WO2021085834A1 - Novel antibacterial protein cpel-1 having lytic activity against clostridium perfringens - Google Patents

Novel antibacterial protein cpel-1 having lytic activity against clostridium perfringens Download PDF

Info

Publication number
WO2021085834A1
WO2021085834A1 PCT/KR2020/012012 KR2020012012W WO2021085834A1 WO 2021085834 A1 WO2021085834 A1 WO 2021085834A1 KR 2020012012 W KR2020012012 W KR 2020012012W WO 2021085834 A1 WO2021085834 A1 WO 2021085834A1
Authority
WO
WIPO (PCT)
Prior art keywords
clostridium perfringens
cpel
pharmaceutical composition
protein
antimicrobial protein
Prior art date
Application number
PCT/KR2020/012012
Other languages
French (fr)
Korean (ko)
Inventor
윤성준
전수연
손지수
백형록
김인황
안철
강상현
Original Assignee
주식회사 인트론바이오테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인트론바이오테크놀로지 filed Critical 주식회사 인트론바이오테크놀로지
Publication of WO2021085834A1 publication Critical patent/WO2021085834A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/00033Use of viral protein as therapeutic agent other than vaccine, e.g. apoptosis inducing or anti-inflammatory
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a method for preventing or treating Clostridium perfringens infection using an antimicrobial protein having lytic power against Clostridium perfringens and a composition comprising the same as an active ingredient. More specifically, the antimicrobial protein CPEL-1 having the amino acid sequence of SEQ ID NO: 2 having the ability to kill Clostridium perfringens, a pharmaceutical composition comprising the antimicrobial protein CPEL-1 as an active ingredient, and It relates to a method for preventing or treating infection of Clostridium perfringens using this pharmaceutical composition.
  • Clostridium perfringens is an anaerobic bacterium (bacteria that can hardly grow in the presence of oxygen), and is a causative agent that can cause serious diseases in humans or various animals such as cattle, pigs, and goats, especially food poisoning and necrosis.
  • Necrotizing enteritis, Gas gangrene, Dysentery, Enterotoxemia, Pulpy kidney disease, and Dermatitis are major diseases.
  • Enterotoxin produced by Clostridium perfringens bacteria are usually hemolytic and necrotic poisons, and there are four major toxins: ⁇ , ⁇ , ⁇ , and i. According to the presence or absence of these toxins, it is classified into six toxin types of AF type. Among them, type A is a representative cause of food poisoning, and type C is known as a causative agent of necrotizing enteritis.
  • Bacteriophages are very small microorganisms that infect bacteria and are usually shortened to phage (Phage). Bacteriophages have the ability to kill bacteria by proliferating inside the bacterial cells after infection with bacteria, and destroying the cell wall of the host bacteria when progeny bacteriophages come out of the bacteria after proliferation.
  • the bacterial infection method of bacteriophage is very specific, so the types of bacteriophage that can infect specific bacteria are limited to some. That is, a specific bacteriophage can infect only a specific category of bacteria, and thus, a specific bacteriophage can provide an antibacterial effect only against specific bacteria.
  • the antibacterial protein derived from bacteriophage is called by the name of Endolysin or Lysin.
  • the antibacterial protein derived from bacteriophage can provide a wider antibacterial range compared to the bacteriophage that is its parent.
  • Antibacterial proteins derived from bacteriophages or bacteriophages have high specificity for acting bacterial species compared to conventional antibiotics. That is, it does not affect other bacterial species other than the desired bacterial species. Bacterial specificity of these bacteriophage and bacteriophage-derived antibacterial proteins provides an antibacterial effect (solubility) only for the target bacteria and does not affect the environment or flora in animals. Conventional antibiotics, which have been widely used in the treatment of bacteria, have an effect on several types of bacteria at the same time. This caused problems such as environmental pollution or disturbance of the normal bacterial flora of animals.
  • bacteriophage or bacteriophage-derived antibacterial protein works only against specific bacteria, so the use of bacteriophage or bacteriophage-derived antibacterial protein does not cause disturbance of normal flora in the body. Therefore, it can be said that the use of bacteriophage or bacteriophage-derived antibacterial protein is very safe compared to the use of antibiotics, and as such, the possibility of causing side effects by use is relatively low.
  • the present inventors provide an antimicrobial protein capable of killing the harmful pathogenic bacteria Clostridium perfringens bacteria, and furthermore, the antimicrobial protein developed using this is included as an active ingredient, and the Clostridium perfringens bacteria It is intended to provide a pharmaceutical composition that can be used to prevent or treat an infection of the disease, and to provide a method that can be effectively used for the prevention or treatment of infection of Clostridium perfringens using this pharmaceutical composition. .
  • an object of the present invention is to provide an antimicrobial protein CPEL-1 having an amino acid sequence represented by SEQ ID NO: 2 having the ability to kill Clostridium perfringens.
  • Another object of the present invention is to provide a method for efficiently producing an antimicrobial protein CPEL-1 having the ability to kill Clostridium perfringens and having an amino acid sequence represented by SEQ ID NO: 2. .
  • Another object of the present invention is to provide a pharmaceutical composition for the purpose of preventing or treating Clostridium perfringens infection, comprising the antimicrobial protein CPEL-1 as an active ingredient.
  • Another object of the present invention is to provide a method for preventing infection of Clostridium perfringens using a pharmaceutical composition containing the antimicrobial protein CPEL-1 as an active ingredient.
  • Another object of the present invention is to provide a method for treating an infection of Clostridium perfringens using a pharmaceutical composition comprising the antimicrobial protein CPEL-1 as an active ingredient.
  • the inventors of the present invention use the genetic information of the bacteriophage isolated from nature, which has the ability to kill Clostridium perfringens, which was isolated by the inventors, to achieve the above objects of the present invention, and represented by SEQ ID NO: 2
  • the present invention was completed by developing a pharmaceutical composition that can be used for the purpose of preventing or treating against dium perfringens infection.
  • the present invention can provide an amino acid sequence of an antimicrobial protein CPEL-1 having lytic power against Clostridium perfringens.
  • the antimicrobial protein CPEL-1 has an amino acid sequence represented by SEQ ID NO: 2, and the gene encoding it has a nucleotide sequence preferably represented by SEQ ID NO: 1.
  • the antimicrobial protein CPEL-1 which can kill Clostridium perfringens, is composed of 388 amino acids and has a molecular weight of about 44.4 kDa.
  • amino acid sequence shown in SEQ ID NO: 2 can be partially modified by a person skilled in the art using known techniques. Such modifications may include partial substitutions of the amino acid sequence, partial additions of the amino acid sequence, and partial deletions of the amino acid sequence. However, it is most preferable to apply mutatis mutandis the amino acid sequence of SEQ ID NO: 2 disclosed in the present invention.
  • gene as used herein has a meaning that comprehensively includes DNA (gDNA and cDNA) and RNA molecules, and nucleotides, which are basic structural units in genes, are not only natural nucleotides, but also sugar or base sites modified. Also includes analogues ( Chemical Reviews 90:543-584, 1990).
  • E. coli pBAD-CPEL-1-TOP10 which is a transformed E. coli strain that can be used for the production of the antimicrobial protein CPEL-1 having the amino acid sequence of SEQ ID NO: 2.
  • This E. coli pBAD-CPEL-1-TOP10 was developed by the present inventors and deposited with the Korea Research Institute of Bioscience and Biotechnology Biological Resource Center on October 23, 2019 (accession number KCTC 14003BP).
  • the present invention comprises as an active ingredient the antimicrobial protein CPEL-1 having the amino acid sequence of SEQ ID NO: 2 and having lytic power against Clostridium perfringens. It is possible to provide a pharmaceutical composition that can be effectively used for the prevention of infection of Gens or treatment after infection.
  • a disinfectant or an antibiotic may be presented, but it is obvious that the present invention is not limited thereto.
  • the antimicrobial protein CPEL-1 having the amino acid sequence of SEQ ID NO: 2 of the present invention contained in the pharmaceutical composition containing the antimicrobial protein CPEL-1 of the present invention as an active ingredient has lytic power against Clostridium perfringens. Therefore, Food poisoning, Necrotizing enteritis, Gas gangrene, Dysentery, Enterotoxemia, and Pulpy kidney caused by Clostridium perfringens disease), Dermatitis, and other diseases (prevention of infection) or treatment (infection treatment). Therefore, the pharmaceutical composition of the present invention can be used for the purpose of preventing or treating diseases caused by Clostridium perfringens.
  • Clostridium perfringens in the present specification are food poisoning, necrotizing enteritis, gas gangrene, dysentery, enterotoxemia, and renal It is a generic term for pulpy kidney disease and dermatitis.
  • Clostridium perfringens in the present specification does not matter whether it is sensitive to existing antibiotics or resistant bacteria resistant to existing antibiotics. In other words, it is irrelevant whether or not resistance to existing antibiotics is acquired.
  • prevention means (i) prevention of Clostridium perfringens infection; And (ii) inhibiting the development of a disease caused by Clostridium perfringens infection.
  • treatment refers to (i) inhibition of a disease caused by Clostridium perfringens; And (ii) all actions that alleviate the pathological condition of a disease caused by Clostridium perfringens.
  • Pharmaceutically acceptable carriers included in the pharmaceutical composition containing the antimicrobial protein CPEL-1 of the present invention as an active ingredient are commonly used in preparation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, Acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, stearic acid It includes, but is not limited to, magnesium and mineral oil.
  • the pharmaceutical composition comprising the antimicrobial protein CPEL-1 of the present invention as an active ingredient may further include a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. in addition to the above components, but is not limited thereto. .
  • the pharmaceutical composition containing the antimicrobial protein CPEL-1 of the present invention as an active ingredient can be used as a method of applying or spraying to a diseased area, and may be administered through oral or parenteral administration, and parenteral administration.
  • oral or parenteral administration and parenteral administration.
  • parenteral administration In the case of, intravenous administration, intraperitoneal administration, intramuscular administration, subcutaneous administration, or local administration may be used, but the present invention is not limited thereto.
  • Appropriate application, spray, and dosage of the pharmaceutical composition containing the antimicrobial protein CPEL-1 of the present invention as an active ingredient is a formulation method, a mode of administration, the age, weight, sex, degree of disease symptoms of the target animal and patient, It varies depending on factors such as food, time of administration, route of administration, rate of excretion and sensitivity to reaction, and usually a skilled physician or veterinarian can easily determine and prescribe an effective dosage for the desired treatment.
  • the pharmaceutical composition comprising the antimicrobial protein CPEL-1 of the present invention as an active ingredient contains 0.0001 to 10% (w/v or w/w) of the antimicrobial protein CPEL-1 of the present invention as an active ingredient, preferably 0.001 It includes ⁇ 1% (w/v or w/w), and most preferably 0.1% (w/v or w/w), but is not limited thereto.
  • the pharmaceutical composition containing the antimicrobial protein CPEL-1 of the present invention as an active ingredient is a pharmaceutically acceptable carrier and/or according to a method that can be easily carried out by a person of ordinary skill in the art to which the present invention belongs.
  • a pharmaceutically acceptable carrier By being formulated using an excipient, it may be prepared in a unit dosage form, or may be prepared by incorporating it into a multi-dose container.
  • the formulation may be any one formulation selected from the group consisting of a solution, suspension or emulsion in an oil or aqueous medium, a liquid solution, a pill, an extract, a powder, a granule, a tablet or a capsule, and a diluent, a dispersant, or It may further include a stabilizer, but is not limited thereto.
  • the pharmaceutical composition comprising the antimicrobial protein CPEL-1 of the present invention as an active ingredient is not limited thereto, depending on the method of use, but may be implemented as a disinfectant or antibiotic.
  • the term'antibiotic' refers to preservatives, fungicides and antibacterial agents.
  • Antibacterial substances capable of providing antibacterial activity against other bacterial species may be added to the pharmaceutical composition of the present invention in order to increase the efficiency for this purpose of use.
  • other types of bacteriophage-derived antibacterial proteins (endolysin) having antibacterial activity against Clostridium perfringens may also be added. Even with antibacterial proteins derived from bacteriophages having antibacterial activity against Clostridium perfringens, there are differences in the strength and exertion of antibacterial activity, so an appropriate combination of them can maximize the effect.
  • Clostridium perfringens infection prevention or treatment method using a pharmaceutical composition comprising the antimicrobial protein CPEL-1 having the amino acid sequence represented by SEQ ID NO: 2 according to the present invention as an active ingredient is based on conventional antibiotics, etc.
  • it can provide an advantage that the specificity for Clostridium perfringens is very high. This means that it can be used for the purpose of preventing or treating infection of Clostridium perfringens without affecting other useful flora, and it means that the side effects of its use are very few. In general, when antibiotics are used, common organisms are also damaged, resulting in various side effects.
  • Lane 10 is the purified fraction.
  • 3 is an experimental result confirming the antimicrobial activity of the antimicrobial protein CPEL-1 against Clostridium perfringens through a turbidity reduction assay.
  • a buffer solution that did not contain the antimicrobial protein CPEL-1 was used as a negative control.
  • the horizontal axis is time (minutes) and the vertical axis is the absorbance at 600 nm.
  • Example 1 derived from bacteriophage Antibacterial protein Securing sequence
  • Example 1-1 Preparation of bacteriophage suspension
  • a suspension containing pure bacteriophage (accession number KCTC 12664BP) having a killing ability against Clostridium perfringens bacteria was prepared through the following purification process. Clostridium perfringens bacteria culture solution was added to a volume of 1/50 of the total volume of the solution including pure bacteriophage, and then cultured again for 12 hours. After incubation, centrifugation was performed at 8,000 rpm for 20 minutes to obtain a supernatant. This process was repeated a total of 5 times to obtain a solution containing a sufficient number of bacteriophage.
  • the supernatant obtained by the final centrifugation was filtered using a 0.45 ⁇ m filter, and then a conventional polyethylene glycol (PEG) precipitation process was performed. Specifically, PEG and NaCl were added to 100 mL of the filtrate to become 10% PEG 8000/0.5 M NaCl, and then allowed to stand at 4° C. for 2 to 3 hours, followed by centrifugation at 8,000 rpm for 30 minutes to obtain a bacteriophage precipitate. The thus obtained bacteriophage precipitate was suspended in 5 mL of a buffer (buffer; 10 mM Tris-HCl, 10 mM MgSO 4 , 0.1% Gelatin, pH 8.0). This is referred to as bacteriophage suspension or bacteriophage liquid.
  • buffer buffer
  • Example 1-2 Securing the genome of bacteriophage
  • the genome of the bacteriophage was separated from the suspension of the bacteriophage prepared according to Example 1-1 as follows. First, in order to remove DNA and RNA of Clostridium perfringens that may be contained in the suspension, 200 units of DNase I and RNase A were added to 10 mL of the bacteriophage suspension, and then left at 37°C for 30 minutes. In order to remove the activities of DNase I and RNase A after standing for 30 minutes, 500 ⁇ L of 0.5 M ethylenediaminetetraacetic acid (EDTA) was added and then allowed to stand for 10 minutes.
  • EDTA ethylenediaminetetraacetic acid
  • Example 1-3 Analysis of genome sequence of bacteriophage and Antibacterial protein Securing sequence
  • Example 1-2 bacteriophage by performing a next generation sequencing analysis using an illumina Mi-Seq device at the National Instrumentation Center for Environmental Management, Seoul National University. The genome sequence information of was obtained.
  • the gene sequence corresponding to the antibacterial protein of the bacteriophage could be estimated using NCBI GLIMMER and BLAST.
  • the estimated gene sequence (1,167 bp) of the antimicrobial protein was used to develop recombinant production technology for the antibacterial protein derived from bacteriophage.
  • the gene sequence of the used antimicrobial protein is shown in SEQ ID NO: 1.
  • the amino acid sequence (consisting of 388 amino acid residues) of the antimicrobial protein corresponding to the gene sequence of SEQ ID NO: 1 is shown in SEQ ID NO: 2.
  • the antimicrobial protein represented by the amino acid sequence of SEQ ID NO: 2 thus obtained was named CPEL-1.
  • the antibacterial protein CPEL-1 represented by the amino acid sequence of SEQ ID NO: 2 is different from other previously reported antibacterial proteins derived from bacteriophage. It was judged that it could provide other antibacterial effects.
  • Example 2 Antibacterial protein CPEL -1 expression plasmid and Production strain making
  • an expression plasmid of the antimicrobial protein CPEL-1 was constructed.
  • the gene of the antimicrobial protein CPEL-1 identified in Example 1-3 was cloned into a pBAD-TOPO vector (Invitrogen) using Nco I and Not I restriction enzyme sites.
  • the Enterokinase cleavage site that was present in the pBAD-TOPO vector before cloning was removed and Not After making the one in which the I restriction enzyme site was inserted, it was used for PCR cloning.
  • pBAD-CPEL-1 The base sequence of pBAD-CPEL-1 is shown in SEQ ID NO: 3.
  • This pBAD-CPEL-1 was used to transform E. coli TOP10 to produce a strain producing the antimicrobial protein CPEL-1, and this production strain was named pBAD-CPEL-1-TOP10 (accession number KCTC 14003BP).
  • E. coli pBAD-CPEL-1-TOP10 produced by the present inventors was used as a production strain.
  • those skilled in the art can use the expression plasmid prepared based on SEQ ID NO: 2 presented in the present invention or the expression plasmid prepared based on SEQ ID NO: 1 presented in the present invention to create a production strain different from pBAD-CPEL-1-TOP10. It will be obvious that it can be produced and utilized.
  • E. coli pBAD-CPEL-1-TOP10 Inoculate E. coli pBAD-CPEL-1-TOP10 to 20 mL of LB medium (trypton, 10 g/L; yeast extract, 5 g/L; sodium chloride, 10 g/L) containing kanamycin to be 50 ⁇ g/mL ( 10 ⁇ L) and then incubated with shaking at 37° C. overnight (200 rpm). The next day, an OD 600 (absorbance at 600 nm) of OD 600 (absorbance at 600 nm) was added in a volume ratio of 1/100 in an incubator containing 1 L of LB medium containing kanamycin to be 50 ⁇ g/mL.
  • Culture was performed under the conditions of 9 L aeration, 200 rpm/min, and 37°C. When the cell concentration reached 0.5 based on the absorbance at 600 nm, L-arabinose was added so that the final concentration was 0.2%, thereby inducing the expression of the antimicrobial protein CPEL-1 having the amino acid sequence represented by SEQ ID NO: 2. After induction of expression, culture was performed at 37°C for 4 hours.
  • the cell culture solution was collected and centrifuged at 13,000 rpm and 4° C. for 5 minutes to recover the cell precipitate.
  • the recovered cell precipitate was suspended in a manner using 20 mL of a buffer solution (20 mM K 3 PO 4, pH 6.0) per 1 g of the cell precipitate.
  • the cell suspension thus prepared was subjected to cell disruption by applying an ultrasonic grinding method.
  • the application conditions of the ultrasonic grinding method were repeated for a total of 30 minutes to break the cells by applying ultrasonic waves for 3 seconds and stop for 3 seconds. At this time, it was conducted in an ice bath state.
  • the cell disruption solution was centrifuged at 4,500 rpm and 4° C. for 20 minutes to recover the supernatant.
  • the obtained supernatant was filtered using a 0.2 ⁇ m filter, and then purified through a conventional cation-exchange chromatography purification process.
  • a brief description of the purification process is as follows.
  • As a cation-exchange resin 5 mL of HiTrap TM SP FF (GE Healthcare) was used. Chromatography was performed after equilibrating the column with Buffer A (20 mM K 3 PO 4 , pH 6.0) in advance, and after dropping the sample onto the column, Buffer A was added to 10 CV at a flow rate of 5 mL/min. (Column volume) was flushed and washed.
  • Fractions containing a high concentration of the antimicrobial protein CPEL-1 in the obtained purified fractions were collected, and this was obtained in a buffer solution (50 mM Tris-HCl, pH 7.5). Dialysis was carried out for medium exchange. Through this, a solution of the antimicrobial protein CPEL-1 having a purity of 90% or more could be obtained.
  • the present inventors investigated the antibacterial activity of the antimicrobial protein CPEL-1 through a usual drop experiment.
  • Clostridium perfringens 2 weeks, Enterococcus faecalis 2 weeks, Staphylococcus aureus) 2 weeks, Salmonella (Salmonella) were enrolled in two weeks, and E. coli two weeks.
  • the bacteria were pre-sale from external organizations such as The American Type Culture Collection (ATCC) in the United States, or were isolated and identified by the present inventors.
  • ATCC American Type Culture Collection
  • each bacterial culture solution having an absorbance of about 1 at 600 nm in TSA medium was plated on a different plate medium, and then dried.
  • the experimental bacterial culture was obtained by performing midnight static culture in an anaerobic incubator at 37°C, and other strains were obtained by performing midnight shaking culture in an incubator at 37°C.
  • 10 ⁇ L of the antibacterial protein CPEL-1 solution (concentration: 0.5, 1.0, 1.5 ⁇ M) was added dropwise.
  • a buffer solution 50 mM Tris-HCl, pH 7.5
  • the culture was further cultured for about 1 hour, and the degree of lysis of each bacteria was observed.
  • the antimicrobial protein CPEL-1 had antimicrobial activity (lytic activity) only against Clostridium perfringens and no antibacterial activity against other strains.
  • Antimicrobial activity against Clostridium perfringens was confirmed for all two weeks of Clostridium perfringens, which were the subjects in the experiment.
  • Figure 2 shows the results of the antimicrobial activity of the antimicrobial protein CPEL-1 against Clostridium perfringens.
  • the antimicrobial protein CPEL-1 can provide excellent lytic power (antibacterial power) against Clostridium perfringens, and can also be effectively used for the prevention or treatment of infectious diseases caused by Clostridium perfringens. It could be confirmed that there is.
  • Example 5 Through the turbidity reduction investigation method Antibacterial protein CPEL Investigation of antimicrobial activity of -1
  • the antimicrobial activity of the antimicrobial protein CPEL-1 was investigated by using the antibacterial protein CPEL-1 solution through a turbidity reduction assay.
  • the bacteria to be tested were the same as in Example 4.
  • the experimental method of the turbidity reduction investigation method was as follows. After suspending the bacteria to be tested in physiological saline so that the absorbance at 600 nm is about 0.5, add the antibacterial protein CPEL-1 solution to 2.48 ⁇ M, 0.248 ⁇ M, and 0.0248 ⁇ M to 270 ⁇ L of this suspension, and then at 600 nm. The absorbance was measured for 30 minutes. As a negative control, a buffer solution (50 mM Tris-HCl, pH 7.5) that did not contain the antimicrobial protein CPEL-1 was used.
  • the antibacterial protein CPEL-1 showed lytic activity only against Clostridium perfringens, but did not have lytic activity against other test bacteria.
  • the experimental results for Clostridium perfringens bacteria are presented in FIG. 3.
  • the antimicrobial activity of the antibacterial protein CPEL-1 was very fast. This rapid antimicrobial activity can be said to be a characteristic that no existing antibiotics have been able to provide.
  • each Clostridium perfringens culture solution was added so that the absorbance at 600 nm was about 0.5, and then transferred to an anaerobic incubator at 37° C. and stationary cultured to observe the growth state of Clostridium perfringens.
  • the antimicrobial protein CPEL-1 of the present invention has the ability to inhibit the growth of Clostridium perfringens as well as kill it, and from this, the antimicrobial protein CPEL-1 is Clostridium perfringens. It could be concluded that it could be used as an active ingredient in the composition for the purpose of preventing infection.
  • Example 7 Antibacterial protein CPEL -1 of Clostridium Perfringens Therapeutic effect on infection Research
  • the therapeutic effect of the antimicrobial protein CPEL-1 on Clostridium perfringens infection was investigated using an infected animal model.
  • a 5-week-old BALB/c mouse [specific pathogen-free (SPF) grade] of about 20 g of body weight was used as an experimental animal.
  • SPF specific pathogen-free
  • 0.1 mL of an antibacterial protein CPEL-1 solution (10 mg/mL) was treated twice a day for 5 days at 24 hours after the forced infection.
  • control group only Phosphate buffered saline was treated in the same volume.
  • the buffer solution was administered at the same interval from the time point 24 hours after the forced infection of the bacteria, similar to the administration of the antibacterial protein CPEL-1 solution.
  • the degree of wound recovery was confirmed by observing the wound site on days D0, D4, D7, and D14 after the forced infection of the fungus, and the number of colonies was investigated by extracting the tissues of the infected site in the same individual, and the antimicrobial protein CPEL- The effectiveness of 1 was investigated.
  • the degree of wound recovery was conducted by measuring the clinical score (Clinical Scores; 0, no symptoms; 1, mild; 2, intermediate; 3, severe) according to the severity, and the number of colonies in the tissue sample was 0.1. After adding g of tissue sample to physiological saline and crushing, the sample was spread on a Clostridium perfringens selection medium (TSC agar plate; OXOID) and incubated for 18-24 hours at 37°C under anaerobic conditions. Then, among the colonies formed, colonies presumed to be Clostridium perfringens bacteria were selected, and the selected colonies were each sampled to perform a Clostridium perfringens bacteria specific polymerase chain reaction (PCR). It was carried out in a manner that finally confirms whether the colony is Clostridium perfringens bacteria.
  • TSC agar plate OXOID
  • the antimicrobial protein CPEL-1 of the present invention is effective in treating an infection of Clostridium perfringens bacteria.
  • a pharmaceutical composition containing the antimicrobial protein CPEL-1 as an active ingredient can be used for the purpose of treating Clostridium perfringens infection, and also for the purpose of treating infection of Clostridium perfringens bacteria. It shows that it can be used in the same way as conventional antibiotics.

Abstract

The present invention relates to an antibacterial protein CPEL-1 which has the ability to kill Clostridium perfringens and is represented by the amino acid sequence of SEQ ID NO: 2, to a pharmaceutical composition comprising same as an active ingredient, and to a method for preventing or treating diseases caused by Clostridium perfringens using the pharmaceutical composition.

Description

클로스트리디움 퍼프린젠스에 대하여 용균력을 가지는 신규한 항균단백질 CPEL-1CPEL-1, a novel antibacterial protein that has lytic power against Clostridium perfringens
본 발명은 클로스트리디움 퍼프린젠스에 대하여 용균력을 가지는 항균단백질 및 이를 유효성분으로 포함한 조성물을 이용한 클로스트리디움 퍼프린젠스 감염을 예방 또는 처치하는 방법에 관한 것이다. 더욱 상세하게는, 클로스트리디움 퍼프린젠스를 사멸시킬 수 있는 능력을 갖는 서열번호 2의 아미노산 서열을 갖는 항균단백질 CPEL-1, 상기 항균단백질 CPEL-1을 유효성분으로 포함하는 약학적 조성물, 및 이 약학적 조성물을 이용한 클로스트리디움 퍼프린젠스의 감염 예방 또는 감염 처치 방법에 관한 것이다.The present invention relates to a method for preventing or treating Clostridium perfringens infection using an antimicrobial protein having lytic power against Clostridium perfringens and a composition comprising the same as an active ingredient. More specifically, the antimicrobial protein CPEL-1 having the amino acid sequence of SEQ ID NO: 2 having the ability to kill Clostridium perfringens, a pharmaceutical composition comprising the antimicrobial protein CPEL-1 as an active ingredient, and It relates to a method for preventing or treating infection of Clostridium perfringens using this pharmaceutical composition.
클로스트리디움 퍼프린젠스( Clostridium perfringens)는 편성 혐기성균(산소의 존재 하에서는 거의 생육할 수 없는 세균)이며, 사람 혹은 소, 돼지, 염소 등의 여러 동물들에서 심각한 질병을 유발할 수 있는 원인균으로, 특히 식중독(Food poisoning), 괴사성 장염(Necrotizing enteritis), 가스 괴저병(Gas gangrene), 적리(Dysentery), 장독소혈증(Enterotoxemia), 신연화증(Pulpy kidney disease), 피부염(Dermatitis)이 주요 질환이다. 클로스트리디움 퍼프린젠스 균이 생산하는 장독소(Enterotoxin)는 보통 용혈독과 괴사독이며, 주요 독소로는 α, β, ε, i의 4가지가 존재한다. 이 독소들의 유무에 따라 A-F형의 6가지 독소형(Toxigenic type)으로 분류된다. 이 중 A형균이 대표적인 식중독 원인균이며, C형균은 괴사성 장염의 원인균으로 알려져 있다.Clostridium perfringens (Clostridium perfringens ) is an anaerobic bacterium (bacteria that can hardly grow in the presence of oxygen), and is a causative agent that can cause serious diseases in humans or various animals such as cattle, pigs, and goats, especially food poisoning and necrosis. Necrotizing enteritis, Gas gangrene, Dysentery, Enterotoxemia, Pulpy kidney disease, and Dermatitis are major diseases. Enterotoxin produced by Clostridium perfringens bacteria are usually hemolytic and necrotic poisons, and there are four major toxins: α, β, ε, and i. According to the presence or absence of these toxins, it is classified into six toxin types of AF type. Among them, type A is a representative cause of food poisoning, and type C is known as a causative agent of necrotizing enteritis.
클로스트리디움 퍼프린젠스 균의 감염 방지나 처치 목적으로 다양한 항생제들이 사용되어 왔으나 최근 항생제 내성균의 발생이 증가함에 따라 항생제 외의 다른 방안의 확보가 시급한 실정이다. Various antibiotics have been used for the purpose of preventing or treating the infection of Clostridium perfringens bacteria, but as the occurrence of antibiotic-resistant bacteria has recently increased, it is urgent to secure measures other than antibiotics.
최근 세균성 감염질환의 대처 방안으로 박테리오파지(Bacteriophage)의 활용이 크게 주목을 받고 있다. 특히 항생제 내성균에 대한 우수한 항균력 때문에 더욱 큰 관심을 받고 있다. 박테리오파지는 세균에 감염하는 아주 작은 미생물로서 보통 파지(Phage)라고 줄여서 부르기도 한다. 박테리오파지는 세균에 감염(Infection)한 후 세균의 세포 내부에서 증식을 하고, 증식 후 자손 박테리오파지들이 세균 밖으로 나올 때 숙주인 세균의 세포벽을 파괴하는 방식으로 세균을 사멸시키는 능력을 갖고 있다. 박테리오파지의 세균 감염 방식은 매우 특이성이 높아서 특정 세균에 감염할 수 있는 박테리오파지의 종류는 일부로 한정된다. 즉, 특정 박테리오파지는 특정 범주의 세균에만 감염할 수 있고 이로 인하여 특정 박테리오파지는 특정 세균에 대해서만 항균효과를 제공할 수 있다. Recently, the use of bacteriophage as a countermeasure against bacterial infectious diseases is receiving great attention. In particular, it is getting more attention because of its excellent antibacterial activity against antibiotic-resistant bacteria. Bacteriophages are very small microorganisms that infect bacteria and are usually shortened to phage (Phage). Bacteriophages have the ability to kill bacteria by proliferating inside the bacterial cells after infection with bacteria, and destroying the cell wall of the host bacteria when progeny bacteriophages come out of the bacteria after proliferation. The bacterial infection method of bacteriophage is very specific, so the types of bacteriophage that can infect specific bacteria are limited to some. That is, a specific bacteriophage can infect only a specific category of bacteria, and thus, a specific bacteriophage can provide an antibacterial effect only against specific bacteria.
이러한 비교적 좁은 항균범위의 극복 방안으로 박테리오파지가 세균에 대하여 항균효과를 발휘할 때 실제로 작용하는 항균단백질을 이용하는 방안이 제안되고 있다. 박테리오파지 유래의 항균단백질을 엔도리신(Endolysin) 또는 리신(Lysin) 등의 이름으로 부른다. 일반적으로 박테리오파지 유래의 항균단백질은 그 모체가 되는 박테리오파지에 비교하여 보다 넓은 항균범위를 제공할 수 있다.As a method of overcoming such a relatively narrow antibacterial range, a method of using an antibacterial protein that actually acts when bacteriophage exerts an antibacterial effect against bacteria has been proposed. The antibacterial protein derived from bacteriophage is called by the name of Endolysin or Lysin. In general, the antibacterial protein derived from bacteriophage can provide a wider antibacterial range compared to the bacteriophage that is its parent.
박테리오파지나 박테리오파지로부터 유래한 항균단백질은 통상의 항생제들에 비교하여 작용하는 세균 종(Species)에 대한 특이성이 높다. 즉, 목적하는 세균 종 외에 다른 세균 종에는 영향을 주지 않는다. 이러한 박테리오파지 및 박테리오파지 유래 항균단백질의 세균 특이성은 목적으로 하는 세균에 대해서만 항균효과(용균력)를 제공하고 환경이나 동물 내의 상재균들에게는 영향을 초래하지 않는다. 통상적으로 세균 처치에 널리 활용되던 기존의 항생제들은 여러 종류의 세균들에 대하여 동시에 영향을 끼쳤다. 이로 인하여 환경오염이나 동물의 정상 세균총 교란 등의 문제를 초래하였다. 이와는 달리 박테리오파지나 박테리오파지 유래 항균단백질은 특정 세균에 대해서만 작동하므로 박테리오파지나 박테리오파지 유래 항균단백질의 사용에 의해서 체내 정상균총 교란 등이 발생하지 않는다. 따라서 박테리오파지나 박테리오파지 유래 항균단백질 사용이 항생제 사용에 비교하여 매우 안전하다고 할 수 있고, 그 만큼 사용에 의한 부작용 초래 가능성이 상대적으로 크게 낮다.Antibacterial proteins derived from bacteriophages or bacteriophages have high specificity for acting bacterial species compared to conventional antibiotics. That is, it does not affect other bacterial species other than the desired bacterial species. Bacterial specificity of these bacteriophage and bacteriophage-derived antibacterial proteins provides an antibacterial effect (solubility) only for the target bacteria and does not affect the environment or flora in animals. Conventional antibiotics, which have been widely used in the treatment of bacteria, have an effect on several types of bacteria at the same time. This caused problems such as environmental pollution or disturbance of the normal bacterial flora of animals. In contrast, bacteriophage or bacteriophage-derived antibacterial protein works only against specific bacteria, so the use of bacteriophage or bacteriophage-derived antibacterial protein does not cause disturbance of normal flora in the body. Therefore, it can be said that the use of bacteriophage or bacteriophage-derived antibacterial protein is very safe compared to the use of antibiotics, and as such, the possibility of causing side effects by use is relatively low.
이에, 본 발명자들은 유해 병원성 박테리아인 클로스트리디움 퍼프린젠스 균을 사멸시킬 수 있는 항균단백질을 제공하고, 더 나아가 이를 활용하여 개발한 항균단백질을 유효성분으로 포함하고 있고 클로스트리디움 퍼프린젠스 균의 감염을 예방 또는 처치하는 데에 활용될 수 있는 약학적 조성물을 제공하며, 이 약학적 조성물을 활용한 클로스트리디움 퍼프린젠스 균의 감염 예방 또는 처치에 효과적으로 활용될 수 있는 방법을 제공하고자 한다. Accordingly, the present inventors provide an antimicrobial protein capable of killing the harmful pathogenic bacteria Clostridium perfringens bacteria, and furthermore, the antimicrobial protein developed using this is included as an active ingredient, and the Clostridium perfringens bacteria It is intended to provide a pharmaceutical composition that can be used to prevent or treat an infection of the disease, and to provide a method that can be effectively used for the prevention or treatment of infection of Clostridium perfringens using this pharmaceutical composition. .
따라서 본 발명의 목적은 클로스트리디움 퍼프린젠스를 사멸시킬 수 있는 능력을 갖는 서열번호 2로 표시되는 아미노산 서열을 갖는 항균단백질 CPEL-1을 제공하는 것이다.Accordingly, an object of the present invention is to provide an antimicrobial protein CPEL-1 having an amino acid sequence represented by SEQ ID NO: 2 having the ability to kill Clostridium perfringens.
또한, 본 발명의 다른 목적은 상기 클로스트리디움 퍼프린젠스를 사멸시킬 수 있는 능력을 갖고 서열번호 2로 표시되는 아미노산 서열을 갖는 항균단백질 CPEL-1을 효율적으로 제조할 수 있는 방법을 제공하는 것이다.In addition, another object of the present invention is to provide a method for efficiently producing an antimicrobial protein CPEL-1 having the ability to kill Clostridium perfringens and having an amino acid sequence represented by SEQ ID NO: 2. .
또한, 본 발명의 또 다른 목적은 항균단백질 CPEL-1을 유효성분으로 포함하는, 클로스트리디움 퍼프린젠스 감염 예방 또는 처치 목적의 약학적 조성물을 제공하는 것이다.In addition, another object of the present invention is to provide a pharmaceutical composition for the purpose of preventing or treating Clostridium perfringens infection, comprising the antimicrobial protein CPEL-1 as an active ingredient.
본 발명의 또 다른 목적은 항균단백질 CPEL-1을 유효성분으로 포함하는 약학적 조성물을 이용한 클로스트리디움 퍼프린젠스의 감염을 예방하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for preventing infection of Clostridium perfringens using a pharmaceutical composition containing the antimicrobial protein CPEL-1 as an active ingredient.
본 발명의 또 다른 목적은 항균단백질 CPEL-1을 유효성분으로 포함하는 약학적 조성물을 이용한 클로스트리디움 퍼프린젠스의 감염을 치료하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for treating an infection of Clostridium perfringens using a pharmaceutical composition comprising the antimicrobial protein CPEL-1 as an active ingredient.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the problems mentioned above, and other problems that are not mentioned will be clearly understood by those of ordinary skill in the art from the following description.
본 발명의 발명자들은 본 발명의 상기 목적들을 달성하고자 본 발명자들에 의해 분리되었던 클로스트리디움 퍼프린젠스를 사멸시킬 수 있는 능력을 갖는 자연으로부터 분리한 박테리오파지의 유전 정보를 활용하여 서열번호 2로 표시되는 아미노산 서열을 갖는 클로스트리디움 퍼프린젠스에 대하여 우수한 용균력을 갖는 항균단백질 CPEL-1을 개발하였고, 더 나아가 이를 효율적으로 제조할 수 있는 방법을 개발하였으며, 마지막으로 이를 유효성분으로 하는 클로스트리디움 퍼프린젠스 감염에 대한 예방 또는 치료 목적으로 활용될 수 있는 약학적 조성물을 개발함으로써 본 발명을 완성하였다.The inventors of the present invention use the genetic information of the bacteriophage isolated from nature, which has the ability to kill Clostridium perfringens, which was isolated by the inventors, to achieve the above objects of the present invention, and represented by SEQ ID NO: 2 We developed an antimicrobial protein CPEL-1 that has excellent lytic power against Clostridium perfringens having an amino acid sequence, and further developed a method to efficiently manufacture it, and finally Clostree using it as an active ingredient. The present invention was completed by developing a pharmaceutical composition that can be used for the purpose of preventing or treating against dium perfringens infection.
따라서, 본 발명의 일 양태에 따르면, 본 발명은 클로스트리디움 퍼프린젠스에 대하여 용균력을 갖는 항균단백질 CPEL-1의 아미노산 서열을 제공할 수 있다. 구체적으로는 상기 항균단백질 CPEL-1은 서열번호 2로 기재되는 아미노산 서열을 가지며, 이를 코딩하는 유전자는 바람직하게는 서열번호 1로 기재되는 염기 서열을 가진다. 이 클로스트리디움 퍼프린젠스를 사멸시킬 수 있는 항균단백질 CPEL-1은 388개의 아미노산으로 구성되며 분자량은 약 44.4 kDa이다. Accordingly, according to an aspect of the present invention, the present invention can provide an amino acid sequence of an antimicrobial protein CPEL-1 having lytic power against Clostridium perfringens. Specifically, the antimicrobial protein CPEL-1 has an amino acid sequence represented by SEQ ID NO: 2, and the gene encoding it has a nucleotide sequence preferably represented by SEQ ID NO: 1. The antimicrobial protein CPEL-1, which can kill Clostridium perfringens, is composed of 388 amino acids and has a molecular weight of about 44.4 kDa.
서열번호 2로 제시한 아미노산 서열은 당업자에 의해 공지의 기술을 이용하여 일부 변형될 수 있음은 자명하다. 이러한 변형에는 아미노산 서열의 일부 치환, 아미노산 서열의 일부 첨가, 및 아미노산 서열의 일부 결실을 포함할 수 있다. 그렇지만 본 발명에서 개시하고 있는 서열번호 2의 아미노산 서열을 준용하는 것이 가장 바람직하다. It is obvious that the amino acid sequence shown in SEQ ID NO: 2 can be partially modified by a person skilled in the art using known techniques. Such modifications may include partial substitutions of the amino acid sequence, partial additions of the amino acid sequence, and partial deletions of the amino acid sequence. However, it is most preferable to apply mutatis mutandis the amino acid sequence of SEQ ID NO: 2 disclosed in the present invention.
본 명세서에서 사용된 "유전자"라는 용어는 DNA(gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 가지며, 유전자에서 기본 구성단위인 뉴클레오타이드는 자연의 뉴클레오타이드 뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogue)도 포함한다( Chemical Reviews 90:543-584, 1990).The term "gene" as used herein has a meaning that comprehensively includes DNA (gDNA and cDNA) and RNA molecules, and nucleotides, which are basic structural units in genes, are not only natural nucleotides, but also sugar or base sites modified. Also includes analogues ( Chemical Reviews 90:543-584, 1990).
또한, 본 발명은 서열번호 2의 아미노산 서열을 갖는 항균단백질 CPEL-1의 생산에 이용될 수 있는 형질전환 대장균 균주인 대장균 pBAD-CPEL-1-TOP10을 제공할 수 있다. 이 대장균 pBAD-CPEL-1-TOP10은 본 발명자들에 의해 개발되어 2019년 10월 23일자로 한국생명공학연구원 생물자원센터에 기탁되었다(수탁번호 KCTC 14003BP).In addition, the present invention can provide E. coli pBAD-CPEL-1-TOP10, which is a transformed E. coli strain that can be used for the production of the antimicrobial protein CPEL-1 having the amino acid sequence of SEQ ID NO: 2. This E. coli pBAD-CPEL-1-TOP10 was developed by the present inventors and deposited with the Korea Research Institute of Bioscience and Biotechnology Biological Resource Center on October 23, 2019 (accession number KCTC 14003BP).
또한, 본 발명의 다른 양태에 따르면, 본 발명은 서열번호 2의 아미노산 서열을 갖고 클로스트리디움 퍼프린젠스에 대한 용균력을 갖는 항균단백질 CPEL-1을 유효성분으로 포함하는, 클로스트리디움 퍼프린젠스의 감염 예방 또는 감염 후 치료에 효과적으로 활용될 수 있는 약학적 조성물을 제공할 수 있다. 상기 약학적 조성물의 예로는 소독제나 항생제를 제시할 수 있으나 이에 국한되지 않음은 자명하다.In addition, according to another aspect of the present invention, the present invention comprises as an active ingredient the antimicrobial protein CPEL-1 having the amino acid sequence of SEQ ID NO: 2 and having lytic power against Clostridium perfringens. It is possible to provide a pharmaceutical composition that can be effectively used for the prevention of infection of Gens or treatment after infection. As an example of the pharmaceutical composition, a disinfectant or an antibiotic may be presented, but it is obvious that the present invention is not limited thereto.
본 발명의 항균단백질 CPEL-1을 유효성분으로 포함하는 약학적 조성물에 포함되는, 본 발명의 서열번호 2의 아미노산 서열을 갖는 항균단백질 CPEL-1은 클로스트리디움 퍼프린젠스에 대한 용균력을 가지므로, 클로스트리디움 퍼프린젠스에 의해 유발되는 식중독(Food poisoning), 괴사성 장염(Necrotizing enteritis), 가스 괴저병(Gas gangrene), 적리(Dysentery), 장독소혈증(Enterotoxemia), 신연화증(Pulpy kidney disease), 피부염(Dermatitis) 등의 질병의 예방(감염 방지) 또는 치료(감염 처치)에 효과를 나타낸다. 따라서 본 발명의 약학적 조성물은 클로스트리디움 퍼프린젠스에 의해 유발되는 질환에 대한 예방 또는 치료 목적으로 활용될 수 있다. 본 명세서에서의 클로스트리디움 퍼프린젠스에 의해 유발되는 질환은 식중독(Food poisoning), 괴사성 장염(Necrotizing enteritis), 가스 괴저병(Gas gangrene), 적리(Dysentery), 장독소혈증(Enterotoxemia), 신연화증(Pulpy kidney disease), 피부염(Dermatitis) 등을 총칭한다. The antimicrobial protein CPEL-1 having the amino acid sequence of SEQ ID NO: 2 of the present invention contained in the pharmaceutical composition containing the antimicrobial protein CPEL-1 of the present invention as an active ingredient has lytic power against Clostridium perfringens. Therefore, Food poisoning, Necrotizing enteritis, Gas gangrene, Dysentery, Enterotoxemia, and Pulpy kidney caused by Clostridium perfringens disease), Dermatitis, and other diseases (prevention of infection) or treatment (infection treatment). Therefore, the pharmaceutical composition of the present invention can be used for the purpose of preventing or treating diseases caused by Clostridium perfringens. Diseases caused by Clostridium perfringens in the present specification are food poisoning, necrotizing enteritis, gas gangrene, dysentery, enterotoxemia, and renal It is a generic term for pulpy kidney disease and dermatitis.
본 명세서에서의 클로스트리디움 퍼프린젠스는 기존 항생제에 대하여 민감하든지 또는 기존 항생제에 대하여 내성을 가진 내성균이든지 상관이 없다. 즉, 기존 항생제에 대한 내성 획득 여부는 상관이 없다.Clostridium perfringens in the present specification does not matter whether it is sensitive to existing antibiotics or resistant bacteria resistant to existing antibiotics. In other words, it is irrelevant whether or not resistance to existing antibiotics is acquired.
본 명세서에서 사용된 “방지” 또는 “예방”이라는 용어는 (i) 클로스트리디움 퍼프린젠스 감염의 방지; 및 (ii) 클로스트리디움 퍼프린젠스 감염에 의한 질병으로의 발전을 억제하는 것을 의미한다.The term “prevention” or “prevention” as used herein means (i) prevention of Clostridium perfringens infection; And (ii) inhibiting the development of a disease caused by Clostridium perfringens infection.
본 명세서에서 사용된 “처치” 또는 “치료”라는 용어는 (i) 클로스트리디움 퍼프린젠스에 의해 유발된 질환의 억제; 및 (ii) 클로스트리디움 퍼프린젠스에 의해 유발된 질환의 병적상태를 경감시키는 모든 행위를 의미한다.The term “treatment” or “treatment” as used herein refers to (i) inhibition of a disease caused by Clostridium perfringens; And (ii) all actions that alleviate the pathological condition of a disease caused by Clostridium perfringens.
본 발명의 항균단백질 CPEL-1을 유효성분으로 포함하는 약학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토오스, 덱스트로오스, 수크로오스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산칼슘, 알기네이트, 젤라틴, 규산칼슘, 미세결정성 셀룰로오스, 폴리비닐피롤리돈, 셀룰로오스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 항균단백질 CPEL-1을 유효성분으로 포함하는 약학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있으나 이에 제한되지는 않는다.Pharmaceutically acceptable carriers included in the pharmaceutical composition containing the antimicrobial protein CPEL-1 of the present invention as an active ingredient are commonly used in preparation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, Acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, stearic acid It includes, but is not limited to, magnesium and mineral oil. The pharmaceutical composition comprising the antimicrobial protein CPEL-1 of the present invention as an active ingredient may further include a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. in addition to the above components, but is not limited thereto. .
본 발명의 항균단백질 CPEL-1을 유효성분으로 포함하는 약학적 조성물은 질환 부위에의 도포 또는 분무하는 방법으로 이용할 수 있으며, 그 밖에 경구 투여 또는 비경구 투여를 통해 투여할 수도 있으며, 비경구 투여의 경우 정맥 내 투여, 복강 내 투여, 근육 내 투여, 피하 투여 또는 국부 투여를 이용하여 투여할 수도 있으나 이에 제한되지는 않는다.The pharmaceutical composition containing the antimicrobial protein CPEL-1 of the present invention as an active ingredient can be used as a method of applying or spraying to a diseased area, and may be administered through oral or parenteral administration, and parenteral administration. In the case of, intravenous administration, intraperitoneal administration, intramuscular administration, subcutaneous administration, or local administration may be used, but the present invention is not limited thereto.
본 발명의 항균단백질 CPEL-1을 유효성분으로 포함하는 약학적 조성물의 적합한 도포, 분무 및 투여량은 제제화 방법, 투여 방식, 대상이 되는 동물 및 환자의 연령, 체중, 성, 질병 증상의 정도, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련된 의사나 수의사는 소망하는 치료에 효과적인 투여량을 용이하게 결정 및 처방할 수 있다. Appropriate application, spray, and dosage of the pharmaceutical composition containing the antimicrobial protein CPEL-1 of the present invention as an active ingredient is a formulation method, a mode of administration, the age, weight, sex, degree of disease symptoms of the target animal and patient, It varies depending on factors such as food, time of administration, route of administration, rate of excretion and sensitivity to reaction, and usually a skilled physician or veterinarian can easily determine and prescribe an effective dosage for the desired treatment.
본 발명의 항균단백질 CPEL-1을 유효성분으로 포함하는 약학적 조성물은 유효성분으로서 본 발명의 항균단백질 CPEL-1을 0.0001~10% (w/v 또는 w/w) 포함하고, 바람직하게는 0.001~1% (w/v 또는 w/w) 포함하며, 가장 바람직하게는 0.1% (w/v 또는 w/w)를 포함할 수 있으나, 이에 제한되지는 않는다.The pharmaceutical composition comprising the antimicrobial protein CPEL-1 of the present invention as an active ingredient contains 0.0001 to 10% (w/v or w/w) of the antimicrobial protein CPEL-1 of the present invention as an active ingredient, preferably 0.001 It includes ~ 1% (w/v or w/w), and most preferably 0.1% (w/v or w/w), but is not limited thereto.
본 발명의 항균단백질 CPEL-1을 유효성분으로 포함하는 약학적 조성물은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 됨으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수도 있다. 이때 제형은 오일 또는 수성 매질 중의 용액, 현탁액 또는 유화액 형태의 액상 용액, 환, 엑스제, 분말제, 과립제, 정제 또는 캡슐제 형태로 이루어진 군에서 선택된 어느 하나의 제형일 수도 있으며, 희석제, 분산제 또는 안정화제를 추가적으로 포함할 수도 있으나 이에 제한되지는 않는다. The pharmaceutical composition containing the antimicrobial protein CPEL-1 of the present invention as an active ingredient is a pharmaceutically acceptable carrier and/or according to a method that can be easily carried out by a person of ordinary skill in the art to which the present invention belongs. By being formulated using an excipient, it may be prepared in a unit dosage form, or may be prepared by incorporating it into a multi-dose container. At this time, the formulation may be any one formulation selected from the group consisting of a solution, suspension or emulsion in an oil or aqueous medium, a liquid solution, a pill, an extract, a powder, a granule, a tablet or a capsule, and a diluent, a dispersant, or It may further include a stabilizer, but is not limited thereto.
본 발명의 항균단백질 CPEL-1을 유효성분으로 포함하는 약학적 조성물은 활용 방식에 따라, 이에 국한되지 않지만, 소독제 또는 항생제로 구현될 수 있다. 본 명세서에 있어서, '항생제’라는 용어는 방부제, 살균제 및 항균제를 총칭한다. The pharmaceutical composition comprising the antimicrobial protein CPEL-1 of the present invention as an active ingredient is not limited thereto, depending on the method of use, but may be implemented as a disinfectant or antibiotic. In the present specification, the term'antibiotic' refers to preservatives, fungicides and antibacterial agents.
이러한 활용 목적에서의 효율성을 높이기 위하여 다른 세균 종에 대하여 항균활성을 제공할 수 있는 항균물질들이 본 발명의 약학적 조성물에 추가될 수 있다. 또한, 클로스트리디움 퍼프린젠스에 대하여 항균활성을 갖는 다른 종류의 박테리오파지유래의 항균단백질(엔도리신)들도 추가될 수 있다. 클로스트리디움 퍼프린젠스에 대하여 항균활성을 갖는 박테리오파지 유래의 항균단백질이라 하더라도 항균력의 세기나 발휘 양태에 있어 서로 간에 차이가 있으므로 이들의 적절한 조합은 그 효과를 극대화 할 수 있다.Antibacterial substances capable of providing antibacterial activity against other bacterial species may be added to the pharmaceutical composition of the present invention in order to increase the efficiency for this purpose of use. In addition, other types of bacteriophage-derived antibacterial proteins (endolysin) having antibacterial activity against Clostridium perfringens may also be added. Even with antibacterial proteins derived from bacteriophages having antibacterial activity against Clostridium perfringens, there are differences in the strength and exertion of antibacterial activity, so an appropriate combination of them can maximize the effect.
본 발명에 따른 서열번호 2로 표시되는 아미노산 서열을 갖는 항균단백질 CPEL-1을 유효성분으로 포함하는 약학적 조성물을 이용한 클로스트리디움 퍼프린젠스의 감염 예방 또는 치료 방법은 기존의 항생제 등에 기반을 둔 방식에 비하여 클로스트리디움 퍼프린젠스에 대한 특이성이 매우 높다는 장점을 제공할 수 있다. 이는 다른 유용한 상재균에는 영향을 주지 않으면서도 클로스트리디움 퍼프린젠스의 감염 예방 또는 치료 목적으로 사용할 수 있음을 의미하며, 이의 사용에 따른 부작용이 매우 적다는 것을 의미한다. 통상적으로 항생제 등을 사용하면 일반 상재균들도 피해를 함께 입게 되어 결과적으로 사용에 따른 다양한 부작용이 나타난다.Clostridium perfringens infection prevention or treatment method using a pharmaceutical composition comprising the antimicrobial protein CPEL-1 having the amino acid sequence represented by SEQ ID NO: 2 according to the present invention as an active ingredient is based on conventional antibiotics, etc. Compared to the method, it can provide an advantage that the specificity for Clostridium perfringens is very high. This means that it can be used for the purpose of preventing or treating infection of Clostridium perfringens without affecting other useful flora, and it means that the side effects of its use are very few. In general, when antibiotics are used, common organisms are also damaged, resulting in various side effects.
도 1은 항균단백질 CPEL-1의 분리정제 과정을 보여주는 전기영동 사진으로서, 레인 M은 단백질 크기 마커이고, 레인 1은 정제 전 시료이고, 레인 2는 정제 시의 크로마토그래피 통과액이고, 레인 3부터 레인 10은 정제 분획이다. 1 is an electrophoresis photograph showing the separation and purification process of the antimicrobial protein CPEL-1, lane M is a protein size marker, lane 1 is a sample before purification, lane 2 is a chromatographic pass-through solution during purification, and from lane 3 Lane 10 is the purified fraction.
도 2는 항균단백질 CPEL-1의 클로스트리디움 퍼프린젠스에 대한 항균활성(용균활성)을 보여주는 결과로서, 투명한 부분은 항균단백질 CPEL-1의 항균활성(용균활성)에 의해 생성된 것이다. 2 is a result showing the antibacterial activity (lytic activity) of the antimicrobial protein CPEL-1 against Clostridium perfringens, and the transparent part is generated by the antibacterial activity (lytic activity) of the antimicrobial protein CPEL-1.
도 3은 항균단백질 CPEL-1의 클로스트리디움 퍼프린젠스에 대한 항균활성을 탁도 감소 조사법(Turbidity reduction assay)을 통해 확인한 실험 결과이다. 음성대조로 항균단백질 CPEL-1을 포함하지 않은 완충액 자체를 사용하였다. 가로축은 시간(분)이고 세로축은 600 nm에서의 흡광도이다.3 is an experimental result confirming the antimicrobial activity of the antimicrobial protein CPEL-1 against Clostridium perfringens through a turbidity reduction assay. As a negative control, a buffer solution that did not contain the antimicrobial protein CPEL-1 was used. The horizontal axis is time (minutes) and the vertical axis is the absorbance at 600 nm.
이하, 실시예에 의거하여 본 발명을 보다 구체적으로 설명하지만, 이들 실시예는 본 발명의 예시일 뿐이며 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on examples, but these examples are only examples of the present invention, and the scope of the present invention is not limited to these examples.
실시예Example 1: 박테리오파지 유래 1: derived from bacteriophage 항균단백질Antibacterial protein 서열 확보 Securing sequence
실시예Example 1-1: 박테리오파지 부유액 준비 1-1: Preparation of bacteriophage suspension
클로스트리디움 퍼프린젠스 균에 대한 사멸능을 갖는 순수 박테리오파지(기탁번호 KCTC 12664BP)를 포함한 부유액은 다음의 정제 과정을 거쳐서 제조하였다. 순수 박테리오파지를 포함한 용액 전체 부피의 50분의 1의 부피로 클로스트리디움 퍼프린젠스 균 배양액을 첨가해 준 다음 다시 12 시간 배양하였다. 배양 후 8,000 rpm에서 20분간 원심분리하여 상등액을 얻었다. 충분한 수의 박테리오파지가 포함된 액을 얻기 위해 이러한 과정을 총 5회 반복하였다. 최종 원심분리로 얻어진 상등액을 0.45 μm의 필터를 이용하여 여과한 다음 통상의 폴리에틸렌 글리콜(Polyethylene Glycol; PEG) 침전 과정을 실시하였다. 구체적으로, 여과액 100 mL에 10% PEG 8000/0.5 M NaCl이 되게 PEG와 NaCl을 첨가한 다음 4℃에서 2~3시간 동안 정치한 후, 8,000 rpm에서 30분간 원심분리하여 박테리오파지 침전물을 얻었다. 이렇게 얻어진 박테리오파지 침전물을 완충액(buffer; 10 mM Tris-HCl, 10 mM MgSO 4, 0.1% Gelatin, pH 8.0) 5 mL로 부유시켰다. 이를 박테리오파지 부유액 또는 박테리오파지 액이라 지칭한다.A suspension containing pure bacteriophage (accession number KCTC 12664BP) having a killing ability against Clostridium perfringens bacteria was prepared through the following purification process. Clostridium perfringens bacteria culture solution was added to a volume of 1/50 of the total volume of the solution including pure bacteriophage, and then cultured again for 12 hours. After incubation, centrifugation was performed at 8,000 rpm for 20 minutes to obtain a supernatant. This process was repeated a total of 5 times to obtain a solution containing a sufficient number of bacteriophage. The supernatant obtained by the final centrifugation was filtered using a 0.45 μm filter, and then a conventional polyethylene glycol (PEG) precipitation process was performed. Specifically, PEG and NaCl were added to 100 mL of the filtrate to become 10% PEG 8000/0.5 M NaCl, and then allowed to stand at 4° C. for 2 to 3 hours, followed by centrifugation at 8,000 rpm for 30 minutes to obtain a bacteriophage precipitate. The thus obtained bacteriophage precipitate was suspended in 5 mL of a buffer (buffer; 10 mM Tris-HCl, 10 mM MgSO 4 , 0.1% Gelatin, pH 8.0). This is referred to as bacteriophage suspension or bacteriophage liquid.
실시예Example 1-2: 박테리오파지의 유전체 확보 1-2: Securing the genome of bacteriophage
실시예 1-1에 따라 제조된 박테리오파지의 부유액으로부터 박테리오파지의 유전체를 다음과 같이 분리하였다. 먼저 부유액에 포함되어 있을 수 있는 클로스트리디움 퍼프린젠스의 DNA와 RNA를 제거하기 위해, 박테리오파지 부유액 10 mL에 DNase I과 RNase A를 각각 200 Unit씩 첨가한 다음에 37℃에서 30분간 방치하였다. 30분의 방치 후에 DNase I과 RNase A의 활성을 제거하기 위해, 0.5 M 에틸렌디아민테트라아세트산(Ethylenediaminetetraacetic acid; EDTA) 500 μL를 첨가한 다음에 다시 10분간 정치시켰다. 그리고 이를 추가로 10분간 65℃에 정치시킨 다음에 박테리오파지 외벽을 와해시키기 위해 proteinase K(20 ㎎/mL) 100 μL를 첨가한 후 37℃에서 20분간 반응시켰다. 그 후 10% 도데실 황산 나트륨염(Sodium dodecyl sulfate; SDS) 500 μL를 첨가한 다음에 다시 65℃에서 1시간 동안 반응시켰다. 1 시간 반응 후, 이 반응액에 25:24:1의 구성비를 갖는 페놀(Phenol) : 클로로포름(Chloroform) : 이소아밀알코올(Isoamylalcohol)의 혼합액 10 mL를 첨가해 준 후 잘 섞어 주었다. 그리고는 이것을 13,000 rpm에서 15분간 원심분리하여 층이 분리되게 한 다음에 분리된 층들 중에서 위층을 취하고 여기에 1.5 부피비의 아이소프로필 알코올(Isopropyl alcohol)을 첨가한 다음에 13,000 rpm에서 10분간 원심분리하여 유전체를 침전시켰다. 침전물을 회수한 후 침전물에 70% 에탄올(Ethanol)을 첨가한 다음에 다시 13,000 rpm에서 10분간 원심분리하여 침전물의 세척을 실시하였다. 세척된 침전물을 회수하고 진공 건조 시킨 다음에 이를 100 μL의 물에 녹였다. 상기 과정을 반복하여 박테리오파지의 유전체를 다량 확보하였다. The genome of the bacteriophage was separated from the suspension of the bacteriophage prepared according to Example 1-1 as follows. First, in order to remove DNA and RNA of Clostridium perfringens that may be contained in the suspension, 200 units of DNase I and RNase A were added to 10 mL of the bacteriophage suspension, and then left at 37°C for 30 minutes. In order to remove the activities of DNase I and RNase A after standing for 30 minutes, 500 μL of 0.5 M ethylenediaminetetraacetic acid (EDTA) was added and then allowed to stand for 10 minutes. Then, after allowing it to stand at 65°C for an additional 10 minutes, 100 μL of proteinase K (20 mg/mL) was added to disintegrate the outer wall of the bacteriophage, and then reacted at 37°C for 20 minutes. Thereafter, 500 μL of 10% sodium dodecyl sulfate (SDS) was added, and then reacted again at 65° C. for 1 hour. After 1 hour reaction, 10 mL of a mixture of phenol: chloroform: isoamylalcohol having a composition ratio of 25:24:1 was added to the reaction solution, and then mixed well. Then, this was centrifuged at 13,000 rpm for 15 minutes to separate the layers, and then the upper layer was taken out of the separated layers, and 1.5 volume ratio of isopropyl alcohol was added thereto, followed by centrifugation at 13,000 rpm for 10 minutes. The dielectric was precipitated. After recovering the precipitate, 70% ethanol was added to the precipitate, followed by centrifugation at 13,000 rpm for 10 minutes to wash the precipitate. The washed precipitate was recovered, dried in vacuum, and then dissolved in 100 μL of water. By repeating the above process, a large amount of the genome of the bacteriophage was secured.
실시예Example 1-3: 박테리오파지의 유전체 서열 분석 및 1-3: Analysis of genome sequence of bacteriophage and 항균단백질Antibacterial protein 서열 확보 Securing sequence
실시예 1-2에서 확보된 유전체를 이용하여 서울대학교 농생명과학공동기기원(National Instrumentation Center for Environmental Management)에서 illumina Mi-Seq 기기를 이용하여 차세대염기서열 분석(Next generation sequencing analysis)을 수행하여 박테리오파지의 유전체 서열 정보를 확보하였다.Using the genome obtained in Example 1-2, bacteriophage by performing a next generation sequencing analysis using an illumina Mi-Seq device at the National Instrumentation Center for Environmental Management, Seoul National University. The genome sequence information of was obtained.
상기 박테리오파지 유전체 서열로부터 NCBI GLIMMER와 BLAST를 이용해 박테리오파지의 항균단백질에 해당하는 유전자 서열을 추정할 수 있었다. 추정된 항균단백질의 유전자 서열(1,167 bp)을 박테리오파지 유래의 항균단백질에 대한 재조합 생산 기술 개발에 이용하였다. 이용한 항균단백질의 유전자 서열을 서열번호 1로 제시하였다. 참고로, 이 서열번호 1의 유전자 서열에 해당하는 항균단백질의 아미노산 서열(388개 아미노산 잔기로 구성)이 서열번호 2로 제시되어 있다. From the bacteriophage genome sequence, the gene sequence corresponding to the antibacterial protein of the bacteriophage could be estimated using NCBI GLIMMER and BLAST. The estimated gene sequence (1,167 bp) of the antimicrobial protein was used to develop recombinant production technology for the antibacterial protein derived from bacteriophage. The gene sequence of the used antimicrobial protein is shown in SEQ ID NO: 1. For reference, the amino acid sequence (consisting of 388 amino acid residues) of the antimicrobial protein corresponding to the gene sequence of SEQ ID NO: 1 is shown in SEQ ID NO: 2.
이렇게 확보된 서열번호 2의 아미노산 서열로 표시되는 항균단백질을 CPEL-1로 명명하였다.The antimicrobial protein represented by the amino acid sequence of SEQ ID NO: 2 thus obtained was named CPEL-1.
이러한 사실과 함께 통상적으로 박테리오파지 유래 항균단백질의 종류가 다르면 제공할 수 있는 항균특성이 다르다는 사실로부터 서열번호 2의 아미노산 서열로 표시되는 항균단백질 CPEL-1은 기존에 보고된 다른 박테리오파지 유래의 항균단백질들과는 다른 항균효과를 제공해 줄 수 있다고 판단하였다.Along with this fact, from the fact that the antibacterial properties that can be provided are different if the types of antibacterial proteins derived from bacteriophage are different, the antibacterial protein CPEL-1 represented by the amino acid sequence of SEQ ID NO: 2 is different from other previously reported antibacterial proteins derived from bacteriophage. It was judged that it could provide other antibacterial effects.
실시예Example 2: 2: 항균단백질Antibacterial protein CPELCPEL -1의 발현 플라스미드 및 -1 expression plasmid and 생산균주Production strain 제작 making
항균단백질 CPEL-1의 생산을 위하여 항균단백질 CPEL-1의 발현 플라스미드를 제작하였다. 앞서 실시예 1-3에서의 확인된 항균단백질 CPEL-1의 유전자를 Nco I과 Not I 제한효소 자리를 이용하여 pBAD-TOPO 벡터(Invitrogen 사)에 PCR(Polymerase chain reaction) 클로닝하였다. 이를 위해 클로닝 전에 미리 pBAD-TOPO 벡터 내에 존재했던 엔테로키나아제 자리(Enterokinase cleavage site)를 없애고 Not I 제한효소 자리를 삽입시킨 것을 제작한 다음에 이를 PCR 클로닝에 이용하였다. 또한 클로닝 후에 스타트 코돈(Start codon)을 맞추기 위해 위치특이적 돌연변이 유발 키트(Site-directed mutagenesis kit; iNtRON Biotechnology 사)를 이용하였으며, 이러한 과정을 통하여 최종적으로 항균단백질 CPEL-1의 발현 플라스미드를 제작하였다. 이렇게 제작된 항균단백질 CPEL-1의 발현 플라스미드를 pBAD-CPEL-1로 명명하였다. pBAD-CPEL-1의 염기 서열을 서열번호 3으로 제시하였다. For the production of the antimicrobial protein CPEL-1, an expression plasmid of the antimicrobial protein CPEL-1 was constructed. The gene of the antimicrobial protein CPEL-1 identified in Example 1-3 was cloned into a pBAD-TOPO vector (Invitrogen) using Nco I and Not I restriction enzyme sites. To this end, the Enterokinase cleavage site that was present in the pBAD-TOPO vector before cloning was removed and Not After making the one in which the I restriction enzyme site was inserted, it was used for PCR cloning. In addition, a site-directed mutagenesis kit (iNtRON Biotechnology) was used to match the start codon after cloning, and through this process, a plasmid for the expression of the antimicrobial protein CPEL-1 was finally produced. . The thus prepared expression plasmid of the antimicrobial protein CPEL-1 was named pBAD-CPEL-1. The base sequence of pBAD-CPEL-1 is shown in SEQ ID NO: 3.
이 pBAD-CPEL-1을 사용하여 대장균 TOP10을 형질전환시켜 항균단백질 CPEL-1의 생산 균주를 제작하였고, 이 생산균주를 pBAD-CPEL-1-TOP10으로 명명하였다(수탁번호 KCTC 14003BP). This pBAD-CPEL-1 was used to transform E. coli TOP10 to produce a strain producing the antimicrobial protein CPEL-1, and this production strain was named pBAD-CPEL-1-TOP10 (accession number KCTC 14003BP).
실시예Example 3: 3: 항균단백질Antibacterial protein CPELCPEL -1의 제조Preparation of -1
서열번호 2로 표시되는 아미노산 서열을 갖는 항균단백질 CPEL-1의 제조에 대하여 이하에 설명한다. 본 실시예에서는 본 발명자들에 의해 제작된 대장균 pBAD-CPEL-1-TOP10을 생산균주로 사용하였다. 그러나 당업자라면 본 발명에서 제시한 서열번호 2에 근거하여 제작한 발현 플라스미드나 본 발명에서 제시한 서열번호 1에 근거하여 제작한 발현 플라스미드를 사용하여 pBAD-CPEL-1-TOP10과는 다른 생산균주를 제작하여 활용할 수 있음은 자명할 것이다.Preparation of the antimicrobial protein CPEL-1 having the amino acid sequence represented by SEQ ID NO: 2 will be described below. In this example, E. coli pBAD-CPEL-1-TOP10 produced by the present inventors was used as a production strain. However, those skilled in the art can use the expression plasmid prepared based on SEQ ID NO: 2 presented in the present invention or the expression plasmid prepared based on SEQ ID NO: 1 presented in the present invention to create a production strain different from pBAD-CPEL-1-TOP10. It will be obvious that it can be produced and utilized.
50 μg/mL이 되게 카나마이신이 포함된 LB배지(트립톤, 10 g/L; 효모 추출물, 5 g/L; 염화나트륨, 10 g/L) 20 mL에 대장균 pBAD-CPEL-1-TOP10을 접종(10 μL 첨가)한 다음 37℃에서 한밤동안 진탕 배양하였다(200 rpm). 다음날, 50 μg/mL이 되게 카나마이신이 포함된 LB배지 1 L가 들어 있는 배양기에 한밤 배양한 배양액을 OD 600(600 nm에서의 흡광도)이 1/100 부피비로 첨가하였다. 9 L aeration, 200 rpm/min, 37℃ 조건에서 배양을 실시하였다. 세포 농도가 600 nm에서의 흡광도 기준으로 0.5가 되었을 때, 최종 농도가 0.2%가 되도록 L-아라비노즈를 첨가하여 서열번호 2로 표시되는 아미노산 서열을 갖는 항균단백질 CPEL-1의 발현을 유도하였다. 발현 유도 후에 37℃에서 4시간 배양을 실시하였다. Inoculate E. coli pBAD-CPEL-1-TOP10 to 20 mL of LB medium (trypton, 10 g/L; yeast extract, 5 g/L; sodium chloride, 10 g/L) containing kanamycin to be 50 μg/mL ( 10 μL) and then incubated with shaking at 37° C. overnight (200 rpm). The next day, an OD 600 (absorbance at 600 nm) of OD 600 (absorbance at 600 nm) was added in a volume ratio of 1/100 in an incubator containing 1 L of LB medium containing kanamycin to be 50 μg/mL. Culture was performed under the conditions of 9 L aeration, 200 rpm/min, and 37°C. When the cell concentration reached 0.5 based on the absorbance at 600 nm, L-arabinose was added so that the final concentration was 0.2%, thereby inducing the expression of the antimicrobial protein CPEL-1 having the amino acid sequence represented by SEQ ID NO: 2. After induction of expression, culture was performed at 37°C for 4 hours.
배양 종료 후, 세포 배양액을 회수하여 13,000 rpm, 4℃에서 5분간 원심분리하여 세포 침전물을 회수하였다. 회수한 세포 침전물은 세포 침전물 1 g 당 20 mL의 완충액(20 mM K 3PO 4, pH 6.0)을 사용하는 방식으로 부유시켰다. 이렇게 준비된 세포 부유액에 대하여 초음파 분쇄법을 적용하여 세포 파쇄를 실시하였다. 초음파 분쇄법의 적용 조건은 3초간 초음파를 가하여 세포를 깨고 3초간 멈추는 것을 총 30분간 반복하여 실시하였다. 이때 ice bath 상태로 실시하였다. 세포 파쇄 후에 세포 파쇄액을 4,500 rpm, 4℃에서 20분간 원심분리하여 상등액을 회수하였다. 얻어진 상등액에 대하여 0.2 μm 필터를 사용하여 여과를 실시한 다음에 통상의 양이온-교환 크로마토그래피(Cation-exchange chromatography) 정제공정을 통하여 정제하였다. 정제공정을 간단히 설명하면 다음과 같다. 양이온-교환수지(Cation-exchange resin)로는 5 mL의 HiTrap TM SP FF(GE Healthcare사)를 사용하였다. 크로마토그래피는 칼럼을 Buffer A(20 mM K 3PO 4, pH 6.0)로 미리 평형화시킨 다음 실시하였고, 시료를 칼럼에 적하한 다음에는 5 mL/min의 유속(Flow rate)으로 Buffer A를 10 CV(Column volume) 흘려주어 세척을 실시하였다. 세척 후에는 5 mL/min의 유속으로 Buffer A에서 Buffer B(20 mM K 3PO 4, 1 M NaCl, pH 6.0)로의 농도구배(Gradient)가 0%에서 100%가 되게 하는 조건으로 크로마토그래피를 수행하였다. 이 과정에서 목적하는 서열번호 2로 표시되는 아미노산 서열을 갖는 항균단백질 CPEL-1의 용출이 달성되었다. 정제한 항균단백질 CPEL-1을 전기영동을 통하여 분석한 결과가 도 2에 제시되어 있다. After completion of the culture, the cell culture solution was collected and centrifuged at 13,000 rpm and 4° C. for 5 minutes to recover the cell precipitate. The recovered cell precipitate was suspended in a manner using 20 mL of a buffer solution (20 mM K 3 PO 4, pH 6.0) per 1 g of the cell precipitate. The cell suspension thus prepared was subjected to cell disruption by applying an ultrasonic grinding method. The application conditions of the ultrasonic grinding method were repeated for a total of 30 minutes to break the cells by applying ultrasonic waves for 3 seconds and stop for 3 seconds. At this time, it was conducted in an ice bath state. After cell disruption, the cell disruption solution was centrifuged at 4,500 rpm and 4° C. for 20 minutes to recover the supernatant. The obtained supernatant was filtered using a 0.2 μm filter, and then purified through a conventional cation-exchange chromatography purification process. A brief description of the purification process is as follows. As a cation-exchange resin, 5 mL of HiTrap TM SP FF (GE Healthcare) was used. Chromatography was performed after equilibrating the column with Buffer A (20 mM K 3 PO 4 , pH 6.0) in advance, and after dropping the sample onto the column, Buffer A was added to 10 CV at a flow rate of 5 mL/min. (Column volume) was flushed and washed. After washing, chromatography was performed under conditions such that the gradient from Buffer A to Buffer B (20 mM K 3 PO 4 , 1 M NaCl, pH 6.0) is 0% to 100% at a flow rate of 5 mL/min. Performed. In this process, elution of the antimicrobial protein CPEL-1 having the amino acid sequence represented by the desired SEQ ID NO: 2 was achieved. The results of analyzing the purified antimicrobial protein CPEL-1 through electrophoresis are shown in FIG. 2.
확보된 정제 분획 중에 항균단백질 CPEL-1를 고농도로 포함하고 있는 분획들(도 1에서의 레인 4부터 레인 10에 상응하는 정제 분획들)을 모았고, 이를 완충액(50 mM 트리스-염산, pH 7.5)에 대하여 투석을 실시하여 매질 교환을 수행하였다. 이를 통하여 90% 이상의 순도를 갖는 항균단백질 CPEL-1 용액을 확보할 수 있었다. Fractions containing a high concentration of the antimicrobial protein CPEL-1 in the obtained purified fractions (purified fractions corresponding to lanes 4 to 10 in FIG. 1) were collected, and this was obtained in a buffer solution (50 mM Tris-HCl, pH 7.5). Dialysis was carried out for medium exchange. Through this, a solution of the antimicrobial protein CPEL-1 having a purity of 90% or more could be obtained.
실시예Example 4: 4: 점적Drip 실험을 통한 Through experiment 항균단백질Antibacterial protein CPELCPEL -1의 항균활성 조사Investigation of antimicrobial activity of -1
본 발명자들은 항균단백질 CPEL-1의 항균활성을 통상의 점적 실험을 통하여 조사해 보았다. 실험에서는 클로스트리디움 퍼프린젠스 2주, 엔테로코쿠스 패칼리스( Enterococcus faecalis) 2주, 황색포도상구균( Staphylococcus aureus) 2주, 살모넬라( Salmonella) 2주, 및 대장균 2주를 대상으로 하였다. 상기 박테리아는 미국의 The American Type Culture Collection(ATCC) 등의 외부기관으로부터 분양을 받았거나 본 발명자들에 의해 분리 및 동정된 것들이었다. The present inventors investigated the antibacterial activity of the antimicrobial protein CPEL-1 through a usual drop experiment. In the experiment, Clostridium perfringens 2 weeks, Enterococcus faecalis 2 weeks, Staphylococcus aureus) 2 weeks, Salmonella (Salmonella) were enrolled in two weeks, and E. coli two weeks. The bacteria were pre-sale from external organizations such as The American Type Culture Collection (ATCC) in the United States, or were isolated and identified by the present inventors.
실험방법은 TSA 배지에 600 ㎚에서 흡광도가 1 정도 되는 각 박테리아 배양액 2 mL을 각각 다른 평판배지에 도말한 후 건조시켰다. 실험대상 박테리아 배양액은 클로스트리디움 퍼프린젠스의 경우 37℃ 혐기배양기에서 한밤 정치 배양을 실시하여 확보하였으며, 그 외의 균종들은 37℃ 배양기에서 한밤 진탕 배양을 실시하여 확보하였다. 평판배지에서 균이 자란 것을 확인한 후에 항균단백질 CPEL-1 용액(농도: 0.5, 1.0, 1.5 μM) 10 μL씩을 떨어뜨렸다. 음성대조로는 CPEL-1이 포함되지 않은 완충액(50 mM 트리스-염산, pH 7.5)을 떨어뜨렸다. 점적 후에 1시간 정도 추가 배양한 후에 각 박테리아의 용균 정도를 관찰하였다. 그 결과, 항균단백질 CPEL-1은 클로스트리디움 퍼프린젠스에 대해서만 항균활성(용균력)이 있었고 다른 균종들에 대해서는 항균활성이 없었다. 클로스트리디움 퍼프린젠스에 대한 항균활성은 실험에서 대상이 된 클로스트리디움 퍼프린젠스 2주 모두에 대해서 확인되었다. 항균단백질 CPEL-1의 클로스트리디움 퍼프린젠스에 대한 항균활성 실험 결과를 도 2에 제시한다.In the experimental method, 2 mL of each bacterial culture solution having an absorbance of about 1 at 600 nm in TSA medium was plated on a different plate medium, and then dried. In the case of Clostridium perfringens, the experimental bacterial culture was obtained by performing midnight static culture in an anaerobic incubator at 37°C, and other strains were obtained by performing midnight shaking culture in an incubator at 37°C. After confirming that the bacteria were grown on the plate medium, 10 μL of the antibacterial protein CPEL-1 solution (concentration: 0.5, 1.0, 1.5 μM) was added dropwise. As a negative control, a buffer solution (50 mM Tris-HCl, pH 7.5) containing no CPEL-1 was dropped. After instillation, the culture was further cultured for about 1 hour, and the degree of lysis of each bacteria was observed. As a result, the antimicrobial protein CPEL-1 had antimicrobial activity (lytic activity) only against Clostridium perfringens and no antibacterial activity against other strains. Antimicrobial activity against Clostridium perfringens was confirmed for all two weeks of Clostridium perfringens, which were the subjects in the experiment. Figure 2 shows the results of the antimicrobial activity of the antimicrobial protein CPEL-1 against Clostridium perfringens.
이로부터 항균단백질 CPEL-1은 클로스트리디움 퍼프린젠스에 대하여 우수한 용균력(항균력)을 제공할 수 있으며, 또한 클로스트리디움 퍼프린젠스에 의해 유발되는 감염성 질환의 예방 또는 치료에 효과적으로 활용될 수 있음을 확인할 수 있었다.From this, the antimicrobial protein CPEL-1 can provide excellent lytic power (antibacterial power) against Clostridium perfringens, and can also be effectively used for the prevention or treatment of infectious diseases caused by Clostridium perfringens. It could be confirmed that there is.
실시예Example 5: 탁도 감소 조사법을 통한 5: Through the turbidity reduction investigation method 항균단백질Antibacterial protein CPELCPEL -1의 항균활성 조사Investigation of antimicrobial activity of -1
항균단백질 CPEL-1 용액을 사용하여 탁도 감소 조사법(Turbidity reduction assay)을 통해 항균단백질 CPEL-1의 항균활성을 조사하였다. 실험대상 박테리아는 실시예 4와 동일하였다.The antimicrobial activity of the antimicrobial protein CPEL-1 was investigated by using the antibacterial protein CPEL-1 solution through a turbidity reduction assay. The bacteria to be tested were the same as in Example 4.
탁도 감소 조사법의 실험방법은 다음과 같았다. 생리식염수에 실험대상 박테리아를 600 ㎚에서 흡광도가 0.5 정도가 되도록 부유시킨 다음에 이 부유액 270 μL에 항균단백질 CPEL-1 용액을 2.48 μM, 0.248 μM, 0.0248 μM이 되게 첨가해 준 다음에 600 ㎚에서 흡광도를 30분간 측정하는 방식으로 실시하였다. 음성대조로는 항균단백질 CPEL-1을 포함하지 않은 완충액(50 mM 트리스-염산, pH 7.5)을 사용하였다.The experimental method of the turbidity reduction investigation method was as follows. After suspending the bacteria to be tested in physiological saline so that the absorbance at 600 nm is about 0.5, add the antibacterial protein CPEL-1 solution to 2.48 μM, 0.248 μM, and 0.0248 μM to 270 μL of this suspension, and then at 600 nm. The absorbance was measured for 30 minutes. As a negative control, a buffer solution (50 mM Tris-HCl, pH 7.5) that did not contain the antimicrobial protein CPEL-1 was used.
실험 결과로, 항균단백질 CPEL-1은 클로스트리디움 퍼프린젠스에 대해서만 용균활성을 보였고 다른 시험 대상 박테리아에 대해서는 용균활성을 갖고 있지 않았다. 클로스트리디움 퍼프린젠스 균에 대한 실험 결과를 도 3에 제시하였다. 탁도 감소 조사법을 통한 항균단백질 CPEL-1의 항균활성 조사에서 항균단백질 CPEL-1의 항균활성 발휘가 매우 빠르다는 것을 확인할 수 있었다. 이러한 신속한 항균활성 발휘는 기존의 어떤 항생제들도 제공하지 못했던 특성이라 할 수 있다. As a result of the experiment, the antibacterial protein CPEL-1 showed lytic activity only against Clostridium perfringens, but did not have lytic activity against other test bacteria. The experimental results for Clostridium perfringens bacteria are presented in FIG. 3. In the investigation of the antimicrobial activity of the antibacterial protein CPEL-1 through the turbidity reduction method, it was confirmed that the antimicrobial activity of the antimicrobial protein CPEL-1 was very fast. This rapid antimicrobial activity can be said to be a characteristic that no existing antibiotics have been able to provide.
실시예Example 6: 6: 항균단백질Antibacterial protein CPELCPEL -1의 -1 of 클로스트리디움Clostridium 퍼프린젠스Perfringens 감염 예방에 대한 For infection prevention 적용예Application example
9 mL의 영양배지(Nutrient broth: 소고기 추출물 3 g/L, 펩톤 5 g/L)를 담은 하나의 튜브에는 약 1 mg/mL의 항균단백질 CPEL-1 용액 100 μL를 넣어주고, 대조실험으로는 같은 조성의 배지 9 mL을 담은 튜브에 항균단백질 CPEL-1 용액 대신에 100 μL의 영양배지를 추가로 첨가하였다. 여기에 최종적으로 600 nm에서 흡광도가 0.5 정도가 되도록 클로스트리디움 퍼프린젠스 배양액을 각각 넣어준 다음에 37℃ 혐기배양기에 옮겨 정치 배양하면서 클로스트리디움 퍼프린젠스의 성장 상태를 관찰해 보았다. 표 1의 결과에서 알 수 있는 바와 같이, 항균단백질 CPEL-1 용액을 첨가해 주지 않은 튜브에서는 60분 후 600 nm에서의 흡광도가 1.3 정도가 될 정도로 클로스트리디움 퍼프린젠스이 매우 잘 성장한 반면에, 항균단백질 CPEL-1 용액을 첨가해 준 튜브에서는 10분 경과 후 600 nm에서의 흡광도가 0.1 정도 수준으로, 60분 후에는 0.05 수준으로 점차 감소하는 것을 관찰할 수 있었다. In one tube containing 9 mL of nutrient broth (3 g/L of beef extract, 5 g/L of peptone), 100 μL of about 1 mg/mL of the antibacterial protein CPEL-1 solution was added. Instead of the antibacterial protein CPEL-1 solution, 100 μL of nutrient medium was additionally added to a tube containing 9 mL of the same composition. Finally, each Clostridium perfringens culture solution was added so that the absorbance at 600 nm was about 0.5, and then transferred to an anaerobic incubator at 37° C. and stationary cultured to observe the growth state of Clostridium perfringens. As can be seen from the results of Table 1, in the tube to which the antibacterial protein CPEL-1 solution was not added, Clostridium perfringens grew very well so that the absorbance at 600 nm became about 1.3 after 60 minutes. In the tube to which the antibacterial protein CPEL-1 solution was added, it was observed that the absorbance at 600 nm gradually decreased to about 0.1 level after 10 minutes and to 0.05 level after 60 minutes.
구분 division 배양 0시간0 hours incubation 배양 후 10분10 minutes after incubation 배양 후 60분60 minutes after incubation
대조군(무처리)Control (no treatment) 0.50.5 0.70.7 1.31.3
실험군 (항균단백질 CPEL-1 용액 첨가)Experimental group (antibacterial protein CPEL-1 solution added) 0.50.5 0.10.1 0.050.05
이 결과로부터 본 발명의 항균단백질 CPEL-1이 클로스트리디움 퍼프린젠스의 성장을 저해할 뿐만 아니라 사멸까지 시키는 능력이 있음을 확인할 수 있었고, 이로부터 항균단백질 CPEL-1이 클로스트리디움 퍼프린젠스의 감염을 예방하는 목적의 조성물의 유효성분으로 활용될 수 있다고 결론지을 수 있었다.From this result, it was confirmed that the antimicrobial protein CPEL-1 of the present invention has the ability to inhibit the growth of Clostridium perfringens as well as kill it, and from this, the antimicrobial protein CPEL-1 is Clostridium perfringens. It could be concluded that it could be used as an active ingredient in the composition for the purpose of preventing infection.
실시예Example 7: 7: 항균단백질Antibacterial protein CPELCPEL -1의 -1 of 클로스트리디움Clostridium 퍼프린젠스Perfringens 감염에 대한 치료 효과Therapeutic effect on infection 조사 Research
클로스트리디움 퍼프린젠스 감염에 대한 항균단백질 CPEL-1의 치료 효과를 감염 동물 모델을 사용하여 조사하였다.The therapeutic effect of the antimicrobial protein CPEL-1 on Clostridium perfringens infection was investigated using an infected animal model.
구체적으로, 약 20 g 내외 체중의 5주령 BALB/c 마우스[specific pathogen-free(SPF) grade]를 실험동물로 사용하였다. 총 24 마리를 2 개의 군으로 분리(군당 12 마리씩)한 다음에 tape-stripping 방법으로 skin epidermis에 상처를 유발하고 상처부위에 클로스트리디움 퍼프린젠스 균 1× 10 8 cfu(즉, 1× 10 8 cfu/mouse)를 도포하여 감염을 유도하였다. 하나의 군(처치군)에 대해서는 균 강제 감염 후에 24 시간 경과 시점에 감염부위에 항균단백질 CPEL-1 용액(10 mg/mL) 0.1 mL을 하루에 2회로 5일간 처치하였다. 또 다른 군(대조군)에 대해서는 완충액(Phosphate buffered saline)만을 동일 부피 처치하였다. 완충액 투여는 항균단백질 CPEL-1 용액 투여와 동일하게 균 강제 감염 후에 24 시간 경과 시점부터 동일한 간격으로 실시하였다. 균 강제 감염 후로부터 D0, D4, D7, D14 일에 상처부위 관찰하여 상처회복 정도를 확인하였으며, 동일한 개체를 대상으로 감염부위의 조직을 적출하여 콜로니(Colony) 수 조사를 수행하여 항균단백질 CPEL-1의 유효성을 조사하였다. Specifically, a 5-week-old BALB/c mouse [specific pathogen-free (SPF) grade] of about 20 g of body weight was used as an experimental animal. After separating a total of 24 animals into 2 groups (12 animals per group), induce a wound on the skin epidermis by a tape-stripping method, and Clostridium perfringens bacteria 1×10 8 cfu (i.e., 1×10) on the wound site. 8 cfu/mouse) was applied to induce infection. For one group (treatment group), 0.1 mL of an antibacterial protein CPEL-1 solution (10 mg/mL) was treated twice a day for 5 days at 24 hours after the forced infection. For another group (control group), only Phosphate buffered saline was treated in the same volume. The buffer solution was administered at the same interval from the time point 24 hours after the forced infection of the bacteria, similar to the administration of the antibacterial protein CPEL-1 solution. The degree of wound recovery was confirmed by observing the wound site on days D0, D4, D7, and D14 after the forced infection of the fungus, and the number of colonies was investigated by extracting the tissues of the infected site in the same individual, and the antimicrobial protein CPEL- The effectiveness of 1 was investigated.
상처회복 정도는 심각도(Severity)에 따른 임상지수(Clinical Scores; 0, no symptoms; 1, mild; 2, intermediate; 3, severe)를 측정하는 방식으로 실시하였고, 조직시료에서의 콜로니 수 조사는 0.1 g의 조직 시료를 생리식염수에 첨가하여 파쇄한 다음에 이 시료를 클로스트리디움 퍼프린젠스 균 선택배지(TSC agar plate; OXOID)에 모두 도말한 후에 혐기 조건의 37℃에서 18-24시간 동안 배양한 다음에 형성된 콜로니 중에 클로스트리디움 퍼프린젠스 균으로 추정되는 콜로니를 선별하고, 이렇게 선별된 콜로니들을 각각 시료로 하여 클로스트리디움 퍼프린젠스 균 특이 중합효소연쇄반응(Polymerase chain reaction: PCR)을 수행하여 최종적으로 해당 콜로니가 클로스트리디움 퍼프린젠스 균인지를 확인하는 방식으로 실시하였다. The degree of wound recovery was conducted by measuring the clinical score (Clinical Scores; 0, no symptoms; 1, mild; 2, intermediate; 3, severe) according to the severity, and the number of colonies in the tissue sample was 0.1. After adding g of tissue sample to physiological saline and crushing, the sample was spread on a Clostridium perfringens selection medium (TSC agar plate; OXOID) and incubated for 18-24 hours at 37℃ under anaerobic conditions. Then, among the colonies formed, colonies presumed to be Clostridium perfringens bacteria were selected, and the selected colonies were each sampled to perform a Clostridium perfringens bacteria specific polymerase chain reaction (PCR). It was carried out in a manner that finally confirms whether the colony is Clostridium perfringens bacteria.
그 결과는 표 2 및 표 3과 같았으며, 항균단백질 CPEL-1의 투여가 감염 부위 상처 회복 및 감염조직에 잔류하는 클로스트리디움 퍼프린젠스 균수 감소에 있어 확연한 효과를 제공하였다. The results are shown in Tables 2 and 3, and administration of the antimicrobial protein CPEL-1 provided a distinct effect in healing wounds at the infected site and reducing the number of Clostridium perfringens bacteria remaining in the infected tissue.
group Clinical Scores (평균)Clinical Scores (average)
D0D0 D4D4 D7D7 D14D14
대조군Control 0.750.75 2.52.5 2.752.75 2.52.5
처치군Treatment group 1One 0.750.75 0.50.5 00
group 평판배지 접시 당 검출된 클로스트리디움 퍼프린젠스 균의 콜로니 수 (평균)Number of colonies of Clostridium perfringens detected per plate medium (average)
D0D0 D4D4 D7D7 D14D14
대조군Control 4.754.75 5.255.25 5.55.5 5.755.75
처치군 Treatment group 55 0.750.75 00 00
이상의 결과로 본 발명의 항균단백질 CPEL-1이 클로스트리디움 퍼프린젠스 균의 감염 치료에 효과적임을 확인할 수 있다. 이러한 특성은 항균단백질 CPEL-1을 유효성분으로 포함된 약학적 조성물이 클로스트리디움 퍼프린젠스 균 감염 치료 목적으로 활용될 수 있음을 보여주고, 또한 클로스트리디움 퍼프린젠스 균의 감염 치료 목적으로 통상의 항생제와 같은 방식으로 활용될 수 있음을 보여 준다. As a result of the above, it can be confirmed that the antimicrobial protein CPEL-1 of the present invention is effective in treating an infection of Clostridium perfringens bacteria. These characteristics show that a pharmaceutical composition containing the antimicrobial protein CPEL-1 as an active ingredient can be used for the purpose of treating Clostridium perfringens infection, and also for the purpose of treating infection of Clostridium perfringens bacteria. It shows that it can be used in the same way as conventional antibiotics.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.As described above, specific parts of the present invention have been described in detail, and for those of ordinary skill in the art, it is clear that these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereto. Therefore, it will be said that the practical scope of the present invention is defined by the appended claims and their equivalents.
[수탁번호][Accession number]
기탁기관명: KCTCDepositary Institution Name: KCTC
수탁번호: KCTC 14003BPAccession number: KCTC 14003BP
수탁일자: 20191023Consignment Date: 20191023
Figure PCTKR2020012012-appb-img-000001
Figure PCTKR2020012012-appb-img-000001

Claims (8)

  1. 클로스트리디움 퍼프린젠스( Clostridium perfringens)에 대한 용균력을 갖는, 서열번호 2의 아미노산 서열로 표시되는 항균단백질 CPEL-1.Clostridium perfringens (Clostridium perfringens ) having lytic power, antimicrobial protein CPEL-1 represented by the amino acid sequence of SEQ ID NO: 2.
  2. 서열번호 1로 표시되는 유전자가 도입된 발현 플라스미드를 사용하여 형질전환시켜 제작한 생산균주를 사용하여 제1항의 항균단백질 CPEL-1을 제조하는 방법.A method for producing the antimicrobial protein CPEL-1 of claim 1 using a production strain produced by transforming using an expression plasmid into which the gene represented by SEQ ID NO: 1 has been introduced.
  3. 제1항의 항균단백질 CPEL-1을 유효성분으로 포함하는, 클로스트리디움 퍼프린젠스( Clostridium perfringens)에 의해 유발되는 질환 예방용 또는 치료용의 약학적 조성물.A pharmaceutical composition for preventing or treating diseases caused by Clostridium perfringens , comprising the antimicrobial protein CPEL-1 of claim 1 as an active ingredient.
  4. 제3항에 있어서, 상기 약학적 조성물은 항생제를 포함한 약학적 조성물 형태로 사용되는 것을 특징으로 하는, 클로스트리디움 퍼프린젠스( Clostridium perfringens)에 의해 유발되는 질환 예방용 또는 치료용의 약학적 조성물.The pharmaceutical composition for preventing or treating diseases caused by Clostridium perfringens according to claim 3, wherein the pharmaceutical composition is used in the form of a pharmaceutical composition including antibiotics. .
  5. 제3항 및 제4항 중 어느 한 항에 있어서, 상기 질환은 식중독(Food poisoning), 괴사성 장염(Necrotizing enteritis), 가스 괴저병(Gas gangrene), 적리(Dysentery), 장독소혈증(Enterotoxemia), 신연화증(Pulpy kidney disease) 및 피부염(Dermatitis)으로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는, 클로스트리디움 퍼프린젠스( Clostridium perfringens)에 의해 유발되는 질환 예방용 또는 치료용의 약학적 조성물The method of any one of claims 3 and 4, wherein the disease is food poisoning, necrotizing enteritis, gas gangrene, dysentery, enterotoxemia, Seen leukomalacia (Pulpy kidney disease) and dermatitis (dermatitis), characterized in that one selected from a group consisting of Clostridium perfringens (Clostridium perfringens )-induced disease prevention or treatment pharmaceutical composition
  6. 제3항 및 제4항 중 어느 한 항에 따른 항균단백질 CPEL-1을 유효성분으로 포함하는 약학적 조성물을 인간을 제외한 치료 대상에 투여하는 단계를 포함하는, 클로스트리디움 퍼프린젠스( Clostridium perfringens)에 의해 유발되는 질환을 예방 또는 치료하는 방법.Claim 3 and claim 4, wherein any one of the antimicrobial protein CPEL-1 for containing a pharmaceutical composition comprising, as an active ingredient, the step of administering a treatment subject non-human, Clostridium perfringens (Clostridium according to one wherein perfringens ) to prevent or treat diseases caused by.
  7. 제6항에 있어서, 상기 약학적 조성물이 항생제를 포함한 약학적 조성물 형태로 치료 대상에 투여되는 것을 특징으로 하는, 클로스트리디움 퍼프린젠스( Clostridium perfringens)에 의해 유발되는 질환을 예방 또는 치료하는 방법.7. The method of claim 6, for preventing or treating diseases caused by, Clostridium perfringens (Clostridium perfringens), characterized in that the said pharmaceutical composition is administered to the treatment target by the pharmaceutical composition form, including antibiotics .
  8. 제6항 및 제7항에 있어서, 상기 질환은 식중독(Food poisoning), 괴사성 장염(Necrotizing enteritis), 가스 괴저병(Gas gangrene), 적리(Dysentery), 장독소혈증(Enterotoxemia), 신연화증(Pulpy kidney disease) 및 피부염(Dermatitis)으로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는, 클로스트리디움 퍼프린젠스( Clostridium perfringens)에 의해 유발되는 질환을 예방 또는 치료하는 방법.The method of claim 6 and 7, wherein the disease is food poisoning, necrotizing enteritis, gas gangrene, dysentery, enterotoxemia, and nephropathy kidney disease) and dermatitis (Dermatitis), characterized in that any one selected from the group consisting of, Clostridium perfringens (Clostridium perfringens) a method for preventing or treating a disease caused by.
PCT/KR2020/012012 2019-10-28 2020-09-07 Novel antibacterial protein cpel-1 having lytic activity against clostridium perfringens WO2021085834A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0134232 2019-10-28
KR1020190134232A KR102305636B1 (en) 2019-10-28 2019-10-28 Novel antibacterial protein CPEL-1 having lytic activity against Clostridium perfringens

Publications (1)

Publication Number Publication Date
WO2021085834A1 true WO2021085834A1 (en) 2021-05-06

Family

ID=75715298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012012 WO2021085834A1 (en) 2019-10-28 2020-09-07 Novel antibacterial protein cpel-1 having lytic activity against clostridium perfringens

Country Status (2)

Country Link
KR (1) KR102305636B1 (en)
WO (1) WO2021085834A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080020768A (en) * 2006-09-01 2008-03-06 원광대학교산학협력단 A composition comprising novel 6'-o-vanillyloxypaeoniflorin isolated from an extract of moutan cortex radicis having antibacterial effect
KR20100128095A (en) * 2009-05-27 2010-12-07 중앙대학교 산학협력단 Methods for sterilizing a microorganism generating a food poisoning
KR20140022571A (en) * 2012-08-14 2014-02-25 한국방송통신대학교 산학협력단 Pharmaceutical composition for preventing or treating infectious diseases by pathogenic microorganism comprising extract of rubus coreanus branch as effective component
KR102035283B1 (en) * 2019-01-31 2019-10-22 서울대학교 산학협력단 Thermal stable endolysin LysCPD2 with lytic activity against Clostridium perfringens

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101649849B1 (en) 2014-12-29 2016-08-22 주식회사 인트론바이오테크놀로지 Novel Clostridium perfringens bacteriophage Clo-PEP-1 and its use for preventing proliferation of Clostridium perfringens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080020768A (en) * 2006-09-01 2008-03-06 원광대학교산학협력단 A composition comprising novel 6'-o-vanillyloxypaeoniflorin isolated from an extract of moutan cortex radicis having antibacterial effect
KR20100128095A (en) * 2009-05-27 2010-12-07 중앙대학교 산학협력단 Methods for sterilizing a microorganism generating a food poisoning
KR20140022571A (en) * 2012-08-14 2014-02-25 한국방송통신대학교 산학협력단 Pharmaceutical composition for preventing or treating infectious diseases by pathogenic microorganism comprising extract of rubus coreanus branch as effective component
KR102035283B1 (en) * 2019-01-31 2019-10-22 서울대학교 산학협력단 Thermal stable endolysin LysCPD2 with lytic activity against Clostridium perfringens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE NUCLEOTIDE 27 December 2016 (2016-12-27), ANONYMOUS: "Clostridium phage Clo-PEP-1, complete genome", XP055808376, retrieved from NCBI Database accession no. KY206887 *

Also Published As

Publication number Publication date
KR20210050082A (en) 2021-05-07
KR102305636B1 (en) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2016108536A1 (en) Novel clostridium perfringens bacteriophage clo-pep-1 and use thereof for inhibiting proliferation of clostridium perfringens
WO2017111306A1 (en) Novel pasteurella multocida bacteriophage pas-mup-1 and use thereof for inhibiting proliferation of pasteurella multocida
WO2018155813A2 (en) Novel antibacterial protein efal-2 having bacteriolytic ability with respect to enterococcus faecium
KR101822812B1 (en) Novel Enterococcus faecium bacteriophage Ent-FAP-4 and its use for preventing proliferation of Enterococcus faecium
WO2018101594A1 (en) Escherichia coli bacteriophage esc-cop-7, and use thereof for suppressing proliferation of pathogenic escherichia coli
WO2016122127A1 (en) Novel lactobacillus brevis bacteriophage lac-brp-1 and use thereof for inhibiting lactobacillus brevis proliferation
WO2016122128A1 (en) Novel lactobacillus plantarum bacteriophage lac-plp-1 and use thereof for inhibiting lactobacillus plantarum proliferation
WO2018155814A1 (en) Novel clostridium perfringens bacteriophage clo-pep-2 and use for inhibiting clostridium perfringens proliferation of same
WO2020013451A1 (en) E. coli bacteriophage esc-cop-14 and use thereof in inhibiting growth of pathogenic e. coli
WO2017217726A1 (en) Novel vibrio parahaemolyticus bacteriophage vib-pap-5 and use thereof for suppressing proliferation of vibrio parahaemolyticus bacteria
WO2018151417A1 (en) Novel pseudomonas aeruginosa bacteriophage pse-aep-4 and use thereof for inhibiting proliferation of pseudomonas aeruginosa
WO2018151416A1 (en) Novel pseudomonas aeruginosa bacteriophage pse-aep-3 and use thereof for inhibiting proliferation of pseudomonas aeruginosa
WO2019235781A1 (en) Novel streptococcus suis bacteriophage str-sup-1 and use thereof in inhibiting streptococcus suis bacterium proliferation
WO2019235782A1 (en) Novel streptococcus suis bacteriophage str-sup-2, and use thereof for inhibiting proliferation of streptococcus suis strains
WO2018208001A1 (en) Novel vibrio parahaemolyticus bacteriophage vib-pap-7 and use of same for inhibiting vibrio parahaemolyticus bacteria proliferation
WO2019235783A1 (en) Novel streptococcus suis bacteriophage str-sup-3, and use thereof for inhibiting proliferation of streptococcus suis strains
WO2019164195A1 (en) Novel aeromonas hydrophila bacteriophage aer-hyp-3 and use thereof for inhibiting growth of aeromonas hydrophila bacteria
WO2021085834A1 (en) Novel antibacterial protein cpel-1 having lytic activity against clostridium perfringens
WO2018117462A2 (en) Novel vibrio parahaemolyticus bacteriophage vib-pap-4 and use thereof in inhibiting proliferation of vibrio parahaemoliticus bacteria
WO2018101595A2 (en) Escherichia coli bacteriophage esc-cop-9 and use for inhibiting proliferation of pathogenic escherichia coli thereof
WO2021010595A1 (en) Novel enterobacter aerogenes bacteriophage ent-aep-1, and use thereof for inhibiting growth of enterobacter aerogenes and enterobacter cloacae bacteria
WO2018236086A2 (en) Novel aeromonas hydrophila bacteriophage aer-hyp-2 and use thereof in preventing proliferation of aeromonas hydrophila
WO2022154287A1 (en) Antibacterial protein efl200 having lytic activity to enterococcus faecium
WO2021246670A1 (en) Antibacterial protein having lytic activity against clostridioides difficile
WO2018208000A1 (en) Novel vibrio parahaemolyticus bacteriophage vib-pap-6 and use of same for inhibiting vibrio parahaemolyticus bacteria proliferation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883229

Country of ref document: EP

Kind code of ref document: A1