WO2021086367A1 - Oral product and method of manufacture - Google Patents

Oral product and method of manufacture Download PDF

Info

Publication number
WO2021086367A1
WO2021086367A1 PCT/US2019/059090 US2019059090W WO2021086367A1 WO 2021086367 A1 WO2021086367 A1 WO 2021086367A1 US 2019059090 W US2019059090 W US 2019059090W WO 2021086367 A1 WO2021086367 A1 WO 2021086367A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
composition
aqueous solution
alginate
dry mix
Prior art date
Application number
PCT/US2019/059090
Other languages
French (fr)
Inventor
Andinet Amare Gessesse
Richard Svenson
Philip Richard Hunt
Anthony Richard Gerardi
Christopher Keller
Thomas H. POOLE
Ronald K. Hutchens
Original Assignee
Nicoventures Trading Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicoventures Trading Limited filed Critical Nicoventures Trading Limited
Priority to EP19805860.4A priority Critical patent/EP4051020A1/en
Priority to PCT/US2019/059090 priority patent/WO2021086367A1/en
Priority to JP2022525354A priority patent/JP2023506123A/en
Priority to MX2022005285A priority patent/MX2022005285A/en
Priority to CA3156573A priority patent/CA3156573A1/en
Publication of WO2021086367A1 publication Critical patent/WO2021086367A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B13/00Tobacco for pipes, for cigars, e.g. cigar inserts, or for cigarettes; Chewing tobacco; Snuff
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/281Treatment of tobacco products or tobacco substitutes by chemical substances the action of the chemical substances being delayed
    • A24B15/283Treatment of tobacco products or tobacco substitutes by chemical substances the action of the chemical substances being delayed by encapsulation of the chemical substances
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/302Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances by natural substances obtained from animals or plants
    • A24B15/303Plant extracts other than tobacco
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/308Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances vitamins

Definitions

  • the present disclosure relates to products intended for human consumption.
  • the products are configured for oral use and deliver substances such as flavors and/or active ingredients during use.
  • Such products may include tobacco or a component derived from tobacco, or may be tobacco-free alternatives.
  • Tobacco may be enjoyed in a so-called "smokeless” form.
  • smokeless tobacco products are employed by inserting some form of processed tobacco or tobacco-containing formulation into the mouth of the user.
  • Conventional formats for such smokeless tobacco products include moist snuff, snus, and chewing tobacco, which are typically formed almost entirely of particulate, granular, or shredded tobacco, and which are either portioned by the user or presented to the user in individual portions, such as in single-use pouches or sachets.
  • Other traditional forms of smokeless products include compressed or agglomerated forms, such as plugs, tablets, or pellets.
  • Alternative product formats such as tobacco- containing gums and mixtures of tobacco with other plant materials, are also known.
  • Smokeless tobacco product configurations that combine tobacco material with various binders and fillers have been proposed more recently, with example product formats including lozenges, pastilles, gels, extruded forms, and the like. See, for example, the types of products described in US Patent App. Pub. Nos.
  • the present disclosure generally provides products configured for oral use and methods of making such products.
  • the products are intended to impart a taste when used orally, and typically also deliver one or more active ingredients to the consumer, such as nicotine.
  • compositions that include a single member from a single classification of components from the list (e.g., a single alginate), or two or more members from a single classification of components from the list (e.g., two sweeteners), or combinations of one or more members from each of two or more classifications of components from the list (e.g., a sweetener and an alginate).
  • Embodiment 1 A method of preparing an oral product, comprising: combining a filler and a salt to form a dry mix, the dry mix optionally further including one or more of an alginate, a bleached tobacco, a sweetener, a carbonate salt, and a natural gum; forming an aqueous solution of a flavoring agent or an active ingredient or both a flavoring agent and an active ingredient (meaning the solution may include a single flavoring agent, multiple flavoring agents, a single active ingredient, multiple active ingredients, or both one or more flavoring agents and one or more active ingredients), the solution optionally further including one or more of a pH adjuster, a preservative, a humectant, and a sweetener; adding the aqueous solution to the dry mix to form a mixture; and optionally encasing the mixture within a pouch.
  • a pH adjuster a preservative, a humectant, and a sweetener
  • Embodiment 2 The method of any preceding embodiment, further comprising forming a second aqueous solution of a sugar alcohol, a pH adjuster, and an optional preservative; and adding the second solution to the mixture prior to encasing the mixture within a pouch.
  • Embodiment 3 The method of any preceding embodiment, wherein the dry mix does not include an alginate, further comprising adding an aqueous solution of an alginate and a sugar alcohol to the dry mix.
  • Embodiment 4 The method of any preceding embodiment, wherein the dry mix does not include a carbonate salt, further comprising adding an aqueous solution of a carbonate salt to the dry mix.
  • Embodiment 5 The method of any preceding embodiment, comprising: combining a filler, an alginate, and a salt to form a dry mix; adding an aqueous solution of a carbonate salt to the dry mix; forming an aqueous solution of both a flavoring agent and an active ingredient (meaning a solution containing one or more flavoring agents and one or more active ingredients), the solution further including a sugar alcohol, a pH adjuster, a preservative, a humectant, and a sweetener; adding the aqueous solution to the dry mix to form a mixture; forming a second aqueous solution of a sugar alcohol, a pH adjuster, a sweetener, and an optional preservative; and adding the second aqueous solution to the mixture to form a second mixture; and optionally encasing the second mixture within a pouch.
  • Embodiment 6 The method of any preceding embodiment, comprising: combining a fdler, an alginate, a bleached tobacco, and a salt to form a dry mix; adding an aqueous solution of a carbonate salt to the dry mix; forming an aqueous solution of both a flavoring agent and an active ingredient, the solution further including a sugar alcohol, a pH adjuster, a preservative, and a sweetener; adding the aqueous solution to the dry mix to form a mixture; forming a second aqueous solution of a sugar alcohol, a pH adjuster, a sweetener, and an optional preservative; and adding the second aqueous solution to the mixture to form a second mixture; and optionally encasing the second mixture within a pouch.
  • Embodiment 7 The method of any preceding embodiment, comprising: combining a fdler, an alginate, a bleached tobacco, a natural gum, and a salt to form a dry mix; adding an aqueous solution of a carbonate salt to the dry mix; forming an aqueous solution of both a flavoring agent and an active ingredient, the solution further including a sugar alcohol, a pH adjuster, a preservative, and a sweetener; adding the aqueous solution to the dry mix to form a mixture; and optionally encasing the mixture within a pouch.
  • Embodiment 8 The method any preceding embodiment, comprising: combining a fdler, a bleached tobacco, a natural gum, a sweetener, a carbonate salt, a preservative, and a salt to form a dry mix; adding an aqueous solution of an alginate and a sugar alcohol to the dry mix to form a mixture; forming a second aqueous solution of both a flavoring agent and an active ingredient; adding the second aqueous solution to the mixture; and optionally encasing the mixture within a pouch.
  • Embodiment 9 The method of any preceding embodiment, wherein the temperature of each aqueous solution is between about 30 to about 100°C.
  • Embodiment 10 The method of any preceding embodiment, wherein: the fdler is a cellulose material; or the salt is sodium chloride; or the alginate is sodium alginate, calcium alginate, potassium alginate, magnesium alginate, ammonium alginate, or a mixture of two or more of the foregoing; or the sugar alcohol is xylitol; or the pH adjuster is ammonium chloride; or the carbonate salt is sodium bicarbonate; or the active ingredient is selected from the group consisting of a nicotine component, botanicals, stimulants, amino acids, vitamins, and cannabinoids; or the natural gum is guar gum; or the preservative is potassium sorbate; or the sweetener is sucralose or acesulfame K; or a combination of one or more of the above.
  • the fdler is a cellulose material
  • the salt is sodium chloride
  • the alginate is sodium alginate, calcium alginate, potassium alginate, magnesium alginate, ammonium
  • Embodiment 11 A method of preparing an oral product, comprising: combining a filler and a salt to form a dry mix, the dry mix optionally further including one or more of an alginate, a bleached tobacco, a sweetener, a carbonate salt, and a natural gum; adding a flavoring agent and an active ingredient to the dry mix to form a mixture, wherein the active ingredient is applied either before, after, or simultaneously with the flavoring agent; thereafter, applying water to the mixture to form a second mixture, wherein at least 50% by weight of the water content of the second mixture is added after adding the active ingredient (such as at least about 55%, 60%, 65%, 70%, 75%, 80%, 85%, or 90%); and optionally encasing the second mixture within a pouch.
  • a filler and a salt optionally further including one or more of an alginate, a bleached tobacco, a sweetener, a carbonate salt, and a natural gum
  • adding a flavoring agent and an active ingredient to
  • Embodiment 12 The method of any preceding embodiment, further comprising introducing one or more capsules into the oral product, the one or more capsules comprising an outer shell and an inner payload, the inner payload comprising at least one flavoring agent, and wherein the one or more capsules optionally include a water-resistant outer coating.
  • Embodiment 13 A product configured for oral use, the product prepared by the method of any preceding embodiment.
  • Embodiment 14 A method of preparing an oral product containing nicotine, comprising premixing a nicotine component with a humectant to form a premix, thereafter combining the premix with a filler.
  • Embodiment 15 The method of any preceding embodiment, wherein the humectant is propylene glycol or olive oil.
  • Embodiment 16 A composition, comprising: a filler in an amount of at least 40% percent by weight, based on total weight of the composition (e.g., from about 40% to about 60% by weight of the composition or about 40% to about 50%); a sugar alcohol (e.g., from about 1% to about 10% by weight of the composition or about 2% to about
  • a salt e.g., from about 1% to about 10% by weight of the composition or about 2% to about 6%
  • an alginate e.g., from about 0.1% to about 10% by weight of the composition or about 0.5% to about 1.5%)
  • a sweetener such as an artificial sweetener (e.g., from about 0.1% to about 10% by weight of the composition or about 0.5% to about 1.5%)
  • at least one flavoring agent or at least one active ingredient or at least one of both a flavoring agent and an active ingredient e.g., a flavoring agent or active ingredient from about 0.1% to about 10% by weight of the composition or about 0.5% to about 1.5%)
  • an optional natural gum e.g., present in an amount of from about 0.1% to about 15% by weight of the composition or about 1% to about 10% or about 2% to about 6%
  • a moisture content of at least about 40% by weight e.g., from about 40% to about 60% by weight of the composition or about 40% to about 55%).
  • Embodiment 17 The composition of any preceding embodiment, further comprising a humectant (e.g., from about 0.01% to about 10% by weight of the composition or about 0.5% to about 6%).
  • a humectant e.g., from about 0.01% to about 10% by weight of the composition or about 0.5% to about 6%.
  • Embodiment 18 The composition of any preceding embodiment, wherein the humectant is propylene glycol or olive oil.
  • Embodiment 19 The composition of any preceding embodiment, comprising from about 0.001 to about 10% by weight of a nicotine component, calculated as the free base and based on the total weight of the composition (e.g., about 0.5% to about 1.5%).
  • Embodiment 20 The composition of any preceding embodiment, wherein the composition is substantially free of tobacco material, excluding any nicotine component present, based on the total weight of the composition.
  • Embodiment 21 The composition of any preceding embodiment, wherein: the filler is a cellulose material; or the salt is sodium chloride; or the alginate is sodium alginate, calcium alginate, potassium alginate, magnesium alginate, ammonium alginate, or a mixture of two or more of the foregoing; or the sugar alcohol is xylitol; or the active ingredient is selected from the group consisting of a nicotine component, botanicals, stimulants, amino acids, vitamins, and cannabinoids; or the natural gum is guar gum; or a combination of one or more of the above.
  • the filler is a cellulose material
  • the salt is sodium chloride
  • the alginate is sodium alginate, calcium alginate, potassium alginate, magnesium alginate, ammonium alginate, or a mixture of two or more of the foregoing
  • the sugar alcohol is xylitol
  • the active ingredient is selected from the group consisting of a nicotine component, botanicals, stimulants, amino acids
  • Embodiment 22 The composition of any preceding embodiment, further comprising one or more capsules comprising an outer shell and an inner payload, the inner payload comprising at least one flavoring agent.
  • Embodiment 23 The composition of any preceding embodiment, wherein the one or more capsules include a water-resistant outer coating.
  • Embodiment 24 The composition of any preceding embodiment, wherein the fdler comprises a cellulose material.
  • Embodiment 25 The composition of any preceding embodiment, wherein the cellulose material comprises microcrystalline cellulose.
  • Embodiment 26 The composition of any preceding embodiment, comprising from about 10 to about 50% of the one or more particulate filler components; and from about 5 to about 60% by weight of the water, based on the total weight of the composition.
  • Embodiment 27 The composition of any preceding embodiment, wherein the composition comprises no more than about 10% by weight of a tobacco material (e.g., from about 0.01% to about 10% by weight of the composition or about 0.5% to about 5%), excluding any nicotine component present, based on the total weight of the composition.
  • a tobacco material e.g., from about 0.01% to about 10% by weight of the composition or about 0.5% to about 5%
  • Embodiment 28 The composition of any preceding embodiment, wherein the composition is in a free- flowing particulate form.
  • Fig. 1 is a cross-sectional view of a pouched product embodiment, taken across the width of the product, showing an outer pouch fdled with a composition of the present disclosure
  • Fig. 2 is a bar graph illustrating subjective overall irritation associated with an embodiment of a pouched product of the disclosure.
  • Fig. 3 is a schematic view of an active ingredient dosing system according to one embodiment of the present disclosure. DETAILED DESCRIPTION
  • the products as described herein comprise a mixture of components, typically including at least one fdler and at least one flavoring agent and/or active ingredient.
  • the composition further comprises one or more salts, one or more sweeteners, one or more binding agents, one or more humectants, one or more gums, an organic acid, a tobacco material, a tobacco-derived material, or a combination thereof.
  • the relative amounts of the various components within the composition may vary, and typically are selected so as to provide the desired sensory and performance characteristics to the oral product.
  • the example individual components of the composition are described herein below.
  • Compositions as described herein generally include at least one fdler component.
  • fdlers may fulfill multiple functions, such as enhancing certain organoleptic properties such as texture and mouthfeel, enhancing cohesiveness or compressibility of the product, and the like.
  • the fdlers are porous particulate materials and are cellulose-based.
  • suitable particulate fdlers are any non-tobacco plant material or derivative thereof, including cellulose materials derived from such sources.
  • cellulosic non-tobacco plant material examples include cereal grains (e.g., maize, oat, barley, rye, buckwheat, and the like), sugar beet (e.g., FIBREX ® brand fdler available from International Fiber Corporation), bran fiber, and mixtures thereof.
  • Non-limiting examples of derivatives of non-tobacco plant material include starches (e.g., from potato, wheat, rice, corn), natural cellulose, and modified cellulosic materials.
  • Additional examples of potential particulate fdlers include maltodextrin, dextrose, calcium carbonate, calcium phosphate, lactose, mannitol, xylitol, and sorbitol. Combinations of fdlers can also be used.
  • Starch as used herein may refer to pure starch from any source, modified starch, or starch derivatives. Starch is present, typically in granular form, in almost all green plants and in various types of plant tissues and organs (e.g., seeds, leaves, rhizomes, roots, tubers, shoots, fruits, grains, and stems). Starch can vary in composition, as well as in granular shape and size. Often, starch from different sources has different chemical and physical characteristics. A specific starch can be selected for inclusion in the composition based on the ability of the starch material to impart a specific organoleptic property to composition. Starches derived from various sources can be used.
  • starch major sources include cereal grains (e.g., rice, wheat, and maize) and root vegetables (e.g., potatoes and cassava).
  • sources of starch include acorns, arrowroot, arracacha, bananas, barley, beans (e.g., favas, lentils, mung beans, peas, chickpeas), breadfruit, buckwheat, canna, chestnuts, colacasia, katakuri, kudzu, malanga, millet, oats, oca, Polynesian arrowroot, sago, sorghum, sweet potato, quinoa, rye, tapioca, taro, tobacco, water chestnuts, and yams.
  • modified starches are modified starches.
  • a modified starch has undergone one or more structural modifications, often designed to alter its high heat properties. Some starches have been developed by genetic modifications, and are considered to be "modified” starches. Other starches are obtained and subsequently modified.
  • modified starches can be starches that have been subjected to chemical reactions, such as esterification, etherification, oxidation, depolymerization (thinning) by acid catalysis or oxidation in the presence of base, bleaching, transglycosylation and depolymerization (e.g., dextrinization in the presence of a catalyst), cross-linking, enzyme treatment, acetylation, hydroxypropylation, and/or partial hydrolysis.
  • modified starches are modified by heat treatments, such as pregelatinization, dextrinization, and/or cold water swelling processes.
  • Certain modified starches include monostarch phosphate, distarch glycerol, distarch phosphate esterified with sodium trimetaphosphate, phosphate distarch phosphate, acetylated distarch phosphate, starch acetate esterified with acetic anhydride, starch acetate esterified with vinyl acetate, acetylated distarch adipate, acetylated distarch glycerol, hydroxypropyl starch, hydroxypropyl distarch glycerol, starch sodium octenyl succinate.
  • the particulate filler is a cellulose material or cellulose derivative.
  • One particularly suitable particulate filler for use in the products described herein is microcry stalline cellulose ("mcc").
  • the mcc may be synthetic or semi-synthetic, or it may be obtained entirely from natural celluloses.
  • the mcc may be selected from the group consisting of AVICEL ® grades PH-100, PH-102, PH-103, PH-105, PH-112, PH-113, PH-200, PH-300, PH-302, VIVACEL ® grades 101, 102, 12, 20 and EMOCEL ® grades 50M and 90M, and the like, and mixtures thereof.
  • the composition comprises mcc as the particulate fdler component.
  • the quantity of mcc present in the composition as described herein may vary according to the desired properties.
  • the amount of filler can vary, but is typically up to about 75 percent of the composition by weight, based on the total weight of the composition.
  • a typical range of particulate fdler (e.g., mcc) within the composition can be from about 10 to about 75 percent by total weight of the composition, for example, from about 10, about 15, about 20, about 25, or about 30, to about 35, about 40, about 45, or about 50 weight percent (e.g., about 20 to about 50 weight percent or about 25 to about 45 weight percent).
  • the amount of particulate filler material is at least about 10 percent by weight, such as at least about 20 percent, or at least about 25 percent, or at least about 30 percent, or at least about 35 percent, or at least about 40 percent, based on the total weight of the composition.
  • the particulate filler further comprises a cellulose derivative or a combination of such derivatives.
  • the composition comprises from about 1 to about 10% of the cellulose derivative by weight, based on the total weight of the composition, with certain embodiments comprising about 1 to about 5% by weight of cellulose derivative.
  • the cellulose derivative is a cellulose ether (including carboxyalkyl ethers), meaning a cellulose polymer with the hydrogen of one or more hydroxyl groups in the cellulose structure replaced with an alkyl, hydroxyalkyl, or aryl group.
  • cellulose derivatives include methylcellulose, hydroxypropylcellulose ("HPC"), hydroxypropylmethylcellulose ("HPMC”), hydroxyethyl cellulose, and carboxymethylcellulose ("CMC”).
  • the cellulose derivative is one or more of methylcellulose, HPC, HPMC, hydroxyethyl cellulose, and CMC.
  • the cellulose derivative is HPC.
  • the composition comprises from about 1 to about 3% HPC by weight, based on the total weight of the composition.
  • the water content of the composition, prior to use by a consumer of the product, may vary according to the desired properties.
  • the composition, as present within the product prior to insertion into the mouth of the user is less than about 60 percent by weight of water, and generally is from about 1 to about 60% by weight of water, for example, from about 5 to about 55, about 10 to about 50, about 20 to about 45, or about 25 to about 40 percent water by weight, including water amounts of at least about 5% by weight, at least about 10% by weight, at least about 15% by weight, and at least about 20% by weight.
  • organic acid refers to an organic (i.e., carbon-based) compound that is characterized by acidic properties.
  • organic acids are relatively weak acids (i.e., they do not dissociate completely in the presence of water), such as carboxylic acids (-CO2H) or sulfonic acids (- SO2OH).
  • reference to organic acid means an organic acid that is intentionally added.
  • an organic acid may be intentionally added as a specific composition ingredient as opposed to merely being inherently present as a component of another composition ingredient (e.g., the small amount of organic acid which may inherently be present in a composition ingredient such as a tobacco material).
  • the one or more organic acids are added neat (i.e., in their free acid, native solid or liquid form) or as a solution in, e.g., water. In some embodiments, the one or more organic acids are added in the form of a salt, as described herein below.
  • the organic acid is an alkyl carboxylic acid.
  • alkyl carboxylic acids include formic acid, acetic acid, propionic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and the like.
  • the organic acid is an alkyl sulfonic acid.
  • alkyl sulfonic acids include propanesulfonic acid and octanesulfonic acid.
  • the organic acid is citric acid, malic acid, tartaric acid, octanoic acid, benzoic acid, a toluic acid, salicylic acid, or a combination thereof. In some embodiments, the organic acid is benzoic acid. In some embodiments, the organic acid is citric acid.
  • a portion, or even all, of the organic acid may be added in the form of a salt with an alkaline component, which may include, but is not limited to, nicotine.
  • suitable salts e.g., for nicotine, include formate, acetate, propionate, isobutyrate, butyrate, alpha- methylbutyate, isovalerate, beta-methylvalerate, caproate, 2-furoate, phenylacetate, heptanoate, octanoate, nonanoate, oxalate, malonate, glycolate, benzoate, tartrate, levulinate, ascorbate, fumarate, citrate, malate, lactate, aspartate, salicylate, tosylate, succinate, pyruvate, and the like.
  • the organic acid or a portion thereof may be added in the form of a salt with an alkali metal such as sodium, potassium, and the like.
  • organic acids having more than one acidic group such as a di- or-tri-carboxylic acid
  • one or more of these acid groups may be in the form of such a salt.
  • Suitable non-limiting examples include monosodium citrate, disodium citrate, and the like.
  • the organic acid is a salt of citric acid, malic acid, tartaric acid, octanoic acid, benzoic acid, a toluic acid, salicylic acid, or a combination thereof.
  • the organic acid is a mono or di-ester of a di- or tri-carboxylic acid, respectively, such as a monomethyl ester of citric acid, malic acid, or tartaric acid, or a dimethyl ester of citric acid.
  • the amount of organic acid present in the composition may vary. Generally, the composition comprises from about 0.1 to about 10% by weight of organic acid, present as one or more organic acids, based on the total weight of the composition. In some embodiments, the composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% organic acid by weight, based on the total weight of the composition.
  • the composition comprises from about 0.1 to about 0.5% by weight of organic acid, for example, about 0.1, about 0.15, about 0.2, about 0.25, about 0.3, about 0.35, about 0.4, about 0.45, or about 0.5% by weight, based on the total weight of the composition.
  • the composition comprises from about 0.25 to about 0.35% by weight of organic acid, for example, from about 0.25, about 0.26, about 0.27, about 0.28, about 0.29, or about 0.3, to about 0.31, about 0.32, about 0.33, about 0.34, or about 0.35% by weight, based on the total weight of the composition.
  • the percent by weight is calculated based on the weight of the free acid, not including any counter-ion which may be present.
  • the quantity of acid present will vary based on the acidity and basicity of other components which may be present in the composition (e.g., nicotine, salts, buffers, and the like). Accordingly, the organic acid is provided in a quantity sufficient to provide a pH of 7.0 or below, (typically about 6.8 or below, about 6.6 or below, or about 6.5 or below) of the composition. In certain embodiments the acid inclusion is sufficient to provide a composition pH of from about 4.0 to about 7.0; for example, from about 4.5, about 5.0, about
  • the organic acid is provided in a quantity sufficient to provide a pH of the composition of from about 5.5 to about 6.5, for example, from about 5.5, about 5.6, about 5.7, about 5.8, about 5.9, or about 6.0, to about 6.1, about 6.2, about 6.3, about 6.4, or about
  • flavoring agent or “flavorant” is any flavorful or aromatic substance capable of altering the sensory characteristics associated with the oral product.
  • sensory characteristics that can be modified by the flavoring agent include taste, mouthfeel, moistness, coolness/heat, and/or fragrance/aroma.
  • Flavoring agents may be natural or synthetic, and the character of the flavors imparted thereby may be described, without limitation, as fresh, sweet, herbal, confectionary, floral, fruity, or spicy.
  • flavors include, but are not limited to, vanilla, coffee, chocolate/cocoa, cream, mint, spearmint, menthol, peppermint, wintergreen, eucalyptus, lavender, cardamon, nutmeg, cinnamon, clove, cascarilla, sandalwood, honey, jasmine, ginger, anise, sage, licorice, lemon, orange, apple, peach, lime, cherry, strawberry, and any combinations thereof. See also, Leffmgwell et al., Tobacco Flavoring for Smoking Products, R. J. Reynolds Tobacco Company (1972), which is incorporated herein by reference. Flavorings also may include components that are considered moistening, cooling or smoothening agents, such as eucalyptus.
  • flavors may be provided neat (i.e., alone) or in a composite, and may be employed as concentrates or flavor packages (e.g., spearmint and menthol, orange and cinnamon; lime, pineapple, and the like).
  • Representative types of components also are set forth in US Pat. No. 5,387,416 to White et al.; US Pat. App. Pub. No. 2005/0244521 to Strickland et al.; and PCT Application Pub. No. WO 05/041699 to Quinter et al., each of which is incorporated herein by reference.
  • the flavoring agent may be provided in a spray-dried form or a liquid form.
  • the flavoring agent generally comprises at least one volatile flavor component.
  • volatile refers to a chemical substance that forms a vapor readily at ambient temperatures (i.e., a chemical substance that has a high vapor pressure at a given temperature relative to a nonvolatile substance).
  • a volatile flavor component has a molecular weight below about 400 Da, and often include at least one carbon-carbon double bond, carbon-oxygen double bond, or both.
  • the at least one volatile flavor component comprises one or more alcohols, aldehydes, aromatic hydrocarbons, ketones, esters, terpenes, terpenoids, or a combination thereof.
  • Non-limiting examples of aldehydes include vanillin, ethyl vanillin, p-anisaldehyde, hexanal, furfural, isovaleraldehyde, cuminaldehyde, benzaldehyde, and citronellal.
  • Non-limiting examples of ketones include l-hydroxy-2-propanone and 2-hydroxy-3-methyl-2- cyclopentenone-l-one.
  • Non-limiting examples of esters include allyl hexanoate, ethyl heptanoate, ethyl hexanoate, isoamyl acetate, and 3-methylbutyl acetate.
  • Non-limiting examples of terpenes include sabinene, limonene, gamma-terpinene, beta-fame sene, nerolidol, thujone, myrcene, geraniol, nerol, citronellol, linalool, and eucalyptol.
  • the at least one volatile flavor component comprises one or more of ethyl vanillin, cinnamaldehyde, sabinene, limonene, gamma-terpinene, beta-farnesene, or citral.
  • the at least one volatile flavor component comprises ethyl vanillin.
  • the amount of flavoring agent utilized in the composition can vary, but is typically up to about 10 weight percent, and certain embodiments are characterized by a flavoring agent content of at least about 0.1 weight percent, such as about 0.5 to about 10 weight percent, about 1 to about 6 weight percent, or about 2 to about 5 weight percent, based on the total weight of the composition.
  • the composition may further comprise a salt (e.g., alkali metal salts), typically employed in an amount sufficient to provide desired sensory attributes to the composition.
  • a salt e.g., alkali metal salts
  • suitable salts include sodium chloride, potassium chloride, ammonium chloride, flour salt, and the like.
  • a representative amount of salt is about 0.5 percent by weight or more, about 1.0 percent by weight or more, or at about 1.5 percent by weight or more, but will typically make up about 10 percent or less of the total weight of the composition, or about 7.5 percent or less or about 5 percent or less (e.g., about 0.5 to about 5 percent by weight).
  • the composition typically further comprises one or more sweeteners.
  • the sweeteners can be any sweetener or combination of sweeteners, in natural or artificial form, or as a combination of natural and artificial sweeteners.
  • natural sweeteners include fructose, sucrose, glucose, maltose, mannose, galactose, lactose, stevia, honey, and the like.
  • artificial sweeteners include sucralose, isomaltulose, maltodextrin, saccharin, aspartame, acesulfame K, neotame and the like.
  • the sweetener comprises one or more sugar alcohols.
  • Sugar alcohols are polyols derived from monosaccharides or disaccharides that have a partially or fully hydrogenated form.
  • Sugar alcohols have, for example, about 4 to about 20 carbon atoms and include erythritol, arabitol, ribitol, isomalt, maltitol, dulcitol, iditol, mannitol, xylitol, lactitol, sorbitol, and combinations thereof (e.g., hydrogenated starch hydrolysates).
  • a representative amount of sweetener may make up from about 0.1 to about 20 percent or more of the of the composition by weight, for example, from about 0.1 to about 1%, from about 1 to about 5%, from about 5 to about 10%, or from about 10 to about 20% of the composition on a weight basis, based on the total weight of the composition.
  • a binder (or combination of binders) may be employed in certain embodiments, in amounts sufficient to provide the desired physical attributes and physical integrity to the composition.
  • Typical binders can be organic or inorganic, or a combination thereof.
  • Representative binders include povidone, sodium alginate, starch-based binders, pectin, carrageenan, pullulan, zein, and the like, and combinations thereof.
  • a binder may be employed in amounts sufficient to provide the desired physical attributes and physical integrity to the composition.
  • the amount of binder utilized in the composition can vary, but is typically up to about 30 weight percent, and certain embodiments are characterized by a binder content of at least about 0.1% by weight, such as about 1 to about 30% by weight, or about 5 to about 10% by weight, based on the total weight of the composition.
  • the binder includes a gum, for example, a natural gum.
  • a natural gum refers to polysaccharide materials of natural origin that have binding properties, and which are also useful as a thickening or gelling agents.
  • Representative natural gums derived from plants, which are typically water soluble to some degree, include xanthan gum, guar gum, gum arabic, ghatti gum, gum tragacanth, karaya gum, locust bean gum, gellan gum, and combinations thereof.
  • natural gum binder materials are typically present in an amount of up to about 5% by weight, for example, from about 0.1, about 0.2, about 0.3, about 0.4, about 0.5, about 0.6, about 0.7, about 0.8, about 0.9, or about 1%, to about 2, about 3, about 4, or about 5% by weight, based on the total weight of the composition.
  • one or more humectants may be employed in the composition.
  • humectants include, but are not limited to, glycerin, propylene glycol, and the like.
  • plant-based oils such as olive oil, almond oil, avocado seed oil, coconut oil, corn oil, cottonseed oil, flax seed oil, grapeseed oil, hemp oil, palm kernel oil, peanut oil, pumpkin seed oil, rice bran oil, safflower seed oil, sesame seed oil, sunflower seed oil, soybean oil, or walnut oil.
  • the humectant is typically provided in an amount sufficient to provide desired moisture attributes to the composition. Further, in some instances, the humectant may impart desirable flow characteristics to the composition for depositing in a mold.
  • a humectant When present, a humectant will typically make up about 5% or less of the weight of the composition (e.g., from about 0.5 to about 5% by weight). When present, a representative amount of humectant is about 0.1% to about 1% by weight, or about 1% to about 5% by weight, based on the total weight of the composition.
  • the composition of the present disclosure can comprise pH adjusters or buffering agents.
  • pH adjusters and buffering agents include, but are not limited to, metal hydroxides (e.g., alkali metal hydroxides such as sodium hydroxide and potassium hydroxide), and other alkali metal buffers such as metal carbonates (e.g., potassium carbonate or sodium carbonate), or metal bicarbonates such as sodium bicarbonate, and the like.
  • the buffering agent is typically present in an amount less than about 5 percent based on the weight of the composition, for example, from about 0.5% to about 5%, such as, e.g., from about 0.75% to about 4%, from about 0.75% to about 3%, or about 0.5% to about 1.5%, or from about 1% to about 2% by weight, based on the total weight of the composition.
  • suitable buffers include alkali metals acetates, glycinates, phosphates, glycerophosphates, citrates, carbonates, hydrogen carbonates, borates, or mixtures thereof.
  • a colorant may be employed in amounts sufficient to provide the desired physical attributes to the composition.
  • colorants include various dyes and pigments, such as caramel coloring and titanium dioxide.
  • the amount of colorant utilized in the composition can vary, but when present is typically up to about 3 weight percent, such as from about 0.1%, about 0.5%, or about 1%, to about 3% by weight, based on the total weight of the composition.
  • the composition may additionally include one or more active ingredients including, but not limited to, a nicotine component, botanical ingredients (e.g., lavender, peppermint, chamomile, basil, rosemary, ginger, cannabis, ginseng, maca, and tisanes), stimulants (e.g., caffeine and guarana), amino acids (e.g., taurine, theanine, phenylalanine, tyrosine, and tryptophan) and/or pharmaceutical, nutraceutical, and medicinal ingredients (e.g., vitamins, such as B6, B12, and C, and/or cannabinoids, such as tetrahydrocannabinol (THC) and cannabidiol (CBD)).
  • active ingredients including, but not limited to, a nicotine component, botanical ingredients (e.g., lavender, peppermint, chamomile, basil, rosemary, ginger, cannabis, ginseng, maca, and tisanes), stimulants (e.g., caffeine and guarana
  • Example active ingredients would include any ingredient known to impact one or more biological functions within the body, such as ingredients that furnish pharmacological activity or other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of disease, or which affect the structure or any function of the body of humans or other animals (e.g., provide a stimulating action on the central nervous system, have an energizing effect, an antipyretic or analgesic action, or an otherwise useful effect on the body).
  • a nicotine component may be included in the composition.
  • nicotine component is meant any suitable form of nicotine (e.g., free base or salt) for providing oral absorption of at least a portion of the nicotine present.
  • the nicotine component is selected from the group consisting of nicotine free base and a nicotine salt.
  • nicotine is in its free base form, which easily can be adsorbed in for example, a microcrystalline cellulose material to form a microcrystalline cellulose-nicotine carrier complex. See, for example, the discussion of nicotine in free base form in US Pat. Pub. No. 2004/0191322 to Hansson, which is incorporated herein by reference.
  • the nicotine can be employed in the form of a salt.
  • Salts of nicotine can be provided using the types of ingredients and techniques set forth in US Pat. No. 2,033,909 to Cox et al. and Perfetti, Beitrage Tabak Kauutz. Int., 12: 43-54 (1983), which are incorporated herein by reference. Additionally, salts of nicotine are available from sources such as Pfaltz and Bauer, Inc. and K&K Laboratories, Division of ICN Biochemicals, Inc.
  • the nicotine component is selected from the group consisting of nicotine free base, a nicotine salt such as hydrochloride, dihydrochloride, monotartrate, bitartrate, sulfate, salicylate, and nicotine zinc chloride.
  • the nicotine component or a protion thereof is a nicotine salt with at least a portion of the one or more organic acids as disclosed herein above.
  • the nicotine can be in the form of a resin complex of nicotine, where nicotine is bound in an ion-exchange resin, such as nicotine polacrilex, which is nicotine bound to, for example, a polymethacrilic acid, such as Amberlite IRP64, Purolite C115HMR, or Doshion P551.
  • an ion-exchange resin such as nicotine polacrilex
  • a polymethacrilic acid such as Amberlite IRP64, Purolite C115HMR, or Doshion P551.
  • a nicotine-polyacrylic carbomer complex such as with Carbopol 974P.
  • nicotine may be present in the form of a nicotine polyacrylic complex.
  • the nicotine component when present, is in a concentration of at least about 0.001% by weight of the composition, such as in a range from about 0.001% to about 10%.
  • the nicotine component is present in a concentration from about 0.1% w/w to about 10% by weight, such as, e.g., from about from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% by weight, calculated as the free base and based on the total weight of the composition.
  • the nicotine component is present in a concentration from about 0.1% w/w to about 3% by weight, such as, e.g., from about from about 0.1% w/w to about 2.5%, from about 0.1% to about 2.0%, from about 0.1% to about 1.5%, or from about 0.1% to about 1% by weight, calculated as the free base and based on the total weight of the composition.
  • concentration from about 0.1% w/w to about 3% by weight, such as, e.g., from about from about 0.1% w/w to about 2.5%, from about 0.1% to about 2.0%, from about 0.1% to about 1.5%, or from about 0.1% to about 1% by weight, calculated as the free base and based on the total weight of the composition.
  • the composition may include a tobacco material.
  • the tobacco material can vary in species, type, and form. Generally, the tobacco material is obtained from for a harvested plant of the Nicotiana species.
  • Example Nicotiana species include N. tabacum, N. rustica, N. alata, N. arentsii, N. excelsior, N. forgetiana, N. glauca, N. glutinosa, N. gossei, N. kawakamii, N. knightiana, N. langsdorffi, N. otophora, N. setchelli, N. sylvestris, N. tomentosa, N. tomentosiformis, N. undulata, N.
  • Nicotiana species from which suitable tobacco materials can be obtained can be derived using genetic-modification or crossbreeding techniques (e.g., tobacco plants can be genetically engineered or crossbred to increase or decrease production of components, characteristics or attributes). See, for example, the types of genetic modifications of plants set forth in US Pat. Nos. 5,539,093 to Fitzmaurice et al.; 5,668,295 to Wahab et al.; 5,705,624 to Fitzmaurice et al.; 5,844,119 to Weigl; 6,730,832 to Dominguez et al.; 7,173,170 to Liu et al.; 7,208,659 to Colliver et al.
  • the Nicotiana species can, in some embodiments, be selected for the content of various compounds that are present therein. For example, plants can be selected on the basis that those plants produce relatively high quantities of one or more of the compounds desired to be isolated therefrom.
  • plants of the Nicotiana species e.g., Galpao commun tobacco
  • the plant of the Nicotiana species can be included within a composition as disclosed herein.
  • virtually all of the plant ⁇ e.g., the whole plant
  • various parts or pieces of the plant can be harvested or separated for further use after harvest.
  • the flower, leaves, stem, stalk, roots, seeds, and various combinations thereof, can be isolated for further use or treatment.
  • the tobacco material comprises tobacco leaf (lamina).
  • composition disclosed herein can include processed tobacco parts or pieces, cured and aged tobacco in essentially natural lamina and/or stem form, a tobacco extract, extracted tobacco pulp (e.g., using water as a solvent), or a mixture of the foregoing (e.g., a mixture that combines extracted tobacco pulp with granulated cured and aged natural tobacco lamina).
  • the tobacco material comprises solid tobacco material selected from the group consisting of lamina and stems.
  • the tobacco that is used for the composition most preferably includes tobacco lamina, or a tobacco lamina and stem mixture (of which at least a portion is smoke-treated).
  • Portions of the tobaccos within the composition may have processed forms, such as processed tobacco stems (e.g., cut-rolled stems, cut-rolled-expanded stems or cut-puffed stems), or volume expanded tobacco (e.g., puffed tobacco, such as dry ice expanded tobacco (DIET)). See, for example, the tobacco expansion processes set forth in US Pat. Nos.
  • the d composition optionally may incorporate tobacco that has been fermented. See, also, the types of tobacco processing techniques set forth in PCT W02005/063060 to Atchley et al., which is incorporated herein by reference.
  • the tobacco material is typically used in a form that can be described as particulate (i.e., shredded, ground, granulated, or powder form).
  • the manner by which the tobacco material is provided in a finely divided or powder type of form may vary.
  • plant parts or pieces are comminuted, ground or pulverized into a particulate form using equipment and techniques for grinding, milling, or the like.
  • the plant material is relatively dry in form during grinding or milling, using equipment such as hammer mills, cutter heads, air control mills, or the like.
  • tobacco parts or pieces may be ground or milled when the moisture content thereof is less than about 15 weight percent or less than about 5 weight percent.
  • the tobacco material is employed in the form of parts or pieces that have an average particle size between 1.4 millimeters and 250 microns.
  • the tobacco particles may be sized to pass through a screen mesh to obtain the particle size range required.
  • air classification equipment may be used to ensure that small sized tobacco particles of the desired sizes, or range of sizes, may be collected.
  • differently sized pieces of granulated tobacco may be mixed together.
  • tobacco parts or pieces are comminuted, ground or pulverized into a powder type of form using equipment and techniques for grinding, milling, or the like.
  • the tobacco is relatively dry in form during grinding or milling, using equipment such as hammer mills, cutter heads, air control mills, or the like.
  • tobacco parts or pieces may be ground or milled when the moisture content thereof is less than about 15 weight percent to less than about 5 weight percent.
  • the tobacco plant or portion thereof can be separated into individual parts or pieces (e.g., the leaves can be removed from the stems, and/or the stems and leaves can be removed from the stalk).
  • the harvested plant or individual parts or pieces can be further subdivided into parts or pieces (e.g., the leaves can be shredded, cut, comminuted, pulverized, milled or ground into pieces or parts that can be characterized as filler-type pieces, granules, particulates or fine powders).
  • the plant, or parts thereof can be subjected to external forces or pressure (e.g., by being pressed or subjected to roll treatment).
  • the plant or portion thereof can have a moisture content that approximates its natural moisture content (e.g., its moisture content immediately upon harvest), a moisture content achieved by adding moisture to the plant or portion thereof, or a moisture content that results from the drying of the plant or portion thereof.
  • powdered, pulverized, ground or milled pieces of plants or portions thereof can have moisture contents of less than about 25 weight percent, often less than about 20 weight percent, and frequently less than about 15 weight percent.
  • a harvested plant of the Nicotiana species it is typical for a harvested plant of the Nicotiana species to be subjected to a curing process.
  • the tobacco materials incorporated within the composition for inclusion within products as disclosed herein are those that have been appropriately cured and/or aged. Descriptions of various types of curing processes for various types of tobaccos are set forth in Tobacco Production, Chemistry and Technology, Davis et al. (Eds.) (1999). Examples of techniques and conditions for curing flue-cured tobacco are set forth in Nestor et al., Beitrage Tabakforsch.
  • tobacco materials that can be employed include flue-cured or Virginia (e.g., K326), hurley, sun-cured (e.g., Indian Kumool and Oriental tobaccos, including Katerini, Prelip, Komotini, Xanthi and Yambol tobaccos), Maryland, dark, dark-fired, dark air cured (e.g., Madole, Passanda, Cubano, Jatin and Bezuki tobaccos), light air cured (e.g., North Wisconsin and Galpao tobaccos), Indian air cured, Red Russian and Rustica tobaccos, as well as various other rare or specialty tobaccos and various blends of any of the foregoing tobaccos.
  • flue-cured or Virginia e.g., K326)
  • hurley sun-cured
  • Indian Kumool and Oriental tobaccos including Katerini, Prelip, Komotini, Xanthi and Yambol tobaccos
  • Maryland dark, dark-fired, dark air cured (e.g., Madole,
  • the tobacco material may also have a so-called "blended" form.
  • the tobacco material may include a mixture of parts or pieces of flue-cured, hurley (e.g., Malawi hurley tobacco) and Oriental tobaccos (e.g., as tobacco composed of, or derived from, tobacco lamina, or a mixture of tobacco lamina and tobacco stem).
  • a representative blend may incorporate about 30 to about 70 parts hurley tobacco (e.g., lamina, or lamina and stem), and about 30 to about 70 parts flue cured tobacco (e.g., stem, lamina, or lamina and stem) on a dry weight basis.
  • example tobacco blends incorporate about 75 parts flue-cured tobacco, about 15 parts hurley tobacco, and about 10 parts Oriental tobacco; or about 65 parts flue-cured tobacco, about 25 parts hurley tobacco, and about 10 parts Oriental tobacco; or about 65 parts flue-cured tobacco, about 10 parts hurley tobacco, and about 25 parts Oriental tobacco; on a dry weight basis.
  • Other example tobacco blends incorporate about 20 to about 30 parts Oriental tobacco and about 70 to about 80 parts flue-cured tobacco on a dry weight basis.
  • Tobacco materials used in the present disclosure can be subjected to, for example, fermentation, bleaching, and the like.
  • the tobacco materials can be, for example, irradiated, pasteurized, or otherwise subjected to controlled heat treatment.
  • controlled heat treatment processes are detailed, for example, in US Pat. No. 8,061,362 to Mua et al., which is incorporated herein by reference.
  • tobacco materials can be treated with water and an additive capable of inhibiting reaction of asparagine to form acrylamide upon heating of the tobacco material (e.g., an additive selected from the group consisting of lysine, glycine, histidine, alanine, methionine, cysteine, glutamic acid, aspartic acid, proline, phenylalanine, valine, arginine, compositions incorporating di- and trivalent cations, asparaginase, certain non-reducing saccharides, certain reducing agents, phenolic compounds, certain compounds having at least one free thiol group or functionality, oxidizing agents, oxidation catalysts, natural plant extracts (e.g., rosemary extract), and combinations thereof.
  • an additive selected from the group consisting of lysine, glycine, histidine, alanine, methionine, cysteine, glutamic acid, aspartic acid, proline, phenylalanine, valine, arginine, compositions incorporating di
  • the type of tobacco material is selected such that it is initially visually lighter in color than other tobacco materials to some degree (e.g., whitened or bleached).
  • Tobacco pulp can be whitened in certain embodiments according to any means known in the art.
  • bleached tobacco material produced by various whitening methods using various bleaching or oxidizing agents and oxidation catalysts can be used.
  • Example oxidizing agents include peroxides (e.g., hydrogen peroxide), chlorite salts, chlorate salts, perchlorate salts, hypochlorite salts, ozone, ammonia, potassium permanganate, and combinations thereof.
  • Example oxidation catalysts are titanium dioxide, manganese dioxide, and combinations thereof.
  • the whitened tobacco material can have an ISO brightness of at least about 50%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, or at least about 80%. In some embodiments, the whitened tobacco material can have an ISO brightness in the range of about 50% to about 90%, about 55% to about 75%, or about 60% to about 70%. ISO brightness can be measured according to ISO 3688:1999 or ISO 2470-1:2016.
  • the whitened tobacco material can be characterized as lightened in color (e.g., "whitened") in comparison to an untreated tobacco material.
  • White colors are often defined with reference to the International Commission on Illumination's (CIE's) chromaticity diagram.
  • CIE's International Commission on Illumination's
  • the whitened tobacco material can, in certain embodiments, be characterized as closer on the chromaticity diagram to pure white than an untreated tobacco material.
  • the tobacco material can be treated to extract a soluble component of the tobacco material therefrom.
  • tobacco extract refers to the isolated components of a tobacco material that are extracted from solid tobacco pulp by a solvent that is brought into contact with the tobacco material in an extraction process.
  • Typical inclusion ranges for tobacco materials can vary depending on the nature and type of the tobacco material, and the intended effect on the final composition, with an example range of up to about 30% by weight (or up to about 20% by weight or up to about 10% by weight or up to about 5% by weight), based on total weight of the composition (e.g., about 0.1 to about 15% by weight).
  • the products of the disclosure can be characterized as completely free or substantially free of tobacco material (other than purified nicotine as an active ingredient).
  • certain embodiments can be characterized as having less than 1% by weight, or less than 0.5% by weight, or less than 0.1% by weight of tobacco material, or 0% by weight of tobacco material.
  • additives can be included in the disclosed composition.
  • the composition can be processed, blended, formulated, combined and/or mixed with other materials or ingredients.
  • the additives can be artificial, or can be obtained or derived from herbal or biological sources.
  • further types of additives include thickening or gelling agents (e.g., fish gelatin), emulsifiers, oral care additives (e.g., thyme oil, eucalyptus oil, and zinc), preservatives (e.g., potassium sorbate and the like), disintegration aids, or combinations thereof. See, for example, those representative components, combination of components, relative amounts of those components, and manners and methods for employing those components, set forth in US Pat. No.
  • additives can be employed together (e.g., as additive formulations) or separately (e.g., individual additive components can be added at different stages involved in the preparation of the final composition).
  • aforementioned types of additives may be encapsulated as provided in the final product or composition. Exemplary encapsulated additives are described, for example, in WO2010/132444 to Atchley, which has been previously incorporated by reference herein.
  • any one or more of a filler, a tobacco material, and the overall oral product described herein can be described as a particulate material.
  • the term "particulate” refers to a material in the form of a plurality of individual particles, some of which can be in the form of an agglomerate of multiple particles, wherein the particles have an average length to width ratio less than 2:1, such as less than 1.5:1, such as about 1:1.
  • the particles of a particulate material can be described as substantially spherical or granular.
  • the particle size of a particulate material may be measured by sieve analysis.
  • sieve analysis is a method used to measure the particle size distribution of a particulate material.
  • sieve analysis involves a nested column of sieves which comprise screens, preferably in the form of wire mesh cloths. A pre-weighed sample may be introduced into the top or uppermost sieve in the column, which has the largest screen openings or mesh size (i.e. the largest pore diameter of the sieve). Each lower sieve in the column has progressively smaller screen openings or mesh sizes than the sieve above.
  • a receiver portion to collect any particles having a particle size smaller than the screen opening size or mesh size of the bottom or lowermost sieve in the column (which has the smallest screen opening or mesh size).
  • the column of sieves may be placed on or in a mechanical agitator.
  • the agitator causes the vibration of each of the sieves in the column.
  • the mechanical agitator may be activated for a pre-determined period of time in order to ensure that all particles are collected in the correct sieve.
  • the column of sieves is agitated for a period of time from 0.5 minutes to 10 minutes, such as from 1 minute to 10 minutes, such as from 1 minute to 5 minutes, such as for approximately 3 minutes.
  • the screen opening sizes or mesh sizes for each sieve in the column used for sieve analysis may be selected based on the granularity or known maximum/minimum particle sizes of the sample to be analysed.
  • a column of sieves may be used for sieve analysis, wherein the column comprises from 2 to 20 sieves, such as from 5 to 15 sieves.
  • a column of sieves may be used for sieve analysis, wherein the column comprises 10 sieves.
  • the largest screen opening or mesh sizes of the sieves used for sieve analysis may be 1000 pm, such as 500 pm, such as 400 pm, such as 300 pm.
  • any particulate material referenced herein can be characterized as having at least 50% by weight of particles with a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • at least 60% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 70% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 80% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 90% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 95% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, approximately 100% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 0.01 pm to about 1000 pm, such as from about 0.05 pm to about 750 pm, such as from about 0.1 pm to about 500 pm, such as from about 0.25 pm to about 500 pm.
  • At least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 10 pm to about 400 pm, such as from about 50 pm to about 350 pm, such as from about 100 pm to about 350 pm, such as from about 200 pm to about 300 pm.
  • the various components of the composition may vary.
  • various combinations of dry ingredients typically including the fdler component, will be blended to form a dry mix. Thereafter, typically in multiple steps, the remaining liquid ingredients are added to the dry mix to prepare the final product mixture.
  • the active ingredient e.g., nicotine
  • a humectant e.g., propylene glycol or olive oil
  • the use of a mixture of certain active ingredients, such as nicotine, with a humectant can reduce mouth or throat irritation associated with oral use of the resulting product.
  • the capsules can be added at various stages, such as addition to the dry mix or addition to the product composition immediately before final packaging (e.g., pouching) or after placement of the composition in a pouch (but before pouch sealing).
  • mixing efficiency and/or uniformity of the product can be enhanced by using multiple, successive addition steps in the process to add liquid components (e.g., aqueous solutions or dispersions) to the dry mix.
  • liquid components e.g., aqueous solutions or dispersions
  • Improved mixing efficiency and/or product uniformity can also be provided, in certain embodiments, through use of aqueous compositions at elevated temperature, such as between about 50 to about 100 °C, including about 55 to about 80 °C or about 60 to about 70 °C.
  • aqueous compositions used in the process are maintained at room temperature or below, such as between about 10 to about 25 °C, including about 20 to about 25 °C (room temperature).
  • room temperature such as between about 10 to about 25 °C, including about 20 to about 25 °C (room temperature).
  • use of lower aqueous composition temperatures dining mixing does not cause significant loss in product uniformity or mixing efficiency, and can reduce overall process cost, particularly where room temperature water is used.
  • a large percentage of the total amount of water used in the product is added in a final water addition step, particularly after active ingredients and/or flavoring agents are added.
  • This type of process is particularly well-suited for use with lower temperature water as noted above.
  • applying a large percentage of the total amount of water after addition of all, or virtually all, other ingredients does not cause significant loss in product uniformity or mixing efficiency, and can provide the added benefit of removing residual active ingredient and/or flavoring agent from the pipes in the mixing system without the need for a separate rinsing step that could lead to an undesirable increase in water use or loss in process efficiency.
  • the amount of water added in the final water addition step is at least about 50% by weight of the total water content of the product mixture (such as at least about 60% or at least about 65% or at least about 70% or at least about 75% or at least about 80% or at least about 85% or at least about 90%).
  • the various components of the composition may be contacted, combined, or mixed together using any mixing technique or equipment known in the art.
  • Any mixing method that brings the mixture ingredients into intimate contact can be used, such as a mixing apparatus featuring an impeller or other structure capable of agitation.
  • mixing equipment include casing drums, conditioning cylinders or drums, liquid spray apparatus, conical-type blenders, ribbon blenders, mixers available as FKM130, FKM600, FKM1200, FKM2000 and FKM3000 from Fittleford Day, Inc., Plough Share types of mixer cylinders, Hobart mixers, and the like. See, for example, the types of methodologies set forth in US Pat. No. 4,148,325 to Solomon et ak; US Pat. No.
  • the present disclosure includes a dosing system that reduces the time spent handling active ingredients.
  • An embodiment of the dosing system 20 is shown in Fig. 3.
  • the system includes a storage tank 22 for the active ingredient, the storage tank in fluid communication with a dosing tank 30.
  • the storage tank 22 can also be in fluid communication with an inert gas container 26 containing an inert gas such as nitrogen, which enables the creation of an inert gas blanket 24 in the headspace over the active ingredient stored in the storage tank 22.
  • a pump 28 is used to transport the liquid active ingredient from the storage tank 22 to the dosing tank 30.
  • One or more additional storage tanks are advantageously in fluid communication with the dosing tank 30, such as a storage tank 32 for a flavoring agent and a storage tank 34 for a humectant.
  • additional components of a composition can be premixed with the active ingredient in the dosing tank 30.
  • the active ingredient (optionally premixed with additional components) can be transported to one or more mixing tanks 36, which contain additional components of the desired composition, such as a dry mix as described above.
  • a product configured for oral use.
  • the term "configured for oral use” as used herein means that the product is provided in a form such that during use, saliva in the mouth of the user causes one or more of the components of the composition (e.g., flavoring agents and/or nicotine) to pass into the mouth of the user.
  • the product is adapted to deliver components to a user through mucous membranes in the user's mouth and, in some instances, said component is an active ingredient (including, but not limited to, for example, nicotine) that can be absorbed through the mucous membranes in the mouth when the product is used.
  • Products configured for oral use as described herein may take various forms, including gels, pastilles, gums, lozenges, powders, and pouches. Gels can be soft or hard. Certain products configured for oral use are in the form of pastilles. As used herein, the term "pastille” refers to a dissolvable oral product made by solidifying a liquid or gel composition so that the final product is a somewhat hardened solid gel. The rigidity of the gel is highly variable. Certain products of the disclosure are in the form of solids. Certain products can exhibit, for example, one or more of the following characteristics: crispy, granular, chewy, syrupy, pasty, fluffy, smooth, and/or creamy.
  • the desired textural property can be selected from the group consisting of adhesiveness, cohesiveness, density, dryness, fracturability, graininess, gumminess, hardness, heaviness, moisture absorption, moisture release, mouthcoating, roughness, slipperiness, smoothness, viscosity, wetness, and combinations thereof.
  • the products comprising the compositions of the present disclosure may be dissolvable.
  • dissolve refers to compositions having aqueous-soluble components that interact with moisture in the oral cavity and enter into solution, thereby causing gradual consumption of the product.
  • the dissolvable product is capable of lasting in the user’s mouth for a given period of time until it completely dissolves. Dissolution rates can vary over a wide range, from about 1 minute or less to about 60 minutes.
  • fast release compositions typically dissolve and/or release the active substance in about 2 minutes or less, often about 1 minute or less (e.g., about 50 seconds or less, about 40 seconds or less, about 30 seconds or less, or about 20 seconds or less). Dissolution can occur by any means, such as melting, mechanical disruption (e.g., chewing), enzymatic or other chemical degradation, or by disruption of the interaction between the components of the composition.
  • the product can be meltable as discussed, for example, in US Patent App. Pub. No. 2012/0037175 to Cantrell et al.
  • the products do not dissolve during the product’s residence in the user’s mouth.
  • the product comprising the composition of the present disclosure is in the form of a composition disposed within a moisture-permeable container (e.g., a water-permeable pouch).
  • a moisture-permeable container e.g., a water-permeable pouch
  • Such compositions in the water-permeable pouch format are typically used by placing one pouch containing the composition in the mouth of a human subject/user.
  • the pouch is placed somewhere in the oral cavity of the user, for example under the lips, in the same way as moist snuff products are generally used.
  • the pouch preferably is not chewed or swallowed.
  • the components of the composition therein e.g., flavoring agents and/or nicotine
  • the pouch may be removed from the mouth of the human subject for disposal.
  • the composition as disclosed herein and any other components noted above are combined within a moisture-permeable packet or pouch that acts as a container for use of the composition to provide a pouched product configured for oral use.
  • a moisture-permeable packet or pouch that acts as a container for use of the composition to provide a pouched product configured for oral use.
  • the composition/construction of such packets or pouches may be varied.
  • a first embodiment of a pouched product 10 includes a moisture-permeable container in the form of a pouch 12, which contains a composition 14 as described herein.
  • the pouched product 10 optionally includes one or more capsules 16 dispersed within the composition 14, the capsules containing an additive (e.g., a flavoring agent) such as described in greater detail below.
  • an additive e.g., a flavoring agent
  • Suitable packets, pouches or containers of the type used for the manufacture of smokeless tobacco products are available under the tradenames CatchDry, Ettan, General, Granit, Goteborgs Rape, Grovsnus White, Metropol Kaktus, Mocca Anis, Mocca Mint, Mocca Wintergreen, Kicks, Probe, Prince, Skruf and TreAnkrare.
  • the composition may be contained in pouches and packaged, in a manner and using the types of components used for the manufacture of conventional snus types of products.
  • the pouch provides a liquid-permeable container of a type that may be considered to be similar in character to the mesh-like type of material that is used for the construction of a tea bag. Components of the composition readily diffuse through the pouch and into the mouth of the user.
  • Non-limiting examples of suitable types of pouches are set forth in, for example, US Pat. Nos. 5,167,244 to Kjerstad and 8,931,493 to Sebastian et al.; as well as US Patent App. Pub. Nos. 2016/0000140 to Sebastian et al.; 2016/0073689 to Sebastian et al.; 2016/0157515 to Chapman et al.; and 2016/0192703 to Sebastian et al., each of which are incorporated herein by reference.
  • Pouches can be provided as individual pouches, or a plurality of pouches (e.g., 2, 4, 5, 10, 12, 15, 20, 25 or 30 pouches) can be connected or linked together (e.g., in an end-to-end manner) such that a single pouch or individual portion can be readily removed for use from a one-piece strand or matrix of pouches.
  • a plurality of pouches e.g., 2, 4, 5, 10, 12, 15, 20, 25 or 30 pouches
  • An example pouch may be manufactured from materials, and in such a manner, such that during use by the user, the pouch undergoes a controlled dispersion or dissolution.
  • Such pouch materials may have the form of a mesh, screen, perforated paper, permeable fabric, or the like.
  • pouch material manufactured from a mesh-like form of rice paper, or perforated rice paper may dissolve in the mouth of the user.
  • the pouch and composition each may undergo complete dispersion within the mouth of the user during normal conditions of use, and hence the pouch and composition both may be ingested or absorbed by the user.
  • pouch materials may be manufactured using water dispersible fdm forming materials (e.g., binding agents such as alginates, carboxymethylcellulose, xanthan gum, pullulan, and the like), as well as those materials in combination with materials such as ground cellulosics (e.g., fine particle size wood pulp).
  • Preferred pouch materials though water dispersible or dissolvable, may be designed and manufactured such that under conditions of normal use, a significant amount of the composition contents permeate through the pouch material prior to the time that the pouch undergoes loss of its physical integrity.
  • flavoring ingredients, disintegration aids, and other desired components may be incorporated within, or applied to, the pouch material.
  • the amount of material contained within each product unit may vary.
  • the weight of the composition within each pouch is at least about 50 mg, for example, from about 50 mg to about 1 gram, from about 100 to 800 about mg, or from about 200 to about 700 mg.
  • the weight of the composition within each pouch may be from about 100 to about 300 mg.
  • the weight of the material within each pouch may be from about 300 mg to about 700 mg.
  • each pouch can contain at least one flavored strip, piece or sheet of flavored water dispersible or water soluble material (e.g., a breath-freshening edible film type of material) may be disposed within each pouch along with or without at least one capsule.
  • flavored water dispersible or water soluble material e.g., a breath-freshening edible film type of material
  • Such strips or sheets may be folded or crumpled in order to be readily incorporated within the pouch. See, for example, the types of materials and technologies set forth in US Pat. Nos. 6,887,307 to Scott et al. and 6,923,981 to Leung et al.; and The EFSA Journal (2004) 85, 1-32; which are incorporated herein by reference.
  • any of the types of composition components described above can be added in an encapsulated form (e.g., in the form of capsules including microcapsules), the encapsulated form including a wall or barrier structure defining an inner region and isolating the inner region permanently or temporarily from the remainder of the product composition.
  • the inner region includes a payload of an additive either adapted for enhancing one or more sensory characteristics of the product, such as taste, mouthfeel, moistness, coolness/heat, and/or fragrance, or adapted for adding an additional functional quality to the product, such as addition of an antioxidant or immune system enhancing function. See, for example, the subject matter of US Pat. Appl. Pub. No. 2009/0025738 to Mua et al., which is incorporated herein by reference.
  • a capsule physically separates or segregates, to a certain extent, an additive from one or more other components of the product.
  • the functional advantage of such a separation can vary, but typically involves the minimization or elimination of chemical interaction between the additive and other components of the product during conditions of normal storage and/or use. Separation of certain additives can thus enhance storage stability of the resulting product and/or preserve the desirable sensory characteristics of the product.
  • the outer shell of the capsule serves as a barrier between the payload (i.e., the additive) and the remainder of the composition of the product.
  • the additive in the core region of the capsule is released under certain conditions of product use. For instance, the outer shell may undergo some type of physical destruction, breakage, or other loss of physical integrity (e.g., through disintegration, softening, crushing, application of pressure, or the like) in response to a trigger condition associated with the product. Such a release of the additive may alter or enhance the flavor or other sensory characteristics of the product, extend the period of time that a user may enjoy the product, or provide other functional advantages.
  • the trigger conditions associated with release of the additive may vary, and can include for example, a change in temperature or pH of the product, contact with a digestive enzyme, or physical rupture or breakage caused, for example, by chewing action of the product user.
  • contact of the capsule with the raised temperature of the user's mouth may cause the capsule to soften, lose its physical integrity, and release the additive within the user's mouth (e.g., at a temperature of about 37°C or higher).
  • the capsule is configured to release the additive in response to a change in pH, such as a capsule configured to release the additive when the pH of the capsule is at or near (e.g., greater than) a pH typical of a user's mouth (e.g., approximately 5.6 to 7.9).
  • the capsule is configured to release the additive in response to a digestive enzyme typically found in the mouth of a user (e.g., amylase).
  • the capsules may be uniform or varied in size, weight, and shape, and such properties of the capsules will depend upon the desired properties of the product.
  • the capsules may be of various shape, including being generally spherical, rectilinear, oblong, elliptical, or oval.
  • the size of the capsules can vary, and will include diameter ranges such as about 0.5 to about 5 mm, as well as microcapsule size ranges such as diameters of less than about 100 microns, such as diameters in the range of about 1 to about 40 microns, or about 1 micron to about 20 microns.
  • the total weight of the capsules within the product may vary, but is typically between about 10 mg to about 200 mg, such as about 20 mg to about 50 mg.
  • the number of the capsules utilized in each product can vary, depending upon factors such as the size of the capsules, the character or nature of the additive in the payload, the desired attributes of the product, and the like.
  • the number of capsules will typically range from 1 to about 500, more typically about 5 to about 100.
  • the outer wall or shell material used to form the capsules can vary.
  • Classes of materials that are typically used as wall or shell materials include proteins, polysaccharides, starches, waxes, fats, natural and synthetic polymers, and resins.
  • Example materials include gelatin, natural gums, polyvinyl acetate, potassium or sodium alginate, carrageenan, dextrin, polyvinyl alcohol, povidone, dimethylpolysiloxane, paraffin wax, shellac, cellulose derivatives (e.g., ethylcellulose, carboxymethylcellulose, hydroxypropyl cellulose, hydroxypropylmethylcellulose, methylcellulose, methyl ethyl cellulose), microcrystalline wax, terpene resin, tragacanth, polyethylene, and polyethylene glycol.
  • cellulose derivatives e.g., ethylcellulose, carboxymethylcellulose, hydroxypropyl cellulose, hydroxypropylmethylcellulose, methylcellulose, methyl ethyl cellulose
  • the capsule may include an additional outer coating on the outer shell, such as a coating adapted to increase water resistance.
  • Example coating materials include various polymer materials, such as cellulose derivatives (e.g., HPMC), polyvinyl alcohol, and acrylate or methacrylate polymers.
  • a pouched product as described herein can be packaged within any suitable inner packaging material and/or outer container. See also, for example, the various types of containers for smokeless types of products that are set forth in US Pat. Nos. 7,014,039 to Henson et al.; 7,537,110 to Kutsch et al.; 7,584,843 to Kutsch et al.; 8,397,945 to Gelardi et al., D592,956 to Thiellier; D594,154 to Patel et al.; and D625,178 to Bailey et al.; US Pat. Pub. Nos.
  • An oral composition comprising the ingredients set forth in Table 1 below is prepared. The actual ingredient percentages can be varied depending the desired final product.
  • composition is prepared using the following method:
  • the MCC, sodium alginate, and sodium chloride are put into a paddle blender and blended to form a dry mix.
  • sodium bicarbonate is mixed with about half of the total water to be used in the recipe (e.g., water at an elevated temperature of about 65 °C). The mixture is stirred until the sodium bicarbonate fully dissolves to form an aqueous solution.
  • the sodium bicarbonate solution is then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes.
  • xylitol, ammonium chloride as a pH adjuster, potassium sorbate as a preservative, and an artificial sweetener e.g., sucralose or acesulfame K
  • an artificial sweetener e.g., sucralose or acesulfame K
  • Step 4 In a separate container, a flavoring agent, propylene glycol, and nicotine are mixed together and then added to the solution of Step 4.
  • Step 5 The mixture of Step 5 is then sprayed from a pressure vessel on the mixture from Step 3 in the blender, and the resulting mixture is blended for about 10 minutes.
  • xylitol, ammonium chloride as a pH adjuster, potassium sorbate as a preservative, and an artificial sweetener e.g., sucralose or acesulfame K
  • an artificial sweetener e.g., sucralose or acesulfame K
  • Step 7 The mixture of Step 7 is then sprayed from a pressure vessel on the mixture from Step 6 in the blender, and the resulting mixture is blended for about 10 minutes.
  • composition is prepared using the following method:
  • the MCC, sodium alginate, bleached tobacco, and sodium chloride are put into a paddle blender and blended to form a dry mix.
  • sodium bicarbonate is mixed with about half of the total water to be used in the recipe (e.g., water at an elevated temperature of about 65 °C). The mixture is stirred until the sodium bicarbonate fully dissolves to form an aqueous solution.
  • the sodium bicarbonate solution is then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes. 4.
  • xylitol, ammonium chloride as a pH adjuster, potassium sorbate as a preservative, and an artificial sweetener e.g., sucralose or acesulfame K
  • an artificial sweetener e.g., sucralose or acesulfame K
  • Step 5 is then sprayed from a pressure vessel on the mixture from Step 3 in the blender, and the resulting mixture is blended for about 10 minutes.
  • xylitol, ammonium chloride as a pH adjuster, potassium sorbate as a preservative, and an artificial sweetener e.g., sucralose or acesulfame K
  • an artificial sweetener e.g., sucralose or acesulfame K
  • the mixture of Step 7 is then sprayed from a pressure vessel on the mixture from Step 6 in the blender, and the resulting mixture is blended for about 10 minutes.
  • An oral composition comprising the ingredients set forth in Table 3 below is prepared. The actual ingredient percentages can be varied depending the desired final product.
  • composition is prepared using the following method:
  • the MCC, sodium alginate, bleached tobacco, guar gum, and sodium chloride are put into a paddle blender and blended to form a dry mix.
  • sodium bicarbonate is mixed with about half of the total water to be used in the recipe (e.g., water at an elevated temperature of about 65 °C). The mixture is stirred until the sodium bicarbonate fully dissolves to form an aqueous solution. 3. The sodium bicarbonate solution is then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes.
  • xylitol, ammonium chloride as a pH adjuster, potassium sorbate as a preservative, and an artificial sweetener e.g., sucralose or acesulfame K
  • an artificial sweetener e.g., sucralose or acesulfame K
  • Step 5 The mixture of Step 5 is then sprayed from a pressure vessel on the mixture from Step 3 in the blender, and the resulting mixture is blended for about 10 minutes.
  • the resulting mixture is then removed from the blender and placed into storage containers for future pouching.
  • An oral composition comprising the ingredients set forth in Table 4 below is prepared. The actual ingredient percentages can be varied depending the desired final product.
  • composition is prepared using the following method: 1.
  • the MCC, bleached tobacco, guar gum, artificial sweetener (e.g., sucralose or acesulfame K), sodium bicarbonate, potassium sorbate, and sodium chloride are put into a paddle blender and blended to form a dry mix.
  • sodium alginate is mixed with water (e.g., water at an elevated temperature of about 65 °C). The mixture is stirred until the sodium alginate fully dissolves to form an aqueous solution. Xylitol is then added and mixed until dissolved.
  • water e.g., water at an elevated temperature of about 65 °C.
  • Step 2 The solution from Step 2 is then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes.
  • Step 4 The mixture of Step 4 is then sprayed from a pressure vessel on the mixture from Step 3 in the blender, and the resulting mixture is blended for about 10 minutes.
  • the resulting mixture is then removed from the blender and placed into storage containers for future pouching.
  • An oral composition comprising the ingredients set forth in Example 1 is prepared using the following method:
  • the MCC, sodium chloride, xylitol, sodium alginate, sodium bicarbonate, artificial sweetener, and potassium sorbate are put into a paddle blender and blended to form a dry mix.
  • a nicotine solution is mixed with propylene glycol and then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes.
  • a flavoring agent is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 5 minutes.
  • All water used in the composition is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 10 minutes.
  • the water is not heated, and is typically at room temperature or below.
  • the resulting mixture is then removed from the blender and placed into storage containers for future pouching.
  • An oral composition comprising the ingredients set forth in Example 2 is prepared using the following method: 1.
  • the MCC, sodium chloride, xylitol, bleached tobacco, sodium alginate, sodium bicarbonate, artificial sweetener, and potassium sorbate are put into a paddle blender and blended to form a dry mix.
  • a nicotine solution is then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes.
  • a flavoring agent is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 5 minutes.
  • All remaining water used in the composition is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 10 minutes.
  • the water is not heated, and is typically at room temperature or below.
  • the resulting mixture is then removed from the blender and placed into storage containers for future pouching.
  • An oral composition comprising the ingredients set forth in Example 3 is prepared using the following method:
  • the MCC, sodium chloride, xylitol, guar gum, bleached tobacco, sodium alginate, sodium bicarbonate, artificial sweetener, and potassium sorbate are put into a paddle blender and blended to form a dry mix.
  • a nicotine solution is then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes.
  • a flavoring agent is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 5 minutes.
  • All remaining water used in the composition is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 10 minutes.
  • the water is not heated, and is typically at room temperature or below.
  • the resulting mixture is then removed from the blender and placed into storage containers for future pouching.
  • An oral composition comprising the ingredients set forth in Example 4 is prepared using the following method: 1.
  • the MCC, sodium chloride, xylitol, guar gum, bleached tobacco, sodium alginate, sodium bicarbonate, artificial sweetener, and potassium sorbate are put into a paddle blender and blended to form a dry mix.
  • a nicotine solution is mixed with propylene glycol and then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes.
  • a flavoring agent is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 5 minutes.
  • All remaining water used in the composition is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 10 minutes.
  • the water is not heated, and is typically at room temperature or below.
  • the resulting mixture is then removed from the blender and placed into storage containers for future pouching.
  • Example 9 Irritation Reduction Pouched product samples were made containing the same amounts of microcrystalline cellulose, sodium chloride, alginate, and acesulfame K. Three sets of samples were prepared using this same base formulation, including: (1) pouches with 4 mg nicotine and 4 mg propylene glycol (PG) added; (2) pouches with 4 mg nicotine and 4 mg olive oil added; and (3) pouches with 4 mg nicotine only added (no propylene glycol or olive oil).
  • the sensory evaluation was conducted by requesting panelists to choose the most irritating and the least irritating sample. The collected data was used to generate the data presented in Fig. 2. The trend line indicates that there is lower irritation level for the samples containing either propylene glycol or olive oil.

Abstract

The disclosure provides products configured for oral use, the products including a mixture of a filler, a sugar alcohol, a salt, an alginate, a sweetener, at least one flavoring agent or at least one active ingredient or at least one of both a flavoring agent and an active ingredient, an optional natural gum; and water. The disclosure also provides methods for manufacturing products configured for oral use.

Description

ORAL PRODUCT AND METHOD OF MANUFACTURE
FIELD OF THE DISCLOSURE
The present disclosure relates to products intended for human consumption. The products are configured for oral use and deliver substances such as flavors and/or active ingredients during use. Such products may include tobacco or a component derived from tobacco, or may be tobacco-free alternatives.
BACKGROUND
Tobacco may be enjoyed in a so-called "smokeless" form. Particularly popular smokeless tobacco products are employed by inserting some form of processed tobacco or tobacco-containing formulation into the mouth of the user. Conventional formats for such smokeless tobacco products include moist snuff, snus, and chewing tobacco, which are typically formed almost entirely of particulate, granular, or shredded tobacco, and which are either portioned by the user or presented to the user in individual portions, such as in single-use pouches or sachets. Other traditional forms of smokeless products include compressed or agglomerated forms, such as plugs, tablets, or pellets. Alternative product formats, such as tobacco- containing gums and mixtures of tobacco with other plant materials, are also known. See for example, the types of smokeless tobacco formulations, ingredients, and processing methodologies set forth in US Pat. Nos. 1,376,586 to Schwartz; 4,513,756 to Pittman et al.; 4,528,993 to Sensabaugh, Jr. et al.; 4,624,269 to Story et al.; 4,991,599 to Tibbetts; 4,987,907 to Townsend; 5,092,352 to Sprinkle, III et al.; 5,387,416 to White et al.; 6,668,839 to Williams; 6,834,654 to Williams; 6,953,040 to Atchley et al.; 7,032,601 to Atchley et al.; and 7,694,686 to Atchley et al.; US Pat. Pub. Nos. 2004/0020503 to Williams; 2005/0115580 to Quinter et al.; 2006/0191548 to Strickland et al.; 2007/0062549 to Holton, Jr. et al.; 2007/0186941 to Holton, Jr. et al.; 2007/0186942 to Strickland et al.; 2008/0029110 to Dube et al.; 2008/0029116 to Robinson et al.; 2008/0173317 to Robinson et al.; 2008/0209586 to Neilsen et al.; 2009/0065013 to Essen et al.; and 2010/0282267 to Atchley, as well as W02004/095959 to Arnarp et al., each of which is incorporated herein by reference.
Smokeless tobacco product configurations that combine tobacco material with various binders and fillers have been proposed more recently, with example product formats including lozenges, pastilles, gels, extruded forms, and the like. See, for example, the types of products described in US Patent App. Pub. Nos. 2008/0196730 to Engstrom et al.; 2008/0305216 to Crawford et al.; 2009/0293889 to Kumar et al.; 2010/0291245 to Gao et al; 2011/0139164 to Mua et al.; 2012/0037175 to Cantrell et al.; 2012/0055494 to Hunt et al.; 2012/0138073 to Cantrell et al.; 2012/0138074 to Cantrell et al.; 2013/0074855 to Holton, Jr.; 2013/0074856 to Holton, Jr.; 2013/0152953 to Mua et al.; 2013/0274296 to Jackson et al.; 2015/0068545 to Moldoveanu et al.; 2015/0101627 to Marshall et al.; and 2015/0230515 to Lampe et al., each of which is incorporated herein by reference. All-white snus portions are growing in popularity, and offer a discrete and aesthetically pleasing alternative to traditional snus. Such modem "white" pouched products may include a bleached tobacco or may be tobacco-free. Products of this type may suffer from certain drawbacks, such as poor product stability that could lead to discoloration of the product and/or undesirable organoleptic characteristics. Accordingly, it would be desirable in the art to provide products configured for oral use with enhanced stability to provide a more enjoyable user experience.
BRIEF SUMMARY
The present disclosure generally provides products configured for oral use and methods of making such products. The products are intended to impart a taste when used orally, and typically also deliver one or more active ingredients to the consumer, such as nicotine.
The disclosure includes, without limitations, the following embodiments. Where a method refers to an intermediate composition as optionally further including one or more components selected from a list, such a reference includes compositions that include a single member from a single classification of components from the list (e.g., a single alginate), or two or more members from a single classification of components from the list (e.g., two sweeteners), or combinations of one or more members from each of two or more classifications of components from the list (e.g., a sweetener and an alginate).
Embodiment 1: A method of preparing an oral product, comprising: combining a filler and a salt to form a dry mix, the dry mix optionally further including one or more of an alginate, a bleached tobacco, a sweetener, a carbonate salt, and a natural gum; forming an aqueous solution of a flavoring agent or an active ingredient or both a flavoring agent and an active ingredient (meaning the solution may include a single flavoring agent, multiple flavoring agents, a single active ingredient, multiple active ingredients, or both one or more flavoring agents and one or more active ingredients), the solution optionally further including one or more of a pH adjuster, a preservative, a humectant, and a sweetener; adding the aqueous solution to the dry mix to form a mixture; and optionally encasing the mixture within a pouch.
Embodiment 2: The method of any preceding embodiment, further comprising forming a second aqueous solution of a sugar alcohol, a pH adjuster, and an optional preservative; and adding the second solution to the mixture prior to encasing the mixture within a pouch.
Embodiment 3: The method of any preceding embodiment, wherein the dry mix does not include an alginate, further comprising adding an aqueous solution of an alginate and a sugar alcohol to the dry mix. Embodiment 4: The method of any preceding embodiment, wherein the dry mix does not include a carbonate salt, further comprising adding an aqueous solution of a carbonate salt to the dry mix.
Embodiment 5 : The method of any preceding embodiment, comprising: combining a filler, an alginate, and a salt to form a dry mix; adding an aqueous solution of a carbonate salt to the dry mix; forming an aqueous solution of both a flavoring agent and an active ingredient (meaning a solution containing one or more flavoring agents and one or more active ingredients), the solution further including a sugar alcohol, a pH adjuster, a preservative, a humectant, and a sweetener; adding the aqueous solution to the dry mix to form a mixture; forming a second aqueous solution of a sugar alcohol, a pH adjuster, a sweetener, and an optional preservative; and adding the second aqueous solution to the mixture to form a second mixture; and optionally encasing the second mixture within a pouch.
Embodiment 6: The method of any preceding embodiment, comprising: combining a fdler, an alginate, a bleached tobacco, and a salt to form a dry mix; adding an aqueous solution of a carbonate salt to the dry mix; forming an aqueous solution of both a flavoring agent and an active ingredient, the solution further including a sugar alcohol, a pH adjuster, a preservative, and a sweetener; adding the aqueous solution to the dry mix to form a mixture; forming a second aqueous solution of a sugar alcohol, a pH adjuster, a sweetener, and an optional preservative; and adding the second aqueous solution to the mixture to form a second mixture; and optionally encasing the second mixture within a pouch.
Embodiment 7: The method of any preceding embodiment, comprising: combining a fdler, an alginate, a bleached tobacco, a natural gum, and a salt to form a dry mix; adding an aqueous solution of a carbonate salt to the dry mix; forming an aqueous solution of both a flavoring agent and an active ingredient, the solution further including a sugar alcohol, a pH adjuster, a preservative, and a sweetener; adding the aqueous solution to the dry mix to form a mixture; and optionally encasing the mixture within a pouch.
Embodiment 8: The method any preceding embodiment, comprising: combining a fdler, a bleached tobacco, a natural gum, a sweetener, a carbonate salt, a preservative, and a salt to form a dry mix; adding an aqueous solution of an alginate and a sugar alcohol to the dry mix to form a mixture; forming a second aqueous solution of both a flavoring agent and an active ingredient; adding the second aqueous solution to the mixture; and optionally encasing the mixture within a pouch.
Embodiment 9: The method of any preceding embodiment, wherein the temperature of each aqueous solution is between about 30 to about 100°C.
Embodiment 10: The method of any preceding embodiment, wherein: the fdler is a cellulose material; or the salt is sodium chloride; or the alginate is sodium alginate, calcium alginate, potassium alginate, magnesium alginate, ammonium alginate, or a mixture of two or more of the foregoing; or the sugar alcohol is xylitol; or the pH adjuster is ammonium chloride; or the carbonate salt is sodium bicarbonate; or the active ingredient is selected from the group consisting of a nicotine component, botanicals, stimulants, amino acids, vitamins, and cannabinoids; or the natural gum is guar gum; or the preservative is potassium sorbate; or the sweetener is sucralose or acesulfame K; or a combination of one or more of the above.
Embodiment 11 : A method of preparing an oral product, comprising: combining a filler and a salt to form a dry mix, the dry mix optionally further including one or more of an alginate, a bleached tobacco, a sweetener, a carbonate salt, and a natural gum; adding a flavoring agent and an active ingredient to the dry mix to form a mixture, wherein the active ingredient is applied either before, after, or simultaneously with the flavoring agent; thereafter, applying water to the mixture to form a second mixture, wherein at least 50% by weight of the water content of the second mixture is added after adding the active ingredient (such as at least about 55%, 60%, 65%, 70%, 75%, 80%, 85%, or 90%); and optionally encasing the second mixture within a pouch.
Embodiment 12: The method of any preceding embodiment, further comprising introducing one or more capsules into the oral product, the one or more capsules comprising an outer shell and an inner payload, the inner payload comprising at least one flavoring agent, and wherein the one or more capsules optionally include a water-resistant outer coating.
Embodiment 13: A product configured for oral use, the product prepared by the method of any preceding embodiment.
Embodiment 14: A method of preparing an oral product containing nicotine, comprising premixing a nicotine component with a humectant to form a premix, thereafter combining the premix with a filler. Embodiment 15: The method of any preceding embodiment, wherein the humectant is propylene glycol or olive oil.
Embodiment 16: A composition, comprising: a filler in an amount of at least 40% percent by weight, based on total weight of the composition (e.g., from about 40% to about 60% by weight of the composition or about 40% to about 50%); a sugar alcohol (e.g., from about 1% to about 10% by weight of the composition or about 2% to about
6%); a salt (e.g., from about 1% to about 10% by weight of the composition or about 2% to about 6%); an alginate (e.g., from about 0.1% to about 10% by weight of the composition or about 0.5% to about 1.5%); a sweetener such as an artificial sweetener (e.g., from about 0.1% to about 10% by weight of the composition or about 0.5% to about 1.5%); at least one flavoring agent or at least one active ingredient or at least one of both a flavoring agent and an active ingredient (e.g., a flavoring agent or active ingredient from about 0.1% to about 10% by weight of the composition or about 0.5% to about 1.5%); an optional natural gum (e.g., present in an amount of from about 0.1% to about 15% by weight of the composition or about 1% to about 10% or about 2% to about 6%); and a moisture content of at least about 40% by weight (e.g., from about 40% to about 60% by weight of the composition or about 40% to about 55%).
Embodiment 17: The composition of any preceding embodiment, further comprising a humectant (e.g., from about 0.01% to about 10% by weight of the composition or about 0.5% to about 6%).
Embodiment 18: The composition of any preceding embodiment, wherein the humectant is propylene glycol or olive oil.
Embodiment 19: The composition of any preceding embodiment, comprising from about 0.001 to about 10% by weight of a nicotine component, calculated as the free base and based on the total weight of the composition (e.g., about 0.5% to about 1.5%).
Embodiment 20: The composition of any preceding embodiment, wherein the composition is substantially free of tobacco material, excluding any nicotine component present, based on the total weight of the composition.
Embodiment 21: The composition of any preceding embodiment, wherein: the filler is a cellulose material; or the salt is sodium chloride; or the alginate is sodium alginate, calcium alginate, potassium alginate, magnesium alginate, ammonium alginate, or a mixture of two or more of the foregoing; or the sugar alcohol is xylitol; or the active ingredient is selected from the group consisting of a nicotine component, botanicals, stimulants, amino acids, vitamins, and cannabinoids; or the natural gum is guar gum; or a combination of one or more of the above.
Embodiment 22: The composition of any preceding embodiment, further comprising one or more capsules comprising an outer shell and an inner payload, the inner payload comprising at least one flavoring agent. Embodiment 23: The composition of any preceding embodiment, wherein the one or more capsules include a water-resistant outer coating. Embodiment 24: The composition of any preceding embodiment, wherein the fdler comprises a cellulose material.
Embodiment 25: The composition of any preceding embodiment, wherein the cellulose material comprises microcrystalline cellulose.
Embodiment 26: The composition of any preceding embodiment, comprising from about 10 to about 50% of the one or more particulate filler components; and from about 5 to about 60% by weight of the water, based on the total weight of the composition.
Embodiment 27: The composition of any preceding embodiment, wherein the composition comprises no more than about 10% by weight of a tobacco material (e.g., from about 0.01% to about 10% by weight of the composition or about 0.5% to about 5%), excluding any nicotine component present, based on the total weight of the composition.
Embodiment 28: The composition of any preceding embodiment, wherein the composition is in a free- flowing particulate form.
These and other features, aspects, and advantages of the disclosure will be apparent from a reading of the following detailed description together with the accompanying drawings, which are briefly described below. The invention includes any combination of two, three, four, or more of the above-noted embodiments as well as combinations of any two, three, four, or more features or elements set forth in this disclosure, regardless of whether such features or elements are expressly combined in a specific embodiment description herein. This disclosure is intended to be read holistically such that any separable features or elements of the disclosed invention, in any of its various aspects and embodiments, should be viewed as intended to be combinable unless the context clearly dictates otherwise.
BRIEF DESCRIPTION OF THE DRAWINGS
Having thus described aspects of the disclosure in the foregoing general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale. The drawings are exemplary only, and should not be construed as limiting the disclosure.
Fig. 1 is a cross-sectional view of a pouched product embodiment, taken across the width of the product, showing an outer pouch fdled with a composition of the present disclosure;
Fig. 2 is a bar graph illustrating subjective overall irritation associated with an embodiment of a pouched product of the disclosure; and
Fig. 3 is a schematic view of an active ingredient dosing system according to one embodiment of the present disclosure. DETAILED DESCRIPTION
The present disclosure will now be described more fully hereinafter with reference to example embodiments thereof. These example embodiments are described so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Indeed, the disclosure may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. As used in this specification and the claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Reference to "dry weight percent" or "dry weight basis" refers to weight on the basis of dry ingredients (i.e., all ingredients except water). Reference to "wet weight" refers to the weight of the composition including water. Unless otherwise indicated, reference to "weight percent" of a composition reflects the total wet weight of the composition (i.e., including water).
The products as described herein comprise a mixture of components, typically including at least one fdler and at least one flavoring agent and/or active ingredient. In some embodiments, the composition further comprises one or more salts, one or more sweeteners, one or more binding agents, one or more humectants, one or more gums, an organic acid, a tobacco material, a tobacco-derived material, or a combination thereof. The relative amounts of the various components within the composition may vary, and typically are selected so as to provide the desired sensory and performance characteristics to the oral product. The example individual components of the composition are described herein below.
Filler Component
Compositions as described herein generally include at least one fdler component. Such fdlers may fulfill multiple functions, such as enhancing certain organoleptic properties such as texture and mouthfeel, enhancing cohesiveness or compressibility of the product, and the like. Generally, the fdlers are porous particulate materials and are cellulose-based. For example, suitable particulate fdlers are any non-tobacco plant material or derivative thereof, including cellulose materials derived from such sources. Examples of cellulosic non-tobacco plant material include cereal grains (e.g., maize, oat, barley, rye, buckwheat, and the like), sugar beet (e.g., FIBREX® brand fdler available from International Fiber Corporation), bran fiber, and mixtures thereof. Non-limiting examples of derivatives of non-tobacco plant material include starches (e.g., from potato, wheat, rice, corn), natural cellulose, and modified cellulosic materials. Additional examples of potential particulate fdlers include maltodextrin, dextrose, calcium carbonate, calcium phosphate, lactose, mannitol, xylitol, and sorbitol. Combinations of fdlers can also be used.
"Starch" as used herein may refer to pure starch from any source, modified starch, or starch derivatives. Starch is present, typically in granular form, in almost all green plants and in various types of plant tissues and organs (e.g., seeds, leaves, rhizomes, roots, tubers, shoots, fruits, grains, and stems). Starch can vary in composition, as well as in granular shape and size. Often, starch from different sources has different chemical and physical characteristics. A specific starch can be selected for inclusion in the composition based on the ability of the starch material to impart a specific organoleptic property to composition. Starches derived from various sources can be used. For example, major sources of starch include cereal grains (e.g., rice, wheat, and maize) and root vegetables (e.g., potatoes and cassava). Other examples of sources of starch include acorns, arrowroot, arracacha, bananas, barley, beans (e.g., favas, lentils, mung beans, peas, chickpeas), breadfruit, buckwheat, canna, chestnuts, colacasia, katakuri, kudzu, malanga, millet, oats, oca, Polynesian arrowroot, sago, sorghum, sweet potato, quinoa, rye, tapioca, taro, tobacco, water chestnuts, and yams. Certain starches are modified starches. A modified starch has undergone one or more structural modifications, often designed to alter its high heat properties. Some starches have been developed by genetic modifications, and are considered to be "modified" starches. Other starches are obtained and subsequently modified. For example, modified starches can be starches that have been subjected to chemical reactions, such as esterification, etherification, oxidation, depolymerization (thinning) by acid catalysis or oxidation in the presence of base, bleaching, transglycosylation and depolymerization (e.g., dextrinization in the presence of a catalyst), cross-linking, enzyme treatment, acetylation, hydroxypropylation, and/or partial hydrolysis. Other starches are modified by heat treatments, such as pregelatinization, dextrinization, and/or cold water swelling processes. Certain modified starches include monostarch phosphate, distarch glycerol, distarch phosphate esterified with sodium trimetaphosphate, phosphate distarch phosphate, acetylated distarch phosphate, starch acetate esterified with acetic anhydride, starch acetate esterified with vinyl acetate, acetylated distarch adipate, acetylated distarch glycerol, hydroxypropyl starch, hydroxypropyl distarch glycerol, starch sodium octenyl succinate.
In some embodiments, the particulate filler is a cellulose material or cellulose derivative. One particularly suitable particulate filler for use in the products described herein is microcry stalline cellulose ("mcc"). The mcc may be synthetic or semi-synthetic, or it may be obtained entirely from natural celluloses. The mcc may be selected from the group consisting of AVICEL® grades PH-100, PH-102, PH-103, PH-105, PH-112, PH-113, PH-200, PH-300, PH-302, VIVACEL® grades 101, 102, 12, 20 and EMOCEL® grades 50M and 90M, and the like, and mixtures thereof. In one embodiment, the composition comprises mcc as the particulate fdler component. The quantity of mcc present in the composition as described herein may vary according to the desired properties.
The amount of filler can vary, but is typically up to about 75 percent of the composition by weight, based on the total weight of the composition. A typical range of particulate fdler (e.g., mcc) within the composition can be from about 10 to about 75 percent by total weight of the composition, for example, from about 10, about 15, about 20, about 25, or about 30, to about 35, about 40, about 45, or about 50 weight percent (e.g., about 20 to about 50 weight percent or about 25 to about 45 weight percent). In certain embodiments, the amount of particulate filler material is at least about 10 percent by weight, such as at least about 20 percent, or at least about 25 percent, or at least about 30 percent, or at least about 35 percent, or at least about 40 percent, based on the total weight of the composition. In one embodiment, the particulate filler further comprises a cellulose derivative or a combination of such derivatives. In some embodiments, the composition comprises from about 1 to about 10% of the cellulose derivative by weight, based on the total weight of the composition, with certain embodiments comprising about 1 to about 5% by weight of cellulose derivative. In certain embodiments, the cellulose derivative is a cellulose ether (including carboxyalkyl ethers), meaning a cellulose polymer with the hydrogen of one or more hydroxyl groups in the cellulose structure replaced with an alkyl, hydroxyalkyl, or aryl group. Non-limiting examples of such cellulose derivatives include methylcellulose, hydroxypropylcellulose ("HPC"), hydroxypropylmethylcellulose ("HPMC"), hydroxyethyl cellulose, and carboxymethylcellulose ("CMC"). In one embodiment, the cellulose derivative is one or more of methylcellulose, HPC, HPMC, hydroxyethyl cellulose, and CMC. In one embodiment, the cellulose derivative is HPC. In some embodiments, the composition comprises from about 1 to about 3% HPC by weight, based on the total weight of the composition.
Water
The water content of the composition, prior to use by a consumer of the product, may vary according to the desired properties. Typically, the composition, as present within the product prior to insertion into the mouth of the user, is less than about 60 percent by weight of water, and generally is from about 1 to about 60% by weight of water, for example, from about 5 to about 55, about 10 to about 50, about 20 to about 45, or about 25 to about 40 percent water by weight, including water amounts of at least about 5% by weight, at least about 10% by weight, at least about 15% by weight, and at least about 20% by weight.
Organic acid
As used herein, the term "organic acid" refers to an organic (i.e., carbon-based) compound that is characterized by acidic properties. Typically, organic acids are relatively weak acids (i.e., they do not dissociate completely in the presence of water), such as carboxylic acids (-CO2H) or sulfonic acids (- SO2OH). As used herein, reference to organic acid means an organic acid that is intentionally added. In this regard, an organic acid may be intentionally added as a specific composition ingredient as opposed to merely being inherently present as a component of another composition ingredient (e.g., the small amount of organic acid which may inherently be present in a composition ingredient such as a tobacco material). In some embodiments, the one or more organic acids are added neat (i.e., in their free acid, native solid or liquid form) or as a solution in, e.g., water. In some embodiments, the one or more organic acids are added in the form of a salt, as described herein below.
In some embodiments, the organic acid is an alkyl carboxylic acid. Non-limiting examples of alkyl carboxylic acids include formic acid, acetic acid, propionic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and the like. In some embodiments, the organic acid is an alkyl sulfonic acid. Non-limiting examples of alkyl sulfonic acids include propanesulfonic acid and octanesulfonic acid.
In some embodiments, the organic acid is citric acid, malic acid, tartaric acid, octanoic acid, benzoic acid, a toluic acid, salicylic acid, or a combination thereof. In some embodiments, the organic acid is benzoic acid. In some embodiments, the organic acid is citric acid.
In alternative embodiments, a portion, or even all, of the organic acid may be added in the form of a salt with an alkaline component, which may include, but is not limited to, nicotine. Non-limiting examples of suitable salts, e.g., for nicotine, include formate, acetate, propionate, isobutyrate, butyrate, alpha- methylbutyate, isovalerate, beta-methylvalerate, caproate, 2-furoate, phenylacetate, heptanoate, octanoate, nonanoate, oxalate, malonate, glycolate, benzoate, tartrate, levulinate, ascorbate, fumarate, citrate, malate, lactate, aspartate, salicylate, tosylate, succinate, pyruvate, and the like. In some embodiments, the organic acid or a portion thereof may be added in the form of a salt with an alkali metal such as sodium, potassium, and the like. In organic acids having more than one acidic group (such as a di- or-tri-carboxylic acid), in some instances, one or more of these acid groups may be in the form of such a salt. Suitable non-limiting examples include monosodium citrate, disodium citrate, and the like. In some embodiments, the organic acid is a salt of citric acid, malic acid, tartaric acid, octanoic acid, benzoic acid, a toluic acid, salicylic acid, or a combination thereof. In some embodiments, the organic acid is a mono or di-ester of a di- or tri-carboxylic acid, respectively, such as a monomethyl ester of citric acid, malic acid, or tartaric acid, or a dimethyl ester of citric acid.
The amount of organic acid present in the composition may vary. Generally, the composition comprises from about 0.1 to about 10% by weight of organic acid, present as one or more organic acids, based on the total weight of the composition. In some embodiments, the composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% organic acid by weight, based on the total weight of the composition. In some embodiments, the composition comprises from about 0.1 to about 0.5% by weight of organic acid, for example, about 0.1, about 0.15, about 0.2, about 0.25, about 0.3, about 0.35, about 0.4, about 0.45, or about 0.5% by weight, based on the total weight of the composition. In some embodiments, the composition comprises from about 0.25 to about 0.35% by weight of organic acid, for example, from about 0.25, about 0.26, about 0.27, about 0.28, about 0.29, or about 0.3, to about 0.31, about 0.32, about 0.33, about 0.34, or about 0.35% by weight, based on the total weight of the composition. In the case where a salt of an organic acid is added, the percent by weight is calculated based on the weight of the free acid, not including any counter-ion which may be present.
The quantity of acid present will vary based on the acidity and basicity of other components which may be present in the composition (e.g., nicotine, salts, buffers, and the like). Accordingly, the organic acid is provided in a quantity sufficient to provide a pH of 7.0 or below, (typically about 6.8 or below, about 6.6 or below, or about 6.5 or below) of the composition. In certain embodiments the acid inclusion is sufficient to provide a composition pH of from about 4.0 to about 7.0; for example, from about 4.5, about 5.0, about
5.5, or about 6.0, to about 6.5, or about 7.0. In some embodiments, the organic acid is provided in a quantity sufficient to provide a pH of the composition of from about 5.5 to about 6.5, for example, from about 5.5, about 5.6, about 5.7, about 5.8, about 5.9, or about 6.0, to about 6.1, about 6.2, about 6.3, about 6.4, or about
6.5.
Flavoring agent
As used herein, a "flavoring agent" or "flavorant" is any flavorful or aromatic substance capable of altering the sensory characteristics associated with the oral product. Examples of sensory characteristics that can be modified by the flavoring agent include taste, mouthfeel, moistness, coolness/heat, and/or fragrance/aroma. Flavoring agents may be natural or synthetic, and the character of the flavors imparted thereby may be described, without limitation, as fresh, sweet, herbal, confectionary, floral, fruity, or spicy. Specific types of flavors include, but are not limited to, vanilla, coffee, chocolate/cocoa, cream, mint, spearmint, menthol, peppermint, wintergreen, eucalyptus, lavender, cardamon, nutmeg, cinnamon, clove, cascarilla, sandalwood, honey, jasmine, ginger, anise, sage, licorice, lemon, orange, apple, peach, lime, cherry, strawberry, and any combinations thereof. See also, Leffmgwell et al., Tobacco Flavoring for Smoking Products, R. J. Reynolds Tobacco Company (1972), which is incorporated herein by reference. Flavorings also may include components that are considered moistening, cooling or smoothening agents, such as eucalyptus. These flavors may be provided neat (i.e., alone) or in a composite, and may be employed as concentrates or flavor packages (e.g., spearmint and menthol, orange and cinnamon; lime, pineapple, and the like). Representative types of components also are set forth in US Pat. No. 5,387,416 to White et al.; US Pat. App. Pub. No. 2005/0244521 to Strickland et al.; and PCT Application Pub. No. WO 05/041699 to Quinter et al., each of which is incorporated herein by reference. In some instances, the flavoring agent may be provided in a spray-dried form or a liquid form.
The flavoring agent generally comprises at least one volatile flavor component. As used herein, "volatile" refers to a chemical substance that forms a vapor readily at ambient temperatures (i.e., a chemical substance that has a high vapor pressure at a given temperature relative to a nonvolatile substance). Typically, a volatile flavor component has a molecular weight below about 400 Da, and often include at least one carbon-carbon double bond, carbon-oxygen double bond, or both. In one embodiment, the at least one volatile flavor component comprises one or more alcohols, aldehydes, aromatic hydrocarbons, ketones, esters, terpenes, terpenoids, or a combination thereof. Non-limiting examples of aldehydes include vanillin, ethyl vanillin, p-anisaldehyde, hexanal, furfural, isovaleraldehyde, cuminaldehyde, benzaldehyde, and citronellal. Non-limiting examples of ketones include l-hydroxy-2-propanone and 2-hydroxy-3-methyl-2- cyclopentenone-l-one. Non-limiting examples of esters include allyl hexanoate, ethyl heptanoate, ethyl hexanoate, isoamyl acetate, and 3-methylbutyl acetate. Non-limiting examples of terpenes include sabinene, limonene, gamma-terpinene, beta-fame sene, nerolidol, thujone, myrcene, geraniol, nerol, citronellol, linalool, and eucalyptol. In one embodiment, the at least one volatile flavor component comprises one or more of ethyl vanillin, cinnamaldehyde, sabinene, limonene, gamma-terpinene, beta-farnesene, or citral. In one embodiment, the at least one volatile flavor component comprises ethyl vanillin.
The amount of flavoring agent utilized in the composition can vary, but is typically up to about 10 weight percent, and certain embodiments are characterized by a flavoring agent content of at least about 0.1 weight percent, such as about 0.5 to about 10 weight percent, about 1 to about 6 weight percent, or about 2 to about 5 weight percent, based on the total weight of the composition.
Salts
In some embodiments, the composition may further comprise a salt (e.g., alkali metal salts), typically employed in an amount sufficient to provide desired sensory attributes to the composition. Non limiting examples of suitable salts include sodium chloride, potassium chloride, ammonium chloride, flour salt, and the like. When present, a representative amount of salt is about 0.5 percent by weight or more, about 1.0 percent by weight or more, or at about 1.5 percent by weight or more, but will typically make up about 10 percent or less of the total weight of the composition, or about 7.5 percent or less or about 5 percent or less (e.g., about 0.5 to about 5 percent by weight).
Sweeteners
The composition typically further comprises one or more sweeteners. The sweeteners can be any sweetener or combination of sweeteners, in natural or artificial form, or as a combination of natural and artificial sweeteners. Examples of natural sweeteners include fructose, sucrose, glucose, maltose, mannose, galactose, lactose, stevia, honey, and the like. Examples of artificial sweeteners include sucralose, isomaltulose, maltodextrin, saccharin, aspartame, acesulfame K, neotame and the like. In some embodiments, the sweetener comprises one or more sugar alcohols. Sugar alcohols are polyols derived from monosaccharides or disaccharides that have a partially or fully hydrogenated form. Sugar alcohols have, for example, about 4 to about 20 carbon atoms and include erythritol, arabitol, ribitol, isomalt, maltitol, dulcitol, iditol, mannitol, xylitol, lactitol, sorbitol, and combinations thereof (e.g., hydrogenated starch hydrolysates). When present, a representative amount of sweetener may make up from about 0.1 to about 20 percent or more of the of the composition by weight, for example, from about 0.1 to about 1%, from about 1 to about 5%, from about 5 to about 10%, or from about 10 to about 20% of the composition on a weight basis, based on the total weight of the composition.
Bindine asents
A binder (or combination of binders) may be employed in certain embodiments, in amounts sufficient to provide the desired physical attributes and physical integrity to the composition. Typical binders can be organic or inorganic, or a combination thereof. Representative binders include povidone, sodium alginate, starch-based binders, pectin, carrageenan, pullulan, zein, and the like, and combinations thereof. A binder may be employed in amounts sufficient to provide the desired physical attributes and physical integrity to the composition. The amount of binder utilized in the composition can vary, but is typically up to about 30 weight percent, and certain embodiments are characterized by a binder content of at least about 0.1% by weight, such as about 1 to about 30% by weight, or about 5 to about 10% by weight, based on the total weight of the composition.
In certain embodiments, the binder includes a gum, for example, a natural gum. As used herein, a natural gum refers to polysaccharide materials of natural origin that have binding properties, and which are also useful as a thickening or gelling agents. Representative natural gums derived from plants, which are typically water soluble to some degree, include xanthan gum, guar gum, gum arabic, ghatti gum, gum tragacanth, karaya gum, locust bean gum, gellan gum, and combinations thereof. When present, natural gum binder materials are typically present in an amount of up to about 5% by weight, for example, from about 0.1, about 0.2, about 0.3, about 0.4, about 0.5, about 0.6, about 0.7, about 0.8, about 0.9, or about 1%, to about 2, about 3, about 4, or about 5% by weight, based on the total weight of the composition.
Humectants
In certain embodiments, one or more humectants may be employed in the composition. Examples of humectants include, but are not limited to, glycerin, propylene glycol, and the like. Other examples include plant-based oils, such as olive oil, almond oil, avocado seed oil, coconut oil, corn oil, cottonseed oil, flax seed oil, grapeseed oil, hemp oil, palm kernel oil, peanut oil, pumpkin seed oil, rice bran oil, safflower seed oil, sesame seed oil, sunflower seed oil, soybean oil, or walnut oil.
Where included, the humectant is typically provided in an amount sufficient to provide desired moisture attributes to the composition. Further, in some instances, the humectant may impart desirable flow characteristics to the composition for depositing in a mold.
When present, a humectant will typically make up about 5% or less of the weight of the composition (e.g., from about 0.5 to about 5% by weight). When present, a representative amount of humectant is about 0.1% to about 1% by weight, or about 1% to about 5% by weight, based on the total weight of the composition.
Buffering agents
In certain embodiments, the composition of the present disclosure can comprise pH adjusters or buffering agents. Examples of pH adjusters and buffering agents that can be used include, but are not limited to, metal hydroxides (e.g., alkali metal hydroxides such as sodium hydroxide and potassium hydroxide), and other alkali metal buffers such as metal carbonates (e.g., potassium carbonate or sodium carbonate), or metal bicarbonates such as sodium bicarbonate, and the like. Where present, the buffering agent is typically present in an amount less than about 5 percent based on the weight of the composition, for example, from about 0.5% to about 5%, such as, e.g., from about 0.75% to about 4%, from about 0.75% to about 3%, or about 0.5% to about 1.5%, or from about 1% to about 2% by weight, based on the total weight of the composition. Non-limiting examples of suitable buffers include alkali metals acetates, glycinates, phosphates, glycerophosphates, citrates, carbonates, hydrogen carbonates, borates, or mixtures thereof.
Colorants
A colorant may be employed in amounts sufficient to provide the desired physical attributes to the composition. Examples of colorants include various dyes and pigments, such as caramel coloring and titanium dioxide. The amount of colorant utilized in the composition can vary, but when present is typically up to about 3 weight percent, such as from about 0.1%, about 0.5%, or about 1%, to about 3% by weight, based on the total weight of the composition.
Active ingredient
The composition may additionally include one or more active ingredients including, but not limited to, a nicotine component, botanical ingredients (e.g., lavender, peppermint, chamomile, basil, rosemary, ginger, cannabis, ginseng, maca, and tisanes), stimulants (e.g., caffeine and guarana), amino acids (e.g., taurine, theanine, phenylalanine, tyrosine, and tryptophan) and/or pharmaceutical, nutraceutical, and medicinal ingredients (e.g., vitamins, such as B6, B12, and C, and/or cannabinoids, such as tetrahydrocannabinol (THC) and cannabidiol (CBD)). The particular percentages and choice of ingredients will vary depending upon the desired flavor, texture, and other characteristics. Example active ingredients would include any ingredient known to impact one or more biological functions within the body, such as ingredients that furnish pharmacological activity or other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of disease, or which affect the structure or any function of the body of humans or other animals (e.g., provide a stimulating action on the central nervous system, have an energizing effect, an antipyretic or analgesic action, or an otherwise useful effect on the body).
In certain embodiments, a nicotine component may be included in the composition. By "nicotine component" is meant any suitable form of nicotine (e.g., free base or salt) for providing oral absorption of at least a portion of the nicotine present. Typically, the nicotine component is selected from the group consisting of nicotine free base and a nicotine salt. In some embodiments, nicotine is in its free base form, which easily can be adsorbed in for example, a microcrystalline cellulose material to form a microcrystalline cellulose-nicotine carrier complex. See, for example, the discussion of nicotine in free base form in US Pat. Pub. No. 2004/0191322 to Hansson, which is incorporated herein by reference.
In some embodiments, at least a portion of the nicotine can be employed in the form of a salt. Salts of nicotine can be provided using the types of ingredients and techniques set forth in US Pat. No. 2,033,909 to Cox et al. and Perfetti, Beitrage Tabakforschung Int., 12: 43-54 (1983), which are incorporated herein by reference. Additionally, salts of nicotine are available from sources such as Pfaltz and Bauer, Inc. and K&K Laboratories, Division of ICN Biochemicals, Inc. Typically, the nicotine component is selected from the group consisting of nicotine free base, a nicotine salt such as hydrochloride, dihydrochloride, monotartrate, bitartrate, sulfate, salicylate, and nicotine zinc chloride. In some embodiments, the nicotine component or a protion thereof is a nicotine salt with at least a portion of the one or more organic acids as disclosed herein above.
In some embodiments, at least a portion of the nicotine can be in the form of a resin complex of nicotine, where nicotine is bound in an ion-exchange resin, such as nicotine polacrilex, which is nicotine bound to, for example, a polymethacrilic acid, such as Amberlite IRP64, Purolite C115HMR, or Doshion P551. See, for example, US Pat. No. 3,901,248 to Lichtneckert et al., which is incorporated herein by reference. Another example is a nicotine-polyacrylic carbomer complex, such as with Carbopol 974P. In some embodiments, nicotine may be present in the form of a nicotine polyacrylic complex.
Typically, the nicotine component (calculated as the free base) when present, is in a concentration of at least about 0.001% by weight of the composition, such as in a range from about 0.001% to about 10%. In some embodiments, the nicotine component is present in a concentration from about 0.1% w/w to about 10% by weight, such as, e.g., from about from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% by weight, calculated as the free base and based on the total weight of the composition. In some embodiments, the nicotine component is present in a concentration from about 0.1% w/w to about 3% by weight, such as, e.g., from about from about 0.1% w/w to about 2.5%, from about 0.1% to about 2.0%, from about 0.1% to about 1.5%, or from about 0.1% to about 1% by weight, calculated as the free base and based on the total weight of the composition. These ranges can also apply to other active ingredients noted herein.
Tobacco material
In some embodiments, the composition may include a tobacco material. The tobacco material can vary in species, type, and form. Generally, the tobacco material is obtained from for a harvested plant of the Nicotiana species. Example Nicotiana species include N. tabacum, N. rustica, N. alata, N. arentsii, N. excelsior, N. forgetiana, N. glauca, N. glutinosa, N. gossei, N. kawakamii, N. knightiana, N. langsdorffi, N. otophora, N. setchelli, N. sylvestris, N. tomentosa, N. tomentosiformis, N. undulata, N. x sanderae, N. africana, N. amplexicaulis, N. benavidesii, N. bonariensis, N. debneyi, N. longiflora, N. maritina, N. megalosiphon, N. occidentalis, N. paniculata, N. plumbaginifolia, N. raimondii, N. rosulata, N. simulans, N. stocktonii, N. suaveolens, N. umbratica, N. velutina, N. wigandioides, N. acaulis, N. acuminata, N. attenuata, N. benthamiana, N. cavicola, N. clevelandii, N. cordifolia, N. corymbosa, N. fragrans, N. goodspeedii, N. linearis, N. miersii, N. nudicaulis, N. obtusifolia, N. occidentalis subsp. Hersperis, N. pauciflora, N. petunioides, N. quadrivalvis, N. repanda, N. rotundifolia, N. solanifolia, and N. spegazzinii. Various representative other types of plants from the Nicotiana species are set forth in Goodspeed, The Genus Nicotiana, (Chonica Botanica) (1954); US Pat. Nos. 4,660,577 to Sensabaugh, Jr. et al.; 5,387,416 to White et al., 7,025,066 to Lawson et al.; 7,798,153 to Lawrence, Jr. and 8,186,360 to Marshall et al.; each of which is incorporated herein by reference. Descriptions of various types of tobaccos, growing practices and harvesting practices are set forth in Tobacco Production, Chemistry and Technology , Davis et al. (Eds.) (1999), which is incorporated herein by reference.
Nicotiana species from which suitable tobacco materials can be obtained can be derived using genetic-modification or crossbreeding techniques (e.g., tobacco plants can be genetically engineered or crossbred to increase or decrease production of components, characteristics or attributes). See, for example, the types of genetic modifications of plants set forth in US Pat. Nos. 5,539,093 to Fitzmaurice et al.; 5,668,295 to Wahab et al.; 5,705,624 to Fitzmaurice et al.; 5,844,119 to Weigl; 6,730,832 to Dominguez et al.; 7,173,170 to Liu et al.; 7,208,659 to Colliver et al. and 7,230,160 to Benning et al.; US Patent Appl. Pub. No. 2006/0236434 to Conkling et al.; and PCT W02008/103935 to Nielsen et al. See, also, the types of tobaccos that are set forth in US Pat. Nos. 4,660,577 to Sensabaugh, Jr. et al.; 5,387,416 to White et al.; and 6,730,832 to Dominguez et al., each of which is incorporated herein by reference.
The Nicotiana species can, in some embodiments, be selected for the content of various compounds that are present therein. For example, plants can be selected on the basis that those plants produce relatively high quantities of one or more of the compounds desired to be isolated therefrom. In certain embodiments, plants of the Nicotiana species (e.g., Galpao commun tobacco) are specifically grown for their abundance of leaf surface compounds. Tobacco plants can be grown in greenhouses, growth chambers, or outdoors in fields, or grown hydroponically.
Various parts or portions of the plant of the Nicotiana species can be included within a composition as disclosed herein. For example, virtually all of the plant {e.g., the whole plant) can be harvested, and employed as such. Alternatively, various parts or pieces of the plant can be harvested or separated for further use after harvest. For example, the flower, leaves, stem, stalk, roots, seeds, and various combinations thereof, can be isolated for further use or treatment. In some embodiments, the tobacco material comprises tobacco leaf (lamina). The composition disclosed herein can include processed tobacco parts or pieces, cured and aged tobacco in essentially natural lamina and/or stem form, a tobacco extract, extracted tobacco pulp (e.g., using water as a solvent), or a mixture of the foregoing (e.g., a mixture that combines extracted tobacco pulp with granulated cured and aged natural tobacco lamina).
In certain embodiments, the tobacco material comprises solid tobacco material selected from the group consisting of lamina and stems. The tobacco that is used for the composition most preferably includes tobacco lamina, or a tobacco lamina and stem mixture (of which at least a portion is smoke-treated). Portions of the tobaccos within the composition may have processed forms, such as processed tobacco stems (e.g., cut-rolled stems, cut-rolled-expanded stems or cut-puffed stems), or volume expanded tobacco (e.g., puffed tobacco, such as dry ice expanded tobacco (DIET)). See, for example, the tobacco expansion processes set forth in US Pat. Nos. 4,340,073 to de la Burde et al.; 5,259,403 to Guy et al.; and 5,908,032 to Poindexter, et al.; and 7,556,047 to Poindexter, et al., all of which are incorporated by reference. In addition, the d composition optionally may incorporate tobacco that has been fermented. See, also, the types of tobacco processing techniques set forth in PCT W02005/063060 to Atchley et al., which is incorporated herein by reference.
The tobacco material is typically used in a form that can be described as particulate (i.e., shredded, ground, granulated, or powder form). The manner by which the tobacco material is provided in a finely divided or powder type of form may vary. Preferably, plant parts or pieces are comminuted, ground or pulverized into a particulate form using equipment and techniques for grinding, milling, or the like. Most preferably, the plant material is relatively dry in form during grinding or milling, using equipment such as hammer mills, cutter heads, air control mills, or the like. For example, tobacco parts or pieces may be ground or milled when the moisture content thereof is less than about 15 weight percent or less than about 5 weight percent. Most preferably, the tobacco material is employed in the form of parts or pieces that have an average particle size between 1.4 millimeters and 250 microns. In some instances, the tobacco particles may be sized to pass through a screen mesh to obtain the particle size range required. If desired, air classification equipment may be used to ensure that small sized tobacco particles of the desired sizes, or range of sizes, may be collected. If desired, differently sized pieces of granulated tobacco may be mixed together.
The manner by which the tobacco is provided in a finely divided or powder type of form may vary. Preferably, tobacco parts or pieces are comminuted, ground or pulverized into a powder type of form using equipment and techniques for grinding, milling, or the like. Most preferably, the tobacco is relatively dry in form during grinding or milling, using equipment such as hammer mills, cutter heads, air control mills, or the like. For example, tobacco parts or pieces may be ground or milled when the moisture content thereof is less than about 15 weight percent to less than about 5 weight percent. For example, the tobacco plant or portion thereof can be separated into individual parts or pieces (e.g., the leaves can be removed from the stems, and/or the stems and leaves can be removed from the stalk). The harvested plant or individual parts or pieces can be further subdivided into parts or pieces (e.g., the leaves can be shredded, cut, comminuted, pulverized, milled or ground into pieces or parts that can be characterized as filler-type pieces, granules, particulates or fine powders). The plant, or parts thereof, can be subjected to external forces or pressure (e.g., by being pressed or subjected to roll treatment). When carrying out such processing conditions, the plant or portion thereof can have a moisture content that approximates its natural moisture content (e.g., its moisture content immediately upon harvest), a moisture content achieved by adding moisture to the plant or portion thereof, or a moisture content that results from the drying of the plant or portion thereof. For example, powdered, pulverized, ground or milled pieces of plants or portions thereof can have moisture contents of less than about 25 weight percent, often less than about 20 weight percent, and frequently less than about 15 weight percent. For the preparation of oral products, it is typical for a harvested plant of the Nicotiana species to be subjected to a curing process. The tobacco materials incorporated within the composition for inclusion within products as disclosed herein are those that have been appropriately cured and/or aged. Descriptions of various types of curing processes for various types of tobaccos are set forth in Tobacco Production, Chemistry and Technology, Davis et al. (Eds.) (1999). Examples of techniques and conditions for curing flue-cured tobacco are set forth in Nestor et al., Beitrage Tabakforsch. Int., 20, 467-475 (2003) and US Pat. No. 6,895,974 to Peele, which are incorporated herein by reference. Representative techniques and conditions for air curing tobacco are set forth in US Pat. No. 7,650,892 to Groves et al.; Roton et al., Beitrage Tabakforsch. Int., 21, 305-320 (2005) and Staaf et al., Beitrage Tabakforsch. Int., 21, 321-330 (2005), which are incorporated herein by reference. Certain types of tobaccos can be subjected to alternative types of curing processes, such as fire curing or sun curing.
In certain embodiments, tobacco materials that can be employed include flue-cured or Virginia (e.g., K326), hurley, sun-cured (e.g., Indian Kumool and Oriental tobaccos, including Katerini, Prelip, Komotini, Xanthi and Yambol tobaccos), Maryland, dark, dark-fired, dark air cured (e.g., Madole, Passanda, Cubano, Jatin and Bezuki tobaccos), light air cured (e.g., North Wisconsin and Galpao tobaccos), Indian air cured, Red Russian and Rustica tobaccos, as well as various other rare or specialty tobaccos and various blends of any of the foregoing tobaccos.
The tobacco material may also have a so-called "blended" form. For example, the tobacco material may include a mixture of parts or pieces of flue-cured, hurley (e.g., Malawi hurley tobacco) and Oriental tobaccos (e.g., as tobacco composed of, or derived from, tobacco lamina, or a mixture of tobacco lamina and tobacco stem). For example, a representative blend may incorporate about 30 to about 70 parts hurley tobacco (e.g., lamina, or lamina and stem), and about 30 to about 70 parts flue cured tobacco (e.g., stem, lamina, or lamina and stem) on a dry weight basis. Other example tobacco blends incorporate about 75 parts flue-cured tobacco, about 15 parts hurley tobacco, and about 10 parts Oriental tobacco; or about 65 parts flue-cured tobacco, about 25 parts hurley tobacco, and about 10 parts Oriental tobacco; or about 65 parts flue-cured tobacco, about 10 parts hurley tobacco, and about 25 parts Oriental tobacco; on a dry weight basis. Other example tobacco blends incorporate about 20 to about 30 parts Oriental tobacco and about 70 to about 80 parts flue-cured tobacco on a dry weight basis.
Tobacco materials used in the present disclosure can be subjected to, for example, fermentation, bleaching, and the like. If desired, the tobacco materials can be, for example, irradiated, pasteurized, or otherwise subjected to controlled heat treatment. Such treatment processes are detailed, for example, in US Pat. No. 8,061,362 to Mua et al., which is incorporated herein by reference. In certain embodiments, tobacco materials can be treated with water and an additive capable of inhibiting reaction of asparagine to form acrylamide upon heating of the tobacco material (e.g., an additive selected from the group consisting of lysine, glycine, histidine, alanine, methionine, cysteine, glutamic acid, aspartic acid, proline, phenylalanine, valine, arginine, compositions incorporating di- and trivalent cations, asparaginase, certain non-reducing saccharides, certain reducing agents, phenolic compounds, certain compounds having at least one free thiol group or functionality, oxidizing agents, oxidation catalysts, natural plant extracts (e.g., rosemary extract), and combinations thereof. See, for example, the types of treatment processes described in US Pat. Pub. Nos. 8,434,496, 8,944,072, and 8,991,403 to Chen et al., which are all incorporated herein by reference. In certain embodiments, this type of treatment is useful where the original tobacco material is subjected to heat in the processes previously described.
In some embodiments, the type of tobacco material is selected such that it is initially visually lighter in color than other tobacco materials to some degree (e.g., whitened or bleached). Tobacco pulp can be whitened in certain embodiments according to any means known in the art. For example, bleached tobacco material produced by various whitening methods using various bleaching or oxidizing agents and oxidation catalysts can be used. Example oxidizing agents include peroxides (e.g., hydrogen peroxide), chlorite salts, chlorate salts, perchlorate salts, hypochlorite salts, ozone, ammonia, potassium permanganate, and combinations thereof. Example oxidation catalysts are titanium dioxide, manganese dioxide, and combinations thereof. Processes for treating tobacco with bleaching agents are discussed, for example, in US Patent Nos. 787,611 to Daniels, Jr.; 1,086,306 to Oelenheinz; 1,437,095 to Delling; 1,757,477 to Rosenhoch; 2,122,421 to Hawkinson; 2,148,147 to Baier; 2,170,107 to Baier; 2,274,649 to Baier; 2,770,239 to Prats et al.; 3,612,065 to Rosen; 3,851,653 to Rosen; 3,889,689 to Rosen; 3,943,940 to Minami; 3,943,945 to Rosen; 4,143,666 to Rainer; 4,194,514 to Campbell; 4,366,823, 4,366,824, and 4,388,933 to Rainer et al.; 4,641,667 to Schmekel et al.; 5,713,376 to Berger; 9,339,058 to Byrd Jr. et al.; 9,420,825 to Beeson et al.; and 9,950,858 to Byrd Jr. et al.; as well as in US Pat. App. Pub. Nos. 2012/0067361 to Bjorkholm et al.; 2016/0073686 to Crooks; 2017/0020183 to Bjorkholm; and 2017/0112183 to Bjorkholm, and in PCT Publ. Appl. Nos. WO1996/031255 to Giolvas and W02018/083114 to Bjorkholm, all of which are incorporated herein by reference.
In some embodiments, the whitened tobacco material can have an ISO brightness of at least about 50%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, or at least about 80%. In some embodiments, the whitened tobacco material can have an ISO brightness in the range of about 50% to about 90%, about 55% to about 75%, or about 60% to about 70%. ISO brightness can be measured according to ISO 3688:1999 or ISO 2470-1:2016.
In some embodiments, the whitened tobacco material can be characterized as lightened in color (e.g., "whitened") in comparison to an untreated tobacco material. White colors are often defined with reference to the International Commission on Illumination's (CIE's) chromaticity diagram. The whitened tobacco material can, in certain embodiments, be characterized as closer on the chromaticity diagram to pure white than an untreated tobacco material. In various embodiments, the tobacco material can be treated to extract a soluble component of the tobacco material therefrom. "Tobacco extract" as used herein refers to the isolated components of a tobacco material that are extracted from solid tobacco pulp by a solvent that is brought into contact with the tobacco material in an extraction process. Various extraction techniques of tobacco materials can be used to provide a tobacco extract and tobacco solid material. See, for example, the extraction processes described in US Pat. Appl. Pub. No. 2011/0247640 to Beeson et al., which is incorporated herein by reference. Other example techniques for extracting components of tobacco are described in US Pat. Nos. 4,144,895 to Fiore; 4,150,677 to Osborne, Jr. et al.; 4,267,847 to Reid; 4,289,147 to Wildman et al.; 4,351,346 to Brummer et al.; 4,359,059 to Brummer et al.; 4,506,682 to Muller; 4,589,428 to Keritsis; 4,605,016 to Soga et al.; 4,716,911 to Poulose et al.; 4,727,889 to Niven, Jr. et al.; 4,887,618 to Bernasek et al.; 4,941,484 to Clapp et al.; 4,967,771 to Fagg et al.; 4,986,286 to Roberts et al.; 5,005,593 to Fagg et al.; 5,018,540 to Grubbs et al.; 5,060,669 to White et al.; 5,065,775 to Fagg; 5,074,319 to White et al.; 5,099,862 to White et al.; 5,121,757 to White et al.; 5,131,414 to Fagg; 5,131,415 to Munoz et al.; 5,148,819 to Fagg; 5,197,494 to Kramer; 5,230,354 to Smith et al.; 5,234,008 to Fagg; 5,243,999 to Smith; 5,301,694 to Raymond et al.; 5,318,050 to Gonzalez-Parra et al.; 5,343,879 to Teague; 5,360,022 to Newton; 5,435,325 to Clapp et al.; 5,445,169 to Brinkley et al.; 6,131,584 to Lauterbach; 6,298,859 to Kierulff et al.; 6,772,767 to Mua et al.; and 7,337,782 to Thompson, all of which are incorporated by reference herein.
Typical inclusion ranges for tobacco materials can vary depending on the nature and type of the tobacco material, and the intended effect on the final composition, with an example range of up to about 30% by weight (or up to about 20% by weight or up to about 10% by weight or up to about 5% by weight), based on total weight of the composition (e.g., about 0.1 to about 15% by weight). In some embodiments, the products of the disclosure can be characterized as completely free or substantially free of tobacco material (other than purified nicotine as an active ingredient). For example, certain embodiments can be characterized as having less than 1% by weight, or less than 0.5% by weight, or less than 0.1% by weight of tobacco material, or 0% by weight of tobacco material.
Other additives
Other additives can be included in the disclosed composition. For example, the composition can be processed, blended, formulated, combined and/or mixed with other materials or ingredients. The additives can be artificial, or can be obtained or derived from herbal or biological sources. Examples of further types of additives include thickening or gelling agents (e.g., fish gelatin), emulsifiers, oral care additives (e.g., thyme oil, eucalyptus oil, and zinc), preservatives (e.g., potassium sorbate and the like), disintegration aids, or combinations thereof. See, for example, those representative components, combination of components, relative amounts of those components, and manners and methods for employing those components, set forth in US Pat. No. 9,237,769 to Mua et al., US Pat. No. 7,861,728 to Holton, Jr. et al., US Pat. App. Pub. No. 2010/0291245 to Gao et al., and US Pat. App. Pub. No. 2007/0062549 to Holton, Jr. et al., each of which is incorporated herein by reference. Typical inclusion ranges for such additional additives can vary depending on the nature and function of the additive and the intended effect on the final composition, with an example range of up to about 10% by weight, based on total weight of the composition (e.g., about 0.1 to about 5% by weight or about 0.5% to about 1.5%).
The aforementioned additives can be employed together (e.g., as additive formulations) or separately (e.g., individual additive components can be added at different stages involved in the preparation of the final composition). Furthermore, the aforementioned types of additives may be encapsulated as provided in the final product or composition. Exemplary encapsulated additives are described, for example, in WO2010/132444 to Atchley, which has been previously incorporated by reference herein.
In some embodiments, any one or more of a filler, a tobacco material, and the overall oral product described herein can be described as a particulate material. As used herein, the term "particulate" refers to a material in the form of a plurality of individual particles, some of which can be in the form of an agglomerate of multiple particles, wherein the particles have an average length to width ratio less than 2:1, such as less than 1.5:1, such as about 1:1. In various embodiments, the particles of a particulate material can be described as substantially spherical or granular.
The particle size of a particulate material may be measured by sieve analysis. As the skilled person will readily appreciate, sieve analysis (otherwise known as a gradation test) is a method used to measure the particle size distribution of a particulate material. Typically, sieve analysis involves a nested column of sieves which comprise screens, preferably in the form of wire mesh cloths. A pre-weighed sample may be introduced into the top or uppermost sieve in the column, which has the largest screen openings or mesh size (i.e. the largest pore diameter of the sieve). Each lower sieve in the column has progressively smaller screen openings or mesh sizes than the sieve above. Typically, at the base of the column of sieves is a receiver portion to collect any particles having a particle size smaller than the screen opening size or mesh size of the bottom or lowermost sieve in the column (which has the smallest screen opening or mesh size).
In some embodiments, the column of sieves may be placed on or in a mechanical agitator. The agitator causes the vibration of each of the sieves in the column. The mechanical agitator may be activated for a pre-determined period of time in order to ensure that all particles are collected in the correct sieve. In some embodiments, the column of sieves is agitated for a period of time from 0.5 minutes to 10 minutes, such as from 1 minute to 10 minutes, such as from 1 minute to 5 minutes, such as for approximately 3 minutes. Once the agitation of the sieves in the column is complete, the material collected on each sieve is weighed. The weight of each sample on each sieve may then be divided by the total weight in order to obtain a percentage of the mass retained on each sieve. As the skilled person will readily appreciate, the screen opening sizes or mesh sizes for each sieve in the column used for sieve analysis may be selected based on the granularity or known maximum/minimum particle sizes of the sample to be analysed. In some embodiments, a column of sieves may be used for sieve analysis, wherein the column comprises from 2 to 20 sieves, such as from 5 to 15 sieves. In some embodiments, a column of sieves may be used for sieve analysis, wherein the column comprises 10 sieves. In some embodiments, the largest screen opening or mesh sizes of the sieves used for sieve analysis may be 1000 pm, such as 500 pm, such as 400 pm, such as 300 pm.
In some embodiments, any particulate material referenced herein ( e.g ., fdler component, tobacco material, and the overall oral product) can be characterized as having at least 50% by weight of particles with a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 60% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 70% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 80% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 90% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 95% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, approximately 100% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
In some embodiments, at least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 0.01 pm to about 1000 pm, such as from about 0.05 pm to about 750 pm, such as from about 0.1 pm to about 500 pm, such as from about 0.25 pm to about 500 pm. In some embodiments, at least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 10 pm to about 400 pm, such as from about 50 pm to about 350 pm, such as from about 100 pm to about 350 pm, such as from about 200 pm to about 300 pm.
Preparation of the composition
The manner by which the various components of the composition are combined may vary. In certain embodiments, various combinations of dry ingredients, typically including the fdler component, will be blended to form a dry mix. Thereafter, typically in multiple steps, the remaining liquid ingredients are added to the dry mix to prepare the final product mixture. In certain embodiments, the active ingredient (e.g., nicotine) is mixed with a humectant (e.g., propylene glycol or olive oil) to form a premix before adding to the remainder of the composition, such as the dry mix containing a filler. The use of a mixture of certain active ingredients, such as nicotine, with a humectant can reduce mouth or throat irritation associated with oral use of the resulting product. If one or more capsules are included in the composition, the capsules can be added at various stages, such as addition to the dry mix or addition to the product composition immediately before final packaging (e.g., pouching) or after placement of the composition in a pouch (but before pouch sealing).
In certain embodiments, mixing efficiency and/or uniformity of the product can be enhanced by using multiple, successive addition steps in the process to add liquid components (e.g., aqueous solutions or dispersions) to the dry mix. By separating the liquid components into multiple addition steps, smaller amounts of each liquid composition are intimately mixed with the dry ingredients, which can result in improved mixing characteristics. Improved mixing efficiency and/or product uniformity can also be provided, in certain embodiments, through use of aqueous compositions at elevated temperature, such as between about 50 to about 100 °C, including about 55 to about 80 °C or about 60 to about 70 °C.
In some embodiments, aqueous compositions used in the process are maintained at room temperature or below, such as between about 10 to about 25 °C, including about 20 to about 25 °C (room temperature). Surprisingly, in certain embodiments, use of lower aqueous composition temperatures dining mixing does not cause significant loss in product uniformity or mixing efficiency, and can reduce overall process cost, particularly where room temperature water is used.
Still further, in certain embodiments, a large percentage of the total amount of water used in the product is added in a final water addition step, particularly after active ingredients and/or flavoring agents are added. This type of process is particularly well-suited for use with lower temperature water as noted above. Surprisingly, applying a large percentage of the total amount of water after addition of all, or virtually all, other ingredients does not cause significant loss in product uniformity or mixing efficiency, and can provide the added benefit of removing residual active ingredient and/or flavoring agent from the pipes in the mixing system without the need for a separate rinsing step that could lead to an undesirable increase in water use or loss in process efficiency. In certain embodiments, the amount of water added in the final water addition step is at least about 50% by weight of the total water content of the product mixture (such as at least about 60% or at least about 65% or at least about 70% or at least about 75% or at least about 80% or at least about 85% or at least about 90%).
The various components of the composition may be contacted, combined, or mixed together using any mixing technique or equipment known in the art. Any mixing method that brings the mixture ingredients into intimate contact can be used, such as a mixing apparatus featuring an impeller or other structure capable of agitation. Examples of mixing equipment include casing drums, conditioning cylinders or drums, liquid spray apparatus, conical-type blenders, ribbon blenders, mixers available as FKM130, FKM600, FKM1200, FKM2000 and FKM3000 from Fittleford Day, Inc., Plough Share types of mixer cylinders, Hobart mixers, and the like. See, for example, the types of methodologies set forth in US Pat. No. 4,148,325 to Solomon et ak; US Pat. No. 6,510,855 to Korte et ak; and US Pat. No. 6,834,654 to Williams, US Pat. Nos. 4,725,440 to Ridgway et ak, and 6,077,524 to Bolder et ak, each of which is incorporated herein by reference.
Certain active ingredients, such as nicotine, present safety and handling challenges. Accordingly, the present disclosure includes a dosing system that reduces the time spent handling active ingredients. An embodiment of the dosing system 20 is shown in Fig. 3. As shown, the system includes a storage tank 22 for the active ingredient, the storage tank in fluid communication with a dosing tank 30. In certain embodiments, the storage tank 22 can also be in fluid communication with an inert gas container 26 containing an inert gas such as nitrogen, which enables the creation of an inert gas blanket 24 in the headspace over the active ingredient stored in the storage tank 22.
A pump 28 is used to transport the liquid active ingredient from the storage tank 22 to the dosing tank 30. One or more additional storage tanks are advantageously in fluid communication with the dosing tank 30, such as a storage tank 32 for a flavoring agent and a storage tank 34 for a humectant. In this manner, additional components of a composition can be premixed with the active ingredient in the dosing tank 30. From the dosing tank 30, the active ingredient (optionally premixed with additional components) can be transported to one or more mixing tanks 36, which contain additional components of the desired composition, such as a dry mix as described above.
Configured for oral use
Provided herein is a product configured for oral use. The term "configured for oral use" as used herein means that the product is provided in a form such that during use, saliva in the mouth of the user causes one or more of the components of the composition (e.g., flavoring agents and/or nicotine) to pass into the mouth of the user. In certain embodiments, the product is adapted to deliver components to a user through mucous membranes in the user's mouth and, in some instances, said component is an active ingredient (including, but not limited to, for example, nicotine) that can be absorbed through the mucous membranes in the mouth when the product is used.
Products configured for oral use as described herein may take various forms, including gels, pastilles, gums, lozenges, powders, and pouches. Gels can be soft or hard. Certain products configured for oral use are in the form of pastilles. As used herein, the term "pastille" refers to a dissolvable oral product made by solidifying a liquid or gel composition so that the final product is a somewhat hardened solid gel. The rigidity of the gel is highly variable. Certain products of the disclosure are in the form of solids. Certain products can exhibit, for example, one or more of the following characteristics: crispy, granular, chewy, syrupy, pasty, fluffy, smooth, and/or creamy. In certain embodiments, the desired textural property can be selected from the group consisting of adhesiveness, cohesiveness, density, dryness, fracturability, graininess, gumminess, hardness, heaviness, moisture absorption, moisture release, mouthcoating, roughness, slipperiness, smoothness, viscosity, wetness, and combinations thereof.
The products comprising the compositions of the present disclosure may be dissolvable. As used herein, the terms "dissolve," "dissolving," and "dissolvable" refer to compositions having aqueous-soluble components that interact with moisture in the oral cavity and enter into solution, thereby causing gradual consumption of the product. According to one aspect, the dissolvable product is capable of lasting in the user’s mouth for a given period of time until it completely dissolves. Dissolution rates can vary over a wide range, from about 1 minute or less to about 60 minutes. For example, fast release compositions typically dissolve and/or release the active substance in about 2 minutes or less, often about 1 minute or less (e.g., about 50 seconds or less, about 40 seconds or less, about 30 seconds or less, or about 20 seconds or less). Dissolution can occur by any means, such as melting, mechanical disruption (e.g., chewing), enzymatic or other chemical degradation, or by disruption of the interaction between the components of the composition. In some embodiments, the product can be meltable as discussed, for example, in US Patent App. Pub. No. 2012/0037175 to Cantrell et al. In other embodiments, the products do not dissolve during the product’s residence in the user’s mouth.
In one embodiment, the product comprising the composition of the present disclosure is in the form of a composition disposed within a moisture-permeable container (e.g., a water-permeable pouch). Such compositions in the water-permeable pouch format are typically used by placing one pouch containing the composition in the mouth of a human subject/user. Generally, the pouch is placed somewhere in the oral cavity of the user, for example under the lips, in the same way as moist snuff products are generally used. The pouch preferably is not chewed or swallowed. Exposure to saliva then causes some of the components of the composition therein (e.g., flavoring agents and/or nicotine) to pass through e.g., the water-permeable pouch and provide the user with flavor and satisfaction, and the user is not required to spit out any portion of the composition. After about 10 minutes to about 60 minutes, typically about 15 minutes to about 45 minutes, of use/enjoyment, substantial amounts of the composition have been absorbed (via either gingival or buccal absorption) by the human subject, and the pouch may be removed from the mouth of the human subject for disposal.
Accordingly, in certain embodiments, the composition as disclosed herein and any other components noted above are combined within a moisture-permeable packet or pouch that acts as a container for use of the composition to provide a pouched product configured for oral use. Certain embodiments of the disclosure will be described with reference to Fig. 1 of the accompanying drawings, and these described embodiments involve snus-type products having an outer pouch and containing a composition as described herein. As explained in greater detail below, such embodiments are provided by way of example only, and the pouched products of the present disclosure can include the composition in other forms.
The composition/construction of such packets or pouches, such as the container pouch 12 in the embodiment illustrated in Fig. 1, may be varied. Referring to Fig. 1, there is shown a first embodiment of a pouched product 10. The pouched product 10 includes a moisture-permeable container in the form of a pouch 12, which contains a composition 14 as described herein. The pouched product 10 optionally includes one or more capsules 16 dispersed within the composition 14, the capsules containing an additive (e.g., a flavoring agent) such as described in greater detail below.
Suitable packets, pouches or containers of the type used for the manufacture of smokeless tobacco products are available under the tradenames CatchDry, Ettan, General, Granit, Goteborgs Rape, Grovsnus White, Metropol Kaktus, Mocca Anis, Mocca Mint, Mocca Wintergreen, Kicks, Probe, Prince, Skruf and TreAnkrare. The composition may be contained in pouches and packaged, in a manner and using the types of components used for the manufacture of conventional snus types of products. The pouch provides a liquid-permeable container of a type that may be considered to be similar in character to the mesh-like type of material that is used for the construction of a tea bag. Components of the composition readily diffuse through the pouch and into the mouth of the user.
Non-limiting examples of suitable types of pouches are set forth in, for example, US Pat. Nos. 5,167,244 to Kjerstad and 8,931,493 to Sebastian et al.; as well as US Patent App. Pub. Nos. 2016/0000140 to Sebastian et al.; 2016/0073689 to Sebastian et al.; 2016/0157515 to Chapman et al.; and 2016/0192703 to Sebastian et al., each of which are incorporated herein by reference. Pouches can be provided as individual pouches, or a plurality of pouches (e.g., 2, 4, 5, 10, 12, 15, 20, 25 or 30 pouches) can be connected or linked together (e.g., in an end-to-end manner) such that a single pouch or individual portion can be readily removed for use from a one-piece strand or matrix of pouches.
An example pouch may be manufactured from materials, and in such a manner, such that during use by the user, the pouch undergoes a controlled dispersion or dissolution. Such pouch materials may have the form of a mesh, screen, perforated paper, permeable fabric, or the like. For example, pouch material manufactured from a mesh-like form of rice paper, or perforated rice paper, may dissolve in the mouth of the user. As a result, the pouch and composition each may undergo complete dispersion within the mouth of the user during normal conditions of use, and hence the pouch and composition both may be ingested or absorbed by the user. Other examples of pouch materials may be manufactured using water dispersible fdm forming materials (e.g., binding agents such as alginates, carboxymethylcellulose, xanthan gum, pullulan, and the like), as well as those materials in combination with materials such as ground cellulosics (e.g., fine particle size wood pulp). Preferred pouch materials, though water dispersible or dissolvable, may be designed and manufactured such that under conditions of normal use, a significant amount of the composition contents permeate through the pouch material prior to the time that the pouch undergoes loss of its physical integrity. If desired, flavoring ingredients, disintegration aids, and other desired components, may be incorporated within, or applied to, the pouch material.
The amount of material contained within each product unit, for example, a pouch, may vary. In some embodiments, the weight of the composition within each pouch is at least about 50 mg, for example, from about 50 mg to about 1 gram, from about 100 to 800 about mg, or from about 200 to about 700 mg. In some smaller embodiments, the weight of the composition within each pouch may be from about 100 to about 300 mg. For a larger embodiment, the weight of the material within each pouch may be from about 300 mg to about 700 mg.
If desired, other components can be contained within each pouch. For example, at least one flavored strip, piece or sheet of flavored water dispersible or water soluble material (e.g., a breath-freshening edible film type of material) may be disposed within each pouch along with or without at least one capsule. Such strips or sheets may be folded or crumpled in order to be readily incorporated within the pouch. See, for example, the types of materials and technologies set forth in US Pat. Nos. 6,887,307 to Scott et al. and 6,923,981 to Leung et al.; and The EFSA Journal (2004) 85, 1-32; which are incorporated herein by reference.
As noted above, in some embodiments, any of the types of composition components described above can be added in an encapsulated form (e.g., in the form of capsules including microcapsules), the encapsulated form including a wall or barrier structure defining an inner region and isolating the inner region permanently or temporarily from the remainder of the product composition. The inner region includes a payload of an additive either adapted for enhancing one or more sensory characteristics of the product, such as taste, mouthfeel, moistness, coolness/heat, and/or fragrance, or adapted for adding an additional functional quality to the product, such as addition of an antioxidant or immune system enhancing function. See, for example, the subject matter of US Pat. Appl. Pub. No. 2009/0025738 to Mua et al., which is incorporated herein by reference.
The use of a capsule physically separates or segregates, to a certain extent, an additive from one or more other components of the product. The functional advantage of such a separation can vary, but typically involves the minimization or elimination of chemical interaction between the additive and other components of the product during conditions of normal storage and/or use. Separation of certain additives can thus enhance storage stability of the resulting product and/or preserve the desirable sensory characteristics of the product.
The outer shell of the capsule serves as a barrier between the payload (i.e., the additive) and the remainder of the composition of the product. The additive in the core region of the capsule is released under certain conditions of product use. For instance, the outer shell may undergo some type of physical destruction, breakage, or other loss of physical integrity (e.g., through disintegration, softening, crushing, application of pressure, or the like) in response to a trigger condition associated with the product. Such a release of the additive may alter or enhance the flavor or other sensory characteristics of the product, extend the period of time that a user may enjoy the product, or provide other functional advantages. The trigger conditions associated with release of the additive may vary, and can include for example, a change in temperature or pH of the product, contact with a digestive enzyme, or physical rupture or breakage caused, for example, by chewing action of the product user.
In some embodiments, contact of the capsule with the raised temperature of the user's mouth (e.g., the user's saliva) may cause the capsule to soften, lose its physical integrity, and release the additive within the user's mouth (e.g., at a temperature of about 37°C or higher). In some embodiments, the capsule is configured to release the additive in response to a change in pH, such as a capsule configured to release the additive when the pH of the capsule is at or near (e.g., greater than) a pH typical of a user's mouth (e.g., approximately 5.6 to 7.9). Still further, in certain embodiments, the capsule is configured to release the additive in response to a digestive enzyme typically found in the mouth of a user (e.g., amylase).
The capsules may be uniform or varied in size, weight, and shape, and such properties of the capsules will depend upon the desired properties of the product. The capsules may be of various shape, including being generally spherical, rectilinear, oblong, elliptical, or oval. The size of the capsules can vary, and will include diameter ranges such as about 0.5 to about 5 mm, as well as microcapsule size ranges such as diameters of less than about 100 microns, such as diameters in the range of about 1 to about 40 microns, or about 1 micron to about 20 microns. The total weight of the capsules within the product may vary, but is typically between about 10 mg to about 200 mg, such as about 20 mg to about 50 mg.
The number of the capsules utilized in each product can vary, depending upon factors such as the size of the capsules, the character or nature of the additive in the payload, the desired attributes of the product, and the like. The number of capsules will typically range from 1 to about 500, more typically about 5 to about 100.
The outer wall or shell material used to form the capsules can vary. Classes of materials that are typically used as wall or shell materials include proteins, polysaccharides, starches, waxes, fats, natural and synthetic polymers, and resins. Example materials include gelatin, natural gums, polyvinyl acetate, potassium or sodium alginate, carrageenan, dextrin, polyvinyl alcohol, povidone, dimethylpolysiloxane, paraffin wax, shellac, cellulose derivatives (e.g., ethylcellulose, carboxymethylcellulose, hydroxypropyl cellulose, hydroxypropylmethylcellulose, methylcellulose, methyl ethyl cellulose), microcrystalline wax, terpene resin, tragacanth, polyethylene, and polyethylene glycol.
In certain embodiments, the capsule may include an additional outer coating on the outer shell, such as a coating adapted to increase water resistance. Example coating materials include various polymer materials, such as cellulose derivatives (e.g., HPMC), polyvinyl alcohol, and acrylate or methacrylate polymers.
A pouched product as described herein can be packaged within any suitable inner packaging material and/or outer container. See also, for example, the various types of containers for smokeless types of products that are set forth in US Pat. Nos. 7,014,039 to Henson et al.; 7,537,110 to Kutsch et al.; 7,584,843 to Kutsch et al.; 8,397,945 to Gelardi et al., D592,956 to Thiellier; D594,154 to Patel et al.; and D625,178 to Bailey et al.; US Pat. Pub. Nos. 2008/0173317 to Robinson et al.; 2009/0014343 to Clark et al.; 2009/0014450 to Bjorkholm; 2009/0250360 to Bellamah et al.; 2009/0266837 to Gelardi et al.; 2009/0223989 to Gelardi; 2009/0230003 to Thiellier; 2010/0084424 to Gelardi; and 2010/0133140 to Bailey et al; 2010/0264157 to Bailey et al.; and 2011/0168712 to Bailey et al. which are incorporated herein by reference.
Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing description. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
EXPERIMENTAL
Aspects of the present invention are more fully illustrated by the following examples, which are set forth to illustrate certain aspects of the present invention and are not to be construed as limiting thereof.
Example 1
An oral composition comprising the ingredients set forth in Table 1 below is prepared. The actual ingredient percentages can be varied depending the desired final product.
Table 1
Figure imgf000030_0001
Figure imgf000031_0001
The composition is prepared using the following method:
1. The MCC, sodium alginate, and sodium chloride are put into a paddle blender and blended to form a dry mix.
2. In a separate container, sodium bicarbonate is mixed with about half of the total water to be used in the recipe (e.g., water at an elevated temperature of about 65 °C). The mixture is stirred until the sodium bicarbonate fully dissolves to form an aqueous solution.
3. The sodium bicarbonate solution is then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes.
4. In a separate container, xylitol, ammonium chloride as a pH adjuster, potassium sorbate as a preservative, and an artificial sweetener (e.g., sucralose or acesulfame K) are mixed with about two- thirds of the remaining water (e.g., water at an elevated temperature of about 65 °C) and stirred until dissolved to form an aqueous solution.
5. In a separate container, a flavoring agent, propylene glycol, and nicotine are mixed together and then added to the solution of Step 4.
6. The mixture of Step 5 is then sprayed from a pressure vessel on the mixture from Step 3 in the blender, and the resulting mixture is blended for about 10 minutes.
7. In a separate container, xylitol, ammonium chloride as a pH adjuster, potassium sorbate as a preservative, and an artificial sweetener (e.g., sucralose or acesulfame K) are mixed with the remaining one-third of water (e.g., water at an elevated temperature of about 65 °C) and stirred until dissolved to form an aqueous solution.
8. The mixture of Step 7 is then sprayed from a pressure vessel on the mixture from Step 6 in the blender, and the resulting mixture is blended for about 10 minutes.
9. The resulting mixture is then removed from the blender and placed into storage containers for future pouching. Example 2
An oral composition comprising the ingredients set forth in Table 2 below is prepared. The actual ingredient percentages can be varied depending the desired final product. Table 2
Figure imgf000032_0001
The composition is prepared using the following method:
1. The MCC, sodium alginate, bleached tobacco, and sodium chloride are put into a paddle blender and blended to form a dry mix. 2. In a separate container, sodium bicarbonate is mixed with about half of the total water to be used in the recipe (e.g., water at an elevated temperature of about 65 °C). The mixture is stirred until the sodium bicarbonate fully dissolves to form an aqueous solution.
3. The sodium bicarbonate solution is then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes. 4. In a separate container, xylitol, ammonium chloride as a pH adjuster, potassium sorbate as a preservative, and an artificial sweetener (e.g., sucralose or acesulfame K) are mixed with about two- thirds of the remaining water (e.g., water at an elevated temperature of about 65 °C) and stirred until dissolved to form an aqueous solution.
5. A flavoring agent and nicotine are added to the solution of Step 4.
6. The mixture of Step 5 is then sprayed from a pressure vessel on the mixture from Step 3 in the blender, and the resulting mixture is blended for about 10 minutes. 7. In a separate container, xylitol, ammonium chloride as a pH adjuster, potassium sorbate as a preservative, and an artificial sweetener (e.g., sucralose or acesulfame K) are mixed with the remaining one-third of water (e.g., water at an elevated temperature of about 65 °C) and stirred until dissolved to form an aqueous solution. 8. The mixture of Step 7 is then sprayed from a pressure vessel on the mixture from Step 6 in the blender, and the resulting mixture is blended for about 10 minutes.
9. The resulting mixture is then removed from the blender and placed into storage containers for future pouching. Example 3
An oral composition comprising the ingredients set forth in Table 3 below is prepared. The actual ingredient percentages can be varied depending the desired final product.
Table 3
Figure imgf000033_0001
The composition is prepared using the following method:
1. The MCC, sodium alginate, bleached tobacco, guar gum, and sodium chloride are put into a paddle blender and blended to form a dry mix.
2. In a separate container, sodium bicarbonate is mixed with about half of the total water to be used in the recipe (e.g., water at an elevated temperature of about 65 °C). The mixture is stirred until the sodium bicarbonate fully dissolves to form an aqueous solution. 3. The sodium bicarbonate solution is then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes.
4. In a separate container, xylitol, ammonium chloride as a pH adjuster, potassium sorbate as a preservative, and an artificial sweetener (e.g., sucralose or acesulfame K) are mixed with the remaining water (e.g., water at an elevated temperature of about 65 °C) and stirred until dissolved to form an aqueous solution.
5. A flavoring agent and nicotine are added to the solution of Step 4.
6. The mixture of Step 5 is then sprayed from a pressure vessel on the mixture from Step 3 in the blender, and the resulting mixture is blended for about 10 minutes.
7. The resulting mixture is then removed from the blender and placed into storage containers for future pouching.
Example 4
An oral composition comprising the ingredients set forth in Table 4 below is prepared. The actual ingredient percentages can be varied depending the desired final product.
Table 4
Figure imgf000034_0001
The composition is prepared using the following method: 1. The MCC, bleached tobacco, guar gum, artificial sweetener (e.g., sucralose or acesulfame K), sodium bicarbonate, potassium sorbate, and sodium chloride are put into a paddle blender and blended to form a dry mix.
2. In a separate container, sodium alginate is mixed with water (e.g., water at an elevated temperature of about 65 °C). The mixture is stirred until the sodium alginate fully dissolves to form an aqueous solution. Xylitol is then added and mixed until dissolved.
3. The solution from Step 2 is then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes.
4. In a separate container, a flavoring agent and nicotine are mixed.
5. The mixture of Step 4 is then sprayed from a pressure vessel on the mixture from Step 3 in the blender, and the resulting mixture is blended for about 10 minutes.
6. The resulting mixture is then removed from the blender and placed into storage containers for future pouching.
Example 5
An oral composition comprising the ingredients set forth in Example 1 is prepared using the following method:
1. The MCC, sodium chloride, xylitol, sodium alginate, sodium bicarbonate, artificial sweetener, and potassium sorbate are put into a paddle blender and blended to form a dry mix.
2. A nicotine solution is mixed with propylene glycol and then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes.
3. A flavoring agent is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 5 minutes.
4. All water used in the composition is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 10 minutes. The water is not heated, and is typically at room temperature or below.
5. The resulting mixture is then removed from the blender and placed into storage containers for future pouching.
Example 6
An oral composition comprising the ingredients set forth in Example 2 is prepared using the following method: 1. The MCC, sodium chloride, xylitol, bleached tobacco, sodium alginate, sodium bicarbonate, artificial sweetener, and potassium sorbate are put into a paddle blender and blended to form a dry mix.
2. A nicotine solution is then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes.
3. A flavoring agent is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 5 minutes.
4. All remaining water used in the composition is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 10 minutes. The water is not heated, and is typically at room temperature or below.
5. The resulting mixture is then removed from the blender and placed into storage containers for future pouching.
Example 7
An oral composition comprising the ingredients set forth in Example 3 is prepared using the following method:
1. The MCC, sodium chloride, xylitol, guar gum, bleached tobacco, sodium alginate, sodium bicarbonate, artificial sweetener, and potassium sorbate are put into a paddle blender and blended to form a dry mix.
2. A nicotine solution is then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes.
3. A flavoring agent is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 5 minutes.
4. All remaining water used in the composition is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 10 minutes. The water is not heated, and is typically at room temperature or below.
5. The resulting mixture is then removed from the blender and placed into storage containers for future pouching.
Example 8
An oral composition comprising the ingredients set forth in Example 4 is prepared using the following method: 1. The MCC, sodium chloride, xylitol, guar gum, bleached tobacco, sodium alginate, sodium bicarbonate, artificial sweetener, and potassium sorbate are put into a paddle blender and blended to form a dry mix.
2. A nicotine solution is mixed with propylene glycol and then sprayed from a pressure vessel on the dry mix in the blender and the resulting mixture is blended for about 5 minutes.
3. A flavoring agent is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 5 minutes.
4. All remaining water used in the composition is then sprayed from a pressure vessel on the mixture in the blender and the resulting mixture is blended for about 10 minutes. The water is not heated, and is typically at room temperature or below.
5. The resulting mixture is then removed from the blender and placed into storage containers for future pouching.
Example 9: Irritation Reduction Pouched product samples were made containing the same amounts of microcrystalline cellulose, sodium chloride, alginate, and acesulfame K. Three sets of samples were prepared using this same base formulation, including: (1) pouches with 4 mg nicotine and 4 mg propylene glycol (PG) added; (2) pouches with 4 mg nicotine and 4 mg olive oil added; and (3) pouches with 4 mg nicotine only added (no propylene glycol or olive oil). The sensory evaluation was conducted by requesting panelists to choose the most irritating and the least irritating sample. The collected data was used to generate the data presented in Fig. 2. The trend line indicates that there is lower irritation level for the samples containing either propylene glycol or olive oil.

Claims

CLAIMS What is claimed is:
1. A method of preparing an oral product, comprising: combining a filler and a salt to form a dry mix, the dry mix optionally further including one or more of an alginate, a bleached tobacco, a sweetener, a carbonate salt, and a natural gum; forming an aqueous solution of a flavoring agent or an active ingredient or both a flavoring agent and an active ingredient, the solution optionally further including one or more of a pH adjuster, a preservative, a humectant, and a sweetener; adding the aqueous solution to the dry mix to form a mixture; and encasing the mixture within a pouch.
2. The method of claim 1, further comprising forming a second aqueous solution of a sugar alcohol, a pH adjuster, and an optional preservative; and adding the second solution to the mixture prior to encasing the mixture within a pouch.
3. The method of claim 1, wherein the dry mix does not include an alginate, further comprising adding an aqueous solution of an alginate and a sugar alcohol to the dry mix.
4. The method of claim 1, wherein the dry mix does not include a carbonate salt, further comprising adding an aqueous solution of a carbonate salt to the dry mix.
5. The method of claim 1, comprising: combining a filler, an alginate, and a salt to form a dry mix; adding an aqueous solution of a carbonate salt to the dry mix; forming an aqueous solution of both a flavoring agent and an active ingredient, the solution further including a sugar alcohol, a pH adjuster, a preservative, a humectant, and a sweetener; adding the aqueous solution to the dry mix to form a mixture; forming a second aqueous solution of a sugar alcohol, a pH adjuster, a sweetener, and an optional preservative; and adding the second aqueous solution to the mixture to form a second mixture; and encasing the second mixture within a pouch.
6. The method of claim 1, comprising: combining a filler, an alginate, a bleached tobacco, and a salt to form a dry mix; adding an aqueous solution of a carbonate salt to the dry mix; forming an aqueous solution of both a flavoring agent and an active ingredient, the solution further including a sugar alcohol, a pH adjuster, a preservative, and a sweetener; adding the aqueous solution to the dry mix to form a mixture; forming a second aqueous solution of a sugar alcohol, a pH adjuster, a sweetener, and an optional preservative; and adding the second aqueous solution to the mixture to form a second mixture; and encasing the second mixture within a pouch.
7. The method of claim 1, comprising: combining a fdler, an alginate, a bleached tobacco, a natural gum, and a salt to form a dry mix; adding an aqueous solution of a carbonate salt to the dry mix; forming an aqueous solution of both a flavoring agent and an active ingredient, the solution further including a sugar alcohol, a pH adjuster, a preservative, and a sweetener; adding the aqueous solution to the dry mix to form a mixture; and encasing the mixture within a pouch.
8. The method of claim 1, comprising: combining a fdler, a bleached tobacco, a natural gum, a sweetener, a carbonate salt, a preservative, and a salt to form a dry mix; adding an aqueous solution of an alginate and a sugar alcohol to the dry mix to form a mixture; forming a second aqueous solution of both a flavoring agent and an active ingredient; adding the second aqueous solution to the mixture; and encasing the mixture within a pouch.
9. The method of any one of claims 1 to 8, wherein the temperature of each aqueous solution is between about 30 to about 100°C.
10. The method of any one of claims 1 to 8, wherein: the filler is a cellulose material; or the salt is sodium chloride; or the alginate is sodium alginate, calcium alginate, potassium alginate, magnesium alginate, ammonium alginate, or a mixture of two or more of the foregoing; or the sugar alcohol is xylitol; or the pH adjuster is ammonium chloride; or the carbonate salt is sodium bicarbonate; or the active ingredient is selected from the group consisting of a nicotine component, botanicals, stimulants, amino acids, vitamins, and cannabinoids; or the natural gum is guar gum; or the preservative is potassium sorbate; or the sweetener is sucralose or acesulfame K; or a combination of one or more of the above.
11. A method of preparing an oral product, comprising: combining a filler and a salt to form a dry mix, the dry mix optionally further including one or more of an alginate, a bleached tobacco, a sweetener, a carbonate salt, and a natural gum; adding a flavoring agent and an active ingredient to the dry mix to form a mixture, wherein the active ingredient is applied either before, after, or simultaneously with the flavoring agent; thereafter, applying water to the mixture to form a second mixture, wherein at least 50% by weight of the water content of the second mixture is added after adding the active ingredient; and encasing the second mixture within a pouch.
12. A product configured for oral use, the product prepared by the method of any preceding claim.
13. A method of preparing an oral product containing nicotine, comprising premixing a nicotine component with a humectant to form a premix, thereafter combining the premix with a filler.
14. The method of claim 13, wherein the humectant is propylene glycol or olive oil.
15. A composition, comprising: a filler in an amount of at least 40% percent by weight, based on total weight of the composition; a sugar alcohol; a salt; an alginate; a sweetener; at least one flavoring agent or at least one active ingredient or at least one of both a flavoring agent and an active ingredient; an optional natural gum; and a moisture content of at least about 40% by weight.
16. The composition of claim 15, further comprising a humectant.
17. The composition of claim 16, wherein the humectant is propylene glycol or olive oil.
18. The composition of claim 15, comprising from about 0.001 to about 10% by weight of a nicotine component, calculated as the free base and based on the total weight of the composition.
19. The composition of claim 15, wherein the composition is substantially free of tobacco material, excluding any nicotine component present, based on the total weight of the composition.
20. The composition of any one of claims 15 to 19, wherein: the filler is a cellulose material; or the salt is sodium chloride; or the alginate is sodium alginate, calcium alginate, potassium alginate, magnesium alginate, ammonium alginate, or a mixture of two or more of the foregoing; or the sugar alcohol is xylitol; or the active ingredient is selected from the group consisting of a nicotine component, botanicals, stimulants, amino acids, vitamins, and cannabinoids; or the natural gum is guar gum; or a combination of one or more of the above.
21. The composition of any one of claims 15 to 19, further comprising one or more capsules comprising an outer shell and an inner payload, the inner payload comprising at least one flavoring agent.
22. The composition of claim 21, wherein the one or more capsules include a water-resistant outer coating.
PCT/US2019/059090 2019-10-31 2019-10-31 Oral product and method of manufacture WO2021086367A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19805860.4A EP4051020A1 (en) 2019-10-31 2019-10-31 Oral product and method of manufacture
PCT/US2019/059090 WO2021086367A1 (en) 2019-10-31 2019-10-31 Oral product and method of manufacture
JP2022525354A JP2023506123A (en) 2019-10-31 2019-10-31 Oral product and manufacturing method
MX2022005285A MX2022005285A (en) 2019-10-31 2019-10-31 Oral product and method of manufacture.
CA3156573A CA3156573A1 (en) 2019-10-31 2019-10-31 Oral product and method of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2019/059090 WO2021086367A1 (en) 2019-10-31 2019-10-31 Oral product and method of manufacture

Publications (1)

Publication Number Publication Date
WO2021086367A1 true WO2021086367A1 (en) 2021-05-06

Family

ID=68610360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2019/059090 WO2021086367A1 (en) 2019-10-31 2019-10-31 Oral product and method of manufacture

Country Status (5)

Country Link
EP (1) EP4051020A1 (en)
JP (1) JP2023506123A (en)
CA (1) CA3156573A1 (en)
MX (1) MX2022005285A (en)
WO (1) WO2021086367A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210169889A1 (en) * 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral products
US20210259299A1 (en) * 2020-02-24 2021-08-26 Nicoventures Trading Limited Beaded Tobacco Material and Related Method of Manufacture
EP3809884B1 (en) 2019-06-07 2022-09-21 Philip Morris Products S.A. Nicotine pouch product
WO2023281469A1 (en) * 2021-07-09 2023-01-12 Nicoventures Trading Limited Extruded structures
US11793230B2 (en) 2019-12-09 2023-10-24 Nicoventures Trading Limited Oral products with improved binding of active ingredients
US11826462B2 (en) 2019-12-09 2023-11-28 Nicoventures Trading Limited Oral product with sustained flavor release

Citations (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US787611A (en) 1903-06-17 1905-04-18 American Cigar Company Treating tobacco.
US1086306A (en) 1912-11-11 1914-02-03 Theodor Oelenheinz Process of bleaching tobacco-leaves.
US1376586A (en) 1918-04-06 1921-05-03 Schwartz Francis Tobacco-tablet
US1437095A (en) 1920-06-01 1922-11-28 August Wasmuth Process of bleaching tobacco
US1757477A (en) 1927-07-11 1930-05-06 Rosenhoch Samuel Process and device for ozonizing tobacco
US2033909A (en) 1934-12-19 1936-03-17 Niacet Chemicals Corp Manufacture of calcium levulinate
US2122421A (en) 1937-07-30 1938-07-05 Du Pont Tobacco treatment
US2148147A (en) 1933-12-30 1939-02-21 Degussa Process for bleaching tobacco
US2170107A (en) 1935-01-28 1939-08-22 Degussa Process for bleaching tobacco
US2274649A (en) 1935-01-28 1942-03-03 Degussa Process for bleaching tobacco
US2770239A (en) 1952-02-04 1956-11-13 Prats Jose Romero Process of treating tobacco
US3612065A (en) 1970-03-09 1971-10-12 Creative Enterprises Inc Method of puffing tobacco and reducing nicotine content thereof
US3851653A (en) 1972-10-11 1974-12-03 Rosen Enterprises Inc Method of puffing tobacco and reducing nicotine content thereof
US3889689A (en) 1971-12-20 1975-06-17 Rosen Enterprise Inc Method of treating tobacco with catalase and hydrogen peroxide
US3901248A (en) 1970-07-22 1975-08-26 Leo Ab Chewable smoking substitute composition
US3943945A (en) 1971-09-20 1976-03-16 Rosen Enterprises, Inc. Process for preparation of reconstituted tobacco sheet
US3943940A (en) 1974-09-13 1976-03-16 Isao Minami Method of removing nicotine in smoking and a smoking filter to be used therefor
US4143666A (en) 1975-08-15 1979-03-13 Philip Morris Incorporated Smoking material
US4144895A (en) 1974-03-08 1979-03-20 Amf Incorporated Solvent extraction process
US4148325A (en) 1975-08-18 1979-04-10 British-American Tobacco Company Limited Treatment of tobacco
US4150677A (en) 1977-01-24 1979-04-24 Philip Morris Incorporated Treatment of tobacco
US4194514A (en) 1976-09-27 1980-03-25 Stauffer Chemical Company Removal of radioactive lead and polonium from tobacco
US4267847A (en) 1978-05-12 1981-05-19 British-American Tobacco Company Limited Tobacco additives
US4289147A (en) 1979-11-15 1981-09-15 Leaf Proteins, Inc. Process for obtaining deproteinized tobacco freed of nicotine and green pigment, for use as a smoking product
US4340073A (en) 1974-02-12 1982-07-20 Philip Morris, Incorporated Expanding tobacco
US4351346A (en) 1980-03-08 1982-09-28 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4359059A (en) 1980-03-08 1982-11-16 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4366824A (en) 1981-06-25 1983-01-04 Philip Morris Incorporated Process for expanding tobacco
US4366823A (en) 1981-06-25 1983-01-04 Philip Morris, Incorporated Process for expanding tobacco
US4388933A (en) 1981-06-25 1983-06-21 Philip Morris, Inc. Tobacco stem treatment and expanded tobacco product
US4506682A (en) 1981-12-07 1985-03-26 Mueller Adam Clear tobacco aroma oil, a process for obtaining it from a tobacco extract, and its use
US4513756A (en) 1983-04-28 1985-04-30 The Pinkerton Tobacco Company Process of making tobacco pellets
US4528993A (en) 1982-08-20 1985-07-16 R. J. Reynolds Tobacco Company Process for producing moist snuff
US4589428A (en) 1980-02-21 1986-05-20 Philip Morris Incorporated Tobacco treatment
US4605016A (en) 1983-07-21 1986-08-12 Japan Tobacco, Inc. Process for preparing tobacco flavoring formulations
US4624269A (en) 1984-09-17 1986-11-25 The Pinkerton Tobacco Company Chewable tobacco based product
US4641667A (en) 1983-12-09 1987-02-10 B.A.T. Cigarettenfabriken Gmbh Process of preparing nicotine N'-oxide and smoking products containing it
US4660577A (en) 1982-08-20 1987-04-28 R.J. Reynolds Tobacco Company Dry pre-mix for moist snuff
US4716911A (en) 1986-04-08 1988-01-05 Genencor, Inc. Method for protein removal from tobacco
US4725440A (en) 1982-07-02 1988-02-16 E. R. Squibb & Sons, Inc. Antifungal pastille formulation and method
US4727889A (en) 1986-12-22 1988-03-01 R. J. Reynolds Tobacco Company Tobacco processing
US4887618A (en) 1988-05-19 1989-12-19 R. J. Reynolds Tobacco Company Tobacco processing
US4941484A (en) 1989-05-30 1990-07-17 R. J. Reynolds Tobacco Company Tobacco processing
US4967771A (en) 1988-12-07 1990-11-06 R. J. Reynolds Tobacco Company Process for extracting tobacco
US4986286A (en) 1989-05-02 1991-01-22 R. J. Reynolds Tobacco Company Tobacco treatment process
US4987907A (en) 1988-06-29 1991-01-29 Helme Tobacco Company Chewing tobacco composition and process for producing same
US4991599A (en) 1989-12-20 1991-02-12 Tibbetts Hubert M Fiberless tobacco product for smoking and chewing
US5005593A (en) 1988-01-27 1991-04-09 R. J. Reynolds Tobacco Company Process for providing tobacco extracts
US5018540A (en) 1986-12-29 1991-05-28 Philip Morris Incorporated Process for removal of basic materials
US5060669A (en) 1989-12-18 1991-10-29 R. J. Reynolds Tobacco Company Tobacco treatment process
US5065775A (en) 1990-02-23 1991-11-19 R. J. Reynolds Tobacco Company Tobacco processing
US5074319A (en) 1990-04-19 1991-12-24 R. J. Reynolds Tobacco Company Tobacco extraction process
US5092352A (en) 1983-12-14 1992-03-03 American Brands, Inc. Chewing tobacco product
US5099862A (en) 1990-04-05 1992-03-31 R. J. Reynolds Tobacco Company Tobacco extraction process
US5121757A (en) 1989-12-18 1992-06-16 R. J. Reynolds Tobacco Company Tobacco treatment process
US5131414A (en) 1990-02-23 1992-07-21 R. J. Reynolds Tobacco Company Tobacco processing
US5131415A (en) 1991-04-04 1992-07-21 R. J. Reynolds Tobacco Company Tobacco extraction process
US5148819A (en) 1991-08-15 1992-09-22 R. J. Reynolds Tobacco Company Process for extracting tobacco
US5167244A (en) 1990-01-19 1992-12-01 Kjerstad Randy E Tobacco substitute
US5197494A (en) 1991-06-04 1993-03-30 R.J. Reynolds Tobacco Company Tobacco extraction process
US5230354A (en) 1991-09-03 1993-07-27 R. J. Reynolds Tobacco Company Tobacco processing
US5234008A (en) 1990-02-23 1993-08-10 R. J. Reynolds Tobacco Company Tobacco processing
US5243999A (en) 1991-09-03 1993-09-14 R. J. Reynolds Tobacco Company Tobacco processing
US5259403A (en) 1992-03-18 1993-11-09 R. J. Reynolds Tobacco Company Process and apparatus for expanding tobacco cut filler
US5301694A (en) 1991-11-12 1994-04-12 Philip Morris Incorporated Process for isolating plant extract fractions
US5318050A (en) 1991-06-04 1994-06-07 R. J. Reynolds Tobacco Company Tobacco treatment process
US5343879A (en) 1991-06-21 1994-09-06 R. J. Reynolds Tobacco Company Tobacco treatment process
US5360022A (en) 1991-07-22 1994-11-01 R. J. Reynolds Tobacco Company Tobacco processing
US5387416A (en) 1993-07-23 1995-02-07 R. J. Reynolds Tobacco Company Tobacco composition
US5435325A (en) 1988-04-21 1995-07-25 R. J. Reynolds Tobacco Company Process for providing tobacco extracts using a solvent in a supercritical state
US5445169A (en) 1992-08-17 1995-08-29 R. J. Reynolds Tobacco Company Process for providing a tobacco extract
US5539093A (en) 1994-06-16 1996-07-23 Fitzmaurice; Wayne P. DNA sequences encoding enzymes useful in carotenoid biosynthesis
WO1996031255A1 (en) 1995-04-07 1996-10-10 George Giolvas Method and apparatus for the removal of harmful constituents from cigarettes and tobacco before smoking
US5668295A (en) 1990-11-14 1997-09-16 Philip Morris Incorporated Protein involved in nicotine synthesis, DNA encoding, and use of sense and antisense DNAs corresponding thereto to affect nicotine content in transgenic tobacco cells and plants
US5705624A (en) 1995-12-27 1998-01-06 Fitzmaurice; Wayne Paul DNA sequences encoding enzymes useful in phytoene biosynthesis
US5713376A (en) 1996-05-13 1998-02-03 Berger; Carl Non-addictive tobacco products
US5844119A (en) 1994-12-21 1998-12-01 The Salk Institute For Biological Studies Genetically modified plants having modulated flower development
US5908032A (en) 1996-08-09 1999-06-01 R.J. Reynolds Tobacco Company Method of and apparatus for expanding tobacco
US6077524A (en) 1994-05-06 2000-06-20 Bolder Arzneimittel Gmbh Gastric acid binding chewing pastilles
US6131584A (en) 1999-04-15 2000-10-17 Brown & Williamson Tobacco Corporation Tobacco treatment process
US6298859B1 (en) 1998-07-08 2001-10-09 Novozymes A/S Use of a phenol oxidizing enzyme in the treatment of tobacco
US6510855B1 (en) 2000-03-03 2003-01-28 Brown & Williamson Tobacco Corporation Tobacco recovery system
US6668839B2 (en) 2001-05-01 2003-12-30 Jonnie R. Williams Smokeless tobacco product
US20040020503A1 (en) 2001-05-01 2004-02-05 Williams Jonnie R. Smokeless tobacco product
US6730832B1 (en) 2001-09-10 2004-05-04 Luis Mayan Dominguez High threonine producing lines of Nicotiana tobacum and methods for producing
US6772767B2 (en) 2002-09-09 2004-08-10 Brown & Williamson Tobacco Corporation Process for reducing nitrogen containing compounds and lignin in tobacco
US20040191322A1 (en) 2002-12-20 2004-09-30 Henri Hansson Physically and chemically stable nicotine-containing particulate material
WO2004095959A1 (en) 2003-04-29 2004-11-11 Swedish Match North Europe Ab Oral snuff product and method for producing the same
US6834654B2 (en) 2001-05-01 2004-12-28 Regent Court Technologies, Llc Smokeless tobacco product
US6887307B1 (en) 1999-07-22 2005-05-03 Warner-Lambert Company, Llc Pullulan film compositions
WO2005041699A2 (en) 2003-11-03 2005-05-12 U.S. Smokeless Tobacco Company Flavored smokeless tabacco and methods of making
US6895974B2 (en) 1999-04-26 2005-05-24 R. J. Reynolds Tobacco Company Tobacco processing
WO2005063060A1 (en) 2003-12-22 2005-07-14 U.S. Smokeless Tobacco Company Conditioning process for tobacco and/or snuff compositions
US6923981B2 (en) 1998-09-25 2005-08-02 Warner-Lambert Company Fast dissolving orally consumable films
US6953040B2 (en) 2001-09-28 2005-10-11 U.S. Smokeless Tobacco Company Tobacco mint plant material product
US20050244521A1 (en) 2003-11-07 2005-11-03 Strickland James A Tobacco compositions
US7014039B2 (en) 2003-06-19 2006-03-21 R.J. Reynolds Tobacco Company Sliding shell package for smoking articles
US7025066B2 (en) 2002-10-31 2006-04-11 Jerry Wayne Lawson Method of reducing the sucrose ester concentration of a tobacco mixture
US7032601B2 (en) 2001-09-28 2006-04-25 U.S. Smokeless Tobacco Company Encapsulated materials
US20060191548A1 (en) 2003-11-07 2006-08-31 Strickland James A Tobacco compositions
US20060236434A1 (en) 2000-08-30 2006-10-19 North Carolina State University Methods and compositions for tobacco plants with reduced nicotine
US20070062549A1 (en) 2005-09-22 2007-03-22 Holton Darrell E Jr Smokeless tobacco composition
US7208659B2 (en) 2001-05-02 2007-04-24 Conopco Inc. Process for increasing the flavonoid content of a plant and plants obtainable thereby
US7230160B2 (en) 2001-03-08 2007-06-12 Michigan State University Lipid metabolism regulators in plants
US20070186942A1 (en) 2006-01-31 2007-08-16 U. S. Smokeless Tobacco Company Tobacco Articles and Methods
US20070186941A1 (en) 2006-02-10 2007-08-16 Holton Darrell E Jr Smokeless tobacco composition
US20080029110A1 (en) 2006-02-10 2008-02-07 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition
US20080029116A1 (en) 2006-08-01 2008-02-07 John Howard Robinson Smokeless tobacco
US7337782B2 (en) 2004-08-18 2008-03-04 R.J. Reynolds Tobacco Company Process to remove protein and other biomolecules from tobacco extract or slurry
US20080173317A1 (en) 2006-08-01 2008-07-24 John Howard Robinson Smokeless tobacco
US20080196730A1 (en) 2004-07-02 2008-08-21 Radi Medical Systems Ab Smokeless Tobacco Product
WO2008103935A2 (en) 2007-02-23 2008-08-28 U.S. Smokeless Tobacco Company Novel tobacco compositions and methods of making
US20080305216A1 (en) 2007-06-08 2008-12-11 Philip Morris Usa Inc. Capsule clusters for oral consumption
US20090014450A1 (en) 2003-08-18 2009-01-15 Gustavus Ab Snuff-box lid
US20090014343A1 (en) 2007-05-07 2009-01-15 Philip Morris Usa Inc. Pocket-size hybrid container for consumer items
US20090025738A1 (en) 2007-07-23 2009-01-29 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition
US20090065013A1 (en) 2006-04-28 2009-03-12 Swedish Match North Europe Ab moist snuff non-tobacco composition and a method for producing thereof
USD592956S1 (en) 2008-02-08 2009-05-26 Philip Morris Usa Inc. Container
US7537110B2 (en) 2005-06-02 2009-05-26 Philip Morris Usa Inc. Container for consumer article
USD594154S1 (en) 2007-11-13 2009-06-09 R.J. Reynolds Tobacco Company Container with bottom compartment
US7556047B2 (en) 2003-03-20 2009-07-07 R.J. Reynolds Tobacco Company Method of expanding tobacco using steam
US7584843B2 (en) 2005-07-18 2009-09-08 Philip Morris Usa Inc. Pocket-size hand-held container for consumer items
US20090223989A1 (en) 2008-03-04 2009-09-10 R.J. Reynolds Tobacco Company Dispensing Container
US20090230003A1 (en) 2008-02-08 2009-09-17 Philip Morris Usa Inc. Pocket-sized container
US20090250360A1 (en) 2007-11-30 2009-10-08 Philip Morris Usa Inc. Pocket-size container for consumer items
US20090266837A1 (en) 2008-04-25 2009-10-29 R. J. Reynolds Tobacco Company Dispensing Container
US20090293889A1 (en) 2007-11-28 2009-12-03 Philip Morris Usa Inc. Smokeless compressed tobacco product for oral consumption
US7650892B1 (en) 2004-09-03 2010-01-26 Rosswil Llc Ltd. Methods for hindering formation of tobacco-specific nitrosamines
US20100084424A1 (en) 2006-12-12 2010-04-08 John Gelardi Container with pivoting cover
US20100133140A1 (en) 2008-12-01 2010-06-03 Bailey Ryan A Dual cavity sliding dispenser
US7798153B2 (en) 2004-08-23 2010-09-21 Us Smokeless Tobacco Co. Nicotiana Kawakamii smokeless tobacco
USD625178S1 (en) 2009-04-16 2010-10-12 R.J. Reynolds Tobacco Company, Inc. Container with hinged insert
US20100264157A1 (en) 2009-04-16 2010-10-21 R.J. Reynolds Tobacco Company Dispensing container for metered dispensing of product
US20100282267A1 (en) 2009-05-11 2010-11-11 Frank Atchley Method and device for flavoring smokeless tobacco
US20100291245A1 (en) 2008-12-08 2010-11-18 Philip Morris Usa Inc. Soft, chewable and orally dissolvable and/or disintegrable products
US20110139164A1 (en) 2009-12-15 2011-06-16 R. J. Reynolds Tobacco Company Tobacco Product And Method For Manufacture
US20110168712A1 (en) 2010-01-12 2011-07-14 R.J. Reynolds Tobacco Company Dispensing container
US20110247640A1 (en) 2010-04-08 2011-10-13 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition Comprising Tobacco-Derived Material and Non-Tobacco Plant Material
US20120037175A1 (en) 2010-08-11 2012-02-16 R.J. Reynolds Tobacco Company Meltable smokeless tobacco composition
US20120055494A1 (en) 2010-09-07 2012-03-08 Rj Reynolds Tobacco Company Smokeless Tobacco Product Comprising Effervescent Composition
US20120067361A1 (en) 2009-04-03 2012-03-22 X-International Aps Plant fiber product and method for its manufacture
US8186360B2 (en) 2007-04-04 2012-05-29 R.J. Reynolds Tobacco Company Cigarette comprising dark air-cured tobacco
US20120138073A1 (en) 2010-12-01 2012-06-07 Rj Reynolds Tobacco Company Smokeless tobacco pastille and injection molding process for forming smokeless tobacco products
US20120138074A1 (en) 2010-12-01 2012-06-07 Rj Reynolds Tobacco Company Smokeless tobacco pastille and moulding process for forming smokeless tobacco products
US8397945B2 (en) 2010-02-23 2013-03-19 R.J. Reynolds Tobacco Company Dispensing container
US20130074855A1 (en) 2011-09-22 2013-03-28 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
US20130074856A1 (en) 2011-09-22 2013-03-28 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
US8434496B2 (en) 2009-06-02 2013-05-07 R. J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20130152953A1 (en) 2011-12-14 2013-06-20 R. J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
US20130206153A1 (en) * 2012-02-13 2013-08-15 R.J. Reynolds Tobacco Company Whitened tobacco composition
US20130274296A1 (en) 2012-04-17 2013-10-17 R.J. Reynolds Tobacco Company Remelted ingestible products
US8642016B2 (en) * 2006-07-21 2014-02-04 Jsrnti, Llc Medicinal delivery system, and related methods
US8931493B2 (en) 2010-11-01 2015-01-13 R.J. Reynolds Tobacco Co. Smokeless tobacco products
US8944072B2 (en) 2009-06-02 2015-02-03 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20150068545A1 (en) 2013-09-09 2015-03-12 R.J. Reynolds Tobacco Company Smokeless tobacco composition incorporating a botanical material
US8991403B2 (en) 2009-06-02 2015-03-31 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20150101627A1 (en) 2013-10-16 2015-04-16 R.J. Reynolds Tobacco Company Smokeless tobacco pastille
US20150230515A1 (en) 2014-02-14 2015-08-20 R.J. Reynolds Tobacco Company Tobacco-containing gel composition
US20160000140A1 (en) 2014-07-02 2016-01-07 R.J. Reynolds Tobacco Company Oral pouch products
US20160073686A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Tobacco-derived filter element
US20160073689A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Nonwoven pouch comprising heat sealable binder fiber
US9339058B2 (en) 2012-04-19 2016-05-17 R. J. Reynolds Tobacco Company Method for producing microcrystalline cellulose from tobacco and related tobacco product
US20160157515A1 (en) 2014-12-05 2016-06-09 R.J. Reynolds Tobacco Company Smokeless tobacco pouch
US20160192703A1 (en) 2015-01-07 2016-07-07 R.J. Reynolds Tobacco Company Oral pouch products
US20170020183A1 (en) 2014-04-04 2017-01-26 X-International Aps Tobacco Raw Material
US9950858B2 (en) 2015-01-16 2018-04-24 R.J. Reynolds Tobacco Company Tobacco-derived cellulose material and products formed thereof
WO2018083114A1 (en) 2016-11-02 2018-05-11 Winnington Ab Defibrated tobacco material
US20190037909A1 (en) * 2016-04-10 2019-02-07 Vireo Health LLC Cannabis Based Moist Snuff

Patent Citations (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US787611A (en) 1903-06-17 1905-04-18 American Cigar Company Treating tobacco.
US1086306A (en) 1912-11-11 1914-02-03 Theodor Oelenheinz Process of bleaching tobacco-leaves.
US1376586A (en) 1918-04-06 1921-05-03 Schwartz Francis Tobacco-tablet
US1437095A (en) 1920-06-01 1922-11-28 August Wasmuth Process of bleaching tobacco
US1757477A (en) 1927-07-11 1930-05-06 Rosenhoch Samuel Process and device for ozonizing tobacco
US2148147A (en) 1933-12-30 1939-02-21 Degussa Process for bleaching tobacco
US2033909A (en) 1934-12-19 1936-03-17 Niacet Chemicals Corp Manufacture of calcium levulinate
US2170107A (en) 1935-01-28 1939-08-22 Degussa Process for bleaching tobacco
US2274649A (en) 1935-01-28 1942-03-03 Degussa Process for bleaching tobacco
US2122421A (en) 1937-07-30 1938-07-05 Du Pont Tobacco treatment
US2770239A (en) 1952-02-04 1956-11-13 Prats Jose Romero Process of treating tobacco
US3612065A (en) 1970-03-09 1971-10-12 Creative Enterprises Inc Method of puffing tobacco and reducing nicotine content thereof
US3901248A (en) 1970-07-22 1975-08-26 Leo Ab Chewable smoking substitute composition
US3943945A (en) 1971-09-20 1976-03-16 Rosen Enterprises, Inc. Process for preparation of reconstituted tobacco sheet
US3889689A (en) 1971-12-20 1975-06-17 Rosen Enterprise Inc Method of treating tobacco with catalase and hydrogen peroxide
US3851653A (en) 1972-10-11 1974-12-03 Rosen Enterprises Inc Method of puffing tobacco and reducing nicotine content thereof
US4340073A (en) 1974-02-12 1982-07-20 Philip Morris, Incorporated Expanding tobacco
US4144895A (en) 1974-03-08 1979-03-20 Amf Incorporated Solvent extraction process
US3943940A (en) 1974-09-13 1976-03-16 Isao Minami Method of removing nicotine in smoking and a smoking filter to be used therefor
US4143666A (en) 1975-08-15 1979-03-13 Philip Morris Incorporated Smoking material
US4148325A (en) 1975-08-18 1979-04-10 British-American Tobacco Company Limited Treatment of tobacco
US4194514A (en) 1976-09-27 1980-03-25 Stauffer Chemical Company Removal of radioactive lead and polonium from tobacco
US4150677A (en) 1977-01-24 1979-04-24 Philip Morris Incorporated Treatment of tobacco
US4267847A (en) 1978-05-12 1981-05-19 British-American Tobacco Company Limited Tobacco additives
US4289147A (en) 1979-11-15 1981-09-15 Leaf Proteins, Inc. Process for obtaining deproteinized tobacco freed of nicotine and green pigment, for use as a smoking product
US4589428A (en) 1980-02-21 1986-05-20 Philip Morris Incorporated Tobacco treatment
US4351346A (en) 1980-03-08 1982-09-28 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4359059A (en) 1980-03-08 1982-11-16 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4366824A (en) 1981-06-25 1983-01-04 Philip Morris Incorporated Process for expanding tobacco
US4366823A (en) 1981-06-25 1983-01-04 Philip Morris, Incorporated Process for expanding tobacco
US4388933A (en) 1981-06-25 1983-06-21 Philip Morris, Inc. Tobacco stem treatment and expanded tobacco product
US4506682A (en) 1981-12-07 1985-03-26 Mueller Adam Clear tobacco aroma oil, a process for obtaining it from a tobacco extract, and its use
US4725440A (en) 1982-07-02 1988-02-16 E. R. Squibb & Sons, Inc. Antifungal pastille formulation and method
US4660577A (en) 1982-08-20 1987-04-28 R.J. Reynolds Tobacco Company Dry pre-mix for moist snuff
US4528993A (en) 1982-08-20 1985-07-16 R. J. Reynolds Tobacco Company Process for producing moist snuff
US4513756A (en) 1983-04-28 1985-04-30 The Pinkerton Tobacco Company Process of making tobacco pellets
US4605016A (en) 1983-07-21 1986-08-12 Japan Tobacco, Inc. Process for preparing tobacco flavoring formulations
US4641667A (en) 1983-12-09 1987-02-10 B.A.T. Cigarettenfabriken Gmbh Process of preparing nicotine N'-oxide and smoking products containing it
US5092352A (en) 1983-12-14 1992-03-03 American Brands, Inc. Chewing tobacco product
US4624269A (en) 1984-09-17 1986-11-25 The Pinkerton Tobacco Company Chewable tobacco based product
US4716911A (en) 1986-04-08 1988-01-05 Genencor, Inc. Method for protein removal from tobacco
US4727889A (en) 1986-12-22 1988-03-01 R. J. Reynolds Tobacco Company Tobacco processing
US5018540A (en) 1986-12-29 1991-05-28 Philip Morris Incorporated Process for removal of basic materials
US5005593A (en) 1988-01-27 1991-04-09 R. J. Reynolds Tobacco Company Process for providing tobacco extracts
US5435325A (en) 1988-04-21 1995-07-25 R. J. Reynolds Tobacco Company Process for providing tobacco extracts using a solvent in a supercritical state
US4887618A (en) 1988-05-19 1989-12-19 R. J. Reynolds Tobacco Company Tobacco processing
US4987907A (en) 1988-06-29 1991-01-29 Helme Tobacco Company Chewing tobacco composition and process for producing same
US4967771A (en) 1988-12-07 1990-11-06 R. J. Reynolds Tobacco Company Process for extracting tobacco
US4986286A (en) 1989-05-02 1991-01-22 R. J. Reynolds Tobacco Company Tobacco treatment process
US4941484A (en) 1989-05-30 1990-07-17 R. J. Reynolds Tobacco Company Tobacco processing
US5060669A (en) 1989-12-18 1991-10-29 R. J. Reynolds Tobacco Company Tobacco treatment process
US5121757A (en) 1989-12-18 1992-06-16 R. J. Reynolds Tobacco Company Tobacco treatment process
US4991599A (en) 1989-12-20 1991-02-12 Tibbetts Hubert M Fiberless tobacco product for smoking and chewing
US5167244A (en) 1990-01-19 1992-12-01 Kjerstad Randy E Tobacco substitute
US5234008A (en) 1990-02-23 1993-08-10 R. J. Reynolds Tobacco Company Tobacco processing
US5065775A (en) 1990-02-23 1991-11-19 R. J. Reynolds Tobacco Company Tobacco processing
US5131414A (en) 1990-02-23 1992-07-21 R. J. Reynolds Tobacco Company Tobacco processing
US5099862A (en) 1990-04-05 1992-03-31 R. J. Reynolds Tobacco Company Tobacco extraction process
US5074319A (en) 1990-04-19 1991-12-24 R. J. Reynolds Tobacco Company Tobacco extraction process
US5668295A (en) 1990-11-14 1997-09-16 Philip Morris Incorporated Protein involved in nicotine synthesis, DNA encoding, and use of sense and antisense DNAs corresponding thereto to affect nicotine content in transgenic tobacco cells and plants
US5131415A (en) 1991-04-04 1992-07-21 R. J. Reynolds Tobacco Company Tobacco extraction process
US5318050A (en) 1991-06-04 1994-06-07 R. J. Reynolds Tobacco Company Tobacco treatment process
US5197494A (en) 1991-06-04 1993-03-30 R.J. Reynolds Tobacco Company Tobacco extraction process
US5343879A (en) 1991-06-21 1994-09-06 R. J. Reynolds Tobacco Company Tobacco treatment process
US5360022A (en) 1991-07-22 1994-11-01 R. J. Reynolds Tobacco Company Tobacco processing
US5148819A (en) 1991-08-15 1992-09-22 R. J. Reynolds Tobacco Company Process for extracting tobacco
US5243999A (en) 1991-09-03 1993-09-14 R. J. Reynolds Tobacco Company Tobacco processing
US5230354A (en) 1991-09-03 1993-07-27 R. J. Reynolds Tobacco Company Tobacco processing
US5301694A (en) 1991-11-12 1994-04-12 Philip Morris Incorporated Process for isolating plant extract fractions
US5259403A (en) 1992-03-18 1993-11-09 R. J. Reynolds Tobacco Company Process and apparatus for expanding tobacco cut filler
US5445169A (en) 1992-08-17 1995-08-29 R. J. Reynolds Tobacco Company Process for providing a tobacco extract
US5387416A (en) 1993-07-23 1995-02-07 R. J. Reynolds Tobacco Company Tobacco composition
US6077524A (en) 1994-05-06 2000-06-20 Bolder Arzneimittel Gmbh Gastric acid binding chewing pastilles
US5539093A (en) 1994-06-16 1996-07-23 Fitzmaurice; Wayne P. DNA sequences encoding enzymes useful in carotenoid biosynthesis
US5844119A (en) 1994-12-21 1998-12-01 The Salk Institute For Biological Studies Genetically modified plants having modulated flower development
WO1996031255A1 (en) 1995-04-07 1996-10-10 George Giolvas Method and apparatus for the removal of harmful constituents from cigarettes and tobacco before smoking
US5705624A (en) 1995-12-27 1998-01-06 Fitzmaurice; Wayne Paul DNA sequences encoding enzymes useful in phytoene biosynthesis
US5713376A (en) 1996-05-13 1998-02-03 Berger; Carl Non-addictive tobacco products
US5908032A (en) 1996-08-09 1999-06-01 R.J. Reynolds Tobacco Company Method of and apparatus for expanding tobacco
US6298859B1 (en) 1998-07-08 2001-10-09 Novozymes A/S Use of a phenol oxidizing enzyme in the treatment of tobacco
US6923981B2 (en) 1998-09-25 2005-08-02 Warner-Lambert Company Fast dissolving orally consumable films
US6131584A (en) 1999-04-15 2000-10-17 Brown & Williamson Tobacco Corporation Tobacco treatment process
US6895974B2 (en) 1999-04-26 2005-05-24 R. J. Reynolds Tobacco Company Tobacco processing
US6887307B1 (en) 1999-07-22 2005-05-03 Warner-Lambert Company, Llc Pullulan film compositions
US6510855B1 (en) 2000-03-03 2003-01-28 Brown & Williamson Tobacco Corporation Tobacco recovery system
US20060236434A1 (en) 2000-08-30 2006-10-19 North Carolina State University Methods and compositions for tobacco plants with reduced nicotine
US7230160B2 (en) 2001-03-08 2007-06-12 Michigan State University Lipid metabolism regulators in plants
US6834654B2 (en) 2001-05-01 2004-12-28 Regent Court Technologies, Llc Smokeless tobacco product
US6668839B2 (en) 2001-05-01 2003-12-30 Jonnie R. Williams Smokeless tobacco product
US20040020503A1 (en) 2001-05-01 2004-02-05 Williams Jonnie R. Smokeless tobacco product
US7208659B2 (en) 2001-05-02 2007-04-24 Conopco Inc. Process for increasing the flavonoid content of a plant and plants obtainable thereby
US7173170B2 (en) 2001-09-10 2007-02-06 Reynolds Technologies, Inc. High threonine producing lines of Nicotiana tobacum and methods of producing
US6730832B1 (en) 2001-09-10 2004-05-04 Luis Mayan Dominguez High threonine producing lines of Nicotiana tobacum and methods for producing
US6953040B2 (en) 2001-09-28 2005-10-11 U.S. Smokeless Tobacco Company Tobacco mint plant material product
US7032601B2 (en) 2001-09-28 2006-04-25 U.S. Smokeless Tobacco Company Encapsulated materials
US6772767B2 (en) 2002-09-09 2004-08-10 Brown & Williamson Tobacco Corporation Process for reducing nitrogen containing compounds and lignin in tobacco
US7025066B2 (en) 2002-10-31 2006-04-11 Jerry Wayne Lawson Method of reducing the sucrose ester concentration of a tobacco mixture
US20040191322A1 (en) 2002-12-20 2004-09-30 Henri Hansson Physically and chemically stable nicotine-containing particulate material
US7556047B2 (en) 2003-03-20 2009-07-07 R.J. Reynolds Tobacco Company Method of expanding tobacco using steam
WO2004095959A1 (en) 2003-04-29 2004-11-11 Swedish Match North Europe Ab Oral snuff product and method for producing the same
US7014039B2 (en) 2003-06-19 2006-03-21 R.J. Reynolds Tobacco Company Sliding shell package for smoking articles
US20090014450A1 (en) 2003-08-18 2009-01-15 Gustavus Ab Snuff-box lid
US20050115580A1 (en) 2003-11-03 2005-06-02 Quinter Phillip F. Flavored smokeless tobacco and methods of making
WO2005041699A2 (en) 2003-11-03 2005-05-12 U.S. Smokeless Tobacco Company Flavored smokeless tabacco and methods of making
US20050244521A1 (en) 2003-11-07 2005-11-03 Strickland James A Tobacco compositions
US20060191548A1 (en) 2003-11-07 2006-08-31 Strickland James A Tobacco compositions
WO2005063060A1 (en) 2003-12-22 2005-07-14 U.S. Smokeless Tobacco Company Conditioning process for tobacco and/or snuff compositions
US7694686B2 (en) 2003-12-22 2010-04-13 U.S. Smokeless Tobacco Company Conditioning process for tobacco and/or snuff compositions
US20080196730A1 (en) 2004-07-02 2008-08-21 Radi Medical Systems Ab Smokeless Tobacco Product
US7337782B2 (en) 2004-08-18 2008-03-04 R.J. Reynolds Tobacco Company Process to remove protein and other biomolecules from tobacco extract or slurry
US7798153B2 (en) 2004-08-23 2010-09-21 Us Smokeless Tobacco Co. Nicotiana Kawakamii smokeless tobacco
US7650892B1 (en) 2004-09-03 2010-01-26 Rosswil Llc Ltd. Methods for hindering formation of tobacco-specific nitrosamines
US7537110B2 (en) 2005-06-02 2009-05-26 Philip Morris Usa Inc. Container for consumer article
US7584843B2 (en) 2005-07-18 2009-09-08 Philip Morris Usa Inc. Pocket-size hand-held container for consumer items
US20070062549A1 (en) 2005-09-22 2007-03-22 Holton Darrell E Jr Smokeless tobacco composition
US20070186942A1 (en) 2006-01-31 2007-08-16 U. S. Smokeless Tobacco Company Tobacco Articles and Methods
US20080029110A1 (en) 2006-02-10 2008-02-07 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition
US7861728B2 (en) 2006-02-10 2011-01-04 R.J. Reynolds Tobacco Company Smokeless tobacco composition having an outer and inner pouch
US20070186941A1 (en) 2006-02-10 2007-08-16 Holton Darrell E Jr Smokeless tobacco composition
US20090065013A1 (en) 2006-04-28 2009-03-12 Swedish Match North Europe Ab moist snuff non-tobacco composition and a method for producing thereof
US8642016B2 (en) * 2006-07-21 2014-02-04 Jsrnti, Llc Medicinal delivery system, and related methods
US20080173317A1 (en) 2006-08-01 2008-07-24 John Howard Robinson Smokeless tobacco
US20080029116A1 (en) 2006-08-01 2008-02-07 John Howard Robinson Smokeless tobacco
US20100084424A1 (en) 2006-12-12 2010-04-08 John Gelardi Container with pivoting cover
US20080209586A1 (en) 2007-02-23 2008-08-28 U.S. Smokeless Tobacco Company Novel tobacco compositions and methods of making
WO2008103935A2 (en) 2007-02-23 2008-08-28 U.S. Smokeless Tobacco Company Novel tobacco compositions and methods of making
US8186360B2 (en) 2007-04-04 2012-05-29 R.J. Reynolds Tobacco Company Cigarette comprising dark air-cured tobacco
US20090014343A1 (en) 2007-05-07 2009-01-15 Philip Morris Usa Inc. Pocket-size hybrid container for consumer items
US20080305216A1 (en) 2007-06-08 2008-12-11 Philip Morris Usa Inc. Capsule clusters for oral consumption
US8061362B2 (en) 2007-07-23 2011-11-22 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US20090025738A1 (en) 2007-07-23 2009-01-29 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition
US9237769B2 (en) 2007-07-23 2016-01-19 R. J. Reynolds Tobacco Company Smokeless tobacco composition
USD594154S1 (en) 2007-11-13 2009-06-09 R.J. Reynolds Tobacco Company Container with bottom compartment
US20090293889A1 (en) 2007-11-28 2009-12-03 Philip Morris Usa Inc. Smokeless compressed tobacco product for oral consumption
US20090250360A1 (en) 2007-11-30 2009-10-08 Philip Morris Usa Inc. Pocket-size container for consumer items
US20090230003A1 (en) 2008-02-08 2009-09-17 Philip Morris Usa Inc. Pocket-sized container
USD592956S1 (en) 2008-02-08 2009-05-26 Philip Morris Usa Inc. Container
US20090223989A1 (en) 2008-03-04 2009-09-10 R.J. Reynolds Tobacco Company Dispensing Container
US20090266837A1 (en) 2008-04-25 2009-10-29 R. J. Reynolds Tobacco Company Dispensing Container
US20100133140A1 (en) 2008-12-01 2010-06-03 Bailey Ryan A Dual cavity sliding dispenser
US20100291245A1 (en) 2008-12-08 2010-11-18 Philip Morris Usa Inc. Soft, chewable and orally dissolvable and/or disintegrable products
US20120067361A1 (en) 2009-04-03 2012-03-22 X-International Aps Plant fiber product and method for its manufacture
US20100264157A1 (en) 2009-04-16 2010-10-21 R.J. Reynolds Tobacco Company Dispensing container for metered dispensing of product
USD625178S1 (en) 2009-04-16 2010-10-12 R.J. Reynolds Tobacco Company, Inc. Container with hinged insert
WO2010132444A2 (en) 2009-05-11 2010-11-18 U.S. Smokeless Tobacco Company Llc Method and device for flavoring smokeless tobacco
US20100282267A1 (en) 2009-05-11 2010-11-11 Frank Atchley Method and device for flavoring smokeless tobacco
US8434496B2 (en) 2009-06-02 2013-05-07 R. J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US8944072B2 (en) 2009-06-02 2015-02-03 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US8991403B2 (en) 2009-06-02 2015-03-31 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20110139164A1 (en) 2009-12-15 2011-06-16 R. J. Reynolds Tobacco Company Tobacco Product And Method For Manufacture
US20110168712A1 (en) 2010-01-12 2011-07-14 R.J. Reynolds Tobacco Company Dispensing container
US8397945B2 (en) 2010-02-23 2013-03-19 R.J. Reynolds Tobacco Company Dispensing container
US20110247640A1 (en) 2010-04-08 2011-10-13 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition Comprising Tobacco-Derived Material and Non-Tobacco Plant Material
US20120037175A1 (en) 2010-08-11 2012-02-16 R.J. Reynolds Tobacco Company Meltable smokeless tobacco composition
US20120055494A1 (en) 2010-09-07 2012-03-08 Rj Reynolds Tobacco Company Smokeless Tobacco Product Comprising Effervescent Composition
US8931493B2 (en) 2010-11-01 2015-01-13 R.J. Reynolds Tobacco Co. Smokeless tobacco products
US20120138073A1 (en) 2010-12-01 2012-06-07 Rj Reynolds Tobacco Company Smokeless tobacco pastille and injection molding process for forming smokeless tobacco products
US20120138074A1 (en) 2010-12-01 2012-06-07 Rj Reynolds Tobacco Company Smokeless tobacco pastille and moulding process for forming smokeless tobacco products
US20130074855A1 (en) 2011-09-22 2013-03-28 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
US20130074856A1 (en) 2011-09-22 2013-03-28 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
US20130152953A1 (en) 2011-12-14 2013-06-20 R. J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
US9420825B2 (en) 2012-02-13 2016-08-23 R.J. Reynolds Tobacco Company Whitened tobacco composition
US20130206153A1 (en) * 2012-02-13 2013-08-15 R.J. Reynolds Tobacco Company Whitened tobacco composition
US20130274296A1 (en) 2012-04-17 2013-10-17 R.J. Reynolds Tobacco Company Remelted ingestible products
US9339058B2 (en) 2012-04-19 2016-05-17 R. J. Reynolds Tobacco Company Method for producing microcrystalline cellulose from tobacco and related tobacco product
US20150068545A1 (en) 2013-09-09 2015-03-12 R.J. Reynolds Tobacco Company Smokeless tobacco composition incorporating a botanical material
US20150101627A1 (en) 2013-10-16 2015-04-16 R.J. Reynolds Tobacco Company Smokeless tobacco pastille
US20150230515A1 (en) 2014-02-14 2015-08-20 R.J. Reynolds Tobacco Company Tobacco-containing gel composition
US20170112183A1 (en) 2014-04-04 2017-04-27 X-International Aps Tobacco Raw Material
US20170020183A1 (en) 2014-04-04 2017-01-26 X-International Aps Tobacco Raw Material
US20160000140A1 (en) 2014-07-02 2016-01-07 R.J. Reynolds Tobacco Company Oral pouch products
US20160073689A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Nonwoven pouch comprising heat sealable binder fiber
US20160073686A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Tobacco-derived filter element
US20160157515A1 (en) 2014-12-05 2016-06-09 R.J. Reynolds Tobacco Company Smokeless tobacco pouch
US20160192703A1 (en) 2015-01-07 2016-07-07 R.J. Reynolds Tobacco Company Oral pouch products
US9950858B2 (en) 2015-01-16 2018-04-24 R.J. Reynolds Tobacco Company Tobacco-derived cellulose material and products formed thereof
US20190037909A1 (en) * 2016-04-10 2019-02-07 Vireo Health LLC Cannabis Based Moist Snuff
WO2018083114A1 (en) 2016-11-02 2018-05-11 Winnington Ab Defibrated tobacco material

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Tobacco Production, Chemistry and Technology", 1999
GOODSPEED, THE GENUS NICOTIANA, (CHONICA BOTANICA, 1954
LEFFINGWELL ET AL.: "Tobacco Flavoring for Smoking Products", 1972, R. J. REYNOLDS TOBACCO COMPANY
NESTOR ET AL., BEITRAGE TABAKFORSCH. INT., vol. 20, 2003, pages 467 - 475
PERFETTI, BEITRAGE TABAKFORSCHUNGINT., vol. 12, 1983, pages 43 - 54
STAAF ET AL., BEITRAGE TABAKFORSCH. INT., vol. 21, 2005, pages 321 - 330
THE EFSA JOURNAL, vol. 85, 2004, pages 1 - 32

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3809884B1 (en) 2019-06-07 2022-09-21 Philip Morris Products S.A. Nicotine pouch product
US20210169889A1 (en) * 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral products
US11793230B2 (en) 2019-12-09 2023-10-24 Nicoventures Trading Limited Oral products with improved binding of active ingredients
US11826462B2 (en) 2019-12-09 2023-11-28 Nicoventures Trading Limited Oral product with sustained flavor release
US11872231B2 (en) 2019-12-09 2024-01-16 Nicoventures Trading Limited Moist oral product comprising an active ingredient
US20210259299A1 (en) * 2020-02-24 2021-08-26 Nicoventures Trading Limited Beaded Tobacco Material and Related Method of Manufacture
US11712059B2 (en) * 2020-02-24 2023-08-01 Nicoventures Trading Limited Beaded tobacco material and related method of manufacture
WO2023281469A1 (en) * 2021-07-09 2023-01-12 Nicoventures Trading Limited Extruded structures

Also Published As

Publication number Publication date
EP4051020A1 (en) 2022-09-07
CA3156573A1 (en) 2021-05-06
MX2022005285A (en) 2022-05-24
JP2023506123A (en) 2023-02-15

Similar Documents

Publication Publication Date Title
US20210068447A1 (en) Pouched products with enhanced flavor stability
US20210169123A1 (en) Pouched products with enhanced flavor stability
US11889856B2 (en) Oral foam composition
WO2021086367A1 (en) Oral product and method of manufacture
US11617744B2 (en) Moist oral compositions
US20210068446A1 (en) Oral product with cellulosic flavor stabilizer
US20210169121A1 (en) Liquid oral composition
US11826462B2 (en) Oral product with sustained flavor release
US20210169132A1 (en) Oral composition including gels
US20210169890A1 (en) Oral composition with polymeric component
US20230270863A1 (en) Oral products with reduced irritation
US20210169126A1 (en) Oral composition with salt inclusion
US20210169785A1 (en) Oral compositions with reduced water activity
US20210169868A1 (en) Oral compositions with reduced water content
US20210169129A1 (en) Lipid-containing oral composition
US11793230B2 (en) Oral products with improved binding of active ingredients
US20210169783A1 (en) Oral products with controlled release
US20210169784A1 (en) Buffered oral compositions
US20210169786A1 (en) Oral composition with beet material
US20210177042A1 (en) Oral product with multiple flavorants
US20210169130A1 (en) Methods of manufacturing an oral composition
WO2021116916A1 (en) Oral product with multiple flavors having different release profiles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19805860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022525354

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3156573

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019805860

Country of ref document: EP

Effective date: 20220531