WO2021088022A1 - 一种信号监听方法、发送方法、终端设备、网络设备 - Google Patents

一种信号监听方法、发送方法、终端设备、网络设备 Download PDF

Info

Publication number
WO2021088022A1
WO2021088022A1 PCT/CN2019/116809 CN2019116809W WO2021088022A1 WO 2021088022 A1 WO2021088022 A1 WO 2021088022A1 CN 2019116809 W CN2019116809 W CN 2019116809W WO 2021088022 A1 WO2021088022 A1 WO 2021088022A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
energy
saving signal
time period
signal search
Prior art date
Application number
PCT/CN2019/116809
Other languages
English (en)
French (fr)
Inventor
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202111616417.7A priority Critical patent/CN114339968B/zh
Priority to JP2022514850A priority patent/JP2023506345A/ja
Priority to AU2019472833A priority patent/AU2019472833A1/en
Priority to CN201980093976.9A priority patent/CN113557766A/zh
Priority to KR1020227007295A priority patent/KR20220097868A/ko
Priority to BR112022005598A priority patent/BR112022005598A2/pt
Priority to PCT/CN2019/116809 priority patent/WO2021088022A1/zh
Priority to EP19951889.5A priority patent/EP4007377A4/en
Publication of WO2021088022A1 publication Critical patent/WO2021088022A1/zh
Priority to US17/652,303 priority patent/US20220182939A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of information processing technology, and in particular to a signal monitoring method, a sending method, a terminal device, a network device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • embodiments of the present invention provide a signal monitoring method, a sending method, a terminal device, a network device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • a signal monitoring method includes:
  • the terminal device monitors the energy-saving signal physical downlink control channel PDCCH during the listening time period before the DRX ON period of discontinuous reception and after the monitoring start time;
  • the monitoring time period is determined by at least one configuration parameter of each energy-saving signal search space in K energy-saving signal search spaces; K is an integer greater than or equal to 1.
  • a terminal device including:
  • the first communication unit monitors the energy-saving signal physical downlink control channel PDCCH during the listening time period before the DRX ON period of discontinuous reception and after the monitoring start time;
  • the monitoring time period is determined by at least one configuration parameter of each energy-saving signal search space in K energy-saving signal search spaces; K is an integer greater than or equal to 1.
  • a signal sending method includes:
  • the network device sends the energy-saving signal physical downlink control channel PDCCH during the monitoring period before the DRX ON period of discontinuous reception and after the monitoring start moment;
  • the monitoring time period is determined by at least one configuration parameter of each energy-saving signal search space in K energy-saving signal search spaces; K is an integer greater than or equal to 1.
  • a network device including:
  • the second communication unit sends the energy-saving signal physical downlink control channel PDCCH in the monitoring time period before the DRX ON time period of discontinuous reception and after the monitoring start time;
  • the monitoring time period is determined by at least one configuration parameter of each energy-saving signal search space in K energy-saving signal search spaces; K is an integer greater than or equal to 1.
  • a terminal device including: a processor and a memory for storing a computer program that can run on the processor,
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the steps of the foregoing method.
  • a network device including: a processor and a memory for storing a computer program that can run on the processor,
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the steps of the foregoing method.
  • a chip including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the method described in the foregoing first aspect.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program, and the computer program enables a computer to execute the steps of the method.
  • a computer program product including computer program instructions that cause a computer to execute the method as described.
  • a computer program which causes a computer to execute the method described above.
  • the corresponding monitoring time period can be determined according to at least one configuration parameter of the energy-saving signal search space, and then the energy-saving signal PDCCH can be monitored during the monitoring time period.
  • a solution for how to use configuration parameters to determine the monitoring period of energy-saving signals is provided, which makes up for the gaps in related technologies.
  • the implementation of the above solution does not require adding other parameters that need to be configured on the basis of existing parameters. Therefore, It also ensures that the signaling overhead between the terminal equipment and the network equipment will not be increased.
  • FIG. 1 is a schematic diagram 1 of a communication system architecture provided by an embodiment of the present application.
  • Figure 2-1 is a schematic flowchart of a signal monitoring method provided by an embodiment of the present invention.
  • FIGS. 3-1 to Figure 3-6 are schematic diagrams of several monitoring time periods provided by embodiments of the present invention.
  • Figure 4-1 is a schematic diagram of the structure of a terminal device provided by an embodiment of the present invention.
  • Figure 4-2 is a schematic diagram of the composition structure of a network device provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the composition structure of a communication device provided by an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 7 is a second schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of this application may be as shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a UE 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with UEs located in the coverage area.
  • the network device 110 may be a network device (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a network device (NodeB, NB) in a WCDMA system, or an evolution in an LTE system Type network equipment (Evolutional Node B, eNB or eNodeB), or a wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, In-vehicle devices, wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB network device
  • LTE system Type network equipment Evolutional Node B, eNB or eNodeB
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, In-vehicle devices,
  • the communication system 100 also includes at least one UE 120 located within the coverage area of the network device 110.
  • UE as used herein includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber line (Digital Subscriber Line, DSL), digital cable, and direct cable connection; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another UE's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a UE set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a "mobile terminal”.
  • direct terminal connection (Device to Device, D2D) communication may be performed between the UEs 120.
  • the embodiment of the present invention provides a signal monitoring method, as shown in Figure 2-1, including:
  • Step 21 The terminal device monitors the energy-saving signal PDCCH in the listening time period before the DRX ON time period is discontinuously received and after the monitoring start time;
  • the monitoring time period is determined by at least one configuration parameter of each energy-saving signal search space in K energy-saving signal search spaces; K is an integer greater than or equal to 1.
  • an embodiment of the present invention also provides a signal sending method, as shown in Figure 2-2, the method includes:
  • Step 31 The network device sends the energy-saving signal physical downlink control channel PDCCH during the monitoring period before the DRX ON period of discontinuous reception and after the monitoring start time period;
  • the monitoring time period is determined by at least one configuration parameter of each energy-saving signal search space in K energy-saving signal search spaces; K is an integer greater than or equal to 1.
  • the energy-saving signal search space is the PDCCH Search Space.
  • the physical Downlink Control Channel (PDCCH) monitoring of the terminal equipment is performed in the PDCCH search space.
  • the configuration parameters of the PDCCH search space are generally notified to the terminal equipment by the network equipment through RRC signaling.
  • the energy-saving signal PDCCH can not only be used to wake up the terminal device to detect the PDCCH, but also can be used to indicate the target BWP (Bandwidth part) used when the terminal device wakes up, and the used PDCCH search Space (search space) configuration, energy-saving indication information such as scell dormancy indication information of the secondary cell.
  • the energy saving signal is Downlink Control Information (DCI) carried in the PDCCH.
  • DCI Downlink Control Information
  • the energy saving signal is in the DCI format (format) 3_0.
  • PDCCH design can be reused directly, including coding, scrambling, resource mapping, search space, control resource set (CORESET), etc., so the standardized workload is small;
  • PDCCH Physical Downlink Shared Channel
  • the terminal device may determine the monitoring start time based on the configured power saving (PS, Power Saving)-offset and the start time of the DRX ON time period.
  • PS Power Saving
  • the configured PS-Offset may be configured by the network device for the terminal device through RRC signaling; of course, it may also be predefined.
  • the monitoring start time is determined based on the start time of the DRX ON time period and the PS-Offset. Specifically, the monitoring start time may be a time obtained by subtracting the PS-Offset from the start time of the DRX ON time period as the monitoring start time.
  • the DRX ON time period is the time period from the start of the timer to the end or timeout of the timer when the terminal starts the DRX "ON duration" timer at the start position of the DRX cycle. For example, see Figure 3-1, where the box indicates that the coverage of a DRX ON on the time axis can be the DRX ON time period.
  • This embodiment can be applied to a scenario where a terminal device is configured with one energy-saving signal search space, and it can also be applied to a scenario where a terminal device is configured with multiple energy-saving signal search spaces.
  • the following describes the solution provided in this embodiment with reference to various examples. :
  • the monitoring period includes: M durations of each energy-saving signal search space in K energy-saving signal search spaces; M is an integer greater than or equal to 1.
  • the monitoring period of this example includes M durations for the configured search space of energy-saving signals.
  • the foregoing M may be configured or predefined; where M is configured, the terminal device may receive the M configured by the network device for the terminal device, specifically, it may be through radio resource control (RRC, Radio Resource Control) signaling Carry the value of M.
  • RRC Radio Resource Control
  • M 1.
  • the monitoring period includes M durations, which can be the length of the monitoring period equal to the sum of the M durations; or, the monitoring period can be greater than the length of the M durations. And, in this case, it can be considered that in addition to the length of each duration, the monitoring period may also include the interval between adjacent durations, or may include other durations other than the duration.
  • Each of the M durations includes: at least one monitoring moment.
  • the terminal device may determine the corresponding monitoring time period based on at least one configuration parameter of the energy-saving signal search space.
  • the energy-saving signal search space that is, the at least one configuration parameter in the PDCCH search space, may include at least one of the following:
  • the second parameter used to indicate the start symbol of the PDCCH monitoring moment of the energy-saving signal in the corresponding energy-saving signal search space is the second parameter used to indicate the start symbol of the PDCCH monitoring moment of the energy-saving signal in the corresponding energy-saving signal search space.
  • the first parameter may be the "Duration” parameter in the PDCCH Search Space
  • the second parameter may be the "monitoringSymbolsWithinSlot” parameter in the PDCCH Search Space.
  • the length of a duration can be determined based on the first parameter; the second parameter can be used to determine the starting symbol from which to start monitoring.
  • the first parameter can be used to determine that each duration includes multiple time slots;
  • the second parameter can include a bitmap, which can indicate the start symbol of each monitoring moment, in other words, The number of listening moments can be determined by bitmap; for example, if bitmap indicates "1001001", then it can be considered that the first symbol is a listening moment, the fourth symbol is also the start symbol of a listening moment, and the seventh Each symbol is also the start symbol of a monitoring moment.
  • CORESET can be used to determine how many listening moments each start symbol corresponds to, for example, two listening moments from the first start symbol, two listening moments from the fourth symbol, and so on.
  • the configuration parameters in the energy-saving signal search space may also have other parameters, for example, they may include: search ID; controlResourceSetId, used to indicate The ID of the configuration of the control resource set, the time-frequency resource of the PDCCH search space; the period of the monitored slot and the offset within the period; the configuration information of the PDCCH candidate candidates; the type of the search space (Search space) Indication, the search space type may include PDCCH search space as common search space and UE-specific space.
  • search ID search ID
  • controlResourceSetId used to indicate The ID of the configuration of the control resource set, the time-frequency resource of the PDCCH search space; the period of the monitored slot and the offset within the period
  • the configuration information of the PDCCH candidate candidates the type of the search space (Search space) Indication
  • the search space type may include PDCCH search space as common search space and UE-specific space.
  • At least one monitoring moment may be all monitoring moments within a duration; or, it may be a part of monitoring moments within a duration.
  • each of the durations is a complete duration, that is, the PDCCH monitoring moments within the duration are all within the determined PDCCH monitoring time period.
  • the terminal device starts from the start position of monitoring the PDCCH obtained based on the PS_offset, and monitors the PDCCH at the PDCCH monitoring moment within 2 "duration".
  • the terminal does not monitor the PDCCH during the PDCCH monitoring moment of the dotted line in Figure 3-1.
  • Figure 3-1 shows the PDCCH monitoring positions of all PDCCH search space periods, but only the PDCCH monitoring positions before DRX ON. As an illustration, it does not mean that the monitoring position corresponding to the monitoring moment can only be the position indicated in the figure.
  • M 2 durations, for this example to provide a monitoring moment that includes part of the duration, that is, contains incomplete duration, but contains at least one
  • the PDCCH monitoring moment such as the Duration truncated by the aforementioned parameter PS_offset, can also be regarded as a duration being counted.
  • M 2.
  • the terminal starts monitoring the PDCCH from the starting position of the monitoring PDCCH obtained based on the PS_offset, where the first Duration is only monitored at the PDCCH monitoring moment after the starting monitoring time point indicated by the PS_offset.
  • the monitoring time corresponding to the symbol in the shaded part in the figure is the part that does not fall within the monitoring time period, so the energy-saving signal PDCCH is not monitored at the corresponding time.
  • each monitoring moment needs to be a valid monitoring moment.
  • a terminal device for example, a new wireless NR terminal
  • the terminal device monitors the same space in the active bandwidth part (BWP, BandWidth Part) of one or more cells
  • BWP active bandwidth part
  • the terminal device only monitors the energy-saving signal PDCCH at the monitoring moment of one COESET in the activated BWP in one or more cells
  • the terminal device monitors the energy-saving signal PDCCH in any other CORESET with the same QCL-TypeD attribute as the CORESET.
  • the CORESET satisfies the following conditions:
  • CORESET contains the CSS set of the smallest index of the smallest index cell among the cells of the CSS
  • the CORESET does not include the CSS set of the smallest index of the smallest index cell among the cells of the CSS, then the CORESET includes the USS set of the smallest index corresponding to the smallest index cell of the USS.
  • the index of the USS set with the smallest index is determined in all USS sets that include at least one PDCCH candidate in the overlapping PDCCH monitoring moments.
  • an SS/PBCH block is considered to have different QCL-typeD attributes from a CSI-RS;
  • the CSI-RS associated with one SS/PBCH block in the first cell and the second CSI-RS also associated with the SS/PBCH block in the second cell are considered to have the same QCL-TypeD attribute.
  • a terminal device is configured to work in single-cell operation or carrier aggregation operation and monitor the PDCCH in multiple PDCCH CORESTs that do not have QCL-TypeD attributes but overlap, the terminal needs to be in the aforementioned CORESET In the corresponding PDCCH monitoring moment, the PDCCH is monitored. That is to say, in this case, the monitoring time corresponding to the aforementioned CORESET can be a valid monitoring time.
  • the duration including at least one valid monitoring moment can be regarded as a duration to be counted.
  • Example 2 is different from Example 1 in that it is described for the case of K>1, that is, the solution when the terminal is configured with multiple energy-saving signal search spaces to monitor the energy-saving signal based on the PDCCH (that is, the energy-saving signal PDCCH).
  • the solution provided in this example is that the terminal device determines the monitoring corresponding to each energy-saving signal search space based on at least one configuration parameter corresponding to each energy-saving signal search space in the K energy-saving signal search spaces (specifically, PDCCH search space). M durations in the time period.
  • the terminal device may receive the M configured by the network device for the terminal device, specifically, it may be configured through radio resource control (RRC, Radio Resource Control) signaling carries the M value.
  • RRC Radio Resource Control
  • M 1.
  • Example 1 The difference from Example 1 is that if K is greater than 1, there are multiple energy-saving signal search spaces, that is, the final monitoring period includes K*M durations.
  • the durations of different energy-saving signal search spaces may overlap, so a total duration can be determined based on the K*M durations.
  • the first energy-saving signal search space contains 4 durations, corresponding to time slots 1, 3, 5, and 7;
  • the second energy-saving signal search space contains 4 durations, corresponding to time slots 3, 5, 7, 9; then a longest duration can be determined, the start time can be the start time of time slot 1, and the end time can be the end time of time slot 9.
  • the monitoring period can be considered to include K*M durations; alternatively, a total duration can be determined based on K*M durations.
  • Duration for example, the duration contained in the search space of the first energy-saving signal corresponds to time slots 1, 3, and the duration contained in the search space of the second energy-saving signal contains time slots 2 and 4, then the monitoring period can be considered as containing time slots 1, 2, 3, 4; Or, it can be considered that the monitoring period includes a duration, the start time is the start time of time slot 1, and the end time is the end time of time slot 4.
  • each duration in each energy-saving signal search space contains at least one monitoring moment (or at least An effective listening moment) and other related descriptions are also the same as in example 1, so this example will not repeat the description.
  • Example 3 is also described for the case of K>1, that is, the solution when the terminal is configured with multiple energy-saving signal search spaces to monitor the energy-saving signal based on the PDCCH (that is, the energy-saving signal PDCCH).
  • the length of each of the M durations may be one of the following:
  • the preset multiple of the preset time length is the preset multiple of the preset time length.
  • the length of the longest duration of at least one duration of the K energy-saving signal search spaces may include:
  • the method of determining the length of the duration based on at least one configuration parameter of each energy-saving signal search space is the same as the foregoing example 1, and will not be repeated here.
  • the manner of determining at least one monitoring moment is also the same as in the foregoing example 1, and will not be described again.
  • the aforementioned preset time length may also be pre-defined (for example, it may be specified by a protocol, or a default value), or may be carried by the network device through RRC and notified to the terminal device.
  • the preset multiple of the preset time length the preset multiple may be predefined, or may be notified by the network device to the terminal device through RRC signaling.
  • the monitoring period includes: N monitoring moments in each of the K energy-saving signal search spaces; N is an integer greater than or equal to 1.
  • the monitoring time period of this example includes N monitoring moments for a configured search space of energy-saving signals.
  • the aforementioned N may be configured or pre-defined; where N is configured, the terminal device can receive the N configured by the network device for the terminal device, specifically through radio resource control (RRC, Radio Resource Control) signaling Carry the N value.
  • RRC Radio Resource Control
  • the terminal device may determine the corresponding N listening moments based on at least one configuration parameter of the energy-saving signal search space.
  • the energy-saving signal search space that is, the at least one configuration parameter in the PDCCH search space, may include at least one of the following:
  • the second parameter used to indicate the start symbol of the PDCCH monitoring moment of the energy-saving signal in the corresponding energy-saving signal search space is the second parameter used to indicate the start symbol of the PDCCH monitoring moment of the energy-saving signal in the corresponding energy-saving signal search space.
  • the first parameter may be the "Duration” parameter in the PDCCH Search Space
  • the second parameter may be the "monitoringSymbolsWithinSlot” parameter in the PDCCH Search Space.
  • the length of a duration can be determined based on the first parameter; the second parameter can be used to determine the starting symbol from which to start monitoring.
  • the second parameter may include a bitmap (bitmap), the bitmap may indicate the start symbol of each monitoring moment, in other words, how many monitoring moments can be determined by bitmap; for example, bitmap Indicate "1001001", then it can be considered that the first symbol is a monitoring moment, the fourth symbol is also the starting symbol of a monitoring moment, and the seventh symbol is also the starting symbol of a monitoring moment.
  • CORESET can be used to determine how many listening moments each start symbol corresponds to, for example, two listening moments from the first start symbol, two listening moments from the fourth symbol, and so on.
  • the monitoring period includes N monitoring moments.
  • each monitoring moment needs to be a valid monitoring moment.
  • the definition of validity in the effective monitoring moment is the same as in Example 1, and will not be repeated.
  • Example 5 is different from Example 4 in that it is described for the case of K>1, that is, the solution when the terminal is configured with multiple energy-saving signal search spaces to monitor the energy-saving signal based on the PDCCH (that is, the energy-saving signal PDCCH).
  • the solution provided in this example is that the terminal device determines the monitoring corresponding to each energy-saving signal search space based on at least one configuration parameter corresponding to each energy-saving signal search space in the K energy-saving signal search spaces (specifically, PDCCH search space). N monitoring moments in the time period.
  • Example 4 The same as Example 4 in that, the aforementioned N may be configured or may be predefined.
  • Example 1 The difference from Example 1 is that if K is greater than 1, there are multiple energy-saving signal search spaces, that is, the final monitoring period includes K*N monitoring moments.
  • the method for determining the N monitoring moments in each energy-saving signal search space is the same as in Example 4.
  • the N monitoring moments are valid monitoring moments and other related descriptions are also the same as in Example 4. Therefore, this The example will not be repeated.
  • Example 6 is also described for the case of K>1, that is, the solution when the terminal is configured with multiple energy-saving signal search spaces to monitor the energy-saving signal based on the PDCCH (that is, the energy-saving signal PDCCH).
  • the monitoring period includes: N monitoring moments. That is, no matter how many energy-saving signal search spaces exist, the same N monitoring moments are used for monitoring.
  • the method for determining the N monitoring moments can be randomly adopting N monitoring moments (or N effective monitoring moments) in the monitoring time period in any energy-saving signal search space; or, alternatively, selecting two or more Some (one or more) of each monitoring period in the multi-energy-saving signal search space finally constitute N monitoring moments.
  • N monitoring moments or N effective monitoring moments
  • the monitoring time period includes: L monitoring time slots of each energy-saving signal search space in the K energy-saving signal search space; L is an integer greater than or equal to 1.
  • the monitoring time period in this example includes L monitoring time slots for a configured search space for energy-saving signals. Or, for the case where K is greater than 1, L monitoring time slots are also determined for each energy-saving signal search space, and the final monitoring time period includes K*L monitoring time slots.
  • the aforementioned L can be configured or pre-defined; where L is configured, the terminal device can receive the L configured by the network device for the terminal device, specifically through radio resource control (RRC, Radio Resource Control) signaling Carry the L value.
  • RRC Radio Resource Control
  • the terminal device may determine the corresponding L listening time slots based on at least one configuration parameter of the energy-saving signal search space.
  • the energy-saving signal search space that is, the at least one configuration parameter in the PDCCH search space, may include at least one of the following:
  • the second parameter used to indicate the start symbol of the PDCCH monitoring moment of the energy-saving signal in the corresponding energy-saving signal search space is the second parameter used to indicate the start symbol of the PDCCH monitoring moment of the energy-saving signal in the corresponding energy-saving signal search space.
  • the first parameter may be the "Duration” parameter in the PDCCH Search Space
  • the second parameter may be the "monitoringSymbolsWithinSlot” parameter in the PDCCH Search Space.
  • the number of time slots included in a duration can be determined based on the first parameter.
  • the second parameter can be used to determine from which starting symbol to start monitoring.
  • the second parameter may include a bitmap (bitmap), the bitmap may indicate the start symbol of each monitoring moment, in other words, how many monitoring moments can be determined by bitmap; for example, bitmap Indicate "1001001", then it can be considered that from the first symbol, the fourth symbol is also a start symbol, and the seventh symbol is also a start symbol. In this way, multiple listening slots can be further determined based on each determined start symbol.
  • bitmap bitmap
  • the bitmap may indicate the start symbol of each monitoring moment, in other words, how many monitoring moments can be determined by bitmap; for example, bitmap Indicate "1001001", then it can be considered that from the first symbol, the fourth symbol is also a start symbol, and the seventh symbol is also a start symbol. In this way, multiple listening slots can be further determined based on each determined start symbol.
  • the monitoring time period includes L monitoring time slots.
  • the monitoring time contained in the foregoing L monitoring time slots needs to be a valid monitoring time.
  • the definition of validity in the effective monitoring moment is the same as in Example 1, and will not be repeated. Further, if the monitoring time contained in a certain monitoring time slot is invalid, the monitoring time slot may not be counted.
  • Example 8 is different from Example 7 in that the monitoring time period includes: L monitoring time slots. That is, no matter how many energy-saving signal search spaces exist, the same L monitoring time slots are used for monitoring.
  • the method for determining L monitoring time slots can be randomly using L monitoring time slots (or N effective monitoring moments) in the monitoring time period in any energy-saving signal search space; or, alternatively, selecting two Some (one or more) of each monitoring time period in the search space of more energy-saving signals finally constitute L monitoring time slots.
  • L monitoring time slots or N effective monitoring moments
  • this example adds a third parameter, and the terminal device adjusts the listening time period based on the third parameter to obtain the adjusted listening time period.
  • the terminal device adjusting the monitoring time period based on the third parameter further includes:
  • the adjusted monitoring time period After removing the monitoring time with a time interval from the start time of the DRX ON time period in the monitoring time period that is less than the third parameter, the adjusted monitoring time period is obtained.
  • a part of the monitoring time can be extracted from the monitoring time period based on the third parameter to obtain the adjusted monitoring time period.
  • each duration includes at least one monitoring moment, or each duration includes at least one effective monitoring moment; after the monitoring period is adjusted based on the third parameter, there may be some One or more monitoring moments (or valid monitoring moments) in a duration will be removed.
  • the originally determined monitoring time period includes the monitoring moments in the first and second durations; after adjusting the third parameter, the gray part of the monitoring time in the second duration is adjusted Time is removed, and only the first monitoring moment in the second duration is left.
  • the adjusted monitoring time period is shown in the figure, including part of the monitoring moments of the first duration and the second duration. The remaining monitoring time after the gray part of the monitoring time is removed.
  • the monitoring period includes N monitoring moments; after the monitoring period is adjusted based on the third parameter, one or more monitoring moments (or valid monitoring moments) may be removed.
  • the monitoring time period includes L monitoring time slots; after the monitoring time period is adjusted based on the third parameter, one or more monitoring moments (or effective monitoring moments) in a certain monitoring time slot may be removed.
  • the third parameter is used to instruct the terminal device to start from receiving the energy saving signal PDCCH to the start time of the DRX ON time period (that is, to start normal during the DRX ON time period). The shortest time required until the time of data transmission).
  • the third parameter may be recorded as PS_offsetMin.
  • the third parameter may be preset, or may be configured by the network device for the terminal device, or specified by the protocol, which is not exhaustive here.
  • the network device can also adjust the listening time period according to the third parameter to obtain the adjusted listening time period. Furthermore, the network device can determine the monitoring time period of the terminal device, so as to send the energy-saving signal PDCCH to the terminal device at the corresponding monitoring position.
  • the corresponding monitoring time period can be determined according to at least one configuration parameter of the energy-saving signal search space, and then the energy-saving signal PDCCH can be monitored during the monitoring time period.
  • a solution for how to use configuration parameters to determine the monitoring period of energy-saving signals is provided, which makes up for the gaps in related technologies.
  • the implementation of the above solution does not require adding other parameters that need to be configured on the basis of existing parameters. Therefore, It also ensures that the signaling overhead between the terminal equipment and the network equipment will not be increased.
  • the embodiment of the present invention provides a letter terminal device, as shown in Figure 4-1, including:
  • the first communication unit 41 monitors the energy-saving signal PDCCH during the listening time period before the DRX ON time period of discontinuous reception and after the monitoring start time;
  • the monitoring time period is determined by at least one configuration parameter of each energy-saving signal search space in K energy-saving signal search spaces; K is an integer greater than or equal to 1.
  • the terminal device further includes: a first processing unit 42 that determines the monitoring start time based on the configured power saving (PS, Power Saving)-offset and the start time of the DRX ON time period.
  • a first processing unit 42 that determines the monitoring start time based on the configured power saving (PS, Power Saving)-offset and the start time of the DRX ON time period.
  • the network equipment includes:
  • the second communication unit 51 sends the energy-saving signal PDCCH in the monitoring time period before the DRX ON time period of discontinuous reception and after the monitoring start time;
  • the monitoring time period is determined by at least one configuration parameter of each energy-saving signal search space in K energy-saving signal search spaces; K is an integer greater than or equal to 1.
  • the network device further includes: a second processing unit 52, which determines the monitoring start time based on the configured power saving (PS, Power Saving)-offset and the start time of the DRX ON time period.
  • a second processing unit 52 which determines the monitoring start time based on the configured power saving (PS, Power Saving)-offset and the start time of the DRX ON time period.
  • This embodiment can be applied to a scenario where a terminal device is configured with one energy-saving signal search space, and it can also be applied to a scenario where a terminal device is configured with multiple energy-saving signal search spaces.
  • the following describes the solution provided in this embodiment with reference to various examples. :
  • the monitoring period includes: M durations of each energy-saving signal search space in K energy-saving signal search spaces; M is an integer greater than or equal to 1.
  • the monitoring period of this example includes M durations for the configured search space of energy-saving signals.
  • the foregoing M may be configured or predefined; where M is configured, the terminal device may receive the M configured by the network device for the terminal device, specifically, it may be through radio resource control (RRC, Radio Resource Control) signaling Carry the value of M.
  • RRC Radio Resource Control
  • M 1.
  • Each of the M durations includes: at least one monitoring moment.
  • the terminal device may determine the corresponding monitoring time period based on at least one configuration parameter of the energy-saving signal search space.
  • the energy-saving signal search space that is, the at least one configuration parameter in the PDCCH search space, may include at least one of the following:
  • the second parameter used to indicate the start symbol of the PDCCH monitoring moment of the energy-saving signal in the corresponding energy-saving signal search space is the second parameter used to indicate the start symbol of the PDCCH monitoring moment of the energy-saving signal in the corresponding energy-saving signal search space.
  • the first parameter may be the "Duration” parameter in the PDCCH Search Space
  • the second parameter may be the "monitoringSymbolsWithinSlot” parameter in the PDCCH Search Space.
  • At least one monitoring moment may be all monitoring moments within a duration; or, it may be a part of monitoring moments within a duration.
  • each monitoring moment needs to be a valid monitoring moment.
  • Example 2 is different from Example 1 in that it is described for the case of K>1, that is, the solution when the terminal is configured with multiple energy-saving signal search spaces to monitor the energy-saving signal based on the PDCCH (that is, the energy-saving signal PDCCH).
  • the solution provided in this example is that the terminal device determines the monitoring corresponding to each energy-saving signal search space based on at least one configuration parameter corresponding to each energy-saving signal search space in the K energy-saving signal search spaces (specifically, PDCCH search space). M durations in the time period.
  • the terminal device may receive the M configured by the network device for the terminal device, specifically, it may be configured through radio resource control (RRC, Radio Resource Control) signaling carries the M value.
  • RRC Radio Resource Control
  • M 1.
  • Example 1 The difference from Example 1 is that if K is greater than 1, there are multiple energy-saving signal search spaces, that is, the final monitoring period includes K*M durations.
  • Example 3 is also described for the case of K>1, that is, the solution when the terminal is configured with multiple energy-saving signal search spaces to monitor the energy-saving signal based on the PDCCH (that is, the energy-saving signal PDCCH).
  • the length of each of the M durations may be one of the following:
  • the preset multiple of the preset time length is the preset multiple of the preset time length.
  • the monitoring period includes: N monitoring moments in each of the K energy-saving signal search spaces; N is an integer greater than or equal to 1.
  • the monitoring time period of this example includes N monitoring moments for a configured search space of energy-saving signals.
  • Example 5 is different from Example 4 in that it is described for the case of K>1, that is, the solution when the terminal is configured with multiple energy-saving signal search spaces to monitor the energy-saving signal based on the PDCCH (that is, the energy-saving signal PDCCH).
  • the solution provided in this example is that the terminal device determines the monitoring corresponding to each energy-saving signal search space based on at least one configuration parameter corresponding to each energy-saving signal search space in the K energy-saving signal search spaces (specifically, PDCCH search space). N monitoring moments in the time period.
  • Example 6 is also described for the case of K>1, that is, the solution when the terminal is configured with multiple energy-saving signal search spaces to monitor the energy-saving signal based on the PDCCH (that is, the energy-saving signal PDCCH).
  • the monitoring period includes: N monitoring moments. That is, no matter how many energy-saving signal search spaces exist, the same N monitoring moments are used for monitoring.
  • the method for determining the N monitoring moments can be randomly adopting N monitoring moments (or N effective monitoring moments) in the monitoring time period in any energy-saving signal search space; or, alternatively, selecting two or more Some (one or more) of each monitoring period in the multi-energy-saving signal search space finally constitute N monitoring moments.
  • N monitoring moments or N effective monitoring moments
  • the monitoring period includes: L monitoring time slots of each energy-saving signal search space in the K energy-saving signal search space; L is an integer greater than or equal to 1.
  • the monitoring time period in this example includes L monitoring time slots for a configured search space for energy-saving signals. Or, for the case where K is greater than 1, L monitoring time slots are also determined for each energy-saving signal search space, and the final monitoring time period includes K*L monitoring time slots.
  • the aforementioned L can be configured or pre-defined; where L is configured, the terminal device can receive the L configured by the network device for the terminal device, specifically through radio resource control (RRC, Radio Resource Control) signaling Carry the L value.
  • RRC Radio Resource Control
  • the monitoring time contained in the foregoing L monitoring time slots needs to be a valid monitoring time.
  • the definition of validity in the effective monitoring moment is the same as in Example 1, and will not be repeated. Further, if the monitoring time contained in a certain monitoring time slot is invalid, the monitoring time slot may not be counted.
  • Example 8 is different from Example 7 in that the monitoring time period includes: L monitoring time slots. That is, no matter how many energy-saving signal search spaces exist, the same L monitoring time slots are used for monitoring.
  • this example adds a third parameter, and the terminal device adjusts the listening time period based on the third parameter to obtain the adjusted listening time period.
  • the terminal device adjusting the monitoring time period based on the third parameter further includes:
  • the adjusted monitoring time period After removing the monitoring time with a time interval from the start time of the DRX ON time period in the monitoring time period that is less than the third parameter, the adjusted monitoring time period is obtained.
  • a part of the monitoring time can be extracted from the monitoring time period based on the third parameter to obtain the adjusted monitoring time period.
  • the third parameter is used to indicate the shortest time required for the terminal device to start from receiving the energy-saving signal PDCCH to the start time of the DRX ON time period.
  • the third parameter may be recorded as PS_offsetMin.
  • the third parameter may be preset, or may be configured by the network device for the terminal device, or specified by the protocol, which is not exhaustive here.
  • the second processing unit 52 of the network device can also adjust the monitoring period according to the third parameter to obtain the adjusted monitoring period. Furthermore, the network device can determine the monitoring time period of the terminal device, so as to send the energy-saving signal PDCCH to the terminal device at the corresponding monitoring position through the second communication unit 51.
  • the corresponding monitoring time period can be determined according to at least one configuration parameter of the energy-saving signal search space, and then the energy-saving signal PDCCH can be monitored during the monitoring time period.
  • a solution for how to use configuration parameters to determine the monitoring period of energy-saving signals is provided, which makes up for the gaps in related technologies.
  • the implementation of the above solution does not require adding other parameters that need to be configured on the basis of existing parameters. Therefore, It also ensures that the signaling overhead between the terminal equipment and the network equipment will not be increased.
  • FIG. 5 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present invention.
  • the communication device in this embodiment may be specifically the terminal device in the foregoing embodiment.
  • the communication device 900 shown in FIG. 5 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the communication device 900 may further include a memory 920.
  • the processor 910 can call and run a computer program from the memory 920 to implement the method in the embodiment of the present invention.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the communication device 900 may further include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 900 may specifically be a network device in an embodiment of the present invention, and the communication device 900 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present invention. For brevity, details are not repeated here. .
  • the communication device 900 may specifically be a terminal device or a network device in an embodiment of the present invention, and the communication device 900 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present invention. It's concise, so I won't repeat it here.
  • Fig. 6 is a schematic structural diagram of a chip according to an embodiment of the present invention.
  • the chip 1000 shown in FIG. 6 includes a processor 1010, and the processor 1010 can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the chip 1000 may further include a memory 1020.
  • the processor 1010 can call and run a computer program from the memory 1020 to implement the method in the embodiment of the present invention.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
  • the chip 1000 may further include an input interface 1030.
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1000 may further include an output interface 1040.
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present invention, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present invention.
  • the chip can be applied to the network device in the embodiment of the present invention, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present invention.
  • the chip mentioned in the embodiment of the present invention may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present invention may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on.
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • SDRAM Synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • synchronous connection Dynamic random access memory switch link DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • FIG. 7 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 7, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 may be used to implement the corresponding functions implemented by the UE in the foregoing method
  • the network device 820 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • details are not described herein again.
  • the embodiment of the present invention also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device or the terminal device in the embodiment of the present invention, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention, for the sake of brevity , I won’t repeat it here.
  • the embodiment of the present invention also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device or the terminal device in the embodiment of the present invention, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the embodiment of the present invention also provides a computer program.
  • the computer program can be applied to the network device or the terminal device in the embodiment of the present invention.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one first processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信号监听方法、发送方法、终端设备、网络设备芯片、计算机可读存储介质、计算机程序产品以及计算机程序,所述方法包括:终端设备在非连续接收DRX ON时间段之前、且在监听起始时刻之后,在监听时间段中监听节能信号物理下行控制信道PDCCH;其中,所述监听时间段由K个节能信号搜索空间中每一个节能信号搜索空间的至少一个配置参数确定;K为大于等于1的整数。

Description

一种信号监听方法、发送方法、终端设备、网络设备 技术领域
本发明涉及信息处理技术领域,尤其涉及一种信号监听方法、发送方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
5G技术的研究以及标准化使得无线宽带移动通信具有更高的峰值速率,更大的传输带宽,更低的传输时延。但对于终端而言,也带来了一些实现上以及具体使用中的问题,这会影响5G终端的待机时间以及使用时间甚至影响终端的电池寿命。因此,在3GPP已经讨论同意节能信号采用PDCCH。
然而,所述节能信号PDCCH的监听时间段具体如何确定,相关技术中并未提供具体的方法。
发明内容
为解决上述技术问题,本发明实施例提供了一种信号监听方法、发送方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
第一方面,提供了一种信号监听方法,所述方法包括:
终端设备在非连续接收DRX ON时间段之前、且在监听起始时刻之后,在监听时间段中监听节能信号物理下行控制信道PDCCH;
其中,所述监听时间段由K个节能信号搜索空间中每一个节能信号搜索空间的至少一个配置参数确定;K为大于等于1的整数。
第二方面,提供了一种终端设备,包括:
第一通信单元,在非连续接收DRX ON时间段之前、且在监听起始时刻之后,在监听时间段中监听节能信号物理下行控制信道PDCCH;
其中,所述监听时间段由K个节能信号搜索空间中每一个节能信号搜索空间的至少一个配置参数确定;K为大于等于1的整数。
第三方面,提供了一种信号发送方法,所述方法包括:
网络设备在非连续接收DRX ON时间段之前、且在监听起始时刻之后,在监听时间段中发送节能信号物理下行控制信道PDCCH;
其中,所述监听时间段由K个节能信号搜索空间中每一个节能信号搜索空间的至少一个配置参数确定;K为大于等于1的整数。
第四方面,提供了一种网络设备,包括:
第二通信单元,在非连续接收DRX ON时间段之前、且在监听起始时刻之后,在监听时间段中发送节能信号物理下行控制信道PDCCH;
其中,所述监听时间段由K个节能信号搜索空间中每一个节能信号搜索空间的至少一个配置参数确定;K为大于等于1的整数。
第五方面,提供了一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行前述方法的步骤。
第六方面,提供了一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行前述方法的步骤。
第七方面,提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如前述第一方面所述的方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如所述方法的步骤。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如所述的方法。
第十方面,提供了一种计算机程序,所述计算机程序使得计算机执行如所述的方法。
通过采用上述方案,就能够根据节能信号搜索空间的至少一个配置参数确定对应的监听时间段,进而在监听时间段中对节能信号PDCCH进行监听。如此,提供了如何采用配置参数确定节能信号的监听时间段的方案,弥补了相关技术中的空缺,并且,上述方案的执行不需要在现有参数的基础上增加其他需要配置的参数,因此,也保证了不会增加终端设备与网络设备之间的信令开销。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图一;
图2-1为本发明实施例提供的一种信号监听方法流程示意图;
图2-2为本发明实施例提供的一种信号发送方法流程示意图;
图3-1~-图3-6为本发明实施例提供的几种监听时间段的示意图;
图4-1为本发明实施例提供的终端设备组成结构示意图;
图4-2为本发明实施例提供的网络设备组成结构示意图;
图5为本发明实施例提供的一种通信设备组成结构示意图;
图6是本申请实施例提供的一种芯片的示意性框图;
图7是本申请实施例提供的一种通信系统架构的示意性图二。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term  Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100可以如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与UE120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的UE进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的网络设备(Base Transceiver Station,BTS),也可以是WCDMA系统中的网络设备(NodeB,NB),还可以是LTE系统中的演进型网络设备(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个UE120。作为在此使用的“UE”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一UE的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的UE可以被称为“无线通信终端”、“无线终端”或“移动终端”。
可选地,UE120之间可以进行终端直连(Device to Device,D2D)通信。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
本发明实施例提供了一种信号监听方法,如图2-1所示,包括:
步骤21:终端设备在非连续接收DRX ON时间段之前、且在监听起始时刻之后,在监听时间段中监听节能信号PDCCH;
其中,所述监听时间段由K个节能信号搜索空间中每一个节能信号搜索空间的至少一个配置参数确定;K为大于等于1的整数。
相应的,本发明实施例还提供一种信号发送方法,如图2-2所示,所述方法包括:
步骤31:网络设备在非连续接收DRX ON时间段之前、且在监听起始时刻之后,在监听时间段中发送节能信号物理下行控制信道PDCCH;
其中,所述监听时间段由K个节能信号搜索空间中每一个节能信号搜索空间的至少一个配置参数确定;K为大于等于1的整数。
所述节能信号搜索空间,也就是PDCCH Search Space。具体的,在新无线(NR)中,终端设备的下行物理控制信道(PDCCH,Physical Downlink Control CHannel)监听是在PDCCH搜索空间(search space)中进行的。PDCCH search space的配置参数一般由网络设备通过RRC信令通知终端设备。
关于节能信号PDCCH的相关说明,所述节能信号PDCCH除了可以用于唤醒终端 设备检测PDCCH,还可以用于指示终端设备唤醒时所使用的目标BWP(Bandwidth part,带宽部分)、所使用的PDCCH search space(搜索空间)的配置,辅小区的休眠(scell dormancy)指示信息等节能指示信息。
其中,所述节能信号为承载于PDCCH中的下行控制信息(Downlink Control Information,DCI)。例如,该节能信号为DCI格式(format)3_0。
需要说明的是,采用PDCCH承载节能信号具有如下一些优势:
1.可以直接复用PDCCH设计,包括编码、加扰、资源映射、搜索空间、控制资源集(Control Resource Set,CORESET)等方面,因此标准化的工作量较小;
2.与其他信号传输具有良好的兼容于复用特性,由于系统已经支持PDCCH信道,因此PDCCH与其他各信道如物理下行共享信道(Physical Downlink Shared Channel,PDSCH)等具有良好的兼容于复用特性。
关于监听起始时刻,可以为:所述终端设备基于配置的节能(PS,Power Saving)-偏置Offset、以及所述DRX ON时间段的起始时刻,确定所述监听起始时刻。
具体来说,配置的PS-Offset可以为网络设备通过RRC信令为终端设备配置的;当然,还可以为预定义的。基于DRX ON时间段的起始时刻以及PS-Offset确定监听起始时刻,具体可以为从DRX ON时间段的起始时刻减去PS-Offset之后得到的时刻作为所述监听起始时刻。
比如,参见图3-1所示,以图中左边一个DRX ON为例,将该DRX ON时段的起始时刻作为基准时刻,减去一个PS-Offset得到PDCCH监听时间段的监听起始时刻。
DRX ON时间段为终端在DRX周期的起始位置启动DRX“ON duration”定时器,从所述定时器启动时刻至所述定时器结束或超时时刻之间的时间段。比如,可以参见图3-1,其中方块中示意出一个DRX ON在时间轴上的覆盖范围可以为DRX ON时间段。
本实施例可以应用于终端设备被配置一个节能信号搜索空间的场景中,也可以应用于终端设备被配置多个节能信号搜索空间的场景中,下面结合多种示例对本实施例提供的方案进行说明:
示例1、K=1,也就是终端设备被配置一个节能信号搜索空间的情况。
本示例中,所述监听时间段,包含:K个节能信号搜索空间中每一个节能信号搜索空间的M个持续时长;M为大于等于1的整数。
由于本示例针对K=1的场景,因此,本示例的监听时间段中包含有针对配置的节能信号搜索空间的M个持续时长。
前述M可以为配置的、或者可以为预定义的;其中M为配置的情况中,可以为终端设备接收网络设备为其配置的M,具体可以通过无线资源控制(RRC,Radio Resource Control)信令携带该M值。优选的,M=1。
还需要指出的是,本示例中,监听时间段中包含M个持续时长,可以为监听时间段的长度等于M个持续时长之和;又或者,可以为监听时间段长度大于M个持续时长之和,这种情况,可以认为是监听时间段除了包含每一个持续时长的长度之外,还可以包含有相邻持续时长之间的间隔,或者,可以包含有持续时长之外的其他时长等。
所述M个持续时长中的每一个持续时长中,包含:至少一个监听时刻。
所述终端设备可以基于节能信号搜索空间的至少一个配置参数,来确定对应的监听时间段。其中,所述节能信号搜索空间,也就是PDCCH search space中所述至少一个配置参数,可以包括以下至少之一:
用于指示在对应的节能信号搜索空间的周期内连续监听的时隙个数的第一参数;
用于指示在对应的节能信号搜索空间中节能信号PDCCH监听时刻的起始符号的第二参数。
这里,所述第一参数可以为PDCCH Search Space中的“Duration”参数,第二参数可以为PDCCH Search Space中的“monitoringSymbolsWithinSlot”参数。
比如,可以基于第一参数来确定一个持续时长的长度;第二参数可以用于确定从哪个起始符号开始进行监听。
具体来说,通过第一参数可以确定每一个持续时长包含多个时隙;第二参数可以包含有bitmap(比特图),该比特图可以指示每一个监听时刻的起始符号,换句话说,监听时刻有多少个可以通过bitmap来确定的;比如,bitmap指示“1001001”,那么可以认为从第一个符号起为一个监听时刻,第四个符号也为一监听时刻的起始符号,第7个符号也为一监听时刻的起始符号。再进一步地,可以通过CORESET来确定每一个起始符号对应多少个监听时刻,比如,第一个起始符号起两个监听时刻,第4个符号起两个监听时刻等等。
还需要指出的是,节能信号搜索空间中的配置参数,除了上述第一参数以及第二参数之外,还可以存在其他参数,比如,可以包括:搜索标识(search ID);controlResourceSetId,用于指示控制资源集合(control resource set)的配置的ID,配置PDCCH search space的时频资源;监听的slot的周期以及在周期内的偏置;PDCCH候选candidates的配置信息;搜索空间(Search space)的类型指示,搜索空间类型可以包括有PDCCH search space为普通搜索空间(common search space)、以及UE专用(UE-specific)空间space。当然,可能还会存在其他的配置参数,只是本示例中不再进行穷举。
本示例中,至少一个监听时刻可以为一个持续时长内的全部监听时刻;或者,可以为一个持续时长内的一部分监听时刻。
结合图3-1,本示例提供一种在持续时长内包含全部的监听时刻,并且M=2也就是2个持续时长的示意。具体的:其中每一个持续时长是一个完整的持续时长,也就是持续时长内的PDCCH监听时刻均在确定的PDCCH监听时间段内。终端设备从基于PS_offset得到的监听PDCCH的起始位置开始,在2个“持续时长”内的PDCCH监听时刻监听PDCCH。在图3-1中虚线的PDCCH监听时刻中终端不监听PDCCH,另外为了简洁,图3-1示未画出所有PDCCH search space周期的PDCCH监听位置,仅绘出DRX ON之前部分的PDCCH监听位置作为示意,并不代表监听时刻对应的监听位置只能是图中示意的位置。
结合图3-2,同样以M=2也就是2个持续时长的示意,针对了本示例提供一种在持续时长内包含部分的监听时刻,也就是包含不完整的持续时长,但包含至少一个PDCCH监听时刻,如被前述参数PS_offset截断的Duration也可以视为一个duration被计数。如下图3-2所示,M=2。终端从基于PS_offset得到的监听PDCCH的起始位置开始监听PDCCH,其中第一个Duration仅PS_offset指示的起始监听时间点之后的PDCCH监听时刻被监听。图中阴影斜线部分的符号对应的监听时刻则是未落入监听时间段之内的部分,因此不在该对应的时刻进行节能信号PDCCH的监听。
一种优选的示例中,前述至少一个监听时刻中,每一个监听时刻需要为有效的监听时刻。
关于有效的监听时刻,其中有效性的规则定义可以参见以下说明:
当终端设备(比如,新无线NR终端)工作于单小区操作或载波聚合的状态下,且终端设备在一个或多个小区中的激活带宽部分(BWP,BandWidth Part)中监听的具有相同的空间准共址(QCL)-TypeD属性的PDCCH CORESETs中的PDCCH监听时刻重叠时,终端设备仅在前述一个或多个小区中的激活BWP中的一个COESET的监听时刻进行节能信号PDCCH的监听;或,所述终端设备在其他任何与该CORESET具有相同 的QCL-TypeD属性的CORESET中监听节能信号PDCCH。其中,所述CORESET满足下列条件:
CORESET包含CSS的小区中最小索引小区的最小索引的CSS集合;
若CORESET不包含CSS的小区中最小索引小区的最小索引的CSS集合,则所述CORESET包含对应有USS的最小索引小区的最小索引的USS集合。
其中,所述最小索引的USS集合的索引是在所有在重叠的PDCCH监听时刻中包含至少一个PDCCH candidate的USS集合中确定的。
进一步地,还包含以下定义:一个SS/PBCH block被认为与一个CSI-RS具有不同的QCL-typeD属性;
第一个小区中与一个SS/PBCH block关联的CSI-RS,与第二小区中同样与该SS/PBCH block关联的第二CSI-RS,被认为是具有相同的QCL-TypeD属性。
相反地,如果一个终端设备被配置工作在单小区操作或载波聚合操作且在多个不具有QCL-TypeD属性但重叠的PDCCH COREST中监听PDCCH,在重叠的PDCCH监听时刻,则终端需要在前述CORESET所对应的PDCCH监听时刻中,监听PDCCH。也就是说,这种情况下,前述CORESET所对应的监听时刻均可以为有效的监听时刻。
结合前述有效性的描述,也就是说,将至少包含一个有效的监听时刻的持续时长Duration可以视为一个duration被计数。
结合有效性的优选示例,可以进一步地认为,如果某一个持续时长中不包含有有效的监听时刻,那么可以就可以认为该持续时长不被计数,从下一个持续时长再进一步判断是否包含有至少一个有效的监听时刻,进而再确定下一个持续时长是否计数,如此循环处理,直至在本次监听时间段内全部持续时长结束为止。
示例2、与示例1不同在于,针对K>1的情况进行说明,即针对当终端被配置多个节能信号搜索空间监听基于PDCCH的节能信号(也就是节能信号PDCCH)时的方案。
本示例提供的方案为终端设备基于所述K个节能信号搜索空间(具体为PDCCH search space)中每一个节能信号搜索空间对应的至少一个配置参数,分别确定每一个节能信号搜索空间所对应的监听时间段中的M个持续时长。
与示例1相同在于,前述M可以为配置的、或者可以为预定义的;其中M为配置的情况中,可以为终端设备接收网络设备为其配置的M,具体可以通过无线资源控制(RRC,Radio Resource Control)信令携带该M值。优选的,M=1。
与示例1不同在于,如果K大于1那么存在多个节能信号搜索空间,也就是最终监听时间段中包含有K*M个持续时长。
还需要指出的是,前述K*M个持续时长中,不同的节能信号搜索空间的持续时长可能存在重叠,那么可以基于K*M个持续时长来确定一个总的持续时长。比如,两个节能信号搜索空间中,第一节能信号搜索空间包含4个持续时长,对应了时隙1、3、5、7;第二节能信号搜索空间包含4个持续时长,对应了时隙3、5、7、9;那么可以确定一个最长的持续时长,起始时间可以为时隙1的起始时刻,结束时间可以为时隙9的终止时刻。
当然,如果不同节能信号搜索空间的持续时长的监听时刻不存在重叠的情况下,可以认为监听时间段包含有K*M个持续时长;或者,也可以根据K*M个持续时长确定一个总的持续时长,比如,第一节能信号搜索空间包含的持续时长,对应了时隙1、3,第二节能信号搜索空间包含的持续时长包含时隙2、4,那么可以认为监听时间段包含有时隙1、2、3、4;或者,可以认为监听时间段包含的一个持续时长,起始时间为时隙1的起始时刻,终止时间为时隙4的终止时刻。
关于本示例中,每一个节能信号搜索空间中的M个持续时长的确定方式,与示例1 是相同的;另外,每一个节能信号搜索空间中每一个持续时长中包含至少一个监听时刻(或者至少一个有效的监听时刻)等相关说明也与示例1相同,因此本示例不再重复说明。
示例3、同样针对K>1的情况进行说明,即针对当终端被配置多个节能信号搜索空间监听基于PDCCH的节能信号(也就是节能信号PDCCH)时的方案。
与示例2不同在于,本示例中,所述监听时间段,包含:M个持续时长;M为大于等于1的整数。也就是,全部K个节能信号搜索空间对应相同的M个持续时长,比如,M=1的时候,那么全部K个节能信号搜索空间采用同样的一个持续时长。
其中,所述M个持续时长中的每一个持续时长的长度,可以为以下之一:
K个节能信号搜索空间的至少一个持续时长中最长的持续时长的长度;
预设时间长度;
K个节能信号搜索空间的至少一个持续时长中最长的持续时长的预设倍数;
预设时间长度的预设倍数。
具体来说,K个节能信号搜索空间的至少一个持续时长中最长的持续时长的长度,可以包括:
先基于每一个节能信号搜索空间的至少一个配置参数,确定每一个节能信号搜索空间的持续时长的长度;然后从K个节能信号搜索空间所对应的多种持续时长中,选取最长的一个持续时长的长度,作为本示例中最终采用的持续时长的长度。
其中,基于每一个节能信号搜索空间的至少一个配置参数,确定持续时长的长度的方式,与前述示例1相同,这里不再赘述。相应的,确定了持续时长之后,确定至少一个监听时刻的方式也与前述示例1相同,同样不再赘述。
K个节能信号搜索空间的至少一个持续时长中最长的持续时长的预设倍数中,预设倍数可以为预定义的,或者可以为网络设备通过RRC信令通知给终端设备的;比如,N=2,那么最终确定的M个持续时长的每一个持续时长的长度为,前述确定的最长的持续时长的2倍。
另外,前述预设时间长度,也可以为预先定义好的(比如,可以为协议规定,或者是默认值),又或者可以为网络设备通过RRC携带并通知给终端设备的。关于预设时间长度的预设倍数,其中预设倍数可以为预定义的,或者可以为网络设备通过RRC信令通知给终端设备的。
关于本示例中每一个持续时长中包含至少一个监听时刻(或者至少一个有效的监听时刻)等相关说明也与示例1相同,因此本示例不再重复说明。
示例4、K=1,也就是终端设备被配置一个节能信号搜索空间的情况。
与前述示例1-3均不同,本示例中,所述监听时间段,包括:K个节能信号搜索空间中每一个节能信号搜索空间的N个监听时刻;N为大于等于1的整数。
由于本示例针对K=1的场景,因此,本示例的监听时间段中包含有针对配置的一个节能信号搜索空间的N个监听时刻。
前述N可以为配置的、或者可以为预定义的;其中N为配置的情况中,可以为终端设备接收网络设备为其配置的N,具体可以通过无线资源控制(RRC,Radio Resource Control)信令携带该N值。
所述终端设备可以基于节能信号搜索空间的至少一个配置参数,来确定对应的N个监听时刻。其中,所述节能信号搜索空间,也就是PDCCH search space中所述至少一个配置参数,可以包括以下至少之一:
用于指示在对应的节能信号搜索空间的周期内连续监听的时隙个数的第一参数;
用于指示在对应的节能信号搜索空间中节能信号PDCCH监听时刻的起始符号的第二参数。
这里,所述第一参数可以为PDCCH Search Space中的“Duration”参数,第二参数可以为PDCCH Search Space中的“monitoringSymbolsWithinSlot”参数。
具体的,可以基于第一参数来确定一个持续时长的长度;第二参数可以用于确定从哪个起始符号开始进行监听。
进一步地,所述第二参数可以包含有bitmap(比特图),该比特图可以指示每一个监听时刻的起始符号,换句话说,监听时刻有多少个可以通过bitmap来确定的;比如,bitmap指示“1001001”,那么可以认为从第一个符号起为一个监听时刻,第四个符号也为一监听时刻的起始符号,第7个符号也为一监听时刻的起始符号。再进一步地,可以通过CORESET来确定每一个起始符号对应多少个监听时刻,比如,第一个起始符号起两个监听时刻,第4个符号起两个监听时刻等等。
结合图3-3,以N=4为例进行说明,所述监听时间段中包含N个监听时刻。终端设备从基于PS_offset得到的监听PDCCH的监听起始时刻开始监听PDCCH,直至完成在N=4个PDCCH监听时刻监听PDCCH。
一种优选的示例中,前述至少一个监听时刻中,每一个监听时刻需要为有效的监听时刻。这里,关于有效的监听时刻中有效性的定义与示例1相同,不再赘述。
结合图3-4,图3-4中灰色符号对应的监听时刻为无效或落在监听时间段之外的监听时刻。同样以N=4为例,在PS_offset得到的监听PDCCH的起始位置之后,第一个PDCCH监听位置为有效的PDCCH监听位置,但第二个PDCCH监听位置为无效的监听时刻,因此终端需要监听至PS_offset得到的监听PDCCH的起始位置之后的第5个监听时刻以得到N=4个有效的监听时刻。
示例5、与示例4不同在于,针对K>1的情况进行说明,即针对当终端被配置多个节能信号搜索空间监听基于PDCCH的节能信号(也就是节能信号PDCCH)时的方案。
本示例提供的方案为终端设备基于所述K个节能信号搜索空间(具体为PDCCH search space)中每一个节能信号搜索空间对应的至少一个配置参数,分别确定每一个节能信号搜索空间所对应的监听时间段中的N个监听时刻。
与示例4相同在于,前述N可以为配置的、或者可以为预定义的。
与示例1不同在于,如果K大于1,存在多个节能信号搜索空间,也就是最终监听时间段中包含有K*N个监听时刻。
关于本示例中,每一个节能信号搜索空间中的N个监听时刻的确定方式,与示例4是相同的;另外,N个监听时刻为有效的监听时刻等相关说明也与示例4相同,因此本示例不再重复说明。
示例6、同样针对K>1的情况进行说明,即针对当终端被配置多个节能信号搜索空间监听基于PDCCH的节能信号(也就是节能信号PDCCH)时的方案。
与示例5不同在于,本示例中,所述监听时间段,包含:N个监听时刻。也就是无论存在多少个节能信号搜索空间,均采用相同的N个监听时刻进行监听。这里N个监听时刻的确定方法,可以为随机采用任意一个节能信号搜索空间中监听时间段内的N个监听时刻(或者,N个有效的监听时刻);又或者,可以为选取两个或更多的节能信号搜索空间中每一个监听时间段内的一些(一个或多个)最终组成N个监听时刻。当然,还可能存在其他的方式,这里不再穷举。
示例7、
与前述示例均不同,本示例中,所述监听时间段中,包括:K节能信号搜索空间中 每一个节能信号搜索空间的L个监听时隙;L为大于等于1的整数。
本示例的监听时间段中包含有针对配置的一个节能信号搜索空间的L个监听时隙。又或者,针对K大于1的情况中,同样对每一个节能信号搜索空间确定L个监听时隙,最终监听时间段中包含有K*L个监听时隙。
前述L可以为配置的、或者可以为预定义的;其中L为配置的情况中,可以为终端设备接收网络设备为其配置的L,具体可以通过无线资源控制(RRC,Radio Resource Control)信令携带该L值。
所述终端设备可以基于节能信号搜索空间的至少一个配置参数,来确定对应的L个监听时隙。其中,所述节能信号搜索空间,也就是PDCCH search space中所述至少一个配置参数,可以包括以下至少之一:
用于指示在对应的节能信号搜索空间的周期内连续监听的时隙个数的第一参数;
用于指示在对应的节能信号搜索空间中节能信号PDCCH监听时刻的起始符号的第二参数。
这里,所述第一参数可以为PDCCH Search Space中的“Duration”参数,第二参数可以为PDCCH Search Space中的“monitoringSymbolsWithinSlot”参数。
可以基于第一参数来确定一个持续时长的包含的时隙个数。第二参数可以用于确定从哪个起始符号开始进行监听。
进一步地,所述第二参数可以包含有bitmap(比特图),该比特图可以指示每一个监听时刻的起始符号,换句话说,监听时刻有多少个可以通过bitmap来确定的;比如,bitmap指示“1001001”,那么可以认为从第一个符号起,第四个符号也为一起始符号,第7个符号也为一起始符号。如此,可以基于确定的每一个起始符号进一步确定多个监听时隙。
结合图3-3,以L=2为例进行说明,所述监听时间段中包含L个监听时隙。终端设备从基于PS_offset得到的监听PDCCH的监听起始时刻开始监听PDCCH,直至完成在N=2个监听时隙内监听节能信号PDCCH。
一种优选的示例中,前述L个监听时隙中包含的监听时刻需要为有效的监听时刻。这里,关于有效的监听时刻中有效性的定义与示例1相同,不再赘述。进一步地,如果某一个监听时隙中包含的监听时刻为无效的,那么可以不对该监听时隙进行计数。
结合图3-5,图3-5中灰色符号对应的监听时刻为无效或落在监听时间段之外的监听时刻。同样以L=2为例,在PS_offset得到的监听PDCCH的起始位置之后,第一个监听时隙中,存在一个无效的监听时刻,那么从第二个监听时隙开始计数,因此终端设备需要监听到第三个监听时隙得到L=2个监听时隙。
示例8、与示例7不同在于,所述监听时间段,包含:L个监听时隙。也就是无论存在多少个节能信号搜索空间,均采用相同的L个监听时隙进行监听。这里L个监听时隙的确定方法,可以为随机采用任意一个节能信号搜索空间中监听时间段内的L个监听时隙(或者,N个有效的监听时刻);又或者,可以为选取两个或更多的节能信号搜索空间中每一个监听时间段内的一些(一个或多个)最终组成L个监听时隙。当然,还可能存在其他的方式,这里不再穷举。
示例9、
在前述各个示例的基础上,本示例增加引入第三参数,所述终端设备基于第三参数,调整所述监听时间段,得到调整后的监听时间段。
具体的,所述终端设备基于第三参数,调整所述监听时间段,还包括:
将所述监听时间段中,与DRX ON时间段的起始时刻之间的时间间距小于第三参数的监听时刻去除后,得到调整后的监听时间段。
也就是基于前述示例1-8任一示例得到监听时间段之后,可以再基于第三参数从监听时间段中取出一部分监听时刻,得到调整后的监听时间段。
具体的:
当监听时间段中包含M个持续时长,每一个持续时长包含至少一个监听时刻,或者每一个持续时长包含至少一个有效的监听时刻的时候;基于第三参数进行监听时间段的调整之后,可能某一个持续时长中的一个或多个监听时刻(或者有效的监听时刻)会被去掉。如图3-6所示,原先确定的监听时间段中,包含有第一个和第二个持续时长中的监听时刻;通过第三参数调整之后,将第二个持续时长中灰色部分的监听时刻去掉,仅剩余第二个持续时长中的第一个监听时刻,调整后的监听时间段如图中所示,包含有第一个持续时长的部分监听时刻,以及第二个持续时长中的去掉灰色部分的监听时刻之后的剩余监听时刻。
当监听时间段中包含N个监听时刻;基于第三参数进行监听时间段的调整之后,可能一个或多个监听时刻(或者有效的监听时刻)会被去掉。
当监听时间段中包含L个监听时隙;基于第三参数进行监听时间段的调整之后,可能某一个监听时隙中的一个或多个监听时刻(或者有效的监听时刻)会被去掉。
所述第三参数,用于指示终端设备由接收到所述节能信号PDCCH起始、至所述终端设备能够在DRX ON时间段的起始时刻(也就是在DRX ON时间段的期间内开始正常进行数据传输的时刻)为止所需要的最短时间。可以将第三参数记为PS_offsetMin,另外,第三参数可以为预设的,或者,可以为网络设备为终端设备配置的,或者协议规定的,这里不做穷举。
前述第三参数无论是网络侧配置给终端设备的,或者是协议规定的,网络设备也同样可以根据所述第三参数对监听时间段进行调整,得到调整后的监听时间段。进而网络设备可以确定终端设备的监听时间段,从而在对应的监听位置处为终端设备发送节能信号PDCCH。
可见,通过采用上述方案,就能够根据节能信号搜索空间的至少一个配置参数确定对应的监听时间段,进而在监听时间段中对节能信号PDCCH进行监听。如此,提供了如何采用配置参数确定节能信号的监听时间段的方案,弥补了相关技术中的空缺,并且,上述方案的执行不需要在现有参数的基础上增加其他需要配置的参数,因此,也保证了不会增加终端设备与网络设备之间的信令开销。
本发明实施例提供了一种信终端设备,如图4-1所示,包括:
第一通信单元41,在非连续接收DRX ON时间段之前、且在监听起始时刻之后,在监听时间段中监听节能信号PDCCH;
其中,所述监听时间段由K个节能信号搜索空间中每一个节能信号搜索空间的至少一个配置参数确定;K为大于等于1的整数。
所述终端设备,还包括:第一处理单元42,基于配置的节能(PS,Power Saving)-偏置Offset、以及所述DRX ON时间段的起始时刻,确定所述监听起始时刻。
所述网络设备,如图4-2所示,包括:
第二通信单元51,在非连续接收DRX ON时间段之前、且在监听起始时刻之后,在监听时间段中发送节能信号PDCCH;
其中,所述监听时间段由K个节能信号搜索空间中每一个节能信号搜索空间的至少一个配置参数确定;K为大于等于1的整数。
所述网络设备,还包括:第二处理单元52,基于配置的节能(PS,Power Saving)-偏置Offset、以及所述DRX ON时间段的起始时刻,确定所述监听起始时刻。
本实施例可以应用于终端设备被配置一个节能信号搜索空间的场景中,也可以应用 于终端设备被配置多个节能信号搜索空间的场景中,下面结合多种示例对本实施例提供的方案进行说明:
示例1、K=1,也就是终端设备被配置一个节能信号搜索空间的情况。
本示例中,所述监听时间段,包含:K个节能信号搜索空间中每一个节能信号搜索空间的M个持续时长;M为大于等于1的整数。
由于本示例针对K=1的场景,因此,本示例的监听时间段中包含有针对配置的节能信号搜索空间的M个持续时长。
前述M可以为配置的、或者可以为预定义的;其中M为配置的情况中,可以为终端设备接收网络设备为其配置的M,具体可以通过无线资源控制(RRC,Radio Resource Control)信令携带该M值。优选的,M=1。
所述M个持续时长中的每一个持续时长中,包含:至少一个监听时刻。
所述终端设备可以基于节能信号搜索空间的至少一个配置参数,来确定对应的监听时间段。其中,所述节能信号搜索空间,也就是PDCCH search space中所述至少一个配置参数,可以包括以下至少之一:
用于指示在对应的节能信号搜索空间的周期内连续监听的时隙个数的第一参数;
用于指示在对应的节能信号搜索空间中节能信号PDCCH监听时刻的起始符号的第二参数。
这里,所述第一参数可以为PDCCH Search Space中的“Duration”参数,第二参数可以为PDCCH Search Space中的“monitoringSymbolsWithinSlot”参数。
本示例中,至少一个监听时刻可以为一个持续时长内的全部监听时刻;或者,可以为一个持续时长内的一部分监听时刻。
一种优选的示例中,前述至少一个监听时刻中,每一个监听时刻需要为有效的监听时刻。
示例2、与示例1不同在于,针对K>1的情况进行说明,即针对当终端被配置多个节能信号搜索空间监听基于PDCCH的节能信号(也就是节能信号PDCCH)时的方案。
本示例提供的方案为终端设备基于所述K个节能信号搜索空间(具体为PDCCH search space)中每一个节能信号搜索空间对应的至少一个配置参数,分别确定每一个节能信号搜索空间所对应的监听时间段中的M个持续时长。
与示例1相同在于,前述M可以为配置的、或者可以为预定义的;其中M为配置的情况中,可以为终端设备接收网络设备为其配置的M,具体可以通过无线资源控制(RRC,Radio Resource Control)信令携带该M值。优选的,M=1。
与示例1不同在于,如果K大于1那么存在多个节能信号搜索空间,也就是最终监听时间段中包含有K*M个持续时长。
示例3、同样针对K>1的情况进行说明,即针对当终端被配置多个节能信号搜索空间监听基于PDCCH的节能信号(也就是节能信号PDCCH)时的方案。
与示例2不同在于,本示例中,所述监听时间段,包含:M个持续时长;M为大于等于1的整数。也就是,全部K个节能信号搜索空间对应相同的M个持续时长,比如,M=1的时候,那么全部K个节能信号搜索空间采用同样的一个持续时长。
其中,所述M个持续时长中的每一个持续时长的长度,可以为以下之一:
K个节能信号搜索空间的至少一个持续时长中最长的持续时长的长度;
预设时间长度;
K个节能信号搜索空间的至少一个持续时长中最长的持续时长的预设倍数;
预设时间长度的预设倍数。
示例4、K=1,也就是被配置一个节能信号搜索空间的情况。
与前述示例1-3均不同,本示例中,所述监听时间段,包括:K个节能信号搜索空间中每一个节能信号搜索空间的N个监听时刻;N为大于等于1的整数。
由于本示例针对K=1的场景,因此,本示例的监听时间段中包含有针对配置的一个节能信号搜索空间的N个监听时刻。
示例5、与示例4不同在于,针对K>1的情况进行说明,即针对当终端被配置多个节能信号搜索空间监听基于PDCCH的节能信号(也就是节能信号PDCCH)时的方案。
本示例提供的方案为终端设备基于所述K个节能信号搜索空间(具体为PDCCH search space)中每一个节能信号搜索空间对应的至少一个配置参数,分别确定每一个节能信号搜索空间所对应的监听时间段中的N个监听时刻。
示例6、同样针对K>1的情况进行说明,即针对当终端被配置多个节能信号搜索空间监听基于PDCCH的节能信号(也就是节能信号PDCCH)时的方案。
与示例5不同在于,本示例中,所述监听时间段,包含:N个监听时刻。也就是无论存在多少个节能信号搜索空间,均采用相同的N个监听时刻进行监听。这里N个监听时刻的确定方法,可以为随机采用任意一个节能信号搜索空间中监听时间段内的N个监听时刻(或者,N个有效的监听时刻);又或者,可以为选取两个或更多的节能信号搜索空间中每一个监听时间段内的一些(一个或多个)最终组成N个监听时刻。当然,还可能存在其他的方式,这里不再穷举。
示例7、
与前述示例均不同,本示例中,所述监听时间段中,包括:K节能信号搜索空间中每一个节能信号搜索空间的L个监听时隙;L为大于等于1的整数。
本示例的监听时间段中包含有针对配置的一个节能信号搜索空间的L个监听时隙。又或者,针对K大于1的情况中,同样对每一个节能信号搜索空间确定L个监听时隙,最终监听时间段中包含有K*L个监听时隙。
前述L可以为配置的、或者可以为预定义的;其中L为配置的情况中,可以为终端设备接收网络设备为其配置的L,具体可以通过无线资源控制(RRC,Radio Resource Control)信令携带该L值。
一种优选的示例中,前述L个监听时隙中包含的监听时刻需要为有效的监听时刻。这里,关于有效的监听时刻中有效性的定义与示例1相同,不再赘述。进一步地,如果某一个监听时隙中包含的监听时刻为无效的,那么可以不对该监听时隙进行计数。
示例8、与示例7不同在于,所述监听时间段,包含:L个监听时隙。也就是无论存在多少个节能信号搜索空间,均采用相同的L个监听时隙进行监听。
示例9、
在前述各个示例的基础上,本示例增加引入第三参数,所述终端设备基于第三参数,调整所述监听时间段,得到调整后的监听时间段。
具体的,所述终端设备基于第三参数,调整所述监听时间段,还包括:
将所述监听时间段中,与DRX ON时间段的起始时刻之间的时间间距小于第三参数的监听时刻去除后,得到调整后的监听时间段。
也就是基于前述示例1-8任一示例得到监听时间段之后,可以再基于第三参数从监听时间段中取出一部分监听时刻,得到调整后的监听时间段。
所述第三参数,用于指示终端设备由接收到所述节能信号PDCCH起始、至所述终端设备能够在DRX ON时间段的起始时刻为止所需要的最短时间。可以将第三参数记为PS_offsetMin,另外,第三参数可以为预设的,或者,可以为网络设备为终端设备配置的,或者协议规定的,这里不做穷举。
前述第三参数无论是网络侧配置给终端设备的,或者是协议规定的,网络设备的第 二处理单元52,也同样可以根据所述第三参数对监听时间段进行调整,得到调整后的监听时间段。进而网络设备可以确定终端设备的监听时间段,从而通过第二通信单元51在对应的监听位置处为终端设备发送节能信号PDCCH。
可见,通过采用上述方案,就能够根据节能信号搜索空间的至少一个配置参数确定对应的监听时间段,进而在监听时间段中对节能信号PDCCH进行监听。如此,提供了如何采用配置参数确定节能信号的监听时间段的方案,弥补了相关技术中的空缺,并且,上述方案的执行不需要在现有参数的基础上增加其他需要配置的参数,因此,也保证了不会增加终端设备与网络设备之间的信令开销。
图5是本发明实施例提供的一种通信设备900示意性结构图,本实施例中的通信设备可以具体为前述实施例中的终端设备。图5所示的通信设备900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,图5所示,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本发明实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,如图5所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备900具体可为本发明实施例的网络设备,并且该通信设备900可以实现本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备900具体可为本发明实施例的终端设备、或者网络设备,并且该通信设备900可以实现本发明实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图6是本发明实施例的芯片的示意性结构图。图6所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,如图6所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本发明实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本发明实施例中的网络设备,并且该芯片可以实现本发明实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本发明实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本发明实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者 软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本发明实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本发明实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图7是本申请实施例提供的一种通信系统800的示意性框图。如图7所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由UE实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本发明实施例中的网络设备或终端设备,并且该计算机程序使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本发明实施例中的网络设备或终端设备,并且该计算机程序指令使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本发明实施例中的网络设备或终端设备,当该计算机程序在计算机上运行时,使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个第一处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (63)

  1. 一种信号监听方法,所述方法包括:
    终端设备在非连续接收DRX ON时间段之前、且在监听起始时刻之后,在监听时间段中监听节能信号物理下行控制信道PDCCH;
    其中,所述监听时间段由K个节能信号搜索空间中每一个节能信号搜索空间的至少一个配置参数确定;K为大于等于1的整数。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端设备基于节能PS-偏置Offset、以及所述DRX ON时间段的起始时刻,确定所述监听起始时刻。
  3. 根据权利要求1所述的方法,其中,所述至少一个配置参数,包括以下至少之一:
    用于指示在对应的节能信号搜索空间的周期内连续监听的时隙个数的第一参数;
    用于指示在对应的节能信号搜索空间中节能信号PDCCH监听时刻的起始符号的第二参数。
  4. 根据权利要求1-3任一项所述的方法,其中,
    所述监听时间段,包含:K个节能信号搜索空间中每一个节能信号搜索空间的M个持续时长;M为大于等于1的整数。
  5. 根据权利要求1-3任一项所述的方法,其中,
    所述监听时间段,包含:M个持续时长;M为大于等于1的整数。
  6. 根据权利要求5所述的方法,其中,所述M个持续时长中的每一个持续时长的长度,为以下之一:
    K个节能信号搜索空间的至少一个持续时长中最长的持续时长的长度;
    预设时间长度;
    K个节能信号搜索空间的至少一个持续时长中最长的持续时长的预设倍数;
    预设时间长度的预设倍数。
  7. 根据权利要求4或5所述的方法,其中,所述M个持续时长中的每一个持续时长中,包含:至少一个监听时刻。
  8. 根据权利要求1-3任一项所述的方法,其中,
    所述监听时间段,包括:K个节能信号搜索空间中每一个节能信号搜索空间的N个监听时刻;N为大于等于1的整数。
  9. 根据权利要求7或8所述的方法,其中,所述监听时刻为有效的监听时刻。
  10. 根据权利要求1-3任一项所述的方法,其中,
    所述监听时间段中,包括:K节能信号搜索空间中每一个节能信号搜索空间的L个监听时隙;L为大于等于1的整数。
  11. 根据权利要求10所述的方法,其中,所述监听时隙中包含有至少一个有效的监听时刻。
  12. 根据权利要求1-11任一项所述的方法,其中,所述方法还包括:
    所述终端设备基于第三参数,调整所述监听时间段,得到调整后的监听时间段。
  13. 根据权利要求12所述的方法,其中,所述终端设备基于第三参数,调整所述监听时间段,还包括:
    将所述监听时间段中,与DRX ON时间段的起始时刻之间的时间间距小于第三参数的监听时刻去除后,得到调整后的监听时间段。
  14. 根据权利要求12所述的方法,其中,所述第三参数,用于指示终端设备由接 收到所述节能信号PDCCH起始、至所述终端设备能够在DRX ON时间段的起始时刻为止所需要的最短时间。
  15. 一种终端设备,包括:
    第一通信单元,在非连续接收DRX ON时间段之前、且在监听起始时刻之后,在监听时间段中监听节能信号物理下行控制信道PDCCH;
    其中,所述监听时间段由K个节能信号搜索空间中每一个节能信号搜索空间的至少一个配置参数确定;K为大于等于1的整数。
  16. 根据权利要求15所述的终端设备,其中,所述终端设备还包括:
    第一处理单元,基于节能PS-偏置Offset、以及所述DRX ON时间段的起始时刻,确定所述监听起始时刻。
  17. 根据权利要求15所述的终端设备,其中,所述至少一个配置参数,包括以下至少之一:
    用于指示在对应的节能信号搜索空间的周期内连续监听的时隙个数的第一参数;
    用于指示在对应的节能信号搜索空间中节能信号PDCCH监听时刻的起始符号的第二参数。
  18. 根据权利要求15-17任一项所述的终端设备,其中,
    所述监听时间段,包含:K个节能信号搜索空间中每一个节能信号搜索空间的M个持续时长;M为大于等于1的整数。
  19. 根据权利要求15-17任一项所述的终端设备,其中,
    所述监听时间段,包含:M个持续时长;M为大于等于1的整数。
  20. 根据权利要求19所述的终端设备,其中,所述M个持续时长中的每一个持续时长的长度,为以下之一:
    K个节能信号搜索空间的至少一个持续时长中最长的持续时长的长度;
    预设时间长度;
    K个节能信号搜索空间的至少一个持续时长中最长的持续时长的预设倍数;
    预设时间长度的预设倍数。
  21. 根据权利要求18或19所述的终端设备,其中,所述M个持续时长中的每一个持续时长中,包含:至少一个监听时刻。
  22. 根据权利要求15-17任一项所述的终端设备,其中,
    所述监听时间段,包括:K个节能信号搜索空间中每一个节能信号搜索空间的N个监听时刻;N为大于等于1的整数。
  23. 根据权利要求21或22所述的终端设备,其中,所述监听时刻为有效的监听时刻。
  24. 根据权利要求15-17任一项所述的终端设备,其中,
    所述监听时间段中,包括:K节能信号搜索空间中每一个节能信号搜索空间的L个监听时隙;L为大于等于1的整数。
  25. 根据权利要求24所述的终端设备,其中,所述监听时隙中包含有至少一个有效的监听时刻。
  26. 根据权利要求15-25任一项所述的终端设备,其中,所述终端设备还包括:
    第一处理单元,基于第三参数,调整所述监听时间段,得到调整后的监听时间段。
  27. 根据权利要求26所述的终端设备,其中,所述第一处理单元,将所述监听时间段中,与DRX ON时间段的起始时刻之间的时间间距小于第三参数的监听时刻去除后,得到调整后的监听时间段。
  28. 根据权利要求26所述的终端设备,其中,所述第三参数,用于指示终端设备 由接收到所述节能信号PDCCH起始、至所述终端设备能够在DRX ON时间段的起始时刻为止所需要的最短时间。
  29. 一种信号发送方法,所述方法包括:
    网络设备在非连续接收DRX ON时间段之前、且在监听起始时刻之后,在监听时间段中发送节能信号物理下行控制信道PDCCH;
    其中,所述监听时间段由K个节能信号搜索空间中每一个节能信号搜索空间的至少一个配置参数确定;K为大于等于1的整数。
  30. 根据权利要求29所述的方法,其中,所述方法还包括:
    所述网络设备基于节能PS-偏置Offset、以及所述DRX ON时间段的起始时刻,确定监听起始时刻。
  31. 根据权利要求29所述的方法,其中,所述至少一个配置参数,包括以下至少之一:
    用于指示在对应的节能信号搜索空间的周期内连续监听的时隙个数的第一参数;
    用于指示在对应的节能信号搜索空间中节能信号PDCCH监听时刻的起始符号的第二参数。
  32. 根据权利要求29-31任一项所述的方法,其中,
    所述监听时间段,包含:K个节能信号搜索空间中每一个节能信号搜索空间的M个持续时长;M为大于等于1的整数。
  33. 根据权利要求29-31任一项所述的方法,其中,
    所述监听时间段,包含:M个持续时长;M为大于等于1的整数。
  34. 根据权利要求33所述的方法,其中,所述M个持续时长中的每一个持续时长的长度,为以下之一:
    K个节能信号搜索空间的至少一个持续时长中最长的持续时长的长度;
    预设时间长度;
    K个节能信号搜索空间的至少一个持续时长中最长的持续时长的预设倍数;
    预设时间长度的预设倍数。
  35. 根据权利要求32或33所述的方法,其中,所述M个持续时长中的每一个持续时长中,包含:至少一个监听时刻。
  36. 根据权利要求29-31任一项所述的方法,其中,
    所述监听时间段,包括:K个节能信号搜索空间中每一个节能信号搜索空间的N个监听时刻;N为大于等于1的整数。
  37. 根据权利要求35或36所述的方法,其中,所述监听时刻为有效的监听时刻。
  38. 根据权利要求29-31任一项所述的方法,其中,
    所述监听时间段中,包括:K节能信号搜索空间中每一个节能信号搜索空间的L个监听时隙;L为大于等于1的整数。
  39. 根据权利要求38所述的方法,其中,所述监听时隙中包含有至少一个有效的监听时刻。
  40. 根据权利要求29-39任一项所述的方法,其中,所述方法还包括:
    所述网络设备基于第三参数,调整所述监听时间段,得到调整后的监听时间段。
  41. 根据权利要求40所述的方法,其中,所述网络设备基于第三参数,调整所述监听时间段,得到调整后的监听时间段,包括:
    将所述监听时间段中,与DRX ON时间段的起始时刻之间的时间间距小于第三参数的监听时刻去除后,得到调整后的监听时间段。
  42. 根据权利要求41所述的方法,其中,所述第三参数,用于指示终端设备由接 收到所述节能信号PDCCH起始、至所述终端设备能够在DRX ON时间段的起始时刻为止所需要的最短时间。
  43. 一种网络设备,包括:
    第二通信单元,在非连续接收DRX ON时间段之前、且在监听起始时刻之后,在监听时间段中发送节能信号物理下行控制信道PDCCH;
    其中,所述监听时间段由K个节能信号搜索空间中每一个节能信号搜索空间的至少一个配置参数确定;K为大于等于1的整数。
  44. 根据权利要求43所述的网络设备,其中,所述网络设备还包括:
    第二处理单元,基于节能PS-偏置Offset、以及所述DRX ON时间段的起始时刻,确定所述监听起始时刻。
  45. 根据权利要求43所述的网络设备,其中,所述至少一个配置参数,包括以下至少之一:
    用于指示在对应的节能信号搜索空间的周期内连续监听的时隙个数的第一参数;
    用于指示在对应的节能信号搜索空间中节能信号PDCCH监听时刻的起始符号的第二参数。
  46. 根据权利要求43-45任一项所述的网络设备,其中,
    所述监听时间段,包含:K个节能信号搜索空间中每一个节能信号搜索空间的M个持续时长;M为大于等于1的整数。
  47. 根据权利要求43-45任一项所述的网络设备,其中,
    所述监听时间段,包含:M个持续时长;M为大于等于1的整数。
  48. 根据权利要求47所述的网络设备,其中,所述M个持续时长中的每一个持续时长的长度,为以下之一:
    K个节能信号搜索空间的至少一个持续时长中最长的持续时长的长度;
    预设时间长度;
    K个节能信号搜索空间的至少一个持续时长中最长的持续时长的预设倍数;
    预设时间长度的预设倍数。
  49. 根据权利要求46或47所述的网络设备,其中,所述M个持续时长中的每一个持续时长中,包含:至少一个监听时刻。
  50. 根据权利要求43-45任一项所述的网络设备,其中,
    所述监听时间段,包括:K个节能信号搜索空间中每一个节能信号搜索空间的N个监听时刻;N为大于等于1的整数。
  51. 根据权利要求48或49所述的网络设备,其中,所述监听时刻为有效的监听时刻。
  52. 根据权利要求43-45任一项所述的网络设备,其中,
    所述监听时间段中,包括:K节能信号搜索空间中每一个节能信号搜索空间的L个监听时隙;L为大于等于1的整数。
  53. 根据权利要求52所述的网络设备,其中,所述监听时隙中包含有至少一个有效的监听时刻。
  54. 根据权利要求43-53任一项所述的网络设备,其中,所述网络设备还包括:
    第二处理单元,基于第三参数,调整所述监听时间段,得到调整后的监听时间段。
  55. 根据权利要求53所述的网络设备,其中,所述第二处理单元,将所述监听时间段中,与DRX ON时间段的起始时刻之间的时间间距小于第三参数的监听时刻去除后,得到调整后的监听时间段。
  56. 根据权利要求54所述的网络设备,其中,所述第三参数,用于指示终端设备 由接收到所述节能信号PDCCH起始、至所述终端设备能够在DRX ON时间段的起始时刻为止所需要的最短时间。
  57. 一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1-14任一项所述方法的步骤。
  58. 一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求29-42任一项所述方法的步骤。
  59. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-14中任一项所述的方法。
  60. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求29-42中任一项所述的方法。
  61. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-14、29-42任一项所述方法的步骤。
  62. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1-14、29-42中任一项所述的方法。
  63. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-14、29-42中任一项所述的方法。
PCT/CN2019/116809 2019-11-08 2019-11-08 一种信号监听方法、发送方法、终端设备、网络设备 WO2021088022A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN202111616417.7A CN114339968B (zh) 2019-11-08 2019-11-08 一种信号监听方法、发送方法、终端设备、网络设备
JP2022514850A JP2023506345A (ja) 2019-11-08 2019-11-08 信号モニタリング方法、送信方法、端末機器、ネットワーク機器
AU2019472833A AU2019472833A1 (en) 2019-11-08 2019-11-08 Signal monitoring method, signal sending method, terminal device and network device
CN201980093976.9A CN113557766A (zh) 2019-11-08 2019-11-08 一种信号监听方法、发送方法、终端设备、网络设备
KR1020227007295A KR20220097868A (ko) 2019-11-08 2019-11-08 신호 감청 방법, 송신 방법, 단말 기기, 네트워크 기기
BR112022005598A BR112022005598A2 (pt) 2019-11-08 2019-11-08 Método para monitoramento de sinal, dispositivo terminal, método para envio de sinal, e dispositivo de rede
PCT/CN2019/116809 WO2021088022A1 (zh) 2019-11-08 2019-11-08 一种信号监听方法、发送方法、终端设备、网络设备
EP19951889.5A EP4007377A4 (en) 2019-11-08 2019-11-08 SIGNAL MONITORING METHOD, SIGNAL TRANSMITTING METHOD, TERMINAL AND NETWORK DEVICE
US17/652,303 US20220182939A1 (en) 2019-11-08 2022-02-24 Signal monitoring method, signal sending method, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116809 WO2021088022A1 (zh) 2019-11-08 2019-11-08 一种信号监听方法、发送方法、终端设备、网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/652,303 Continuation US20220182939A1 (en) 2019-11-08 2022-02-24 Signal monitoring method, signal sending method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2021088022A1 true WO2021088022A1 (zh) 2021-05-14

Family

ID=75849499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116809 WO2021088022A1 (zh) 2019-11-08 2019-11-08 一种信号监听方法、发送方法、终端设备、网络设备

Country Status (8)

Country Link
US (1) US20220182939A1 (zh)
EP (1) EP4007377A4 (zh)
JP (1) JP2023506345A (zh)
KR (1) KR20220097868A (zh)
CN (2) CN113557766A (zh)
AU (1) AU2019472833A1 (zh)
BR (1) BR112022005598A2 (zh)
WO (1) WO2021088022A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138789A1 (en) * 2020-01-07 2021-07-15 Mediatek Inc. Methods and apparatus for sidelink drx operation
CN114327101A (zh) * 2021-12-06 2022-04-12 深圳市千分一智能技术有限公司 信号同步接收方法、装置、主动笔及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547501A (zh) * 2008-03-24 2009-09-30 大唐移动通信设备有限公司 一种配置非连续接收周期起点的方法及装置
US20160128129A1 (en) * 2013-06-13 2016-05-05 Sony Corporation Telecommunications apparatus and methods
US20160345292A1 (en) * 2015-05-22 2016-11-24 Sony Mobile Communications Inc. Extended discontinuous reception mechanism
CN109496446A (zh) * 2018-10-19 2019-03-19 北京小米移动软件有限公司 信道监听方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018203822A1 (en) * 2017-05-05 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) Wake-up monitoring for discontinuous reception mode in a wireless communication system
CN109429258B (zh) * 2017-07-17 2021-10-29 中国移动通信有限公司研究院 一种信道监听的指示方法、监听方法、终端及网络侧设备
CN109963339B (zh) * 2017-12-25 2021-01-08 维沃移动通信有限公司 控制信道配置及检测方法和装置、程序及介质
US10652826B2 (en) * 2018-03-23 2020-05-12 Samsung Electronics Co., Ltd. Method and apparatus for power saving signal design in NR
US11350418B2 (en) * 2019-01-24 2022-05-31 Samsung Electronics Co., Ltd. Method and apparatus for channel measurement and reporting in coreset basis
EP3963953A1 (en) * 2019-05-02 2022-03-09 Nokia Technologies Oy Determining pdcch monitoring during on-duration when in power saving mode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547501A (zh) * 2008-03-24 2009-09-30 大唐移动通信设备有限公司 一种配置非连续接收周期起点的方法及装置
US20160128129A1 (en) * 2013-06-13 2016-05-05 Sony Corporation Telecommunications apparatus and methods
US20160345292A1 (en) * 2015-05-22 2016-11-24 Sony Mobile Communications Inc. Extended discontinuous reception mechanism
CN109496446A (zh) * 2018-10-19 2019-03-19 北京小米移动软件有限公司 信道监听方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPLE INC: "PDCCH Based Power Saving Channel Design for UE Power Saving", 3GPP DRAFT; R1-1910972 PDCCH BASED POWER SAVING CHANNEL DESIGN FOR UE POWER SAVING, vol. RAN WG1, 5 October 2019 (2019-10-05), Chongqing, China, pages 1 - 10, XP051789752 *
LG ELECTRONICS: "Discussion on PDCCH-Based Power Saving Signal/Channel", 3GPP DRAFT; R1-1910834, vol. RAN WG1, 5 October 2019 (2019-10-05), Chongqing, China, pages 1 - 5, XP051789618 *
See also references of EP4007377A4 *

Also Published As

Publication number Publication date
CN113557766A (zh) 2021-10-26
KR20220097868A (ko) 2022-07-08
JP2023506345A (ja) 2023-02-16
CN114339968A (zh) 2022-04-12
AU2019472833A1 (en) 2022-03-31
EP4007377A1 (en) 2022-06-01
EP4007377A4 (en) 2022-08-03
US20220182939A1 (en) 2022-06-09
BR112022005598A2 (pt) 2022-07-19
CN114339968B (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
WO2020019187A1 (zh) 一种信道监听方法及装置、终端设备、网络设备
US11368339B2 (en) Sounding reference signal transmission method, network device and terminal device
US11937324B2 (en) Data transmitting/receiving apparatuses and methods and communication system
EP4236485B1 (en) Bwp management method and device
EP3863345B1 (en) Method and device for receiving information and sending information
WO2020019756A1 (zh) 一种传输资源确定方法及装置、终端设备
WO2019237241A1 (zh) 一种下行信号的传输方法及终端设备
WO2020001582A1 (zh) 一种配置pdcch检测的方法及相关设备
US20220182939A1 (en) Signal monitoring method, signal sending method, terminal device and network device
US20220104252A1 (en) Method for monitoring control channel, terminal device and network device
US11856539B2 (en) Method and device for transmitting downlink control information
US11196530B2 (en) Method for switching status of secondary carrier, terminal device, and network device
US20220279599A1 (en) Method for random access, terminal device, and network device
US20190037478A1 (en) Communication message sending method and apparatus
TWI813728B (zh) 一種訊號傳輸方法及適用該方法的裝置、網路設備及終端設備
WO2020051903A1 (zh) 一种链路恢复过程的处理方法及装置、终端
EP3965339A1 (en) Method for transmitting power saving information, terminal device, and network device
WO2021232208A1 (zh) 一种srs的配置方法及装置、网络设备、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514850

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2019951889

Country of ref document: EP

Effective date: 20220228

ENP Entry into the national phase

Ref document number: 2019472833

Country of ref document: AU

Date of ref document: 20191108

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022005598

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022005598

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220324