WO2021088374A1 - 一种基片集成波导到矩形波导的毫米波转接结构 - Google Patents

一种基片集成波导到矩形波导的毫米波转接结构 Download PDF

Info

Publication number
WO2021088374A1
WO2021088374A1 PCT/CN2020/096402 CN2020096402W WO2021088374A1 WO 2021088374 A1 WO2021088374 A1 WO 2021088374A1 CN 2020096402 W CN2020096402 W CN 2020096402W WO 2021088374 A1 WO2021088374 A1 WO 2021088374A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
millimeter wave
substrate integrated
substrate
integrated waveguide
Prior art date
Application number
PCT/CN2020/096402
Other languages
English (en)
French (fr)
Inventor
董昊逸
向渝
Original Assignee
南京迈矽科微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京迈矽科微电子科技有限公司 filed Critical 南京迈矽科微电子科技有限公司
Publication of WO2021088374A1 publication Critical patent/WO2021088374A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices

Definitions

  • the invention relates to the field of millimeter wave waveguide switching, in particular to a broadband low-loss millimeter wave waveguide switching structure based on a PCB transmission line.
  • Radar technology has been continuously developed in the past 70 years, from its initial application in the military defense field to the now-rich and versatile civilian field. In the past two decades, civilian radars have been widely used.
  • Automobile anti-collision radar is a typical application. These radar systems not only have the traditional range and speed measurement function, but also realize the angle measurement function. Among them, the system using frequency modulated continuous wave radar has been widely used.
  • Automobile anti-collision radar is an application scenario that has emerged in the market in recent years. The radar is used to assist the driving system to improve the safety and comfort of the driver.
  • RO3003 panels are widely used in mass-produced radar systems because of their small dielectric constant changes with temperature, good mechanical properties, and low temperature expansion.
  • Rectangular waveguide has the characteristics of low loss, large power capacity, and good metal shielding. It is widely used in various millimeter wave systems. Standard waveguide components such as couplers, detectors, isolators, attenuators and slot lines are widely used. used. At the same time, most of the instruments and equipment in the millimeter wave and terahertz frequency bands use standard waveguide interfaces, making rectangular waveguides widely used. Millimeter wave transmission lines such as microstrip lines, coplanar waveguides, substrate integrated waveguides, etc., have the advantages of low loss, high power capacity, easy integration and miniaturization, and are also widely used in microwave millimeter wave systems. Therefore, the transfer technology of the transmission line to the rectangular waveguide (RWG) has been widely studied.
  • the switching structure based on the microwave sheet RO3003 used for the mass production of millimeter wave automotive radars has not been fully studied.
  • the existing broadband switching structure usually uses customized additional metal waveguides to expand the bandwidth, although it has achieved a small
  • the insertion loss of the metal structure is relatively large, and it is not easy to integrate the system.
  • the standard vertical waveguide switching structure with higher integration usually adopts resonance mode for switching, which has the characteristic of small bandwidth.
  • Electromagnetic dipoles use complementary units to radiate and are widely used in broadband antennas, but waveguide switching has not been applied accordingly.
  • the technical problem to be solved by the present invention is to provide a small-size and wide-bandwidth substrate integrated waveguide (SIW) to rectangular waveguide (RWG) millimeter wave switching structure in view of the above-mentioned shortcomings of the prior art.
  • SIW substrate integrated waveguide
  • RWG rectangular waveguide
  • a millimeter wave switching structure from a substrate integrated waveguide to a rectangular waveguide which is characterized in that it comprises:
  • a transmission board including a first dielectric substrate, and a substrate integrated waveguide transmission line and an excitation groove provided on the first dielectric substrate;
  • An adapter plate includes a second dielectric substrate and an electromagnetic dipole arranged on the second dielectric substrate, and the electromagnetic dipole is excited by the excitation slot.
  • the electromagnetic dipole is composed of four grounded rectangular patches, two sets of horizontal rectangular patches form an electric dipole, and a quarter-wavelength gap between the rectangular patches forms a magnetic dipole.
  • the unit constituting the electromagnetic dipole is not limited to this structure.
  • the number and form of the unit can be adjusted based on the formation of the electromagnetic dipole.
  • two patch units, the unit form can also be circular or polygonal. Or irregular shape.
  • the substrate integrated waveguide transmission line is composed of an array of metallized through holes on the dielectric substrate.
  • the excitation groove is a bow tie-shaped groove with a narrow middle gap and a width of the gap gradually widening from the middle to the two sides.
  • the second dielectric substrate is also provided with a metalized grounding hole located around the electromagnetic dipole for further reducing surface wave energy leakage.
  • the electromagnetic dipole radiation excites the main mode of the waveguide, realizing the switch from the substrate integrated waveguide (SIW) to the rectangular waveguide.
  • SIW substrate integrated waveguide
  • Both the electromagnetic dipole antenna and the bow tie type slot have broadband characteristics, so the switching structure has broadband characteristics.
  • the metalized grounding hole around the electromagnetic dipole further reduces the leakage of surface wave energy, so that the switching loss is further reduced.
  • this switch is a switch from a substrate integrated waveguide (SIW) to a rectangular waveguide (RWG).
  • SIW substrate integrated waveguide
  • RWG rectangular waveguide
  • the slit on the SIW is a bow tie type, and the radiation unit on the TLY-5 circuit board is in the form of an electromagnetic dipole.
  • millimeter wave switch adopts a standard PCB process.
  • the switching structure has lower insertion loss
  • the structure is simple and easy to assemble, which is suitable for commercial mass-produced millimeter wave automotive radar system applications.
  • Figure 1 is a schematic diagram of a millimeter wave waveguide switching structure based on RO3003 medium with large bandwidth and low loss;
  • Figure 2 is a schematic diagram of the structure of the adapter board
  • Figure 3 is a schematic cross-sectional view of Figure 2;
  • Figure 4 is a schematic diagram of a traditional SIW slot waveguide switching structure
  • FIG. 5 is a comparison diagram of the return loss and insertion loss of the switching structure proposed by the present invention and the conventional SIW slot waveguide switching structure;
  • Figure 6 is the performance deviation result of the present invention under certain assembly errors
  • Figure 7 is a schematic diagram of the parameters of the adapter board of the present invention.
  • Figure 8 is a schematic diagram of the parameters of the transmission board of the present invention.
  • Fig. 9 is a comparison diagram of simulation and test results based on the back-to-back transition structure of RO3003 with a thickness of 10 mils according to the present invention.
  • the substrate integrated waveguide (SIW) to rectangular waveguide (RWG) transition is composed of two independent PCBs, namely the transmission board 1 and the adapter board 2.
  • the two PCBs are made of standard waveguide flanges.
  • the screws on the disk are assembled together.
  • the transfer board 2 adopts TLY-5 with a thickness of 20 mils
  • the transmission board 1 adopts RO3003 with a thickness of 5 mils or 10 mils.
  • the SIW transmission line 11 uses a metalized through-hole array to realize the function of a traditional waveguide on the dielectric plate of the transmission board 1.
  • the transmission line is located on the RO3003 circuit board, and the end of the bow tie type excitation slot 12 excites the electromagnetic dipole on the TLY-5 dielectric board ⁇ 22.
  • the electromagnetic dipole 22 is composed of four grounded rectangular patches. Two sets of horizontal patches form an electric dipole, and a quarter-wavelength gap between the patches forms a magnetic dipole.
  • the electromagnetic dipole radiation excites the main mode of the waveguide, realizing the switch from the substrate integrated waveguide (SIW) to the rectangular waveguide.
  • SIW substrate integrated waveguide
  • Both the electromagnetic dipole antenna and the bow tie type slot have broadband characteristics, so the switching structure has broadband characteristics.
  • TLY-5 itself has lower loss, so the switching loss is also smaller in the working frequency band.
  • the metalized grounding hole around the electromagnetic dipole further reduces the leakage of surface wave energy, so that the switching loss is further reduced.
  • Figure 2 shows a schematic plan view of the adapter plate
  • Figure 3 is a schematic cross-sectional view of the adapter plate.
  • the rectangular patch is located on the upper surface of the dielectric plate.
  • the lower surface of the dielectric plate is provided with an excitation corresponding to the position of the excitation groove 11 on the transmission board 1.
  • the slot 21 and the excitation slot 21 are located between the gaps of a group of electromagnetic dipoles 22.
  • the traditional substrate integrated waveguide (SIW) to rectangular waveguide (RWG) switching technology uses slot radiation to propagate and transmit electromagnetic waves.
  • a switching model from a single bow-tie slot of a substrate integrated waveguide (SIW) to a rectangular waveguide (RWG) was established (Figure 4), and optimized simulations were performed. It can be seen from Fig. 5 that the standing wave bandwidth and insertion loss of the switching structure proposed by this invention are greatly improved compared with the traditional slot switching method.
  • the adapter structure of the present invention requires manual assembly, which inevitably introduces certain assembly errors.
  • the assembly offset is 60um
  • the performance of the switch is basically maintained, and there is almost no frequency offset.
  • 60um is already a big error for mechanical assembly, so it proves the good robustness of the adapter structure.
  • the parameters of the adapter board and the transmission board of the present invention are shown.
  • the design principles of the diameter d of the metalized grounding hole of the SIW transmission line and the spacing s between adjacent holes are: s/d ⁇ 3 and d ⁇ 0.2Ws.
  • Ws is the width of SIW.
  • the SIW equivalent dielectric-filled waveguide In order to ensure that the main mode transmitted in the SIW is the TE10 mode, it needs to be designed according to the parameters of the SIW equivalent dielectric-filled waveguide.
  • the relationship between the SIW width Ws and the equivalent dielectric-filled waveguide width WWG is:
  • the resonant frequency of the electric dipole depends on the length of the patch, and the resonant point of the magnetic dipole is mainly determined by the length of the gap.
  • the size of the switching structure obtained by simulation optimization is shown in Figures 7 and 8.
  • the back-to-back transfer was processed and tested based on RO3003 board with a thickness of 10mil.
  • the switch structure is tested by a vector network analyzer. From the simulation and test results, based on the high consistency of the test results, the tested standing wave bandwidth ( ⁇ -10dB) is 20.7GHz (68.6GHz-89.3GHz). After de-embedding the SIW transmission loss, a single turn The minimum insertion loss of the connection is only 0.33dB.
  • the high consistency of the test results also proves that the performance of the transition structure is less affected by assembly and processing errors.
  • circuit boards used in the present invention are all processed by standard PCB technology.

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种基片集成波导到矩形波导的毫米波转接结构,包括:一传输板,包括第一介质基板和设置在所述第一介质基板上的基片集成波导传输线和激励槽;一转接板,包括第二介质基板和设置在所述第二介质基板上的电磁偶极子,该电磁偶极子由所述激励槽激励。传输线位于传输板上,在传输板和标准矩形波导间插入一块转接板,实现传输线到波导的宽带低损耗转接。本发明结构简单,不需要额外的金属结构件,仅在射频板和标准波导件中间插入可重复利用的转接板,解决了基于汽车雷达应用波导转接损耗大和工作频带较窄的问题。

Description

一种基片集成波导到矩形波导的毫米波转接结构 技术领域
本发明涉及毫米波波导转接领域,尤其涉及基于PCB传输线的宽带低损耗毫米波波导转接结构。
背景技术
雷达技术在过去70年里得到了持续的发展,从最初应用在军事防御领域到如今功能丰富应用广泛的民用领域。近二十年来,民用的雷达广泛兴起。汽车防撞雷达就是一个典型的应用。这些雷达系统不仅具备传统的测距测速功能,同时也实现了测角的功能。这其中,采用了调频连续波雷达的系统得到了广泛应用。汽车防撞雷达就是近年来市场上兴起的应用场景。该雷达被用于辅助驾驶系统来提高驾驶员的安全性和舒适度。对于雷达前端系统,RO3003板材因其介电常数随温度变化较小、良好的机械性能和温度膨胀度很小的特性被广泛应用于量产的雷达系统中。
矩形波导(RWG)具有低损耗、功率容量大、金属屏蔽性好的特点被广泛用于各类毫米波系统中,标准波导元件如耦合器、检波器、隔离器、衰减器及槽线等广泛被使用。同时毫米波、太赫兹频段的仪器设备大多采用标准波导接口,使得矩形波导被广泛使用。毫米波传输线例如微带线、共面波导、基片集成波导等,具有低损耗、高功率容量、易集成和小型化等优点,也被广泛用于微波毫米波系统中。因此传输线到矩形波导(RWG)的转接技术被广泛研究。但这其中基于用于毫米波汽车雷达量产的微波板材RO3003的转接结构没有得到充分的研究,现有的宽带转接结构通常采用定制化额外的金属波导件展宽带宽,虽然取得了较小的插入损耗,但金属结构件体积较大,不易于系统集成。而集成度较高的标准垂直波导转接结构通常采用谐振的方式进行转接,具有带宽小的特点。电磁偶极子采用互补的单元进行辐射,在宽带天线中应用广泛,但波导转接并没有得到相应的应用。
因此,需要一种具备大带宽低损耗、基于RO3003板材的PCB传输线到矩形波导(RWG)的毫米波转接结构。
发明内容
本发明所要解决的技术问题是针对上述现有技术存在的不足,而提供一种尺寸小、带宽宽的基片集成波导(SIW)到矩形波导(RWG)的毫米波转接结构。
为解决上述技术问题,本发明采用的技术方案是:
一种基片集成波导到矩形波导的毫米波转接结构,其特征在于,包括:
一传输板,包括第一介质基板和设置在所述第一介质基板上的基片集成波导传输线和激励槽;
一转接板,包括第二介质基板和设置在所述第二介质基板上的电磁偶极子,该电磁偶极子由所述激励槽激励。
所述电磁偶极子由四个接地的矩形贴片组成,两组水平的矩形贴片构成电偶极子,矩形贴片之间四分之一波长的缝隙构成磁偶极子。同时,构成电磁偶极子的单元不限于该结构,单元数量和形式在形成电磁偶极子的基础上都可做出调整,例如两个贴片单元,单元的形式也可为圆形、多边形或不规则形状。
所述基片集成波导传输线由所述介质基板上的金属化通孔阵列构成。
所述激励槽为中间缝隙窄、且缝隙宽度由中间向两侧渐宽的领结型槽。
在所述第二介质基板上还设置有位于电磁偶极子周围的用于进一步减少表面波能量泄露的金属化接地孔。
电磁偶极子辐射激励起波导的主模,实现基片集成波导(SIW)到矩形波导的转接。电磁偶极子天线和领结型的槽都具有宽带的特性,因此该转接结构具备宽带的特性。电磁偶极子周围的金属化接地孔进一步减少的表面波能量的泄露,使得转接损耗进一步缩小。
进一步的,本转接为基片集成波导(SIW)到矩形波导(RWG)的转接。
进一步的,为了提高转接的工作频带,SIW上的缝隙为领结型,TLY-5电路板上的辐射单元为电磁偶极子形式。
进一步的,该毫米波转接采用标准的PCB工艺。
有益效果:
(1)改善了RO3003板材基片集成波导(SIW)到矩形波导(RWG)转接工作带宽较窄的问题;
(2)转接结构具备较低的插入损耗;
(3)结构简单、装配容易,适用于商用量产的毫米波汽车雷达系统应用。
附图说明
图1是基于RO3003介质大带宽低损耗毫米波波导转接结构原理图;
图2是转接板的结构原理图;
图3是图2的截面示意图;
图4是传统SIW缝隙波导转接结构原理图;
图5是本发明提出的转接结构与传统SIW缝隙波导转接结构回波损耗和插入损耗对照图;
图6是本发明在一定装配误差情况下性能偏移结果;
图7是本发明转接板参数示意图
图8是本发明传输板参数示意图
图9是本发明基于10mil厚度RO3003背靠背的转接结构仿真与测试结果对照图。
其中:1、传输板;11、SIW传输线;12、激励槽;2、转接板;21、激励槽;22、电磁偶极子;23、金属化接地孔;3、标准波导。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1所示,该基片集成波导(SIW)到矩形波导(RWG)转接由两块独立的PCB构成,分别为传输板1和转接板2,两块PCB由标准波导件法兰盘上的螺丝组装在一起。转接板2采用20mil厚度的TLY-5,传输板1采用5mil或10mil厚度的RO3003。SIW传输线11是利用金属化通孔阵列在传输板1的介质板上实现传统波导的功能,传输线位于RO3003电路板上,末端开领结型的激励槽12激励TLY-5介质板上的电磁偶极子22。电磁偶极子22由四个接地的矩形贴片组成,两组水平的贴片构成电偶极子,贴片之间四分之一波长的缝隙构成磁偶极子。电磁偶极子辐射激励起波导的主模,实现基片集成波导(SIW)到矩形波导的转接。电磁偶极子天线和领结型的槽都具有宽带的特性,因此该转接结构具备宽带的特性。且TLY-5本身具备较低的损耗,因此该转接的损耗在工作频带内也较小。同时,电磁偶极子周围的金属化接地孔进一步减少的表面波能量的泄露,使得转接损耗进一步缩小。
图2展示了转接板平面示意图;图3为转接板截面示意图,矩形贴片位于介质板的上表面,在介质板的下表面设置有与传输板1上激励槽11位置相对应的激励槽21,激励 槽21位于一组电磁偶极子22的缝隙之间。
如图4所示,传统的基片集成波导(SIW)到矩形波导(RWG)转接技术采用缝隙辐射的方式传播传输电磁波。作为对照,建立了基片集成波导(SIW)单个领结型缝隙到矩形波导(RWG)的转接模型(图4),并进行了优化仿真。从图5中可以看出,该发明提出的转接结构在驻波带宽和插入损耗相较于传统的缝隙转接方式有巨大的提升。
如图6所示,该发明的转接结构由于需要手动装配,不可避免地引入一定的装配误差。在定义水平和竖直两个方向上的偏移量为dx和dy的基础上,对不同偏移下转接的性能做了仿真。从图6中可知,在装配偏移60um的情况下,转接的性能基本保持,几乎没有发生频偏。而60um对于机械装配而言已经是很大的误差,因此证明了该转接结构良好的鲁棒性。
如图7,8所示,展示了本发明转接板和传输板的参数。为了防止电磁泄漏,SIW传输线金属化接地孔直径d和相邻孔间距s的设计原则为:s/d<3且d<0.2Ws。其中Ws为SIW的宽度。为了保证SIW中传输的主模为TE10模式,需根据SIW等效的介质填充波导的参数进行设计,SIW宽度Ws与等效的介质填充波导宽度WWG的关系为:
Figure PCTCN2020096402-appb-000001
而对于电磁偶极子而言,电偶极子的谐振频率取决于贴片的长度,磁偶极子的谐振点主要由缝隙长度决定。根据SIW和电磁偶极子的设计初值,仿真优化得到转接结构尺寸如图7,8所示。
如图9所示,基于10mil厚度RO3003板材加工并测试了该背靠背转接。通过矢量网络分析仪对该转接结构进行测试。从仿真和测试结果来看,在测试结果具有高度一致性的基础上,测试的驻波带宽(<-10dB)为20.7GHz(68.6GHz-89.3GHz),在去嵌SIW传输损耗后,单个转接的最小插入损耗仅为0.33dB。测试结果高度的一致性也证明该转接结构的性能受装配和加工误差的影响较小。
本发明中所使用的到的电路板均采用标准的PCB工艺加工。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

  1. 一种基片集成波导到矩形波导的毫米波转接结构,其特征在于,包括:
    一传输板,包括第一介质基板和设置在所述第一介质基板上的基片集成波导传输线和激励槽;
    一转接板,包括第二介质基板和设置在所述第二介质基板上的电磁偶极子,该电磁偶极子由所述激励槽激励。
  2. 根据权利要求1所述的基片集成波导到矩形波导的毫米波转接结构,其特征在于,所述电磁偶极子由至少一对接地的贴片组成,成对的贴片构成电偶极子,成对的贴片之间四分之一波长的缝隙构成磁偶极子。
  3. 根据权利要求1所述的基片集成波导到矩形波导的毫米波转接结构,其特征在于,所述贴片为两对。
  4. 根据权利要求1所述的基片集成波导到矩形波导的毫米波转接结构,其特征在于,所述贴片形状为圆形、多边形或不规则形状。
  5. 根据权利要求4所述的基片集成波导到矩形波导的毫米波转接结构,其特征在于,所述贴片为矩形。
  6. 根据权利要求1-5任一所述的基片集成波导到矩形波导的毫米波转接结构,其特征在于,所述基片集成波导传输线由所述介质基板上的金属化通孔阵列构成。
  7. 根据权利要求1-5任一所述的基片集成波导到矩形波导的毫米波转接结构,其特征在于,所述激励槽为中间缝隙窄、且缝隙宽度由中间向两侧渐宽的领结型槽。
  8. 根据权利要求1-5任一所述的基片集成波导到矩形波导的毫米波转接结构,其特征在于,在所述第二介质基板上还设置有位于电磁偶极子周围的用于进一步减少表面波能量泄露的金属化接地孔。
PCT/CN2020/096402 2019-11-05 2020-06-16 一种基片集成波导到矩形波导的毫米波转接结构 WO2021088374A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911068734.2A CN110739514B (zh) 2019-11-05 2019-11-05 一种基片集成波导到矩形波导的毫米波转接结构
CN201911068734.2 2019-11-05

Publications (1)

Publication Number Publication Date
WO2021088374A1 true WO2021088374A1 (zh) 2021-05-14

Family

ID=69272205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096402 WO2021088374A1 (zh) 2019-11-05 2020-06-16 一种基片集成波导到矩形波导的毫米波转接结构

Country Status (2)

Country Link
CN (1) CN110739514B (zh)
WO (1) WO2021088374A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739514B (zh) * 2019-11-05 2021-06-15 南京迈矽科微电子科技有限公司 一种基片集成波导到矩形波导的毫米波转接结构
CN111725595A (zh) * 2020-05-07 2020-09-29 上海理工大学 基于siw的太赫兹传输结构及其制备方法和应用
CN111540719B (zh) * 2020-07-09 2020-10-13 杭州臻镭微波技术有限公司 串接螺旋带状线的多tsv毫米波垂直互连结构
CN113839165B (zh) * 2021-09-16 2022-05-03 广东大湾区空天信息研究院 用于匹配太赫兹波导与基片集成波导的传输互连结构
CN114039183B (zh) * 2021-09-29 2022-06-10 中国电子科技集团公司第十三研究所 共面波导-矩形波导转换器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130234898A1 (en) * 2012-03-06 2013-09-12 City University Of Hong Kong Aesthetic dielectric antenna and method of discretely emitting radiation pattern using same
CN106299664A (zh) * 2016-09-21 2017-01-04 深圳大学 一种极化可重构磁电偶极子天线
CN108258401A (zh) * 2017-12-25 2018-07-06 哈尔滨工业大学(威海) 一种基于sicl谐振腔缝隙的非对称双极化天线装置
CN108717992A (zh) * 2018-04-09 2018-10-30 杭州电子科技大学 毫米波差分馈电的双极化电磁偶极子天线
CN110739514A (zh) * 2019-11-05 2020-01-31 南京迈矽科微电子科技有限公司 一种基片集成波导到矩形波导的毫米波转接结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4753981B2 (ja) * 2008-09-30 2011-08-24 日本ピラー工業株式会社 導波管・ストリップ線路変換器
CN201383535Y (zh) * 2009-04-01 2010-01-13 惠州市硕贝德通讯科技有限公司 一种矩形波导-基片集成波导信号转换及功率分配器
CN105470644B (zh) * 2016-01-07 2018-01-16 华南理工大学 一种毫米波mimo天线
CN108933327A (zh) * 2018-06-08 2018-12-04 西安电子科技大学 一种改进的宽带微带天线单元
CN209418761U (zh) * 2018-07-17 2019-09-20 云南大学 新型amc的宽带电磁偶极子天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130234898A1 (en) * 2012-03-06 2013-09-12 City University Of Hong Kong Aesthetic dielectric antenna and method of discretely emitting radiation pattern using same
CN106299664A (zh) * 2016-09-21 2017-01-04 深圳大学 一种极化可重构磁电偶极子天线
CN108258401A (zh) * 2017-12-25 2018-07-06 哈尔滨工业大学(威海) 一种基于sicl谐振腔缝隙的非对称双极化天线装置
CN108717992A (zh) * 2018-04-09 2018-10-30 杭州电子科技大学 毫米波差分馈电的双极化电磁偶极子天线
CN110739514A (zh) * 2019-11-05 2020-01-31 南京迈矽科微电子科技有限公司 一种基片集成波导到矩形波导的毫米波转接结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUJIAN LI, KWAI-MAN LUK: "A 60-GHz Wideband Circularly Polarized Aperture-Coupled Magneto-Electric Dipole Antenna Array", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ., US, vol. 64, no. 4, 1 April 2016 (2016-04-01), US, pages 1325 - 1333, XP055551971, ISSN: 0018-926X, DOI: 10.1109/TAP.2016.2537390 *

Also Published As

Publication number Publication date
CN110739514B (zh) 2021-06-15
CN110739514A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
WO2021088374A1 (zh) 一种基片集成波导到矩形波导的毫米波转接结构
US10050350B2 (en) Differential planar aperture antenna
EP3021416B1 (en) Antenna
Mallahzadeh et al. Wideband H-plane horn antenna based on ridge substrate integrated waveguide (RSIW)
CN209592305U (zh) 一种isgw圆极化缝隙行波阵列天线
CN108172958B (zh) 一种基于共面波导的周期性慢波传输线单元
CN103441340A (zh) 极化可变和频率扫描的半模基片集成波导漏波天线
CN102856617A (zh) 一种宽带基片集成波导环行器
CN110021805A (zh) 复杂馈电网络中基于空气间隙波导的立体过渡结构
CN109546348A (zh) 一种新型小型化宽带sw-siw喇叭天线及其设计方法
CN109950693A (zh) 集成基片间隙波导圆极化缝隙行波阵列天线
CN108306084A (zh) 三孔接地小型化准siw环行器
CN209312978U (zh) 一种大功分比的微带功分器
CN108172994B (zh) 一种基于介质集成同轴线的双极化宽带天线装置
Soleiman Meiguni et al. Compact substrate integrated waveguide mono‐pulse antenna array
CN103022609A (zh) 一种x波段叠层片式微带铁氧体环行器
Liu et al. A substrate integrated waveguide to substrate integrated coaxial line transition
Agharasuli et al. UWB stripline coupler with low loss and ripple
CN115458892B (zh) 基于圆形siw谐振腔的四路同相不等功分器
CN103094651B (zh) 基片集成波导环行器
CN207852878U (zh) 三孔接地小型化准siw环行器
CN111244619A (zh) 基于空气基片集成波导的贴片阵列天线
CN201699126U (zh) 应用于宽带通信系统的小体积天线
Ameen et al. Dual beam leaky wave antenna based on substrate integrated waveguide
Bu et al. A Millimeter-Wave Broadband Transition of Air-Filled Rectangular Waveguide to Differential Substrate Integrated Waveguide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885896

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20885896

Country of ref document: EP

Kind code of ref document: A1