WO2021088982A1 - Controller for battery packs - Google Patents

Controller for battery packs Download PDF

Info

Publication number
WO2021088982A1
WO2021088982A1 PCT/CN2020/127097 CN2020127097W WO2021088982A1 WO 2021088982 A1 WO2021088982 A1 WO 2021088982A1 CN 2020127097 W CN2020127097 W CN 2020127097W WO 2021088982 A1 WO2021088982 A1 WO 2021088982A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery pack
battery
difference
power
Prior art date
Application number
PCT/CN2020/127097
Other languages
French (fr)
Inventor
Bin Wang
Yinuo NIU
Original Assignee
Shanghai Tengtong Information Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Tengtong Information Technology Co., Ltd. filed Critical Shanghai Tengtong Information Technology Co., Ltd.
Publication of WO2021088982A1 publication Critical patent/WO2021088982A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the invention relates to managing or optimizing an electric power energy. More particularly, it relates to a controller used to monitor and control working of one or more battery packs.
  • battery packs of an electric vehicle still have many problems to be resolved. For example, because power consumption of various electric vehicles are different, corresponding battery packs with different sizes are required to provide power to the electric vehicles.
  • battery packs of various specifications are available, and these battery packs are connected in series or parallel so that the requirements of electric vehicles with different power outputs can be met.
  • an electric power-assisted vehicle may need battery packs of 36V12Ah to provide power
  • a small electric motorcycle may need 48V16Ah battery packs
  • the large electric motorcycle may need 60V20Ah battery packs to provide power.
  • the current state-of-the-art design is a battery with a model and voltage for each type of vehicle, which leads to a waste of resources, as the battery cannot be used interchangeably.
  • the battery pack combination in the existing technology have several shortcomings. For example, (1) after new and old battery packs with different cyclic charge and discharge times are combined for use, more electric energy is lost, and energy is wasted; (2) after the battery packs with different residual electric quantities are combined for use, more electric energy is lost, and energy is wasted; (3) the battery packs with the uniform specification used by electric vehicles with different power requirements are still difficult to realize the universality of the packs.
  • the cycle life of the battery packs may not be the same after different vehicle models have been used for different periods of time.
  • battery pack A may be charged and discharged 100 times, and the battery pack B may be charged and discharged 500 times. So, if the battery pack A and the battery pack B are connected in parallel and used for a period of time, the voltage drop is lower than that of the battery pack B because the battery pack A is relatively new, and the voltage of the battery pack A is higher than that of the battery pack B. As such, the battery pack A may charge the battery pack B.
  • a residual electric quantity (e.g., voltage, current, or other derived electrical parameters) of battery pack C may be 90%, and the battery packs can be independently used for 9 hours, for example.
  • the residual electric quantity of the battery pack D may be 50%, and the battery packs can be independently used for 5 hours, for example.
  • the battery pack C charges the battery pack D due to the voltage difference, as such partial electric energy from the battery pack C is consumed in charging of the battery pack D. As such, the electric energy utilization rate of the whole battery pack is reduced.
  • a battery pack control apparatus configured to control battery power to/from a plurality of battery packs during charging or discharging.
  • the battery pack control apparatus is connectable to a plurality of battery packs and an electrical device, each battery pack of the plurality of battery packs operably connected to a corresponding battery monitoring system and a corresponding switch, and the electrical device configured to receive battery power through the battery pack control apparatus.
  • the battery pack control apparatus includes a processor configured to control power consumption of the electrical device.
  • the processor is configured to receive, via each of the battery monitoring systems, battery information of each battery pack of the plurality of battery packs, the battery information comprising a voltage of each battery pack; receive demand power information of an electrical device; determine, based on the battery information, a battery pack amongst the plurality of battery packs having highest voltage, and another battery pack amongst the plurality of battery packs having a second voltage, which is lower than the highest voltage; activate a switch connected to the highest voltage battery pack to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state; determine a first difference between the highest voltage and the second voltage; control, based on the first difference breaching a first voltage threshold, a switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack; and control, based on the battery power and the demand power information, a power consumption of the electrical device.
  • a system including a plurality of battery packs; a plurality of battery monitoring systems, each battery monitoring system operably connected to a corresponding battery pack of the plurality of battery packs; a plurality of switches, each switch operably connected to a corresponding battery pack of the plurality of battery packs; an electrical device; and a battery pack control apparatus operably connected to the plurality of battery packs and the electrical device, the electrical device configured to receive battery power through the battery pack control apparatus.
  • the control apparatus is configured to control charging and discharging of the battery packs based on a difference in voltage between the battery packs.
  • the control apparatus is configured to receive, via each of the battery monitoring systems, battery information of each battery pack of the plurality of battery packs, the battery information comprising a voltage of each battery pack; receive demand power information of an electrical device; determine, based on the battery information, a battery pack amongst the plurality of battery packs having highest voltage, and another battery pack amongst the plurality of battery packs having a second voltage, which is lower than the highest voltage; activate a switch connected to the highest voltage battery pack to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state; determine a first difference between the highest voltage and the second voltage; control, based on the first difference breaching a first voltage threshold, a switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack; and control, based on the battery power and the demand power information, a power consumption of the electrical device.
  • a method for controlling power of a plurality of battery packs includes receiving battery information of each battery pack of the plurality of battery packs, the battery information comprising a voltage of each battery pack; receiving demand power information of an electrical device; determining, based on the battery information, a battery pack amongst the plurality of battery packs having highest voltage, and another battery pack amongst the plurality of battery packs having a second voltage; activating a switch connected to the highest voltage battery pack to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state; determining a first difference between the highest voltage and the second voltage; controlling, based on the first difference breaching a first voltage threshold, a switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack; and controlling, based on the battery power and the demand power information, a power consumption of the electrical device.
  • Figure 1 is a schematic diagram of a controller or switching box for a plurality of battery packs, according to an embodiment.
  • Figure 2A is another schematic diagram of a controller or switching box for a plurality of battery packs, according to an embodiment.
  • Figure 2B is yet another schematic diagram of a controller or switching box for a plurality of battery packs, according to an embodiment.
  • Figure 3A illustrates different electric vehicles using one or more swappable battery pack (e.g., 48V) , according to an embodiment.
  • swappable battery pack e.g. 48V
  • Figure 3B illustrates an example electric car having a compartment for installing a plurality of battery packs, according to an embodiment.
  • Figure 3C illustrates an example electric bike having a compartment for installing two battery packs, according to an embodiment.
  • Figure 3D illustrates an example electric scooter having a compartment for installing a battery pack, according to an embodiment.
  • FIG. 3E is a block diagram of a battery operated electrical system employing the controller, according to an embodiment.
  • Figure 4A illustrates an exemplary flow chart of functions performed by the controller for the battery packs, according to an embodiment.
  • Figure 4B is an example logic for controlling switching of battery packs during discharging, according to an embodiment.
  • Figure 5A is an example logic for controlling switching of battery packs, including three battery packs, during discharging, according to an embodiment.
  • Figure 5B is an example logic for controlling switching of battery packs, including three battery packs, during charging, according to an embodiment.
  • Figures 6A and 6B illustrate a flow chart of an exemplary method for controlling battery power of the plurality of battery packs, according to an embodiment.
  • a switching box controller a battery pack control apparatus, ” “smart hybrid controller, ” or “a control apparatus” may be used interchangeably without deviating from the features of the present disclosure described herein.
  • the terms “mounted, ” “connected, ” “attached, ” and the like are to be construed broadly and can, for example, mechanically or electrically connected, either directly or indirectly.
  • functions of the present disclosure are realized by organizing following modules (see Figures 1 and 2) , discussed below.
  • Switching box battery connector 1 represent connectors between the battery units (1, 2.. n) .
  • the switching box battery connector is used for data communications between a switching box controller 3 and battery unit BMS (battery management system) 5 of the battery packs.
  • BMS battery management system
  • Switching box status output 2 represents the connector between a load and the switching box controller 3
  • Switching box controller 3 is used for including reading battery state/status data of each Battery Unit BMS 5 and switching box battery connector 1, analyzing the received data, giving judgment according to result of such analysis, sending a corresponding instruction to receivers, and displaying the current state of the battery pack combination within a set time period to the switching box status output 4.
  • Switching box status output 4 is used for displaying the current state of the battery pack combination within a set time period, or sending the data to the set destinations.
  • Battery unit BMS 5 is used for reading the state of the battery pack, feeding the state back to the switching box controller via the switching box battery connector 1, and receiving instructions coming from the switching box battery connector 1.
  • FIG. 2A is a block diagram of the switching box. As shown, the switching box battery connector 1 and the switching box status output 2 are embedded in a housing of the switching box, and integrated with the switching box controller 3.
  • the switching box connector 1 can be connected to a plurality of battery packs.
  • the switching box status outlet 2 can be connected with the load (e.g., an electric vehicle) .
  • the battery unit BMS 5 is coupled to battery core on one side, and on the other side is connected to the switching box battery connector 1.
  • Figure 2B illustrates yet another configuration of the switching box controller 3.
  • the switching box controller 3 includes the switching box battery connector 1 configured to be connected to the plurality of battery units 1, 2, ... n, and a switching box load connector 2 configured to be connected to the load (or an electric grid) .
  • the switching box status output 4 may be used by the controller 3 to determine controlling of the battery packs.
  • the switching box status output 4 provides a state (e.g., temperature, voltage, current, etc. ) of the battery packs based on which an abnormal conditional (e.g., temperature above a temperature threshold, overvoltage above a voltage threshold, etc. ) may be determined and a switch connected to a battery pack may be turned on or turned off.
  • the switching box status output 4 may be transmitted (e.g., via a network) for displaying a state (e.g., current, voltage, temperature, etc. ) of the battery packs.
  • the switching box battery connector 1 can read real-time state data of the battery pack through the battery pack BMS 5 when connected with the corresponding battery pack, analyze the state data of a plurality of battery packs accessed, and finally send corresponding instructions to different battery packs according to analysis results. For example, three battery packs of A ⁇ B ⁇ C may be combined into a group. At a certain moment, the voltage of A is lower than the voltage ofB ⁇ C, and the voltage difference value is equal to or greater than a certain threshold value Xl set by the switching box battery controller 3 of the battery pack. At this moment, the switching box battery controller 3 of the battery packs sends an instruction to suspend working state of the battery pack of A, the battery pack ofB ⁇ C continues to work.
  • the switching box battery controller 3 of the battery packs detect that the difference value between the voltage of the battery pack of A and the voltage ofB ⁇ C at a certain moment is less than or equal to a lower threshold value X2 set by the switching box battery controller 3 of the battery pack, the switching box battery controller 3 sends an instruction to adjust the three battery packs of A ⁇ B ⁇ C to be in a simultaneous working state.
  • the switching box battery controller for the battery packs can also read the state data of each battery pack in the battery pack combination in real time through the BMS 5 for the battery pack, monitor the abnormal conditions of the battery pack in real time (e.g., such as the damage of an electric core in a certain battery pack or the abnormal data of the over high temperature of the battery pack) , and transmit the real-time state data to a display screen through the switching box status output 4 of the switching box battery controller for the battery packs.
  • the display screen can be the display screen of the switching box battery controller and can also be connected to electric equipment through connection (such as the display screen of an electric vehicle) .
  • the real-time state data can be transmitted to a cloud system, and the switching box battery controller can be used by a user or an operator to check the working state of the battery packs.
  • FIG. 3A illustrates different electric vehicles using one or more swappable battery pack (e.g., 48V) , according to an embodiment.
  • the switching box or a battery pack controller described herein can be used for these different types of electric vehicles employing the swappable battery pack, according to the present disclosure.
  • the electric vehicles may operate at different operating conditions, have different power specifications, employ different battery packs, etc.
  • the electric vehicles can be a super ebike having a 120 km range configured to cover a distance up to 120 km on a single battery pack, a mini-moped having a 70 km range configured to cover a distance up to 70 km on two battery packs, a cargo ebike having 80 km range configured to cover a distance up to 80 km on a single battery pack, an e-scooter having a 55 km range configured to cover a distance up to 55 km on a single battery pack, a e-moped having a 100 km range configured to cover a distance up to 100 km on three battery packs, and an e-car having a 150 km range configured to cover a distance up to 150 km on eight battery packs.
  • a super ebike having a 120 km range configured to cover a distance up to 120 km on a single battery pack
  • a mini-moped having a 70 km range configured to cover a distance up to 70 km on two battery packs
  • a cargo ebike having 80 km range configured to cover a distance up to
  • FIG. 3 A different electric vehicles may have different battery compartment sizes, different power specification, different battery specifications, and different battery types.
  • Figure 3B-3D illustrate different electric vehicles having different battery compartments, battery types, and different power specifications.
  • Figure 3B illustrates an electric car having a battery compartment C1 for installing a plurality of swappable battery packs SBP1. The electric car may demand higher power during operation compared to another electric vehicle (e.g., an electric scooter or an electric bike) .
  • another electric vehicle e.g., an electric scooter or an electric bike
  • FIG 3C illustrates an electric bike having a battery compartment C2 for installing a plurality of swappable battery packs SBP2.
  • the battery compartment C2 is substantially different compared to the battery compartment C1 of the car (in Figure 3B) .
  • the battery packs SBP2 have different shape, size, and voltage rating than the battery packs SBP1.
  • the electric bike may demand lower power during operation compared to the electric car, but higher power than an electric scooter.
  • FIG 3D illustrates an electric scooter having a battery compartment C3 for installing a plurality of swappable battery packs SBP3.
  • the battery compartment C3 is substantially different compared to the battery compartment C1/C2 (in Figure 3B/3C) .
  • the battery packs SBP3 have different shape, size, and voltage rating than the battery packs SBP1/SBP2.
  • the electric scooter may demand lower power during operation compared to the electric car and the electric bike.
  • a motor output power of a first EV may be different from a second EV, even if the different vehicles use the same voltage.
  • a battery pack in first EV cannot be used in another EV.
  • an electric kick-scooter employing a 48V battery pack may be used to drive a motor demanding a power from 250 to 800W.
  • a full size electrical motorcycle employing a 48V battery pack (s) may need a power output from 2000W to 4000W to power up the motorcycle.
  • the battery pack from the kick-scooter cannot power up the electrical motorcycle alone, although having same voltage of 48V.
  • the battery pack from the electrical motorcycle can power up electric kick-scooter, but the battery pack from the motorcycle may be bigger in size, which may not be installed on the electric kick-scooter.
  • the battery pack control apparatus is configured to operate with different electric vehicles having different power specifications, battery types, etc.
  • the battery pack control apparatus can be swapped between an electric car, an electric bike, an electric scooter, etc. having different battery types, battery pack shapes and sizes, power specifications, as discussed above.
  • a plurality of battery packs may be connected in series to get increased voltage and power.
  • a plurality of battery packs may be connected in series to generate twice the voltage and twice the power.
  • the battery packs are always connected in series, resulting in the battery packs losing flexibility and compatible with other vehicles (e.g., smaller vehicle) .
  • the battery packs may be connected in parallel, but may not be swappable to meet different power specifications due to reasons discussed with respect to Figures 3B-3D above.
  • the battery swapping technology may be of particular interest in micromobility sharing, for example.
  • the battery swapping technology has several advantages such as reduced downtime for recharging, which increases vehicle availability and increased utilization. Also, the battery swapping technology enables opportunities for maintaining strong battery life and introducing vehicle-to-grid related applications.
  • a pack of multiple batteries can be combined together to provide additional power for vehicles that require additional power either instantaneously or over a long period of time (e.g., long range) .
  • multiple batteries with varying degrees of state charge, voltage, cycles, temperature, etc.
  • inrush current due to voltage differences may cause safety hazard or significantly reduce battery life.
  • a battery pack control apparatus is configured to be operable with different electric vehicles having different power specifications, battery types, etc.
  • the battery pack control apparatus is configured to individually identify each battery pack, communicate with each battery pack, control each battery pack, and/or optimize (e.g., to maximize safety, lifetime, operating range, etc. ) each battery pack, as each battery pack may be working on its own or together with other battery (ies) when connected to a host vehicle or other types of host vehicles.
  • the use cases are dynamic, as battery packs may be set to charge or discharge at a certain rate based on directives from a vehicle’s micro-controller (or a remote server) .
  • the directives may include switching the vehicle completely off; or the vehicle may be directed to set power consumption levels (such as by adjusting speed or acceleration limits) based on states or conditions of the battery packs.
  • the battery pack control apparatus provides various advantages. For example, by employing the present battery pack control apparatus, electric vehicle fleet operators may get more efficient energy use to lower operating expenses, less capital investment due to extended battery life, and less expensive battery cost due to higher production volume of same batteries (that can be used in multiple vehicles and multiple configurations) .
  • the battery pack control apparatus enables each battery to have flexibility to be combined with other batteries to power a load (e.g., an electric vehicle) without sacrificing performance or health (of the batteries) .
  • FIG. 3B is a block diagram of an exemplary battery operated system 10 controlled via a battery pack control apparatus 200, according to an embodiment of the present disclosure.
  • the battery pack control apparatus 200 may also be referred as a control apparatus, a controller, or a switch box herein.
  • the battery pack control apparatus 200 is swappable and configured to operate with different battery packs and electrical devices or power grid.
  • the battery pack control apparatus 200 may be connectable to a plurality of battery packs 100, and an electrical device 600 (also referred as “load 600” ) and/or an electric grid 500.
  • the electrical device 600 may be configured to receive battery power through the battery pack control apparatus 200.
  • the electrical device 600 may not be directly connected to the battery packs 100, rather connected via the battery pack control apparatus 200.
  • the battery pack control apparatus 200 is connectable to the plurality of battery packs 100 to control a battery power drawn from one or more of battery packs of the plurality of battery packs 100.
  • the battery pack control apparatus 200 controls an amount of power supplied to one or more of the battery packs, and an order in which each battery pack be charged.
  • the plurality of battery packs 100 have different battery cores (e.g., Li-ion, Alkaline, Ni, lead-acid, etc. ) or all battery cores may be same.
  • the plurality of battery packs 100 includes at least one battery pack with a first core, and another battery pack with a second core.
  • the first core may include, for example, Lithium-ion, and the second core may include lead-acid.
  • at least one battery pack has a first form factor, and the other battery pack has a second form factor; the second form factor is different from the first form factor.
  • the plurality of battery packs 100 are connected in parallel.
  • Figure 3 illustrates the plurality of battery packs 100 including battery pack 1, battery pack 2, and battery pack 3. To illustrate the concepts of the present disclosure, the discussion herein refers to three batteries connected in parallel. However, the scope of the present disclosure is not limited to a particular number of batteries. A person of ordinary skill in the art may employ 2, 3, 4, 5, ... n batteries.
  • each battery pack (e.g., B1, B2, B3, ..., Bn) of the plurality of battery packs 100 may be operably connected to a corresponding battery monitoring system and a corresponding switch (e.g., K1, K2, K3, etc. ) .
  • each battery pack is configured to supply continuous power to electronic components of the electronic system 10.
  • the battery pack B1 is coupled to a power supply line P21-
  • the battery pack B2 is coupled to a power supply line P22-
  • battery pack B3 is coupled to a power supply line P23-.
  • the power from the batteries may be supplied through a power supply unit 210 of the control apparatus 200.
  • one or more battery packs may further supply power to operate the electronic components such as the power supply unit, microcontroller unit (MCU) , CAN modules, etc.
  • the functions of the control apparatus 200 may be implemented in the microcontroller 220.
  • the microcontroller 220 may be a processor configured to implement an algorithm that determines controlling of power supply from the battery packs 100 to the load 600.
  • the power supply unit 210 supplies power from the electric grid 500 to the control apparatus 200.
  • the electric grid 500 supplies power to the control apparatus 200 for charging the battery packs 100, starting the control apparatus 200, or to satisfy other power requirements of the electronic components of the system 100.
  • the power supply unit 210 may supply power to the microcontroller 220, another microcontroller 300, or other electronic components.
  • a battery monitoring system may include, for example, communication buses, a temperature sensor (not shown) , a current sensor (not shown) , a voltage sensor (not shown) , or other battery parameter monitoring sensors (not shown) .
  • the battery packs 100 may communicate with the battery pack control apparatus 200 through a communication interface 230.
  • the communication interface may be a CAN communication modem that supports CAN communication.
  • Figure 3 E illustrates three battery monitoring system coupled to corresponding battery packs and a CAN modulel 230 of the control apparatus 200.
  • a first battery monitoring system includes communication buses supplying battery information related to B1 via buses CAN1-H, CAN1-L, and CAN1-G.
  • a second battery monitoring system includes communication buses supplying battery information related to B2 via buses CAN2-H, CAN2-L, and CAN2-G.
  • a third battery monitoring system includes communication buses supplying battery information related to B3 via buses CAN3-H, CAN3-L, and CAN3-G. The battery information is used by the control apparatus 200 to, for example, monitor state of the battery packs 100, determine each battery pack voltage or difference in voltages, control switches, and an amount of power to the drawn from the battery packs 100 or amount of power supplied to the battery packs 100 for charging.
  • each battery pack of the plurality of battery packs 100 is connected to a corresponding switch to turn on or turn off power supply from the respective batteries.
  • the battery pack B 1 is connected to a switch K1
  • the battery pack B2 is connected a switch K2
  • the battery pack B3 is connected to a switch K3.
  • Each switch may be implemented using any known switching elements such as a relay, a Field Effect Transistor (FET) , MOSFET, or a combination thereof.
  • the control apparatus 200 controls the switching of the switches K1, K2, and K3 based on a difference in voltages of the battery packs 100. For example, if the switch K1 is on, power may be extracted from the battery pack B1. While, if the switch is off, no power is extracted from the battery pack B1.
  • the battery pack control apparatus 200 may be connected to the electrical device 600 to supply the battery power (e.g., from one or more of the battery packs B1, B2, or B3) in a controlled manner, according to the present disclosure.
  • the electrical device 600 may be an electric vehicle (e.g., car) , an electric bike, an electric scooter, or other battery operated devices. Each of the electric device may have different power specification in operation. For example, the electric vehicle may demand a higher power acceleration compared to a power demand during cruising. In another example, the electric bike may demand lesser power compared to the electric vehicle. Different electrical devices may be configured to operate with different battery packs.
  • the plurality of battery packs 100 used in cars may differ from those used in other electric devices such as electric bike, electric scooter, etc.
  • the operating power or the demanded power of the electrical device may be different for different electrical devices.
  • the battery pack control apparatus 200 is configured to be swappable between any battery pack and electrical devices to supply the operating power.
  • the battery pack control apparatus 200 may be electrically connectable to an electric grid 500 to receive altemating current (AC) power, or to supply power from one or more of the battery packs 100 to the electric grid 500 (e.g., after converting from DC to AC) .
  • the plurality of battery packs 100 are connected to the battery pack control apparatus 200, which controls an amount of power to be drawn from the battery and further supplied to the electrical device 600, and/or electric grid 500.
  • a microcontroller 300 may serve as an interface between the electric grid 500 and/or the electrical device 600. The control apparatus 200 may supply power to receive power through the microcontroller 300.
  • the microcontroller 300 may be another processor configured to receive or supply power via power terminals P+ and P-. Furthermore, the microcontroller 300 may communicate with the control apparatus 200 via a communication model such as CAN module2 240. For example, the microcontroller 300 may communicate demanded power information by the load 600, a type of load 600, or another load or power supply related information. In some embodiments, the microcontroller 300 may provide a signal KS to tum on or turn off the control apparatus 200. In some embodiments, the microcontroller 300 provides a reduced power consumption signal to the load 600. For example, the reduced power consumption signal may be determined by the control apparatus 200 based on a difference in voltages between battery packs.
  • the microcontroller 300 serves as an interface that communicates discharging and/or charging of the battery packs 100 determined by the control apparatus 200.
  • the control apparatus 200 when coupled to the load 600 may cause discharging is controlled manner by extracting battery power from one or more battery packs, determining an amount of power to be supplied to the load 600, and cause the load 600 to operate the battery power.
  • the control apparatus 200 when coupled to the electric grid 500 may cause charging in a controlled manner by selecting one or more battery packs to be charged based on a voltage difference between two battery packs.
  • the control apparatus 200 includes the microcontroller 220 configured to control the power supply between the battery packs 100 and the load 600 (and/or electric grid 500) .
  • the microcontroller 220 powers up the control apparatus 200, resets switches (e.g., KI, K2, and K3) connected to each of the battery packs 100 to off-state or off-position.
  • a first operation of the microcontroller 220 may be determine which battery pack of the plurality of battery packs 100 has the highest voltage.
  • the microcontroller requests battery information of each battery pack (e.g., B 1, B2, B3) via CAN bus.
  • the battery information includes, among other things, the voltage of each battery pack.
  • the microcontroller 220 compares voltage of each battery pack to determine the highest voltage.
  • the highest voltage battery pack may be B 1
  • a second voltage battery pack may be B2
  • a third voltage battery pack may be B3.
  • the aforementioned order of the battery packs is only exemplary. As the charging and/or discharging of the battery packs take place, the voltage of the battery packs may change, thereby changing the order of highest, second, third voltages of the battery packs.
  • the battery information or order of battery packs based on voltages may be displayed on a screen of a user device.
  • the control apparatus 200 when there are multiple battery packs, the control apparatus 200 generates a series of commands (e.g., switching, reduced power consumption, etc. ) to control and optimize each battery pack such that individual and/or collective battery pack performance and/or lifetime may be maximized.
  • control power to/from the battery packs is explained with respect to two scenarios: 1) two battery packs; and 2) three battery packs, as follows. However, these example do not limit the number of battery packs.
  • the control apparatus 200 can be programmed to operate and compare any number of battery packs. According to the present disclosure, the controlling of the battery power is based on a difference between voltages of the battery packs, as illustrated with examples below. Example flow charts of the algorithm to control battery power are provided in Figures 4A-4B and 5A-5B.
  • Figures 4A and 4B are flow charts for controlling battery power to/form the battery packs in the system 100, e.g., where two battery packs are included.
  • the control apparatus 200 may determine a direction of current flow that indicates whether the battery packs are discharging or being charged. For example, when the control apparatus 200 is coupled to the electrical device 600, the battery packs may be discharging to supply power to the electrical device 600. In another example, when the control apparatus 200 is coupled to the electric grid 500, the battery packs may be in charging mode to receive power from the electric grid 500. In some embodiments, the battery packs may be in discharging mode to supply power back to the electric grid 500.
  • the control apparatus 200 may compare voltages of the two battery packs to determine the battery pack with the highest voltage among the two battery packs.
  • the battery pack B1 in Figure 3E
  • the battery pack B2 in Figure 3E
  • VB1 may be greater than VB2.
  • the control apparatus 200 controls battery power via switches connected to the battery packs based on the difference in voltages of the battery packs.
  • FIG. 4B is an example flow chart of step S206 that involves controlling the switches (e.g., K1, and K2) in discharge mode. If the battery packs are discharging and the difference in voltages (e.g., VB1-VB2) is more than a voltage threshold TH1 (e.g., 0.5V, 1.5V, 2V, etc. ) , the control apparatus 200 generates a signal to turn off a switch (e.g., K2 in Figure 3E) connected to the battery pack with the lower voltage (e.g., VB2 of B2) .
  • a voltage threshold TH1 e.g., 0.5V, 1.5V, 2V, etc.
  • the switch (e.g., K2) connected to the lower voltage battery pack may continue to remain in off-state until the difference in voltages (e.g., VB1-VB2) is less than or equal to the voltage threshold TH1.
  • the control apparatus 200 tums the switch (e.g., K2) connected to B2 to on-state.
  • the voltage threshold TH1 may be predetermined based on a usage of the electrical device 600, an amount of power demanded by the electrical device 600, an amount of lifetime of the battery packs, or other discharging or optimization related performance factors.
  • the control apparatus 200 draws power from only the battery pack with highest voltage (e.g., the battery pack B 1) .
  • the control apparatus 200 draws power from both the battery packs.
  • a higher power may be drawn from two batteries.
  • power demanded from the electrical device 600 may be higher than an amount available from the battery packs. In this case, the control apparatus 200 may indicate the electrical device 600 to operate at reduced power consumption.
  • control apparatus 200 is continuously monitoring voltages of the battery pack. In some embodiments, the control apparatus 200 is monitoring voltages of the battery packs at specified interval of times (e.g., periodically after every 10 seconds, 1 minute, 5 minutes, etc. ) . Accordingly, the voltages and voltage difference may change, and in tum the on/off-state of respective switches.
  • the above logic may be reversed.
  • the control apparatus 200 may turn off the switch connected to the highest voltage battery pack (e.g., B 1) and turn on the switch connected to the second voltage battery pack (e.g., B2) .
  • the battery pack with a lower voltage is charged.
  • the state of the switches may be maintained until the aforementioned condition is violated.
  • the switch connected to B1 is tumed back on and both battery packs may be allowed to charge equally.
  • FIGs 4A, 5A and 5B are flow charts of another algorithm for controlling the power of the battery packs present in the system 100, (e.g., where three battery packs are included) .
  • the battery packs include B1, B2 and B3 (in Figure 3E) .
  • steps S202 and S204 are performed.
  • the control apparatus 200 may determine the highest voltage VB 1 may be associated with the battery pack B1, a second voltage VB2 may be associated with the battery pack B2, and a third voltage VB3 may be associated with the battery pack B3.
  • the second and third voltages may be lower than the first voltage VB1.
  • VB2 and VB3 may be the same or VB3 may be lower than VB2.
  • the step S208 may be performed that includes an algorithm configured for three battery packs.
  • the difference in voltages between different battery packs may be VB1-VB2 and VB1-VB3, and VB2-VB3.
  • Figure 5A shows operations at step 208 configured for controlling the switches (e.g., K1, K2, and K3) in discharge mode.
  • Figure 5A illustrates different control possibilities. In one example, when VB1-VB2 greater than a first voltage threshold TH1 and VB1-VB3 is greater than a second voltage threshold TH2 -turn off switches (e.g., K2 and K3) connected to the battery packs B2 and B3, respectively.
  • a first voltage threshold TH1 and VB1-VB3 is greater than a second voltage threshold TH2 -turn off switches (e.g., K2 and K3) connected to the battery packs B2 and B3, respectively.
  • the first voltage threshold TH1 and the second voltage threshold TH2 may be the same, for example, 1.5V. In some embodiments, the first and second voltage threshold may be different, for example, the first voltage threshold TH1 may be 1.5V and a second threshold TH2 may be 2V. In yet another example, when VB1 -VB2 is equal or less than the first voltage threshold TH1, and VB1-VB3 is equal or less than the second voltage threshold TH2-all three switches (e.g., K1, K2, and K3) are kept in on-state. For example, VB1, VB2, VB3 may be 10V, 9V, and, 8.2V, respectively, and the first and second voltage thresholds may be 1.5V.
  • VB1-VB2 is 1V, which is less than the threshold 1.5V, hence, K1 and K2 are switched to on-state.
  • VB1-VB3 is 1.2V, which is less than 1.5V, hence K3 is switched to on-state.
  • VB1-VB2 when VB1-VB2 is larger than the first voltage threshold TH1, but VB1-VB3 is equal or less than the second threshold TH2 -turn off the switch (e.g., K2) connected to the battery pack B2, while keeping the switch (e.g., K3) connected to the battery pack B3 in on-state.
  • VB1, VB2, VB3 may be 10V, 6V, and 9V respectively and the first and second voltage thresholds may be 1.5V.
  • VB1-VB2 is 4V, which is greater than the threshold 1.5V; hence, K2 is switched to off-state.
  • VB1-VB3 is 1V, which is less than 1.5V, hence K3 is switched to on-state.
  • VB1-VB3 is larger than the second threshold TH2, but VB1-VB2 is not larger than the first threshold TH1, an additional voltage difference check is performed.
  • VB2 and VB3 are compared to determine if the difference is larger than a third threshold TH3. If greater, the switch (e.g., K3) connected to the battery pack B3 is turned off.
  • the switch e.g., K3
  • VB1, VB2, VB3 may be 10V, 9V, and 8V, respectively, and the first, second, and third voltage thresholds may be 1.5V. Then, VB1-VB2 is 1V, which is less than the threshold 1.5V.
  • VB1-VB3 is 2V which is greater than 1.5V.
  • VB2-VB3 is 1V, which is less than the third threshold TH3, hence K3 is switched to on-state. If VB3 falls to 7V, VB2-VB3 will be 2V, which is greater than 1.5V, hence K3 will be switched to off-state.
  • VB1-VB2 when VB1-VB2 is greater than the threshold TH1, and VB1-VB3 is equal or less than TH2, the switch (e.g., K2) connected to the battery pack B2 is turned on, while switches (e.g., K1 and K3) connected to the battery packs B1 and B3, respectively, are turned off. Thus, only the battery pack B2 is charged, while the battery packs B1 and B3 are not charged.
  • a further additional difference check may be performed, for example, a check whether VB2-VB3 is less than the third threshold TH3. If the aforementioned conditions are satisfied, switches (e.g., K1, K2, and K3) connected to the battery packs B1, B2, and B3, respectively, are turned on. Thus, all the battery packs are charged simultaneously.
  • VB1-VB2 when VB1-VB2 is equal or less than the threshold TH1, and VB1-VB3 is greater than the threshold TH2, the switch (e.g., K3) connected to the battery pack B3 is turned on, while switches (e.g., K1 and K2) connected to the battery pack B1 and the battery pack B2, respectively, are turned off.
  • the switch e.g., K3
  • switches e.g., K1 and K2
  • FIGS 6A and 6B are a flow chart of a method 60 for controlling battery power of a plurality of battery packs.
  • the method 60 discusses controlling battery power to be supplied to an electric device (e.g., a load 600 of Figure 3E) from the plurality of battery packs (e.g., B1, B2, B3 of Figure 3E) .
  • an electric device e.g., a load 600 of Figure 3E
  • the plurality of battery packs e.g., B1, B2, B3 of Figure 3E
  • battery information of each battery pack of a plurality of battery packs is received via each of the battery monitoring systems.
  • the battery information comprises voltage of each battery pack.
  • the battery information comprises a state of the battery pack, or an abnormal condition of the battery pack derived from the battery information.
  • Figures 1, 2, and 3 illustrates an example connection of the BMS connected to each of the plurality of battery packs. The BMS further provides the battery information to the control apparatus 100.
  • demand power information of an electrical device is received.
  • the control apparatus 200 may receive the demand power information e.g., via a communication bus, or a network.
  • the demand power information can be an amount of power demanded by the electrical device 600 to perform one or more operations.
  • the power demanded by an electric vehicle for performing an acceleration may be different from power demanded for performing a cruising.
  • the power for a first operation e.g., acceleration
  • the power for a second operation e.g., cruising, starting, etc.
  • a battery pack amongst the plurality of battery packs with the highest voltage is determined, and another battery pack amongst the plurality of battery packs having a second voltage may be determined.
  • the battery voltages of each battery pack can be compared to determine the highest voltage battery pack.
  • the second voltage is lower than the highest voltage.
  • the battery pack B1 may be the highest voltage battery pack and the battery pack B2 may be a second voltage battery pack.
  • a switch connected to the highest voltage battery pack is activated to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state.
  • a switch K1 (in Figure 3E) is activated to on-state.
  • the switch may be a MOSFET, which can be activated by supplying a switching current or a switching voltage.
  • an input gate voltage e.g., 10V
  • the source e.g., 0V
  • remaining switches e.g., K2, K3, etc.
  • a first difference between the highest voltage and the second voltage may be determined.
  • the highest voltage may be 10V and the second voltage may be 9V.
  • the first difference may be 1V.
  • step S66 control, based on the first difference breaching a first voltage threshold, a switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack.
  • the first difference may be less than the first voltage threshold (e.g., 1.5V) .
  • the first difference may be greater than the first voltage threshold.
  • the highest voltage battery may be at 10V, while the second voltage battery may be at 8V.
  • the first difference is 2V, which is greater than 1.5V.
  • a switch connected to the second voltage battery pack may be turned off to allow the highest voltage battery to discharge more.
  • the highest voltage battery (e.g., at 10V) and the second voltage battery (e.g., at 8V) may be in charging mode.
  • the first difference is 2V, which is greater than 1.5V.
  • the switch (e.g., K1) connected to the highest voltage battery (e.g., B1) may be turned off to allow lower voltage battery to charge first.
  • controlling the switch connected to the second voltage battery pack includes determining whether the first difference between the highest voltage and the second voltage is greater than the first voltage threshold; and switching, based on the first difference being greater, the switch connected to the second voltage battery pack to off-state to receive the battery power from only the highest voltage battery pack. In some embodiments, during charging, when the first difference is greater, the switch connected to the highest voltage battery pack may be turned off, so that a lower voltage battery pack may be charged first.
  • controlling the switch connected to the second voltage battery pack includes determining whether the first difference between the highest voltage and the second voltage is equal to or less than the first voltage threshold; and switching, based on the first difference being equal or less, the switch connected to the second voltage battery pack to on-state to receive additional battery power from the second voltage battery pack.
  • the method 60 further includes determining, based on the battery information, yet another battery pack of the plurality of battery packs having a third voltage; determining a second difference between the highest voltage and a third voltage, and a third difference between the second voltage and the third voltage; and controlling, based on the second difference and the third difference, a switch connected to the third voltage battery pack between on-state or off-state to receive additional battery power from the third voltage battery pack.
  • controlling the switch connected to the third voltage battery pack includes determining whether the second difference is greater than a second voltage threshold; and switching, based on the second difference being greater, the switch connected to the third voltage battery pack to off-state. In some embodiments, during charging, when the second difference is greater, the switch connected to the highest voltage battery pack may be turned off, so that a lower voltage battery pack may be charged first.
  • controlling the switch connected to the third voltage battery pack includes determining whether the second difference is equal to or less than the second voltage threshold; and switching, based on the second difference being equal or less, the third switch connected to the third voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
  • controlling the switch connected to the third voltage battery pack includes determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is greater than a third voltage threshold; and switching, based on the determination being true, the switch connected to the third voltage battery pack to off-state.
  • controlling of the switch connected to the third voltage battery pack includes determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is equal or less than the third voltage threshold; and switching, based on the determination being true, the switch connected to the third voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
  • Figures 5A and 5B provide controlling of the switches connected to the highest voltage, the second voltage, and the third voltage battery packs, as discussed earlier.
  • controlling power consumption of the electrical device includes comparing the received battery power to the demand power information; and supplying, based on the comparison, the demand power information or a reduced power than the demand power information. For example, when the received battery power is lower than the demand power information, the reduced power is supplied to the electrical device causing the electrical device to operate at a lower than the demand power information.
  • a battery pack control apparatus including: a processor configured to: receive, via each of the battery monitoring systems, battery information of each battery pack of the plurality of battery packs, the battery information comprising a voltage of each battery pack; receive demand power information of an electrical device; determine, based on the battery information, a battery pack amongst the plurality of battery packs having the highest voltage, and another battery pack amongst the plurality of battery packs having a second voltage, which is lower than the highest voltage; activate a switch connected to the highest voltage battery pack to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state; determine a first difference between the highest voltage and the second voltage; control, based on the first difference breaching a first voltage threshold, a switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack; and control, based on the battery power and the demand power information, a power consumption of the electrical device.
  • control of the switch connected to the second voltage battery pack includes: determining whether the first difference between the highest voltage and the second voltage is greater than the first voltage threshold; and switching, based on the first difference being greater, the switch connected to the second voltage battery pack to off-state to receive the battery power from only the highest voltage battery pack.
  • control of the switch connected to the second voltage battery pack includes: determining whether the first difference between the highest voltage and the second voltage is equal to or less than the first voltage threshold; and switching, based on the first difference being equal or less, the switch connected to the second voltage battery pack to on-state to receive additional battery power from the second voltage battery pack.
  • the processor further configured to: determine, based on the battery information, yet another battery pack of the plurality of battery packs having a third voltage, which is lower than the highest voltage; determine a second difference between the highest voltage and a third voltage, and a third difference between the second voltage and the third voltage; and control, based on the second difference and the third difference, a switch connected to the third voltage battery pack between on-state or off-state to receive additional battery power from the third voltage battery pack.
  • control of the switch connected to the third voltage battery pack includes: determining whether the second difference is greater than a second voltage threshold; and switching, based on the second difference being greater, the switch connected to the third voltage battery pack to off-state.
  • control of the switch connected to the third voltage battery pack includes: determining whether the second difference is equal to or less than the second voltage threshold; and switching, based on the second difference being equal or less, the third switch connected to the third voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
  • control of the switch connected to the third voltage battery pack includes: determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is greater than a third voltage threshold; and switching, based on the determination being true, the switch connected to the third voltage battery pack to off-state.
  • control of the switch connected to the third voltage battery pack includes: determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is equal or less than the third voltage threshold; and switching, based on the determination being true, the switch connected to the third voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
  • control of the power consumption of the electrical device includes: comparing the received battery power to the demand power information; and supplying, based on the comparison, the demand power information or a reduced power than the demand power information.
  • the plurality of battery pack comprises at least one battery pack with a first core, and another battery pack with a second core.
  • the processor further configured to: supply, based on the battery power being greater than the demand power information, the battery power to a power supply grid.
  • a system including: a plurality of battery packs; a plurality of battery monitoring systems, each battery monitoring system operably connected to a corresponding battery pack of the plurality of battery packs; a plurality of switches, each switch operably connected to a corresponding battery pack of the plurality of battery packs; an electrical device; and a battery pack control apparatus configured to perform operations comprising those of any of embodiments 1-15.
  • a method for controlling power of a plurality of battery packs including receiving battery information of each battery pack of the plurality of battery packs, the battery information comprising a voltage of each battery pack; receiving demand power information of an electrical device; determining, based on the battery information, a battery pack amongst the plurality of battery packs having the highest voltage, and another battery pack amongst the plurality of battery packs having a second voltage; activating a switch connected to the highest voltage battery pack to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state; determining a first difference between the highest voltage and the second voltage; controlling, based on the first difference breaching a first voltage threshold, a switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack; and controlling, based on the battery power and the demand power information, a power consumption of the electrical device.
  • controlling the switch connected to the second voltage battery pack includes: determining whether the first difference between the highest voltage and the second voltage is greater than the first voltage threshold; and switching, based on the first difference being greater, the switch connected to the second voltage battery pack to off-state to receive the battery power from only the highest voltage battery pack.
  • controlling the switch connected to the second voltage battery pack includes: determining whether the first difference between the highest voltage and the second voltage is equal to or less than the first voltage threshold; and switching, based on the first difference being equal or less, the switch connected to the second voltage battery pack to on-state to receive additional battery power from the second voltage battery pack.
  • the method of any of embodiments 17-19 further includes: determining, based on the battery information, yet another battery pack of the plurality of battery packs having a third voltage; determining a second difference between the highest voltage and a third voltage, and a third difference between the second voltage and the third voltage; and controlling, based on the second difference and the third difference, a switch connected to the third voltage battery pack between on-state or off-state to receive additional battery power from the third voltage battery pack.
  • controlling the switch connected to the third voltage battery pack includes determining whether the second difference is greater than a second voltage threshold; and switching, based on the second difference being greater, the switch connected to the third voltage battery pack to off-state.
  • controlling the switch connected to the third voltage battery pack includes: determining whether the second difference is equal to or less than the second voltage threshold; and switching, based on the second difference being equal or less, the third switch connected to the third voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
  • controlling the switch connected to the third voltage battery pack includes: determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is greater than a third voltage threshold; and switching, based on the determination being true, the switch connected to the third voltage battery pack to off-state.
  • controlling the switch connected to the third voltage battery pack includes: determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is equal or less than the third voltage threshold; and switching, based on the determination being true, the switch connected to the third voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
  • controlling the power consumption of the electrical device includes: comparing the received battery power to the demand power information; and supplying, based on the comparing, the demand power information or a reduced power than the demand power information.
  • a tangible, non-transitory, machine-readable medium storing instructions that, when executed by a data processing apparatus, causes the data processing apparatus to perform operations comprising those of any of embodiments 17-25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A battery pack control apparatus (200), a method, and a system (10) are provided. The control apparatus (200) is connectable to a plurality of battery packs (100) and an electrical device (600), each battery pack of the plurality of battery packs (100) operably connected to a corresponding battery monitoring system and a corresponding switch, and the electrical device (600) configured to receive battery power through the control apparatus (200). The control apparatus (200) determines a battery pack having highest voltage, and another battery pack having a second voltage; activates a switch connected to the highest voltage battery pack to on-state and other switches to off-state; determines a first difference between the highest voltage and the second voltage; controls, based on the first difference, a switch connected to the second voltage battery pack; and controls, based on the battery power and the demand power information, a power consumption of the electrical device.

Description

CONTROLLER FOR BATTERY PACKS BACKGROUND
CROSS REFERENCE TO RELATED APPLICATIONS
This application is based on, and claims the benefit of priority to, foreign Chinese application no. CN201911079903.2A, filed November 07, 2019, the entire contents of which is incorporated herein by reference.
FIELD OF THE INVENTION
The invention relates to managing or optimizing an electric power energy. More particularly, it relates to a controller used to monitor and control working of one or more battery packs.
DESCRIPTION OF THE RELATED ART
In automotive industry, the market share of electric vehicles has continuously increased. However, battery packs of an electric vehicle still have many problems to be resolved. For example, because power consumption of various electric vehicles are different, corresponding battery packs with different sizes are required to provide power to the electric vehicles. Currently, battery packs of various specifications are available, and these battery packs are connected in series or parallel so that the requirements of electric vehicles with different power outputs can be met. For example, an electric power-assisted vehicle may need battery packs of 36V12Ah to provide power, a small electric motorcycle may need 48V16Ah battery packs, and the large electric motorcycle may need 60V20Ah battery packs to provide power. The current state-of-the-art design is a battery with a model and voltage for each type of vehicle, which leads to a waste of resources, as the battery cannot be used interchangeably.
The battery pack combination in the existing technology have several shortcomings. For example, (1) after new and old battery packs with different cyclic charge and discharge times are combined for use, more electric energy is lost, and energy is wasted; (2) after the battery packs with different residual electric quantities are combined for use, more electric energy is lost, and  energy is wasted; (3) the battery packs with the uniform specification used by electric vehicles with different power requirements are still difficult to realize the universality of the packs.
Existing battery management technology causes inefficient use of battery power and is a waste of energy. For example, the cycle life of the battery packs may not be the same after different vehicle models have been used for different periods of time. For example, in the case of two battery packs, A and B, with a full charge and same specification, battery pack A may be charged and discharged 100 times, and the battery pack B may be charged and discharged 500 times. So, if the battery pack A and the battery pack B are connected in parallel and used for a period of time, the voltage drop is lower than that of the battery pack B because the battery pack A is relatively new, and the voltage of the battery pack A is higher than that of the battery pack B. As such, the battery pack A may charge the battery pack B. When the battery pack A charges the battery pack B, a part of electric energy is consumed by another battery, and that part of electric energy is not used for the power of the vehicle, thereby wasting part of the electric energy. Today, electric vehicles are widely in use, and a loss of energy accumulates, resulting in a large waste in energy.
As another example, consider two battery packs, a battery pack C and another battery pack D. A residual electric quantity (e.g., voltage, current, or other derived electrical parameters) of battery pack C may be 90%, and the battery packs can be independently used for 9 hours, for example. The residual electric quantity of the battery pack D may be 50%, and the battery packs can be independently used for 5 hours, for example. However, when the two battery packs are connected in parallel and combined for use, the battery pack C charges the battery pack D due to the voltage difference, as such partial electric energy from the battery pack C is consumed in charging of the battery pack D. As such, the electric energy utilization rate of the whole battery pack is reduced.
Aforementioned factors make it difficult for the electric vehicles to form a uniform standard with a uniform battery specification, which becomes a great resistance to the wide usage of electric vehicles. Similar problems also exist in other electric energy devices. As such, a reasonable solution is needed for optimal use of battery packs configured to be used with various electric vehicles or electric devices. For example, optimal use of the same-specification battery pack connected in parallel, uses the battery packs with different lifecycles, and different electric quantities. In another example, the energy combined by the battery packs may be maximally  utilized, so that the electric vehicles and other electric devices can have a longer travel distance, a higher electric energy utilization rate, or both for a given battery pack combination.
SUMMARY
According to some embodiments, there is provided a battery pack control apparatus configured to control battery power to/from a plurality of battery packs during charging or discharging. In some embodiments, the battery pack control apparatus is connectable to a plurality of battery packs and an electrical device, each battery pack of the plurality of battery packs operably connected to a corresponding battery monitoring system and a corresponding switch, and the electrical device configured to receive battery power through the battery pack control apparatus. The battery pack control apparatus includes a processor configured to control power consumption of the electrical device. The processor is configured to receive, via each of the battery monitoring systems, battery information of each battery pack of the plurality of battery packs, the battery information comprising a voltage of each battery pack; receive demand power information of an electrical device; determine, based on the battery information, a battery pack amongst the plurality of battery packs having highest voltage, and another battery pack amongst the plurality of battery packs having a second voltage, which is lower than the highest voltage; activate a switch connected to the highest voltage battery pack to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state; determine a first difference between the highest voltage and the second voltage; control, based on the first difference breaching a first voltage threshold, a switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack; and control, based on the battery power and the demand power information, a power consumption of the electrical device.
According to an embodiment, there is provided a system including a plurality of battery packs; a plurality of battery monitoring systems, each battery monitoring system operably connected to a corresponding battery pack of the plurality of battery packs; a plurality of switches, each switch operably connected to a corresponding battery pack of the plurality of battery packs; an electrical device; and a battery pack control apparatus operably connected to the plurality of battery packs and the electrical device, the electrical device configured to receive battery power through the battery pack control apparatus. The control apparatus is configured to  control charging and discharging of the battery packs based on a difference in voltage between the battery packs. The control apparatus is configured to receive, via each of the battery monitoring systems, battery information of each battery pack of the plurality of battery packs, the battery information comprising a voltage of each battery pack; receive demand power information of an electrical device; determine, based on the battery information, a battery pack amongst the plurality of battery packs having highest voltage, and another battery pack amongst the plurality of battery packs having a second voltage, which is lower than the highest voltage; activate a switch connected to the highest voltage battery pack to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state; determine a first difference between the highest voltage and the second voltage; control, based on the first difference breaching a first voltage threshold, a switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack; and control, based on the battery power and the demand power information, a power consumption of the electrical device.
According to an embodiment, there is provided a method for controlling power of a plurality of battery packs. The method includes receiving battery information of each battery pack of the plurality of battery packs, the battery information comprising a voltage of each battery pack; receiving demand power information of an electrical device; determining, based on the battery information, a battery pack amongst the plurality of battery packs having highest voltage, and another battery pack amongst the plurality of battery packs having a second voltage; activating a switch connected to the highest voltage battery pack to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state; determining a first difference between the highest voltage and the second voltage; controlling, based on the first difference breaching a first voltage threshold, a switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack; and controlling, based on the battery power and the demand power information, a power consumption of the electrical device.
Various other aspects, features, and advantages of the invention will be apparent through the detailed description of the invention and the drawings attached hereto. It is also to be understood that both the foregoing general description and the following detailed description are examples and not restrictive of the scope of the invention. As used in the specification and in the  claims, the singular forms of “a, ” “an, ” and “the” include plural referents unless the context clearly dictates otherwise. In addition, as used in the specification and the claims, the term “or” means “and/or” unless the context clearly dictates otherwise.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate one or more embodiments and, together with the description, explain these embodiments. The accompanying drawings have not necessarily been drawn to scale. Any values dimensions illustrated in the accompanying graphs and figures are for illustration purposes only and may or may not represent actual or preferred values or dimensions. Where applicable, some or all features may not be illustrated to assist in the description of underlying features. In the drawings:
Figure 1 is a schematic diagram of a controller or switching box for a plurality of battery packs, according to an embodiment.
Figure 2A is another schematic diagram of a controller or switching box for a plurality of battery packs, according to an embodiment.
Figure 2B is yet another schematic diagram of a controller or switching box for a plurality of battery packs, according to an embodiment.
Figure 3A illustrates different electric vehicles using one or more swappable battery pack (e.g., 48V) , according to an embodiment.
Figure 3B illustrates an example electric car having a compartment for installing a plurality of battery packs, according to an embodiment.
Figure 3C illustrates an example electric bike having a compartment for installing two battery packs, according to an embodiment.
Figure 3D illustrates an example electric scooter having a compartment for installing a battery pack, according to an embodiment.
Figure 3E is a block diagram of a battery operated electrical system employing the controller, according to an embodiment.
Figure 4A illustrates an exemplary flow chart of functions performed by the controller for the battery packs, according to an embodiment.
Figure 4B is an example logic for controlling switching of battery packs during discharging, according to an embodiment.
Figure 5A is an example logic for controlling switching of battery packs, including three battery packs, during discharging, according to an embodiment.
Figure 5B is an example logic for controlling switching of battery packs, including three battery packs, during charging, according to an embodiment.
Figures 6A and 6B illustrate a flow chart of an exemplary method for controlling battery power of the plurality of battery packs, according to an embodiment.
DETAILED DESCRIPTION
The description set forth below in connection with the appended drawings is intended as a description of various embodiments of the disclosed subject matter and is not necessarily intended to represent the only embodiment (s) . In certain instances, the description includes specific details for the purpose of providing an understanding of the disclosed embodiment (s) . However, it will be apparent to those skilled in the art that the disclosed embodiment (s) may be practiced without those specific details. In some instances, well-known structures and components may be shown in block diagram form to avoid obscuring the concepts of the disclosed subject matter.
The terms “first, ” “second, ” and “third” , as used herein, do not denote any order, quantity, or importance, but rather are used to distinguish one element from another, unless otherwise specified. Similarly, the appearances of the phrases “a” or “an” in various places herein are not necessarily all referring to the same quantity and are intended to cover all technical features not previously described. The embodiments described in the specification are only preferred embodiments of the present invention. the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit the present invention. Those of ordinary skill in the art can obtain technical solutions through logical analysis, reasoning, or limited experiments according to the concepts of the present invention. All such technical solutions are within the scope of the present invention.
.In the present disclosure, the terms “a switching box controller, ” “a battery pack control apparatus, ” “smart hybrid controller, ” or “a control apparatus” may be used interchangeably without deviating from the features of the present disclosure described herein.
In the present disclosure, unless otherwise expressly stated or limited, the terms “mounted, ” “connected, ” “attached, ” and the like are to be construed broadly and can, for example, mechanically or electrically connected, either directly or indirectly.
In some embodiments, functions of the present disclosure are realized by organizing following modules (see Figures 1 and 2) , discussed below.
Switching box battery connector 1: represent connectors between the battery units (1, 2.. n) . The switching box battery connector is used for data communications between a switching box controller 3 and battery unit BMS (battery management system) 5 of the battery packs.
Switching box status output 2: represents the connector between a load and the switching box controller 3
Switching box controller 3: is used for including reading battery state/status data of each Battery Unit BMS 5 and switching box battery connector 1, analyzing the received data, giving judgment according to result of such analysis, sending a corresponding instruction to receivers, and displaying the current state of the battery pack combination within a set time period to the switching box status output 4.
Switching box status output 4: is used for displaying the current state of the battery pack combination within a set time period, or sending the data to the set destinations.
Battery unit BMS 5: is used for reading the state of the battery pack, feeding the state back to the switching box controller via the switching box battery connector 1, and receiving instructions coming from the switching box battery connector 1.
The technical solution of the present invention will be described below with reference to Figures 1 and 2.
Figure 2A is a block diagram of the switching box. As shown, the switching box battery connector 1 and the switching box status output 2 are embedded in a housing of the switching box, and integrated with the switching box controller 3. The switching box connector 1 can be connected to a plurality of battery packs. The switching box status outlet 2 can be connected with the load (e.g., an electric vehicle) . The battery unit BMS 5 is coupled to battery core on one side, and on the other side is connected to the switching box battery connector 1.
Figure 2B illustrates yet another configuration of the switching box controller 3. As shown, the switching box controller 3 includes the switching box battery connector 1 configured to be connected to the plurality of  battery units  1, 2, ... n, and a switching box load connector 2  configured to be connected to the load (or an electric grid) . In some embodiments, the switching box status output 4 may be used by the controller 3 to determine controlling of the battery packs. For example, the switching box status output 4 provides a state (e.g., temperature, voltage, current, etc. ) of the battery packs based on which an abnormal conditional (e.g., temperature above a temperature threshold, overvoltage above a voltage threshold, etc. ) may be determined and a switch connected to a battery pack may be turned on or turned off. In some embodiments, the switching box status output 4 may be transmitted (e.g., via a network) for displaying a state (e.g., current, voltage, temperature, etc. ) of the battery packs.
In an embodiment, the switching box battery connector 1 can read real-time state data of the battery pack through the battery pack BMS 5 when connected with the corresponding battery pack, analyze the state data of a plurality of battery packs accessed, and finally send corresponding instructions to different battery packs according to analysis results. For example, three battery packs of A \B \C may be combined into a group. At a certain moment, the voltage of A is lower than the voltage ofB \C, and the voltage difference value is equal to or greater than a certain threshold value Xl set by the switching box battery controller 3 of the battery pack. At this moment, the switching box battery controller 3 of the battery packs sends an instruction to suspend working state of the battery pack of A, the battery pack ofB \C continues to work. When the switching box battery controller 3 of the battery packs detect that the difference value between the voltage of the battery pack of A and the voltage ofB \C at a certain moment is less than or equal to a lower threshold value X2 set by the switching box battery controller 3 of the battery pack, the switching box battery controller 3 sends an instruction to adjust the three battery packs of A \B \C to be in a simultaneous working state. Meanwhile, the switching box battery controller for the battery packs can also read the state data of each battery pack in the battery pack combination in real time through the BMS 5 for the battery pack, monitor the abnormal conditions of the battery pack in real time (e.g., such as the damage of an electric core in a certain battery pack or the abnormal data of the over high temperature of the battery pack) , and transmit the real-time state data to a display screen through the switching box status output 4 of the switching box battery controller for the battery packs. In some embodiments, the display screen can be the display screen of the switching box battery controller and can also be connected to electric equipment through connection (such as the display screen of an electric vehicle) . In some embodiments, the real-time state data can be transmitted to a cloud system, and  the switching box battery controller can be used by a user or an operator to check the working state of the battery packs.
Figure 3A illustrates different electric vehicles using one or more swappable battery pack (e.g., 48V) , according to an embodiment. The switching box or a battery pack controller described herein can be used for these different types of electric vehicles employing the swappable battery pack, according to the present disclosure. The electric vehicles may operate at different operating conditions, have different power specifications, employ different battery packs, etc. For example, the electric vehicles (EVs) can be a super ebike having a 120 km range configured to cover a distance up to 120 km on a single battery pack, a mini-moped having a 70 km range configured to cover a distance up to 70 km on two battery packs, a cargo ebike having 80 km range configured to cover a distance up to 80 km on a single battery pack, an e-scooter having a 55 km range configured to cover a distance up to 55 km on a single battery pack, a e-moped having a 100 km range configured to cover a distance up to 100 km on three battery packs, and an e-car having a 150 km range configured to cover a distance up to 150 km on eight battery packs.
However, different electric vehicles (e.g., in Figure 3 A) may have different battery compartment sizes, different power specification, different battery specifications, and different battery types. As an example, Figure 3B-3D illustrate different electric vehicles having different battery compartments, battery types, and different power specifications. Figure 3B illustrates an electric car having a battery compartment C1 for installing a plurality of swappable battery packs SBP1. The electric car may demand higher power during operation compared to another electric vehicle (e.g., an electric scooter or an electric bike) .
Figure 3C illustrates an electric bike having a battery compartment C2 for installing a plurality of swappable battery packs SBP2. The battery compartment C2 is substantially different compared to the battery compartment C1 of the car (in Figure 3B) . Also, the battery packs SBP2 have different shape, size, and voltage rating than the battery packs SBP1. The electric bike may demand lower power during operation compared to the electric car, but higher power than an electric scooter.
Figure 3D illustrates an electric scooter having a battery compartment C3 for installing a plurality of swappable battery packs SBP3. The battery compartment C3 is substantially different compared to the battery compartment C1/C2 (in Figure 3B/3C) . Also, the battery packs SBP3  have different shape, size, and voltage rating than the battery packs SBP1/SBP2. The electric scooter may demand lower power during operation compared to the electric car and the electric bike.
In some embodiments, a motor output power of a first EV may be different from a second EV, even if the different vehicles use the same voltage. However, in some cases, a battery pack in first EV cannot be used in another EV. For example, an electric kick-scooter employing a 48V battery pack may be used to drive a motor demanding a power from 250 to 800W. But, a full size electrical motorcycle employing a 48V battery pack (s) may need a power output from 2000W to 4000W to power up the motorcycle. As such, the battery pack from the kick-scooter cannot power up the electrical motorcycle alone, although having same voltage of 48V. On the other hand, the battery pack from the electrical motorcycle can power up electric kick-scooter, but the battery pack from the motorcycle may be bigger in size, which may not be installed on the electric kick-scooter.
In the present disclosure, the battery pack control apparatus is configured to operate with different electric vehicles having different power specifications, battery types, etc. For example, the battery pack control apparatus can be swapped between an electric car, an electric bike, an electric scooter, etc. having different battery types, battery pack shapes and sizes, power specifications, as discussed above.
In electric vehicles, to meet a power specification, a plurality of battery packs may be connected in series to get increased voltage and power. For example, a plurality of battery packs may be connected in series to generate twice the voltage and twice the power. In this case, the battery packs are always connected in series, resulting in the battery packs losing flexibility and compatible with other vehicles (e.g., smaller vehicle) . In some embodiments, the battery packs may be connected in parallel, but may not be swappable to meet different power specifications due to reasons discussed with respect to Figures 3B-3D above.
As discussed above, a wide variety of electric vehicles have adopted battery swapping technology to make their products more flexible and operations more efficient. Such battery swapping technology saves time and operating expenses related to charging and operating the electric vehicles. As such, the battery swapping technology may be of particular interest in micromobility sharing, for example. The battery swapping technology has several advantages such as reduced downtime for recharging, which increases vehicle availability and increased  utilization. Also, the battery swapping technology enables opportunities for maintaining strong battery life and introducing vehicle-to-grid related applications.
As the batteries become swappable and interchangeable for one vehicle type, a pack of multiple batteries can be combined together to provide additional power for vehicles that require additional power either instantaneously or over a long period of time (e.g., long range) . In such use cases, multiple batteries with varying degrees of state (charge, voltage, cycles, temperature, etc. ) may be connected where inrush current due to voltage differences may cause safety hazard or significantly reduce battery life.
According to the present disclosure, a battery pack control apparatus is configured to be operable with different electric vehicles having different power specifications, battery types, etc. In the present disclosure, the battery pack control apparatus is configured to individually identify each battery pack, communicate with each battery pack, control each battery pack, and/or optimize (e.g., to maximize safety, lifetime, operating range, etc. ) each battery pack, as each battery pack may be working on its own or together with other battery (ies) when connected to a host vehicle or other types of host vehicles. The use cases are dynamic, as battery packs may be set to charge or discharge at a certain rate based on directives from a vehicle’s micro-controller (or a remote server) . For example, the directives may include switching the vehicle completely off; or the vehicle may be directed to set power consumption levels (such as by adjusting speed or acceleration limits) based on states or conditions of the battery packs.
The battery pack control apparatus provides various advantages. For example, by employing the present battery pack control apparatus, electric vehicle fleet operators may get more efficient energy use to lower operating expenses, less capital investment due to extended battery life, and less expensive battery cost due to higher production volume of same batteries (that can be used in multiple vehicles and multiple configurations) . The battery pack control apparatus enables each battery to have flexibility to be combined with other batteries to power a load (e.g., an electric vehicle) without sacrificing performance or health (of the batteries) .
Figure 3B is a block diagram of an exemplary battery operated system 10 controlled via a battery pack control apparatus 200, according to an embodiment of the present disclosure. In some embodiments, the battery pack control apparatus 200 may also be referred as a control apparatus, a controller, or a switch box herein. In some embodiments, the battery pack control apparatus 200 is swappable and configured to operate with different battery packs and electrical  devices or power grid. In some embodiments, the battery pack control apparatus 200 may be connectable to a plurality of battery packs 100, and an electrical device 600 (also referred as “load 600” ) and/or an electric grid 500. The electrical device 600 may be configured to receive battery power through the battery pack control apparatus 200. In other words, the electrical device 600 may not be directly connected to the battery packs 100, rather connected via the battery pack control apparatus 200. In some embodiments, the battery pack control apparatus 200 is connectable to the plurality of battery packs 100 to control a battery power drawn from one or more of battery packs of the plurality of battery packs 100. In some embodiments, the battery pack control apparatus 200 controls an amount of power supplied to one or more of the battery packs, and an order in which each battery pack be charged.
In some embodiments, the plurality of battery packs 100 have different battery cores (e.g., Li-ion, Alkaline, Ni, lead-acid, etc. ) or all battery cores may be same. For example, the plurality of battery packs 100 includes at least one battery pack with a first core, and another battery pack with a second core. The first core may include, for example, Lithium-ion, and the second core may include lead-acid. In some embodiments, at least one battery pack has a first form factor, and the other battery pack has a second form factor; the second form factor is different from the first form factor. In some embodiments, the plurality of battery packs 100 are connected in parallel. Figure 3 illustrates the plurality of battery packs 100 including battery pack 1, battery pack 2, and battery pack 3. To illustrate the concepts of the present disclosure, the discussion herein refers to three batteries connected in parallel. However, the scope of the present disclosure is not limited to a particular number of batteries. A person of ordinary skill in the art may employ 2, 3, 4, 5, ... n batteries.
In some embodiments, each battery pack (e.g., B1, B2, B3, ..., Bn) of the plurality of battery packs 100 may be operably connected to a corresponding battery monitoring system and a corresponding switch (e.g., K1, K2, K3, etc. ) . In some embodiments, each battery pack is configured to supply continuous power to electronic components of the electronic system 10. For example, the battery pack B1 is coupled to a power supply line P21-, the battery pack B2 is coupled to a power supply line P22-, and battery pack B3 is coupled to a power supply line P23-. In some embodiments, the power from the batteries may be supplied through a power supply unit 210 of the control apparatus 200. Depending on which battery pack is activated (e.g., via the corresponding switch to draw power) , one or more battery packs may further supply power to  operate the electronic components such as the power supply unit, microcontroller unit (MCU) , CAN modules, etc. In some embodiments, the functions of the control apparatus 200 may be implemented in the microcontroller 220. For example, the microcontroller 220 may be a processor configured to implement an algorithm that determines controlling of power supply from the battery packs 100 to the load 600.
In some embodiments, the power supply unit 210 supplies power from the electric grid 500 to the control apparatus 200. For example, the electric grid 500 supplies power to the control apparatus 200 for charging the battery packs 100, starting the control apparatus 200, or to satisfy other power requirements of the electronic components of the system 100. As an example, the power supply unit 210 may supply power to the microcontroller 220, another microcontroller 300, or other electronic components.
In some embodiments, a battery monitoring system may include, for example, communication buses, a temperature sensor (not shown) , a current sensor (not shown) , a voltage sensor (not shown) , or other battery parameter monitoring sensors (not shown) . The battery packs 100 may communicate with the battery pack control apparatus 200 through a communication interface 230. The communication interface may be a CAN communication modem that supports CAN communication. Figure 3 E illustrates three battery monitoring system coupled to corresponding battery packs and a CAN modulel 230 of the control apparatus 200. For example, a first battery monitoring system includes communication buses supplying battery information related to B1 via buses CAN1-H, CAN1-L, and CAN1-G. As another example, a second battery monitoring system includes communication buses supplying battery information related to B2 via buses CAN2-H, CAN2-L, and CAN2-G. As another example, a third battery monitoring system includes communication buses supplying battery information related to B3 via buses CAN3-H, CAN3-L, and CAN3-G. The battery information is used by the control apparatus 200 to, for example, monitor state of the battery packs 100, determine each battery pack voltage or difference in voltages, control switches, and an amount of power to the drawn from the battery packs 100 or amount of power supplied to the battery packs 100 for charging.
In some embodiments, each battery pack of the plurality of battery packs 100 is connected to a corresponding switch to turn on or turn off power supply from the respective batteries. For example, the battery pack B 1 is connected to a switch K1, the battery pack B2 is connected a switch K2, and the battery pack B3 is connected to a switch K3. Each switch may be  implemented using any known switching elements such as a relay, a Field Effect Transistor (FET) , MOSFET, or a combination thereof. In some embodiments, the control apparatus 200 controls the switching of the switches K1, K2, and K3 based on a difference in voltages of the battery packs 100. For example, if the switch K1 is on, power may be extracted from the battery pack B1. While, if the switch is off, no power is extracted from the battery pack B1.
In some embodiments, the battery pack control apparatus 200 may be connected to the electrical device 600 to supply the battery power (e.g., from one or more of the battery packs B1, B2, or B3) in a controlled manner, according to the present disclosure. In some embodiments, the electrical device 600 may be an electric vehicle (e.g., car) , an electric bike, an electric scooter, or other battery operated devices. Each of the electric device may have different power specification in operation. For example, the electric vehicle may demand a higher power acceleration compared to a power demand during cruising. In another example, the electric bike may demand lesser power compared to the electric vehicle. Different electrical devices may be configured to operate with different battery packs. For example, the plurality of battery packs 100 used in cars may differ from those used in other electric devices such as electric bike, electric scooter, etc. Also, the operating power or the demanded power of the electrical device may be different for different electrical devices. According to the present disclosure, the battery pack control apparatus 200 is configured to be swappable between any battery pack and electrical devices to supply the operating power.
In some embodiments, the battery pack control apparatus 200 may be electrically connectable to an electric grid 500 to receive altemating current (AC) power, or to supply power from one or more of the battery packs 100 to the electric grid 500 (e.g., after converting from DC to AC) . For example, in Figure 3E, the plurality of battery packs 100 are connected to the battery pack control apparatus 200, which controls an amount of power to be drawn from the battery and further supplied to the electrical device 600, and/or electric grid 500. In some embodiments, a microcontroller 300 may serve as an interface between the electric grid 500 and/or the electrical device 600. The control apparatus 200 may supply power to receive power through the microcontroller 300.
In some embodiments, the microcontroller 300 may be another processor configured to receive or supply power via power terminals P+ and P-. Furthermore, the microcontroller 300 may communicate with the control apparatus 200 via a communication model such as CAN  module2 240. For example, the microcontroller 300 may communicate demanded power information by the load 600, a type of load 600, or another load or power supply related information. In some embodiments, the microcontroller 300 may provide a signal KS to tum on or turn off the control apparatus 200. In some embodiments, the microcontroller 300 provides a reduced power consumption signal to the load 600. For example, the reduced power consumption signal may be determined by the control apparatus 200 based on a difference in voltages between battery packs.
In some embodiments, the microcontroller 300 serves as an interface that communicates discharging and/or charging of the battery packs 100 determined by the control apparatus 200. In some embodiments, the control apparatus 200 when coupled to the load 600 may cause discharging is controlled manner by extracting battery power from one or more battery packs, determining an amount of power to be supplied to the load 600, and cause the load 600 to operate the battery power. Similarly, in some embodiments, the control apparatus 200 when coupled to the electric grid 500 may cause charging in a controlled manner by selecting one or more battery packs to be charged based on a voltage difference between two battery packs.
In some embodiments, the control apparatus 200 includes the microcontroller 220 configured to control the power supply between the battery packs 100 and the load 600 (and/or electric grid 500) . In some embodiments, the microcontroller 220 powers up the control apparatus 200, resets switches (e.g., KI, K2, and K3) connected to each of the battery packs 100 to off-state or off-position. In some embodiments, a first operation of the microcontroller 220 may be determine which battery pack of the plurality of battery packs 100 has the highest voltage. For example, the microcontroller requests battery information of each battery pack (e.g., B 1, B2, B3) via CAN bus. The battery information includes, among other things, the voltage of each battery pack. The microcontroller 220 compares voltage of each battery pack to determine the highest voltage. For example, the highest voltage battery pack may be B 1, a second voltage battery pack may be B2, and a third voltage battery pack may be B3. It can be understood that the aforementioned order of the battery packs is only exemplary. As the charging and/or discharging of the battery packs take place, the voltage of the battery packs may change, thereby changing the order of highest, second, third voltages of the battery packs. In some embodiments, the battery information or order of battery packs based on voltages may be displayed on a screen of a user device.
In some embodiments, when there are multiple battery packs, the control apparatus 200 generates a series of commands (e.g., switching, reduced power consumption, etc. ) to control and optimize each battery pack such that individual and/or collective battery pack performance and/or lifetime may be maximized. As an example, control power to/from the battery packs is explained with respect to two scenarios: 1) two battery packs; and 2) three battery packs, as follows. However, these example do not limit the number of battery packs. It can be understood that the control apparatus 200 can be programmed to operate and compare any number of battery packs. According to the present disclosure, the controlling of the battery power is based on a difference between voltages of the battery packs, as illustrated with examples below. Example flow charts of the algorithm to control battery power are provided in Figures 4A-4B and 5A-5B.
Figures 4A and 4B are flow charts for controlling battery power to/form the battery packs in the system 100, e.g., where two battery packs are included. At step S202, the control apparatus 200 may determine a direction of current flow that indicates whether the battery packs are discharging or being charged. For example, when the control apparatus 200 is coupled to the electrical device 600, the battery packs may be discharging to supply power to the electrical device 600. In another example, when the control apparatus 200 is coupled to the electric grid 500, the battery packs may be in charging mode to receive power from the electric grid 500. In some embodiments, the battery packs may be in discharging mode to supply power back to the electric grid 500. At step S204, the control apparatus 200 may compare voltages of the two battery packs to determine the battery pack with the highest voltage among the two battery packs. For example, the battery pack B1 (in Figure 3E) may have a voltage VB1 and the battery pack B2 (in Figure 3E) may have a voltage VB2. In an example, VB1 may be greater than VB2. At step S206, the control apparatus 200 controls battery power via switches connected to the battery packs based on the difference in voltages of the battery packs.
Figure 4B is an example flow chart of step S206 that involves controlling the switches (e.g., K1, and K2) in discharge mode. If the battery packs are discharging and the difference in voltages (e.g., VB1-VB2) is more than a voltage threshold TH1 (e.g., 0.5V, 1.5V, 2V, etc. ) , the control apparatus 200 generates a signal to turn off a switch (e.g., K2 in Figure 3E) connected to the battery pack with the lower voltage (e.g., VB2 of B2) . The switch (e.g., K2) connected to the lower voltage battery pack may continue to remain in off-state until the difference in voltages (e.g., VB1-VB2) is less than or equal to the voltage threshold TH1. For example, when the  voltage difference VB1-VB2 is less than 1.5V, the control apparatus 200 tums the switch (e.g., K2) connected to B2 to on-state. In some embodiments, the voltage threshold TH1 may be predetermined based on a usage of the electrical device 600, an amount of power demanded by the electrical device 600, an amount of lifetime of the battery packs, or other discharging or optimization related performance factors.
In an example, when the switch (e.g., K1 in Figure 3E) is connected to the highest voltage battery pack is in on-state and the switch connected to the second battery pack is off-state, the control apparatus 200 draws power from only the battery pack with highest voltage (e.g., the battery pack B 1) . When the switch connected to the highest voltage battery pack is in on-state and the switch connected to the second battery pack is also in on-state, the control apparatus 200 draws power from both the battery packs. As such, a higher power may be drawn from two batteries. In an example, power demanded from the electrical device 600 may be higher than an amount available from the battery packs. In this case, the control apparatus 200 may indicate the electrical device 600 to operate at reduced power consumption.
In some embodiments, the control apparatus 200 is continuously monitoring voltages of the battery pack. In some embodiments, the control apparatus 200 is monitoring voltages of the battery packs at specified interval of times (e.g., periodically after every 10 seconds, 1 minute, 5 minutes, etc. ) . Accordingly, the voltages and voltage difference may change, and in tum the on/off-state of respective switches.
When the battery packs are in charging mode, the above logic may be reversed. For example, when the difference in voltage (e.g., VB1-VB2) is more than a voltage threshold TH1 (e.g., 1.5) , the control apparatus 200 may turn off the switch connected to the highest voltage battery pack (e.g., B 1) and turn on the switch connected to the second voltage battery pack (e.g., B2) . As such, the battery pack with a lower voltage is charged. The state of the switches may be maintained until the aforementioned condition is violated. Once the difference in voltage is less than or equal to the voltage threshold TH1, the switch connected to B1 is tumed back on and both battery packs may be allowed to charge equally.
Figures 4A, 5A and 5B are flow charts of another algorithm for controlling the power of the battery packs present in the system 100, (e.g., where three battery packs are included) . For example, the battery packs include B1, B2 and B3 (in Figure 3E) . With three battery packs, steps S202 and S204 (as discussed above) are performed. At the end of steps S202 and S204, the  control apparatus 200 may determine the highest voltage VB 1 may be associated with the battery pack B1, a second voltage VB2 may be associated with the battery pack B2, and a third voltage VB3 may be associated with the battery pack B3. In some embodiments, the second and third voltages may be lower than the first voltage VB1. In some embodiments, VB2 and VB3 may be the same or VB3 may be lower than VB2.
In Figure 5A, the step S208 may be performed that includes an algorithm configured for three battery packs. At step 208, the difference in voltages between different battery packs may be VB1-VB2 and VB1-VB3, and VB2-VB3. Figure 5A shows operations at step 208 configured for controlling the switches (e.g., K1, K2, and K3) in discharge mode. Figure 5A illustrates different control possibilities. In one example, when VB1-VB2 greater than a first voltage threshold TH1 and VB1-VB3 is greater than a second voltage threshold TH2 -turn off switches (e.g., K2 and K3) connected to the battery packs B2 and B3, respectively. In some embodiments, the first voltage threshold TH1 and the second voltage threshold TH2 may be the same, for example, 1.5V. In some embodiments, the first and second voltage threshold may be different, for example, the first voltage threshold TH1 may be 1.5V and a second threshold TH2 may be 2V. In yet another example, when VB1 -VB2 is equal or less than the first voltage threshold TH1, and VB1-VB3 is equal or less than the second voltage threshold TH2-all three switches (e.g., K1, K2, and K3) are kept in on-state. For example, VB1, VB2, VB3 may be 10V, 9V, and, 8.2V, respectively, and the first and second voltage thresholds may be 1.5V. Then, VB1-VB2 is 1V, which is less than the threshold 1.5V, hence, K1 and K2 are switched to on-state. Similarly, VB1-VB3 is 1.2V, which is less than 1.5V, hence K3 is switched to on-state.
In yet another example, when VB1-VB2 is larger than the first voltage threshold TH1, but VB1-VB3 is equal or less than the second threshold TH2 -turn off the switch (e.g., K2) connected to the battery pack B2, while keeping the switch (e.g., K3) connected to the battery pack B3 in on-state. For example, VB1, VB2, VB3 may be 10V, 6V, and 9V respectively and the first and second voltage thresholds may be 1.5V. Then, VB1-VB2 is 4V, which is greater than the threshold 1.5V; hence, K2 is switched to off-state. Similarly, VB1-VB3 is 1V, which is less than 1.5V, hence K3 is switched to on-state.
In yet another example, VB1-VB3 is larger than the second threshold TH2, but VB1-VB2 is not larger than the first threshold TH1, an additional voltage difference check is performed. For example, VB2 and VB3 are compared to determine if the difference is larger than  a third threshold TH3. If greater, the switch (e.g., K3) connected to the battery pack B3 is turned off. For example, VB1, VB2, VB3 may be 10V, 9V, and 8V, respectively, and the first, second, and third voltage thresholds may be 1.5V. Then, VB1-VB2 is 1V, which is less than the threshold 1.5V. VB1-VB3 is 2V which is greater than 1.5V. However, VB2-VB3 is 1V, which is less than the third threshold TH3, hence K3 is switched to on-state. If VB3 falls to 7V, VB2-VB3 will be 2V, which is greater than 1.5V, hence K3 will be switched to off-state.
In the charging mode, the above logic will be reversed. For example, referring to Figure 5B, when VB1-VB2 and VB1-VB3 are both greater than the thresholds TH1 and TH2, respectively, the switches (e.g., K2 and K3) attached to the battery pack B2 and the battery pack B3 may be turned on, while switch connected to the highest voltage battery is turned off. Thus, the battery pack B2 and the battery pack B3 are charged, while B1 is not charged.
In another example, when VB1-VB2 is greater than the threshold TH1, and VB1-VB3 is equal or less than TH2, the switch (e.g., K2) connected to the battery pack B2 is turned on, while switches (e.g., K1 and K3) connected to the battery packs B1 and B3, respectively, are turned off. Thus, only the battery pack B2 is charged, while the battery packs B1 and B3 are not charged.
In another example, when VB1-VB2 is equal or less than threshold TH1, and VB1-VB3 is equal or less than TH2, a further additional difference check may be performed, for example, a check whether VB2-VB3 is less than the third threshold TH3. If the aforementioned conditions are satisfied, switches (e.g., K1, K2, and K3) connected to the battery packs B1, B2, and B3, respectively, are turned on. Thus, all the battery packs are charged simultaneously.
In another example, when VB1-VB2 is equal or less than the threshold TH1, and VB1-VB3 is greater than the threshold TH2, the switch (e.g., K3) connected to the battery pack B3 is turned on, while switches (e.g., K1 and K2) connected to the battery pack B1 and the battery pack B2, respectively, are turned off. Thus, only the battery pack B3 is charged, while the battery packs B1 and B2 are not charged.
Figures 6A and 6B are a flow chart of a method 60 for controlling battery power of a plurality of battery packs. The method 60 discusses controlling battery power to be supplied to an electric device (e.g., a load 600 of Figure 3E) from the plurality of battery packs (e.g., B1, B2, B3 of Figure 3E) .
At step S61, battery information of each battery pack of a plurality of battery packs is received via each of the battery monitoring systems. The battery information comprises voltage  of each battery pack. In some embodiments, the battery information comprises a state of the battery pack, or an abnormal condition of the battery pack derived from the battery information. Figures 1, 2, and 3 illustrates an example connection of the BMS connected to each of the plurality of battery packs. The BMS further provides the battery information to the control apparatus 100.
At step S62, demand power information of an electrical device is received. In some embodiments, the control apparatus 200 may receive the demand power information e.g., via a communication bus, or a network. The demand power information can be an amount of power demanded by the electrical device 600 to perform one or more operations. For example, the power demanded by an electric vehicle for performing an acceleration may be different from power demanded for performing a cruising. In some embodiments, the power for a first operation (e.g., acceleration) may be greater than the power for a second operation (e.g., cruising, starting, etc. ) .
At step S63, based on the battery information, a battery pack amongst the plurality of battery packs with the highest voltage is determined, and another battery pack amongst the plurality of battery packs having a second voltage may be determined. For example, the battery voltages of each battery pack can be compared to determine the highest voltage battery pack. In an embodiment, the second voltage is lower than the highest voltage. In an example, in Figure 3, the battery pack B1 may be the highest voltage battery pack and the battery pack B2 may be a second voltage battery pack.
At step S64, a switch connected to the highest voltage battery pack is activated to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state. For example, a switch K1 (in Figure 3E) is activated to on-state. As an example, the switch may be a MOSFET, which can be activated by supplying a switching current or a switching voltage. For example, an input gate voltage (e.g., 10V) higher than the source (e.g., 0V) may be applied to turn on the switch K1. While, remaining switches (e.g., K2, K3, etc. ) may be turned off by applying a low input gate voltage (e.g., 0V) to respective switches.
At step S65, a first difference between the highest voltage and the second voltage may be determined. For example, the highest voltage may be 10V and the second voltage may be 9V. Hence, the first difference may be 1V.
At step S66, control, based on the first difference breaching a first voltage threshold, a  switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack. The first difference may be less than the first voltage threshold (e.g., 1.5V) . In an example, as a battery pack (e.g., B2) is being discharged, the first difference may be greater than the first voltage threshold. For example, at some point during discharging, the highest voltage battery may be at 10V, while the second voltage battery may be at 8V. As such, the first difference is 2V, which is greater than 1.5V. In this discharging case, a switch connected to the second voltage battery pack may be turned off to allow the highest voltage battery to discharge more. In another example, the highest voltage battery (e.g., at 10V) and the second voltage battery (e.g., at 8V) may be in charging mode. In this charging case, the first difference is 2V, which is greater than 1.5V. Hence, the switch (e.g., K1) connected to the highest voltage battery (e.g., B1) may be turned off to allow lower voltage battery to charge first.
In some embodiments, controlling the switch connected to the second voltage battery pack includes determining whether the first difference between the highest voltage and the second voltage is greater than the first voltage threshold; and switching, based on the first difference being greater, the switch connected to the second voltage battery pack to off-state to receive the battery power from only the highest voltage battery pack. In some embodiments, during charging, when the first difference is greater, the switch connected to the highest voltage battery pack may be turned off, so that a lower voltage battery pack may be charged first.
In some embodiments, controlling the switch connected to the second voltage battery pack includes determining whether the first difference between the highest voltage and the second voltage is equal to or less than the first voltage threshold; and switching, based on the first difference being equal or less, the switch connected to the second voltage battery pack to on-state to receive additional battery power from the second voltage battery pack.
In some embodiments, the method 60 further includes determining, based on the battery information, yet another battery pack of the plurality of battery packs having a third voltage; determining a second difference between the highest voltage and a third voltage, and a third difference between the second voltage and the third voltage; and controlling, based on the second difference and the third difference, a switch connected to the third voltage battery pack between on-state or off-state to receive additional battery power from the third voltage battery pack.
In some embodiments, controlling the switch connected to the third voltage battery pack includes determining whether the second difference is greater than a second voltage threshold; and switching, based on the second difference being greater, the switch connected to the third voltage battery pack to off-state. In some embodiments, during charging, when the second difference is greater, the switch connected to the highest voltage battery pack may be turned off, so that a lower voltage battery pack may be charged first.
In some embodiments, controlling the switch connected to the third voltage battery pack includes determining whether the second difference is equal to or less than the second voltage threshold; and switching, based on the second difference being equal or less, the third switch connected to the third voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
In some embodiments, controlling the switch connected to the third voltage battery pack includes determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is greater than a third voltage threshold; and switching, based on the determination being true, the switch connected to the third voltage battery pack to off-state.
In some embodiments, controlling of the switch connected to the third voltage battery pack includes determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is equal or less than the third voltage threshold; and switching, based on the determination being true, the switch connected to the third voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
In some embodiments, Figures 5A and 5B provide controlling of the switches connected to the highest voltage, the second voltage, and the third voltage battery packs, as discussed earlier.
At step S67, control, based on the battery power and the demand power information, a power consumption of the electrical device. In some embodiments, controlling power consumption of the electrical device includes comparing the received battery power to the demand power information; and supplying, based on the comparison, the demand power information or a reduced power than the demand power information. For example, when the received battery power is lower than the demand power information, the reduced power is  supplied to the electrical device causing the electrical device to operate at a lower than the demand power information.
Although the present invention has been described in detail for illustration purposes based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.
The present techniques will be better understood with reference to the following enumerated embodiments:
1. A battery pack control apparatus including: a processor configured to: receive, via each of the battery monitoring systems, battery information of each battery pack of the plurality of battery packs, the battery information comprising a voltage of each battery pack; receive demand power information of an electrical device; determine, based on the battery information, a battery pack amongst the plurality of battery packs having the highest voltage, and another battery pack amongst the plurality of battery packs having a second voltage, which is lower than the highest voltage; activate a switch connected to the highest voltage battery pack to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state; determine a first difference between the highest voltage and the second voltage; control, based on the first difference breaching a first voltage threshold, a switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack; and control, based on the battery power and the demand power information, a power consumption of the electrical device.
2. The apparatus of embodiment 1, wherein control of the switch connected to the second voltage battery pack includes: determining whether the first difference between the highest voltage and the second voltage is greater than the first voltage threshold; and switching, based on the first difference being greater, the switch connected to the second voltage battery pack to off-state to receive the battery power from only the highest voltage battery pack.
3. The apparatus of any of embodiments 1-2, wherein control of the switch connected to the second voltage battery pack includes: determining whether the first difference between the highest voltage and the second voltage is equal to or less than the first voltage threshold; and switching, based on the first difference being equal or less, the switch connected to the second voltage battery pack to on-state to receive additional battery power from the second voltage battery pack.
4. The apparatus of any of embodiments 1-3, the processor further configured to: determine, based on the battery information, yet another battery pack of the plurality of battery packs having a third voltage, which is lower than the highest voltage; determine a second difference between the highest voltage and a third voltage, and a third difference between the second voltage and the third voltage; and control, based on the second difference and the third difference, a switch  connected to the third voltage battery pack between on-state or off-state to receive additional battery power from the third voltage battery pack.
5. The apparatus of any of embodiments 1-4, wherein control of the switch connected to the third voltage battery pack includes: determining whether the second difference is greater than a second voltage threshold; and switching, based on the second difference being greater, the switch connected to the third voltage battery pack to off-state.
6. The apparatus of any of embodiments 4-5, wherein control of the switch connected to the third voltage battery pack includes: determining whether the second difference is equal to or less than the second voltage threshold; and switching, based on the second difference being equal or less, the third switch connected to the third voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
7. The apparatus of any of embodiments 4-6, wherein control of the switch connected to the third voltage battery pack includes: determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is greater than a third voltage threshold; and switching, based on the determination being true, the switch connected to the third voltage battery pack to off-state.
8. The apparatus of any of embodiments 4-7, wherein control of the switch connected to the third voltage battery pack includes: determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is equal or less than the third voltage threshold; and switching, based on the determination being true, the switch connected to the third voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
9. The apparatus of any of embodiments 1-8, wherein control of the power consumption of the electrical device includes: comparing the received battery power to the demand power information; and supplying, based on the comparison, the demand power information or a reduced power than the demand power information.
10. The apparatus of embodiment 9, wherein when the received battery power is lower than the demand power information, the reduced power is supplied to the electrical device causing the electrical device to operate at a lower than the demand power information.
11. The apparatus of any of embodiments 1-10, wherein the plurality of battery pack comprises at least one battery pack with a first core, and another battery pack with a second core.
12. The apparatus of embodiment 11, wherein the first core comprises Lithium-ion, and the second core comprises lead-acid.
13. The apparatus of any of embodiments 11-12, wherein the at least one battery pack has a first form factor, and the another battery pack has a second form factor, the second form factor different from the first form factor.
14. The apparatus of any of embodiments 1-13, the processor further configured to: supply, based on the battery power being greater than the demand power information, the battery power to a power supply grid.
15. The apparatus of any of embodiments 1-14, the plurality of battery packs are connected in parallel.
16. A system including: a plurality of battery packs; a plurality of battery monitoring systems, each battery monitoring system operably connected to a corresponding battery pack of the plurality of battery packs; a plurality of switches, each switch operably connected to a corresponding battery pack of the plurality of battery packs; an electrical device; and a battery pack control apparatus configured to perform operations comprising those of any of embodiments 1-15.
17. A method for controlling power of a plurality of battery packs, the method including receiving battery information of each battery pack of the plurality of battery packs, the battery information comprising a voltage of each battery pack; receiving demand power information of an electrical device; determining, based on the battery information, a battery pack amongst the plurality of battery packs having the highest voltage, and another battery pack amongst the plurality of battery packs having a second voltage; activating a switch connected to the highest voltage battery pack to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state; determining a first difference between the highest voltage and the second voltage; controlling, based on the first difference breaching a first voltage threshold, a switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack; and controlling, based on the battery power and the demand power information, a power consumption of the electrical device. 18. The method of embodiment 17, wherein controlling the switch connected to the second voltage battery pack includes: determining whether the first difference between the highest voltage and the second voltage is greater than the first voltage threshold; and switching, based on  the first difference being greater, the switch connected to the second voltage battery pack to off-state to receive the battery power from only the highest voltage battery pack.
19. The method of any of embodiments 17-18, wherein controlling the switch connected to the second voltage battery pack includes: determining whether the first difference between the highest voltage and the second voltage is equal to or less than the first voltage threshold; and switching, based on the first difference being equal or less, the switch connected to the second voltage battery pack to on-state to receive additional battery power from the second voltage battery pack.
20. The method of any of embodiments 17-19, further includes: determining, based on the battery information, yet another battery pack of the plurality of battery packs having a third voltage; determining a second difference between the highest voltage and a third voltage, and a third difference between the second voltage and the third voltage; and controlling, based on the second difference and the third difference, a switch connected to the third voltage battery pack between on-state or off-state to receive additional battery power from the third voltage battery pack.
21. The method of embodiment 20, wherein controlling the switch connected to the third voltage battery pack includes determining whether the second difference is greater than a second voltage threshold; and switching, based on the second difference being greater, the switch connected to the third voltage battery pack to off-state.
22. The method any of embodiments 20-21, wherein controlling the switch connected to the third voltage battery pack includes: determining whether the second difference is equal to or less than the second voltage threshold; and switching, based on the second difference being equal or less, the third switch connected to the third voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
23. The method of any of embodiments 20-21, wherein controlling the switch connected to the third voltage battery pack includes: determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is greater than a third voltage threshold; and switching, based on the determination being true, the switch connected to the third voltage battery pack to off-state.
24. The method of any of embodiments 20-21, wherein controlling the switch connected to the third voltage battery pack includes: determining whether the first difference is equal or less than  the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is equal or less than the third voltage threshold; and switching, based on the determination being true, the switch connected to the third voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
25. The method of any of embodiments 17-24, wherein controlling the power consumption of the electrical device includes: comparing the received battery power to the demand power information; and supplying, based on the comparing, the demand power information or a reduced power than the demand power information.
26. A tangible, non-transitory, machine-readable medium storing instructions that, when executed by a data processing apparatus, causes the data processing apparatus to perform operations comprising those of any of embodiments 17-25.

Claims (40)

  1. A battery pack control apparatus connectable to a plurality of battery packs and an electrical device, each battery pack of the plurality of battery packs operably connected to a corresponding battery monitoring system and a corresponding switch, and the electrical device configured to receive battery power through the battery pack control apparatus, the battery pack control apparatus comprising:
    a processor configured to:
    receive, via each of the battery monitoring systems, battery information of each battery pack of the plurality of battery packs, the battery information comprising a voltage of each battery pack;
    receive demand power information of an electrical device;
    determine, based on the battery information, a battery pack amongst the plurality of battery packs having the highest voltage, and another battery pack amongst the plurality of battery packs having a second voltage, which is lower than the highest voltage;
    activate a switch connected to the highest voltage battery pack to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state;
    determine a first difference between the highest voltage and the second voltage;
    control, based on the first difference breaching a first voltage threshold, a switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack; and
    control, based on the battery power and the demand power information, a power consumption of the electrical device.
  2. The apparatus of claim 1, wherein control of the switch connected to the second voltage battery pack comprises:
    determining whether the first difference between the highest voltage and the second voltage is greater than the first voltage threshold; and
    switching, based on the first difference being greater, the switch connected to the second voltage battery pack to off-state to receive the battery power from only the highest voltage battery pack.
  3. The apparatus of claim 1, wherein control of the switch connected to the second voltage battery pack comprises:
    determining whether the first difference between the highest voltage and the second voltage is equal to or less than the first voltage threshold; and
    switching, based on the first difference being equal or less, the switch connected to the second voltage battery pack to on-state to receive additional battery power from the second voltage battery pack.
  4. The apparatus of claim 1, the processor further configured to:
    determine, based on the battery information, yet another battery pack of the plurality of battery packs having a third voltage, which is lower than the highest voltage;
    determine a second difference between the highest voltage and a third voltage, and a third difference between the second voltage and the third voltage; and
    control, based on the second difference and the third difference, a switch connected to the third voltage battery pack between on-state or off-state to receive additional battery power from the third voltage battery pack.
  5. The apparatus of claim 4, wherein control of the switch connected to the third voltage battery pack comprises:
    determining whether the second difference is greater than a second voltage threshold; and
    switching, based on the second difference being greater, the switch connected to the third voltage battery pack to off-state.
  6. The apparatus of claim 4, wherein control of the switch connected to the third voltage battery pack comprises:
    determining whether the second difference is equal to or less than the second voltage threshold; and
    switching, based on the second difference being equal or less, the third switch connected to the third voltage battery pack to on-state to receive additional battery power from the third  voltage battery pack.
  7. The apparatus of claim 4, wherein control of the switch connected to the third voltage battery pack comprises:
    determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is greater than a third voltage threshold; and
    switching, based on the determination being true, the switch connected to the third voltage battery pack to off-state.
  8. The apparatus of claim 4, wherein control of the switch connected to the third voltage battery pack comprises:
    determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is equal or less than the third voltage threshold; and
    switching, based on the determination being true, the switch connected to the third voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
  9. The apparatus of claim 1, wherein control of the power consumption of the electrical device comprises:
    comparing the received battery power to the demand power information; and
    supplying, based on the comparison, the demand power information or a reduced power than the demand power information.
  10. The apparatus of claim 9, wherein when the received battery power is lower than the demand power information, the reduced power is supplied to the electrical device causing the electrical device to operate at a lower than the demand power information.
  11. The apparatus of claim 1, wherein the plurality of battery pack comprises at least one battery pack with a first core, and another battery pack with a second core.
  12. The apparatus of claim 1 1, wherein the first core comprises Lithium-ion, and the second core comprises lead-acid.
  13. The apparatus of claim 11, wherein the at least one battery pack has a first form factor, and the another battery pack has a second form factor, the second form factor different from the first form factor.
  14. The apparatus of claim 1, the processor further configured to:
    supply, based on the battery power being greater than the demand power information, the battery power to a power supply grid.
  15. The apparatus of claim 1, the plurality of battery packs are connected in parallel.
  16. A system comprising:
    a plurality of battery packs;
    a plurality of battery monitoring systems, each battery monitoring system operably connected to a corresponding battery pack of the plurality of battery packs;
    a plurality of switches, each switch operably connected to a corresponding battery pack of the plurality of battery packs;
    an electrical device; and
    a battery pack control apparatus operably connected to the plurality of battery packs and the electrical device, the electrical device configured to receive battery power through the battery pack control apparatus, the battery pack control apparatus comprising a processor configured to:
    receive, via each of the battery monitoring systems, battery information of each battery pack of the plurality of battery packs, the battery information comprising a voltage of each battery pack;
    receive demand power information_of an electrical device;
    determine, based on the battery information, a battery pack amongst the plurality of battery packs having the highest voltage, and another battery pack amongst the plurality of battery packs having a second voltage;
    activate a switch connected to the highest voltage battery pack to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state;
    determine a first difference between the highest voltage and the second voltage;
    control, based on the first difference breaching a first voltage threshold, a switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack; and
    control, based on the battery power and the demand power information, a power consumption of the electrical device.
  17. The system of claim 16, wherein control of the switch connected to the second voltage battery pack comprises:
    determining whether the first difference between the highest voltage and the second voltage is greater than the first voltage threshold; and
    switching, based on the first difference being greater, the switch connected to the second voltage battery pack to off-state to receive the battery power from only the highest voltage battery pack.
  18. The system of claim 16, wherein control of the switch connected to the second voltage battery pack comprises:
    determining whether the first difference between the highest voltage and the second voltage is equal to or less than the first voltage threshold; and
    switching, based on the first difference being equal or less, the switch connected to the second voltage battery pack to on-state to receive additional battery power from the second voltage battery pack.
  19. The system of claim 16, the processor further configured to:
    determine, based on the battery information, yet another battery pack of the plurality of battery packs having a third voltage;
    determine a second difference between the highest voltage and a third voltage, and a third difference between the second voltage and the third voltage; and
    control, based on the second difference and the third difference, a switch connected to the  third voltage battery pack between on-state or off-state to receive additional battery power from the third voltage battery pack.
  20. The system of claim 19, wherein control of the switch connected to the third voltage battery pack comprises:
    determining whether the second difference is greater than a second voltage threshold; and
    switching, based on the second difference being greater, the switch connected to the third voltage battery pack to off-state.
  21. The system of claim 19, wherein control of the switch connected to the third voltage battery pack comprises:
    determining whether the second difference is equal to or less than the second voltage threshold; and
    switching, based on the second difference being equal or less, the third switch connected to the third voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
  22. The system of claim 19, wherein control of the switch connected to the third voltage battery pack comprises:
    determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is greater than a third voltage threshold; and
    switching, based on the determination being true, the switch connected to the third voltage battery pack to off-state.
  23. The system of claim 19, wherein control of the switch connected to the third voltage battery pack comprises:
    determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is equal or less than the third voltage threshold; and
    switching, based on the determination being true, the switch connected to the third  voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
  24. The system of claim 16, wherein control of the power consumption of the electrical device comprises:
    comparing the received battery power to the demand power information; and
    supplying, based on the comparison, the demand power information or a reduced power than the demand power information.
  25. The system of claim 24, wherein when the received battery power is lower than the demand power information, the reduced power is supplied to the electrical device causing the electrical device to operate at a lower than the demand power information.
  26. The system of claim 16, wherein the plurality of battery pack comprises at least one battery pack with a first core, and another battery pack with a second core.
  27. The system of claim 26, wherein the at least one battery pack has a first form factor, and the another battery pack has a second form factor, the second form factor different from the first form factor.
  28. The system of claim 16, the processor further configured to:
    supply, based on the battery power being greater than the demand power information, the battery power to a power supply grid.
  29. A method for controlling power of a plurality of battery packs, the method comprising:
    receiving battery information of each battery pack of the plurality of battery packs, the battery information comprising a voltage of each battery pack;
    receiving demand power information of an electrical device;
    determining, based on the battery information, a battery pack amongst the plurality of battery packs having the highest voltage, and another battery pack amongst the plurality of battery packs having a second voltage;
    activating a switch connected to the highest voltage battery pack to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state;
    determining a first difference between the highest voltage and the second voltage;
    controlling, based on the first difference breaching a first voltage threshold, a switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack; and
    controlling, based on the battery power and the demand power information, a power consumption of the electrical device.
  30. The method of claim 29, wherein controlling the switch connected to the second voltage battery pack comprises:
    determining whether the first difference between the highest voltage and the second voltage is greater than the first voltage threshold; and
    switching, based on the first difference being greater, the switch connected to the second voltage battery pack to off-state to receive the battery power from only the highest voltage battery pack.
  31. The method of claim 29, wherein controlling the switch connected to the second voltage battery pack comprises:
    determining whether the first difference between the highest voltage and the second voltage is equal to or less than the first voltage threshold; and
    switching, based on the first difference being equal or less, the switch connected to the second voltage battery pack to on-state to receive additional battery power from the second voltage battery pack.
  32. The method of claim 29, further comprising:
    determining, based on the battery information, yet another battery pack of the plurality of battery packs having a third voltage;
    determining a second difference between the highest voltage and a third voltage, and a third difference between the second voltage and the third voltage; and
    controlling, based on the second difference and the third difference, a switch connected to  the third voltage battery pack between on-state or off-state to receive additional battery power from the third voltage battery pack.
  33. The method of claim 32, wherein controlling the switch connected to the third voltage battery pack comprises:
    determining whether the second difference is greater than a second voltage threshold; and
    switching, based on the second difference being greater, the switch connected to the third voltage battery pack to off-state.
  34. The method of claim 32, wherein controlling the switch connected to the third voltage battery pack comprises:
    determining whether the second difference is equal to or less than the second voltage threshold; and
    switching, based on the second difference being equal or less, the third switch connected to the third voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
  35. The method of claim 32, wherein controlling the switch connected to the third voltage battery pack comprises:
    determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is greater than a third voltage threshold; and
    switching, based on the determination being true, the switch connected to the third voltage battery pack to off-state.
  36. The method of claim 32, wherein controlling the switch connected to the third voltage battery pack comprises:
    determining whether the first difference is equal or less than the first voltage threshold, the second difference is greater than the second voltage threshold, and the third difference is equal or less than the third voltage threshold; and
    switching, based on the determination being true, the switch connected to the third  voltage battery pack to on-state to receive additional battery power from the third voltage battery pack.
  37. The method of claim 29, wherein controlling the power consumption of the electrical device comprises:
    comparing the received battery power to the demand power information; and
    supplying, based on the comparing, the demand power information or a reduced power than the demand power information.
  38. A non-transitory computer-readable medium instructions stored therein that, when executed by one or more processors, cause operations comprising:
    receiving battery information of each battery pack of a plurality of battery packs, the battery information comprising a voltage of each battery pack;
    receiving demand power information of an electrical device;
    determining, based on the battery information, a battery pack amongst the plurality of battery packs having the highest voltage, and another battery pack amongst the plurality of battery packs having a second voltage;
    activating a switch connected to the highest voltage battery pack to on-state for receiving battery power from the highest voltage battery pack and other switches to off-state;
    determining a first difference between the highest voltage and the second voltage;
    controlling, based on the first difference breaching a first voltage threshold, a switch connected to the second voltage battery pack between on-state or off-state to receive additional battery power from the second voltage battery pack; and
    controlling, based on the battery power and the demand power information, a power consumption of the electrical device.
  39. The medium of claim 38, further comprising:
    determining, based on the battery information, yet another battery pack of the plurality of battery packs having a third voltage;
    determining a second difference between the highest voltage and a third voltage, and a third difference between the second voltage and the third voltage; and
    controlling, based on the second difference and the third difference, a switch connected to the third voltage battery pack between on-state or off-state to receive additional battery power from the third voltage battery pack.
  40. The medium of claim 39, wherein controlling of the power consumption of the electrical device comprises:
    comparing the received battery power to the demand power information; and
    supplying, based on the comparison, the demand power information or a reduced power than the demand power information.
PCT/CN2020/127097 2019-11-07 2020-11-06 Controller for battery packs WO2021088982A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911079903.2A CN111002868A (en) 2019-11-07 2019-11-07 Intelligent hybrid controller for battery pack
CN201911079903.2 2019-11-07

Publications (1)

Publication Number Publication Date
WO2021088982A1 true WO2021088982A1 (en) 2021-05-14

Family

ID=70111304

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/117769 WO2021088559A1 (en) 2019-11-07 2020-09-25 Smart battery pack mixedly using controller
PCT/CN2020/127097 WO2021088982A1 (en) 2019-11-07 2020-11-06 Controller for battery packs

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117769 WO2021088559A1 (en) 2019-11-07 2020-09-25 Smart battery pack mixedly using controller

Country Status (2)

Country Link
CN (1) CN111002868A (en)
WO (2) WO2021088559A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111002868A (en) * 2019-11-07 2020-04-14 上海腾通信息科技有限公司 Intelligent hybrid controller for battery pack
CN113300429A (en) * 2021-05-17 2021-08-24 同济大学 New and old and different model hybrid system of lithium cell for energy storage
CN114274841B (en) * 2021-08-09 2023-05-23 中车资阳机车有限公司 Parallel direct-hanging control method for multi-branch power battery system
CN114361561B (en) * 2021-12-31 2024-03-19 杭州鹏成新能源科技有限公司 Novel battery pack grouping system capable of being selectively combined and grouped and grouping method
CN114860055B (en) * 2022-05-31 2024-05-10 章鱼博士智能技术(上海)有限公司 Method and device for displaying front-end page of battery module and electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192755A (en) * 2006-11-27 2008-06-04 比亚迪股份有限公司 A voltage balance management device of dynamic battery pack and management method
CN207834505U (en) * 2018-02-10 2018-09-07 北京众诺达科技有限公司 A kind of battery pack intelligence managing and control system
CN109301363A (en) * 2018-08-30 2019-02-01 上汽通用汽车有限公司 Battery pack management system, method and storage medium
WO2019082778A1 (en) * 2017-10-27 2019-05-02 株式会社デンソー Power storage system
CN109768589A (en) * 2018-12-20 2019-05-17 北京昆兰新能源技术有限公司 A kind of battery voltage balanced equipment
CN209505504U (en) * 2019-01-07 2019-10-18 郑州轻工业学院 Power battery and system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104467058A (en) * 2013-09-23 2015-03-25 孟祥吉 Monteggia energy method (modularization and intelligence scheme of automobile battery)
CN104935032B (en) * 2015-05-19 2017-11-10 王知康 Combined type automobile battery system
CN106696707B (en) * 2015-11-17 2019-06-11 北京宝沃汽车有限公司 The power-on and power-off control method and system of the power battery pack of electric car
CN106114267B (en) * 2016-08-02 2019-03-19 威马汽车科技集团有限公司 A kind of battery of electric vehicle packet switching control and method
US20190152342A1 (en) * 2016-08-27 2019-05-23 Fang Shen Method of Energizing Electric Vehicle Power Train with Multiple and Independently Controlled Battery Packs
CN106487066A (en) * 2016-11-22 2017-03-08 深圳市清深科技有限公司 A kind of remote battery intelligent management system
CN206432349U (en) * 2016-12-16 2017-08-22 东莞市德尔能新能源股份有限公司 Batteries in parallel connection bag intelligent switching system
CN107919676A (en) * 2017-12-22 2018-04-17 深圳市智能兄弟科技有限公司 A kind of electric power system based on intelligent battery
CN111002868A (en) * 2019-11-07 2020-04-14 上海腾通信息科技有限公司 Intelligent hybrid controller for battery pack

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192755A (en) * 2006-11-27 2008-06-04 比亚迪股份有限公司 A voltage balance management device of dynamic battery pack and management method
WO2019082778A1 (en) * 2017-10-27 2019-05-02 株式会社デンソー Power storage system
CN207834505U (en) * 2018-02-10 2018-09-07 北京众诺达科技有限公司 A kind of battery pack intelligence managing and control system
CN109301363A (en) * 2018-08-30 2019-02-01 上汽通用汽车有限公司 Battery pack management system, method and storage medium
CN109768589A (en) * 2018-12-20 2019-05-17 北京昆兰新能源技术有限公司 A kind of battery voltage balanced equipment
CN209505504U (en) * 2019-01-07 2019-10-18 郑州轻工业学院 Power battery and system

Also Published As

Publication number Publication date
CN111002868A (en) 2020-04-14
WO2021088559A1 (en) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2021088982A1 (en) Controller for battery packs
CN107499180B (en) Pure electric vehicle power control method and system
CN107499136B (en) Variable wake-up of high voltage charger based on low voltage system parameters
CN106809040B (en) Method and apparatus for charging to high-tension battery component
US9013143B2 (en) Method for charging a plug-in electric vehicle
CN107804180B (en) System and method for charging a low voltage battery of an electrified vehicle
CN107539151B (en) Charging and battery-replacing integrated power battery system, working method and application
CN104802658A (en) New-energy entire car controller integrated with motor control function and battery main control function
DE102015109497A1 (en) METHOD FOR REVITALIZING AND CAPACITY-INCREASING LITHIUM-ION BATTERIES
CN107444176B (en) Charging and battery-replacing integrated power battery system, working method and application thereof
CN105365593A (en) Charge connection device for electric vehicle, and control method thereof
DE102016101100A1 (en) Intelligent energy management to improve the life of an electrically charged battery
CN205450766U (en) Integrated battery management and automobile body control function's vehicle control unit
CN103770657A (en) Vehicle, power supply system, and method for controlling power supply system
CN108081994B (en) Power supply management method and system
CN103475041A (en) Battery charging control system and method of electric automobile
CN204452095U (en) Electric automobile high-voltage electric power system
CN108263214A (en) A kind of energy control method and device of mixed power electric car low tension battery
CN105811514B (en) Double source trolleybus power battery dynamic equilibrium charge control method and control system
KR20130120229A (en) A method for charging electric vehicle
CN108081986A (en) A kind of split type automated power distribution charging system of electric vehicle
CN108944901A (en) System and method for regulating cell state-of-charge parameter
CN109088448A (en) The power supply device of vehicle
CN102255364A (en) Charging equipment of electric vehicle battery
CN204801535U (en) Integrated form driving system and have its vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884976

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20884976

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20884976

Country of ref document: EP

Kind code of ref document: A1