagnostic device 1. The function of the CPU 10 will be described later.
  • the power supply circuit 11 is a circuit that receives power supply from the power supply (battery B) and supplies power (power supply voltage) to each configuration of the battery diagnostic device 1. In FIG. 13, the connection line related to the power supply is shown by a thick line.
  • the oscillation circuits 12A and 12B are circuits capable of outputting signals (AC voltage) having a defined frequency, respectively.
  • the oscillation circuit 12A is a transmission circuit that outputs a 0.1 Hz signal
  • the oscillation circuit 12B is a transmission circuit that outputs a 10 Hz signal.
  • the selector 13 is a circuit that selects and outputs either the output signal of the oscillation circuit 12A or the output signal of the oscillation circuit 12B based on the control signal from the CPU 10.
  • the impedance measurement circuit 14 is a circuit that detects the voltage between terminals of an object (battery B) generated based on the output signal of the oscillation circuit 12A or 12B. The impedance [ ⁇ ] of the object is measured by comparing the output signal of the transmission circuit 12A or 12B and the voltage between terminals detected by the impedance measurement circuit 14 in amplitude and phase.
  • the memory 15 is a storage area required for the operation of the CPU 10. In the present embodiment, the battery capacity table T1 prepared in advance is recorded in the memory 15. The battery capacity table T1 will be described later.
  • the transceiver 16 is a circuit that transmits the diagnosis result of the performance of the battery B by the CPU 10 to the external server device S.
  • FIG. 3 is a diagram showing a functional configuration of a CPU according to the first embodiment.
  • the CPU 10 exerts functions as a first impedance acquisition unit 100, a second impedance acquisition unit 101, and a performance diagnosis unit 102 by operating according to a program prepared in advance.
  • the first impedance acquisition unit 100 acquires the impedance at the first frequency (0.1 Hz) of the battery B to be diagnosed.
  • the second impedance acquisition unit 101 acquires the impedance at the second frequency (10 Hz) of the battery B to be diagnosed.
  • the performance diagnosis unit 102 calculates a difference value between the impedance at the first frequency and the impedance at the second frequency (also referred to as “impedance difference value” in the following description).
  • the performance diagnosis unit 102 measures the battery capacity of the battery B based on this impedance difference value.
  • FIG. 4 is a diagram showing an equivalent circuit of the battery according to the first embodiment.
  • FIG. 5 is a diagram showing impedance frequency characteristics of the battery according to the first embodiment.
  • the equivalent circuit of the battery is represented as shown in FIG.
  • “Vocv” is the electromotive force (open end voltage) of the battery.
  • “R0” is a resistance value based on the resistance of the terminal itself, the contact resistance, and the conductivity of the electrolytic solution (hereinafter, also referred to as “resistance value such as contact resistance”).
  • “L” is an inductance component caused by the length and diameter of the battery terminals.
  • R1”, “R2”, ..., “RN” are reaction resistance values at the electrode / electrolyte interface.
  • C1”, “C2”, ..., “CN” are electric double layer capacitance values (hereinafter, also simply referred to as “capacity values”) based on the amount of ions adsorbed on the electrode surface.
  • the reaction resistance values R1, R2, ... Each form a parallel circuit (hereinafter, also referred to as "R / C parallel circuit") with the capacitance values C1, C2, ....
  • R / C parallel circuit, resistance value R0 such as contact resistance, and inductance component L are in a series connection relationship.
  • the parameters having a high correlation with the battery performance (battery capacity) are the reaction resistance values R1, R2, ..., RN.
  • the target battery (lead battery) is a clad type lead battery for an electric vehicle having a nominal capacity of 280 Ah.
  • f2 10 Hz
  • the impedance of some of the capacitance values C1, C2, ..., CN is reduced to the extent that it can be regarded as a conductor.
  • the inductance component L becomes dominant and the impedance rises as the frequency increases, so the performance of the battery cannot be evaluated.
  • FIG. 8 is a diagram showing a processing flow executed by the CPU according to the first embodiment.
  • FIG. 9 is a diagram showing an example of a battery capacity table according to the first embodiment.
  • the processing flow of the battery diagnostic apparatus according to the first embodiment will be described in detail with reference to FIGS. 8 to 9 in addition to FIG.
  • the performance diagnosis unit 102 calculates the battery capacity of the battery B based on the impedance difference value Zd calculated in step S03 (step S04). Specifically, the performance diagnosis unit 102 refers to the battery capacity table T1 as shown in FIG. 9 and specifies the battery capacity corresponding to the impedance difference value Zd. It is assumed that the relationship between the impedance difference value Zd and the battery capacity as shown in the battery capacity table T1 is prepared in advance by measurement or simulation performed in advance. Further, in another embodiment, the relationship between the impedance difference value Zd and the battery capacity may be defined by an approximate expression instead of the mode of the information table.
  • graph a shows the frequency characteristics of impedance in the initial state of the battery B
  • graph b shows the frequency characteristics of impedance in the state after using the battery B for a predetermined period of time.
  • the impedance difference value Zd which is the difference value between the impedance Z (f1) at the frequency f1 (for example, 0.1 Hz) and the impedance Z (f2) at the frequency f2 (for example, 10 Hz), is compared. It is said.
  • the impedance difference value Zd does not include an element having a resistance value R0 such as a contact resistance, and is composed of an element (R1 + R2 + ... + RK) having a high correlation with the performance of the battery B. Therefore, by comparing the impedance difference value Zd (a) in the initial stage with the impedance difference value Zd (b) after use for a predetermined period, it is possible to accurately evaluate the change (deterioration) in the performance of the battery B.
  • the battery performance can be diagnosed with high accuracy.
  • the first frequency f1 and the second frequency f2 are at least frequencies lower than the frequency band in which the inductance component L of the battery B is dominant (see FIG. 5).
  • the impedance is measured in a frequency band that is not affected by the inductance component L, so that elements (R1 + R2 + ... + RK) that have a high correlation with the performance of the battery B can be extracted more accurately. ..
  • FIG. 10 is a diagram showing a configuration of a battery diagnostic device according to a second embodiment.
  • the battery diagnostic device 1 further has a temperature sensor TS in addition to the configuration of the first embodiment.
  • the temperature sensor TS may be, for example, a K-type or T-type thermocouple, a thermistor, a contact-type temperature sensor such as a platinum resistance thermometer, a non-contact temperature sensor using infrared rays, or the like.
  • the temperature sensor TS is arranged in the vicinity of the battery B so that the temperature of the battery B can be acquired.
  • the temperature detection signal from the temperature sensor TS is input to the CPU 10.
  • temperature compensation table T2 is further recorded in the memory 15 according to the second embodiment. A specific embodiment of the temperature compensation table T2 will be described later.
  • FIG. 11 is a diagram showing a functional configuration of the CPU according to the second embodiment. As shown in FIG. 11, the CPU 10 of the battery diagnostic device 1 according to the second embodiment further includes a temperature compensation unit 103 in addition to the configuration of the first embodiment.
  • the temperature compensation unit 103 has an impedance Z (f1) at the first frequency f1 and a second temperature based on the temperature of the battery B to be diagnosed (the temperature acquired based on the temperature detection signal of the temperature sensor TS).
  • the impedance Z (f2) at the frequency f2 is compensated.
  • FIG. 12 is a diagram showing an example of a temperature compensation table according to the second embodiment.
  • the process of the temperature compensation unit 103 of the CPU 10 will be described in detail with reference to FIG.
  • the temperature compensation table T2 shown in FIG. 12 shows the difference value between the temperature of the battery B, the impedance at the reference temperature (for example, 25 ° C.) and the impedance actually measured (hereinafter, also referred to as the impedance difference value for each temperature). It is a figure which shows the relationship of. Since the relationship between the temperature of the battery B and the impedance difference value for each temperature differs for each frequency, it is defined for each frequency (f1, f2) to be measured.
  • the temperature compensation unit 103 When the temperature compensation unit 103 acquires the temperature of the battery B through the temperature sensor TS, the temperature compensation unit 103 refers to the temperature compensation table T2 and specifies the impedance difference value for each temperature corresponding to the temperature of the battery B. Then, the temperature compensation unit 103 adds or subtracts the temperature-specific impedance difference value from the actually measured impedance (measured impedance). By doing so, the measured impedance is converted into the impedance (compensation impedance) at the reference temperature (for example, 25 ° C.).
  • the compensation impedance is acquired by calculating the equation (1) using the compensation count K (parameter corresponding to the slope of the graph shown in FIG. 12) defined in advance for each frequency. It may be a thing.
  • Zs is the compensation impedance
  • Zm is the measurement impedance
  • Tm is the temperature of the battery B
  • Ts is the reference temperature
  • the battery diagnostic device 1 according to the first and second embodiments has been described in detail above, but the specific embodiment of the battery diagnostic device 1 is not limited to the above and does not deviate from the gist. It is possible to make various design changes within.
  • the battery diagnostic device 1 has been described in the embodiment provided in the forklift F, but the other embodiments are not limited to this.
  • the battery diagnostic device 1 may be provided in the charger E, which is the charging stand of the forklift F.
  • the battery diagnostic device 1 diagnoses the performance of the battery B via the connection cable of the charger E. By doing so, the environment of the battery B at the time of performance diagnosis can be fixed, so that the influence of environment-dependent disturbance can be suppressed.
  • the battery diagnostic device 1 may further have a function of controlling the timing of performing the performance diagnosis of the battery B.
  • the battery diagnostic device 1 may perform performance diagnosis at a timing when the battery B is not charging / discharging in the forklift F.
  • the performance diagnosis may be performed at a timing after a predetermined time has elapsed from the completion of charging. By doing so, the influence of disturbance in the performance diagnosis can be further suppressed.
  • the battery diagnostic device 1 has been described as having the battery B mounted on the forklift F as a diagnostic target, but the other embodiments are not limited to this mode. That is, in another embodiment, the battery diagnostic device 1 may target a battery mounted on a moving body (for example, a general electric vehicle, a hybrid car, etc.) other than a forklift. A battery that is fixedly installed (not mounted on a moving body) may be the target of diagnosis.
  • a moving body for example, a general electric vehicle, a hybrid car, etc.
  • a battery that is fixedly installed may be the target of diagnosis.
  • the processes of various processes of the diagnostic apparatus 1 are stored in a computer-readable recording medium in the form of a program, and the various processes are performed by the computer reading and executing this program.
  • the computer-readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • this computer program may be distributed to a computer via a communication line, and the computer receiving the distribution may execute the program.
  • the above program may be for realizing a part of the above-mentioned functions. Further, it may be a so-called difference file (difference program) that can realize the above-mentioned function in combination with a program already recorded in the computer system.
  • difference file difference program
  • the battery diagnostic apparatus 1 includes a first impedance acquisition unit 100 that acquires an impedance Z (f1) at a first frequency f1 of the battery B to be diagnosed, and a second battery B.
  • the battery is based on the difference value Zd between the second impedance acquisition unit 101 that acquires the impedance Z (f2) at the frequency f2 and the impedance Z (f1) at the first frequency and the impedance Z (f2) at the second frequency.
  • a performance diagnosis unit 102 for diagnosing the performance of B is provided.
  • the performance diagnostic unit 102 diagnoses the performance of the battery based on the relationship that the battery capacity of the battery decreases as the impedance difference value increases.
  • the first frequency and the second frequency are at least frequencies lower than the frequency band in which the inductance component of the battery B is dominant.
  • the battery diagnostic device 1 further includes a temperature compensating unit 103 that compensates for the impedance at the first frequency and the impedance at the second frequency based on the temperature of the battery B.
  • the forklift F according to the fifth aspect includes the diagnostic device 1 according to any one of the above (1) to (4) and the battery B.
  • the charger according to the sixth aspect includes the diagnostic device 1 according to any one of (1) to (4) above.
  • the battery diagnosis method includes a step of acquiring the impedance Z (f1) at the first frequency f1 of the battery B to be diagnosed and the impedance Z (f1) at the second frequency f2 of the battery B. It has a step of acquiring f2) and a step of diagnosing the performance of the battery B based on the difference value Zd between the impedance Z (f1) at the first frequency and the impedance Z (f2) at the second frequency. ..
  • the program according to the eighth aspect includes a step of acquiring the impedance Z (f1) at the first frequency f1 of the battery B to be diagnosed by the computer of the battery diagnostic device 1, and a second step of the battery B.
  • the performance of the battery B is diagnosed based on the step of acquiring the impedance Z (f2) at the frequency f2 and the difference value Zd between the impedance Z (f1) at the first frequency and the impedance Z (f2) at the second frequency. Steps to do and to execute.
  • the battery performance can be diagnosed with high accuracy.

Abstract

This battery diagnosis device is provided with: a first impedance acquisition unit that acquires the impedance of a battery to be diagnosed at a first frequency; a second impedance acquisition unit that acquires the impedance of the battery at a second frequency; and a performance diagnosis unit that diagnoses the performance of the battery on the basis of a difference value between the impedance at the first frequency and the impedance at the second frequency.

Description

バッテリー診断装置、フォークリフト、充電器、バッテリー診断方法およびプログラムBattery diagnostic equipment, forklifts, chargers, battery diagnostic methods and programs
 本開示は、バッテリー診断装置、フォークリフト、充電器、バッテリー診断方法およびプログラムに関する。本願は、2019年11月6日に、日本に出願された特願2019-201607号に基づき優先権を主張し、その内容をここに援用する。 This disclosure relates to battery diagnostic devices, forklifts, chargers, battery diagnostic methods and programs. The present application claims priority based on Japanese Patent Application No. 2019-201607 filed in Japan on November 6, 2019, the contents of which are incorporated herein by reference.
 フォークリフト等のバッテリー(鉛電池等)を使用する機器は、電池性能が機器の性能(駆動時間等)を決定する。バッテリー(鉛電池)の容量はバッテリーを運用していくと劣化により減少するため、バッテリーの劣化状況を診断することは重要である。
 一般にバッテリー(鉛電池)の性能評価としては、電池の電池容量を計測することで劣化状況を評価できるが、実際の充放電により電池容量を計測する場合、5~10時間程度の長時間を要する。
 このため、機器のメンテナンスにおいては、電池の内部抵抗を評価することで迅速に電池の性能を診断する手法がとられており、例えば、以下のような市販ツールがある。
(1)比較的高い周波数(1kHz)の交流インピーダンスを計測するもの
(2)比較的低い周波数(25Hz)の交流インピーダンスを計測するもの
(3)直流電流の短時間放電により内部抵抗を計測するもの
For devices that use batteries (lead batteries, etc.) such as forklifts, the battery performance determines the performance (driving time, etc.) of the device. Since the capacity of a battery (lead battery) decreases due to deterioration as the battery is operated, it is important to diagnose the deterioration status of the battery.
Generally, as a performance evaluation of a battery (lead battery), the deterioration status can be evaluated by measuring the battery capacity of the battery, but when measuring the battery capacity by actual charging / discharging, it takes a long time of about 5 to 10 hours. ..
Therefore, in the maintenance of equipment, a method of quickly diagnosing the performance of the battery by evaluating the internal resistance of the battery is adopted. For example, there are the following commercially available tools.
(1) Measuring AC impedance at a relatively high frequency (1 kHz) (2) Measuring AC impedance at a relatively low frequency (25 Hz) (3) Measuring internal resistance by short-time discharge of DC current
 特許文献1には、電荷移動抵抗値と電気二重層容量値との並列回路と、電解液抵抗値との直列回路で構成した等価回路を用いてバッテリーの内部抵抗を見積もることが開示されている。 Patent Document 1 discloses that the internal resistance of a battery is estimated by using an equivalent circuit composed of a parallel circuit of a charge transfer resistance value and an electric double layer capacitance value and a series circuit of an electrolyte resistance value. ..
特許第4477185号公報Japanese Patent No. 4477185
 上記(1)~(3)は、いずれも特定の単一周波数(もしくは直流のみ)の計測値を用いるため、端子部の導通/接触抵抗(オーミックな抵抗成分;100Hz以上の高周波域で計測される)のばらつきの影響を受けてしまう。電池容量とインピーダンスに一定の相関性は認められるものの、端子部の導通/接触抵抗は必ずしも容量に相関性がある訳ではないため、この点で診断の精度に課題がある。 Since all of the above (1) to (3) use the measured values of a specific single frequency (or direct current only), the conduction / contact resistance (ohmic resistance component; measured in the high frequency range of 100 Hz or higher) of the terminal portion is measured. It is affected by the variation of). Although a certain correlation is observed between the battery capacity and the impedance, the conduction / contact resistance of the terminal portion does not necessarily have a correlation with the capacity, and thus there is a problem in the accuracy of diagnosis in this respect.
 本開示の目的は、電池性能を高精度に診断可能となるバッテリー診断装置、フォークリフト、充電器、バッテリー診断方法およびプログラムを提供することにある。 An object of the present disclosure is to provide a battery diagnostic device, a forklift, a charger, a battery diagnostic method and a program capable of diagnosing battery performance with high accuracy.
 本開示の一態様によれば、バッテリー診断装置は、診断対象とするバッテリーの第1の周波数におけるインピーダンスを取得する第1インピーダンス取得部と、前記バッテリーの第2の周波数におけるインピーダンスを取得する第2インピーダンス取得部と、前記第1の周波数におけるインピーダンスと前記第2の周波数におけるインピーダンスとの差分値に基づいて、前記バッテリーの電池容量または劣化度を算出する電池容量演算部と、を備える。 According to one aspect of the present disclosure, the battery diagnostic apparatus has a first impedance acquisition unit that acquires impedance at the first frequency of the battery to be diagnosed, and a second impedance acquisition unit that acquires impedance at the second frequency of the battery. It includes an impedance acquisition unit and a battery capacity calculation unit that calculates the battery capacity or the degree of deterioration of the battery based on the difference value between the impedance at the first frequency and the impedance at the second frequency.
 上述の各態様によれば、電池性能を高精度に診断できる。 According to each of the above aspects, the battery performance can be diagnosed with high accuracy.
第1の実施形態に係るバッテリー診断装置の概要を示す図である。It is a figure which shows the outline of the battery diagnostic apparatus which concerns on 1st Embodiment. 第1の実施形態に係るバッテリー診断装置の構成を示す図である。It is a figure which shows the structure of the battery diagnostic apparatus which concerns on 1st Embodiment. 第1の実施形態に係るCPUの機能構成を示す図である。It is a figure which shows the functional structure of the CPU which concerns on 1st Embodiment. 第1の実施形態に係るバッテリーの等価回路を示す図である。It is a figure which shows the equivalent circuit of the battery which concerns on 1st Embodiment. 第1の実施形態に係るバッテリーのインピーダンス周波数特性を示す図である。It is a figure which shows the impedance frequency characteristic of the battery which concerns on 1st Embodiment. 各周波数でのインピーダンス測定値と電池容量の関係の事例を示す図である。It is a figure which shows the example of the relationship between the impedance measurement value at each frequency, and the battery capacity. 図6に掲載した各周波数でのインピーダンスの差分を示す図である。It is a figure which shows the difference of impedance at each frequency shown in FIG. 図6に掲載した各周波数でのインピーダンスの差分を示す図である。It is a figure which shows the difference of impedance at each frequency shown in FIG. 第1の実施形態に係るCPUが実行する処理フローを示す図である。It is a figure which shows the processing flow executed by the CPU which concerns on 1st Embodiment. 第1の実施形態に係る電池容量テーブルの例を示す図である。It is a figure which shows the example of the battery capacity table which concerns on 1st Embodiment. 第2の実施形態に係るバッテリー診断装置の構成を示す図である。It is a figure which shows the structure of the battery diagnostic apparatus which concerns on 2nd Embodiment. 第2の実施形態に係るCPUの機能構成を示す図である。It is a figure which shows the functional structure of the CPU which concerns on 2nd Embodiment. 第2の実施形態に係る温度補償テーブルの例を示す図である。It is a figure which shows the example of the temperature compensation table which concerns on 2nd Embodiment. 他の実施形態に係るバッテリー診断装置の概要を示す図である。It is a figure which shows the outline of the battery diagnostic apparatus which concerns on other embodiment.
<第1の実施形態>
 以下、第1の実施形態に係るバッテリー診断装置およびこれを備えるフォークリフトについて、図1~図9を参照しながら説明する。
<First Embodiment>
Hereinafter, the battery diagnostic device according to the first embodiment and the forklift provided with the battery diagnostic device will be described with reference to FIGS. 1 to 9.
(バッテリー診断装置の概要)
 図1は、第1の実施形態に係るバッテリー診断装置の概要を示す図である。
 図1に示すフォークリフトFは、鉛蓄電池であるバッテリーBを搭載し、これを動力源とするフォークリフトである。本実施形態に係るフォークリフトFは、バッテリーBの性能を診断するバッテリー診断装置1を具備する。後述するように、バッテリー診断装置1は、例えば無線通信により、診断結果を遠隔地に設置されたサーバ装置Sに送信する。 サーバ装置Sは、複数のフォークリフトF(バッテリー診断装置1)に関するバッテリーの性能の診断結果を蓄積する。このサーバ装置Sによれば、複数のフォークリフトFのバッテリー性能が一元管理される。
 なお、本実施形態において、「バッテリーの性能を診断する」とは、当該バッテリーの電池容量を計測するものとして説明する。しかし、他の実施形態ではこれに限られず、例えば、現在の電池容量の、初期の電池容量に対する割合(劣化度)を計測するものであってもよい。
(Overview of battery diagnostic device)
FIG. 1 is a diagram showing an outline of the battery diagnostic apparatus according to the first embodiment.
The forklift F shown in FIG. 1 is a forklift equipped with a battery B, which is a lead storage battery, and uses the battery B as a power source. The forklift F according to the present embodiment includes a battery diagnostic device 1 for diagnosing the performance of the battery B. As will be described later, the battery diagnostic device 1 transmits the diagnosis result to the server device S installed at a remote location, for example, by wireless communication. The server device S accumulates the diagnosis results of the battery performance of the plurality of forklifts F (battery diagnostic device 1). According to this server device S, the battery performance of the plurality of forklifts F is centrally managed.
In the present embodiment, "diagnosing the performance of the battery" will be described as measuring the battery capacity of the battery. However, in other embodiments, the present invention is not limited to this, and for example, the ratio (deterioration degree) of the current battery capacity to the initial battery capacity may be measured.
(バッテリー診断装置の構成)
 図2は、第1の実施形態に係るバッテリー診断装置の構成を示す図である。
 図2に示すように、バッテリー診断装置1は、CPU10と、電源回路11と、発振回路12A、12Bと、セレクタ13と、インピーダンス計測回路14と、メモリ15と、トランシーバ16とを備える。
(Battery diagnostic device configuration)
FIG. 2 is a diagram showing a configuration of a battery diagnostic device according to the first embodiment.
As shown in FIG. 2, the battery diagnostic device 1 includes a CPU 10, a power supply circuit 11, oscillation circuits 12A and 12B, a selector 13, an impedance measurement circuit 14, a memory 15, and a transceiver 16.
 CPU10は、バッテリー診断装置1全体の動作を制御するプロセッサである。CPU10の機能については後述する。
 電源回路11は、電源(バッテリーB)から電力供給を受け付けるとともに、バッテリー診断装置1の各構成に電力(電源電圧)を供給する回路である。なお、図13では、電源供給に係る接続線を太線で示している。
 発振回路12A、12Bは、それぞれ規定された周波数の信号(交流電圧)を出力可能とする回路である。本実施形態では、発振回路12Aは0.1Hzの信号を出力する発信回路であり、発振回路12Bは10Hzの信号を出力する発信回路である。
 セレクタ13は、CPU10からの制御信号に基づき、発振回路12Aの出力信号と発振回路12Bの出力信号とのいずれか一方を選択して出力する回路である。
 インピーダンス計測回路14は、発振回路12A又は12Bの出力信号に基づいて発生した、対象物(バッテリーB)の端子間電圧を検出する回路である。発信回路12A又は12Bの出力信号と、インピーダンス計測回路14が検出した端子間電圧との、振幅および位相における対比により対象物のインピーダンス[Ω]が計測される。
 メモリ15は、CPU10の動作に必要な記憶領域である。本実施形態において、メモリ15には、予め用意された電池容量テーブルT1が記録されている。電池容量テーブルT1については後述する。
 トランシーバ16は、CPU10によるバッテリーBの性能の診断結果を外部のサーバ装置Sに送信する回路である。
The CPU 10 is a processor that controls the operation of the entire battery diagnostic device 1. The function of the CPU 10 will be described later.
The power supply circuit 11 is a circuit that receives power supply from the power supply (battery B) and supplies power (power supply voltage) to each configuration of the battery diagnostic device 1. In FIG. 13, the connection line related to the power supply is shown by a thick line.
The oscillation circuits 12A and 12B are circuits capable of outputting signals (AC voltage) having a defined frequency, respectively. In the present embodiment, the oscillation circuit 12A is a transmission circuit that outputs a 0.1 Hz signal, and the oscillation circuit 12B is a transmission circuit that outputs a 10 Hz signal.
The selector 13 is a circuit that selects and outputs either the output signal of the oscillation circuit 12A or the output signal of the oscillation circuit 12B based on the control signal from the CPU 10.
The impedance measurement circuit 14 is a circuit that detects the voltage between terminals of an object (battery B) generated based on the output signal of the oscillation circuit 12A or 12B. The impedance [Ω] of the object is measured by comparing the output signal of the transmission circuit 12A or 12B and the voltage between terminals detected by the impedance measurement circuit 14 in amplitude and phase.
The memory 15 is a storage area required for the operation of the CPU 10. In the present embodiment, the battery capacity table T1 prepared in advance is recorded in the memory 15. The battery capacity table T1 will be described later.
The transceiver 16 is a circuit that transmits the diagnosis result of the performance of the battery B by the CPU 10 to the external server device S.
(CPUの機能構成)
 図3は、第1の実施形態に係るCPUの機能構成を示す図である。
 本実施形態に係るCPU10は、予め用意されたプログラムに従って動作することで、第1インピーダンス取得部100と、第2インピーダンス取得部101と、性能診断部102としての機能を発揮する。
 第1インピーダンス取得部100は、診断対象とするバッテリーBの第1の周波数(0.1Hz)におけるインピーダンスを取得する。
 第2インピーダンス取得部101は、診断対象とするバッテリーBの第2の周波数(10Hz)におけるインピーダンスを取得する。
 性能診断部102は、第1の周波数におけるインピーダンスと第2の周波数におけるインピーダンスとの差分値(以下の説明において、「インピーダンス差分値」とも表記する。)を算出する。性能診断部102は、このインピーダンス差分値に基づいて、バッテリーBの電池容量を計測する。
(CPU function configuration)
FIG. 3 is a diagram showing a functional configuration of a CPU according to the first embodiment.
The CPU 10 according to the present embodiment exerts functions as a first impedance acquisition unit 100, a second impedance acquisition unit 101, and a performance diagnosis unit 102 by operating according to a program prepared in advance.
The first impedance acquisition unit 100 acquires the impedance at the first frequency (0.1 Hz) of the battery B to be diagnosed.
The second impedance acquisition unit 101 acquires the impedance at the second frequency (10 Hz) of the battery B to be diagnosed.
The performance diagnosis unit 102 calculates a difference value between the impedance at the first frequency and the impedance at the second frequency (also referred to as “impedance difference value” in the following description). The performance diagnosis unit 102 measures the battery capacity of the battery B based on this impedance difference value.
(バッテリーの等価回路)
 図4は、第1の実施形態に係るバッテリーの等価回路を示す図である。
 図5は、第1の実施形態に係るバッテリーのインピーダンス周波数特性を示す図である。
 バッテリーの等価回路は図4のような形で表される。ここで、「Vocv」は、電池の起電力(開放端電圧)である。「R0」は、端子そのものの抵抗、接触抵抗、電解液の導電率に基づく抵抗値(以下、「接触抵抗等の抵抗値」とも記載する。)である。「L」は、バッテリーの端子の長さや径に起因するインダクタンス成分である。「R1」、「R2」、・・、「RN」は、電極/電解液界面の反応抵抗値である。「C1」、「C2」、・・、「CN」は、電極表面へのイオン吸着量に基づく電気二重層容量値(以下、単に「容量値」とも表記する。)である。
 反応抵抗値R1、R2、・・は、それぞれ、容量値C1、C2、・・と並列回路(以下、「R/C並列回路」とも表記する。)をなす。各R/C並列回路、接触抵抗等の抵抗値R0およびインダクタンス成分Lは、直列接続の関係にある。
 上記の各パラメータのうち、バッテリーの性能(電池容量)との相関性が高いパラメータは、反応抵抗値R1、R2、・・、RNである。本発明者らは、種々の劣化状態のバッテリー(鉛電池)の電池容量とインピーダンス測定の関係を検討した結果、これらの反応抵抗値が電池容量と有為な相関性があり、更に適切な周波数2点のインピーダンス値の差分値(以下、「差分インピーダンス」とも記載する。)が強い相関性を示すことを見出した。本発明者が実際に求めた各周波数でのインピーダンス測定値と電池容量の関係の事例を図6に示す。また、図6に掲載した各周波数でのインピーダンスの差分を図7A、図7Bに示す。対象としたバッテリー(鉛電池)は公称容量280Ahの電気車用クラッド型鉛電池である。図7Aで示す差分インピーダンスにおいては、電池容量との関係がほぼ全電池容量域に渡って負の相関性が得られている(差分インピーダンスが大きいほどバッテリーの電池容量が小さくなる)ことがわかる。両者の関係を指数近似式(y=A×expBX)で近似したところ相関係数は概ね0.93以上の高い相関性を示すことを確認している(図7B参照)。なお、図7A、図7Bにおいて、例えば、“Z0.1Hz-Z1Hz”なる凡例は、周波数0.1Hzのインピーダンスと周波数1Hzのインピーダンスとの差分値を示している。
 他方、接触抵抗等の抵抗値R0は、バッテリーの性能との相関性が低いパラメータであるが、電池の使用環境などによって容易に変動しやすく、インピーダンス計測の誤差を生じさせる原因となる。
(Battery equivalent circuit)
FIG. 4 is a diagram showing an equivalent circuit of the battery according to the first embodiment.
FIG. 5 is a diagram showing impedance frequency characteristics of the battery according to the first embodiment.
The equivalent circuit of the battery is represented as shown in FIG. Here, "Vocv" is the electromotive force (open end voltage) of the battery. “R0” is a resistance value based on the resistance of the terminal itself, the contact resistance, and the conductivity of the electrolytic solution (hereinafter, also referred to as “resistance value such as contact resistance”). “L” is an inductance component caused by the length and diameter of the battery terminals. “R1”, “R2”, ..., “RN” are reaction resistance values at the electrode / electrolyte interface. “C1”, “C2”, ..., “CN” are electric double layer capacitance values (hereinafter, also simply referred to as “capacity values”) based on the amount of ions adsorbed on the electrode surface.
The reaction resistance values R1, R2, ... Each form a parallel circuit (hereinafter, also referred to as "R / C parallel circuit") with the capacitance values C1, C2, .... Each R / C parallel circuit, resistance value R0 such as contact resistance, and inductance component L are in a series connection relationship.
Among the above parameters, the parameters having a high correlation with the battery performance (battery capacity) are the reaction resistance values R1, R2, ..., RN. As a result of examining the relationship between the battery capacity of various deteriorated batteries (lead batteries) and impedance measurement, the present inventors have a significant correlation between these reaction resistance values and the battery capacity, and a more appropriate frequency. It was found that the difference value between the two impedance values (hereinafter, also referred to as “difference impedance”) shows a strong correlation. FIG. 6 shows an example of the relationship between the measured impedance value at each frequency and the battery capacity actually obtained by the present inventor. Further, the difference in impedance at each frequency shown in FIG. 6 is shown in FIGS. 7A and 7B. The target battery (lead battery) is a clad type lead battery for an electric vehicle having a nominal capacity of 280 Ah. In the differential impedance shown in FIG. 7A, it can be seen that the relationship with the battery capacity has a negative correlation over almost the entire battery capacity range (the larger the differential impedance, the smaller the battery capacity of the battery). When the relationship between the two was approximated by an exponential approximation formula (y = A × expBX), it was confirmed that the correlation coefficient showed a high correlation of about 0.93 or more (see FIG. 7B). In FIGS. 7A and 7B, for example, the legend "Z0.1Hz-Z1Hz" indicates the difference value between the impedance of the frequency 0.1Hz and the impedance of the frequency 1Hz.
On the other hand, the resistance value R0 such as contact resistance is a parameter having a low correlation with the performance of the battery, but it easily fluctuates depending on the usage environment of the battery and causes an error in impedance measurement.
 以上のような等価回路に基づけば、バッテリーのインピーダンス周波数特性は、図5のように模式化して示すことができる。
 即ち、低い周波数(例えば、f1=0.1Hz)においては、容量値C1、C2、・・、CNはいずれも極めてインピーダンスが高いため、バッテリーのインピーダンスは、直列に接続された全ての抵抗値の総和RA(RA=R0+R1+R2+・・+RN)となる。
 一方、高い周波数(例えば、f2=10Hz)においては、容量値C1、C2、・・、CNのうちのいくつかのインピーダンスが導体とみなせる程度に低減される。導体とみなせる容量値CとR/C並列回路をなす抵抗値Rは、バッテリーのインピーダンスに寄与しない。したがって、周波数f2におけるバッテリーのインピーダンスRPは、RP=R0+R1+・・+RK(K<N)と表すことができる。
 また、更に高い周波数においては、容量値C1、C2、・・、CNの全てを導体とみなせるようになる。そうすると、バッテリーのインピーダンスは、接触抵抗等の抵抗値R0のみとなり、最小値をとる。
Based on the above equivalent circuit, the impedance frequency characteristics of the battery can be schematically shown as shown in FIG.
That is, at a low frequency (for example, f1 = 0.1 Hz), the capacitance values C1, C2, ..., and CN all have extremely high impedances, so that the impedance of the battery is the impedance of all the resistance values connected in series. The total sum is RA (RA = R0 + R1 + R2 + ... + RN).
On the other hand, at a high frequency (for example, f2 = 10 Hz), the impedance of some of the capacitance values C1, C2, ..., CN is reduced to the extent that it can be regarded as a conductor. The capacitance value C that can be regarded as a conductor and the resistance value R that forms an R / C parallel circuit do not contribute to the impedance of the battery. Therefore, the impedance RP of the battery at the frequency f2 can be expressed as RP = R0 + R1 + ... + RK (K <N).
Further, at a higher frequency, all of the capacitance values C1, C2, ..., CN can be regarded as a conductor. Then, the impedance of the battery becomes only the resistance value R0 such as the contact resistance, and takes the minimum value.
 なお、最小値をとる周波数よりも高い周波数帯域(例えば100Hz付近)では、インダクタンス成分Lが支配的となり周波数の増加とともにインピーダンスが上昇する帯域となるため、バッテリーの性能を評価できない。 Note that in a frequency band higher than the frequency that takes the minimum value (for example, around 100 Hz), the inductance component L becomes dominant and the impedance rises as the frequency increases, so the performance of the battery cannot be evaluated.
(処理フロー)
 図8は、第1の実施形態に係るCPUが実行する処理フローを示す図である。
 図9は、第1の実施形態に係る電池容量テーブルの例を示す図である。
 以下、図5に加え、図8~図9を参照しながら、第1の実施形態に係るバッテリー診断装置の処理の流れについて詳しく説明する。
(Processing flow)
FIG. 8 is a diagram showing a processing flow executed by the CPU according to the first embodiment.
FIG. 9 is a diagram showing an example of a battery capacity table according to the first embodiment.
Hereinafter, the processing flow of the battery diagnostic apparatus according to the first embodiment will be described in detail with reference to FIGS. 8 to 9 in addition to FIG.
 CPU10の第1インピーダンス取得部100は、まず、セレクタ13を操作して発信回路12A(例えば、周波数f1=0.1Hzの出力信号)を有効にするとともに、インピーダンス計測回路14からの計測信号を得る。そして、第1インピーダンス取得部100は、周波数f1におけるバッテリーBのインピーダンスZ(f1)を計測する(ステップS01)。 The first impedance acquisition unit 100 of the CPU 10 first operates the selector 13 to enable the transmission circuit 12A (for example, an output signal having a frequency f1 = 0.1 Hz) and obtain a measurement signal from the impedance measurement circuit 14. .. Then, the first impedance acquisition unit 100 measures the impedance Z (f1) of the battery B at the frequency f1 (step S01).
 次に、CPU10の第2インピーダンス取得部101は、セレクタ13を操作して発信回路12B(例えば、周波数f2=10Hzの出力信号)を有効にするとともに、インピーダンス計測回路14からの計測信号を得る。そして、第2インピーダンス取得部101は、周波数f2におけるバッテリーBのインピーダンスZ(f2)を計測する(ステップS02)。 Next, the second impedance acquisition unit 101 of the CPU 10 operates the selector 13 to enable the transmission circuit 12B (for example, an output signal having a frequency f2 = 10 Hz) and obtain a measurement signal from the impedance measurement circuit 14. Then, the second impedance acquisition unit 101 measures the impedance Z (f2) of the battery B at the frequency f2 (step S02).
 次に、CPU10の性能診断部102は、インピーダンスZ(f1)とインピーダンスZ(f2)との差分(インピーダンス差分値Zd=Z(f1)-Z(f2))を演算する(ステップS03)。 Next, the performance diagnosis unit 102 of the CPU 10 calculates the difference between the impedance Z (f1) and the impedance Z (f2) (impedance difference value Zd = Z (f1) −Z (f2)) (step S03).
 更に、性能診断部102は、ステップS03で算出したインピーダンス差分値Zdに基づいて、バッテリーBの電池容量を演算する(ステップS04)。具体的には、性能診断部102は、図9に示すような電池容量テーブルT1を参照し、インピーダンス差分値Zdに対応する電池容量を特定する。
 なお、電池容量テーブルT1に示されるようなインピーダンス差分値Zdと電池容量との関係は、事前に行われた計測やシミュレーションなどにより、予め用意されているものとする。
 また、他の実施形態においては、情報テーブルの態様ではなく、インピーダンス差分値Zdと電池容量との関係を近似式で規定する態様であってもよい。
Further, the performance diagnosis unit 102 calculates the battery capacity of the battery B based on the impedance difference value Zd calculated in step S03 (step S04). Specifically, the performance diagnosis unit 102 refers to the battery capacity table T1 as shown in FIG. 9 and specifies the battery capacity corresponding to the impedance difference value Zd.
It is assumed that the relationship between the impedance difference value Zd and the battery capacity as shown in the battery capacity table T1 is prepared in advance by measurement or simulation performed in advance.
Further, in another embodiment, the relationship between the impedance difference value Zd and the battery capacity may be defined by an approximate expression instead of the mode of the information table.
(作用、効果)
 以上のようなバッテリー診断装置1の処理によって得られる作用および効果について、再び図5を参照しながら詳しく説明する。図5において、グラフaは、バッテリーBの初期状態におけるインピーダンスの周波数特性を示すものであり、グラフbは、バッテリーBの所定期間使用後の状態におけるインピーダンスの周波数特性を示すものである。
(Action, effect)
The actions and effects obtained by the processing of the battery diagnostic apparatus 1 as described above will be described in detail again with reference to FIG. In FIG. 5, graph a shows the frequency characteristics of impedance in the initial state of the battery B, and graph b shows the frequency characteristics of impedance in the state after using the battery B for a predetermined period of time.
 図5に示すように、グラフaとグラフbとは、抵抗値R0(a)と抵抗値R0(b)との違いに起因する計測誤差が生じている。そのため、特定の周波数におけるグラフaとグラフbの絶対値を比較したとしても、当該計測誤差により、バッテリーBの性能を正しく評価することができない。しかし、本実施形態においては、周波数f1(例えば、0.1Hz)におけるインピーダンスZ(f1)と周波数f2(例えば、10Hz)におけるインピーダンスZ(f2)との差分値であるインピーダンス差分値Zdを比較対象としている。ここで、インピーダンス差分値Zdには、接触抵抗等の抵抗値R0の要素は含まれておらず、バッテリーBの性能との相関性が高い要素(R1+R2+・・+RK)からなる。したがって、初期段階におけるインピーダンス差分値Zd(a)と所定期間使用後のインピーダンス差分値Zd(b)とを比較することで、バッテリーBの性能の変化(劣化)を精度よく評価することができる。 As shown in FIG. 5, there is a measurement error between the graph a and the graph b due to the difference between the resistance value R0 (a) and the resistance value R0 (b). Therefore, even if the absolute values of the graph a and the graph b at a specific frequency are compared, the performance of the battery B cannot be evaluated correctly due to the measurement error. However, in the present embodiment, the impedance difference value Zd, which is the difference value between the impedance Z (f1) at the frequency f1 (for example, 0.1 Hz) and the impedance Z (f2) at the frequency f2 (for example, 10 Hz), is compared. It is said. Here, the impedance difference value Zd does not include an element having a resistance value R0 such as a contact resistance, and is composed of an element (R1 + R2 + ... + RK) having a high correlation with the performance of the battery B. Therefore, by comparing the impedance difference value Zd (a) in the initial stage with the impedance difference value Zd (b) after use for a predetermined period, it is possible to accurately evaluate the change (deterioration) in the performance of the battery B.
 以上の通り、第1の実施形態に係るバッテリー診断装置1によれば、電池性能を高精度に診断できる。 As described above, according to the battery diagnostic device 1 according to the first embodiment, the battery performance can be diagnosed with high accuracy.
 また、第1の実施形態において、第1の周波数f1および第2の周波数f2は、少なくともバッテリーBのインダクタンス成分Lが支配的となる周波数帯よりも低い周波数とされている(図5参照)。
 このようにすることで、インダクタンス成分Lの影響を受けない周波数帯でインピーダンスを計測するので、バッテリーBの性能との相関性が高い要素(R1+R2+・・+RK)を一層精度よく抽出することができる。
Further, in the first embodiment, the first frequency f1 and the second frequency f2 are at least frequencies lower than the frequency band in which the inductance component L of the battery B is dominant (see FIG. 5).
By doing so, the impedance is measured in a frequency band that is not affected by the inductance component L, so that elements (R1 + R2 + ... + RK) that have a high correlation with the performance of the battery B can be extracted more accurately. ..
<第2の実施形態>
 次に、第2の実施形態に係るバッテリー診断装置およびこれを備えるフォークリフトについて、図10~図12を参照しながら説明する。
<Second embodiment>
Next, the battery diagnostic device according to the second embodiment and the forklift provided with the battery diagnostic device will be described with reference to FIGS. 10 to 12.
(バッテリー診断装置の構成)
 図10は、第2の実施形態に係るバッテリー診断装置の構成を示す図である。
(Battery diagnostic device configuration)
FIG. 10 is a diagram showing a configuration of a battery diagnostic device according to a second embodiment.
 図10に示すように、第2の実施形態に係るバッテリー診断装置1は、第1の実施形態の構成に加え、更に、温度センサTSを有する。温度センサTSは、例えば、K型、T型等の熱電対、サーミスタ、白金測温体などの接触式温度センサや、赤外線を使った非接触温度センサ等であってよい。この温度センサTSは、バッテリーBの近傍に配置され、当該バッテリーBの温度を取得可能とする。温度センサTSからの温度検出信号は、CPU10に入力される。 As shown in FIG. 10, the battery diagnostic device 1 according to the second embodiment further has a temperature sensor TS in addition to the configuration of the first embodiment. The temperature sensor TS may be, for example, a K-type or T-type thermocouple, a thermistor, a contact-type temperature sensor such as a platinum resistance thermometer, a non-contact temperature sensor using infrared rays, or the like. The temperature sensor TS is arranged in the vicinity of the battery B so that the temperature of the battery B can be acquired. The temperature detection signal from the temperature sensor TS is input to the CPU 10.
 また、第2の実施形態に係るメモリ15には、更に、温度補償テーブルT2が記録されている。温度補償テーブルT2の具体的態様については後述する。 Further, the temperature compensation table T2 is further recorded in the memory 15 according to the second embodiment. A specific embodiment of the temperature compensation table T2 will be described later.
(CPUの機能構成)
 図11は、第2の実施形態に係るCPUの機能構成を示す図である。
 図11に示すように、第2の実施形態に係るバッテリー診断装置1のCPU10は、第1の実施形態の構成に加え、更に、温度補償部103を備える。
(CPU function configuration)
FIG. 11 is a diagram showing a functional configuration of the CPU according to the second embodiment.
As shown in FIG. 11, the CPU 10 of the battery diagnostic device 1 according to the second embodiment further includes a temperature compensation unit 103 in addition to the configuration of the first embodiment.
 温度補償部103は、診断対象とするバッテリーBの温度(温度センサTSの温度検出信号に基づいて取得した温度)に基づいて、第1の周波数f1におけるインピーダンスZ(f1)、及び、第2の周波数f2におけるインピーダンスZ(f2)を補償する。 The temperature compensation unit 103 has an impedance Z (f1) at the first frequency f1 and a second temperature based on the temperature of the battery B to be diagnosed (the temperature acquired based on the temperature detection signal of the temperature sensor TS). The impedance Z (f2) at the frequency f2 is compensated.
(温度補償部の処理)
 図12は、第2の実施形態に係る温度補償テーブルの例を示す図である。
 図12を参照しながら、CPU10の温度補償部103の処理について詳しく説明する。
 図12に示す温度補償テーブルT2は、バッテリーBの温度と、基準温度(例えば25℃)におけるインピーダンスと実際に計測されるインピーダンスとの差分値(以下、温度別インピーダンス差分値とも記載する。)との関係を示す図である。バッテリーBの温度と温度別インピーダンス差分値との関係は周波数ごとに異なるので、計測対象とする周波数(f1、f2)ごとに規定されている。
 温度補償部103は、温度センサTSを通じてバッテリーBの温度を取得すると、温度補償テーブルT2を参照して、当該バッテリーBの温度に対応する温度別インピーダンス差分値を特定する。そして、温度補償部103は、実際に計測されたインピーダンス(計測インピーダンス)から、温度別インピーダンス差分値を加算、もしくは、差し引く。このようにすることで、計測インピーダンスが、基準温度(例えば、25℃)におけるインピーダンス(補償インピーダンス)に変換される。
(Processing of temperature compensation unit)
FIG. 12 is a diagram showing an example of a temperature compensation table according to the second embodiment.
The process of the temperature compensation unit 103 of the CPU 10 will be described in detail with reference to FIG.
The temperature compensation table T2 shown in FIG. 12 shows the difference value between the temperature of the battery B, the impedance at the reference temperature (for example, 25 ° C.) and the impedance actually measured (hereinafter, also referred to as the impedance difference value for each temperature). It is a figure which shows the relationship of. Since the relationship between the temperature of the battery B and the impedance difference value for each temperature differs for each frequency, it is defined for each frequency (f1, f2) to be measured.
When the temperature compensation unit 103 acquires the temperature of the battery B through the temperature sensor TS, the temperature compensation unit 103 refers to the temperature compensation table T2 and specifies the impedance difference value for each temperature corresponding to the temperature of the battery B. Then, the temperature compensation unit 103 adds or subtracts the temperature-specific impedance difference value from the actually measured impedance (measured impedance). By doing so, the measured impedance is converted into the impedance (compensation impedance) at the reference temperature (for example, 25 ° C.).
 なお、他の実施形態においては、予め周波数ごとに規定された補償計数K(図12に示すグラフの傾きに相当するパラメータ)を用いて、式(1)を算出することで補償インピーダンスを取得するものとしてもよい。 In another embodiment, the compensation impedance is acquired by calculating the equation (1) using the compensation count K (parameter corresponding to the slope of the graph shown in FIG. 12) defined in advance for each frequency. It may be a thing.
 Zs=Zm+K(Tm-Ts)・・・(1) Zs = Zm + K (Tm-Ts) ... (1)
 ここで、「Zs」は補償インピーダンス、「Zm」は計測インピーダンス、「Tm」はバッテリーBの温度、「Ts」は基準温度である。 Here, "Zs" is the compensation impedance, "Zm" is the measurement impedance, "Tm" is the temperature of the battery B, and "Ts" is the reference temperature.
(作用、効果)
 以上のように、温度補償が行われることで、より精度の高い電池性能の推定が可能となる。
(Action, effect)
As described above, the temperature compensation makes it possible to estimate the battery performance with higher accuracy.
<その他の実施形態>
 以上、第1、第2の実施形態に係るバッテリー診断装置1について詳細に説明したが、バッテリー診断装置1の具体的な態様は、上述のものに限定されることはなく、要旨を逸脱しない範囲内において種々の設計変更等を加えることは可能である。
<Other Embodiments>
The battery diagnostic device 1 according to the first and second embodiments has been described in detail above, but the specific embodiment of the battery diagnostic device 1 is not limited to the above and does not deviate from the gist. It is possible to make various design changes within.
 第1、第2の実施形態に係るバッテリー診断装置1は、フォークリフトFに具備される態様で説明したが、他の実施形態においてはこれに限られない。例えば、図13に示すように、バッテリー診断装置1は、フォークリフトFの充電スタンドである充電器Eに具備される態様であってもよい。この場合、バッテリー診断装置1は、充電器Eの接続ケーブルを経由して、バッテリーBの性能を診断する。
 このようにすることで、性能診断時におけるバッテリーBの環境を固定できるため、環境依存の外乱の影響を抑えることができる。
The battery diagnostic device 1 according to the first and second embodiments has been described in the embodiment provided in the forklift F, but the other embodiments are not limited to this. For example, as shown in FIG. 13, the battery diagnostic device 1 may be provided in the charger E, which is the charging stand of the forklift F. In this case, the battery diagnostic device 1 diagnoses the performance of the battery B via the connection cable of the charger E.
By doing so, the environment of the battery B at the time of performance diagnosis can be fixed, so that the influence of environment-dependent disturbance can be suppressed.
 また、他の実施形態に係るバッテリー診断装置1は、バッテリーBの性能診断を行うタイミングを制御できる機能を更に有していてもよい。
 例えば、バッテリー診断装置1は、フォークリフトFにおいてバッテリーBが充放電を行っていないタイミングに性能診断を行うこととしてもよい。また、充電完了から所定時間経過後のタイミングで性能診断を行うこととしてもよい。
 このようにすることで、性能診断における外乱の影響を一層抑制することができる。
Further, the battery diagnostic device 1 according to another embodiment may further have a function of controlling the timing of performing the performance diagnosis of the battery B.
For example, the battery diagnostic device 1 may perform performance diagnosis at a timing when the battery B is not charging / discharging in the forklift F. In addition, the performance diagnosis may be performed at a timing after a predetermined time has elapsed from the completion of charging.
By doing so, the influence of disturbance in the performance diagnosis can be further suppressed.
 また、上記の実施形態に係るバッテリー診断装置1は、フォークリフトFに搭載されたバッテリーBを診断対象とするものとして説明したが、他の実施形態においてはこの態様に限定されない。即ち、他の実施形態において、バッテリー診断装置1は、フォークリフトではない移動体(例えば、一般的な電気自動車、ハイブリッドカー等)に搭載されたバッテリーを診断対象とするものであってもよいし、固定設置された(移動体に搭載されない)バッテリーを診断対象とするものであってもよい。 Further, the battery diagnostic device 1 according to the above embodiment has been described as having the battery B mounted on the forklift F as a diagnostic target, but the other embodiments are not limited to this mode. That is, in another embodiment, the battery diagnostic device 1 may target a battery mounted on a moving body (for example, a general electric vehicle, a hybrid car, etc.) other than a forklift. A battery that is fixedly installed (not mounted on a moving body) may be the target of diagnosis.
 上述の実施形態においては、診断装置1の各種処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって上記各種処理が行われる。また、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。 In the above-described embodiment, the processes of various processes of the diagnostic apparatus 1 are stored in a computer-readable recording medium in the form of a program, and the various processes are performed by the computer reading and executing this program. .. The computer-readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Further, this computer program may be distributed to a computer via a communication line, and the computer receiving the distribution may execute the program.
 上記プログラムは、上述した機能の一部を実現するためのものであってもよい。更に、上述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。 The above program may be for realizing a part of the above-mentioned functions. Further, it may be a so-called difference file (difference program) that can realize the above-mentioned function in combination with a program already recorded in the computer system.
 以上のとおり、本開示に係るいくつかの実施形態を説明したが、これら全ての実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態及びその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As described above, some embodiments according to the present disclosure have been described, but all of these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope of the invention described in the claims and the equivalent scope thereof, as are included in the scope and gist of the invention.
<付記>
 各実施形態に記載の診断装置1、フォークリフトF、充電器Eなどは、例えば以下のように把握される。
<Additional notes>
The diagnostic device 1, the forklift F, the charger E, and the like described in each embodiment are grasped as follows, for example.
(1)第1の態様に係るバッテリー診断装置1は、診断対象とするバッテリーBの第1の周波数f1におけるインピーダンスZ(f1)を取得する第1インピーダンス取得部100と、バッテリーBの第2の周波数f2におけるインピーダンスZ(f2)を取得する第2インピーダンス取得部101と、第1の周波数におけるインピーダンスZ(f1)と第2の周波数におけるインピーダンスZ(f2)との差分値Zdに基づいて、バッテリーBの性能を診断する性能診断部102と、を備える。 (1) The battery diagnostic apparatus 1 according to the first aspect includes a first impedance acquisition unit 100 that acquires an impedance Z (f1) at a first frequency f1 of the battery B to be diagnosed, and a second battery B. The battery is based on the difference value Zd between the second impedance acquisition unit 101 that acquires the impedance Z (f2) at the frequency f2 and the impedance Z (f1) at the first frequency and the impedance Z (f2) at the second frequency. A performance diagnosis unit 102 for diagnosing the performance of B is provided.
(2)第2の態様に係るバッテリー診断装置1において、性能診断部102は、インピーダンスの差分値が大きいほどバッテリーの電池容量が小さくなる関係性に基づいて、当該バッテリーの性能を診断する。 (2) In the battery diagnostic apparatus 1 according to the second aspect, the performance diagnostic unit 102 diagnoses the performance of the battery based on the relationship that the battery capacity of the battery decreases as the impedance difference value increases.
(3)第3の態様に係るバッテリー診断装置1において、第1の周波数および第2の周波数は、少なくともバッテリーBのインダクタンス成分が支配的となる周波数帯よりも低い周波数である。 (3) In the battery diagnostic apparatus 1 according to the third aspect, the first frequency and the second frequency are at least frequencies lower than the frequency band in which the inductance component of the battery B is dominant.
(4)第4の態様に係るバッテリー診断装置1は、バッテリーBの温度に基づいて、第1の周波数におけるインピーダンス、及び、第2の周波数におけるインピーダンスを補償する温度補償部103をさらに備える。 (4) The battery diagnostic device 1 according to the fourth aspect further includes a temperature compensating unit 103 that compensates for the impedance at the first frequency and the impedance at the second frequency based on the temperature of the battery B.
(5)第5の態様に係るフォークリフトFは、上記(1)~(4)のいずれかの診断装置1と、バッテリーBと、を備える。 (5) The forklift F according to the fifth aspect includes the diagnostic device 1 according to any one of the above (1) to (4) and the battery B.
(6)第6の態様に係る充電器は、上記(1)~(4)のいずれかに記載の診断装置1を備える。 (6) The charger according to the sixth aspect includes the diagnostic device 1 according to any one of (1) to (4) above.
(7)第7の態様に係るバッテリー診断方法は、診断対象とするバッテリーBの第1の周波数f1におけるインピーダンスZ(f1)を取得するステップと、バッテリーBの第2の周波数f2におけるインピーダンスZ(f2)を取得するステップと、第1の周波数におけるインピーダンスZ(f1)と第2の周波数におけるインピーダンスZ(f2)との差分値Zdに基づいて、バッテリーBの性能を診断するステップと、を有する。 (7) The battery diagnosis method according to the seventh aspect includes a step of acquiring the impedance Z (f1) at the first frequency f1 of the battery B to be diagnosed and the impedance Z (f1) at the second frequency f2 of the battery B. It has a step of acquiring f2) and a step of diagnosing the performance of the battery B based on the difference value Zd between the impedance Z (f1) at the first frequency and the impedance Z (f2) at the second frequency. ..
(8)第8の態様に係るプログラムは、バッテリー診断装置1のコンピュータに、診断対象とするバッテリーBの第1の周波数f1におけるインピーダンスZ(f1)を取得するステップと、バッテリーBの第2の周波数f2におけるインピーダンスZ(f2)を取得するステップと、第1の周波数におけるインピーダンスZ(f1)と第2の周波数におけるインピーダンスZ(f2)との差分値Zdに基づいて、バッテリーBの性能を診断するするステップと、を実行させる。 (8) The program according to the eighth aspect includes a step of acquiring the impedance Z (f1) at the first frequency f1 of the battery B to be diagnosed by the computer of the battery diagnostic device 1, and a second step of the battery B. The performance of the battery B is diagnosed based on the step of acquiring the impedance Z (f2) at the frequency f2 and the difference value Zd between the impedance Z (f1) at the first frequency and the impedance Z (f2) at the second frequency. Steps to do and to execute.
 上述の各実施形態によれば、電池性能を高精度に診断できる。 According to each of the above embodiments, the battery performance can be diagnosed with high accuracy.
1 バッテリー診断装置
10 CPU
100 第1インピーダンス取得部
101 第2インピーダンス取得部
102 性能診断部
103 温度補償部
11 電源回路
12A、12B 発振回路
13 セレクタ
14 インピーダンス計測回路
15 メモリ
16 トランシーバ
F フォークリフト
S サーバ装置
E 充電器
B バッテリー(鉛電池)
T1 電池容量テーブル
T2 温度補償テーブル
1 Battery diagnostic device 10 CPU
100 1st impedance acquisition unit 101 2nd impedance acquisition unit 102 Performance diagnosis unit 103 Temperature compensation unit 11 Power supply circuit 12A, 12B Oscillation circuit 13 Selector 14 Impedance measurement circuit 15 Memory 16 Transceiver F Forklift S Server device E Charger B Battery (lead) battery)
T1 Battery capacity table T2 Temperature compensation table

Claims (8)

  1.  診断対象とするバッテリーの第1の周波数におけるインピーダンスを取得する第1インピーダンス取得部と、
     前記バッテリーの第2の周波数におけるインピーダンスを取得する第2インピーダンス取得部と、
     前記第1の周波数におけるインピーダンスと前記第2の周波数におけるインピーダンスとの差分値に基づいて、前記バッテリーの性能を診断する性能診断部と、
     を備えるバッテリー診断装置。
    A first impedance acquisition unit that acquires impedance at the first frequency of the battery to be diagnosed, and
    A second impedance acquisition unit that acquires impedance at the second frequency of the battery, and
    A performance diagnosis unit that diagnoses the performance of the battery based on the difference value between the impedance at the first frequency and the impedance at the second frequency.
    Battery diagnostic device equipped with.
  2.  前記性能診断部は、前記差分値が大きいほど前記バッテリーの電池容量が小さくなる関係性に基づいて、当該バッテリーの性能を診断する
     請求項1に記載のバッテリー診断装置。
    The battery diagnostic device according to claim 1, wherein the performance diagnosis unit diagnoses the performance of the battery based on the relationship that the battery capacity of the battery decreases as the difference value increases.
  3.  前記第1の周波数および前記第2の周波数は、少なくとも前記バッテリーのインダクタンス成分が支配的となる周波数帯よりも低い周波数である
     請求項1または請求項2に記載のバッテリー診断装置。
    The battery diagnostic apparatus according to claim 1 or 2, wherein the first frequency and the second frequency are at least frequencies lower than the frequency band in which the inductance component of the battery is dominant.
  4.  前記バッテリーの温度に基づいて、前記第1の周波数におけるインピーダンス、及び、前記第2の周波数におけるインピーダンスを補償する温度補償部をさらに備える
     請求項1から請求項3のいずれか一項に記載のバッテリー診断装置。
    The battery according to any one of claims 1 to 3, further comprising a temperature compensating unit that compensates for the impedance at the first frequency and the impedance at the second frequency based on the temperature of the battery. Diagnostic device.
  5.  請求項1から請求項4のいずれか一項に記載の診断装置と、
     前記バッテリーと、
     を備えるフォークリフト。
    The diagnostic device according to any one of claims 1 to 4.
    With the battery
    Forklift equipped with.
  6.  請求項1から請求項4のいずれか一項に記載の診断装置を備える充電器。 A charger including the diagnostic device according to any one of claims 1 to 4.
  7.  診断対象とするバッテリーの第1の周波数におけるインピーダンスを取得するステップと、
     前記バッテリーの第2の周波数におけるインピーダンスを取得するステップと、
     前記第1の周波数におけるインピーダンスと前記第2の周波数におけるインピーダンスとの差分値に基づいて、前記バッテリーの電池容量または劣化度を算出するステップと、
     を有するバッテリー診断方法。
    The step of acquiring the impedance at the first frequency of the battery to be diagnosed, and
    The step of acquiring the impedance at the second frequency of the battery and
    A step of calculating the battery capacity or the degree of deterioration of the battery based on the difference value between the impedance at the first frequency and the impedance at the second frequency.
    Battery diagnostic method with.
  8.  バッテリー診断装置のコンピュータに、
     診断対象とするバッテリーの第1の周波数におけるインピーダンスを取得するステップと、
     前記バッテリーの第2の周波数におけるインピーダンスを取得するステップと、
     前記第1の周波数におけるインピーダンスと前記第2の周波数におけるインピーダンスとの差分値に基づいて、前記バッテリーの電池容量または劣化度を算出するステップと、
     を実行させるプログラム。
    On the computer of the battery diagnostic device,
    The step of acquiring the impedance at the first frequency of the battery to be diagnosed, and
    The step of acquiring the impedance at the second frequency of the battery and
    A step of calculating the battery capacity or the degree of deterioration of the battery based on the difference value between the impedance at the first frequency and the impedance at the second frequency.
    A program that executes.
PCT/JP2020/038108 2019-11-06 2020-10-08 Battery diagnosis device, forklift, charger, battery diagnosis method, and program WO2021090632A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-201607 2019-11-06
JP2019201607A JP2021076421A (en) 2019-11-06 2019-11-06 Battery diagnosis device, forklift, charger, method for diagnosing battery, and program

Publications (1)

Publication Number Publication Date
WO2021090632A1 true WO2021090632A1 (en) 2021-05-14

Family

ID=75849914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038108 WO2021090632A1 (en) 2019-11-06 2020-10-08 Battery diagnosis device, forklift, charger, battery diagnosis method, and program

Country Status (2)

Country Link
JP (1) JP2021076421A (en)
WO (1) WO2021090632A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141966A (en) * 1990-09-29 1992-05-15 Shin Kobe Electric Mach Co Ltd Deterioration state detecting method of stationary lead battery
JPH1082843A (en) * 1996-09-10 1998-03-31 Matsushita Electric Ind Co Ltd Residual capacity detecting method for secondary battery
JP2006164540A (en) * 2004-12-02 2006-06-22 Nittetsu Elex Co Ltd Device and method for reproducing lead battery
US20120019253A1 (en) * 2009-01-21 2012-01-26 Joerg Ziegler Method for determining an aging condition of a battery cell by means of impedance spectroscopy
JP2014044149A (en) * 2012-08-28 2014-03-13 Suzuki Motor Corp Method for estimating deterioration of lithium ion battery
US20150226812A1 (en) * 2012-08-21 2015-08-13 Airbus Defence And Space Sas Method for estimating the ageing of a battery
JP2018031678A (en) * 2016-08-25 2018-03-01 Ntn株式会社 Battery deterioration diagnosis device and charger
JP2018066661A (en) * 2016-10-20 2018-04-26 Ntn株式会社 Battery deterioration diagnosis device, charger, and battery deterioration diagnosis method
JP6436271B1 (en) * 2018-05-07 2018-12-12 三菱電機株式会社 Battery deterioration detection device and battery temperature estimation device
JP2019190939A (en) * 2018-04-23 2019-10-31 日立化成株式会社 Storage battery condition monitoring system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141966A (en) * 1990-09-29 1992-05-15 Shin Kobe Electric Mach Co Ltd Deterioration state detecting method of stationary lead battery
JPH1082843A (en) * 1996-09-10 1998-03-31 Matsushita Electric Ind Co Ltd Residual capacity detecting method for secondary battery
JP2006164540A (en) * 2004-12-02 2006-06-22 Nittetsu Elex Co Ltd Device and method for reproducing lead battery
US20120019253A1 (en) * 2009-01-21 2012-01-26 Joerg Ziegler Method for determining an aging condition of a battery cell by means of impedance spectroscopy
US20150226812A1 (en) * 2012-08-21 2015-08-13 Airbus Defence And Space Sas Method for estimating the ageing of a battery
JP2014044149A (en) * 2012-08-28 2014-03-13 Suzuki Motor Corp Method for estimating deterioration of lithium ion battery
JP2018031678A (en) * 2016-08-25 2018-03-01 Ntn株式会社 Battery deterioration diagnosis device and charger
JP2018066661A (en) * 2016-10-20 2018-04-26 Ntn株式会社 Battery deterioration diagnosis device, charger, and battery deterioration diagnosis method
JP2019190939A (en) * 2018-04-23 2019-10-31 日立化成株式会社 Storage battery condition monitoring system
JP6436271B1 (en) * 2018-05-07 2018-12-12 三菱電機株式会社 Battery deterioration detection device and battery temperature estimation device

Also Published As

Publication number Publication date
JP2021076421A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP6830544B2 (en) Battery charge status estimation device and method
US9239363B2 (en) Battery diagnosis device and method
CN112313521B (en) Battery monitoring device, integrated circuit, and battery monitoring system
JP6657967B2 (en) State estimation device and state estimation method
US20160069963A1 (en) Electricity storage device state inference method
JP5835761B2 (en) Battery capacity deterioration estimation apparatus and method
JP5819443B2 (en) Battery control device, battery system
TWI690715B (en) Lithium-sulfur battery management system and related method
US9688159B2 (en) Methods, apparatus, and systems for preventing over-temperature battery operation
JP6233856B2 (en) Battery control system, vehicle control system
KR20160144437A (en) Method for estimating the state of health of a battery
CN106662620B (en) Battery state detection device, secondary battery system, storage medium, and battery state detection method
US10062927B2 (en) System of power batteries for determining the impedance of a stage
JP6101714B2 (en) Battery control device, battery system
JP2008520179A (en) Battery smoothing system and method using state of charge
JP7014374B2 (en) Battery management device, battery management method and battery pack
JP7155486B2 (en) Battery management system, battery management method, battery pack and electric vehicle
JP2017161490A (en) Internal resistance calculator, computer program, and internal resistance calculation method
JP5851514B2 (en) Battery control device, secondary battery system
WO2021090632A1 (en) Battery diagnosis device, forklift, charger, battery diagnosis method, and program
JP2023515593A (en) Battery diagnostic device, method and system
CN105393128B (en) Method for estimating state of health of electrochemical cell storing electric energy
JP2011172415A (en) Secondary battery device
JP2024029001A (en) Battery cell abnormality determination device and method
JP7062870B2 (en) Battery management device, battery management method and battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885216

Country of ref document: EP

Kind code of ref document: A1