WO2021088077A1 - 移动性优化方法及相关装置 - Google Patents

移动性优化方法及相关装置 Download PDF

Info

Publication number
WO2021088077A1
WO2021088077A1 PCT/CN2019/116877 CN2019116877W WO2021088077A1 WO 2021088077 A1 WO2021088077 A1 WO 2021088077A1 CN 2019116877 W CN2019116877 W CN 2019116877W WO 2021088077 A1 WO2021088077 A1 WO 2021088077A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
network device
terminal device
connection failure
handover
Prior art date
Application number
PCT/CN2019/116877
Other languages
English (en)
French (fr)
Inventor
胡星星
严乐
张宏平
张宏卓
耿婷婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/116877 priority Critical patent/WO2021088077A1/zh
Priority to CN202080003808.9A priority patent/CN113099735A/zh
Priority to EP20883805.2A priority patent/EP4057696A4/en
Priority to BR112022008459A priority patent/BR112022008459A2/pt
Priority to CN202110001385.3A priority patent/CN112867075B/zh
Priority to MX2022005500A priority patent/MX2022005500A/es
Priority to PCT/CN2020/076058 priority patent/WO2021088270A1/zh
Priority to KR1020227019343A priority patent/KR20220097979A/ko
Priority to JP2022525945A priority patent/JP2023500137A/ja
Publication of WO2021088077A1 publication Critical patent/WO2021088077A1/zh
Priority to US17/738,431 priority patent/US20220264414A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00695Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using split of the control plane or user plane
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00698Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using different RATs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a mobility optimization method and related devices.
  • the network of the terminal device will switch from the source cell to the target cell for data transmission.
  • the parameters related to the handover such as measurement filter coefficient, trigger time, hysteresis threshold or trigger threshold, etc.
  • the terminal device when the terminal device detects a connection failure (such as radio link failure (RLF)) or handover failure (such as timer T304 timeout), the terminal device will perform radio resource control (radio resource control, RRC) reconstruction .
  • the terminal device will carry the failure information of connection failure or handover failure in the RRC reestablishment request message, and the network device can use the failure information in the RRC reestablishment request to determine whether the terminal device is handed over too late, handover too early, and handover to the wrong cell. Therefore, the network equipment judges problems such as too late handover, premature handover, and handover to the wrong cell when the terminal device performs RRC re-establishment after a connection failure or a handover failure.
  • RRC radio resource control
  • the terminal device will not perform RRC reconstruction.
  • 3GPP 3rd generation partnership project
  • the terminal device when the terminal device’s network fails to switch from the source cell to the target cell, or the terminal device receives a handover message, And before the random access channel (RACH) process of the target cell is successful, when the terminal device detects the RLF in the source cell, the terminal device will not perform RRC re-establishment.
  • 5G 5th generation mobile networks
  • MR-DC Multi-Radio dual connectivity
  • the terminal device detects the master cell group (master cell group). , MCG) RLF, RRC reconstruction will not be performed either. Therefore, in these cases, if the terminal device does not perform RRC reconstruction, how to determine whether to handover too late, handover too early, and handover to the wrong cell has become an urgent problem to be solved.
  • the embodiments of the present application provide a mobility optimization method and related devices, which can judge too late handover, premature handover, and handover to the wrong cell in the mobility enhancement and/or MR-DC proposed by 3GPP, so as to realize the adjustment of mobility parameters. Optimized to optimize the robustness of mobility.
  • an embodiment of the present application provides a mobility optimization method.
  • the method includes: a terminal device sends connection failure information to a first network device, and after receiving the connection failure information, the first network device determines that the connection of the terminal device fails Types of.
  • the first network device may perform mobility parameter optimization.
  • the mobility parameter may include one or more of the following: measurement filter coefficient, corresponding measurement trigger threshold or period, time to trigger or hysteresis threshold.
  • the connection failure information may be used to indicate that the terminal device detects RLF in the first cell or fails to switch to the first cell.
  • the terminal device has a wireless connection with the second cell during the handover process of the second cell to the first cell, and the second cell is a cell managed by the first network device.
  • the connection failure type may include premature handover and/or handover to the wrong cell. This connection failure type can be used for mobility robustness optimization.
  • the first cell is the target cell
  • the second cell is the source cell
  • the first network device is the source base station.
  • the first cell (target cell) and the second cell (source cell) may belong to a cell managed by the same network device, that is, both the first cell and the second cell are cells managed by the first network device.
  • the first cell and the second cell may also belong to cells managed by different network devices.
  • the second cell belongs to a cell managed by the first network device, and the first cell is a cell managed by the second network device.
  • the terminal device of the embodiment of the present application After the terminal device of the embodiment of the present application detects RLF or fails to switch to the target cell, it sends connection failure information to the first network device (source base station), and the connection failure information can trigger the first network device to determine the connection of the terminal device Failure type (handover too early, handover to the wrong cell). After receiving the connection failure information, the first network device determines the connection failure type of the terminal device.
  • This connection failure type can be used for mobility robustness optimization. It realizes the judgment of premature handover and handover to the wrong cell in the mobility enhancement scenario, and also realizes the optimization of the mobility parameters, thereby optimizing the robustness of the mobility.
  • the first network device determines the connection failure type of the terminal device specifically as follows: if the first network device determines that the terminal device detects RLF in the first cell (target cell) or switches to After the first cell (target cell) fails, the wireless connection with the second cell (source cell) is still maintained (or the first network device decides that the terminal device stays in the source cell), then the first network device determines the connection failure type of the terminal device To switch prematurely; if the first network device determines that the third cell is the cell to be accessed by the terminal device (or the first network device decides that the terminal device switches to a new target cell), the first network device determines the connection of the terminal device The failure type is handover to the wrong cell.
  • the third cell is different from the first cell (ie, the target cell) and the second cell (ie, the source cell).
  • the above-mentioned terminal device has a wireless connection with the second cell during the handover process of the second cell to the first cell means that the terminal device can perform data communication with the second cell (source cell).
  • This embodiment of the application proposes a criterion for judging premature handover and handover to the wrong cell in a mobility enhancement scenario, that is, when the first network device decides that the terminal device stays in the source cell, it is determined that the connection failure type of the terminal device is premature Handover: When the first network device decides that the terminal device is switched to a new target cell, it is determined that the connection failure type of the terminal device is to switch to the wrong cell. It realizes the judgment of premature handover and handover to the wrong cell in the mobility enhancement scenario, and also realizes the optimization of the mobility parameters, thereby optimizing the robustness of the mobility.
  • the first cell is a candidate cell that meets the conditional handover CHO triggering condition among at least one candidate cell of the terminal device, and the third cell is different from that of the at least one candidate cell.
  • the above-mentioned terminal device has a wireless connection with the second cell during the handover process from the second cell to the first cell means: the terminal device retains the connection configuration with the second cell (source cell), but cannot perform data communication .
  • the embodiment of the present application can determine premature handover and handover to the wrong cell in a conditional handover CHO scenario.
  • the method further includes: the first network device sends first indication information to the terminal device, the first indication The information is used to instruct the terminal device to access the second cell (source cell) when the terminal device fails to switch to the first cell (target cell).
  • the target cell may fall back to communicating with the source cell.
  • the embodiments of the present application provide another mobility optimization method.
  • the method includes: when the first cell detects the RLF during the handover process of the terminal device from the first cell to the second cell, the second network The device sends connection failure information. After receiving the connection failure information, the second network device may send the connection failure information to the first network device; after receiving the connection failure information, the first network device determines the connection failure type of the terminal device. Optionally, after the first network device determines the connection failure type of the terminal device, it may perform mobility parameter optimization.
  • the mobility parameter may include one or more of the following: measurement filter coefficient, corresponding measurement trigger threshold or period, time to trigger or hysteresis threshold, etc.
  • the connection failure information may be used to indicate that the terminal device detects the RLF in the first cell during the handover process from the first cell (that is, the source cell) to the second cell (that is, the target cell).
  • the terminal device maintains a wireless connection with the source cell before the terminal device detects the RLF in the source cell.
  • the wireless connection between the terminal device and the source cell is disconnected, that is, the terminal device cannot perform data communication with the source cell at this time.
  • the first cell is a cell managed by the first network device.
  • the connection failure type may include too late handover. This connection failure type can be used for mobility robustness optimization.
  • the first cell is the source cell
  • the second cell is the target cell
  • the first network device is the source base station.
  • the first cell (source cell) and the second cell (target cell) can belong to the same cell managed by the network device, that is, the first cell and the second cell are both cells managed by the first network device, and the first network device and the second cell
  • the network device is the same physical device.
  • the first cell and the second cell may also belong to cells managed by different network devices.
  • the second cell belongs to a cell managed by the first network device
  • the first cell is a cell managed by the second network device.
  • the terminal device of the embodiment of the present application sends the connection failure information to the second network device after the source cell detects the RLF.
  • the second network device receives the connection failure information, it can Send the connection failure information to the first network device.
  • the connection failure information can trigger the first network device to determine the connection failure type (too late handover) of the terminal device.
  • the first network device determines the connection failure type of the terminal device.
  • This connection failure type can be used for mobility robustness optimization. It realizes the judgment of too late handover in the mobility enhancement scene, and also realizes the optimization of the mobility parameters, thereby optimizing the robustness of the mobility.
  • the first network device determines the connection failure type of the terminal device specifically as follows: if the first network device determines that the terminal device stays in the first cell (source cell) for longer than the first cell Two thresholds (or the first network device determines that the terminal device has been in the source cell for too long), and the terminal device successfully accesses the second cell (target cell), the first network device determines that the connection failure type of the terminal device is too long Switch late.
  • the time that the terminal device stays in the first cell is the time that the terminal device maintains an RRC connection in the first cell, or the time that the terminal device maintains a wireless connection in the first cell, or the time that the terminal device stays in the first cell.
  • the time when connected and did not receive a handover command is the time that the terminal device maintains an RRC connection in the first cell, or the time that the terminal device maintains a wireless connection in the first cell, or the time that the terminal device stays in the first cell.
  • This embodiment of the application proposes a criterion for judging too late handover in a mobility enhancement scenario, that is, when the first network device determines that the terminal device has been in the source cell for too long and the terminal device has successfully accessed the target cell, the first network device A network device determines that the connection failure type of the terminal device is too late handover. It realizes the judgment of too late handover in the mobility enhancement scene, and also realizes the optimization of the mobility parameters, thereby optimizing the robustness of the mobility.
  • the foregoing second cell is a candidate cell that meets the CHO trigger condition among at least one candidate cell of the terminal device.
  • the embodiments of the present application provide yet another mobility optimization method.
  • the method includes: when a terminal device detects an RFL in a primary cell group MCG, sending connection failure information to a second network device, and the second network device receives the RFL. After the connection failure information, the connection failure information is forwarded to the first network device; after receiving the connection failure information, the first network device determines the connection failure type of the terminal device.
  • the first network device determines the connection failure type of the terminal device.
  • it may perform mobility parameter optimization.
  • the mobility parameter may include one or more of the following: measurement filter coefficient, corresponding measurement trigger threshold or period, time to trigger or hysteresis threshold, etc.
  • connection failure information may be used to indicate that the terminal device detects RLF in the MCG managed by the first network device.
  • the connection failure type may include handover too late, handover too early, and handover to the wrong cell. This connection failure type can be used for mobility robustness optimization.
  • the second network device is a secondary network device (also referred to as a secondary node) SN.
  • the terminal device of the embodiment of the present application sends the connection failure information to the second network device (SN).
  • the second network device can send the connection failure information to the first network
  • the device sends the connection failure message.
  • the connection failure information can trigger the first network device to determine the connection failure type of the terminal device (handover too late, handover too early, or handover to the wrong cell).
  • the first network device determines the connection failure type of the terminal device.
  • This connection failure type can be used for mobility robustness optimization. It realizes the judgment of too late handover, premature handover or handover to the wrong cell in the dual-connection scenario, and also realizes the optimization of mobility parameters, thereby optimizing the robustness of mobility.
  • the first network device determines the connection failure type of the terminal device specifically as follows: if the first network device determines that the fourth cell (such as cell D) is the cell to be accessed by the terminal device (Or the first network device decides to switch the primary cell PCell of the terminal device to a new cell, which is different from the primary cell in the MCG managed by the first network device, for example, the primary cell PCell of the terminal device switches from cell A to cell D), the first network device determines that the connection failure type of the terminal device is too late handover.
  • the fourth cell is different from the primary cell in the MCG managed by the first network device.
  • the first network device is the source master network device (also called the source master node), that is, the source MN.
  • This embodiment of the application proposes a criterion for judging too late handover in a dual-connection scenario, that is, when the first network device decides the primary cell PCell of the terminal device to switch to a new cell, the first network device determines the connection failure type of the terminal device It was too late to switch. It realizes the judgment of too late handover in the dual-connection scenario, and also realizes the optimization of the mobility parameters, thereby optimizing the mobility robustness.
  • the first network device determines the connection failure type of the terminal device specifically as follows: if the first network device determines that the source primary network device has recently sent to the terminal device to indicate the primary cell change (For example, the primary cell is changed from cell A to cell B), and the fifth cell (such as cell A) is determined as the cell to be accessed by the terminal device (or the primary cell for the terminal device to be changed before the decision is made, such as cell A) , The first network device determines that the connection failure type of the terminal device is premature handover.
  • the fifth cell is the cell before handover to the primary cell in the MCG managed by the first network device.
  • the first network device determines that the source primary network device has recently sent a handover message to the terminal device to instruct the primary cell to change (for example, the primary cell changes from cell A to cell B), and determines that the sixth cell (such as cell C) is the terminal
  • the sixth cell such as cell C
  • the first network device determines that the connection failure type of the terminal device is handover to the wrong cell.
  • the sixth cell is different from the primary cell in the MCG managed by the first network device and the fifth cell described above.
  • the first network device is the target primary network device, that is, the target MN.
  • This embodiment of the application proposes a criterion for judging premature handover and handover to the wrong cell in a dual-connection scenario, that is, when the first network device determines that the source primary network device has recently sent a handover message for indicating the primary cell change to the terminal device And when it is determined that the terminal device is to be in the primary cell before the change, the first network device determines that the connection failure type of the terminal device is premature handover.
  • the first network device determines that the source primary network device has recently sent a handover message for indicating the change of the primary cell to the terminal device and decides that the terminal device switches to the new primary cell
  • the first network device determines that the connection failure type of the terminal device is Switch to the wrong cell. It realizes the judgment of premature handover and handover to the wrong cell in the dual-connection scenario, and realizes the optimization of mobility parameters, thereby optimizing the robustness of mobility.
  • the above-mentioned first network device is a target master network device.
  • the method further includes: the first network device sends second indication information to the source master network device, and the second indication information may be used to indicate that the connection failure type of the terminal device is Handover too early or handover to the wrong cell.
  • an embodiment of the present application provides yet another mobility optimization method.
  • the method includes: when a terminal device detects an RLF in a first cell or fails to switch from the first cell to a second cell, sending connection failure information.
  • the first network device determines the connection failure type of the terminal device.
  • the first network device may perform mobility parameter optimization.
  • the mobility parameter may include one or more of the following: measurement filter coefficient, corresponding measurement trigger threshold or period, time to trigger or hysteresis threshold, etc.
  • the connection failure information may be used to indicate that the terminal device detects RLF in the first cell or fails to switch from the first cell to the second cell.
  • the connection failure type may include handover too late, handover too early, and handover to the wrong cell. This connection failure type can be used for mobility robustness optimization.
  • the first cell is the source cell managed by the first network device
  • the first network device is the source base station
  • the second cell is the target cell
  • the connection failure information is used for Instruct the terminal device to detect RLF in the first cell (source cell).
  • the first network device determines the connection failure type of the terminal device specifically as follows: if the first network device determines that the terminal device stays in the first cell (source cell) for a time greater than the second threshold (or the first network device determines that the terminal device is in the source cell) If the waiting time is too long) and the terminal device successfully accesses the second cell (that is, the target cell), the first network device determines that the connection failure type of the terminal device is too late handover.
  • the second cell is a candidate cell that meets the CHO trigger condition among at least one candidate cell of the terminal device.
  • This embodiment of the application proposes a criterion for judging too late handover in the CHO scenario, that is, when the first network device determines that the terminal device has been in the source cell for too long and the terminal device successfully accesses the target cell, the first network The device determines that the connection failure type of the terminal device is too late handover. It realizes the judgment of too late handover when the RRC reconstruction is not performed in the CHO scenario, and also realizes the optimization of the mobility parameters, thereby optimizing the mobility robustness.
  • the first cell is the source cell
  • the second cell is the target cell
  • the second cell is a candidate that meets the CHO trigger condition among at least one candidate cell of the terminal device Community.
  • the method further includes: the first network device sends first indication information to the terminal device, the first indication information is used to instruct the terminal device to switch from the first cell to the second cell When it fails, the terminal device accesses the first cell.
  • the target cell may fall back to communicating with the source cell.
  • the first cell is the source cell
  • the second cell is the target cell
  • the second cell is a candidate that meets the CHO trigger condition among at least one candidate cell of the terminal device Cell
  • the above connection failure information is used to indicate that the terminal device fails to switch from the first cell to the second cell (target cell).
  • the first network device determines the connection failure type of the terminal device specifically as follows: if the first network device determines that the terminal device successfully re-accesses the first cell and continues to maintain the wireless connection (or the first network) with the first cell (ie, the source cell) The device decides that the terminal device stays in the source cell), the first network device determines that the connection failure type of the terminal device is premature handover.
  • the first network device determines that the third cell is the cell to be accessed by the terminal device (or the first network device decides that the terminal device switches to a new target cell)
  • the first network device determines that the connection failure type of the terminal device is handover to Wrong cell.
  • the third cell is different from the first cell (that is, the source cell) and any one of the above-mentioned one or more candidate cells.
  • This embodiment of the application proposes a criterion for judging premature handover and handover to the wrong cell in the CHO scenario, that is, when the first network device decides that the terminal device is to stay in the source cell, the first network device determines that the connection failure type of the terminal device is Switched too early. When the first network device decides that the terminal device switches to a new target cell, the first network device determines that the connection failure type of the terminal device is switching to the wrong cell. It realizes the judgment of premature handover and handover to the wrong cell when RRC reconstruction is not performed in the CHO scenario, and also realizes the optimization of mobility parameters, thereby optimizing the robustness of mobility.
  • an embodiment of the present application provides a device, which may be a network device or a chip or circuit that can be used to be installed in a network device.
  • the device includes a device for performing any of the first aspect and/or the first aspect.
  • the unit and/or module of the mobility optimization method provided by a possible implementation manner can also achieve the beneficial effects (or advantages) of the mobility optimization method provided in the first aspect.
  • an embodiment of the present application provides a device, which may be a network device or a chip or circuit that can be installed in a network device.
  • the device includes any of the second aspect and/or the second aspect described above.
  • the unit and/or module of the mobility optimization method provided by a possible implementation manner can therefore also achieve the beneficial effects (or advantages) of the mobility optimization method provided by the second aspect.
  • an embodiment of the present application provides a device, which may be a network device or a chip or a circuit that can be installed in the network device, and the device includes any of the foregoing third aspect and/or third aspect.
  • the unit and/or module of the mobility optimization method provided by a possible implementation manner can also achieve the beneficial effects (or advantages) of the mobility optimization method provided by the third aspect.
  • an embodiment of the present application provides a device, which may be a network device or a chip or circuit that can be installed in the network device.
  • the device includes any of the fourth aspect and/or the fourth aspect described above.
  • the unit and/or module of the mobility optimization method provided by a possible implementation manner can therefore also achieve the beneficial effects (or advantages) of the mobility optimization method provided by the fourth aspect.
  • an embodiment of the present application provides a device, which may be a network device or a chip or circuit that can be used in the network device.
  • the device may include a processor, a transceiver, and a memory, where the memory is used to store a computer program, and the transceiver is used to send and receive various information.
  • the computer program includes program instructions.
  • the processor runs the program instructions, the The device executes the mobility optimization method of the foregoing first aspect or any one of the possible implementation manners of the first aspect.
  • the transceiver may be a radio frequency module in a network device, or a combination of a radio frequency module and an antenna, or an input/output interface of a chip or circuit.
  • an embodiment of the present application provides a device, which may be a network device or a chip or circuit that can be used in the network device.
  • the device may include a processor, a transceiver, and a memory, where the memory is used to store a computer program, and the transceiver is used to send and receive various information.
  • the computer program includes program instructions.
  • the processor runs the program instructions, the The device executes the mobility optimization method of the foregoing second aspect or any one of the possible implementation manners of the second aspect.
  • the transceiver may be a radio frequency module in a network device, or a combination of a radio frequency module and an antenna, or an input/output interface of a chip or circuit.
  • an embodiment of the present application provides a device, which may be a network device or a chip or circuit that can be used in the network device.
  • the device may include a processor, a transceiver, and a memory, where the memory is used to store a computer program, and the transceiver is used to send and receive various information.
  • the computer program includes program instructions.
  • the processor runs the program instructions, the The device executes the mobility optimization method of the third aspect or any one of the possible implementation manners of the third aspect.
  • the transceiver may be a radio frequency module in a network device, or a combination of a radio frequency module and an antenna, or an input/output interface of a chip or circuit.
  • an embodiment of the present application provides a device, which may be a network device or a chip or circuit that can be used in the network device.
  • the device may include a processor, a transceiver, and a memory, where the memory is used to store a computer program, and the transceiver is used to send and receive various information.
  • the computer program includes program instructions.
  • the processor runs the program instructions, the The device executes the mobility optimization method of the foregoing fourth aspect or any one of the possible implementers of the fourth aspect.
  • the transceiver may be a radio frequency module in a network device, or a combination of a radio frequency module and an antenna, or an input/output interface of a chip or circuit.
  • an embodiment of the present application provides a communication system, including a first network device and a terminal device, wherein: the first network device is the network in the mobility optimization method described in the first aspect or the fourth aspect.
  • the terminal device is the terminal device in the mobility optimization method described in the first aspect or the fourth aspect.
  • an embodiment of the present application provides a communication system, including a first network device, a second network device, and a terminal device, wherein: the first network device is the above-mentioned second aspect or the above-mentioned third aspect or the above-mentioned second aspect
  • the first network device in the mobility optimization method described in any one of the possible implementation manners of the third aspect or the third aspect is the second network device is the second aspect or the third aspect, or the second or third aspect.
  • the second network device in the mobility optimization method described in any one of the possible implementations of the aspect, the terminal device is any one of the foregoing second aspect, the foregoing third aspect, or the foregoing second aspect or the third aspect
  • embodiments of the present application provide a readable storage medium with instructions stored on the readable storage medium, which when run on a computer, cause the computer to execute the first aspect or any one of the first aspects above Possible implementation methods described in mobility optimization methods.
  • the embodiments of the present application provide a readable storage medium with instructions stored on the readable storage medium, which when run on a computer, cause the computer to execute any one of the above-mentioned second aspect or the second aspect Possible implementation methods described in mobility optimization methods.
  • an embodiment of the present application provides a readable storage medium with instructions stored on the readable storage medium, which when run on a computer, cause the computer to execute any of the above third aspect or the third aspect Possible implementation methods described in mobility optimization methods.
  • embodiments of the present application provide a readable storage medium with instructions stored on the readable storage medium, which when run on a computer, cause the computer to execute any one of the above fourth aspect or the fourth aspect Possible implementation methods described in mobility optimization methods.
  • an embodiment of the present application provides a program product containing instructions that, when it runs, causes the mobility optimization method described in the first aspect or any one of the possible implementations of the first aspect to be executed.
  • an embodiment of the present application provides a program product containing instructions that, when it runs, causes the mobility optimization method described in the second aspect or any one of the possible implementations of the second aspect to be executed.
  • an embodiment of the present application provides a program product containing instructions that, when it runs, causes the mobility optimization method described in the third aspect or any one of the possible implementations of the third aspect to be executed.
  • an embodiment of the present application provides a program product containing instructions that, when it runs, causes the mobility optimization method described in the fourth aspect or any one of the possible implementations of the fourth aspect to be executed.
  • an embodiment of the present application provides a chip including a processor.
  • the processor is used to read and execute a program stored in the memory to execute one or more of the above-mentioned first aspect to the fourth aspect, or the above-mentioned first aspect, the above-mentioned second aspect, the above-mentioned third aspect or the above-mentioned
  • the mobility optimization method provided by one or more of any possible implementation manners of the fourth aspect.
  • the chip further includes a memory, and the memory and the processor are connected through a circuit or a wire.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, processes the data and/or information, and outputs the processing result through the communication interface.
  • the communication interface can be an input and output interface.
  • processors and memory may be physically independent units, or the memory may also be integrated with the processor.
  • FIG. 1A is a schematic diagram of a system architecture of a mobile communication system provided by an embodiment of the present application
  • FIG. 1B is a schematic diagram of base station division for CU/DU separation provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of the first mobility optimization method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a second method for mobility optimization provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a third method for optimizing mobility according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a fourth method for mobility optimization provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a fifth method for optimizing mobility according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for optimizing mobility between different RATs according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG. 9 is another schematic diagram of the structure of the device provided by an embodiment of the present application.
  • FIG. 10 is another schematic diagram of the structure of the device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Radio link failure radio link failure
  • the detection mechanism of wireless link failure includes one or more of the following: (1) A problem in the physical layer is detected.
  • the RRC layer of the terminal device receives continuous out-of-synchronization indications of N primary cells (PCells) from the bottom layer, and does not receive continuous synchronization indications of M primary cells (PCells) from the bottom layer for a period of time; (2) The random access process performed in the primary cell group fails; (3) The RRC layer of the terminal device receives the indication information from the radio link control (radio link control, RLC) layer of the primary cell group that the maximum number of retransmissions has been reached.
  • radio link control radio link control
  • Inter-cell handover means that the terminal equipment completes the migration of the wireless link connection from the source cell (source cell) to the target cell (target cell) under the control of the wireless access network.
  • the terminal device receives the handover message (for example, the RRCReconfiguration message carrying reconfigurationWithSync)
  • the terminal device starts the timer T304.
  • the terminal device stops the timer T304, indicating that the terminal device is successfully handed over from the source cell to the target cell.
  • the terminal device fails to switch from the source cell to the target cell.
  • Too late handover means that the terminal device fails to connect to the current serving cell for a period of time (for example, RLF is detected in the current serving cell), and the terminal device attempts to reestablish the connection in other cells (here, other cells refer to any cell).
  • This situation mainly refers to the deterioration of the quality of the current serving cell, but the terminal device does not receive the handover message, so the terminal device attempts to reestablish the connection in other cells after detecting the connection failure in the current serving cell.
  • Premature handover means that the terminal device successfully switches from the source cell to the target cell soon after the connection fails (for example, the RLF is detected in the target cell), or the handover fails during the handover from the source cell to the target cell, the terminal device Try to reestablish the connection in the source cell.
  • “soon” can be understood as a short period of time.
  • Handover to the wrong cell means that the terminal device fails to connect soon after successfully handing over from the source cell to the target cell (for example, RLF is detected in the target cell), or the handover fails during the handover from the source cell to the target cell.
  • the device tries to reestablish the connection in other cells (where the other cells are different from the source cell and the target cell).
  • “soon” can be understood as a short period of time.
  • Primary cell group master cell group, MCG
  • secondary cell group secondary cell group, SCG
  • one terminal device can communicate with multiple network devices, that is, dual connectivity (DC), also known as multiple wireless dual connectivity (MR-DC).
  • DC dual connectivity
  • MR-DC multiple wireless dual connectivity
  • These multiple network devices may be network devices of the same standard (for example, these multiple network devices are all fourth-generation (4G) base stations, or all are fifth-generation (5G) base stations), or they may be base stations of different standards ( For example, one is a 4G base station and the other is a 5G base station).
  • the network equipment (base station) that interacts with the core network (CN) control plane signaling is called the master node (MN), and other network equipment (base stations) are called the secondary node (SN).
  • MN master node
  • SN secondary node
  • the MN can be called the primary base station
  • the SN can be called the secondary base station.
  • the cells under the primary base station are called the primary cell group, and the primary cell group can be composed of a primary cell (primary cell, PCell) and one or more optional secondary cells.
  • a cell under a secondary base station is called a secondary cell group, and the secondary cell group can be composed of a primary and secondary cell (primary SCG cell, PSCell) and optionally one or more secondary cells.
  • PCell primary cell
  • PSCell primary and secondary cell
  • the primary cell refers to the MCG cell deployed at the primary frequency point, and the terminal device performs the initial connection establishment process or the connection reestablishment process in the cell, or designates the cell as the primary cell during the handover process.
  • the primary and secondary cell refers to the cell that performs random access when the terminal equipment in the SCG cell performs the synchronized reconfiguration process; or when the SCG change is performed and the random access process is not required, the terminal equipment initiates an initial physical uplink shared channel (physical uplink shared channel). uplink share channel, PUSCH) transmission cell.
  • the main goal of mobility robustness optimization is to reduce the number of RLFs related to handover and improve the efficiency of network resource usage.
  • Non-optimal handover parameter configuration even if it does not cause RLF, will cause serious deterioration of service performance and affect user experience. For example, although the wrong setting of handover hysteresis will not cause RLF, it will cause a ping-pong effect or delay access to a non-optimal cell.
  • Another goal of mobility robustness optimization is to reduce the inefficient use of network resources due to unnecessary handovers or missed handovers. Mobility robustness optimization is mainly based on the feedback of performance indicators to adjust the handover threshold, while adaptively adjusting cell parameters to adapt to the threshold.
  • the mobility optimization method provided in the embodiments of the present application can be applied to a mobile communication system, such as a second-generation/third-generation/fourth-generation mobile communication system (2G/3G/4G), 5G or future mobile communication systems.
  • a mobile communication system such as a second-generation/third-generation/fourth-generation mobile communication system (2G/3G/4G), 5G or future mobile communication systems.
  • 2G/3G/4G second-generation/third-generation/fourth-generation mobile communication system
  • 5G Fifth Generation
  • the embodiment of the present application first briefly introduces the system architecture of the mobile communication system.
  • FIG. 1A is a schematic diagram of a system architecture of a mobile communication system provided by an embodiment of the present application.
  • the mobile communication system may include at least two network devices (the network device 110 and the network device 120 in FIG. 1A), at least one core network device 130, and at least one terminal device 140.
  • the terminal device 140 may be connected to a network device in a wireless manner.
  • the network device 110 and the network device 120 can access the core network device 130 together.
  • FIG. 1A is only a schematic diagram.
  • the mobile communication system may also include other network devices, such as wireless relay devices and/or wireless backhaul devices, which are not shown in FIG. 1A.
  • the embodiments of the present application do not limit the number of network equipment, terminal equipment, and core network equipment included in the mobile communication system.
  • the core network device 130 may be a 4G core network device or a 5G core network device.
  • the network device may be an entity on the network side for transmitting or receiving signals, such as gNB.
  • the network equipment can also be the access equipment that the terminal equipment wirelessly accesses to the mobile communication system.
  • the network equipment can be a base station NodeB, an evolved NodeB (eNB), or a transmission reception point (TRP). ), the next generation NodeB (gNB) in the 5G mobile communication system, the base station in the future mobile communication system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation NodeB
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the base station in the embodiment of the present application may be a base station (herein referred to as gNB) separated from a centralized unit (CU)/distributed unit (DU).
  • gNB centralized unit
  • DU distributed unit
  • FIG. 1B is a schematic diagram of base station division for CU/DU separation provided in an embodiment of the present application.
  • a base station (here referred to as gNB) may include one CU and multiple DUs, and the CU and DU may be connected through an F1 interface.
  • Fig. 1B only exemplarily shows the relationship between one CU and one DU. As shown in FIG.
  • the CU can be divided into a centralized unit control plane (CU-control plane, CU-CP) and a centralized unit user plane (CU-user plane, CU-UP).
  • CU-CP and CU-UP can be on different physical devices, and CU-CP and CU-UP can be connected through an E1 interface.
  • CU-CP and DU can be connected through F1-C interface, and CU-UP and DU can be connected through F1-U interface.
  • CU-CP may include the radio resource control layer (RRC layer) and the packet data convergence protocol (PDCP) control plane;
  • CU-UP may include service data adaptation protocol (SDAP) and PDCP User plane.
  • the DU may include a radio link control layer (RLC layer), a medium access control (MAC) layer, and a physical (PHY) layer.
  • the terminal device 140 may be an entity on the user side for receiving or transmitting signals, such as a mobile phone UE.
  • the terminal device in the embodiment of the present application is a movable terminal device.
  • the terminal equipment can be a user equipment (UE), a mobile station (MS), a mobile terminal (MT), etc., and can also be a mobile phone (mobile phone), a tablet computer (Pad), Mobile portable terminal equipment such as a computer with wireless transceiver function.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the mobile terminal device.
  • the terminal device 140 may be connected to one or more network devices.
  • the terminal device 140 may communicate with the network device 110 and the network device 120 through dual connection (DC) technology.
  • DC dual connection
  • the types of dual connectivity (DC) include one or more of the following: evolved universal land-based wireless access and new wireless dual connectivity (E-UTRA-NR dual connectivity, EN-DC), the next generation of wireless access network evolution Universal land-based wireless access and new wireless dual connectivity (NG-RAN E-UTRA-NR dual connectivity, NGEN-DC), new wireless and evolved universal land-based wireless access dual connectivity (NR-E-UTRA dual connectivity, NE-DC), New Wireless and New Wireless Dual Connectivity (NR-NR dual connectivity, NR-DC).
  • E-UTRA-NR dual connectivity EN-DC
  • NG-RAN E-UTRA-NR dual connectivity NGEN-DC
  • NR-E-UTRA dual connectivity new wireless and evolved universal land-based wireless access dual connectivity
  • NE-DC New Wireless and New Wireless Dual Connectivity
  • the primary base station (primary network equipment) is an LTE base station (e.g., eNB) connected to the 4G core network
  • the secondary base station (secondary network equipment) is an NR base station (e.g., gNB).
  • the primary base station (primary network equipment) is an LTE base station connected to the 5G core network
  • the secondary base station (secondary network equipment) is an NR base station.
  • the primary base station (primary network equipment) is an NR base station connected to the 5G core network
  • the secondary base station (secondary network equipment) is an LTE base station.
  • the primary base station (primary network equipment) is an NR base station connected to the 5G core network
  • the secondary base station (secondary network equipment) is an NR base station.
  • Application scenario 1 Enhanced mobility
  • 3GPP puts forward the requirement to achieve 0ms (millisecond) mobile interruption delay during the handover process (requires 0ms or close to 0ms interruption for both uplink and downlink). Therefore, in order to achieve 0ms mobile interruption delay, 3GPP has proposed a mobility enhancement solution.
  • a handover message e.g., RRC Conn Reconfig with Mobility Control Info message
  • a terminal device e.g. UE
  • the terminal device still maintains a connection with the source cell when synchronizing to the target cell.
  • the data transmission between the source base station and the terminal device is not interrupted, and the target base station and the source base station can both send downlink data to the terminal device, thereby reducing the interruption time of data transmission. Therefore, in the mobility enhancement solution, data communication can be performed simultaneously between the terminal device and the source base station and the target base station.
  • the mobility enhancement solution can also be applied to scenarios where the source cell and the target cell belong to the same base station (that is, the source base station and the target base station are a physical entity), and the difference is that there is no data between the source base station and the target base station. Forwarding process.
  • the mobility enhancement solution may be referred to as dual active protocol stack (DAPS) handover.
  • DAPS dual active protocol stack
  • the terminal device still maintains a wireless connection with the source cell during the handover process (here the handover process refers to the time from when the source base station sends a handover message to the source base station releases the UE context) and the source cell still maintains a wireless connection (here, keep wireless connection) It means that the terminal device can communicate with the source cell for data), so when the terminal device fails to access the target cell (here refers to the failure of handover to the target cell or RLF occurs soon after successfully accessing the target cell), the terminal device will not perform RRC Reconstruction, the terminal device will send a handover failure indication message to the source cell.
  • the terminal device After the terminal device receives the handover message and before the RACH process of the target cell succeeds, when the terminal device detects RLF in the source cell, the terminal device does not perform RRC re-establishment. Therefore, in the above two cases, RRC reconstruction will not be triggered, and the network equipment on the network side will not perform mobility robustness optimization, let alone judge the late handover, premature handover, and premature handover in the above two cases. Problems such as switching to the wrong cell.
  • the embodiments of the present application provide a mobility optimization method, which can judge too late handover, premature handover, and handover to the wrong cell in the mobility enhancement scenario, so as to realize the mobility parameter Optimized to optimize the robustness of mobility.
  • FIG. 2 is a schematic flowchart of the first mobility optimization method provided by an embodiment of the present application.
  • the mobility optimization method provided by the embodiment of the present application includes but is not limited to the following steps:
  • the first network device sends a handover message to a terminal device.
  • the terminal device receives the handover message.
  • the foregoing first network device may be a source base station.
  • the above handover message may be an RRC message, such as an RRC connection reconfiguration RRC Connection Reconfiguration message carrying mobility control information Mobility Control Info or an RRC Connection Reconfiguration message carrying a synchronized reconfiguration reconfiguration reconfiguration With Sync.
  • the handover message can be used to trigger the terminal device to perform the handover process from the source cell to the target cell.
  • the handover process may include the following steps: (a) The terminal device synchronizes to the target cell but maintains the connection with the source cell (Synchronize to target cell but keep connection with source cell); (b) The target cell issues uplink allocation (UL allcoation) (TA for UE); (c) The terminal device sends an RRC Reconfiguration Complete message (RRC Connection Reconfiguration Complete) to the target cell; (d) The terminal device distinguishes the PDCP packet from the source cell or the target cell (Distinguish PDCP packet from source or target cell; (e) The terminal device is detached from the source cell; (f) The target cell sends a UE context release message to the source cell; (g) The source cell releases Resources (Release Resources).
  • the terminal device still maintains a wireless connection with the source cell, that is, the terminal device can perform data communication with the source cell.
  • the target cell is the first cell
  • the source cell is the second cell.
  • the handover message may refer to a handover message issued in DAPS handover.
  • the terminal device maintains a wireless connection with the source cell.
  • the terminal device continues to receive downlink user data from the source cell until the terminal device releases the source cell, and the terminal device continues to transmit uplink data with the source cell until the terminal device is in the target cell.
  • the cell successfully completes the random access procedure.
  • new uplink data will no longer be transmitted in the source cell, and retransmissions of those uplink data that have been previously decided to be sent by the terminal device to the source cell may still be sent by the terminal device to the source cell.
  • the source cell and the target cell may belong to cells managed by the same network device, that is, the source cell and the target cell are both cells managed by the first network device; the source cell and the target cell may also belong to different networks
  • the cell managed by the device for example, the source cell belongs to the cell managed by the first network device, and the target cell belongs to the cell managed by the second network device, which is not limited in this embodiment of the application.
  • the first network device may The second network device sends a handover request (handover request), and after receiving the handover request, the second network device may feed back a corresponding handover request ACK to the first network device.
  • the terminal device sends connection failure information to the first network device.
  • the first network device receives the connection failure information.
  • connection failure information may be used to indicate that the terminal device has detected RLF in the target cell (ie, the first cell) or failed to switch to the target cell.
  • the connection failure information may include the signal quality of each cell (including the current target cell, source cell, and other neighboring cells) detected by the terminal device.
  • the connection failure information may be handover failure information, for example, the DAPS handover failure information is carried in the failure Information message.
  • the connection failure information is sent to the first network device through a wireless link between the terminal device and the first network device.
  • the above handover message may carry an RRC reestablishment indication information.
  • the terminal device receives the RRC re-establishment instruction information issued by the first network device.
  • the RRC re-establishment indication information can be used to indicate whether the terminal device performs RRC re-establishment after detecting RLF in the target cell or failing to switch to the target cell, or instructing the terminal device to detect RLF in the target cell or failing to switch to the target cell No RRC reconstruction is performed.
  • the RRC re-establishment indication information may be a condition that the terminal device does not perform RRC re-establishment after detecting RLF in the target cell or failing to switch to the target cell. For example, when the signal quality of the source cell is greater than the threshold, the terminal device No RRC reconstruction is performed.
  • the terminal device in the embodiment of the present application sends the connection failure information to the first network device when the RRC re-establishment is not performed.
  • S103 The first network device determines the connection failure type of the terminal device.
  • the connection failure types of the terminal device may include premature handover and handover to the wrong cell.
  • the first network device may determine the connection failure type of the terminal device. Specifically, if the first network device determines that the terminal device still maintains a wireless connection with the source cell after detecting RLF in the target cell or failing to switch to the target cell (that is, the first network device decides that the terminal device stays in the source cell), then A network device determines that the connection failure type of the terminal device is premature handover.
  • the first network device determines that the third cell is the cell to be accessed by the terminal device (that is, the first network device decides that the terminal device switches to a new target cell)
  • the first network device determines that the connection failure type of the terminal device is handover to Wrong cell.
  • the third cell is different from the source cell (i.e., the second cell) and the target cell (i.e., the first cell).
  • the source cell i.e., the second cell
  • the target cell i.e., the first cell
  • this connection failure type can be used for mobility robustness optimization.
  • Mobility parameters may include one or more of the following: measurement filter coefficients, corresponding measurement trigger thresholds or periods, time to trigger or hysteresis thresholds, etc.
  • the first network device may determine the absolute difference between the sending time of the handover message and the receiving time of the connection failure information. If the absolute difference is less than or equal to the first threshold (configuration threshold), the first network device determines that the connection failure type of the terminal device is premature handover. Optionally, the first network device determines the absolute difference between the receiving time of the handover message reported by the terminal device and the time when the RLF is detected in the target cell (or the handover to the target cell fails). If the absolute difference is less than or equal to the first threshold (configuration threshold), the first network device determines that the connection failure type of the terminal device is premature handover. Further optionally, when the absolute difference is less than or equal to the first threshold and the first network device determines that a handover message has been recently issued to the terminal device, the first network device determines that the connection failure type of the terminal device is premature handover .
  • the first network device may determine the absolute difference between the sending time of the handover message and the receiving time of the connection failure information. If the absolute difference is less than or equal to the first threshold (configuration threshold), the first network device determines that the connection failure type of the terminal device is handover to the wrong cell. Optionally, the first network device determines the absolute difference between the receiving time of the handover message reported by the terminal device and the time when the RLF is detected in the target cell (or the handover to the target cell fails). If the absolute difference is less than or equal to the first threshold (configuration threshold), the first network device determines that the connection failure type of the terminal device is premature handover.
  • the first network device determines that the connection failure type of the terminal device is handover to the wrong cell .
  • the target cell belongs to the cell managed by the second network device.
  • the first network device is the source base station
  • the second network device is the target base station.
  • the first network device may send the connection failure information to the second network device.
  • the second network device receives the connection failure information.
  • the first network device may also determine the subsequent behavior of the terminal device (for example, the first network device determines that the terminal device continues to maintain a wireless connection with the source cell, or the first network device determines that the terminal device switches to a new target cell) Sent to the second network device.
  • the second network device determines the connection failure type of the terminal device.
  • the second network device determines The connection failure type of the terminal device is premature handover.
  • the subsequent behavior of the terminal device received by the second network device is to maintain the wireless connection with the source cell, and the second network device provides the first network device to the first network device within a period of time before receiving the connection failure information. If the network device sends a handover response message (or the second network device learns that the terminal device was handed over from the source cell to the target cell), the second network device determines that the connection failure type of the terminal device is premature handover.
  • the first network device determines that the terminal device switches to a new target cell, and the new target cell (such as cell C) is not the source cell (such as cell A). If it is not the previous target cell (such as cell B), the second network device determines that the connection failure type of the terminal device is handover to the wrong cell.
  • the subsequent behavior of the terminal device received by the second network device is to switch to a new target cell, and the second network device gives the first network device to the first network device within a period of time before receiving the connection failure information.
  • the network device sends a handover response message (or the second network device learns that the terminal device was handed over from the source cell to the target cell)
  • the second network device determines that the connection failure type of the terminal device is handover to the wrong cell.
  • step S103 in FIG. 2 may not be executed.
  • the second network device may send indication information to the first network device, and the indication information may be used to indicate the terminal device’s
  • the connection failure type is premature handover or handover to the wrong cell.
  • the first network device may perform mobility parameter optimization.
  • the terminal device after the terminal device detects RLF in the target cell or fails to switch to the target cell, it sends connection failure information to the network side.
  • the connection failure information is used to indicate that the terminal device detects RLF in the target cell or switches to the target cell.
  • the target cell failed.
  • the network device (which may be the first network device or the second network device) on the network side receives the connection failure information.
  • the connection failure information can trigger the network device on the network side to determine the connection failure type of the terminal device (premature handover or handover to the wrong cell).
  • the connection failure type of the terminal device is determined to be premature handover; when the first network device decides the terminal device to switch to a new target cell, the connection failure type of the terminal device is determined It is handed over to the wrong cell.
  • the network device on the network side determines the connection failure type of the terminal device, it can optimize the mobility parameters. It realizes the judgment of premature handover and handover to the wrong cell in the mobility enhancement scenario, and also realizes the optimization of the mobility parameters, thereby optimizing the robustness of the mobility.
  • FIG. 3 is a schematic flowchart of the second mobility optimization method provided by an embodiment of the present application.
  • the mobility optimization method provided by the embodiment of the present application includes but is not limited to the following steps:
  • the first network device sends a handover message to the terminal device.
  • the terminal device receives the handover message.
  • step S201 in the embodiment of the present application may refer to the implementation manner of step S101 in the embodiment shown in FIG. 2, and details are not described herein again.
  • S202 The terminal device sends connection failure information to the second network device.
  • the second network device receives the connection failure information.
  • S203 The second network device sends connection failure information to the first network device.
  • the first network device receives the connection failure information.
  • connection failure information may be used to indicate that the terminal device detects the RLF in the source cell during the handover process from the source cell (ie, the first cell) to the target cell (ie, the second cell).
  • the terminal device maintains a wireless connection with the source cell before the terminal device detects the RLF in the source cell.
  • the connection failure information may include the signal quality of each cell (including the current target cell, source cell, and other neighboring cells) detected by the terminal device.
  • the connection failure information may be RLF indication (RLF indication) information, for example, carried in a failure Information message.
  • the connection failure information is sent to the second network device through a wireless link between the terminal device and the second network device.
  • the first network device may be the source base station
  • the source cell may be the cell managed by the first network device
  • the second network device may be the target base station.
  • the cell is a cell managed by the second network device.
  • the way for the terminal device to record the connection failure information of the source cell may be: the terminal device only records the most recent RLF or the handover to the target cell fails, that is, every time the RLF is detected or the handover to the target cell fails. , Only record the RLF detected this time or fail to switch to the target cell, and cover the previous record.
  • the failure type carried in the connection failure information reported by the terminal device to the second network device in the mobility enhanced scenario may indicate the RLF of the source cell during the mobility enhanced handover process.
  • the first network device may be the source base station, and the source cell and the target cell are both cells managed by the first network device, and the first network device and the second network device The second network device is the same physical device.
  • the terminal device detects the RLF in the source cell during the handover process from the source cell to the target cell, the terminal device can record the connection failure information of the source cell (that is, the RLF information detected in the source cell).
  • the terminal device may send the recorded connection failure information to the first network device.
  • S204 The first network device determines the connection failure type of the terminal device.
  • the above connection failure type may include too late handover. Specifically, if the first network device determines that the terminal device stays in the source cell for a time greater than the second threshold (that is, the first network device determines that the terminal device stays in the source cell for too long), and the terminal device successfully accesses the target cell, then The first network device determines that the connection failure type of the terminal device is too late handover. Among them, this connection failure type can be used for mobility robustness optimization.
  • the first network device may perform mobility parameter optimization after determining that the handover is too late.
  • the mobility parameter may include one or more of the following: measurement filter coefficient, corresponding measurement trigger threshold or period, time to trigger or hysteresis threshold, etc.
  • the second threshold may be determined according to the time when the signal quality of the source cell detected by the terminal device before the handover message is lower than the signal quality of other cells (which may be the target cell during handover or other neighboring cells).
  • the time that the terminal device stays in the source cell is the time that the terminal device maintains an RRC connection in the source cell, or the time that the terminal device maintains a wireless connection in the source cell, or that the terminal device is connected in the source cell and does not receive data.
  • Time to switch command The time of staying in a certain cell that appears in other places in this application is for this purpose, and will not be repeated.
  • the terminal device after the terminal device detects the RLF in the source cell during the handover process from the source cell to the target cell, it records the RLF information detected in the source cell (ie, connection failure information). After the terminal device successfully accesses the target cell, the terminal device sends the recorded connection failure information to the second network device.
  • the connection failure information is used to instruct the terminal device to detect in the source cell during the handover process from the source cell to the target cell.
  • the second network device forwards the connection failure information to the first network device.
  • the connection failure information can trigger the first network device to determine the connection failure type (too late handover) of the terminal device.
  • the first network device determines that the terminal device has been in the source cell for too long and the terminal device successfully accesses the target cell. After the first network device determines the connection failure type of the terminal device, it can perform mobility parameter optimization.
  • the type of connection failure may be determined by the second network device. For example, the second network device sent a handover response message to the first network device within a period of time before the second network device received the connection failure information (or the second network device learned that the terminal device was handed over from the source cell to the target cell before) ), the second network device determines that the connection failure type of the terminal device is too late handover. It realizes the judgment of too late handover in the mobility enhancement scene, and realizes the optimization of the mobility parameters, thereby optimizing the mobility robustness.
  • the terminal device is simultaneously connected to two network devices, also called nodes (MN and SN).
  • MN and SN network devices
  • the terminal device detects the RLF of the MCG (primary cell group managed by the MN)
  • the terminal device can send an MCG failure message to the MN through the SN.
  • the terminal device first sends the MCG failure information to the SN, and the SN forwards the MCG failure information to the MN.
  • the MCG failure information may be carried in an SN RRC message, such as signaling radio bearer 3 (SRB3).
  • SRB3 is a direct SRB between the terminal device and the SN.
  • the MCG failure message may also be sent through a branch of the SRB of the MCG on the SN side, such as split SRB1.
  • Split SRB refers to an SRB between the MN and the terminal device, and the SRB has RLC bearers in both MCG and SCG (secondary cell group).
  • the terminal device When the terminal device detects the RLF of the MCG, the terminal device still has a wireless connection with the SCG, so when the terminal device detects the RLF of the MCG, it does not trigger RRC reconstruction.
  • the terminal device detects the RLF of the MCG in the dual-connection scenario, the network side will not perform mobility robustness optimization, nor will it judge too late handover, premature handover, and handover to the wrong cell.
  • an embodiment of the present application provides a mobility optimization method, which can judge too late handover, premature handover, and handover to the wrong cell after MCG RLF, so as to realize mobile Optimization of performance parameters, thereby optimizing the robustness of mobility.
  • FIG. 4 is a schematic flowchart of a third method for optimizing mobility according to an embodiment of the present application.
  • the mobility optimization method provided by the embodiment of the present application includes but is not limited to the following steps:
  • S301 The terminal device sends connection failure information to the second network device.
  • the second network device receives the connection failure information.
  • S302 The second network device sends connection failure information to the first network device.
  • the first network device receives the connection failure information.
  • the foregoing connection failure information may be used to indicate that the terminal device has detected RLF in the MCG managed by the first network device.
  • the network device (such as the main network device of the terminal device, such as the first network device, or the network device before the UE switches to the first network device) can send the configuration information of the MCG failure quick recovery to the terminal device .
  • the terminal device receives the MCG failure quick recovery configuration information
  • the terminal device detects RLF in the MCG
  • the terminal device can perform MCG failure quick recovery, for example, the terminal device performs MCG through the second network device (ie, the auxiliary network device SN) Fast recovery from failure.
  • the terminal device may send connection failure information to the second network device.
  • the second network device receives the connection failure information.
  • the second network device may forward the connection failure information to the first network device.
  • the first network device receives the connection failure information.
  • S303 The first network device determines the connection failure type of the terminal device.
  • the first network device is the source primary network device, that is, the source MN; the second network device is the auxiliary network device SN.
  • the above connection failure types include too late handover. After receiving the above-mentioned connection failure information, the first network device can determine whether the connection failure type of the terminal device is too late for handover.
  • the first network device determines that the fourth cell is the cell to be accessed by the terminal device (that is, the first network device decides the primary cell PCell of the terminal device to switch to a new cell, which is different from the first network device management
  • the primary cell in the MCG for example, the primary cell PCell of the terminal device is handed over from cell A to cell D
  • the first network device determines that the connection failure type of the terminal device is too late handover.
  • the fourth cell is different from the primary cell in the MCG managed by the first network device.
  • the primary cell in the MCG managed by the first network device is cell A, and the fourth cell may be cell D.
  • the fourth cell may be a secondary cell SCell managed by the first network device.
  • the first network device may perform mobility parameter optimization after determining that the handover is too late.
  • the mobility parameter may include one or more of the following: measurement filter coefficient, corresponding measurement trigger threshold or period, time to trigger or hysteresis threshold, etc.
  • the first network device determines that the fourth cell is the cell to be accessed by the terminal device, and the time that the terminal device stays in the primary cell in the MCG managed by the first network device is greater than the third threshold (that is, the first network device It is determined that the terminal device has been in the primary cell of the MCG managed by the first network device for too long), then the first network device determines that the connection failure type of the terminal device is too late handover.
  • the first network device determines that the fourth cell is the cell to be accessed by the terminal device, and the first network device does not send a handover message to the terminal device within a period of time before receiving the connection failure information, the first network device The network device determines that the connection failure type of the terminal device is too late handover.
  • the first network device is the target primary network device, that is, the target MN; the second network device is the secondary network device SN.
  • the above connection failure types may include premature handover or handover to the wrong cell.
  • the first network device can determine the connection failure type of the terminal device. Specifically, if the first network device determines that the source primary network device (such as the first network device or the network device before the UE switches to the first network device) has recently sent to the terminal device to indicate the change of the primary cell (such as the primary cell and the secondary cell).
  • A becomes the handover message of cell B), and it is determined that the fifth cell (such as cell A) is the cell to be accessed by the terminal device (that is, the primary cell that the terminal device is to be changed before the decision is made, such as cell A), then the first network device Determine that the connection failure type of the terminal device is premature handover.
  • the fifth cell is the cell before handover to the primary cell in the MCG managed by the first network device.
  • the fifth cell is cell A
  • the primary cell in the MCG managed by the first network device is cell B
  • the handover message is used to instruct the primary cell of the terminal device to switch from cell A to cell B.
  • the first network device determines that the source primary network device (such as the first network device or the network device before the UE switches to the first network device) has recently sent to the terminal device to indicate the primary cell change (such as The primary cell is changed from cell A to cell B), and the sixth cell (such as cell C) is determined to be the cell to be accessed by the terminal device (that is, it is decided to switch the terminal device to the new primary cell, which is different In cells A and B), the first network device determines that the connection failure type of the terminal device is handover to the wrong cell.
  • the sixth cell is different from the primary cell in the MCG managed by the first network device and the fifth cell described above.
  • the sixth cell can be cell C, and the handover message is used to instruct the terminal device’s primary cell to switch from cell A to cell B .
  • the fifth cell (such as cell A) and the primary cell (such as cell B) in the MCG managed by the first network device may belong to the same cell managed by the primary network device (MN), that is, the source primary network device and the primary cell A network device is the same physical device.
  • the fifth cell (such as cell A) and the primary cell (such as cell B) in the MCG managed by the first network device can also belong to cells managed by different primary network devices (MN), that is, the source primary network device and the first network device are For different physical devices, the fifth cell is a cell managed by the source primary network device or a primary cell managed by the source primary network device.
  • the first network device determines that the connection failure type of the terminal device is excessive. After early handover or handover to the wrong cell, second indication information may be sent to the source primary network device, and the second indication information may be used to indicate that the connection failure type of the terminal device is premature handover or handover to the wrong cell.
  • the source primary network device may perform mobility parameter optimization after receiving that the connection failure type is premature handover or handover to the wrong cell.
  • the mobility parameter may include one or more of the following: measurement filter coefficient, corresponding measurement trigger threshold or period, time to trigger or hysteresis threshold, etc.
  • the terminal device after the MCG detects the RLF, the terminal device sends the connection failure information to the auxiliary network device (the second network device), and the auxiliary network device sends the connection failure information to the first network device (which can be the source main network device, or it can be the source main network device).
  • the target primary network device forwards the connection failure information, and the connection failure information is used to indicate that the terminal device detects the RLF in the MCG.
  • the connection failure information can trigger the first network device to determine the connection failure type of the terminal device (handover too late, handover too early, or handover to the wrong cell).
  • the first network device determines that the connection failure type of the terminal device is too late handover.
  • the first network device determines that the source primary network device has recently sent a handover message for indicating the primary cell change to the terminal device and decides which primary cell the terminal device is to be in before the change, the first network device determines the connection failure type of the terminal device It was switched prematurely.
  • the first network device determines that the source primary network device has recently sent a handover message for indicating the change of the primary cell to the terminal device and decides that the terminal device switches to the new primary cell, the first network device determines that the connection failure type of the terminal device is Switch to the wrong cell.
  • the network side After determining the type of connection failure of the terminal device, the network side can optimize the mobility parameters. It realizes the judgment of too late handover, premature handover, and handover to the wrong cell in the dual-connection scenario, and realizes the optimization of mobility parameters, thereby optimizing the robustness of mobility.
  • the network device corresponding to the source cell sends CHO configuration information to the terminal device when the source link quality is good.
  • the CHO configuration information may include CHO trigger conditions and information about one or more candidate cells.
  • the information of the candidate cell may include the identity of the candidate cell and the frequency information corresponding to the candidate cell.
  • the identifier of the candidate cell may be the cell global identifier (CGI) of the candidate cell or the physical cell identifier (PCI) of the candidate cell.
  • CGI cell global identifier
  • PCI physical cell identifier
  • the terminal device determines whether one or more candidate cells meet the CHO trigger condition according to the CHO configuration information, and uses a candidate cell that meets the CHO trigger condition as the target cell. Then, the terminal device performs a random access process with the determined target cell. After the random access in the target cell is successful, the terminal device sends an RRC message (such as an RRC reconfiguration complete message) to the target cell to notify the target cell that the condition switching is complete.
  • RRC message such as
  • the terminal device directly accesses the candidate cell that meets the CHO trigger condition without RRC reconstruction.
  • the network side will not perform mobility robustness optimization, nor will it judge too late handover, premature handover, and handover to the wrong cell.
  • an embodiment of the present application provides a mobility optimization method, which can judge whether the handover is too late or too early when the RRC reconstruction is not performed in the conditional handover scenario. Handover and handover to the wrong cell to realize the optimization of mobility parameters, thereby optimizing the robustness of mobility.
  • FIG. 5 is a schematic flowchart of the fourth mobility optimization method provided by an embodiment of the present application.
  • the mobility optimization method provided by the embodiment of the present application includes but is not limited to the following steps:
  • the first network device sends CHO configuration information to a terminal device.
  • the terminal device receives the configuration information of CHO.
  • the above-mentioned CHO configuration information may include the CHO trigger condition and the information of one or more candidate cells.
  • the information of the candidate cell may include the identity of the candidate cell and the frequency information corresponding to the candidate cell.
  • the identity of the candidate cell can be CGI or PCI.
  • S402 The terminal device sends connection failure information to the second network device.
  • the second network device receives the connection failure information.
  • S403 The second network device sends connection failure information to the first network device.
  • the first network device receives the connection failure information.
  • the foregoing connection failure information may be used to indicate that the terminal device has detected RLF in the source cell.
  • the first network device is the source base station
  • the second network device is the target base station.
  • the source cell is a cell managed by the first network device.
  • the target cell is a cell managed by the second network device.
  • the source cell is the first cell
  • the target cell is the second cell.
  • the target cell is a candidate cell that meets the CHO trigger condition or the first condition among one or more candidate cells.
  • the target cell is a cell selected by the terminal device after cell reselection.
  • the terminal device after the terminal device detects RLF in the source cell, it can record the RLF information detected in the source cell (that is, connection failure information), and can detect each of one or more candidate cells. Signal quality.
  • the terminal device may perform random access in the candidate cell i. For example, if the trigger condition or the first condition of CHO is that the signal quality is higher than the threshold value, when the signal quality of the candidate cell i is higher than the threshold value, the terminal device performs random access in the candidate cell i.
  • the candidate cell i can be referred to as a target cell.
  • the target cell may be a cell managed by the second network device.
  • the terminal device After the terminal device succeeds in random access in the target cell (ie, candidate cell i), the terminal device may send the connection failure information to the second network device.
  • the second network device receives the connection failure information.
  • the second network device After receiving the connection failure information, the second network device may forward the connection failure information to the first network device.
  • the first network device receives the connection failure information.
  • the first condition may be carried in the configuration information of CHO.
  • the terminal device after the terminal device detects RLF in the source cell, it can record the RLF information detected in the source cell (that is, connection failure information), and can start a timer to detect one or more of the above candidates at the same time.
  • the signal quality of each candidate cell in the cell If the terminal device does not detect that the signal quality of any candidate cell meets the above-mentioned CHO trigger condition or the first condition after the timer expires, the terminal device can perform cell reselection. If the cell reselected by the cell of the terminal device is the candidate cell j among the one or more candidate cells, the terminal device performs random access in the candidate cell j selected by the cell reselection.
  • the candidate cell j may be referred to as a target cell.
  • the target cell may be a cell managed by the second network device.
  • the terminal device After the terminal device succeeds in random access in the target cell (ie, candidate cell j), the terminal device may send the connection failure information to the second network device.
  • the second network device receives the connection failure information.
  • the second network device After receiving the connection failure information, the second network device may forward the connection failure information to the first network device.
  • the first network device receives the connection failure information.
  • S404 The first network device determines the connection failure type of the terminal device.
  • the connection failure type of the terminal device may include a late handover. Specifically, if the first network device determines that the terminal device stays in the source cell for a time greater than the second threshold (that is, the first network device determines that the terminal device stays in the source cell for too long), and the terminal device successfully accesses the target cell, then The first network device determines that the connection failure type of the terminal device is too late handover. Among them, this connection failure type can be used for mobility robustness optimization.
  • the first network device may perform mobility parameter optimization after determining that the handover is too late.
  • the mobility parameter may include one or more of the following: measurement filter coefficient, corresponding measurement trigger threshold or period, time to trigger or hysteresis threshold, etc.
  • the terminal device after detecting the RLF in the source cell, the terminal device records the RLF information detected in the source cell (that is, the connection failure information). After the terminal device successfully accesses the target cell (a candidate cell that meets the CHO trigger condition), the terminal device sends the recorded connection failure information to the second network device, and the second network device forwards the connection failure information to the first network device .
  • the connection failure information is used to indicate that the terminal device detects RLF in the source cell.
  • the connection failure information can trigger the first network device to determine the connection failure type (too late handover) of the terminal device.
  • the first network device determines that the terminal device has been in the source cell for too long and the terminal device successfully accesses the target cell. If the first network device determines that the connection failure type of the terminal device is too late handover. After the first network device determines the connection failure type of the terminal device, it can perform mobility parameter optimization. It realizes the judgment of too late handover when the RRC reconstruction is not performed in the CHO scenario, and also realizes the optimization of the mobility parameters, thereby optimizing the mobility robustness.
  • FIG. 6 is a schematic flowchart of the fifth mobility optimization method provided by an embodiment of the present application.
  • the mobility optimization method provided by the embodiment of the present application includes but is not limited to the following steps:
  • the first network device sends CHO configuration information to a terminal device.
  • the terminal device receives the configuration information of CHO.
  • step S501 in the embodiment of the present application may refer to the implementation manner of step S401 in the embodiment shown in FIG. 5, and details are not described herein again.
  • the first cell is the source cell and the second cell is the target cell.
  • the terminal device detects that candidate cell i of one or more candidate cells meets the CHO trigger condition, the terminal device performs random access in the candidate cell i.
  • the candidate cell i can be referred to as a target cell.
  • the terminal device has a wireless connection with the source cell during the random access process (the process of handover to the target cell) of the target cell (candidate cell i).
  • the presence of a wireless connection here means that the terminal device retains the connection configuration with the source cell, but the terminal device cannot perform data communication with the source cell.
  • the terminal device When the random access of the terminal device in the target cell (candidate cell i) fails (that is, the handover to the target cell fails), the terminal device falls back to perform data communication with the source cell, that is, the terminal device re-accesses the source cell.
  • the terminal device may record random access failure information in the target cell.
  • the terminal device may receive the first indication information sent by the first network device.
  • the first indication information may be used to instruct the terminal device to access the source cell (that is, fall back to perform data communication with the source cell) after random access to the target cell fails (that is, handover to the target cell fails).
  • the first indication information may be used to indicate a fallback condition.
  • the back-off condition can be that the signal quality is higher than the threshold, that is, after the random access of the target cell fails, and the signal quality of the source cell is detected to be higher than the threshold, the terminal device re-accesses the source cell .
  • S503 The terminal device sends connection failure information to the first network device.
  • the first network device receives the connection failure information.
  • connection failure information may be used to indicate that the terminal device fails to switch to the target cell (that is, random access fails in the target cell). It is understandable that the foregoing random access failure information in the target cell is connection failure information.
  • the first network device is the source base station.
  • the source cell is a cell managed by the first network device.
  • the first network device determines the connection failure type of the terminal device.
  • the above connection failure types may include premature handover or handover to the wrong cell.
  • the first network device may determine the connection failure type of the terminal device. Specifically, if the first network device determines that the terminal device successfully reconnects to the source cell and continues to maintain the wireless connection with the source cell (ie the second cell) (that is, the first network device decides that the terminal device stays in the source cell), then the first The network device determines that the connection failure type of the terminal device is premature handover.
  • the first network device determines that the third cell is the cell to be accessed by the terminal device (that is, the first network device decides that the terminal device switches to a new target cell)
  • the first network device determines that the connection failure type of the terminal device is handover to Wrong cell.
  • the third cell is different from the source cell (that is, the first cell) and any one of the above-mentioned one or more candidate cells.
  • this connection failure type can be used for mobility robustness optimization.
  • the first network device may perform mobility parameter optimization.
  • the mobility parameter may include one or more of the following: measurement filter coefficient, corresponding measurement trigger threshold or period, time to trigger or hysteresis threshold, etc.
  • the first network device after the first network device determines that the terminal device successfully reconnects to the source cell and continues to maintain the wireless connection with the source cell, it can determine the sending time of the CHO configuration information and the receiving time of the connection failure information.
  • the absolute difference may also be the absolute difference between the reception time of the above-mentioned CHO configuration information reported by the terminal device and the time when the handover to the target cell fails (that is, the random access fails in the target cell).
  • the first network device determines that the connection failure type of the terminal device is Switched too early.
  • the first network device may determine the absolute difference between the sending time of the CHO configuration information and the receiving time of the connection failure information. value. If the absolute difference is less than or equal to the configuration threshold, the first network device determines that the connection failure type of the terminal device is handover to the wrong cell.
  • the absolute difference may also be the absolute difference between the reception time of the above-mentioned CHO configuration information reported by the terminal device and the time when the handover to the target cell fails (that is, the random access fails in the target cell). Further optionally, when the absolute difference is less than or equal to the configuration threshold, and the first network device determines that the CHO configuration information has been recently issued to the terminal device, the first network device determines that the connection failure type of the terminal device is Switch to the wrong cell.
  • step S502 can be replaced with step S502': when the terminal device fails to switch from the first cell to the second cell, the terminal device judges the signal quality of other cells and selects a cell to access. For example, the terminal device judges the signal quality of other candidate cells and/or the first cell, and if the signal quality of a certain cell is higher than a threshold, the terminal device accesses the cell.
  • the threshold value is carried in the above-mentioned CHO configuration information.
  • step S503 can also be replaced with step S503': the terminal device sends connection failure information to the third network device corresponding to the cell that has successfully accessed. Correspondingly, the third network device receives the connection failure information. If the cell that is successfully accessed is the first cell, the connection failure type of the terminal device is determined according to the method of step S504.
  • the terminal device after the terminal device fails in random access to the target cell (candidate cell) (that is, fails to switch to the target cell), the terminal device re-accesses the source cell and records the random access failure information in the target cell ( That is, the connection failure message). After the terminal device successfully reconnects to the source cell, the terminal device sends a connection failure message to the network device (first network device) on the network side.
  • the connection failure information is used to indicate that the terminal device fails to switch to the target cell.
  • the connection failure information can trigger the first network device to determine the connection failure type of the terminal device (premature handover or handover to the wrong cell).
  • the first network device determines that the connection failure type of the terminal device is premature handover.
  • the first network device decides that the terminal device switches to a new target cell, the first network device determines that the connection failure type of the terminal device is switching to the wrong cell.
  • the first network device After the first network device determines the connection failure type of the terminal device, it can perform mobility parameter optimization. It realizes the judgment of premature handover and handover to the wrong cell when RRC reconstruction is not performed in the CHO scenario, and also realizes the optimization of mobility parameters, thereby optimizing the robustness of mobility.
  • the embodiments of the present application also provide a method for optimizing mobility between different radio access technologies (RATs), and the method can be used to determine late handover, premature handover, and handover to the wrong cell.
  • the mobility optimization method between different RATs can be applied to the UE handover between different radio access technologies in the same system (for example, the UE handovers between ng-eNB and gNB), and it can also be applied to the UE in different systems.
  • Handover between different radio access technologies for example, UE handover between eNB and gNB.
  • FIG. 7 is a schematic flowchart of a method for optimizing mobility between different RATs according to an embodiment of the present application. As shown in Figure 7, the mobility optimization method between different RATs includes but is not limited to the following steps:
  • the UE fails to hand over from the first cell of the first RAT to the second cell of the second RAT, or the UE succeeds in handover from the first cell of the first RAT to the second cell of the second RAT.
  • the UE detects RLF in the first cell of the first RAT.
  • the UE when the UE switches from the first cell of the first RAT (for example, cell 1) to the second cell of the second RAT (for example, cell 2), the UE switches to the second cell of the second RAT.
  • Handover failure Generally speaking, when the UE receives a handover message, the UE will start a timer. When the timing expires, the UE has not completed the handover in the second cell of the second RAT or is not in the second cell of the second RAT. If the cell successfully completes the random access process), the UE will record the connection failure information. The UE performs the RRC re-establishment procedure (the UE will perform cell selection during the re-establishment procedure), and the UE will carry the cell identification of the UE for cell selection in the connection failure information.
  • the UE after the UE successfully switches from the first cell of the first RAT (for example, cell 1) to the second cell of the second RAT (for example, cell 2), the UE is very close to the second cell (for example, cell 2). RLF occurred soon, and at this time, the UE will record the connection failure information. The UE also records the information of the first cell (such as cell 1) or/and the second cell (such as cell 2) in the connection failure information. The UE performs the RRC re-establishment procedure (the UE will perform cell selection during the re-establishment procedure), and the UE will carry the cell identification of the UE for cell selection in the connection failure information.
  • the RRC re-establishment procedure the UE will perform cell selection during the re-establishment procedure
  • the UE performs wireless connection access in the third cell of the second RAT, and sends connection failure information to the third cell of the second RAT (for example, cell 3).
  • the UE may send the connection failure information in the cell selected by the cell after performing RRC re-establishment after step S601.
  • the UE may also perform RRC re-establishment after step S601, after the RRC re-establishment fails in the cell selected by the cell, the UE performs wireless connection access in other cells of the second RAT, and sends the connection failure information to the wireless connection access Of the cell.
  • connection failure information may be carried in the RRC message of the second RAT in the form of a container.
  • the UE in addition to the content carried by the container, the UE also needs to carry the previously failed serving cell identity in addition to the container (for example, when switching from cell 1 to cell 2 fails, it carries the identity of cell 2. If from cell 1 The handover to cell 2 is successful, but RLF occurs soon in cell 2, then the identity of cell 2 is carried. If RLF is detected in cell 1, the identity of cell 1 is carried).
  • the third cell of the second RAT sends connection failure information to the second cell of the second RAT or the first cell of the first RAT.
  • the third cell (such as cell 3) of the second RAT sends the connection failure information received from the UE to the second cell (such as cell 2).
  • the third cell of the second RAT may send the connection failure information to the base station corresponding to the second cell through the cross-core network (that is, first send it to the core network, and then the core network forwards it to the base station corresponding to the second cell).
  • the third cell of the second RAT may also send the connection failure information to the base station corresponding to the second cell through the interface between the base stations (such as the Xn interface).
  • the connection failure information is also sent to the base station corresponding to the second cell in the form of a container.
  • the third cell of the second RAT when it sends the connection failure information to the second cell, it will additionally carry the RRC format corresponding to which RAT the connection failure information is, or the RRC format of which RAT is encoded, Or what RAT is the UE encoded in the RRC format.
  • the LTE format refers to the RRC format of the radio air interface when the UE connects to the 4G core network using the E-URTAN radio access technology.
  • the eLTE format refers to the RRC format of the radio air interface when the UE connects to the 5G core network with the E-URTAN radio access technology.
  • the NR format refers to the RRC format of the radio air interface when the UE connects to the 5G core network using the NR radio access technology.
  • the third cell of the second RAT sends the connection failure information to the second cell, it will additionally carry the UE's failed serving cell identity reported by the UE (for example, when the handover from cell 1 to cell 2 fails, carry cell 2 If the handover from cell 1 to cell 2 is successful, but RLF occurs in cell 2 soon, the identity of cell 2 is carried).
  • the base station corresponding to the second cell determines whether the previous handover is premature handover or handover to the wrong cell.
  • the third cell of the second RAT (such as cell 3) sends the connection failure information received from the UE to the first cell (such as cell 1).
  • the third cell of the second RAT may send the connection failure information to the base station corresponding to the first cell through the cross-core network (that is, first send it to the core network, and then the core network forwards it to the base station corresponding to the first cell).
  • the third cell of the second RAT may also send the connection failure information to the base station corresponding to the first cell through the interface between the base stations (such as the Xn interface).
  • the connection failure information is also sent to the base station corresponding to the first cell in the form of a container.
  • the third cell of the second RAT when it sends the connection failure information to the first cell, it will additionally carry the RRC format corresponding to which RAT the connection failure information is, or the RRC format of which RAT is encoded, Or what RAT is the UE encoded in the RRC format.
  • the LTE format refers to the RRC format of the radio air interface when the UE connects to the 4G core network using the E-URTAN radio access technology.
  • the eLTE format refers to the RRC format of the radio air interface when the UE connects to the 5G core network with the E-URTAN radio access technology.
  • the NR format refers to the RRC format of the radio air interface when the UE connects to the 5G core network using the NR radio access technology.
  • the third cell of the second RAT sends the connection failure information to the first cell, it will additionally carry the UE failed serving cell identity reported by the UE (if RLF is detected in cell 1, it will carry the cell 1’s Logo).
  • the base station corresponding to the first cell determines whether the previous handover is too late or handover to the wrong cell.
  • S604 The second cell of the second RAT sends connection failure information to the first cell of the first RAT.
  • the base station corresponding to the second cell after the base station corresponding to the second cell determines whether the previous handover is premature handover or handover to the wrong cell, the base station corresponding to the second cell sends a handover report to the first cell of the first RAT.
  • the report is used to indicate whether the previous handover was premature handover or handover to the wrong cell.
  • the handover report sent by the base station corresponding to the second cell to the base station corresponding to the first cell of the first RAT carries that the previous handover is premature handover or handover to the wrong cell.
  • the base station corresponding to the second cell also sends the received connection failure information to the base station corresponding to the first cell.
  • the connection failure information is also sent to the base station corresponding to the first cell in the form of a container.
  • the second cell of the second RAT when the second cell of the second RAT sends the connection failure information to the first cell, it will additionally carry the RRC format corresponding to which RAT the connection failure information is, or the RRC format of which RAT is encoded, Or what RAT is the UE encoded in the RRC format.
  • the first cell of the first RAT can perform mobility parameter optimization.
  • the second cell of the second RAT may send the connection failure information to the base station corresponding to the first cell through the cross-core network (that is, first send it to the core network, and then the core network forwards it to the base station corresponding to the first cell).
  • the second cell of the second RAT may also send the connection failure information to the base station corresponding to the first cell through the interface between the base stations (such as the Xn interface).
  • the embodiment of the present application also provides a corresponding device or device.
  • FIG. 8 is a schematic structural diagram of the device provided by an embodiment of the present application.
  • the device can be a network device or a chip or circuit that can be set in the network device.
  • the device 1 may include:
  • the first transceiver unit 10 is configured to receive connection failure information from a terminal device, and the connection failure information is used to indicate that the terminal device detects a radio link failure RLF in the first cell or fails to switch to the first cell, and the terminal device is in the second cell.
  • the first cell is the target cell, and the second cell is the source cell.
  • the above-mentioned first determining unit 20 is specifically configured to: when the first determining unit 20 determines that the terminal device detects RLF in the first cell or fails to switch to the first cell, it remains in contact with the second cell. When the cell is wirelessly connected, it is determined that the connection failure type of the terminal device is premature handover; when the first determining unit 20 determines that the third cell is the cell to be accessed by the terminal device, it is determined that the connection failure type of the terminal device is handover to error The cell, the third cell is different from the first cell and the second cell.
  • the first cell is a candidate cell that meets a CHO trigger condition among at least one candidate cell of the terminal device, and the third cell is different from any candidate cell of the at least one candidate cell and the second cell .
  • connection failure information is used to indicate that the terminal device fails to switch to the first cell.
  • the above-mentioned first transceiver unit 20 is further configured to send first indication information to the terminal device, where the first indication information is used to instruct the terminal device to access the second cell when the terminal device fails to switch to the first cell.
  • the above-mentioned first determining unit 20 may be a processing unit.
  • each module or unit can also refer to the corresponding description of the first network device in the method embodiment shown in FIG. 2 or FIG. 6 to execute the method and function performed by the first network device in the above embodiment.
  • the network device of the embodiment of the present application realizes the judgment of premature handover and handover to the wrong cell when RRC reconstruction is not performed in the mobility enhancement scenario or the CHO scenario, and also realizes the optimization of the mobility parameters, thereby optimizing the robustness of mobility Sex.
  • the device may be a network device, or may be a chip or circuit set in the network device.
  • the device 2 may include:
  • the second transceiver unit 30 is configured to receive connection failure information, where the connection failure information is used to indicate that the terminal device detects RLF in the first cell during the handover process from the first cell to the second cell, and the first cell is The cell managed by the first network device; the second determining unit 40 is configured to determine the connection failure type of the terminal device.
  • the above-mentioned second determining unit 40 is specifically configured to: when the second determining unit 40 determines that the time that the terminal device stays in the first cell is greater than a second threshold, and the terminal device successfully accesses the In the second cell, it is determined that the connection failure type of the terminal device is too late handover.
  • the time that the terminal device stays in the first cell is the time that the terminal device maintains an RRC connection in the first cell, or the time that the terminal device maintains a wireless connection in the first cell, or that the terminal device is in the first cell.
  • the time when connected and did not receive a handover command is the time that the terminal device stays in the first cell.
  • the foregoing second cell is a candidate cell that meets the CHO trigger condition among at least one candidate cell of the terminal device.
  • the above-mentioned second determining unit 40 may be a processing unit.
  • each module or unit can also refer to the corresponding description of the first network device in the method embodiment shown in FIG. 3 or FIG. 5 to execute the method and function performed by the first network device in the foregoing embodiment.
  • the network device of the embodiment of the present application realizes the judgment of too late handover when the RRC reconstruction is not performed in the mobility enhancement scenario or the CHO scenario, and also realizes the optimization of the mobility parameters, thereby optimizing the mobility robustness.
  • the device may be a network device, or may be a chip or circuit set in the network device.
  • the device 3 may include:
  • the third transceiving unit 50 is configured to receive connection failure information from the second network device, and the connection failure information is used to indicate that the terminal device detects RLF in the primary cell group MCG managed by the first network device; the third determining unit 60 uses To determine the type of connection failure of the terminal device.
  • the foregoing third determining unit 60 is specifically configured to: when the third determining unit 60 determines that the fourth cell is the cell to be accessed by the terminal device, determine that the connection failure type of the terminal device is too late handover , The fourth cell is different from the primary cell in the MCG managed by the first network device.
  • the above-mentioned third determining unit 60 is specifically configured to: when the third determining unit 60 determines that the fifth cell is the cell to be accessed by the terminal device, determine that the connection failure type of the terminal device is premature handover , The fifth cell is the cell before handover to the primary cell in the MCG managed by the first network device; when the third determining unit 60 determines that the sixth cell is the cell to be accessed by the terminal device, the terminal device’s The connection failure type is handover to the wrong cell, and the sixth cell is different from the primary cell and the fifth cell in the MCG managed by the first network device.
  • the above-mentioned third transceiver unit 50 is further configured to: send second indication information to the source master network device, the second indication information is used to indicate that the connection failure type of the terminal device is premature handover or handover to Wrong cell.
  • the above-mentioned second determining unit 60 may be a processing unit.
  • each module or unit may also correspond to the corresponding description of the first network device in the method embodiment shown in FIG. 4 to execute the method and function performed by the first network device in the above embodiment.
  • the network device of the embodiment of the present application realizes the judgment of too late handover, premature handover, and handover to the wrong cell in the RLF of the MCG in the dual-connection scenario, and also realizes the optimization of mobility parameters, thereby optimizing mobility robustness.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 provided by the embodiment of the present application includes a processor 1001, a memory 1002, a transceiver 1003, and a bus system 1004.
  • the communication device provided in the embodiment of the present application may be any one of the first network device, the second network device, and the terminal device.
  • processor 1001, memory 1002, and transceiver 1003 are connected through a bus system 1004.
  • the aforementioned memory 1002 is used to store programs. Specifically, the program may include program code, and the program code includes computer operation instructions.
  • the memory 1002 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM). Only one memory is shown in FIG. 11. Of course, the memory can also be set to multiple as required.
  • the memory 1002 may also be a memory in the processor 1001, which is not limited here.
  • the memory 1002 stores the following elements, executable units or data structures, or their subsets, or their extended sets:
  • Operating instructions including various operating instructions, used to implement various operations.
  • Operating system Including various system programs, used to implement various basic services and process hardware-based tasks.
  • the aforementioned processor 1001 controls the operation of the communication device 1000.
  • the processor 1001 may be one or more central processing units (CPU).
  • CPU central processing units
  • the CPU may be a single-core CPU. It can also be a multi-core CPU.
  • bus system 1004 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • bus system 1004 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • various buses are marked as the bus system 1004 in FIG. 11.
  • FIG. 11 is only schematically drawn.
  • the method of the terminal device of the embodiment; or any one of FIG. 3 to FIG. 5 provided in the above embodiment of the present application, or the method of the second network device of each of the above embodiments may be applied to the processor 1001 or used by the processor 1001 achieve.
  • the processor 1001 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 1001 or instructions in the form of software.
  • the aforementioned processor 1001 may be a general-purpose processor, a digital signal processing (digital signal processing, DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (field-programmable gate array, FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1002, and the processor 1001 reads the information in the memory 1002, and executes the method steps of the first network device described in any one of FIGS. 2 to 6 in combination with its hardware; or executes the steps of the first network device described in any of FIGS. 2 to 6 in combination with its hardware. 6 Any of the described method steps of the terminal device; or the method steps of the second network device described in any one of FIGS. 3 to 5 are executed in combination with its hardware.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes FIG. 2, FIG. 3, FIG. 4, FIG. 5, or FIG. 6.
  • the embodiment of the present application also provides a device, which may be a chip.
  • the chip includes a processor.
  • the processor is used to read and execute the computer program stored in the memory to execute the mobility optimization method in any possible implementation manner of FIG. 2 to FIG. 6.
  • the chip further includes a memory, and the memory and the processor are connected through a circuit or a wire.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, processes the data and/or information, and outputs the processing result through the communication interface.
  • the communication interface can be an input and output interface.
  • processors and memory may be physically independent units, or the memory may also be integrated with the processor.
  • a communication system in another embodiment of the present application, includes a first network device, and optionally, a terminal device.
  • the communication system includes a first network device and a second network device, and optionally, further includes a terminal device.
  • the first network device may be the first network device in the mobility optimization method provided in FIG. 2 or FIG. 6, and the terminal device may be the terminal device in the mobility optimization method provided in FIG. 2 or FIG. 6.
  • the first network device may be the first network device in the mobility optimization method provided in FIGS. 3 to 5, and the second network device may be the second network in the mobility optimization method provided in FIGS. 3 to 5
  • the terminal device may be the terminal device in the mobility optimization method provided in FIG. 3 to FIG. 5.
  • the process can be completed by a computer program instructing relevant hardware.
  • the program can be stored in a computer readable storage medium. , May include the processes of the foregoing method embodiments.
  • the aforementioned storage media include: ROM or random storage RAM, magnetic disks or optical disks and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种移动性优化方法及相关装置,该方法包括:在移动性增强场景下或双连接场景的MCG RLF时,终端设备向网络侧上报连接失败信息,该连接失败信息用于指示RLF或切换失败;网络侧的网络设备接收到该连接失败信息之后,可以判断终端设备的连接失败类型为过晚切换、过早切换或者切换至错误小区。在网络侧的网络设备判断出终端设备的连接失败类型之后,可以进行移动性参数优化。采用本申请实施例,可以在移动性增强和/或MR-DC中,判断过晚切换、过早切换以及切换至错误小区,实现对移动性参数的优化,从而优化移动性鲁棒性。

Description

移动性优化方法及相关装置 技术领域
本申请涉及移动通信技术领域,尤其涉及一种移动性优化方法及相关装置。
背景技术
在移动通信系统中,随着终端设备的移动,终端设备的网络会从源小区切换到目标小区进行数据传输。在切换(handover,HO)过程中,如果与切换相关的参数(比如测量滤波系数、触发时间、迟滞门限或触发门限等)配置不合理,则可能导致过晚切换(too late HO)、过早切换(too early HO)、切换至错误小区(HO to wrong cell)等问题,使得终端设备与网络设备断开连接,导致数据中断。
目前,终端设备在检测到连接失败(比如无线链路失败(radio link failure,RLF))或切换失败(比如定时器T304超时)时,终端设备会进行无线资源控制(radio resource control,RRC)重建。终端设备会在RRC重建请求消息中携带连接失败或切换失败的失败信息,网络设备可以利用RRC重建请求中的失败信息判断终端设备是否过晚切换、过早切换以及切换至错误小区等问题。因此,网络设备都是通过终端设备在连接失败或切换失败后进行RRC重建时判断过晚切换、过早切换以及切换至错误小区等问题。
然而,在一些情况下,终端设备不会进行RRC重建。比如第三代合作伙伴计划(3rd generation partnership project,3GPP)提出的一种移动性增强方案中,终端设备的网络从源小区到目标小区的切换失败时,或者终端设备在收到切换消息后、且在目标小区的随机接入(random access channel,RACH)过程成功之前,终端设备在源小区检测到RLF时,终端设备都不会进行RRC重建。又比如,在第五代移动通信技术(5th generation mobile networks,5G)标准R16版本的多无线双连接(Multi-Radio dual connectivity,MR-DC)中,终端设备检测到主小区组(master cell group,MCG)的RLF时,也不会进行RRC重建。因此,在这些情况下,如果终端设备不进行RRC重建,将如何判断过晚切换、过早切换以及切换至错误小区成为了亟待解决的问题。
发明内容
本申请实施例提供一种移动性优化方法及相关装置,可以在3GPP提出的移动性增强和/或MR-DC中,判断过晚切换、过早切换以及切换至错误小区,实现对移动性参数的优化,从而优化移动性鲁棒性。
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可以互相参考。
第一方面,本申请实施例提供一种移动性优化方法,该方法包括:终端设备向第一网络设备发送连接失败信息,第一网络设备接收到该连接失败信息之后,确定终端设备的连接失败类型。可选的,第一网络设备确定终端设备的连接失败类型之后,可以进行移动性参数优化。该移动性参数可以包括以下一种或多种:测量滤波系数、对应测量的触发门限 或周期、触发时间(time to trigger)或迟滞门限。其中,该连接失败信息可以用于指示终端设备在第一小区检测到RLF或者切换到该第一小区失败。终端设备在第二小区切换到该第一小区的切换过程中与该第二小区存在无线连接,该第二小区为第一网络设备管理的小区。该连接失败类型可以包括过早切换和/或切换至错误小区。该连接失败类型可以用于移动性鲁棒性优化。
可选的,第一小区为目标小区,第二小区为源小区,第一网络设备为源基站。第一小区(目标小区)和第二小区(源小区)可以属于同一个网络设备管理的小区,即第一小区和第二小区均为第一网络设备管理的小区。第一小区和第二小区也可以属于不同网络设备管理的小区,比如,第二小区属于第一网络设备管理的小区,第一小区为第二网络设备管理的小区。
本申请实施例的终端设备在目标小区检测到RLF或切换到目标小区失败后,向第一网络设备(源基站)发送连接失败信息,该连接失败信息可以触发第一网络设备确定终端设备的连接失败类型(过早切换、切换至错误小区)。第一网络设备接收到该连接失败信息之后,确定终端设备的连接失败类型。该连接失败类型可以用于移动性鲁棒性优化。实现了在移动性增强场景中判断过早切换和切换至错误小区,也实现了对移动性参数的优化,从而优化移动性鲁棒性。
结合第一方面,在一种可能的实施方式中,第一网络设备确定终端设备的连接失败类型具体为:若第一网络设备确定终端设备在第一小区(目标小区)检测到RLF或切换到第一小区(目标小区)失败后、仍然保持与第二小区(源小区)的无线连接(或者第一网络设备决策终端设备待在源小区),则第一网络设备确定终端设备的连接失败类型为过早切换;若第一网络设备确定第三小区为终端设备待接入的小区(或者第一网络设备决策终端设备切换到一个新的目标小区),则第一网络设备确定终端设备的连接失败类型为切换至错误小区。该第三小区不同于第一小区(即目标小区)和第二小区(即源小区)。其中,上述终端设备在第二小区切换到该第一小区的切换过程中与该第二小区存在无线连接的意思是:终端设备与第二小区(源小区)可以进行数据通信。
本申请实施例提出一种在移动性增强场景中判断过早切换和切换至错误小区的准则,即当第一网络设备决策终端设备待在源小区时,确定终端设备的连接失败类型是过早切换;当第一网络设备决策终端设备切换到一个新的目标小区时,确定终端设备的连接失败类型是切换至错误小区。实现了在移动性增强场景中判断过早切换和切换至错误小区,也实现了对移动性参数的优化,从而优化移动性鲁棒性。
结合第一方面,在一种可能的实施方式中,上述第一小区为终端设备的至少一个候选小区中满足条件性切换CHO触发条件的候选小区,上述第三小区不同于该至少一个候选小区的任一候选小区和上述第二小区。其中,上述终端设备在第二小区切换到该第一小区的切换过程中与该第二小区存在无线连接的意思是:终端设备与第二小区(源小区)保留连接配置,但不能进行数据通信。本申请实施例可以在条件性切换CHO场景下判断过早切换和切换至错误小区。
结合第一方面,在一种可能的实施方式中,在第一网络设备从终端设备接收连接失败信息之前,该方法还包括:第一网络设备向终端设备发送第一指示信息,该第一指示信息 用于指示终端设备切换到第一小区(目标小区)失败时终端设备接入第二小区(源小区)。本申请实施例在CHO场景下,当目标小区的随机接入失败后,可以回退到与源小区通信。
第二方面,本申请实施例提供另一种移动性优化方法,该方法包括:终端设备从第一小区切换到第二小区的切换过程中在该第一小区检测到RLF时,向第二网络设备发送连接失败信息,第二网络设备接收到该连接失败信息之后,可以向第一网络设备发送该连接失败信息;第一网络设备接收到该连接失败信息之后,确定终端设备的连接失败类型。可选的,第一网络设备确定终端设备的连接失败类型之后,可以进行移动性参数优化。该移动性参数可以包括以下一种或多种:测量滤波系数、对应测量的触发门限或周期、触发时间(time to trigger)或迟滞门限等。其中,该连接失败信息可以用于指示终端设备从第一小区(即源小区)切换到第二小区(即目标小区)的切换过程中在第一小区检测到RLF。切换过程中,终端设备在源小区检测到RLF之前,终端设备与源小区保持无线连接。终端设备在源小区检测到RLF时,终端设备与源小区的无线连接断开,即终端设备此时不能与源小区进行数据通信。该第一小区为第一网络设备管理的小区。该连接失败类型可以包括过晚切换。该连接失败类型可以用于移动性鲁棒性优化。
可选的,第一小区为源小区,第二小区为目标小区,第一网络设备为源基站。第一小区(源小区)和第二小区(目标小区)可以属于同一个网络设备管理的小区,即第一小区和第二小区均为第一网络设备管理的小区,第一网络设备和第二网络设备为同一物理设备。第一小区和第二小区也可以属于不同网络设备管理的小区,比如,第二小区属于第一网络设备管理的小区,第一小区为第二网络设备管理的小区。
本申请实施例的终端设备从第一小区切换到第二小区的过程中在源小区检测到RLF后,向第二网络设备发送连接失败信息,第二网络设备接收到该连接失败信息之后,可以向第一网络设备发送该连接失败信息。该连接失败信息可以触发第一网络设备确定终端设备的连接失败类型(过晚切换)。第一网络设备接收到该连接失败信息之后,确定终端设备的连接失败类型。该连接失败类型可以用于移动性鲁棒性优化。实现了在移动性增强场景中判断过晚切换,也实现了对移动性参数的优化,从而优化移动性鲁棒性。
结合第二方面,在一种可能的实施方式中,第一网络设备确定终端设备的连接失败类型具体为:若第一网络设备确定终端设备待在该第一小区(源小区)的时间大于第二阈值(或者第一网络设备确定终端设备在源小区待的时间过长)、且终端设备成功接入该第二小区(目标小区),则第一网络设备确定终端设备的连接失败类型为过晚切换。
本申请中,终端设备待在该第一小区的时间为终端设备在第一小区保持RRC连接的时间,或者终端设备在第一小区保持了无线连接的时间,或者说终端设备在第一小区有连接的且没有收到切换命令的时间。
本申请实施例提出一种在移动性增强场景中判断过晚切换的准则,即当第一网络设备确定终端设备在源小区待的时间过长、且终端设备成功接入了目标小区时,第一网络设备确定终端设备的连接失败类型是过晚切换。实现了在移动性增强场景中判断过晚切换,也实现了对移动性参数的优化,从而优化移动性鲁棒性。
结合第二方面,在一种可能的实施方式中,上述第二小区为终端设备的至少一个候选小区中满足CHO触发条件的候选小区。本申请实施例可以在CHO场景下判断过晚切换。
第三方面,本申请实施例提供又一种移动性优化方法,该方法包括:终端设备在主小区组MCG检测到RFL时,向第二网络设备发送连接失败信息,第二网络设备接收到该连接失败信息之后,向第一网络设备转发该连接失败信息;第一网络设备接收到该连接失败信息后,确定终端设备的连接失败类型。可选的,第一网络设备确定终端设备的连接失败类型之后,可以进行移动性参数优化。该移动性参数可以包括以下一种或多种:测量滤波系数、对应测量的触发门限或周期、触发时间(time to trigger)或迟滞门限等。其中,该连接失败信息可以用于指示终端设备在第一网络设备管理的MCG检测到RLF。该连接失败类型可以包括过晚切换、过早切换以及切换至错误小区。该连接失败类型可以用于移动性鲁棒性优化。第二网络设备为辅网络设备(也称为辅节点)SN。
本申请实施例的终端设备在第一网络设备管理的MCG检测到RLF后,向第二网络设备(SN)发送连接失败信息,第二网络设备接收到该连接失败信息之后,可以向第一网络设备发送该连接失败信息。该连接失败信息可以触发第一网络设备确定终端设备的连接失败类型(过晚切换,过早切换,或切换至错误小区)。第一网络设备接收到该连接失败信息之后,确定终端设备的连接失败类型。该连接失败类型可以用于移动性鲁棒性优化。实现了在双连接场景中判断过晚切换、过早切换或切换至错误小区,也实现了对移动性参数的优化,从而优化移动性鲁棒性。
结合第三方面,在一种可能的实施方式中,第一网络设备确定终端设备的连接失败类型具体为:若第一网络设备确定第四小区(如小区D)为终端设备待接入的小区(或者第一网络设备决策终端设备的主小区PCell切换到新的小区,该新的小区不同于第一网络设备管理的MCG中的主小区,比如终端设备的主小区PCell从小区A切换到小区D),则第一网络设备确定终端设备的连接失败类型为过晚切换。该第四小区不同于第一网络设备管理的MCG中的主小区。其中,第一网络设备为源主网络设备(也称源主节点),即源MN。
本申请实施例提出一种在双连接场景中判断过晚切换的准则,即当第一网络设备决策终端设备的主小区PCell切换到新的小区时,第一网络设备确定终端设备的连接失败类型是过晚切换。实现了在双连接场景中判断过晚切换,也实现了对移动性参数的优化,从而优化移动性鲁棒性。
结合第三方面,在一种可能的实施方式中,第一网络设备确定终端设备的连接失败类型具体为:若第一网络设备确定源主网络设备最近向终端设备发送了用于指示主小区改变(比如主小区从小区A变为小区B)的切换消息、且确定第五小区(如小区A)为终端设备待接入的小区(或者决策终端设备待在改变之前的主小区如小区A),则第一网络设备确定终端设备的连接失败类型为过早切换。该第五小区为切换到第一网络设备管理的MCG中的主小区之前的小区。如果第一网络设备确定源主网络设备最近向终端设备发送了用于指示主小区改变(比如主小区从小区A变为小区B)的切换消息、且确定第六小区(如小区C)为终端设备待接入的小区(或者决策终端设备切换到新的主小区,该新的主小区不同于小区A和B),则第一网络设备确定终端设备的连接失败类型为切换至错误小区。该第六小区不同于第一网络设备管理的MCG中的主小区和上述第五小区。其中,第一网络设备为目标主网络设备,即目标MN。
本申请实施例提出一种在双连接场景中判断过早切换和切换至错误小区的准则,即当 第一网络设备确定源主网络设备最近向终端设备发送了用于指示主小区改变的切换消息、且决策终端设备待在改变之前的主小区时,第一网络设备确定终端设备的连接失败类型是过早切换。当第一网络设备确定源主网络设备最近向终端设备发送了用于指示主小区改变的切换消息、且决策终端设备切换到新的主小区时,第一网络设备确定终端设备的连接失败类型是切换至错误小区。实现了在双连接场景中判断过早切换和切换至错误小区,实现了对移动性参数的优化,从而优化移动性鲁棒性。
结合第三方面,在一种可能的实施方式中,上述第一网络设备为目标主网络设备。第一网络设备确定终端设备的连接失败类型之后,该方法还包括:第一网络设备向源主网络设备发送第二指示信息,该第二指示信息可以用于指示该终端设备的连接失败类型为过早切换或切换至错误小区。
第四方面,本申请实施例提供又一种移动性优化方法,该方法包括:终端设备在第一小区检测到RLF或从该第一小区切换到第二小区失败时,发送连接失败信息。第一网络设备接收到该连接失败信息之后,确定终端设备的连接失败类型。可选的,第一网络设备确定终端设备的连接失败类型之后,可以进行移动性参数优化。该移动性参数可以包括以下一种或多种:测量滤波系数、对应测量的触发门限或周期、触发时间(time to trigger)或迟滞门限等。其中,该连接失败信息可以用于指示终端设备在第一小区检测到RLF或从第一小区切换到第二小区失败。该连接失败类型可以包括过晚切换、过早切换以及切换至错误小区。该连接失败类型可以用于移动性鲁棒性优化。
结合第四方面,在一种可能的实施方式中,上述第一小区为第一网络设备管理的源小区,第一网络设备为源基站,上述第二小区为目标小区;上述连接失败信息用于指示终端设备在该第一小区(源小区)检测到RLF。第一网络设备确定终端设备的连接失败类型具体为:若第一网络设备确定终端设备待在该第一小区(源小区)的时间大于第二阈值(或者第一网络设备确定终端设备在源小区待的时间过长)、且终端设备成功接入该第二小区(即目标小区),则第一网络设备确定终端设备的连接失败类型为过晚切换。该第二小区为终端设备的至少一个候选小区中满足CHO触发条件的候选小区。
本申请实施例提出一种在CHO场景中判断过晚切换的准则,即当第一网络设备确定终端设备在源小区待的时间过长、且终端设备成功接入了目标小区,则第一网络设备确定终端设备的连接失败类型为过晚切换。实现了在CHO场景下不进行RRC重建时判断过晚切换,也实现了对移动性参数的优化,从而优化移动性鲁棒性。
结合第四方面,在一种可能的实施方式中,上述第一小区为源小区,上述第二小区为目标小区,且该第二小区为终端设备的至少一个候选小区中满足CHO触发条件的候选小区。第一网络设备接收上述连接失败信息之前,该方法还包括:第一网络设备向终端设备发送第一指示信息,该第一指示信息用于指示终端设备从该第一小区切换到该第二小区失败时终端设备接入该第一小区。本申请实施例在CHO场景下,当目标小区的随机接入失败后,可以回退到与源小区通信。
结合第四方面,在一种可能的实施方式中,上述第一小区为源小区,上述第二小区为目标小区,且该第二小区为终端设备的至少一个候选小区中满足CHO触发条件的候选小区,上述连接失败信息用于指示终端设备从该第一小区切换到该第二小区(目标小区)失 败。第一网络设备确定终端设备的连接失败类型具体为:如果第一网络设备确定终端设备重新接入第一小区成功后继续保持与该第一小区(即源小区)的无线连接(或者第一网络设备决策终端设备待在源小区),则第一网络设备确定终端设备的连接失败类型为过早切换。如果第一网络设备确定第三小区为终端设备待接入的小区(或者第一网络设备决策终端设备切换到一个新的目标小区),则第一网络设备确定终端设备的连接失败类型为切换至错误小区。该第三小区不同于第一小区(即源小区)和上述一个或多个候选小区中的任一候选小区。
本申请实施例提出一种在CHO场景中判断过早切换和切换至错误小区的准则,即当第一网络设备决策终端设备待在源小区时,第一网络设备确定终端设备的连接失败类型是过早切换。当第一网络设备决策终端设备切换到一个新的目标小区时,第一网络设备确定终端设备的连接失败类型是切换至错误小区。实现了CHO场景下不进行RRC重建时判断过早切换和切换至错误小区,也实现了对移动性参数的优化,从而优化移动性鲁棒性。
第五方面,本申请实施例提供一种装置,该装置可以为网络设备或可用于设置于网络设备中的芯片或电路,该装置包括用于执行上述第一方面和/或第一方面的任意一种可能的实现方式所提供的移动性优化方法的单元和/或模块,因此也能实现第一方面提供的移动性优化方法所具备的有益效果(或优点)。
第六方面,本申请实施例提供一种装置,该装置可以为网络设备或可用于设置于网络设备中的芯片或电路,该装置包括用于执行上述第二方面和/或第二方面的任意一种可能的实现方式所提供的移动性优化方法的单元和/或模块,因此也能实现第二方面提供的移动性优化方法所具备的有益效果(或优点)。
第七方面,本申请实施例提供一种装置,该装置可以为网络设备或可用于设置于网络设备中的芯片或电路,该装置包括用于执行上述第三方面和/或第三方面的任意一种可能的实现方式所提供的移动性优化方法的单元和/或模块,因此也能实现第三方面提供的移动性优化方法所具备的有益效果(或优点)。
第八方面,本申请实施例提供一种装置,该装置可以为网络设备或可用于设置于网络设备中的芯片或电路,该装置包括用于执行上述第四方面和/或第四方面的任意一种可能的实现方式所提供的移动性优化方法的单元和/或模块,因此也能实现第四方面提供的移动性优化方法所具备的有益效果(或优点)。
第九方面,本申请实施例提供一种装置,该装置可以为网络设备或可用于设置于网络设备中的芯片或电路。该装置可以包括处理器、收发器和存储器,其中,该存储器用于存储计算机程序,该收发器用于收发各种信息,该计算机程序包括程序指令,当该处理器运行该程序指令时,使得该装置执行上述第一方面或第一方面的任意一种可能的实现方式的移动性优化方法。其中,收发器可以为网络设备中的射频模块,或,射频模块和天线的组合,或,芯片或电路的输入输出接口。
第十方面,本申请实施例提供一种装置,该装置可以为网络设备或可用于设置于网络设备中的芯片或电路。该装置可以包括处理器、收发器和存储器,其中,该存储器用于存储计算机程序,该收发器用于收发各种信息,该计算机程序包括程序指令,当该处理器运行该程序指令时,使得该装置执行上述第二方面或第二方面的任意一种可能的实现方式的 移动性优化方法。其中,收发器可以为网络设备中的射频模块,或,射频模块和天线的组合,或,芯片或电路的输入输出接口。
第十一方面,本申请实施例提供一种装置,该装置可以为网络设备或可用于设置于网络设备中的芯片或电路。该装置可以包括处理器、收发器和存储器,其中,该存储器用于存储计算机程序,该收发器用于收发各种信息,该计算机程序包括程序指令,当该处理器运行该程序指令时,使得该装置执行上述第三方面或第三方面的任意一种可能的实现方式的移动性优化方法。其中,收发器可以为网络设备中的射频模块,或,射频模块和天线的组合,或,芯片或电路的输入输出接口。
第十二方面,本申请实施例提供一种装置,该装置可以为网络设备或可用于设置于网络设备中的芯片或电路。该装置可以包括处理器、收发器和存储器,其中,该存储器用于存储计算机程序,该收发器用于收发各种信息,该计算机程序包括程序指令,当该处理器运行该程序指令时,使得该装置执行上述第四方面或第四方面的任意一种可能的实现方的移动性优化方法。其中,收发器可以为网络设备中的射频模块,或,射频模块和天线的组合,或,芯片或电路的输入输出接口。
第十三方面,本申请实施例提供一种通信系统,包括第一网络设备和终端设备,其中:该第一网络设备为上述第一方面或上述第四方面描述的移动性优化方法中的网络设备,该终端设备为上述第一方面或上述第四方面描述的移动性优化方法中的终端设备。
第十四方面,本申请实施例提供一种通信系统,包括第一网络设备、第二网络设备以及终端设备,其中:该第一网络设备为上述第二方面或上述第三方面或上述第二方面或第三方面的任一种可能的实现方式中描述的移动性优化方法中的第一网络设备,该第二网络设备为上述第二方面或上述第三方面或上述第二方面或第三方面的任一种可能的实现方式中描述的移动性优化方法中的第二网络设备,该终端设备为上述第二方面或上述第三方面或上述第二方面或第三方面的任一种可能的实现方式中描述的移动性优化方法中的终端设备。
第十五方面,本申请实施例提供一种可读存储介质,该可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的实现方式描述的移动性优化方法。
第十六方面,本申请实施例提供一种可读存储介质,该可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的实现方式描述的移动性优化方法。
第十七方面,本申请实施例提供一种可读存储介质,该可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的任意一种可能的实现方式描述的移动性优化方法。
第十八方面,本申请实施例提供一种可读存储介质,该可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的任意一种可能的实现方式描述的移动性优化方法。
第十九方面,本申请实施例提供一种包含指令的程序产品,当其运行时,使得上述第一方面或第一方面的任意一种可能的实现方式描述的移动性优化方法被执行。
第二十方面,本申请实施例提供一种包含指令的程序产品,当其运行时,使得上述第二方面或第二方面的任意一种可能的实现方式描述的移动性优化方法被执行。
第二十一方面,本申请实施例提供一种包含指令的程序产品,当其运行时,使得上述第三方面或第三方面的任意一种可能的实现方式描述的移动性优化方法被执行。
第二十二方面,本申请实施例提供一种包含指令的程序产品,当其运行时,使得上述第四方面或第四方面的任意一种可能的实现方式描述的移动性优化方法被执行。
第二十三方面,本申请实施例提供一种芯片,包括处理器。该处理器用于读取并执行存储器中存储的程序,以执行上述第一方面至第四方面中的一项或多项,或,上述第一方面、上述第二方面、上述第三方面或上述第四方面的任意可能的实现方式中的一项或多项提供的移动性优化方法。可选的,该芯片还包括存储器,该存储器与该处理器通过电路或电线连接。进一步可选的,该芯片还包括通信接口,该处理器与该通信接口连接。该通信接口用于接收需要处理的数据和/或信息,该处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
可选的,上述的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
实施本申请实施例,可以在3GPP提出的移动性增强和/或MR-DC中,判断过晚切换、过早切换以及切换至错误小区,实现对移动性参数的优化,从而优化移动性鲁棒性。
附图说明
图1A是本申请实施例提供的移动通信系统的系统架构示意图;
图1B是本申请实施例提供的CU/DU分离的基站分割示意图;
图2是本申请实施例提供的移动性优化方法的第一种的示意流程图;
图3是本申请实施例提供的移动性优化方法的第二种的示意流程图;
图4是本申请实施例提供的移动性优化方法的第三种的示意流程图;
图5是本申请实施例提供的移动性优化方法的第四种的示意流程图;
图6是本申请实施例提供的移动性优化方法的第五种的示意流程图;
图7是本申请实施例提供的不同RAT之间移动性优化方法的示意流程图;
图8是本申请实施例提供的装置的一结构示意图;
图9是本申请实施例提供的装置的另一结构示意图;
图10是本申请实施例提供的装置的又一结构示意图;
图11是本申请实施例提供的通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
为便于更好地理解本申请实施例所提供的移动性优化方法,下面将对本申请实施例提 供的移动性优化方法中所涉及的部分术语(名词)进行简单说明:
一、无线链路失败(radio link failure,RLF)
在通用移动通信技术的长期演进(Long Term Evolution,LTE)中,当终端设备发现与网络侧通信出现问题时,则认为网络设备与终端设备之间的无线链路失败。无线链路失败的检测机制包括以下一种或多种:(1)检测到物理层的问题。比如当终端设备的RRC层从底层收到连续的N个主小区(PCell)的失步指示,且在之后的一段时间内没有从底层收到连续的M个主小区(PCell)的同步指示;(2)在主小区组进行的随机接入过程失败;(3)终端设备的RRC层从主小区组无线链路控制(radio link control,RLC)层收到最大重传次数达到的指示信息。
二、切换失败(handover failure)
小区间切换是指终端设备在无线接入网的控制下完成从源小区(source cell)到目标小区(target cell)的无线链路连接的迁移。通常,终端设备在收到切换消息(比如,携带reconfigurationWithSync的RRCReconfiguration消息)之后,终端设备启动定时器T304。当终端设备在目标小区成功完成随机接入时,终端设备停止该定时器T304,说明终端设备从源小区切换到目标小区切换成功。当终端设备在目标小区成功完成随机接入之前,定时器T304超时,则终端设备从源小区切换到目标小区切换失败。
三、过晚切换(too late HO)
过晚切换是指终端设备在当前服务小区连接一段时间后发生连接失败(比如,在当前服务小区检测到RLF),终端设备在其他小区(这里的其他小区是指任意小区)尝试重建连接。这种情况主要指当前服务小区质量变差,但是终端设备没有收到切换消息,因此终端设备在当前服务小区检测到连接失败后在其他小区尝试重建连接。
四、过早切换(too early HO)
过早切换是指终端设备成功从源小区切换到目标小区后很快发生连接失败(比如,在目标小区检测到RLF),或者在从源小区切换到目标小区的过程中发生切换失败,终端设备在源小区尝试重建连接。这里的“很快”可以理解为一个较短的时间段。
五、切换至错误小区(HO to wrong cell)
切换至错误小区是指终端设备成功从源小区切换到目标小区后很快发生连接失败(比如,在目标小区检测到RLF),或者在从源小区切换到目标小区的过程中发生切换失败,终端设备在其它小区(这里的其它小区不同于源小区和目标小区)尝试重建连接。这里的“很快”可以理解为一个较短的时间段。
六、主小区组(master cell group,MCG)和辅小区组(secondary cell group,SCG)
在5G无线网络中,一个终端设备可以与多个网络设备通信,即双连接(dual connectivity,DC),也称为多无线双连接(MR-DC)。这多个网络设备可能是属于同一制式的网络设备(比如这多个网络设备均为第四代(4G)基站、或者均为第五代(5G)基站),也可能是不同制式的基站(比如一个是4G基站,一个是5G基站)。DC中,与核心网(core network,CN)有控制面信令交互的网络设备(基站)称为主节点(master node,MN),其他网络设备(基站)称为辅节点(secondary node,SN)。MN可称为主基站,SN可称为辅基站。主基站下的小区称为主小区组,主小区组可以由主小区(primary cell,PCell)和可 选的一个或多个辅小区组成。辅基站下的小区称为辅小区组,辅小区组可以由主辅小区(primary SCG cell,PSCell)和可选的一个或多个辅小区组成。
七、主小区(PCell)和主辅小区(PSCell)
主小区是指部署在主频点的MCG小区,且终端设备在该小区中执行初始连接建立过程或者执行连接重建过程,或者在切换过程中指定该小区为主小区。主辅小区是指SCG小区中终端设备执行同步的重配过程时,进行随机接入的小区;或者当执行SCG改变的时候且无需随机接入过程时,终端设备发起初始物理上行共享信道(physical uplink share channel,PUSCH)传输的小区。
八、移动性鲁棒性优化(mobility robust optimization,MRO)
移动性鲁棒性优化的主要目标是减少与切换相关的RLF的次数,提高网络资源的使用效率。非最优的切换参数配置,即使没有导致RLF,也会导致业务性能的严重恶化,影响用户体验。例如,切换迟滞(handover hysteresis)的错误设置虽然不会导致RLF,但会导致乒乓效应或者延迟接入到非最优小区。移动性鲁棒性优化的另一目标是减少由于不必要切换或漏切换产生的网络资源低效使用。移动性鲁棒性优化主要是基于性能指标的反馈来调整切换门限,同时自适应调整小区参数以适应该门限。
上述内容简要阐述了本申请实施例提供的移动性优化方法中所涉及的部分术语(名词),下面将对本申请实施例提供的移动性优化方法的系统架构进行说明。
本申请实施例提供的移动性优化方法可以应用于移动通信系统中,比如,第二代/第三代/第四代移动通信系统(2G/3G/4G)、5G或者未来的移动通信系统。为便于理解,本申请实施例先对移动通信系统的系统架构进行简要介绍。
参见图1A,图1A是本申请实施例提供的移动通信系统的系统架构示意图。如图1A所示,该移动通信系统可以包括至少两个网络设备(如图1A中的网络设备110、网络设备120)、至少一个核心网设备130以及至少一个终端设备140。终端设备140可以通过无线的方式与网络设备连接。网络设备110和网络设备120可以共同接入核心网设备130。图1A只是示意图,该移动通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和/或无线回传设备,在图1A中未画出。本申请实施例对该移动通信系统中包括的网络设备、终端设备以及核心网设备的数量不做限定。
其中,核心网设备130可以是4G核心网设备,也可以是5G核心网设备。
网络设备可以是网络侧的一种用于发射或接收信号的实体,如gNB。网络设备也可以为终端设备通过无线方式接入到该移动通信系统中的接入设备,如网络设备可以是基站NodeB、演进型基站(evolved NodeB,eNB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
可选的,本申请实施例中的基站可以为集中单元(centralized unit,CU)/分布单元(distributed unit,DU)分离的基站(这里指gNB)。参见图1B,图1B是本申请实施例提供的CU/DU分离的基站分割示意图。一个基站(这里指gNB)可以包含一个CU和多个DU,CU和DU之间可通过F1接口连接。图1B仅示例性地示出了一个CU和一个DU的 关系。如图1B所示,CU可以分为集中单元控制面(CU-control plane,CU-CP)和集中单元用户面(CU-user plane,CU-UP)。其中,CU-CP和CU-UP可以在不同的物理设备上,CU-CP和CU-UP之间可通过E1接口连接。CU-CP与DU之间可通过F1-C接口连接,CU-UP与DU之间可通过F1-U接口连接。CU-CP可以包括无线资源控制层(RRC层)和分组数据汇聚协议层(packet data convergence protocol,PDCP)控制面;CU-UP可以包括服务数据适配协议(service data adaptation protocol,SDAP)和PDCP用户面。DU可以包括无线链路控制层(RLC层)、介质访问控制(medium access control,MAC)层以及物理(physical,PHY)层。
终端设备140可以是用户侧的一种用于接收或发射信号的实体,如手机UE。本申请实施例中的终端设备为可移动的终端设备。比如,终端设备可以为用户终端(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,还可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑等移动便捷式终端设备。本申请的实施例对可移动终端设备所采用的具体技术和具体设备形态不做限定。
在一些可行的实施方式中,终端设备140可以连接到一个或多个网络设备。比如,终端设备140可以通过双连接(DC)技术与网络设备110和网络设备120通信。双连接(DC)的类型包括以下一种或多种:演进的通用陆基无线接入和新无线双连接(E-UTRA-NR dual connectivity,EN-DC)、下一代无线接入网演进的通用陆基无线接入和新无线双连接(NG-RAN E-UTRA-NR dual connectivity,NGEN-DC)、新无线和演进的通用陆基无线接入双连接(NR-E-UTRA dual connectivity,NE-DC)、新无线和新无线双连接(NR-NR cual connectivity,NR-DC)。
在EN-DC中,主基站(主网络设备)为连接到4G核心网的LTE基站(例如eNB),辅基站(辅网络设备)为NR基站(例如gNB)。
在NGEN-DC中,主基站(主网络设备)为连接5G核心网的LTE基站,辅基站(辅网络设备)为NR基站。
在NE-DC中,主基站(主网络设备)为连接到5G核心网的NR基站,辅基站(辅网络设备)为LTE基站。
在NR-DC中,主基站(主网络设备)为连接到5G核心网的NR基站,辅基站(辅网络设备)为NR基站。
上述内容阐述了本申请实施例提供的移动性优化方法的系统架构,下面将结合应用场景对本申请实施例提供的移动性优化方法进行详细说明。
应用场景1:移动性增强
为了提高用户体验度、提高系统性能,3GPP提出在切换过程中实现0ms(毫秒)移动中断时延的要求(要求上行、下行均做到0ms或接近0ms中断)。因此,为实现0ms移动中断时延,3GPP提出了一种移动性增强方案。在该移动性增强方案中,源基站在给终端设备(如UE)发送切换消息(如,RRC Conn Reconfig with Mobility Control Info消息)之后,可以与目标基站之间进行数据转发(Data fowarding),并且终端设备在同步到目标小区时与源小区仍然保持连接。对于下行链路,在切换过程中,源基站和终端设备之间的数据传 输不中断,目标基站和源基站可以都给终端设备发送下行数据,从而缩减数据传输的中断时间。因此,在该移动性增强方案中,终端设备与源基站和目标基站之间可以同时进行数据通信。可选的,该移动性增强方案也可以适用于源小区和目标小区属于同一个基站(即源基站和目标基站是一个物理实体)的场景,不同之处在于源基站和目标基站之间无数据转发过程。可选的,该移动性增强方案可以称为双激活协议栈(dual active protocol stack,DAPS)切换。
在该移动性增强方案中,由于终端设备在切换过程(这里的切换过程是指从源基站发送切换消息开始到源基站释放UE上下文为止)中与源小区仍然保持无线连接(这里的保持无线连接指终端设备与源小区可以进行数据通信),所以当终端设备在目标小区接入失败(这里指切换到目标小区失败或成功接入目标小区后很快发生RLF)时,终端设备不会进行RRC重建,终端设备会给源小区发送一个切换失败指示信息。可选的,终端设备在收到切换消息之后、且在目标小区的RACH过程成功之前,终端设备在源小区检测到RLF时,终端设备也不会进行RRC重建。因此,在上述两种情况下并不会引发RRC重建,则网络侧的网络设备也不会进行移动性鲁棒性优化,更不会判断上述两种情况下的过晚切换、过早切换以及切换至错误小区等问题。
针对上述应用场景1(移动性增强场景),本申请实施例提供一种移动性优化方法,可以在移动性增强场景中判断过晚切换、过早切换以及切换至错误小区,实现对移动性参数的优化,从而优化移动性鲁棒性。
参见图2,图2是本申请实施例提供的移动性优化方法的第一种的示意流程图。如图2所示,本申请实施例提供的移动性优化方法包括但不限于以下步骤:
S101,第一网络设备向终端设备发送切换消息。相应地,终端设备接收切换消息。
在一些可行的实施方式中,上述第一网络设备可以为源基站。上述切换消息可以为RRC消息,如携带了移动控制信息Mobility Control Info的RRC连接重配置RRC Connection Reconfiguration消息或携带了具有同步的重配置reconfiguration With Sync的RRC Connection Reconfiguration消息。该切换消息可以用于触发终端设备执行从源小区切换到目标小区的切换过程。该切换过程可以包括以下步骤:(a)终端设备同步到目标小区但保持与源小区的连接(Synchronize to target cell but keep connection with source cell);(b)目标小区下发上行分配(UL allcoation)和终端设备的时间提前量(TA for UE);(c)终端设备给目标小区发送RRC重配置完成消息(RRC Connection Reconfiguration Complete);(d)终端设备从源小区或目标小区区分PDCP包(Distinguish PDCP packet from source or target cell);(e)终端设备从源小区分离(detach from source cell);(f)目标小区向源小区发送UE上下文释放(UE context release)消息;(g)源小区释放资源(Release resources)。这里,终端设备从源小区切换到目标小区的切换过程中,终端设备仍然与源小区保持无线连接,即终端设备可以与源小区进行数据通信。本申请实施例中的目标小区为第一小区,源小区为第二小区。可选的,该切换消息可以是指在DAPS切换中下发的切换消息。
可选的,这里说的终端设备与源小区保持无线连接可以为,终端设备继续从源小区接收下行用户数据直到终端设备释放源小区,终端设备继续与源小区的上行数据传输直到终端设备在目标小区成功完成随机接入过程。可选的,新的上行数据不会再在源小区传输, 之前已经决策由终端设备发送给源小区的那些上行数据的重传可仍然由终端设备发送给源小区。
在一些可行的实施方式中,源小区和目标小区可以属于同一个网络设备管理的小区,即源小区和目标小区均为第一网络设备管理的小区;源小区和目标小区也可以属于不同的网络设备管理的小区,比如源小区属于第一网络设备管理的小区,目标小区属于第二网络设备管理的小区,本申请实施例对此不做限定。
在一些可行的实施方式中,如果源小区属于第一网络设备管理的小区、目标小区属于第二网络设备管理的小区,则第一网络设备向终端设备发送切换消息之前,第一网络设备可以向第二网络设备发送切换请求(handover request),第二网络设备接收到该切换请求之后可以向第一网络设备反馈对应的切换响应消息(handover request ACK)。
S102,终端设备向第一网络设备发送连接失败信息。相应地,第一网络设备接收连接失败信息。
在一些可行的实施方式中,上述连接失败信息可以用于指示终端设备在目标小区(即第一小区)检测到RLF或者切换到该目标小区失败。可选的,该连接失败信息中可以包括终端设备检测到的各个小区(包括当前的目标小区、源小区以及其他邻区等)的信号质量。可选的,该连接失败信息可以为切换失败信息,比如在失败信息failure Information消息中携带DAPS切换失败信息。可选的,该连接失败信息是通过终端设备与第一网络设备的无线链路发送给第一网络设备。
在一些可行的实施方式中,上述切换消息中可以携带一个RRC重建指示信息。或者终端设备接收到切换消息之前,终端设备接收到第一网络设备下发的RRC重建指示信息。该RRC重建指示信息可以用于指示终端设备在目标小区检测到RLF或者切换到该目标小区失败后,是否进行RRC重建或用于指示终端设备在目标小区检测到RLF或者切换到该目标小区失败后不进行RRC重建。可选的,该RRC重建指示信息可以为终端设备在目标小区检测到RLF或者切换到该目标小区失败后不进行RRC重建的条件,比如,当源小区的信号质量大于门限值时,终端设备不进行RRC重建。本申请实施例的终端设备在不进行RRC重建时,向第一网络设备发送连接失败信息。
S103,第一网络设备确定终端设备的连接失败类型。
在一些可行的实施方式中,终端设备的连接失败类型可以包括过早切换和切换至错误小区。第一网络设备在接收到上述连接失败信息之后,第一网络设备可以确定终端设备的连接失败类型。具体地,如果第一网络设备确定终端设备在目标小区检测到RLF或切换到目标小区失败后、仍然保持与源小区的无线连接(即第一网络设备决策终端设备待在源小区),则第一网络设备确定终端设备的连接失败类型为过早切换。如果第一网络设备确定第三小区为终端设备待接入的小区(即第一网络设备决策终端设备切换到一个新的目标小区),则第一网络设备确定终端设备的连接失败类型为切换至错误小区。该第三小区不同于源小区(即第二小区)和目标小区(即第一小区)。例如,源小区为小区A,目标小区为小区B,则第三小区可以为小区C。其中,该连接失败类型可以用于移动性鲁棒性优化。可选的,第一网络设备确定出过早切换或切换至错误小区之后,可以进行移动性参数优化。移动性参数可以包括以下一种或多种:测量滤波系数、对应测量的触发门限或周期、触发 时间(time to trigger)或迟滞门限等。
在一些可行的实施方式中,第一网络设备确定终端设备仍然保持与源小区的无线连接后,可以确定上述切换消息的发送时间与上述连接失败信息的接收时间之间的绝对差值。如果该绝对差值小于或等于第一阈值(配置门限值),则第一网络设备确定终端设备的连接失败类型为过早切换。可选的,第一网络设备确定终端设备上报的上述切换消息的接收时间与在目标小区检测到RLF(或者切换到目标小区失败)的时间之间的绝对差值。如果该绝对差值小于或等于第一阈值(配置门限值),则第一网络设备确定终端设备的连接失败类型为过早切换。进一步可选的,当上述绝对差值小于或等于该第一阈值、且第一网络设备确定最近给终端设备下发了切换消息时,第一网络设备确定终端设备的连接失败类型为过早切换。
在另一些可行的实施方式中,第一网络设备确定第三小区为终端设备待接入的小区之后,可以确定上述切换消息的发送时间与上述连接失败信息的接收时间之间的绝对差值。如果该绝对差值小于或等于该第一阈值(配置门限值),则第一网络设备确定终端设备的连接失败类型为切换至错误小区。可选的,第一网络设备确定终端设备上报的上述切换消息的接收时间与在目标小区检测到RLF(或者切换到目标小区失败)的时间之间的绝对差值。如果该绝对差值小于或等于第一阈值(配置门限值),则第一网络设备确定终端设备的连接失败类型为过早切换。进一步可选的,当上述绝对差值小于或等于第一阈值、且第一网络设备确定最近给终端设备下发了切换消息时,第一网络设备确定终端设备的连接失败类型为切换至错误小区。
作为一个可选的实施方式,如果源小区属于第一网络设备管理的小区、目标小区属于第二网络设备管理的小区。可以理解的,第一网络设备为源基站,第二网络设备为目标基站。第一网络设备接收到上述连接失败信息之后,可以向第二网络设备发送该连接失败信息。相应地,第二网络设备接收该连接失败信息。第一网络设备还可以将确定出的终端设备的后续行为(比如,第一网络设备确定终端设备继续保持与源小区的无线连接,或者第一网络设备确定终端设备切换到一个新的目标小区)发送给第二网络设备。第二网络设备确定终端设备的连接失败类型。
具体地,如果第二网络设备接收到的终端设备的后续行为是:第一网络设备确定终端设备继续保持与源小区的无线连接(即决策终端设备待在源小区),则第二网络设备确定终端设备的连接失败类型是过早切换。可选的,如果第二网络设备接收到的终端设备的后续行为是保持与源小区的无线连接,且第二网络设备在收到该连接失败信息之前的一段时间内第二网络设备给第一网络设备发送了切换响应消息(或者第二网络设备获知之前终端设备是从源小区切换到目标小区的),则第二网络设备确定终端设备的连接失败类型是过早切换。
如果第二网络设备接收到的终端设备的后续行为是:第一网络设备确定终端设备切换到一个新的目标小区,且这个新的目标小区(比如小区C)不是源小区(比如小区A)也不是之前的目标小区(比如小区B),则第二网络设备确定终端设备的连接失败类型是切换至错误小区。可选的,如果第二网络设备接收到的终端设备的后续行为是切换到一个新的 目标小区,且第二网络设备在收到该连接失败信息之前的一段时间内第二网络设备给第一网络设备发送了切换响应消息(或者第二网络设备获知之前终端设备是从源小区切换到目标小区的),则第二网络设备确定终端设备的连接失败类型是切换至错误小区。
可以理解的,第一网络设备向第二网络设备发送该连接失败信息之后,上述图2的步骤S103可以不执行。
在一些可行的实施方式中,第二网络设备确定终端设备的连接失败类型是过早切换或切换至错误小区之后,可以向第一网络设备发送指示信息,该指示信息可以用于指示终端设备的连接失败类型为过早切换或切换至错误小区。第一网络设备接收到该指示信息之后,可以进行移动性参数优化。
在本申请实施例中,终端设备在目标小区检测到RLF或切换到目标小区失败后,向网络侧发送连接失败信息,该连接失败信息用于指示终端设备在目标小区检测到RLF或者切换到该目标小区失败。相应地,网络侧的网络设备(可以是第一网络设备,也可以是第二网络设备)接收该连接失败信息。该连接失败信息可以触发网络侧的网络设备确定终端设备的连接失败类型(过早切换或切换至错误小区)。当第一网络设备决策终端设备待在源小区时,确定终端设备的连接失败类型是过早切换;当第一网络设备决策终端设备切换到一个新的目标小区时,确定终端设备的连接失败类型是切换至错误小区。网络侧的网络设备确定终端设备的连接失败类型之后,可以进行移动性参数优化。实现了在移动性增强场景中判断过早切换和切换至错误小区,也实现了对移动性参数的优化,从而优化移动性鲁棒性。
参见图3,图3是本申请实施例提供的移动性优化方法的第二种的示意流程图。如图3所示,本申请实施例提供的移动性优化方法包括但不限于以下步骤:
S201,第一网络设备向终端设备发送切换消息。相应地,终端设备接收切换消息。
在一些可行的实施方式中,本申请实施例中步骤S201的实现方式可参考图2所示实施例的步骤S101的实现方式,在此不再赘述。
S202,终端设备向第二网络设备发送连接失败信息。相应地,第二网络设备接收连接失败信息。
S203,第二网络设备向第一网络设备发送连接失败信息。相应地,第一网络设备接收连接失败信息。
在一些可行的实施方式中,上述连接失败信息可以用于指示终端设备从源小区(即第一小区)切换到目标小区(即第二小区)的切换过程中在源小区检测到RLF。该切换过程中,终端设备在源小区检测到RLF之前,终端设备与源小区保持无线连接。终端设备在源小区检测到RLF时,终端设备与源小区的无线连接断开,即终端设备此时不能与源小区进行数据通信。可选的,该连接失败信息中可以包括终端设备检测到的各个小区(包括当前的目标小区、源小区以及其他邻区等)的信号质量。其中,该连接失败信息可以为RLF指示(RLF indication)信息,比如在失败信息failure Information消息中携带。可选的,该连接失败信息是通过终端设备与第二网络设备的无线链路发送给第二网络设备。
可以理解的,在源小区和目标小区属于不同的网络设备管理的小区时,第一网络设备 可以为源基站,源小区为第一网络设备管理的小区,第二网络设备可以为目标基站,目标小区为第二网络设备管理的小区。终端设备从源小区切换到目标小区的切换过程中在源小区检测到RLF,终端设备可以记录源小区的连接失败信息(即在源小区检测到的RLF信息)。当终端设备在目标小区的随机接入过程成功(即终端设备成功切换到目标小区进行数据通信)后,终端设备可以向第二网络设备发送记录的连接失败信息。相应地,第二网络设备接收该连接失败信息。第二网络设备接收到该连接失败信息之后,可以向第一网络设备发送该连接失败信息。相应地,第一网络设备接收该连接失败信息。
在一些可行的实施方式中,终端设备记录源小区的连接失败信息的方式可以为:终端设备只记录最近的一次RLF或切换到目标小区失败,即每次检测到RLF或切换到目标小区失败时,只记录本次检测到的RLF或切换到目标小区失败,覆盖之前的记录。可选的,终端设备在移动性增强场景下向第二网络设备上报的连接失败信息中携带的失败类型可以指示移动性增强的切换过程中源小区的RLF。或者,终端设备分开独立上报,即移动性增强的切换过程中在源小区检测到的RLF和其他检测到的RLF记录之间是独立上报的,不会相互覆盖。
还可以理解的,在源小区和目标小区属于同一网络设备管理的小区时,第一网络设备可以为源基站,源小区和目标小区均为第一网络设备管理的小区,第一网络设备和第二网络设备为同一物理设备。终端设备从源小区切换到目标小区的切换过程中在源小区检测到RLF,终端设备可以记录源小区的连接失败信息(即在源小区检测到的RLF信息)。当终端设备在目标小区的随机接入过程成功(即终端设备成功切换到目标小区进行数据通信)后,终端设备可以向第一网络设备发送记录的连接失败信息。
S204,第一网络设备确定终端设备的连接失败类型。
在一些可行的实施方式中,上述连接失败类型可以包括过晚切换。具体地,如果第一网络设备确定终端设备待在源小区的时间大于第二阈值(即第一网络设备确定终端设备在源小区待的时间过长)、且终端设备成功接入目标小区,则第一网络设备确定终端设备的连接失败类型为过晚切换。其中,该连接失败类型可以用于移动性鲁棒性优化。可选的,第一网络设备确定出过晚切换之后,可以进行移动性参数优化。移动性参数可以包括以下一种或多种:测量滤波系数、对应测量的触发门限或周期、触发时间(time to trigger)或迟滞门限等。该第二阈值可以根据终端设备接收到切换消息之前检测到的源小区的信号质量低于其他小区(可以是切换时的目标小区或其他邻区)的信号质量的时间确定。
本申请中,终端设备待在源小区的时间为终端设备在源小区保持RRC连接的时间,或者终端设备在源小区保持了无线连接的时间,或者说终端设备在源小区有连接的且没有收到切换命令的时间。本申请其他处所出现的待在某小区的时间均为此意,不予赘述。
在本申请实施例中,终端设备从源小区切换到目标小区的切换过程中在源小区检测到RLF后,记录在源小区检测到的RLF信息(即连接失败信息)。当终端设备在目标小区成功接入之后,终端设备向第二网络设备发送记录的该连接失败信息,该连接失败信息用于指示终端设备从源小区切换到目标小区的切换过程中在源小区检测到RLF。第二网络设备接收到该连接失败信息之后,向第一网络设备转发该连接失败信息。该连接失败信息可以触发第一网络设备确定终端设备的连接失败类型(过晚切换)。如果第一网络设备确定终端 设备在源小区待的时间过长、且终端设备成功接入了目标小区,则第一网络设备确定终端设备的连接失败类型为过晚切换。第一网络设备确定终端设备的连接失败类型之后,可以进行移动性参数优化。可选的,可以由第二网络设备确定连接失败类型。比如第二网络设备在收到该连接失败信息之前的一段时间内第二网络设备给第一网络设备发送了切换响应消息(或者第二网络设备获知之前终端设备是从源小区切换到目标小区的),则第二网络设备确定终端设备的连接失败类型为过晚切换。实现了在移动性增强场景中判断过晚切换,实现了对移动性参数的优化,从而优化移动性鲁棒性。
场景2:双连接
在R16版本的MR-DC的增强中,终端设备同时连接到两个网络设备,也称为节点(MN和SN)。当终端设备检测到MCG(MN管理的主小区组)的RLF时,终端设备可以通过SN给MN发送一个MCG失败信息。具体的,终端设备将MCG失败信息先发送给SN,SN再将该MCG失败信息转发给MN。可选地,该MCG失败信息可以通过SN的RRC消息携带,比如信令无线承载3(signaling radio bearer 3,SRB3)。SRB3为终端设备和SN之间的直接SRB。或者,该MCG失败消息也可以通过MCG的SRB在SN侧的一条支路发送,比如分离信令无线承载1(split SRB1)。Split SRB是指MN和终端设备之间的一个SRB,该SRB在MCG和SCG(辅小区组)中都具有RLC承载。
由于终端设备检测到MCG的RLF时,终端设备与SCG仍然存在无线连接,因此终端设备检测到MCG的RLF时,并不引发RRC重建。在双连接场景下检测到MCG的RLF时,网络侧也不会进行移动性鲁棒性优化,更不会判断过晚切换、过早切换以及切换至错误小区。
针对上述应用场景2(双连接场景下MCG的RLF),本申请实施例提供一种移动性优化方法,可以在MCG的RLF后判断过晚切换、过早切换以及切换至错误小区,实现对移动性参数的优化,从而优化移动性鲁棒性。
参见图4,图4是本申请实施例提供的移动性优化方法的第三种的示意流程图。如图4所示,本申请实施例提供的移动性优化方法包括但不限于以下步骤:
S301,终端设备向第二网络设备发送连接失败信息。相应地,第二网络设备接收连接失败信息。
S302,第二网络设备向第一网络设备发送连接失败信息。相应地,第一网络设备接收连接失败信息。
在一些可行的实施方式中,上述连接失败信息可以用于指示终端设备在第一网络设备管理的MCG检测到RLF。
在一些可行的实施方式中,网络设备(比如终端设备的主网络设备,比如第一网络设备,或者UE切换到第一网络设备之前的网络设备)可以向终端设备发送MCG失败快速恢复的配置信息。终端设备接收到MCG失败快速恢复的配置信息之后,当终端设备在MCG检测到RLF时,终端设备可以进行MCG失败快速恢复,比如,终端设备通过第二网络设备(即辅网络设备SN)进行MCG失败快速恢复。具体地,终端设备可以向第二网络设备发送连接失败信息。相应地,第二网络设备接收该连接失败信息。第二网络设备接收到该 连接失败信息之后,可以向第一网络设备转发该连接失败信息。相应地,第一网络设备接收该连接失败信息。
S303,第一网络设备确定终端设备的连接失败类型。
在一些可行的实施方式中,第一网络设备为源主网络设备,即源MN;第二网络设备为辅网络设备SN。上述连接失败类型包括过晚切换。第一网络设备接收到上述连接失败信息之后,可以确定终端设备的连接失败类型为是否过晚切换。具体地,如果第一网络设备确定第四小区为终端设备待接入的小区(即第一网络设备决策终端设备的主小区PCell切换到新的小区,该新的小区不同于第一网络设备管理的MCG中的主小区,比如终端设备的主小区PCell从小区A切换到小区D),则第一网络设备确定终端设备的连接失败类型为过晚切换。该第四小区不同于第一网络设备管理的MCG中的主小区。例如,第一网络设备管理的MCG中的主小区为小区A,第四小区可以为小区D。可选的,第四小区可以为第一网络设备管理的辅小区SCell。可选的,第一网络设备确定出过晚切换之后,可以进行移动性参数优化。移动性参数可以包括以下一种或多种:测量滤波系数、对应测量的触发门限或周期、触发时间(time to trigger)或迟滞门限等。
可选的,如果第一网络设备确定第四小区为终端设备待接入的小区,且终端设备待在第一网络设备管理的MCG中的主小区的时间大于第三阈值(即第一网络设备确定终端设备在第一网络设备管理的MCG中的主小区待的时间过长),则第一网络设备确定终端设备的连接失败类型为过晚切换。
可选的,如果第一网络设备确定第四小区为终端设备待接入的小区,且第一网络设备接收到上述连接失败信息前的一段时间内,没有向终端设备发送切换消息,则第一网络设备确定终端设备的连接失败类型为过晚切换。
在一些可行的实施方式中,第一网络设备为目标主网络设备,即目标MN;第二网络设备为辅网络设备SN。上述连接失败类型可以包括过早切换或切换至错误小区。第一网络设备接收到上述连接失败信息之后,可以确定终端设备的连接失败类型。具体地,如果第一网络设备确定源主网络设备(比如第一网络设备或者UE切换到第一网络设备之前的网络设备)最近向终端设备发送了用于指示主小区改变(比如主小区从小区A变为小区B)的切换消息、且确定第五小区(如小区A)为终端设备待接入的小区(即决策终端设备待在改变之前的主小区如小区A),则第一网络设备确定终端设备的连接失败类型为过早切换。该第五小区为切换到第一网络设备管理的MCG中的主小区之前的小区。例如,第五小区为小区A,第一网络设备管理的MCG中的主小区为小区B,切换消息用于指示终端设备的主小区从小区A切换到小区B。
如果第一网络设备(即目标主网络设备)确定源主网络设备(比如第一网络设备或者UE切换到第一网络设备之前的网络设备)最近向终端设备发送了用于指示主小区改变(比如主小区从小区A变为小区B)的切换消息、且确定第六小区(如小区C)为终端设备待接入的小区(即决策终端设备切换到新的主小区,该新的主小区不同于小区A和B),则第一网络设备确定终端设备的连接失败类型为切换至错误小区。该第六小区不同于第一网络设备管理的MCG中的主小区和上述第五小区。例如,第五小区为小区A,第一网络设备管理的MCG中的主小区为小区B,则第六小区可以为小区C,切换消息用于指示终端设备 的主小区从小区A切换到小区B。
其中,上述第五小区(如小区A)和上述第一网络设备管理的MCG中的主小区(如小区B)可以属于同一个主网络设备(MN)管理的小区,即源主网络设备与第一网络设备为同一物理设备。第五小区(如小区A)和第一网络设备管理的MCG中的主小区(如小区B)也可以属于不同主网络设备(MN)管理的小区,即源主网络设备与第一网络设备为不同的物理设备,第五小区为源主网络设备管理的小区或为源主网络设备管理的主小区。
在一些可行的实施方式中,如果源主网络设备与第一网络设备为不同的物理设备,且第一网络设备为目标主网络设备,则第一网络设备确定出终端设备的连接失败类型为过早切换或切换至错误小区后,可以向源主网络设备发送第二指示信息,该第二指示信息可以用于指示该终端设备的连接失败类型为过早切换或切换至错误小区。可选的,源主网络设备接收到连接失败类型为过早切换或切换至错误小区之后,可以进行移动性参数优化。移动性参数可以包括以下一种或多种:测量滤波系数、对应测量的触发门限或周期、触发时间(time to trigger)或迟滞门限等。
在本申请实施例中,终端设备在MCG检测到RLF后,向辅网络设备(第二网络设备)发送连接失败信息,辅网络设备向第一网络设备(可以是源主网络设备,也可以是目标主网络设备)转发该连接失败信息,该连接失败信息用于指示终端设备在MCG检测到RLF。该连接失败信息可以触发第一网络设备确定终端设备的连接失败类型(过晚切换、过早切换或切换至错误小区)。当第一网络设备决策终端设备的主小区PCell切换到新的小区时,第一网络设备确定终端设备的连接失败类型是过晚切换。当第一网络设备确定源主网络设备最近向终端设备发送了用于指示主小区改变的切换消息、且决策终端设备待在改变之前的主小区时,第一网络设备确定终端设备的连接失败类型是过早切换。当第一网络设备确定源主网络设备最近向终端设备发送了用于指示主小区改变的切换消息、且决策终端设备切换到新的主小区时,第一网络设备确定终端设备的连接失败类型是切换至错误小区。网络侧在判断出终端设备的连接失败类型之后,可以进行移动性参数优化。实现了在双连接场景中判断过晚切换、过早切换以及切换至错误小区,实现了对移动性参数的优化,从而优化移动性鲁棒性。
场景3:条件性切换(conditional handover,CHO)
在CHO中,源小区对应的网络设备在源链路质量较好时向终端设备发送CHO的配置信息,该CHO的配置信息中可以包括CHO的触发条件和一个或多个候选小区的信息。其中,候选小区的信息可以包括候选小区的标识和候选小区对应的频率信息。候选小区的标识可以为候选小区的小区全球标识(cell global identifier,CGI)或候选小区的物理小区标识(physical cell identifier,PCI)。终端设备在接收到该CHO的配置信息后,根据该CHO的配置信息判断一个或多个候选小区是否满足CHO的触发条件,将满足CHO的触发条件的某候选小区作为目标小区。然后,终端设备与确定出的目标小区进行随机接入过程,当在目标小区随机接入成功后,终端设备给目标小区发送RRC消息(如RRC重配置完成消息),通知目标小区条件切换完成。
因此,CHO场景中,如果某个候选小区满足CHO的触发条件,终端设备直接接入满 足CHO的触发条件的候选小区,无需进行RRC重建。此时,网络侧也不会进行移动性鲁棒性优化,更不会判断过晚切换、过早切换以及切换至错误小区。
针对上述应用场景3(条件性场景下不进行RRC重建),本申请实施例提供一种移动性优化方法,可以在条件性越区切换场景下不进行RRC重建时,判断过晚切换、过早切换以及切换至错误小区,实现对移动性参数的优化,从而优化移动性鲁棒性。
参见图5,图5是本申请实施例提供的移动性优化方法的第四种的示意流程图。如图5所示,本申请实施例提供的移动性优化方法包括但不限于以下步骤:
S401,第一网络设备向终端设备发送CHO的配置信息。相应地,终端设备接收CHO的配置信息。
在一些可行的实施方式中,上述CHO的配置信息可以包括CHO的触发条件和一个或多个候选小区的信息。候选小区的信息可以包括候选小区的标识和候选小区对应的频率信息。候选小区的标识可以为CGI或PCI。
S402,终端设备向第二网络设备发送连接失败信息。相应地,第二网络设备接收连接失败信息。
S403,第二网络设备向第一网络设备发送连接失败信息。相应地,第一网络设备接收连接失败信息。
在一些可行的实施方式中,上述连接失败信息可以用于指示终端设备在源小区检测到RLF。可以理解的,第一网络设备为源基站,第二网络设备为目标基站。源小区为第一网络设备管理的小区。目标小区为第二网络设备管理的小区。本申请实施例中的源小区为第一小区,目标小区为第二小区。其中,目标小区为一个或多个候选小区中满足CHO的触发条件或第一条件的候选小区。或者,目标小区为终端设备进行小区重选后选出来的小区。
在一些可行的实施方式中,当终端设备在源小区检测到RLF后,可以记录在源小区检测到的RLF信息(即连接失败信息),并可以检测一个或多个候选小区中的各个候选小区的信号质量。当检测到该各个候选小区中候选小区i的信号质量满足上述CHO的触发条件或满足第一条件时,终端设备可以在该候选小区i进行随机接入。例如,CHO的触发条件或第一条件为信号质量高于门限值,则当候选小区i的信号质量高于该门限值时,终端设备在候选小区i进行随机接入。其中,候选小区i可以称为目标小区。目标小区可以为第二网络设备管理的小区。当终端设备在目标小区(即候选小区i)随机接入成功后,终端设备可以向第二网络设备发送该连接失败信息。相应地,第二网络设备接收连该接失败信息。第二网络设备接收到该连接失败信息之后,可以向第一网络设备转发该连接失败信息。相应地,第一网络设备接收该连接失败信息。可选的,第一条件可以在CHO的配置信息中携带。
在一些可行的实施方式中,当终端设备在源小区检测到RLF后,可以记录在源小区检测到的RLF信息(即连接失败信息),并可以启动定时器,同时检测上述一个或多个候选小区中的各个候选小区的信号质量。如果该定时器超时后,终端设备未检测到任一候选小区的信号质量满足上述CHO的触发条件或第一条件,则终端设备可以进行小区重选。如果终端设备的小区重选出的小区为该一个或多个候选小区中的候选小区j,则终端设备在小区重选出的该候选小区j进行随机接入。其中,候选小区j可以称为目标小区。目标小区可以 为第二网络设备管理的小区。当终端设备在目标小区(即候选小区j)随机接入成功后,终端设备可以向第二网络设备发送该连接失败信息。相应地,第二网络设备接收连该接失败信息。第二网络设备接收到该连接失败信息之后,可以向第一网络设备转发该连接失败信息。相应地,第一网络设备接收该连接失败信息。
S404,第一网络设备确定终端设备的连接失败类型。
在一些可行的实施方式中,终端设备的连接失败类型可以包括过晚切换。具体地,如果第一网络设备确定终端设备待在源小区的时间大于第二阈值(即第一网络设备确定终端设备在源小区待的时间过长)、且终端设备成功接入目标小区,则第一网络设备确定终端设备的连接失败类型为过晚切换。其中,该连接失败类型可以用于移动性鲁棒性优化。可选的,第一网络设备确定出过晚切换之后,可以进行移动性参数优化。移动性参数可以包括以下一种或多种:测量滤波系数、对应测量的触发门限或周期、触发时间(time to trigger)或迟滞门限等。
在本申请实施例中,终端设备在源小区检测到RLF后,记录在源小区检测到的RLF信息(即连接失败信息)。当终端设备在目标小区(满足CHO的触发条件的候选小区)成功接入之后,终端设备向第二网络设备发送记录的该连接失败信息,第二网络设备向第一网络设备转发该连接失败信息。该连接失败信息用于指示终端设备在源小区检测到RLF。该连接失败信息可以触发第一网络设备确定终端设备的连接失败类型(过晚切换)。如果第一网络设备确定终端设备在源小区待的时间过长、且终端设备成功接入了目标小区,则第一网络设备确定终端设备的连接失败类型为过晚切换。第一网络设备确定终端设备的连接失败类型之后,可以进行移动性参数优化。实现了在CHO场景下不进行RRC重建时判断过晚切换,也实现了对移动性参数的优化,从而优化移动性鲁棒性。
参见图6,图6是本申请实施例提供的移动性优化方法的第五种的示意流程图。如图6所示,本申请实施例提供的移动性优化方法包括但不限于以下步骤:
S501,第一网络设备向终端设备发送CHO的配置信息。相应地,终端设备接收CHO的配置信息。
在一些可行的实施方式中,本申请实施例中步骤S501的实现方式可参考图5所示实施例的步骤S401的实现方式,在此不再赘述。
S502,当终端设备从第一小区切换到第二小区失败时,重新接入第一小区。
在一些可行的实施方式中,第一小区为源小区,第二小区为目标小区。当终端设备检测到一个或多个候选小区中的候选小区i满足CHO的触发条件时,终端设备在该候选小区i进行随机接入。候选小区i可以称为目标小区。终端设备在目标小区(候选小区i)的随机接入过程(切换到目标小区的过程)中,与源小区存在无线连接。这里的存在无线连接是指,终端设备与源小区保留连接配置,但终端设备与源小区不能进行数据通信。当终端设备在目标小区(候选小区i)的随机接入失败(即切换到目标小区失败)时,终端设备回退到与源小区进行数据通信,即终端设备重新接入源小区。可选的,终端设备可以记录在目标小区的随机接入失败信息。
在一些可行的实施方式中,终端设备检测到各个候选小区中的候选小区i满足CHO的 触发条件之前,终端设备可以接收第一网络设备发送第一指示信息。该第一指示信息可以用于指示终端设备在目标小区随机接入失败(即切换到目标小区失败)后接入源小区(即回退到与源小区进行数据通信)。可选的,第一指示信息可以用于指示回退的条件,当终端设备在目标小区随机接入失败后,检测到源小区的信号质量满足该回退的条件时,终端设备重新接入源小区。例如,回退的条件可以为信号质量高于门限值,即当在目标小区随机接入失败后,且检测到源小区的信号质量高于该门限值时,终端设备重新接入源小区。
S503,终端设备向第一网络设备发送连接失败信息。相应地,第一网络设备接收连接失败信息。
在一些可行的实施方式中,上述连接失败信息可以用于指示终端设备切换到目标小区失败(即在目标小区随机接入失败)。可以理解的,上述在目标小区的随机接入失败信息为连接失败信息。第一网络设备为源基站。源小区为第一网络设备管理的小区。
S504,第一网络设备确定终端设备的连接失败类型。
在一些可行的实施方式中,上述连接失败类型可以包括过早切换或切换至错误小区。第一网络设备在接收到上述连接失败信息之后,第一网络设备可以确定终端设备的连接失败类型。具体地,如果第一网络设备确定终端设备重新接入源小区成功后继续保持与源小区(即第二小区)的无线连接(即第一网络设备决策终端设备待在源小区),则第一网络设备确定终端设备的连接失败类型为过早切换。如果第一网络设备确定第三小区为终端设备待接入的小区(即第一网络设备决策终端设备切换到一个新的目标小区),则第一网络设备确定终端设备的连接失败类型为切换至错误小区。该第三小区不同于源小区(即第一小区)和上述一个或多个候选小区中的任一候选小区。其中,该连接失败类型可以用于移动性鲁棒性优化。可选的,第一网络设备确定出过早切换或切换至错误小区之后,可以进行移动性参数优化。移动性参数可以包括以下一种或多种:测量滤波系数、对应测量的触发门限或周期、触发时间(time to trigger)或迟滞门限等。
在一些可行的实施方式中,第一网络设备确定终端设备重新接入源小区成功后继续保持与源小区的无线连接后,可以确定上述CHO的配置信息的发送时间与上述连接失败信息的接收时间之间的绝对差值。如果该绝对差值小于或等于配置门限值,则第一网络设备确定终端设备的连接失败类型为过早切换。可选的,该绝对差值还可以为终端设备上报的上述CHO的配置信息的接收时间与切换到目标小区失败(即在目标小区随机接入失败)的时间之间的绝对差值。进一步可选的,当上述绝对差值小于或等于该配置门限值、且第一网络设备确定最近给终端设备下发了CHO的配置信息时,第一网络设备确定终端设备的连接失败类型为过早切换。
在另一些可行的实施方式中,第一网络设备确定第三小区为终端设备待接入的小区之后,可以确定上述CHO的配置信息的发送时间与上述连接失败信息的接收时间之间的绝对差值。如果该绝对差值小于或等于该配置门限值,则第一网络设备确定终端设备的连接失败类型为切换至错误小区。可选的,该绝对差值还可以为终端设备上报的上述CHO的配置信息的接收时间与切换到目标小区失败(即在目标小区随机接入失败)的时间之间的绝对差值。进一步可选的,当上述绝对差值小于或等于该配置门限值、且第一网络设备确定最近给终端设备下发了CHO的配置信息时,第一网络设备确定终端设备的连接失败类型为切 换至错误小区。
作为一个可选的实施例,上述步骤S502可以替换为步骤S502’:当终端设备从第一小区切换到第二小区失败时,终端设备判断其他小区的信号质量,从中选择一个小区接入。比如,终端设备判断其他候选小区和/或第一小区的信号质量,如果某个小区的信号质量高于门限值,则终端设备接入该小区。可选的,该门限值在上述CHO的配置信息中携带。
可以理解的,上述步骤S503也可以替换为步骤S503’:终端设备向接入成功的该小区对应的第三网络设备发送连接失败信息。相应地,第三网络设备接收连接失败信息。如果接入成功的该小区为上述第一小区,则按照上述步骤S504的方法确定终端设备的连接失败类型。
在本申请实施例中,终端设备在目标小区(候选小区)的随机接入失败(即切换到目标小区失败)后,终端设备重新接入源小区并记录在目标小区的随机接入失败信息(即连接失败信息)。当终端设备重新接入源小区成功后,终端设备向网络侧的网络设备(第一网络设备)发送连接失败信息。该连接失败信息用于指示终端设备切换到目标小区失败。该连接失败信息可以触发第一网络设备确定终端设备的连接失败类型(过早切换或切换至错误小区)。当第一网络设备决策终端设备待在源小区时,第一网络设备确定终端设备的连接失败类型是过早切换。当第一网络设备决策终端设备切换到一个新的目标小区时,第一网络设备确定终端设备的连接失败类型是切换至错误小区。第一网络设备确定终端设备的连接失败类型之后,可以进行移动性参数优化。实现了CHO场景下不进行RRC重建时判断过早切换和切换至错误小区,也实现了对移动性参数的优化,从而优化移动性鲁棒性。
本申请实施例还提供了一种不同无线接入技术(radio access technology,RAT)之间的移动性优化方法,该方法可用于判断过晚切换、过早切换以及切换到错误小区。不同RAT之间的移动性优化方法可以应用于UE在同一个系统的不同无线接入技术之间的切换(比如UE在ng-eNB和gNB之间切换),也可以应用于UE在不同系统的不同无线接入技术之间的切换(比如UE在eNB和gNB之间切换)。参见图7,图7是本申请实施例提供的不同RAT之间移动性优化方法的示意流程图。如图7所示,不同RAT之间的移动性优化方法包括但不限于以下步骤:
S601,UE从第一RAT的第一小区切换到第二RAT的第二小区失败,或者UE从第一RAT的第一小区切换到第二RAT的第二小区成功之后很快在第二小区检测到RLF,或者UE在第一RAT的第一小区检测到RLF。
在一些可行的实施方式中,UE从第一RAT的第一小区(比如小区1)切换到第二RAT的第二小区(比如小区2)时,UE切换到第二RAT的第二小区时发生切换失败(一般而言,当UE收到切换消息时,UE会启动一个定时器,当该定时超时时,UE还没在第二RAT的第二小区完成切换或者没有在第二RAT的第二小区的成功完成随机接入过程),UE会记录连接失败信息。UE进行RRC重建流程(UE在重建流程中会进行小区选择),UE会在连接失败信息中携带UE进行小区选择的小区标识。
在一些可行的实施方式中,UE从第一RAT的第一小区(比如小区1)成功切换到第 二RAT的第二小区(比如小区2)后,UE在第二小区(如小区2)很快就发生了RLF,此时,UE会记录连接失败信息。UE还会在连接失败信息中记录第一小区(如小区1)或/和第二小区(比如小区2)的信息。UE进行RRC重建流程(UE在重建流程中会进行小区选择),UE会在连接失败信息中携带UE进行小区选择的小区标识。
S602,UE在第二RAT的第三小区进行无线连接接入,并向第二RAT的第三小区(比如小区3)发送连接失败信息。
在一些可行的实施方式中,UE可能是在步骤S601之后进行RRC重建之后,在小区选择的小区中发送连接失败信息。UE也可能是在步骤S601之后进行RRC重建之后,在小区选择的小区中RRC重建失败之后,UE在其他第二RAT的小区进行无线连接接入,并把连接失败信息发送给该无线连接接入的小区。
可选的,该连接失败信息可能是以一种容器的形式在第二RAT的RRC消息中携带。可选的,除该容器携带的内容之外,UE还需要额外在容器之外携带之前失败的服务小区标识(比如在从小区1切换小区2失败时,携带小区2的标识。如果从小区1切换到小区2成功,但很快在小区2发生RLF,则携带小区2的标识。如果在小区1检测到RLF时,则携带小区1的标识)。
S603,第二RAT的第三小区向第二RAT的第二小区或第一RAT的第一小区发送连接失败信息。
在一些可行的实施方式中,第二RAT的第三小区(如小区3)把从UE收到的连接失败信息发送给第二小区(如小区2)。第二RAT的第三小区可能通过跨核心网把连接失败信息发送给第二小区对应的基站(即先发给核心网,核心网再转发给第二小区对应的基站)。第二RAT的第三小区也可能通过基站间的接口(比如Xn接口)把连接失败信息发送给第二小区对应的基站。该连接失败信息也是以容器形式发送给第二小区对应的基站。可选的,第二RAT的第三小区把连接失败信息发送给第二小区时,还会额外携带该连接失败信息是以什么RAT对应的RRC格式,或者是以什么RAT的RRC格式编码的,或者UE是以什么RAT的RRC格式编码的。比如是以LTE的形式还是NR的形式,或者是LTE的形式还是NR的形式还是eLTE的形式。其中,LTE的形式是指UE以E-URTAN的无线接入技术连接到4G核心网时,无线空口的RRC格式。eLTE的形式是指UE以E-URTAN的无线接入技术连接到5G核心网时,无线空口的RRC格式。NR的形式是指UE以NR的无线接入技术连接到5G核心网时,无线空口的RRC格式。可选的,第二RAT的第三小区把连接失败信息发送给第二小区时,还会额外携带UE上报的UE失败的服务小区标识(比如在从小区1切换小区2失败时,携带小区2的标识。如果从小区1切换到小区2成功,但很快在小区2发生RLF,则携带小区2的标识)。
由第二小区对应的基站来判断之前的切换是过早切换或切换到错误小区。
在一些可行的实施方式中,第二RAT的第三小区(如小区3)把从UE收到的连接失败信息发送给第一小区(如小区1)。第二RAT的第三小区可能通过跨核心网把连接失败信息发送给第一小区对应的基站(即先发给核心网,核心网再转发给第一小区对应的基站)。第二RAT的第三小区也可能通过基站间的接口(比如Xn接口)把连接失败信息发送给第一小区对应的基站。该连接失败信息也是以容器形式发送给第一小区对应的基站。可选的, 第二RAT的第三小区把连接失败信息发送给第一小区时,还会额外携带该连接失败信息是以什么RAT对应的RRC格式,或者是以什么RAT的RRC格式编码的,或者UE是以什么RAT的RRC格式编码的。比如是以LTE的形式还是NR的形式,或者是LTE的形式还是NR的形式还是eLTE的形式。其中,LTE的形式是指UE以E-URTAN的无线接入技术连接到4G核心网时,无线空口的RRC格式。eLTE的形式是指UE以E-URTAN的无线接入技术连接到5G核心网时,无线空口的RRC格式。NR的形式是指UE以NR的无线接入技术连接到5G核心网时,无线空口的RRC格式。可选的,第二RAT的第三小区把连接失败信息发送给第一小区时,还会额外携带UE上报的UE失败的服务小区标识(如果在小区1检测到RLF时,则携带小区1的标识)。
由第一小区对应的基站来判断之前的切换是过晚切换或切换到错误小区。
S604,第二RAT的第二小区向第一RAT的第一小区发送连接失败信息。
在一些可行的实施方式中,由第二小区对应的基站判断之前的切换是过早切换还是切换到错误小区之后,第二小区对应的基站向第一RAT的第一小区发送切换报告,该切换报告用于指示之前的切换是过早切换或切换到错误小区。比如在第二小区对应的基站给第一RAT的第一小区对应的基站发送的切换报告中携带之前的切换是过早切换或切换到错误小区。第二小区对应的基站还会把收到的连接失败信息发送给第一小区对应的基站。该连接失败信息也是以容器形式发送给第一小区对应的基站。可选的,第二RAT的第二小区把连接失败信息发送给第一小区时,还会额外携带该连接失败信息是以什么RAT对应的RRC格式,或者是以什么RAT的RRC格式编码的,或者UE是以什么RAT的RRC格式编码的。第一RAT的第一小区收到这些信息之后,可以进行移动性参数优化。第二RAT的第二小区可能通过跨核心网把连接失败信息发送给第一小区对应的基站(即先发给核心网,核心网再转发给第一小区对应的基站)。第二RAT的第二小区也可能通过基站间的接口(比如Xn接口)把连接失败信息发送给第一小区对应的基站。
上述详细阐述了本申请实施例的通信方法,为了便于更好地实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
参见图8,图8是本申请实施例提供的装置的一结构示意图。该装置可以为网络设备或者可以设置于网络设备中的芯片或电路。如图8所示,该装置1可包括:
第一收发单元10,用于从终端设备接收连接失败信息,该连接失败信息用于指示终端设备在第一小区检测到无线链路失败RLF或切换至该第一小区失败,终端设备在第二小区切换到该第一小区的切换过程中与该第二小区存在无线连接,该第二小区为该第一网络设备管理的小区;第一确定单元20,用于确定终端设备的连接失败类型。第一小区为目标小区,第二小区为源小区。
在一些可行的实施方式中,上述第一确定单元20具体用于:当该第一确定单元20确定终端设备在该第一小区检测到RLF或切换到该第一小区失败后保持与该第二小区的无线连接时,确定终端设备的连接失败类型为过早切换;当该第一确定单元20确定第三小区为终端设备待接入的小区时,确定终端设备的连接失败类型为切换至错误小区,该第三小区不同于该第一小区和该第二小区。
在一些可行的实施方式中,该第一小区为终端设备的至少一个候选小区中满足CHO触发条件的候选小区,该第三小区不同于该至少一个候选小区的任一候选小区和该第二小区。
在一些可行的实施方式中,上述连接失败信息用于指示终端设备切换至该第一小区失败。上述第一收发单元20还用于:向终端设备发送第一指示信息,该第一指示信息用于指示终端设备切换到该第一小区失败时终端设备接入该第二小区。
其中,上述第一确定单元20可以为处理单元。
具体实现中,各个模块或单元的实现还可以对应参照图2或图6所示的方法实施例中第一网络设备的相应描述,执行上述实施例中第一网络设备所执行的方法和功能。
本申请实施例的网络设备实现了在移动性增强场景中或CHO场景下不进行RRC重建时判断过早切换和切换至错误小区,也实现了对移动性参数的优化,从而优化移动性鲁棒性。
参见图9,图9是本申请实施例提供的装置的另一结构示意图。该装置可以为网络设备,或者,可以设置于网络设备中的芯片或电路。如图9所示,该装置2可包括:
第二收发单元30,用于接收连接失败信息,该连接失败信息用于指示该终端设备从第一小区切换到第二小区的切换过程中在该第一小区检测到RLF,该第一小区为该第一网络设备管理的小区;第二确定单元40,用于确定该终端设备的连接失败类型。
在一些可行的实施方式中,上述第二确定单元40具体用于:当该第二确定单元40确定该终端设备待在该第一小区的时间大于第二阈值、且该终端设备成功接入该第二小区时,确定该终端设备的连接失败类型为过晚切换。
本申请中,终端设备待在所述第一小区的时间为终端设备在第一小区保持RRC连接的时间,或者终端设备在第一小区保持了无线连接的时间,或者说终端设备在第一小区有连接的且没有收到切换命令的时间。
在一些可行的实施方式中,上述第二小区为该终端设备的至少一个候选小区中满足CHO触发条件的候选小区。
其中,上述第二确定单元40可以为处理单元。
具体实现中,各个模块或单元的实现还可以对应参照图3或图5所示的方法实施例中第一网络设备的相应描述,执行上述实施例中第一网络设备所执行的方法和功能。
本申请实施例的网络设备实现了在移动性增强场景中或CHO场景下不进行RRC重建时判断过晚切换,也实现了对移动性参数的优化,从而优化移动性鲁棒性。
参见图10,图10是本申请实施例提供的装置的又一结构示意图。该装置可以为网络设备,或者,可以设置于网络设备中的芯片或电路。如图10所示,该装置3可包括:
第三收发单元50,用于从第二网络设备接收连接失败信息,该连接失败信息用于指示终端设备在该第一网络设备管理的主小区组MCG检测到RLF;第三确定单元60,用于确定终端设备的连接失败类型。
在一些可行的实施方式中,上述第三确定单元60具体用于:当该第三确定单元60确定第四小区为终端设备待接入的小区时,确定终端设备的连接失败类型为过晚切换,该第 四小区不同于该第一网络设备管理的MCG中的主小区。
在一些可行的实施方式中,上述第三确定单元60具体用于:当该第三确定单元60确定第五小区为终端设备待接入的小区时,确定终端设备的连接失败类型为过早切换,该第五小区为切换到该第一网络设备管理的MCG中的主小区之前的小区;当该第三确定单元60确定第六小区为该终端设备待接入的小区,确定该终端设备的连接失败类型为切换至错误小区,该第六小区不同于该第一网络设备管理的MCG中的主小区和该第五小区。
在一些可行的实施方式中,上述第三收发单元50还用于:向源主网络设备发送第二指示信息,该第二指示信息用于指示终端设备的连接失败类型为过早切换或切换至错误小区。
其中,上述第二确定单元60可以为处理单元。
具体实现中,各个模块或单元的实现还可以对应参照图4所示的方法实施例中第一网络设备的相应描述,执行上述实施例中第一网络设备所执行的方法和功能。
本申请实施例的网络设备实现了在双连接场景下MCG的RLF时判断过晚切换、过早切换以及切换至错误小区,也实现了对移动性参数的优化,从而优化移动性鲁棒性。
参见图11,图11是本申请实施例提供的通信装置的结构示意图。如图11所示,本申请实施例提供的通信装置1000包括处理器1001、存储器1002、收发器1003和总线系统1004。本申请实施例提供的通信装置可以为第一网络设备、第二网络设备以及终端设备中的任意一种。
其中,上述处理器1001、存储器1002和收发器1003通过总线系统1004连接。
上述存储器1002用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器1002包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。图11中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。存储器1002也可以是处理器1001中的存储器,在此不做限制。
存储器1002存储了如下的元素,可执行单元或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
上述处理器1001控制通信装置1000的操作,处理器1001可以是一个或多个中央处理器(central processing unit,CPU),在处理器1001是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
具体的应用中,通信装置1000的各个组件通过总线系统1004耦合在一起,其中总线系统1004除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图11中将各种总线都标为总线系统1004。为便于表示,图11中仅是示意性画出。
上述本申请实施例提供的图2至图6任一种,或者上述各个实施例揭示的第一网络设备的方法;或者上述本申请实施例提供的图2至图6任一种,或者上述各个实施例的终端 设备的方法;或者上述本申请实施例提供的图3至图5任一种,或者上述各个实施例的第二网络设备的方法可以应用于处理器1001中,或者由处理器1001实现。处理器1001可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1001中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1001可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的信息,结合其硬件执行图2至图6任一种所描述的第一网络设备的方法步骤;或者结合其硬件执行图2至图6任一种所描述的终端设备的方法步骤;或者结合其硬件执行图3至图5任一种所描述的第二网络设备的方法步骤。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2、图3、图4、图5或图6所描述的第一网络设备的方法步骤;或者当该计算机程序代码在计算机上运行时,使得该计算机执行图2、图3、图4、图5或图6所描述的终端设备的方法步骤。
本申请实施例还提供一种装置,该装置可以为芯片。该芯片包括处理器。该处理器用于读取并执行存储器中存储的计算机程序,以执行图2至图6的任意可能的实现方式中的移动性优化方法。可选的,该芯片还包括存储器,该存储器与该处理器通过电路或电线连接。进一步可选的,该芯片还包括通信接口,该处理器与该通信接口连接。该通信接口用于接收需要处理的数据和/或信息,该处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
可选的,上述的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
本申请的另一实施例中,还提供一种通信系统,该通信系统包括第一网络设备,可选的,进一步包括终端设备。或者,该通信系统包括第一网络设备和第二网络设备,可选的,进一步包括终端设备。示例性的,第一网络设备可以为图2或图6所提供的移动性优化方法中的第一网络设备,终端设备可以为图2或图6所提供的移动性优化方法中的终端设备。或,第一网络设备可以为图3至图5所提供的移动性优化方法中的第一网络设备,第二网络设备可以为图3至图5所提供的移动性优化方法中的第二网络设备,终端设备可以为图3至图5所提供的移动性优化方法中的终端设备。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储 记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种移动性优化方法,其特征在于,包括:
    第一网络设备从终端设备接收连接失败信息,所述连接失败信息用于指示所述终端设备在第一小区检测到无线链路失败RLF或切换至所述第一小区失败,所述终端设备在第二小区切换到所述第一小区的切换过程中与所述第二小区存在无线连接,所述第二小区为所述第一网络设备管理的小区;
    所述第一网络设备确定所述终端设备的连接失败类型。
  2. 根据权利要求1所述的方法,其特征在于,所述第一小区为目标小区,所述第二小区为源小区;
    所述第一网络设备确定所述终端设备的连接失败类型,包括以下一种或多种:
    若所述第一网络设备确定所述终端设备在所述第一小区检测到RLF或切换到所述第一小区失败后保持与所述第二小区的无线连接,则所述第一网络设备确定所述终端设备的连接失败类型为过早切换;
    若所述第一网络设备确定第三小区为所述终端设备待接入的小区,则所述第一网络设备确定所述终端设备的连接失败类型为切换至错误小区,所述第三小区不同于所述第一小区和所述第二小区。
  3. 根据权利要求2所述的方法,其特征在于,所述第一小区为所述终端设备的至少一个候选小区中满足条件性越区切换CHO触发条件的候选小区,所述第三小区不同于所述至少一个候选小区的任一候选小区和所述第二小区。
  4. 根据权利要求3所述的方法,其特征在于,所述第一网络设备从所述终端设备接收连接失败信息之前,所述方法还包括:
    所述第一网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备切换到所述第一小区失败时所述终端设备接入所述第二小区。
  5. 一种移动性优化方法,其特征在于,包括:
    第一网络设备接收连接失败信息,所述连接失败信息用于指示所述终端设备从第一小区切换到第二小区的切换过程中在所述第一小区检测到RLF,所述第一小区为所述第一网络设备管理的小区;
    所述第一网络设备确定所述终端设备的连接失败类型。
  6. 根据权利要求5所述的方法,其特征在于,所述第一网络设备确定所述终端设备的连接失败类型,包括:
    若所述第一网络设备确定所述终端设备待在所述第一小区的时间大于第二阈值、且所述终端设备成功接入所述第二小区,则所述第一网络设备确定所述终端设备的连接失败类 型为过晚切换。
  7. 根据权利要求6所述的方法,其特征在于,所述第二小区为所述终端设备的至少一个候选小区中满足CHO触发条件的候选小区。
  8. 一种移动性优化方法,其特征在于,包括:
    第一网络设备从第二网络设备接收连接失败信息,所述连接失败信息用于指示终端设备在所述第一网络设备管理的主小区组MCG检测到RLF;
    所述第一网络设备确定所述终端设备的连接失败类型。
  9. 一种移动性优化方法,其特征在于,包括:
    第一网络设备接收连接失败信息,所述连接失败信息用于指示终端设备在第一小区检测到RLF或从所述第一小区切换至第二小区失败;
    所述第一网络设备确定所述终端设备的连接失败类型。
  10. 一种装置,所述装置为网络设备或用于设置于网络设备中的芯片或电路,所述装置包括用于执行如权利要求1-4任一项所述方法的单元或模块。
  11. 一种装置,所述装置为网络设备或用于设置于网络设备中的芯片或电路,所述装置包括用于执行如权利要求5-7任一项所述方法的单元或模块。
  12. 一种装置,所述装置为网络设备或用于设置于网络设备中的芯片或电路,所述装置包括用于执行如权利要求8所述方法的单元或模块。
  13. 一种装置,所述装置为网络设备或用于设置于网络设备中的芯片或电路,所述装置包括用于执行如权利要求9所述方法的单元或模块。
  14. 一种装置,所述装置为网络设备或用于设置于网络设备中的芯片或电路,其特征在于,包括处理器、收发器和存储器,其中,所述存储器用于存储计算机程序,所述收发器用于收发信息,所述计算机程序包括程序指令,当所述处理器运行所述程序指令时,使所述装置执行如权利要求1-4任一项所述的方法。
  15. 一种装置,所述装置为网络设备或用于设置于网络设备中的芯片或电路,其特征在于,包括处理器、收发器和存储器,其中,所述存储器用于存储计算机程序,所述收发器用于收发信息,所述计算机程序包括程序指令,当所述处理器运行所述程序指令时,使所述装置执行如权利要求5-7任一项所述的方法。
  16. 一种装置,所述装置为网络设备或用于设置于网络设备中的芯片或电路,其特征 在于,包括处理器、收发器和存储器,其中,所述存储器用于存储计算机程序,所述收发器用于收发信息,所述计算机程序包括程序指令,当所述处理器运行所述程序指令时,使所述装置执行如权利要求8所述的方法。
  17. 一种装置,所述装置为网络设备或用于设置于网络设备中的芯片或电路,其特征在于,包括处理器、收发器和存储器,其中,所述存储器用于存储计算机程序,所述收发器用于收发信息,所述计算机程序包括程序指令,当所述处理器运行所述程序指令时,使所述装置执行如权利要求9所述的方法。
  18. 一种通信系统,其特征在于,包括第一网络设备和终端设备,其中:
    所述第一网络设备为执行如权利要求1-7任一项方法的网络设备;
    所述终端设备为执行如权利要求1-7任一项方法的终端设备。
  19. 一种可读存储介质,其特征在于,所述可读存储介质中存储程序指令,当所述程序指令运行时,使得如权利要求1-4任一项所述的方法被执行。
  20. 一种可读存储介质,其特征在于,所述可读存储介质中存储程序指令,当所述程序指令运行时,使得如权利要求5-7任一项所述的方法被执行。
  21. 一种可读存储介质,其特征在于,所述可读存储介质中存储程序指令,当所述程序指令运行时,使得如权利要求8所述的方法被执行。
  22. 一种可读存储介质,其特征在于,所述可读存储介质中存储程序指令,当所述程序指令运行时,使得如权利要求9所述的方法被执行。
PCT/CN2019/116877 2019-11-08 2019-11-08 移动性优化方法及相关装置 WO2021088077A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/CN2019/116877 WO2021088077A1 (zh) 2019-11-08 2019-11-08 移动性优化方法及相关装置
CN202080003808.9A CN113099735A (zh) 2019-11-08 2020-02-20 移动性优化方法及相关装置
EP20883805.2A EP4057696A4 (en) 2019-11-08 2020-02-20 METHOD AND RELATED DEVICE FOR MOBILITY OPTIMIZATION
BR112022008459A BR112022008459A2 (pt) 2019-11-08 2020-02-20 Método de otimização de mobilidade e aparelho relacionado
CN202110001385.3A CN112867075B (zh) 2019-11-08 2020-02-20 移动性优化方法及相关装置
MX2022005500A MX2022005500A (es) 2019-11-08 2020-02-20 Metodo de optimizacion de movilidad y aparato relacionado.
PCT/CN2020/076058 WO2021088270A1 (zh) 2019-11-08 2020-02-20 移动性优化方法及相关装置
KR1020227019343A KR20220097979A (ko) 2019-11-08 2020-02-20 이동성 최적화 방법 및 관련 장치
JP2022525945A JP2023500137A (ja) 2019-11-08 2020-02-20 モビリティ最適化方法および関連する装置
US17/738,431 US20220264414A1 (en) 2019-11-08 2022-05-06 Mobility Optimization Method and Related Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116877 WO2021088077A1 (zh) 2019-11-08 2019-11-08 移动性优化方法及相关装置

Publications (1)

Publication Number Publication Date
WO2021088077A1 true WO2021088077A1 (zh) 2021-05-14

Family

ID=75849371

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/116877 WO2021088077A1 (zh) 2019-11-08 2019-11-08 移动性优化方法及相关装置
PCT/CN2020/076058 WO2021088270A1 (zh) 2019-11-08 2020-02-20 移动性优化方法及相关装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076058 WO2021088270A1 (zh) 2019-11-08 2020-02-20 移动性优化方法及相关装置

Country Status (8)

Country Link
US (1) US20220264414A1 (zh)
EP (1) EP4057696A4 (zh)
JP (1) JP2023500137A (zh)
KR (1) KR20220097979A (zh)
CN (1) CN113099735A (zh)
BR (1) BR112022008459A2 (zh)
MX (1) MX2022005500A (zh)
WO (2) WO2021088077A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023285031A1 (en) * 2021-07-15 2023-01-19 Nokia Technologies Oy Network slice specific conditional handover optimization

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11172422B2 (en) * 2020-03-18 2021-11-09 Verizon Patent And Licensing Inc. Systems and methods for anchor selection in a non-standalone wireless network environment
CN114390638A (zh) * 2020-10-21 2022-04-22 大唐移动通信设备有限公司 Daps切换失败类型确定方法及装置
WO2022256982A1 (zh) * 2021-06-07 2022-12-15 华为技术有限公司 一种辅助主小区的条件变更方法和装置
WO2024031271A1 (en) * 2022-08-08 2024-02-15 Zte Corporation Method of self optimation of fast master cell group recovery
CN117998482A (zh) * 2022-11-03 2024-05-07 华为技术有限公司 通信方法、通信装置、计算机可读存储介质和计算机程序产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130303155A1 (en) * 2012-05-11 2013-11-14 Telefonaktiebolaget L M Ericsson (Publ) Classifying failure reports as either current or stale for mobility robustness optimization adjustments
US20150092746A1 (en) * 2013-09-30 2015-04-02 Telefonaktiebolaget L M Ericsson (Publ) Enhancement on radio link failure report to record necessary timing details for a dual-threshold handover trigger event
CN110035463A (zh) * 2012-08-03 2019-07-19 三星电子株式会社 用于调节移动性参数的方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559397B2 (en) * 2009-11-19 2013-10-15 Samsung Electronics Co., Ltd. Handover-related radio link failure detection
CN102131257A (zh) * 2010-01-18 2011-07-20 中兴通讯股份有限公司 一种移动性优化中上报切换报告的方法及系统
CN103391567A (zh) * 2012-05-11 2013-11-13 中兴通讯股份有限公司 无线网络间移动性参数优化方法及装置
US9544938B2 (en) * 2014-01-21 2017-01-10 Telefonaktiebolaget Lm Ericsson (Publ) Network nodes and methods therein for handling communications in a radio communications network
CN107690162B (zh) * 2016-08-03 2021-05-11 中兴通讯股份有限公司 小区连接失败的处理方法及装置
US20190215756A1 (en) * 2018-01-11 2019-07-11 Comcast Cable Communications, Llc Connection Failure Reporting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130303155A1 (en) * 2012-05-11 2013-11-14 Telefonaktiebolaget L M Ericsson (Publ) Classifying failure reports as either current or stale for mobility robustness optimization adjustments
CN110035463A (zh) * 2012-08-03 2019-07-19 三星电子株式会社 用于调节移动性参数的方法和装置
US20150092746A1 (en) * 2013-09-30 2015-04-02 Telefonaktiebolaget L M Ericsson (Publ) Enhancement on radio link failure report to record necessary timing details for a dual-threshold handover trigger event

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
VIVO, ERICSSON(RAPPORTEUR): "MCG link fast recovery in MR-DC", 3GPP DRAFT; R2-1905812_37340_DRAFTCR_MCG LINK FAST RECOVERY IN MR-DC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051729311 *
VIVO: "Enhanced RACH-less solution for NR", 3GPP DRAFT; R2-1905975 DISCUSSION ON THE RLF AND HOF DURING NON-SPLIT BEARER HANDOVER, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051729465 *
VIVO: "Remaining issues on MCG fast recovery", 3GPP DRAFT; R2-1905827_REMAINING ISSUES ON MCG FAST RECOVERY, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051729326 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023285031A1 (en) * 2021-07-15 2023-01-19 Nokia Technologies Oy Network slice specific conditional handover optimization

Also Published As

Publication number Publication date
WO2021088270A9 (zh) 2021-07-08
MX2022005500A (es) 2022-06-02
JP2023500137A (ja) 2023-01-04
EP4057696A4 (en) 2023-01-11
CN113099735A (zh) 2021-07-09
KR20220097979A (ko) 2022-07-08
WO2021088270A1 (zh) 2021-05-14
US20220264414A1 (en) 2022-08-18
BR112022008459A2 (pt) 2022-09-20
EP4057696A1 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
WO2021088270A1 (zh) 移动性优化方法及相关装置
US10743228B2 (en) Method and device for switching of multi-carrier
EP2348771B1 (en) Method and device for informing handover failure indication information
EP2540109B1 (en) Detection of radio link failure (rlf) for recovery
JP7403615B2 (ja) ハンドオーバ制御方法
US9807658B2 (en) Cell handover method and apparatus
CN112867075B (zh) 移动性优化方法及相关装置
US9509594B2 (en) Mobile terminal preparation
US11146993B2 (en) Handover with postponed path switch
JP2023514077A (ja) マスタノード、セカンダリノード、ユーザ装置及び通信ネットワークで実行される方法
WO2021056453A1 (en) Method, device and computer storage medium of communication
EP4098027B1 (en) Radio network node, user equipment, and handover methods performed in a communication network
CN105072644B (zh) 用于在蜂窝式无线通信系统中提供信息的方法
WO2022083469A1 (zh) 一种mro临界场景的判定方法、装置及设备
US20230262545A1 (en) Link recovery via cells prepared with information for handovers including cho and daps
KR20230009939A (ko) 마스터 셀 그룹 실패의 이벤트에서의 통신 관리
WO2023040787A1 (zh) 小区切换方法及通信装置
WO2023024385A1 (zh) 小区切换、配置方法及装置、计算机可读存储介质、用户设备、网络设备
WO2023231001A1 (en) Methods and apparatus to improve ue experience during inter-du inter-cell beam management
WO2024065543A1 (zh) 失败检测及恢复方法和装置
WO2023078340A1 (zh) 一种无线通信链路失败处理方法及装置
EP4287709A1 (en) Methods and apparatus to improve ue experience during inter-du inter-cell beam management
CN116584124A (zh) 用于cho及daps程序的daps故障恢复机制及mro机制的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951510

Country of ref document: EP

Kind code of ref document: A1