WO2021085817A2 - Tertiary amine derivative and organic electroluminescent device comprising same - Google Patents

Tertiary amine derivative and organic electroluminescent device comprising same Download PDF

Info

Publication number
WO2021085817A2
WO2021085817A2 PCT/KR2020/010960 KR2020010960W WO2021085817A2 WO 2021085817 A2 WO2021085817 A2 WO 2021085817A2 KR 2020010960 W KR2020010960 W KR 2020010960W WO 2021085817 A2 WO2021085817 A2 WO 2021085817A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
mmol
layer
electrode
compound
Prior art date
Application number
PCT/KR2020/010960
Other languages
French (fr)
Korean (ko)
Other versions
WO2021085817A3 (en
Inventor
석문기
고병수
임철수
박용필
한갑종
오유진
Original Assignee
주식회사 랩토
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200065216A external-priority patent/KR102417622B1/en
Application filed by 주식회사 랩토 filed Critical 주식회사 랩토
Priority to CN202080076161.2A priority Critical patent/CN114641469A/en
Publication of WO2021085817A2 publication Critical patent/WO2021085817A2/en
Publication of WO2021085817A3 publication Critical patent/WO2021085817A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/10Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/14Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to a tertiary amine derivative and an organic electroluminescent device including the same, wherein the organic electroluminescent device including a capping layer by the tertiary amine derivative has a high refractive index characteristic and an ultraviolet absorption characteristic at the same time.
  • LCD Liquid Crystal Display
  • OLED Organic Light Emitting Diodes
  • the basic structure of an OLED display is generally an anode, a hole injection layer (HIL), a hole transporting layer (HTL), an emission layer (EML), an electron transporting layer, and It is composed of a multilayer structure of ETL) and a cathode, and has a sandwich structure in which an electronic organic multilayer film is formed between two electrodes.
  • HIL hole injection layer
  • HTL hole transporting layer
  • EML emission layer
  • ETL electron transporting layer
  • the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy by using an organic material.
  • An organic light-emitting device using the organic light-emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic material layer is often made of a multilayer structure made of different materials in order to increase the efficiency and stability of the organic light emitting device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • organic light emitting device when a voltage is applied between two electrodes, holes are injected from the anode and electrons are injected into the organic material layer from the cathode, and excitons are formed when the injected holes and electrons meet. It glows when it falls to the ground.
  • organic light emitting devices are known to have characteristics such as self-luminescence, high luminance, high efficiency, low driving voltage, wide viewing angle, high contrast, and high-speed response.
  • Materials used as the organic material layer in the organic light-emitting device can be classified into light-emitting materials and charge transport materials, such as hole injection materials, hole transport materials, electron transport materials, and electron injection materials, according to their functions.
  • Light-emitting materials include blue, green, and red light-emitting materials and yellow and orange light-emitting materials necessary to realize better natural colors depending on the light-emitting color.
  • a host/dopant system may be used as a luminescent material. The principle is that when a small amount of a dopant having an energy band gap smaller than that of a host mainly constituting the light emitting layer and having excellent light emission efficiency is mixed in a light emitting layer, excitons generated from the host are transported to the dopant to emit light with high efficiency. At this time, since the wavelength of the host moves to the wavelength of the dopant, light having a desired wavelength can be obtained according to the type of dopant used.
  • organic light emitting devices In order to sufficiently express the excellent characteristics of the above-described organic light emitting device, materials that form the organic material layer in the device, such as hole injection materials, hole transport materials, light-emitting materials, electron transport materials, electron injection materials, etc., have been developed. The performance of organic light emitting devices is recognized by products.
  • the organic light emitting device is exposed to an external light source, so it is in an environment exposed to ultraviolet rays having high energy. Accordingly, there is a problem that the organic material constituting the organic light emitting device is continuously affected. In order to prevent exposure to such a high-energy light source, the problem can be solved by applying a capping layer having ultraviolet absorption characteristics to the organic light-emitting device.
  • the efficiency of an organic light-emitting device can be generally divided into internal luminescent efficiency and external luminescent efficiency.
  • the internal luminous efficiency is related to the efficiency of the formation of excitons in the organic layer in order to perform light conversion.
  • External luminous efficiency refers to the efficiency in which light generated in the organic layer is emitted to the outside of the organic light-emitting device.
  • CPL capping layer
  • the present invention is a first electrode; An organic material layer disposed on the first electrode; A second electrode disposed on the organic material layer; And a capping layer disposed on the second electrode, wherein the organic material layer or the capping layer provides an organic electroluminescent device including a tertiary amine derivative represented by Formula 1 below.
  • Z 1 is O or S
  • n, p and q are each independently 0 or 1
  • Ar 1 and Ar 2 are the same as each other, and a cyano group; An aryl group substituted with a cyano group; A substituted or unsubstituted dibenzofuran group; A substituted or unsubstituted dibenzothiophene group; A substituted or unsubstituted benzoxazole group; And a substituted or unsubstituted benzthiazole group; It is any one selected from among.
  • the compound described in the present specification may be used as a material for an organic material layer or a capping layer of an organic light-emitting device.
  • the compound according to the present invention exhibits ultraviolet absorption characteristics, thereby minimizing damage to organic materials in the organic light-emitting device by an external light source, and improving efficiency, low driving voltage, and/or lifespan characteristics in the organic light-emitting device.
  • a first electrode 110 is a first electrode 110, a hole injection layer 210, a hole transport layer 215, a light emitting layer 220, an electron transport layer 230, an electron injection layer on the substrate 100 according to an embodiment of the present invention.
  • 235, a second electrode 120, and a capping layer 300 are sequentially stacked on an organic light-emitting device.
  • FIG. 2 is a graph of light refraction and absorption characteristics when a tertiary amine derivative according to an embodiment of the present invention is used.
  • first and second may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another component. For example, without departing from the scope of the present invention, a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element. Singular expressions include plural expressions unless the context clearly indicates otherwise.
  • substituted or unsubstituted refers to a deuterium atom, a halogen atom, a cyano group, a nitro group, an amino group, a hydroxy group, a silyl group, a boron group, a phosphine oxide group, a phosphine sulfide group, an alkyl group, an alkoxy group, an alke It may mean substituted or unsubstituted with one or more substituents selected from the group consisting of a nil group, an aryl group, a hetero aryl group, and a heterocyclic group.
  • each of the substituents exemplified above may be substituted or unsubstituted.
  • the biphenyl group may be interpreted as an aryl group, or may be interpreted as a phenyl group substituted with a phenyl group.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the alkyl group may be linear, branched or cyclic.
  • the number of carbon atoms in the alkyl group is 1 or more and 50 or less, 1 or more and 30 or less, 1 or more and 20 or less, 1 or more and 10 or less, or 1 or more and 6 or less.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, i-butyl group, 2-ethylbutyl group, 3, 3-dimethylbutyl group , n-pentyl group, i-pentyl group, neopentyl group, t-pentyl group, cyclopentyl group, 1-methylpentyl group, 3-methylpentyl group, 2-ethylpentyl group, 4-methyl-2-pentyl group , n-hexyl group, 1-methylhexyl group, 2-ethylhexyl group, 2-butylhexyl group, cyclohexyl group, 4-methylcyclohexyl group, 4-t-butylcyclohexyl group, n-heptyl group, 1 -Methyl
  • a hydrocarbon ring group means any functional group or substituent derived from an aliphatic hydrocarbon ring.
  • the hydrocarbon cyclic group may be a saturated hydrocarbon cyclic group having 5 to 20 ring carbon atoms.
  • an aryl group means any functional group or substituent derived from an aromatic hydrocarbon ring.
  • the aryl group may be a monocyclic aryl group or a polycyclic aryl group.
  • the number of ring carbon atoms in the aryl group may be 6 or more and 30 or less, 6 or more and 20 or less, or 6 or more and 15 or less.
  • aryl groups include phenyl group, naphthyl group, fluorenyl group, anthracenyl group, phenanthryl group, biphenyl group, terphenyl group, quarterphenyl group, quincphenyl group, sexyphenyl group, triphenylenyl group, pyrenyl group, peryleneyl group, naphtha
  • a senyl group, a pyrenyl group, a benzofluoranthenyl group, a chrysenyl group, etc. can be illustrated, it is not limited to these.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the heteroaryl group may be a heteroaryl group including one or more of O, N, P, Si, and S as heterogeneous elements.
  • the N and S atoms may be oxidized in some cases, and the N atom(s) may be quaternized in some cases.
  • the number of ring carbon atoms in the heteroaryl group is 2 or more and 30 or less or 2 or more and 20 or less.
  • the heteroaryl group may be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • the polycyclic heteroaryl group may have, for example, a bicyclic or tricyclic structure.
  • heteroaryl group examples include thiophene group, furan group, pyrrole group, imidazole group, pyrazolyl group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridine group, bipyridine group, pyrimidine group, triazine group , Tetrazine group, triazole group, tetrazole group, acridyl group, pyridazine group, pyrazinyl group, quinoline group, quinazoline group, quinoxaline group, phenoxazine group, phthalazine group, pyrido pyrimidine group, pyrido pyrazino Pyrazine group, isoquinoline group, cinnoly group, indole group, isoindole group, indazole group, carbazole group, N-aryl carbazole group, N-heteroaryl carbazole group, N-alkyl
  • N-oxide aryl groups corresponding to the monocyclic hetero aryl group or polycyclic hetero aryl group for example, quaternary salts such as a pyridyl N-oxide group and a quinolyl N-oxide group. Not limited.
  • the silyl group includes an alkyl silyl group and an aryl silyl group.
  • the silyl group include trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like. Not limited.
  • the boron group includes an alkyl boron group and an aryl boron group.
  • the boron group include, but are not limited to, trimethyl boron group, triethyl boron group, t-butyldimethyl boron group, triphenyl boron group, diphenyl boron group, and phenyl boron group.
  • the alkenyl group may be linear or branched.
  • the number of carbon atoms is not particularly limited, but is 2 or more and 30 or less, 2 or more and 20 or less, or 2 or more and 10 or less.
  • Examples of the alkenyl group include, but are not limited to, a vinyl group, 1-butenyl group, 1-pentenyl group, 1,3-butadienyl aryl group, styrenyl group, and styrylvinyl group.
  • examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group.
  • the aryl group in the arylamine group may be a monocyclic aryl group, and may include a polycyclic aryl group or a monocyclic aryl group and a polycyclic aryl group at the same time.
  • aryl amine group examples include phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, 3-methyl-phenylamine group, 4-methyl-naphthylamine group, and 2-methyl-biphenylamine Group, 9-methyl-anthracenylamine group, diphenyl amine group, phenyl naphthylamine group, ditolyl amine group, phenyl tolyl amine group, carbazole and triphenyl amine group, but are not limited thereto.
  • examples of the heteroallylamine group include a substituted or unsubstituted monoheteroarylamine group, a substituted or unsubstituted diheteroarylamine group, or a substituted or unsubstituted triheteroarylamine group.
  • the heteroaryl group in the heteroarylamine group may be a monocyclic heterocyclic group or a polycyclic heterocyclic group.
  • the heteroarylamine group including two or more heterocyclic groups may include a monocyclic heterocyclic group, a polycyclic heterocyclic group, or a monocyclic heterocyclic group and a polycyclic heterocyclic group at the same time.
  • an arylheteroarylamine group means an amine group substituted with an aryl group and a heterocyclic group.
  • adjacent group may mean a substituent substituted on an atom directly connected to the atom where the corresponding substituent is substituted, another substituent substituted on an atom where the corresponding substituent is substituted, or a substituent that is three-dimensionally adjacent to the substituent.
  • two methyl groups can be interpreted as “adjacent groups”
  • 1,1-diethylcyclopentene 2
  • the two ethyl groups can be interpreted as “adjacent groups” to each other.
  • the tertiary amine derivative compound according to an embodiment of the present invention is represented by the following formula (1).
  • Z 1 is O or S
  • n, p and q are each independently 0 or 1
  • Ar 1 and Ar 2 are the same as each other, and a cyano group; An aryl group substituted with a cyano group; A substituted or unsubstituted dibenzofuran group; A substituted or unsubstituted dibenzothiophene group; A substituted or unsubstituted benzoxazole group; And a substituted or unsubstituted benzthiazole group; It is any one selected from among.
  • the tertiary amine derivative represented by Formula 1 may be any one selected from compounds represented by Formula 2 below, and the following compounds may be further substituted.
  • FIG. 1 is a schematic cross-sectional view of an organic light-emitting device according to an embodiment of the present invention.
  • a first electrode 110 a hole injection layer 210, a hole transport layer 215, a light emitting layer 220, and an electron are sequentially stacked on a substrate 100.
  • a transport layer 230, an electron injection layer 235, a second electrode 120, and a capping layer 300 may be included.
  • the first electrode 110 and the second electrode 120 are disposed to face each other, and the organic material layer 200 may be disposed between the first electrode 110 and the second electrode 120.
  • the organic material layer 200 may include a hole injection layer 210, a hole transport layer 215, a light emitting layer 220, an electron transport layer 230, and an electron injection layer 235.
  • the capping layer 300 presented in the present invention is a functional layer deposited on the second electrode 120 and includes an organic material according to Formula 1 of the present invention.
  • the first electrode 110 has conductivity.
  • the first electrode 110 may be formed of a metal alloy or a conductive compound.
  • the first electrode 110 is generally an anode, but its function as an electrode is not limited.
  • the first electrode 110 may be formed on the substrate 100 by using an electrode material deposition method, an electron beam evaporation method, or a sputtering method.
  • the material of the first electrode 110 may be selected from materials having a high work function to facilitate injection of holes into the organic light-emitting device.
  • the capping layer 300 proposed in the present invention is applied when the emission direction of the organic light-emitting device is front emission, and thus, the first electrode 110 uses a reflective electrode.
  • These materials include Mg (magnesium), Al (aluminum), Al-Li (aluminum-lithium), Ca (calcium), Mg-In (magnesium-indium), and Mg-Ag (magnesium-silver), which are not oxides. It can also be made using the same metal.
  • carbon substrate flexible electrode materials such as CNT (carbon nanotube) and graphene (graphene) may be used.
  • the organic material layer 200 may be formed of a plurality of layers.
  • the organic material layer 200 includes a hole transport region 210 to 215 disposed on the first electrode 110, a light emitting layer 220 disposed on the hole transport region, and the light emitting layer
  • the electron transport regions 230 to 235 disposed on the 220 may be included.
  • the capping layer 300 includes an organic compound represented by Formula 1 to be described later.
  • the hole transport regions 210 to 215 are provided on the first electrode 110.
  • the hole transport regions 210 to 215 may include at least one of a hole injection layer 210, a hole transport layer 215, a hole buffer layer, and an electron blocking layer (EBL). It plays a role and generally has a thicker thickness than the electron transport region because the hole mobility is faster than the electron mobility.
  • EBL electron blocking layer
  • the hole transport regions 210 to 215 may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.
  • the hole transport regions 210 to 215 may have a single layer structure of the hole injection layer 210 or the hole transport layer 215, or may have a single layer structure made of a hole injection material and a hole transport material. have.
  • the hole transport regions 210 to 215 have a single-layer structure made of a plurality of different materials, or a hole injection layer 210/hole transport layer 215 sequentially stacked from the first electrode 110, Hole injection layer 210 / hole transport layer 215 / hole buffer layer, hole injection layer 210 / hole buffer layer, hole transport layer 215 / hole buffer layer, or hole injection layer 210 / hole transport layer 215 / electron
  • EBL blocking layer
  • the hole injection layer 210 may be formed on the anode by various methods such as a vacuum deposition method, a spin coating method, a cast method, and an LB method.
  • the deposition conditions are 100 to 500 depending on the compound used as the material of the hole injection layer 210 and the structure and thermal characteristics of the hole injection layer 210.
  • the deposition rate at °C can be freely controlled by around 1 ⁇ /s, and is not limited to specific conditions.
  • the coating conditions are different depending on the characteristics between the compound used as the material of the hole injection layer 210 and the layers formed as the interface, but the coating speed and coating are used for even film formation. After the solvent is removed, heat treatment or the like is required.
  • the hole transport regions 210 to 215 are, for example, m-MTDATA, TDATA, 2-TNATA, NPB, ⁇ -NPB, TPD, Spiro-TPD, Spiro-NPB, methylated-NPB, TAPC, HMTPD, and TCTA.
  • the hole transport regions 210 to 215 may have a thickness of about 100 to about 10,000 ⁇ , and the organic material layers of each hole transport region 210 to 215 are not limited to the same thickness. For example, if the thickness of the hole injection layer 210 is 50 ⁇ , the thickness of the hole transport layer 215 may be 1000 ⁇ , and the thickness of the electron blocking layer may be 500 ⁇ .
  • the thickness condition of the hole transport regions 210 to 215 may be set to a degree that satisfies the efficiency and lifetime within a range in which the increase in the driving voltage of the organic light emitting device does not increase.
  • the organic material layer 200 includes a hole injection layer 210, a hole transport layer 215, a functional layer having a hole injection function and a hole transport function at the same time, a buffer layer, an electron blocking layer, a light emitting layer 220, a hole blocking layer, an electron transport layer ( 230), an electron injection layer 235, and one or more layers selected from the group consisting of a functional layer having an electron transport function and an electron injection function at the same time.
  • the hole transport regions 210 to 215 may use doping to improve characteristics like the light emitting layer 220, and doping of a charge-generating material into the hole transport regions 210 to 215 will improve the electrical properties of the organic light emitting device. I can.
  • the charge-generating material is generally composed of a material having very low HOMO and LUMO.
  • the LUMO of the charge-generating material has a similar value to that of the hole transport layer 215 material. Due to such a low LUMO, the electrons of the LUMO are vacant, and holes are easily transferred to the adjacent hole transport layer 215 to improve electrical characteristics.
  • the charge-generating material may be, for example, a p-dopant.
  • the p-dopant may be one of a quinone derivative, a metal oxide, and a cyano group-containing compound, but is not limited thereto.
  • the p-dopant include tetracyanoquinonedimethane (TCNQ) and 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinonedimethane Quinone derivatives such as phosphorus (F4-TCNQ) and the like; Metal oxides such as tungsten oxide and molybdenum oxide; Cyano group-containing compounds; And the like, but are not limited thereto.
  • the hole transport regions 210 to 215 may further include a charge generating material to improve conductivity.
  • the charge generating material may be uniformly or non-uniformly dispersed in the hole transport regions 210 to 215.
  • the charge generating material may be, for example, a p-dopant.
  • the p-dopant may be one of a quinone derivative, a metal oxide, and a cyano group-containing compound, but is not limited thereto.
  • p-dopants include quinone derivatives such as TCNQ (Tetracyanoquinodimethane) and F4-TCNQ (2,3,5,6-tetracyanoquinodimethane), metal oxides such as tungsten oxide and molybdenum oxide, and the like. However, it is not limited thereto.
  • the hole transport regions 210 to 215 may further include at least one of a hole buffer layer and an electron blocking layer in addition to the hole injection layer 210 and the hole transport layer 215.
  • the hole buffer layer may increase light emission efficiency by compensating for a resonance distance according to a wavelength of light emitted from the emission layer 220.
  • a material included in the hole buffer layer a material capable of being included in the hole transport regions 210 to 215 may be used.
  • the electron blocking layer is a layer that serves to prevent injection of electrons from the electron transport regions 230 to 235 to the hole transport regions 210 to 215.
  • the electron blocking layer may use a material having a high T1 value so as not only to block electrons moving to the hole transport region, but also to prevent the excitons formed in the light emitting layer 220 from diffusing into the hole transport regions 210 to 215.
  • a host of the light emitting layer 220 having a high T 1 value may be used as a material for the electron blocking layer.
  • the emission layer 220 is provided on the hole transport regions 210 to 215.
  • the emission layer 220 may have a thickness of, for example, about 100 ⁇ to about 1000 ⁇ or about 100 ⁇ to about 300 ⁇ .
  • the emission layer 220 may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.
  • the light emitting layer 220 is a region where holes and electrons meet to form excitons, and the material forming the light emitting layer 220 must have an appropriate energy band gap to exhibit high light emission characteristics and a desired light emission color, and generally play two roles as a host and a dopant.
  • Eggplant is made of two materials, but is not limited thereto.
  • the host may include at least one of the following TPBi, TBADN, ADN (also referred to as "DNA”), CBP, CDBP, TCP, and mCP, and if the characteristics are appropriate, the material is not limited thereto.
  • the dopant of the emission layer 220 may be an organic metal complex.
  • the content of a general dopant may be selected from 0.01 to 20%, and is not limited thereto in some cases.
  • the electron transport regions 230 to 235 are provided on the emission layer 220.
  • the electron transport regions 230 to 235 may include at least one of a hole blocking layer, an electron transport layer 230 and an electron injection layer 235, but is not limited thereto.
  • the electron transport regions 230 to 235 may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.
  • the electron transport regions 230 to 235 may have a single layer structure of the electron injection layer 235 or the electron transport layer 230, or may have a single layer structure made of an electron injection material and an electron transport material. have.
  • the electron transport regions 230 to 235 have a single layer structure made of a plurality of different materials, or an electron transport layer 230 / electron injection layer 235 sequentially stacked from the light emitting layer 220, and hole blocking.
  • the layer/electron transport layer 230/electron injection layer 235 may have a structure, but is not limited thereto.
  • the thickness of the electron transport regions 230 to 235 may be, for example, about 1000 ⁇ to about 1500 ⁇ .
  • the electron transport regions 230 to 235 are various such as vacuum evaporation method, spin coating method, cast method, LB method (Langmuir-Blodgett), inkjet printing method, laser printing method, laser induced thermal imaging (LITI), etc. It can be formed using a method.
  • the electron transport region 230 may include an anthracene compound.
  • the electron transport region is, for example, Alq3(Tris(8-hydroxyquinolinato)aluminum),1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene,2 ,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine,2-(4-(N-phenylbenzoimidazolyl-1-ylphenyl)-9,10 -dinaphthylanthracene,TPBi(1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl),BCP(2,9-Dimethyl-4,7-diphenyl-1,10- phenanthroline),Bphen(4,7-Diphen
  • the electron transport layer 230 is selected as a material having a fast electron mobility or a slow electron mobility according to the structure of the organic light emitting device, it is necessary to select a variety of materials, and in some cases, the following Liq or Li may be doped.
  • the electron transport layers 230 may have a thickness of about 100 ⁇ to about 1000 ⁇ , for example, about 150 ⁇ to about 500 ⁇ . When the thickness of the electron transport layers 230 satisfies the above-described range, satisfactory electron transport characteristics can be obtained without a substantial increase in driving voltage.
  • the electron transport regions 230 to 235 include the electron injection layer 235
  • the electron transport regions 230 to 235 select a metal material that facilitates injection of electrons, and LiF, LiQ (Lithium quinolate), Lanthanum group metals such as Li 2 O, BaO, NaCl, CsF, and Yb, or halogenated metals such as RbCl and RbI may be used, but are not limited thereto.
  • the electron injection layer 235 may also be formed of a material in which an electron transport material and an insulating organo metal salt are mixed.
  • the organometallic salt may be a material having an energy band gap of approximately 4 eV or more.
  • the organometallic salt may include metal acetate, metal benzoate, metal acetoacetate, metal acetylacetonate, or metal stearate. I can.
  • the electron injection layers 235 may have a thickness of about 1 ⁇ to about 100 ⁇ , and about 3 ⁇ to about 90 ⁇ . When the thickness of the electron injection layers 235 satisfies the above-described range, satisfactory electron injection characteristics can be obtained without a substantial increase in driving voltage.
  • the electron transport regions 230 to 235 may include a hole blocking layer.
  • the hole blocking layer includes, for example, at least one of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), and Balq It can be, but is not limited thereto.
  • the second electrode 120 is provided on the electron transport regions 230 to 235.
  • the second electrode 120 may be a common electrode or a cathode.
  • the second electrode 120 may be a transmissive electrode or a transflective electrode.
  • the second electrode 120 may be used in combination with a metal having a relatively low work function, an electroconductive compound, an alloy, and the like.
  • the second electrode 120 is a transflective electrode or a reflective electrode.
  • the second electrode 120 is Li (lithium), Mg (magnesium), Al (aluminum), Al-Li (aluminum-lithium), Ca (calcium), Mg-In (magnesium-indium), Mg-Ag (magnesium -Silver) or a compound or mixture containing them (eg, a mixture of Ag and Mg).
  • a plurality of layer structures including a reflective film or a semi-transmissive film formed of the material and a transparent conductive film formed of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium tin zinc oxide (ITZO), etc.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • ITZO indium tin zinc oxide
  • the second electrode 120 may be connected to the auxiliary electrode.
  • the resistance of the second electrode 120 may be reduced.
  • a hard or soft material may be used as the material of the substrate 100.
  • the hard material is soda lime glass, alkali-free glass, aluminosilicate glass PC (polycarbonate), PES (polyethersulfone), COC (cyclic olefin copolymer), PET (polyethylene terephthalate), PEN (polyethylene naphthalate), etc. can be used as the soft material. .
  • the organic light emitting diode As voltages are applied to the first electrode 110 and the second electrode 120, respectively, holes injected from the first electrode 110 pass through the hole transport regions 210 to 215 and the emission layer The electrons are moved to 220, and electrons injected from the second electrode 120 are transferred to the emission layer 220 through the electron transport regions 230 to 235. The electrons and holes recombine in the emission layer 220 to generate excitons, and the excitons fall from the excited state to the ground state to emit light.
  • the light path generated in the light emitting layer 220 may exhibit very different trends depending on the refractive indexes of organic and inorganic materials constituting the organic light emitting device.
  • Light passing through the second electrode 120 may pass only light transmitted at an angle smaller than the critical angle of the second electrode 120.
  • light that contacts the second electrode 120 greater than the critical angle is totally reflected or reflected, and thus cannot be emitted to the outside of the organic light-emitting device.
  • the refractive index of the capping layer 300 When the refractive index of the capping layer 300 is high, it contributes to the improvement of luminous efficiency by reducing such total reflection or reflection, and when it has an appropriate thickness, it contributes to high efficiency improvement and color purity by maximizing the micro-cavity phenomenon. .
  • the capping layer 300 is positioned on the outermost side of the organic light-emitting device, and does not affect the driving of the device at all and has a profound effect on device characteristics. Therefore, the capping layer 300 is important from both viewpoints of improving device characteristics as well as an internal protection role of an organic light-emitting device.
  • Organic materials absorb light energy in a specific wavelength range, which depends on the energy band gap. If the energy band gap is adjusted for the purpose of absorption of the UV region that may affect organic materials inside the organic light emitting device, the capping layer 300 can be used for the purpose of protecting the organic light emitting device including improving optical properties. have.
  • the organic light-emitting device may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • the obtained compound was dissolved in 100 mL of tetrahydrofuran, slowly acidified (pH ⁇ 2) with a 4N hydrochloric acid solution, and stirred at 50° C. for 4 hours. After cooling to room temperature, tetrahydrofuran was removed by distillation under reduced pressure, and diethyl ether was added thereto, followed by stirring. The resulting solid was filtered under reduced pressure, and the filtered wet body was suspended in 200 mL of water, and the acidity was adjusted to 8 or more with a saturated sodium carbonate solution, followed by stirring for 1 hour. The resulting solid was filtered, washed with water, and dried under reduced pressure. The obtained compound was purified by column chromatography to obtain 5.0 g (yield: 67%) of a compound (intermediate (1)).
  • the resulting precipitate was filtered under reduced pressure and washed with chloroform.
  • the filtered wet body was suspended in 600 mL of water, and the pH was adjusted to 8 or higher with saturated sodium carbonate solution, followed by extraction with chloroform and layer separation.
  • the separated chloroform layer was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • the concentrated residue was slurried with dichloromethane and normal hexane to obtain 28.0 g (yield: 58%) of a yellow solid compound (intermediate (3)).
  • the filtered wet body was basified (pH>8) with saturated sodium carbonate solution and extracted with 190 mL of dichloromethane. The separated organic layer was dried over anhydrous sodium sulfate, filtered, concentrated, and purified by column chromatography to obtain 3.6 g (yield: 47.6%) of a pale orange solid compound (intermediate (5)).
  • the filtered wet body was dissolved in 70 mL of tetrahydrofuran, 30 mL of 6N hydrochloric acid was added, and the mixture was stirred for 1 hour.
  • the mixture was basified (pH 7-8) with saturated sodium carbonate solution and extracted with dichloromethane.
  • the separated organic layer was dried over anhydrous sodium sulfate, filtered, concentrated, and purified by column chromatography to obtain 2.72 g (yield: 59.9%) of a brown solid compound (intermediate (6)).
  • the resulting precipitate was filtered under reduced pressure and washed with chloroform.
  • the filtered wet body was suspended in 600 mL of water, and the pH was adjusted to 8 or higher with saturated sodium carbonate solution, followed by extraction with chloroform and layer separation.
  • the separated chloroform layer was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • the concentrated residue was slurried with dichloromethane and normal hexane to obtain 28.0 g (yield: 58%) of a yellow solid compound (intermediate (8)).
  • 6-hydroxy-2-naphthonitrile 6-Hydroxy-2-naphthonitrile 10.0 g (59.1 mmol) was dissolved in dichloromethane (DCM) 300 mL, and pyridine (Pyridine) 14.0 g (177.3 mmol) was added dropwise. The temperature was lowered to 0°C. Tf 2 O 20.0 g (70.9 mmol) was slowly added dropwise, and the temperature was raised to room temperature, followed by reaction for 12 hours.
  • DCM dichloromethane
  • reaction mixture was cooled to room temperature, filtered through a pad of Celite, and distilled under reduced pressure to remove the solvent.
  • the obtained mixture was purified by column chromatography to obtain 3.1 g (yield: 66.2%) of compound 2-48 (LT18-30-263) as a brown solid.
  • intermediate (3) 5.0 g (19.3 mmol), intermediate (11) 12.2 g (40.5 mmol), Pd (dba) 2 1.1 mg (1.9 mmol), 50% t-Bu 3 P 1.6 g ( 3.9 mmol), NaOtBu 5.6 g (57.9 mmol) and Xylene 80 mL were added and mixed, and then reacted at 120° C. for 12 hours. After the reaction was completed, the mixture was cooled to room temperature, water was added, extracted with chloroform, and the solvent was removed under reduced pressure.
  • intermediate (13) 5.0 g (18.2 mmol), intermediate (11) 11.5 g (38.1 mmol), Pd (dba) 2 1.0 mg (1.8 mmol), 50% t-Bu 3 P 1.5 g ( 3.6 mmol), 5.2 g (54.5 mmol) of NaOtBu, and 80 mL of Xylene were added and mixed, and then reacted at 120° C. for 12 hours. After the reaction was completed, the mixture was cooled to room temperature, water was added, extracted with chloroform, and the solvent was removed under reduced pressure.
  • the obtained compound was purified by silica gel column chromatography (Hex:EA), dissolved in acetone, and then solidified while slowly adding methanol dropwise to obtain 1.1 g (yield: 10.5%) of a yellow solid compound 2-153 (LT20-35-365). Got it.
  • J.A. Measure n (refractive index) and k (extinction coefficient) using WOOLLAM's Ellipsometer.
  • the glass substrate (0.7T) was washed in Ethanol, DI Water, and Acetone for 10 minutes each, followed by oxygen plasma treatment on the glass substrate for 2 minutes at 125 W at 2 ⁇ 10 -2 Torr and 9 ⁇ 10 to deposit the compound on the glass substrate at a vacuum degree of 7 Torr at a rate of 1 ⁇ / sec 800 ⁇ it will be produced danmak.
  • REF01 was used as a compound in the preparation of a single film for evaluation of optical properties.
  • Table 1 shows the optical properties of the compounds according to Comparative Test Examples and Test Examples 1 to 17.
  • Optical properties are the refractive index constant at 450 nm and 620 nm wavelength and the absorption constant at 380 nm wavelength.
  • n values in the blue region (450 nm) and red region (620 nm) of Comparative Test Example (REF01) were 2.000 and 1.846, respectively, whereas most of the compounds according to the present invention were As a result, it was confirmed to have a higher refractive index than Comparative Test Example compound (REF01) in the blue region, green region, and red region. This satisfies the high refractive index value required to secure a high viewing angle in the blue region.
  • the k value at 380 nm corresponding to the starting stage of the UV region was also high in most of the example compounds. This may contribute to substantially improving the lifespan of the organic electroluminescent device by effectively absorbing the high-energy external light source in the UV region and minimizing damage to organic materials inside the organic light-emitting device.
  • ITO a transparent electrode
  • 2-TNATA was used as the hole injection layer
  • NPB was the hole transport layer
  • ⁇ -ADN was the host of the emission layer
  • Pyene-CN was the blue fluorescent dopant
  • Liq was the electron injection layer
  • Mg:Ag was used as a negative electrode.
  • the structures of these compounds are as shown in the following formula.
  • Blue fluorescent organic light emitting device is ITO (180 nm) / 2-TNATA (60 nm) / NPB (20 nm) / ⁇ -ADN:Pyrene-CN 10% (30 nm) / Alq 3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm) / REF (60nm) was deposited in the order to fabricate a device. Before depositing the organic substance is applied to the ITO electrodes 2 ⁇ 10 - was for 2 minutes plasma treatment to 125W at 2 Torr.
  • Organics are 9 ⁇ 10 - were deposited at a vacuum degree of 7 Torr, Liq was 0.1 ⁇ / sec, ⁇ -ADN is 0.18 ⁇ / on the basis of sec Pyrene-CN was co-deposited with 0.02 ⁇ / sec, all the remaining organics were 1 It was deposited at a rate of ⁇ /sec.
  • the capping layer material used in the experiment was selected as REF01. After the device was manufactured, the device was sealed in a glove box filled with nitrogen gas to prevent contact with air and moisture. After forming a partition wall with 3M's adhesive tape, barium oxide, a moisture absorbent that can remove moisture, was added and a glass plate was attached.
  • Table 2 shows the electroluminescence characteristics of the organic light emitting devices prepared in Comparative Examples and Examples 1 to 17.
  • the tertiary amine derivative compound according to the present invention can be used as a material for the capping layer of organic electronic devices including organic light emitting devices, and organic electronic devices including organic light emitting devices using the same have efficiency and driving voltage. It can be seen that it exhibits excellent properties in terms of stability, etc. In particular, the compound according to the present invention exhibited high efficiency characteristics due to excellent micro-cavity capability.
  • the compound of Formula 1 has surprisingly desirable properties for use as a capping layer in OLED.
  • the compounds of the present invention can be applied to industrial organic electronic device products due to these properties.
  • the above synthesis example is an example, and the reaction conditions may be changed as necessary.
  • the compound according to an embodiment of the present invention may be synthesized to have various substituents using methods and materials known in the art. By introducing various substituents to the core structure represented by Chemical Formula 1, it may have properties suitable for use in an organic electroluminescent device.
  • the tertiary amine derivative compound according to the present invention may be used to improve the quality of an organic electroluminescent device by being used for an organic material layer and/or a capping layer of an organic electroluminescent device.
  • the organic electroluminescent device When the compound is used for the capping layer, the organic electroluminescent device exhibits its original characteristics and at the same time, the lifespan can be improved by the optical characteristics of the compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is a tertiary amine derivative which effectively absorbs a high-energy external light source in the UV region, and thus minimizes damages to organic materials in an organic electroluminescent device, thereby contributing to a substantial improvement in the lifespan of the organic electroluminescent device. An organic electroluminescent device according to the present invention comprises: a first electrode; a second electrode; at least one organic material layer disposed between the first electrode and the second electrode; and a capping layer, wherein the capping layer comprises a tertiary amine derivative represented by chemical formula 1 according to the present invention.

Description

3차 아민 유도체 및 이를 포함한 유기 전계 발광 소자Tertiary amine derivative and organic electroluminescent device including the same
본 발명은 3차 아민 유도체 및 이를 포함하는 유기 전계 발광 소자에 관한 것으로, 3차 아민 유도체에 의해 캡핑층을 포함한 유기 전계 발광 소자가 고굴절률 특성과 자외선 흡수특성을 동시에 갖도록 하는 것이다. The present invention relates to a tertiary amine derivative and an organic electroluminescent device including the same, wherein the organic electroluminescent device including a capping layer by the tertiary amine derivative has a high refractive index characteristic and an ultraviolet absorption characteristic at the same time.
디스플레이 산업에서 표시장치의 대형화에 따라 공간 점유가 작은 평면표시소자의 요구가 증대되고 있다. LCD(Liquid Crystal Display)는 시야각이 제한되고, 자체 발광형이 아니므로 별도의 광원이 필요하다는 단점을 가지고 있다. 이러한 이유로 자기 발광 현상을 이용한 디스플레이로서 OLED(유기발광다이오드, Organic Light Emitting Diodes)가 주목받고 있다.In the display industry, as display devices become larger, there is an increasing demand for flat display devices that occupy a small space. LCD (Liquid Crystal Display) has the disadvantage of requiring a separate light source because the viewing angle is limited and it is not a self-luminous type. For this reason, OLED (Organic Light Emitting Diodes) is attracting attention as a display using a self-luminous phenomenon.
OLED에 있어, 1963년 Pope 등에 의하여 안트라센(Anthracene) 방향족 탄화수소의 단결정을 이용한 캐리어 주입형 전계발광(Electroluminescence; EL)의 연구가 최초로 시도되었다. 이러한 연구로부터 유기물에서 전하주입, 재결합, 여기자 생성, 발광 등의 기초적 메커니즘과 전기발광 특성 등이 이해되고 연구되어왔다. In OLED, in 1963, Pope et al. first attempted a study of carrier injection type electroluminescence (EL) using a single crystal of anthracene aromatic hydrocarbon. From these studies, basic mechanisms such as charge injection, recombination, exciton generation, and light emission in organic materials and electroluminescence characteristics have been understood and studied.
특히 발광 효율을 높이기 위해 소자의 구조 변화 및 물질 개발 등 다양한 접근이 이루어지고 있다[Sun, S., Forrest, S. R., Appl. Phys. Lett. 91, 263503 (2007)/Ken-Tsung Wong, Org. Lett., 7, 2005, 5361-5364]. In particular, in order to increase luminous efficiency, various approaches such as structural change of devices and material development have been taken [Sun, S., Forrest, S. R., Appl. Phys. Lett. 91, 263503 (2007)/Ken-Tsung Wong, Org. Lett., 7, 2005, 5361-5364].
OLED 디스플레이의 기본적 구조는, 일반적으로 양극(Anode), 정공주입층(Hole Injection Layer, HIL), 정공수송층(Hole Transporting Layer, HTL), 발광층 (Emission Layer, EML), 전자수송층(Electron Transporting Layer, ETL), 그리고 음극(Cathode)의 다층 구조로 구성되며, 전자 유기 다층막이 두 전극 사이에 형성된 샌드위치 구조로 되어 있다. The basic structure of an OLED display is generally an anode, a hole injection layer (HIL), a hole transporting layer (HTL), an emission layer (EML), an electron transporting layer, and It is composed of a multilayer structure of ETL) and a cathode, and has a sandwich structure in which an electronic organic multilayer film is formed between two electrodes.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환해주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이들 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함할 수 있다. In general, the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy by using an organic material. An organic light-emitting device using the organic light-emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween. Here, the organic material layer is often made of a multilayer structure made of different materials in order to increase the efficiency and stability of the organic light emitting device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면, 양극에서는 정공이, 음극에서는 전자가 유기물층으로 주입되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이러한 유기 발광 소자는 자발광, 고휘도, 고효율, 낮은 구동전압, 넓은 시야각, 높은 콘트라스트, 고속 응답성 등의 특성을 갖는 것으로 알려져 있다.In the structure of such an organic light emitting device, when a voltage is applied between two electrodes, holes are injected from the anode and electrons are injected into the organic material layer from the cathode, and excitons are formed when the injected holes and electrons meet. It glows when it falls to the ground. These organic light emitting devices are known to have characteristics such as self-luminescence, high luminance, high efficiency, low driving voltage, wide viewing angle, high contrast, and high-speed response.
유기 발광 소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공 주입 재료, 정공 수송 재료, 전자 수송 재료, 전자 주입 재료 등으로 분류될 수 있다. Materials used as the organic material layer in the organic light-emitting device can be classified into light-emitting materials and charge transport materials, such as hole injection materials, hole transport materials, electron transport materials, and electron injection materials, according to their functions.
발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 좀 더 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료가 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 재료로서 호스트/도판트 계를 사용할 수 있다. 그 원리는 발광층을 주로 구성하는 호스트보다 에너지 대역 간극이 작고 발광 효율이 우수한 도판트를 발광층에 소량 혼합하면, 호스트에서 발생한 엑시톤이 도판트로 수송되어 효율이 높게 빛을 내는 것이다. 이때 호스트의 파장이 도판트의 파장대로 이동하므로, 이용하는 도판트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.Light-emitting materials include blue, green, and red light-emitting materials and yellow and orange light-emitting materials necessary to realize better natural colors depending on the light-emitting color. In addition, in order to increase color purity and increase luminous efficiency through energy transfer, a host/dopant system may be used as a luminescent material. The principle is that when a small amount of a dopant having an energy band gap smaller than that of a host mainly constituting the light emitting layer and having excellent light emission efficiency is mixed in a light emitting layer, excitons generated from the host are transported to the dopant to emit light with high efficiency. At this time, since the wavelength of the host moves to the wavelength of the dopant, light having a desired wavelength can be obtained according to the type of dopant used.
전술한 유기 발광 소자가 갖는 우수한 특징들을 충분히 발현하기 위해, 소자 내 유기물층을 이루는 물질, 예컨대 정공 주입 물질, 정공 수송 물질, 발광 물질, 전자 수송 물질, 전자 주입 물질 등이 개발되었고, 이로 인해 상용화된 제품들에 의해 유기 발광 소자의 성능을 인정받고 있다. In order to sufficiently express the excellent characteristics of the above-described organic light emitting device, materials that form the organic material layer in the device, such as hole injection materials, hole transport materials, light-emitting materials, electron transport materials, electron injection materials, etc., have been developed. The performance of organic light emitting devices is recognized by products.
그러나 유기 발광 소자의 상용화가 이루어지고 시간이 지남에 따라 유기 발광 소자 자체의 발광 특성 이외에 다른 특성들의 필요성이 대두되고 있다. However, as the organic light-emitting device is commercialized and time passes, the need for other characteristics other than the light-emitting characteristics of the organic light-emitting device itself has emerged.
유기 발광 소자는 외부 광원에 노출되는 시간이 많은 경우가 대부분이므로 고에너지를 갖는 자외선에 노출되는 환경에 있게 된다. 이에 따라 유기 발광 소자를 구성하는 유기물이 지속적인 영향을 받게 되는 문제가 있다. 이러한 고에너지 광원에 노출을 막기 위해 자외선 흡수특성을 갖는 캡핑층을 유기 발광 소자에 적용함으로써 문제를 해결할 수 있다. In most cases, the organic light emitting device is exposed to an external light source, so it is in an environment exposed to ultraviolet rays having high energy. Accordingly, there is a problem that the organic material constituting the organic light emitting device is continuously affected. In order to prevent exposure to such a high-energy light source, the problem can be solved by applying a capping layer having ultraviolet absorption characteristics to the organic light-emitting device.
일반적으로 유기 발광 소자의 시야각 특성은 넓다고 알려져 있지만 광원 스펙트럼 관점에서는 시야각에 따라 상당한 편차가 발생하게 되며 이는 유기 발광 소자를 이루는 유리 기판, 유기물, 전극재료 등의 전체 굴절률과 유기 발광 소자의 발광파장에 따른 적절한 굴절률 사이에서 편차가 발생하는 것에 기인한다. In general, it is known that the viewing angle characteristics of organic light-emitting devices are wide, but from the viewpoint of the light source spectrum, considerable variation occurs depending on the viewing angle. This is due to the overall refractive index of the glass substrate, organic material, electrode material, etc. This is due to the occurrence of a deviation between the appropriate refractive indices.
일반적으로 청색에 필요한 굴절률 값이 크고 파장이 길어질수록 필요 굴절률의 값은 작아진다. 이에 따라 상기 언급된 자외선 흡수특성과 적정 굴절률을 동시에 만족하는 캡핑층을 이루는 재료의 개발이 필요하다.In general, the higher the refractive index value required for blue and the longer the wavelength, the smaller the required refractive index value. Accordingly, it is necessary to develop a material forming a capping layer that simultaneously satisfies the above-mentioned ultraviolet absorption characteristics and an appropriate refractive index.
유기 발광 소자의 효율은 일반적으로 내부 발광 효율 (internal luminescent efficiency)과 외부 발광 효율로 나눌 수 있다. 내부 발광 효율은 광변환이 이루어지기 위해 유기층에서 엑시톤의 형성의 효율성에 관련된다. The efficiency of an organic light-emitting device can be generally divided into internal luminescent efficiency and external luminescent efficiency. The internal luminous efficiency is related to the efficiency of the formation of excitons in the organic layer in order to perform light conversion.
외부 발광 효율은 유기층에서 생성된 광이 유기 발광 소자 외부로 방출되는 효율을 말한다.External luminous efficiency refers to the efficiency in which light generated in the organic layer is emitted to the outside of the organic light-emitting device.
전체적으로 효율을 제고하기 위해서는 내부 발광 효율뿐만 아니라 외부 발광 효율을 높여야 한다. 외부 발광 효율을 높이고 오랜 시간 주광하에 노출할 때에 야기될 수도 있는 여러 문제점을 방지하기 위하여, 새로운 기능의 캡핑층(CPL) 화합물의 개발이 요구되고 있다. 특히 CPL 기능 중에서 UV 파장대의 빛을 흡수하는 능력이 우수한 캡핑층(CPL) 물질 개발이 요구되고 있다. In order to improve overall efficiency, it is necessary to increase not only the internal luminous efficiency but also the external luminous efficiency. In order to increase external luminous efficiency and prevent various problems that may be caused when exposed to daylight for a long time, development of a capping layer (CPL) compound having a new function is required. In particular, among the CPL functions, development of a capping layer (CPL) material having excellent ability to absorb light in the UV wavelength band is required.
본 발명의 목적은, 발광 효율과 수명을 개선할 수 있고 동시에 시야각 특성을 개선할 수 있는, 유기 발광 소자용 캡핑층 재료를 제공하는 것이다.It is an object of the present invention to provide a capping layer material for an organic light-emitting device, which can improve luminous efficiency and lifetime and at the same time improve viewing angle characteristics.
본 발명의 목적은 특히 유기 전계 발광 소자의 광 추출율을 개선하기 위하여 굴절률과 내열성이 높은 캡핑층을 포함하는 고효율 및 장수명의 유기 전계 발광 소자를 제공하는 것에 있다.It is an object of the present invention to provide a highly efficient and long-life organic electroluminescent device including a capping layer having high refractive index and heat resistance in order to improve the light extraction rate of an organic electroluminescent device.
본 발명은 제1 전극; 상기 제1 전극 상에 배치된 유기물층; 상기 유기물층 상에 배치된 제2전극; 및 제2 전극 상에 배치된 캡핑층을 포함하며, 상기 유기물층 또는 캡핑층은 하기 화학식 1로 표시되는 3차 아민 유도체를 포함하는 유기 전계 발광 소자를 제공한다.The present invention is a first electrode; An organic material layer disposed on the first electrode; A second electrode disposed on the organic material layer; And a capping layer disposed on the second electrode, wherein the organic material layer or the capping layer provides an organic electroluminescent device including a tertiary amine derivative represented by Formula 1 below.
[화학식 1][Formula 1]
Figure PCTKR2020010960-appb-I000001
Figure PCTKR2020010960-appb-I000001
상기 화학식 1에 있어서, In Formula 1,
Z1는 O 또는 S이며,Z 1 is O or S,
n, p 및 q는 각각 독립적으로 0 또는 1이고,n, p and q are each independently 0 or 1,
Ar1 및 Ar2는 서로 동일하며, 시아노기; 시아노기가 치환된 아릴기; 치환 또는 비치환된 디벤조퓨란기; 치환 또는 비치환된 디벤조티오펜기; 치환 또는 비치환된 벤즈옥사졸기; 및 치환 또는 비치환된 벤즈티아졸기; 중에서 선택되는 어느 하나이다.Ar 1 and Ar 2 are the same as each other, and a cyano group; An aryl group substituted with a cyano group; A substituted or unsubstituted dibenzofuran group; A substituted or unsubstituted dibenzothiophene group; A substituted or unsubstituted benzoxazole group; And a substituted or unsubstituted benzthiazole group; It is any one selected from among.
본 명세서에 기재된 화합물은 유기 발광 소자의 유기물층 또는 캡핑층의 재료로 사용될 수 있다. The compound described in the present specification may be used as a material for an organic material layer or a capping layer of an organic light-emitting device.
본 발명에 따른 화합물은 자외선 흡수특성을 나타내어 외부 광원에 의한 유기 발광 소자 내 유기물 손상을 최소화할 수 있고, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. The compound according to the present invention exhibits ultraviolet absorption characteristics, thereby minimizing damage to organic materials in the organic light-emitting device by an external light source, and improving efficiency, low driving voltage, and/or lifespan characteristics in the organic light-emitting device.
또한, 본 명세서에 기재된 화합물을 캡핑층으로 이용한 유기 발광 소자에서 발광효율 향상, 발광 스펙트럼 반치폭 감소에 따른 색순도를 현저히 개선시킬 수 있다. In addition, in an organic light-emitting device using the compound described in the present specification as a capping layer, it is possible to remarkably improve the color purity according to the improvement of luminous efficiency and reduction of the half width of the emission spectrum.
도 1은 본 발명의 일 실시예에 따른 기판(100) 위에 제1 전극(110), 정공주입층(210), 정공수송층(215), 발광층(220), 전자수송층(230), 전자주입층(235), 제2 전극(120) 및 캡핑층(300)이 순차적으로 적층된 유기 발광 소자의 예를 도시한 것이다.1 is a first electrode 110, a hole injection layer 210, a hole transport layer 215, a light emitting layer 220, an electron transport layer 230, an electron injection layer on the substrate 100 according to an embodiment of the present invention. 235, a second electrode 120, and a capping layer 300 are sequentially stacked on an organic light-emitting device.
도 2는 본 발명의 일 실시예에 따른 3차 아민 유도체를 이용할 경우에 나타나는 빛의 굴절과 흡수 특성의 그래프이다. 2 is a graph of light refraction and absorption characteristics when a tertiary amine derivative according to an embodiment of the present invention is used.
이하 본 발명에 대하여 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. In the present invention, various modifications may be made and various forms may be applied, and specific embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific form disclosed, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In describing each drawing, similar reference numerals have been used for similar elements. In the accompanying drawings, the dimensions of the structures are shown to be enlarged than actual for clarity of the present invention. Terms such as first and second may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another component. For example, without departing from the scope of the present invention, a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐 만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. In the present application, terms such as "comprise" or "have" are intended to designate the presence of features, numbers, steps, actions, components, parts, or combinations thereof described in the specification, but one or more other features. It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance the possibility of being added. In addition, when a part such as a layer, film, region, plate, etc. is said to be "on" another part, this includes not only the case where the other part is "directly above" but also the case where there is another part in the middle.
본 명세서에서, “치환 또는 비치환된”은 중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 히드록시기, 실릴기, 붕소기, 포스핀 옥사이드기, 포스핀 설파이드기, 알킬기, 알콕시기, 알케닐기, 아릴기, 헤테로 아릴기 및 헤테로 고리기로 이루어진 군에서 선택되는 1개 이상의 치환기로 치환 또는 비치환된 것을 의미할 수 있다. 또한, 상기 예시된 치환기 각각은 치환 또는 비치환된 것일 수 있다. 예를 들어, 바이페닐기는 아릴기로 해석될 수도 있고, 페닐기로 치환된 페닐기로 해석될 수도 있다.In the present specification, “substituted or unsubstituted” refers to a deuterium atom, a halogen atom, a cyano group, a nitro group, an amino group, a hydroxy group, a silyl group, a boron group, a phosphine oxide group, a phosphine sulfide group, an alkyl group, an alkoxy group, an alke It may mean substituted or unsubstituted with one or more substituents selected from the group consisting of a nil group, an aryl group, a hetero aryl group, and a heterocyclic group. In addition, each of the substituents exemplified above may be substituted or unsubstituted. For example, the biphenyl group may be interpreted as an aryl group, or may be interpreted as a phenyl group substituted with a phenyl group.
본 명세서에서, 할로겐 원자의 예로는 불소 원자, 염소 원자, 브롬 원자 또는 요오드 원자가 있다.In the present specification, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
본 명세서에서, 알킬기는 직쇄, 분지쇄 또는 고리형일 수 있다. 알킬기의 탄소수는 1 이상 50 이하, 1 이상 30 이하, 1 이상 20 이하, 1 이상 10 이하 또는 1 이상 6 이하이다. 알킬기의 예로는 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, s-부틸기, t-부틸기, i-부틸기, 2- 에틸부틸기, 3, 3-디메틸부틸기, n-펜틸기, i-펜틸기, 네오펜틸기, t-펜틸기, 시클로펜틸기, 1-메틸펜틸기, 3-메틸펜틸기, 2-에틸펜틸기, 4-메틸-2-펜틸기, n-헥실기, 1-메틸헥실기, 2-에틸헥실기, 2-부틸헥실기, 시클로헥실기, 4-메틸시클로헥실기, 4-t-부틸시클로헥실기, n-헵틸기, 1-메틸헵틸기, 2,2-디메틸헵틸기, 2-에틸헵틸기, 2-부틸헵틸기, n-옥틸기, t-옥틸기, 2-에틸옥틸기, 2-부틸옥틸기, 2-헥실옥틸기, 3,7-디메틸옥틸기, 시클로옥틸기, n-노닐기, n-데실기, 아다만틸기, 2-에틸데실기, 2-부틸데실기, 2-헥실데실기, 2-옥틸데실기, n-운데실기, n-도데실기, 2-에틸도데실기, 2-부틸도데실기, 2-헥실도데실기, 2-옥틸도데실기, n-트리데실기, n-테트라데실기, n-펜타데실기, n-헥사데실기, 2-에틸헥사데실기, 2-부틸헥사데실기, 2-헥실헥사데실기, 2-옥틸헥사데실기, n-헵타데실기, n-옥타데실기, n-노나데실기, n-이코실기, 2-에틸이코실기, 2-부틸이코실기, 2-헥실이코실기, 2-옥틸이코실기, n-헨이코실기, n-도코실기, n-트리코실기, n-테트라코실기, n-펜타코실기, n-헥사코실기, n-헵타코실기, n-옥타코실기, n-노나코실기, 및 n-트리아콘틸기 등을 들 수 있지만, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear, branched or cyclic. The number of carbon atoms in the alkyl group is 1 or more and 50 or less, 1 or more and 30 or less, 1 or more and 20 or less, 1 or more and 10 or less, or 1 or more and 6 or less. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, i-butyl group, 2-ethylbutyl group, 3, 3-dimethylbutyl group , n-pentyl group, i-pentyl group, neopentyl group, t-pentyl group, cyclopentyl group, 1-methylpentyl group, 3-methylpentyl group, 2-ethylpentyl group, 4-methyl-2-pentyl group , n-hexyl group, 1-methylhexyl group, 2-ethylhexyl group, 2-butylhexyl group, cyclohexyl group, 4-methylcyclohexyl group, 4-t-butylcyclohexyl group, n-heptyl group, 1 -Methylheptyl group, 2,2-dimethylheptyl group, 2-ethylheptyl group, 2-butylheptyl group, n-octyl group, t-octyl group, 2-ethyloctyl group, 2-butyloctyl group, 2-hexyl Siloctyl group, 3,7-dimethyloctyl group, cyclooctyl group, n-nonyl group, n-decyl group, adamantyl group, 2-ethyldecyl group, 2-butyldecyl group, 2-hexyldecyl group, 2-oxy Tyldecyl group, n-undecyl group, n-dodecyl group, 2-ethyldodecyl group, 2-butyldodecyl group, 2-hexyldodecyl group, 2-octyldodecyl group, n-tridecyl group, n-tetradecyl group, n -Pentadecyl group, n-hexadecyl group, 2-ethylhexadecyl group, 2-butylhexadecyl group, 2-hexylhexadecyl group, 2-octylhexadecyl group, n-heptadecyl group, n-octadecyl group , n-nonadecyl group, n-icosyl group, 2-ethyl icosyl group, 2-butyl icosyl group, 2-hexyl icosyl group, 2-octyl icosyl group, n-henicosyl group, n-docosyl group, n-trico A group, n-tetracosyl group, n-pentacosyl group, n-hexacosyl group, n-heptacosyl group, n-octacosyl group, n-nonacosyl group, and n-triacontyl group, etc. are mentioned, It is not limited to these.
본 명세서에서, 탄화수소 고리기는 지방족 탄화수소 고리로부터 유도된 임의의 작용기 또는 치환기를 의미한다. 탄화수소 고리기는 고리 형성 탄소수 5 이상 20 이하의 포화 탄화수소 고리기일 수 있다.In the present specification, a hydrocarbon ring group means any functional group or substituent derived from an aliphatic hydrocarbon ring. The hydrocarbon cyclic group may be a saturated hydrocarbon cyclic group having 5 to 20 ring carbon atoms.
본 명세서에서, 아릴기는 방향족 탄화수소 고리로부터 유도된 임의의 작용기 또는 치환기를 의미한다. 아릴기는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 아릴기의 고리 형성 탄소수는 6 이상 30 이하, 6 이상 20 이하, 또는 6 이상 15 이하일 수 있다. 아릴기의 예로는 페닐기, 나프틸기, 플루오레닐기, 안트라세닐기, 페난트릴기, 바이페닐기, 터페닐기, 쿼터페닐기, 퀸크페닐기, 섹시페닐기, 트리페닐에닐기, 피레닐기, 페릴렌일기, 나프타세닐기, 파이레닐기, 벤조 플루오란테닐기, 크리세닐기 등을 예시할 수 있지만, 이들에 한정되지 않는다.In the present specification, an aryl group means any functional group or substituent derived from an aromatic hydrocarbon ring. The aryl group may be a monocyclic aryl group or a polycyclic aryl group. The number of ring carbon atoms in the aryl group may be 6 or more and 30 or less, 6 or more and 20 or less, or 6 or more and 15 or less. Examples of aryl groups include phenyl group, naphthyl group, fluorenyl group, anthracenyl group, phenanthryl group, biphenyl group, terphenyl group, quarterphenyl group, quincphenyl group, sexyphenyl group, triphenylenyl group, pyrenyl group, peryleneyl group, naphtha Although a senyl group, a pyrenyl group, a benzofluoranthenyl group, a chrysenyl group, etc. can be illustrated, it is not limited to these.
본 명세서에서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수도 있다. In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
본 명세서에서, 헤테로아릴기는 이종 원소로 O, N, P, Si 및 S 중 1개 이상을 포함하는 헤테로아릴기일 수 있다. N 및 S 원자는 경우에 따라 산화될 수 있고, N 원자(들)은 경우에 따라 4차화될 수 있다. 헤테로아릴기의 고리 형성 탄소수는 2 이상 30 이하 또는 2 이상 20 이하이다. 헤테로아릴기는 단환식 헤테로아릴기 또는 다환식 헤테로아릴기일 수 있다. 다환식 헤테로아릴기는 예를 들어, 2환 또는 3환 구조를 갖는 것일 수 있다. In the present specification, the heteroaryl group may be a heteroaryl group including one or more of O, N, P, Si, and S as heterogeneous elements. The N and S atoms may be oxidized in some cases, and the N atom(s) may be quaternized in some cases. The number of ring carbon atoms in the heteroaryl group is 2 or more and 30 or less or 2 or more and 20 or less. The heteroaryl group may be a monocyclic heteroaryl group or a polycyclic heteroaryl group. The polycyclic heteroaryl group may have, for example, a bicyclic or tricyclic structure.
헤테로아릴기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 피라졸릴기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딘기, 비피리딘기, 피리미딘기, 트리아진기, 테트라진기, 트리아졸기, 테트라졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀린기, 퀴나졸린기, 퀴녹살린기, 페녹사진기, 프탈라진기, 피리도 피리미딘기, 피리도 피라지노 피라진기, 이소퀴놀린기, 신놀리기, 인돌기, 이소인돌기, 인다졸기, 카바졸기, N-아릴카바졸기, N-헤테로아릴카바졸기, N-알킬카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 벤조티오펜기, 벤조이소티아졸릴, 벤조이속사졸릴, 디벤조티오펜기, 티에노티오펜기, 벤조퓨란기, 페난트롤린기, 페난트리딘기, 티아졸기, 이소옥사졸기, 옥사디아졸기, 티아디아졸기, 이소티아졸기, 이속사졸기, 페노티아진기, 벤조디옥솔기, 디벤조실롤기 및 디벤조퓨란기, 이소벤조퓨란기 등이 있으나, 이들에 한정되지 않는다. 또한, 상기 단환식 헤테로 아릴기 또는 다환식 헤테로 아릴기에 상응하는 N-옥사이드 아릴기, 예를 들어, 피리딜 N-옥사이드기, 퀴놀릴 N-옥사이드기 등의 4차 염 등이 있으나, 이들에 한정되지 않는다. Examples of the heteroaryl group include thiophene group, furan group, pyrrole group, imidazole group, pyrazolyl group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridine group, bipyridine group, pyrimidine group, triazine group , Tetrazine group, triazole group, tetrazole group, acridyl group, pyridazine group, pyrazinyl group, quinoline group, quinazoline group, quinoxaline group, phenoxazine group, phthalazine group, pyrido pyrimidine group, pyrido pyrazino Pyrazine group, isoquinoline group, cinnoly group, indole group, isoindole group, indazole group, carbazole group, N-aryl carbazole group, N-heteroaryl carbazole group, N-alkyl carbazole group, benzoxazole group, benzoimidazole group , Benzothiazole group, benzocarbazole group, benzothiophene group, benzothiophene group, benzoisothiazolyl, benzoisoxazolyl, dibenzothiophene group, thienothiophene group, benzofuran group, phenanthroline group, phenanthridine group , Thiazole group, isoxazole group, oxadiazole group, thiadiazole group, isothiazole group, isoxazole group, phenothiazine group, benzodioxole group, dibenzosilol group and dibenzofuran group, isobenzofuran group, etc. It is not limited to these. In addition, there are N-oxide aryl groups corresponding to the monocyclic hetero aryl group or polycyclic hetero aryl group, for example, quaternary salts such as a pyridyl N-oxide group and a quinolyl N-oxide group. Not limited.
본 명세서에서, 실릴기는 알킬 실릴기 및 아릴 실릴기를 포함한다. 실릴기의 예로는 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나, 이들에 한정되지 않는다.In the present specification, the silyl group includes an alkyl silyl group and an aryl silyl group. Examples of the silyl group include trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like. Not limited.
본 명세서에서, 붕소기는 알킬 붕소기 및 아릴 붕소기를 포함한다. 붕소기의 예로는 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 디페닐붕소기, 페닐붕소기 등이 있으나, 이들에 한정되지 않는다.In the present specification, the boron group includes an alkyl boron group and an aryl boron group. Examples of the boron group include, but are not limited to, trimethyl boron group, triethyl boron group, t-butyldimethyl boron group, triphenyl boron group, diphenyl boron group, and phenyl boron group.
본 명세서에서, 알케닐기는 직쇄 또는 분지쇄일 수 있다. 탄소수는 특별히 한정되지 않으나, 2 이상 30 이하, 2 이상 20 이하 또는 2 이상 10 이하이다. 알케닐기의 예로는 비닐기, 1-부테닐기, 1-펜테닐기, 1,3-부타디에닐 아릴기, 스티레닐기, 스티릴비닐기 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkenyl group may be linear or branched. The number of carbon atoms is not particularly limited, but is 2 or more and 30 or less, 2 or more and 20 or less, or 2 or more and 10 or less. Examples of the alkenyl group include, but are not limited to, a vinyl group, 1-butenyl group, 1-pentenyl group, 1,3-butadienyl aryl group, styrenyl group, and styrylvinyl group.
본 명세서에 있어서, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있다. 상기 아릴아민기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기, 또는 단환식아릴기와 다환식 아릴기를 동시에 포함할 수 있다. In the present specification, examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group. The aryl group in the arylamine group may be a monocyclic aryl group, and may include a polycyclic aryl group or a monocyclic aryl group and a polycyclic aryl group at the same time.
아릴 아민기의 구체적인 예로는 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 3-메틸-페닐아민기, 4-메틸-나프틸아민기, 2-메틸-비페닐아민기, 9-메틸-안트라세닐아민기, 디페닐 아민기, 페닐 나프틸아민기, 디톨릴 아민기, 페닐 톨릴 아민기, 카바졸 및 트리페닐 아민기 등이 있으나, 이에 한정되는 것은 아니다.Specific examples of the aryl amine group include phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, 3-methyl-phenylamine group, 4-methyl-naphthylamine group, and 2-methyl-biphenylamine Group, 9-methyl-anthracenylamine group, diphenyl amine group, phenyl naphthylamine group, ditolyl amine group, phenyl tolyl amine group, carbazole and triphenyl amine group, but are not limited thereto.
본 명세서에 있어서, 헤테로알릴아민기의 예로는 치환 또는 비치환된 모노헤테로아릴아민기, 치환 또는 비치환된 디헤테로아릴아민기, 또는 치환 또는 비치환된 트리헤테로아릴아민기가 있다. 상기 헤테로아릴아민기 중의 헤테로아릴기는 단환식 헤테로 고리기일 수 있고, 다환식 헤테로 고리기일 수 있다. 상기 2이상의 헤테로 고리기를 포함하는 헤테로아릴아민기는 단환식 헤테로 고리기, 다환식 헤테로 고리기, 또는 단환식 헤테로 고리기와 다환식 헤테로 고리기를 동시에 포함할 수 있다. In the present specification, examples of the heteroallylamine group include a substituted or unsubstituted monoheteroarylamine group, a substituted or unsubstituted diheteroarylamine group, or a substituted or unsubstituted triheteroarylamine group. The heteroaryl group in the heteroarylamine group may be a monocyclic heterocyclic group or a polycyclic heterocyclic group. The heteroarylamine group including two or more heterocyclic groups may include a monocyclic heterocyclic group, a polycyclic heterocyclic group, or a monocyclic heterocyclic group and a polycyclic heterocyclic group at the same time.
본 명세서에 있어서, 아릴헤테로아릴아민기는 아릴기 및 헤테로 고리기로 치환된 아민기를 의미한다.In the present specification, an arylheteroarylamine group means an amine group substituted with an aryl group and a heterocyclic group.
본 명세서에서, “인접하는 기”는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기가 치환된 원자에 치환된 다른 치환기 또는 해당 치환기와 입체구조적으로 가장 인접한 치환기를 의미할 수 있다. 예컨대, 1,2-디메틸벤젠(1,2-dimethylbenzene)에서 2개의 메틸기는 서로 “인접하는 기”로 해석될 수 있고, 1,1-디에틸시클로펜테인(1,1-diethylcyclopentene)에서 2개의 에틸기는 서로 “인접하는 기”로 해석될 수 있다.In the present specification, “adjacent group” may mean a substituent substituted on an atom directly connected to the atom where the corresponding substituent is substituted, another substituent substituted on an atom where the corresponding substituent is substituted, or a substituent that is three-dimensionally adjacent to the substituent. have. For example, in 1,2-dimethylbenzene, two methyl groups can be interpreted as "adjacent groups", and in 1,1-diethylcyclopentene, 2 The two ethyl groups can be interpreted as “adjacent groups” to each other.
이하에서는 상기 유기물층 및/또는 캡핑층에 사용되는 3차 아민 유도체 화합물에 대해 설명한다. Hereinafter, a tertiary amine derivative compound used in the organic material layer and/or the capping layer will be described.
본 발명의 일 실시예에 따른 3차 아민 유도체 화합물은 하기 화학식 1로 표시된다The tertiary amine derivative compound according to an embodiment of the present invention is represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2020010960-appb-I000002
Figure PCTKR2020010960-appb-I000002
상기 화학식 1에 있어서, In Formula 1,
Z1는 O 또는 S이며,Z 1 is O or S,
n, p 및 q는 각각 독립적으로 0 또는 1이고,n, p and q are each independently 0 or 1,
Ar1 및 Ar2는 서로 동일하며, 시아노기; 시아노기가 치환된 아릴기; 치환 또는 비치환된 디벤조퓨란기; 치환 또는 비치환된 디벤조티오펜기; 치환 또는 비치환된 벤즈옥사졸기; 및 치환 또는 비치환된 벤즈티아졸기; 중에서 선택되는 어느 하나이다.Ar 1 and Ar 2 are the same as each other, and a cyano group; An aryl group substituted with a cyano group; A substituted or unsubstituted dibenzofuran group; A substituted or unsubstituted dibenzothiophene group; A substituted or unsubstituted benzoxazole group; And a substituted or unsubstituted benzthiazole group; It is any one selected from among.
본 발명의 일 실시예에 있어서, 상기 화학식 1로 표시되는 3차 아민 유도체는 하기 화학식 2로 표시된 화합물들 중에서 선택된 어느 하나일 수 있고, 하기 화합물들은 추가로 치환될 수 있다. In an embodiment of the present invention, the tertiary amine derivative represented by Formula 1 may be any one selected from compounds represented by Formula 2 below, and the following compounds may be further substituted.
[화학식 2][Formula 2]
Figure PCTKR2020010960-appb-I000003
Figure PCTKR2020010960-appb-I000003
Figure PCTKR2020010960-appb-I000004
Figure PCTKR2020010960-appb-I000004
Figure PCTKR2020010960-appb-I000005
Figure PCTKR2020010960-appb-I000005
Figure PCTKR2020010960-appb-I000006
Figure PCTKR2020010960-appb-I000006
Figure PCTKR2020010960-appb-I000007
Figure PCTKR2020010960-appb-I000007
Figure PCTKR2020010960-appb-I000008
Figure PCTKR2020010960-appb-I000008
Figure PCTKR2020010960-appb-I000009
Figure PCTKR2020010960-appb-I000009
Figure PCTKR2020010960-appb-I000010
Figure PCTKR2020010960-appb-I000010
Figure PCTKR2020010960-appb-I000011
Figure PCTKR2020010960-appb-I000011
Figure PCTKR2020010960-appb-I000012
Figure PCTKR2020010960-appb-I000012
Figure PCTKR2020010960-appb-I000013
Figure PCTKR2020010960-appb-I000013
Figure PCTKR2020010960-appb-I000014
Figure PCTKR2020010960-appb-I000014
Figure PCTKR2020010960-appb-I000015
Figure PCTKR2020010960-appb-I000015
Figure PCTKR2020010960-appb-I000016
Figure PCTKR2020010960-appb-I000016
Figure PCTKR2020010960-appb-I000017
Figure PCTKR2020010960-appb-I000017
Figure PCTKR2020010960-appb-I000018
Figure PCTKR2020010960-appb-I000018
Figure PCTKR2020010960-appb-I000019
Figure PCTKR2020010960-appb-I000019
Figure PCTKR2020010960-appb-I000020
Figure PCTKR2020010960-appb-I000020
Figure PCTKR2020010960-appb-I000021
Figure PCTKR2020010960-appb-I000021
Figure PCTKR2020010960-appb-I000022
Figure PCTKR2020010960-appb-I000022
Figure PCTKR2020010960-appb-I000023
Figure PCTKR2020010960-appb-I000023
Figure PCTKR2020010960-appb-I000024
Figure PCTKR2020010960-appb-I000024
Figure PCTKR2020010960-appb-I000025
Figure PCTKR2020010960-appb-I000025
Figure PCTKR2020010960-appb-I000026
Figure PCTKR2020010960-appb-I000026
Figure PCTKR2020010960-appb-I000027
Figure PCTKR2020010960-appb-I000027
Figure PCTKR2020010960-appb-I000028
Figure PCTKR2020010960-appb-I000028
Figure PCTKR2020010960-appb-I000029
Figure PCTKR2020010960-appb-I000029
Figure PCTKR2020010960-appb-I000030
Figure PCTKR2020010960-appb-I000030
Figure PCTKR2020010960-appb-I000031
Figure PCTKR2020010960-appb-I000031
Figure PCTKR2020010960-appb-I000032
Figure PCTKR2020010960-appb-I000032
Figure PCTKR2020010960-appb-I000033
Figure PCTKR2020010960-appb-I000033
Figure PCTKR2020010960-appb-I000034
Figure PCTKR2020010960-appb-I000034
Figure PCTKR2020010960-appb-I000035
Figure PCTKR2020010960-appb-I000035
Figure PCTKR2020010960-appb-I000036
Figure PCTKR2020010960-appb-I000036
Figure PCTKR2020010960-appb-I000037
Figure PCTKR2020010960-appb-I000037
Figure PCTKR2020010960-appb-I000038
Figure PCTKR2020010960-appb-I000038
Figure PCTKR2020010960-appb-I000039
Figure PCTKR2020010960-appb-I000039
Figure PCTKR2020010960-appb-I000040
Figure PCTKR2020010960-appb-I000040
Figure PCTKR2020010960-appb-I000041
Figure PCTKR2020010960-appb-I000041
Figure PCTKR2020010960-appb-I000042
Figure PCTKR2020010960-appb-I000042
Figure PCTKR2020010960-appb-I000043
Figure PCTKR2020010960-appb-I000043
Figure PCTKR2020010960-appb-I000044
Figure PCTKR2020010960-appb-I000044
Figure PCTKR2020010960-appb-I000045
Figure PCTKR2020010960-appb-I000045
Figure PCTKR2020010960-appb-I000046
Figure PCTKR2020010960-appb-I000046
Figure PCTKR2020010960-appb-I000047
Figure PCTKR2020010960-appb-I000047
Figure PCTKR2020010960-appb-I000048
Figure PCTKR2020010960-appb-I000048
Figure PCTKR2020010960-appb-I000049
Figure PCTKR2020010960-appb-I000049
Figure PCTKR2020010960-appb-I000050
Figure PCTKR2020010960-appb-I000050
이하, 도 1 및 2를 참조하여 본 발명의 실시예를 설명한다.Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
도 1은 본 발명의 일 실시예에 따른 유기 발광 소자를 개략적으로 나타낸 단면도이다. 도 1을 참조하면, 일 실시예에 따른 유기 발광 소자는 기판(100)위에 순차적으로 적층된 제1 전극(110), 정공주입층(210), 정공수송층(215), 발광층(220), 전자수송층(230), 전자주입층(235), 제2 전극(120), 캡핑층(300)을 포함할 수 있다.1 is a schematic cross-sectional view of an organic light-emitting device according to an embodiment of the present invention. Referring to FIG. 1, in an organic light emitting diode according to an embodiment, a first electrode 110, a hole injection layer 210, a hole transport layer 215, a light emitting layer 220, and an electron are sequentially stacked on a substrate 100. A transport layer 230, an electron injection layer 235, a second electrode 120, and a capping layer 300 may be included.
제1 전극(110)과 제2 전극(120)은 서로 마주하고 배치되며, 제1 전극(110)과 제2 전극(120) 사이에는 유기물층(200)이 배치될 수 있다. 유기물층(200)은 정공주입층(210), 정공수송층(215), 발광층(220), 전자수송층(230), 전자주입층(235)을 포함할 수 있다.The first electrode 110 and the second electrode 120 are disposed to face each other, and the organic material layer 200 may be disposed between the first electrode 110 and the second electrode 120. The organic material layer 200 may include a hole injection layer 210, a hole transport layer 215, a light emitting layer 220, an electron transport layer 230, and an electron injection layer 235.
한편, 본 발명에서 제시되는 캡핑층(300)은 제2 전극(120) 위에 증착되는 기능층으로서, 본 발명의 화학식 1에 따른 유기물을 포함한다.Meanwhile, the capping layer 300 presented in the present invention is a functional layer deposited on the second electrode 120 and includes an organic material according to Formula 1 of the present invention.
도 1에 도시된 일 실시예의 유기 발광 소자에서 제1 전극(110)은 도전성을 갖는다. 제1 전극(110)은 금속 합금 또는 도전성 화합물로 형성될 수 있다. 제1 전극(110)은 일반적으로 양극(anode)이지만 전극으로의 기능은 제한하지 않는다.In the organic light-emitting device of the exemplary embodiment illustrated in FIG. 1, the first electrode 110 has conductivity. The first electrode 110 may be formed of a metal alloy or a conductive compound. The first electrode 110 is generally an anode, but its function as an electrode is not limited.
제1 전극(110)은 기판(100) 상부에 전극 물질을 증착법, 전자빔 증발 또는 스퍼터링법 등을 이용하여 형성할 수 있다. 제1 전극(110)의 재료는 유기 발광 소자 내부로 정공의 주입이 용이하도록 높은 일함수를 갖는 물질 중에서 선택될 수 있다. The first electrode 110 may be formed on the substrate 100 by using an electrode material deposition method, an electron beam evaporation method, or a sputtering method. The material of the first electrode 110 may be selected from materials having a high work function to facilitate injection of holes into the organic light-emitting device.
본 발명에서 제안되는 캡핑층(300)은 유기 발광 소자의 발광방향이 전면발광일 경우에 적용되며 따라서 제1 전극(110)은 반사형 전극을 사용한다. 이들의 재료로는 산화물이 아닌 Mg(마그네슘), Al(알루미늄), Al-Li(알루미늄-리튬), Ca(칼슘), Mg-In(마그네슘-인듐), Mg-Ag(마그네슘-은)과 같은 금속을 사용하여 제작할 수도 있다. 최근에 와서는 CNT(탄소나노튜브), Graphene(그래핀) 등 탄소기판 유연 전극 재료가 사용될 수도 있다. The capping layer 300 proposed in the present invention is applied when the emission direction of the organic light-emitting device is front emission, and thus, the first electrode 110 uses a reflective electrode. These materials include Mg (magnesium), Al (aluminum), Al-Li (aluminum-lithium), Ca (calcium), Mg-In (magnesium-indium), and Mg-Ag (magnesium-silver), which are not oxides. It can also be made using the same metal. Recently, carbon substrate flexible electrode materials such as CNT (carbon nanotube) and graphene (graphene) may be used.
상기 유기물층(200)은 복수의 층으로 형성될 수 있다. 상기 유기물층 (200)이 복수의 층인 경우, 유기물층(200)은 제1 전극(110) 상에 배치된 정공수송영역(210~215), 상기 정공 수송영역 상에 배치된 발광층(220), 상기 발광층(220) 상에 배치된 전자 수송 영역(230~235)를 포함할 수 있다.The organic material layer 200 may be formed of a plurality of layers. When the organic material layer 200 is a plurality of layers, the organic material layer 200 includes a hole transport region 210 to 215 disposed on the first electrode 110, a light emitting layer 220 disposed on the hole transport region, and the light emitting layer The electron transport regions 230 to 235 disposed on the 220 may be included.
일 실시예의 상기 캡핑층(300)은 후술하는 화학식 1로 표시되는 유기화합물을 포함한다. The capping layer 300 according to an embodiment includes an organic compound represented by Formula 1 to be described later.
정공 수송 영역(210~215)은 제1 전극(110) 상에 제공된다. 정공 수송 영역(210~215)은 정공 주입층(210), 정공 수송층(215), 정공 버퍼층 및 전자 저지층(EBL) 중 적어도 하나를 포함할 수 있고, 유기 발광 소자 내로 원활한 정공 주입과 수송의 역할을 맡고 있으며 일반적으로 정공이동도가 전자이동도 보다 빠르기 때문에 전자 수송영역보다 두꺼운 두께를 갖는다.The hole transport regions 210 to 215 are provided on the first electrode 110. The hole transport regions 210 to 215 may include at least one of a hole injection layer 210, a hole transport layer 215, a hole buffer layer, and an electron blocking layer (EBL). It plays a role and generally has a thicker thickness than the electron transport region because the hole mobility is faster than the electron mobility.
정공 수송 영역(210~215)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다. The hole transport regions 210 to 215 may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.
예를 들어, 정공 수송 영역(210~215)은 정공 주입층(210) 또는 정공 수송층(215)의 단일층의 구조를 가질 수도 있고, 정공 주입 물질과 정공 수송 물질로 이루어진 단일층 구조를 가질 수도 있다. 또한, 정공 수송 영역(210~215)은, 복수의 서로 다른 물질로 이루어진 단일층의 구조를 갖거나, 제1 전극(110)으로부터 차례로 적층된 정공 주입층(210)/정공 수송층(215), 정공 주입층(210)/정공 수송층(215)/정공 버퍼층, 정공 주입층(210)/정공 버퍼층, 정공 수송층(215)/정공 버퍼층, 또는 정공 주입층(210)/정공 수송층(215)/전자 저지층(EBL)의 구조를 가질 수 있으나, 실시예가 이에 한정되는 것은 아니다. For example, the hole transport regions 210 to 215 may have a single layer structure of the hole injection layer 210 or the hole transport layer 215, or may have a single layer structure made of a hole injection material and a hole transport material. have. In addition, the hole transport regions 210 to 215 have a single-layer structure made of a plurality of different materials, or a hole injection layer 210/hole transport layer 215 sequentially stacked from the first electrode 110, Hole injection layer 210 / hole transport layer 215 / hole buffer layer, hole injection layer 210 / hole buffer layer, hole transport layer 215 / hole buffer layer, or hole injection layer 210 / hole transport layer 215 / electron Although it may have a structure of the blocking layer (EBL), the embodiment is not limited thereto.
상기 정공 수송 영역(210~215) 중 정공 주입층(210)은 양극 위로 진공증착법, 스핀코팅법, 캐스트법, LB법 등 다양한 방법으로 형성될 수 있다. 진공 증착법에 의하여 정공 주입층(210)을 형성하는 경우, 그 증착 조건은 정공주입층(210) 재료로 사용하는 화합물, 목적으로 하는 정공주입층(210)의 구조 및 열적 특성 등에 따라 100 내지 500℃에서 증착 속도를 1Å/s 전후로 하여 자유롭게 조절할 수 있으며, 특정한 조건에 한정되는 것은 아니다. 스핀 코팅법에 의하여 정공주입층(210)을 형성하는 경우 코팅 조건은 정공주입층(210) 재료로 사용하는 화합물과 계면으로 형성되는 층들 간의 특성에 따라 상이하지만 고른 막형성을 위해 코팅속도, 코팅 후 용매 제거를 위한 열처리 등이 필요하다.Among the hole transport regions 210 to 215, the hole injection layer 210 may be formed on the anode by various methods such as a vacuum deposition method, a spin coating method, a cast method, and an LB method. When the hole injection layer 210 is formed by vacuum deposition, the deposition conditions are 100 to 500 depending on the compound used as the material of the hole injection layer 210 and the structure and thermal characteristics of the hole injection layer 210. The deposition rate at °C can be freely controlled by around 1 Å/s, and is not limited to specific conditions. In the case of forming the hole injection layer 210 by the spin coating method, the coating conditions are different depending on the characteristics between the compound used as the material of the hole injection layer 210 and the layers formed as the interface, but the coating speed and coating are used for even film formation. After the solvent is removed, heat treatment or the like is required.
Figure PCTKR2020010960-appb-I000051
Figure PCTKR2020010960-appb-I000051
상기 정공 수송 영역(210~215)은, 예를 들면, m-MTDATA, TDATA, 2-TNATA, NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated-NPB, TAPC, HMTPD, TCTA(4,4',4"-트리스(N-카바졸일)트리페닐아민(4,4',4"-tris(Ncarbazolyl) triphenylamine)), Pani/DBSA(Polyaniline/Dodecylbenzenesulfonic acid:폴리아닐린/도데실벤젠술폰산), PEDOT/PSS(Poly(3,4-ethylenedioxythiophene) /Poly(4-styrene sulfonate):폴리(3,4-에틸렌디옥시티오펜) /폴리(4-스티렌술포네이트)), Pani/CSA(Polyaniline/Camphor sulfonicacid : 폴리아닐린/캠퍼술폰산), PANI/PSS(Polyaniline)/Poly(4-styrenesulfonate):폴리아닐린)/폴리(4-스티렌술포네이트)) 등을 포함할 수 있다.The hole transport regions 210 to 215 are, for example, m-MTDATA, TDATA, 2-TNATA, NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated-NPB, TAPC, HMTPD, and TCTA. (4,4',4"-tris (N-carbazolyl) triphenylamine (4,4',4"-tris (Ncarbazolyl) triphenylamine)), Pani/DBSA (Polyaniline/Dodecylbenzenesulfonic acid: polyaniline/dodecylbenzene) Sulfonic acid), PEDOT/PSS(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrene sulfonate):poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)), Pani/CSA( Polyaniline/Camphor sulfonic acid: polyaniline/camphor sulfonic acid), PANI/PSS(Polyaniline)/Poly(4-styrenesulfonate):polyaniline)/poly(4-styrenesulfonate)), and the like.
Figure PCTKR2020010960-appb-I000052
Figure PCTKR2020010960-appb-I000052
상기 정공 수송 영역(210~215)의 두께는 약 100 내지 약 10,000Å으로 형성될 수 있으며, 각 정공 수송영역(210~215)의 해당 유기물층들은 같은 두께로 한정되는 것은 아니다. 예를 들면, 정공주입층(210)의 두께가 50Å이면 정공수송층(215)의 두께는 1000Å, 전자저지층의 두께는 500Å을 형성할 수 있다. 정공 수송영역(210~215)의 두께 조건은 유기 발광 소자의 구동전압 상승이 커지지 않는 범위 내에서 효율과 수명을 만족하는 정도로 정할 수 있다. 상기 유기물층(200)은 정공주입층(210), 정공수송층(215), 정공주입 기능과 정공수송 기능을 동시에 갖는 기능층, 버퍼층, 전자저지층, 발광층(220), 정공저지층, 전자수송층(230), 전자주입층(235) 및 전자수송 기능과 전자주입 기능을 동시에 갖는 기능층으로 이루어진 군 중에서 선택되는 1층 이상을 포함할 수 있다.The hole transport regions 210 to 215 may have a thickness of about 100 to about 10,000 Å, and the organic material layers of each hole transport region 210 to 215 are not limited to the same thickness. For example, if the thickness of the hole injection layer 210 is 50 Å, the thickness of the hole transport layer 215 may be 1000 Å, and the thickness of the electron blocking layer may be 500 Å. The thickness condition of the hole transport regions 210 to 215 may be set to a degree that satisfies the efficiency and lifetime within a range in which the increase in the driving voltage of the organic light emitting device does not increase. The organic material layer 200 includes a hole injection layer 210, a hole transport layer 215, a functional layer having a hole injection function and a hole transport function at the same time, a buffer layer, an electron blocking layer, a light emitting layer 220, a hole blocking layer, an electron transport layer ( 230), an electron injection layer 235, and one or more layers selected from the group consisting of a functional layer having an electron transport function and an electron injection function at the same time.
정공 수송 영역(210~215)은 발광층(220)과 마찬가지로 특성 향상을 위해 도핑을 사용할 수 있으며 이러한 정공 수송 영역(210~215) 내로 전하-생성 물질의 도핑은 유기 발광 소자의 전기적 특성을 향상시킬 수 있다.The hole transport regions 210 to 215 may use doping to improve characteristics like the light emitting layer 220, and doping of a charge-generating material into the hole transport regions 210 to 215 will improve the electrical properties of the organic light emitting device. I can.
전하-생성 물질은 일반적으로 HOMO와 LUMO가 굉장히 낮은 물질로 이루어지며 예를 들어, 전하-생성 물질의 LUMO는 정공수송층(215) 물질의 HOMO와 유사한 값을 갖는다. 이러한 낮은 LUMO로 인하여 LUMO의 전자가 비어 있는 특성을 이용하여 인접한 정공수송층(215)에 쉽게 정공을 전달하여 전기적 특성을 향상시킨다.The charge-generating material is generally composed of a material having very low HOMO and LUMO. For example, the LUMO of the charge-generating material has a similar value to that of the hole transport layer 215 material. Due to such a low LUMO, the electrons of the LUMO are vacant, and holes are easily transferred to the adjacent hole transport layer 215 to improve electrical characteristics.
상기 전하-생성 물질은 예를 들면, p-도펀트일 수 있다. 상기 p-도펀트는 퀴논 유도체, 금속 산화물 및 시아노기-함유 화합물 중 하나일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 상기 p-도펀트의 비제한적인 예로는, 테트라사이아노퀴논다이메테인(TCNQ) 및 2,3,5,6-테트라플루오로-테트라사이아노-1,4-벤조퀴논다이메테인(F4-TCNQ) 등과 같은 퀴논 유도체; 텅스텐 산화물 및 몰리브덴 산화물 등과 같은 금속 산화물; 시아노기-함유 화합물; 등을 들 수 있으나, 이에 한정되는 것은 아니다.The charge-generating material may be, for example, a p-dopant. The p-dopant may be one of a quinone derivative, a metal oxide, and a cyano group-containing compound, but is not limited thereto. For example, non-limiting examples of the p-dopant include tetracyanoquinonedimethane (TCNQ) and 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinonedimethane Quinone derivatives such as phosphorus (F4-TCNQ) and the like; Metal oxides such as tungsten oxide and molybdenum oxide; Cyano group-containing compounds; And the like, but are not limited thereto.
Figure PCTKR2020010960-appb-I000053
Figure PCTKR2020010960-appb-I000053
정공 수송 영역(210~215)은 앞서 언급한 물질 외에, 도전성 향상을 위하여 전하 생성 물질을 더 포함할 수 있다. In addition to the aforementioned materials, the hole transport regions 210 to 215 may further include a charge generating material to improve conductivity.
전하 생성 물질은 정공 수송 영역(210~215) 내에 균일하게 또는 불균일하게 분산되어 있을 수 있다. 전하 생성 물질은 예를 들어, p-도펀트(dopant)일 수 있다. p-도펀트는 퀴논(quinone) 유도체, 금속 산화물 및 시아노(cyano)기 함유 화합물 중 하나일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, p-도펀트의 비제한적인 예로는, TCNQ(Tetracyanoquinodimethane) 및 F4-TCNQ(2,3,5,6-tetrafluoro-tetracyanoquinodimethane) 등과 같은 퀴논 유도체, 텅스텐 산화물 및 몰리브덴 산화물 등과 같은 금속 산화물 등을 들 수 있으나, 이에 한정되는 것은 아니다.The charge generating material may be uniformly or non-uniformly dispersed in the hole transport regions 210 to 215. The charge generating material may be, for example, a p-dopant. The p-dopant may be one of a quinone derivative, a metal oxide, and a cyano group-containing compound, but is not limited thereto. For example, non-limiting examples of p-dopants include quinone derivatives such as TCNQ (Tetracyanoquinodimethane) and F4-TCNQ (2,3,5,6-tetracyanoquinodimethane), metal oxides such as tungsten oxide and molybdenum oxide, and the like. However, it is not limited thereto.
전술한 바와 같이, 정공 수송 영역(210~215)은 정공주입층(210) 및 정공수송층(215) 외에, 정공 버퍼층 및 전자 저지층 중 적어도 하나를 더 포함할 수 있다. 정공 버퍼층은 발광층(220)에서 방출되는 광의 파장에 따른 공진 거리를 보상하여 광 방출 효율을 증가시킬 수 있다. 정공 버퍼층에 포함되는 물질로는 정공 수송 영역(210~215)에 포함될 수 있는 물질을 사용할 수 있다. As described above, the hole transport regions 210 to 215 may further include at least one of a hole buffer layer and an electron blocking layer in addition to the hole injection layer 210 and the hole transport layer 215. The hole buffer layer may increase light emission efficiency by compensating for a resonance distance according to a wavelength of light emitted from the emission layer 220. As a material included in the hole buffer layer, a material capable of being included in the hole transport regions 210 to 215 may be used.
전자 저지층은 전자 수송 영역(230~235)으로부터 정공 수송 영역(210~215)으로의 전자 주입을 방지하는 역할을 하는 층이다. 전자 저지층은 정공 수송영역으로 이동하는 전자를 저지할 뿐 아니라 발광층(220)에서 형성된 엑시톤이 정공수송영역(210~215)으로 확산되지 않도록 높은 T1 값을 갖는 재료를 사용할 수 있다. 예를 들면 일반적으로 높은 T1값을 갖는 발광층(220)의 호스트 등을 전자저지층 재료로 사용할 수 있다.The electron blocking layer is a layer that serves to prevent injection of electrons from the electron transport regions 230 to 235 to the hole transport regions 210 to 215. The electron blocking layer may use a material having a high T1 value so as not only to block electrons moving to the hole transport region, but also to prevent the excitons formed in the light emitting layer 220 from diffusing into the hole transport regions 210 to 215. For example, in general, a host of the light emitting layer 220 having a high T 1 value may be used as a material for the electron blocking layer.
발광층(220)은 정공 수송 영역(210~215) 상에 제공된다. 발광층(220)은 예를 들어 약 100Å 내지 약 1000Å 또는, 약 100Å 내지 약 300Å의 두께를 갖는 것일 수 있다. 발광층(220)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다. The emission layer 220 is provided on the hole transport regions 210 to 215. The emission layer 220 may have a thickness of, for example, about 100 Å to about 1000 Å or about 100 Å to about 300 Å. The emission layer 220 may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.
발광층(220)은 정공과 전자가 만나 엑시톤을 형성하는 영역으로 발광층(220)을 이루는 재료는 높은 발광 특성 및 원하는 발광색을 나타내도록 적절한 에너지밴드갭을 가져야 하며 일반적으로 호스트와 도판트 두 가지 역할을 가지는 두 재료로 이루어지나, 이에 한정된 것은 아니다.The light emitting layer 220 is a region where holes and electrons meet to form excitons, and the material forming the light emitting layer 220 must have an appropriate energy band gap to exhibit high light emission characteristics and a desired light emission color, and generally play two roles as a host and a dopant. Eggplant is made of two materials, but is not limited thereto.
상기 호스트는 하기 TPBi, TBADN, ADN("DNA"라고도 함), CBP, CDBP, TCP, mCP, 중 적어도 하나를 포함할 수 있고, 특성이 적절하다면 재료는 이에 한정된 것은 아니다. The host may include at least one of the following TPBi, TBADN, ADN (also referred to as "DNA"), CBP, CDBP, TCP, and mCP, and if the characteristics are appropriate, the material is not limited thereto.
Figure PCTKR2020010960-appb-I000054
Figure PCTKR2020010960-appb-I000054
일 실시예의 발광층(220)의 도판트는 유기 금속 착물일 수 있다. 일반적인 도판트의 함량은 0.01 내지 20%로 선택될 수 있으며, 경우에 따라 이에 한정되는 것은 아니다.The dopant of the emission layer 220 according to an embodiment may be an organic metal complex. The content of a general dopant may be selected from 0.01 to 20%, and is not limited thereto in some cases.
전자 수송 영역(230~235)은 발광층(220) 상에 제공된다. 전자 수송 영역(230~235)은, 정공 저지층, 전자 수송층(230) 및 전자 주입층(235) 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.The electron transport regions 230 to 235 are provided on the emission layer 220. The electron transport regions 230 to 235 may include at least one of a hole blocking layer, an electron transport layer 230 and an electron injection layer 235, but is not limited thereto.
전자 수송 영역(230~235)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다. The electron transport regions 230 to 235 may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.
예를 들어, 전자 수송 영역(230~235)은 전자 주입층(235) 또는 전자 수송층(230)의 단일층의 구조를 가질 수도 있고, 전자 주입 물질과 전자 수송 물질로 이루어진 단일층 구조를 가질 수도 있다. 또한, 전자 수송 영역(230~235)은, 복수의 서로 다른 물질로 이루어진 단일층의 구조를 갖거나, 발광층(220)으로부터 차례로 적층된 전자 수송층(230)/전자 주입층(235), 정공 저지층/전자 수송층(230)/전자 주입층(235) 구조를 가질 수 있으나, 이에 한정되는 것은 아니다. 전자 수송 영역(230~235)의 두께는 예를 들어, 약 1000Å 내지 약 1500Å인 것일 수 있다.For example, the electron transport regions 230 to 235 may have a single layer structure of the electron injection layer 235 or the electron transport layer 230, or may have a single layer structure made of an electron injection material and an electron transport material. have. In addition, the electron transport regions 230 to 235 have a single layer structure made of a plurality of different materials, or an electron transport layer 230 / electron injection layer 235 sequentially stacked from the light emitting layer 220, and hole blocking. The layer/electron transport layer 230/electron injection layer 235 may have a structure, but is not limited thereto. The thickness of the electron transport regions 230 to 235 may be, for example, about 1000 Å to about 1500 Å.
전자 수송 영역(230~235)은, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등과 같은 다양한 방법을 이용하여 형성될 수 있다.The electron transport regions 230 to 235 are various such as vacuum evaporation method, spin coating method, cast method, LB method (Langmuir-Blodgett), inkjet printing method, laser printing method, laser induced thermal imaging (LITI), etc. It can be formed using a method.
전자 수송 영역(230~235)이 전자 수송층(230)을 포함할 경우, 전자 수송 영역(230)은 안트라센계 화합물을 포함하는 것일 수 있다. 다만, 이에 한정되는 것은 아니며, 전자 수송 영역은 예를 들어, Alq3(Tris(8-hydroxyquinolinato)aluminum),1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene,2,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine,2-(4-(N-phenylbenzoimidazolyl-1-ylphenyl)-9,10-dinaphthylanthracene,TPBi(1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl),BCP(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline),Bphen(4,7-Diphenyl-1,10-phenanthroline),TAZ(3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole),NTAZ(4-(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole),tBu-PBD(2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole),BAlq(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum),Bebq2(berylliumbis(benzoquinolin-10-olate),ADN(9,10-di(naphthalene-2-yl)anthracene)및 이들의 혼합물을 포함하는 것일 수 있다.When the electron transport regions 230 to 235 include the electron transport layer 230, the electron transport region 230 may include an anthracene compound. However, the present invention is not limited thereto, and the electron transport region is, for example, Alq3(Tris(8-hydroxyquinolinato)aluminum),1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene,2 ,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine,2-(4-(N-phenylbenzoimidazolyl-1-ylphenyl)-9,10 -dinaphthylanthracene,TPBi(1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl),BCP(2,9-Dimethyl-4,7-diphenyl-1,10- phenanthroline),Bphen(4,7-Diphenyl-1,10-phenanthroline),TAZ(3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole),NTAZ(4 -(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole),tBu-PBD(2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1, 3,4-oxadiazole),BAlq(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum), Bebq2(berylliumbis(benzoquinolin-10-olate), It may include ADN (9,10-di(naphthalene-2-yl)anthracene) and a mixture thereof.
Figure PCTKR2020010960-appb-I000055
Figure PCTKR2020010960-appb-I000055
전자수송층(230)은 유기 발광 소자 구조에 따라 빠른 전자이동도 혹은 느린 전자이동도의 재료로 선택되므로 다양한 재료의 선택이 필요하며, 경우에 따라서 하기 Liq나 Li이 도핑되기도 한다.Since the electron transport layer 230 is selected as a material having a fast electron mobility or a slow electron mobility according to the structure of the organic light emitting device, it is necessary to select a variety of materials, and in some cases, the following Liq or Li may be doped.
전자수송층(230)들의 두께는 약 100Å 내지 약 1000Å, 예를 들어 약 150Å 내지 약 500Å일 수 있다. 전자수송층(230)들의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승이 없이 만족스러운 정도의 전자 수송 특성을 얻을 수 있다.The electron transport layers 230 may have a thickness of about 100 Å to about 1000 Å, for example, about 150 Å to about 500 Å. When the thickness of the electron transport layers 230 satisfies the above-described range, satisfactory electron transport characteristics can be obtained without a substantial increase in driving voltage.
전자 수송 영역(230~235)이 전자주입층(235)을 포함할 경우, 전자 수송 영역(230~235)은 전자의 주입을 용이하게 하는 금속재료를 선택하며, LiF, LiQ(Lithium quinolate), Li2O, BaO, NaCl, CsF, Yb와 같은 란타넘족 금속, 또는 RbCl, RbI와 같은 할로겐화 금속 등이 사용될 수 있으나 이에 한정되는 것은 아니다. When the electron transport regions 230 to 235 include the electron injection layer 235, the electron transport regions 230 to 235 select a metal material that facilitates injection of electrons, and LiF, LiQ (Lithium quinolate), Lanthanum group metals such as Li 2 O, BaO, NaCl, CsF, and Yb, or halogenated metals such as RbCl and RbI may be used, but are not limited thereto.
전자주입층(235)은 또한, 전자 수송 물질과 절연성의 유기 금속염(organo metal salt)이 혼합된 물질로 이루어질 수 있다. 유기 금속염은 에너지 밴드 갭(energy band gap)이 대략 4eV 이상의 물질이 될 수 있다. 구체적으로 예를 들어, 유기 금속염은 금속 아세테이트(metal acetate), 금속 벤조에이트(metal benzoate), 금속 아세토아세테이트(metal acetoacetate), 금속 아세틸아세토네이트(metal acetylacetonate) 또는 금속 스테아레이트(stearate)를 포함할 수 있다. 전자주입층(235)들의 두께는 약 1Å 내지 약 100Å, 약 3Å 내지 약 90Å일 수 있다. 전자 주입층(235)들의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승 없이 만족스러운 정도의 전자 주입 특성을 얻을 수 있다.The electron injection layer 235 may also be formed of a material in which an electron transport material and an insulating organo metal salt are mixed. The organometallic salt may be a material having an energy band gap of approximately 4 eV or more. Specifically, for example, the organometallic salt may include metal acetate, metal benzoate, metal acetoacetate, metal acetylacetonate, or metal stearate. I can. The electron injection layers 235 may have a thickness of about 1 Å to about 100 Å, and about 3 Å to about 90 Å. When the thickness of the electron injection layers 235 satisfies the above-described range, satisfactory electron injection characteristics can be obtained without a substantial increase in driving voltage.
전자 수송 영역(230~235)은 앞서 언급한 바와 같이, 정공 저지층을 포함할 수 있다. 정공 저지층은 예를 들어, BCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen(4,7-diphenyl-1,10-phenanthroline) 및 Balq 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.As mentioned above, the electron transport regions 230 to 235 may include a hole blocking layer. The hole blocking layer includes, for example, at least one of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), and Balq It can be, but is not limited thereto.
제2 전극(120)은 전자 수송 영역(230~235) 상에 제공된다. 제2 전극(120)은 공통 전극 또는 음극일 수 있다. 제2 전극(120)은 투과형 전극 또는 반투과형 전극 전극일 수 있다. 제2 전극(120)은 제1 전극(110)과 다르게 상대적으로 낮은 일함수를 갖는 금속, 전기전도성 화합물, 합금 등을 조합하여 사용할 수 있다.The second electrode 120 is provided on the electron transport regions 230 to 235. The second electrode 120 may be a common electrode or a cathode. The second electrode 120 may be a transmissive electrode or a transflective electrode. Unlike the first electrode 110, the second electrode 120 may be used in combination with a metal having a relatively low work function, an electroconductive compound, an alloy, and the like.
제2 전극(120)은 반투과형 전극 또는 반사형 전극이다. 제2 전극(120)은 Li(리튬), Mg(마그네슘), Al(알루미늄), Al-Li(알루미늄-리튬), Ca(칼슘), Mg-In(마그네슘-인듐), Mg-Ag(마그네슘-은) 또는 이들을 포함하는 화합물이나 혼합물(예를 들어, Ag와 Mg의 혼합물)을 포함할 수 있다. 또는 상기 물질로 형성된 반사막이나 반투과막 및 ITO(indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), ITZO(indium tin zinc oxide) 등으로 형성된 투명 도전막을 포함하는 복수의 층 구조일 수 있다.The second electrode 120 is a transflective electrode or a reflective electrode. The second electrode 120 is Li (lithium), Mg (magnesium), Al (aluminum), Al-Li (aluminum-lithium), Ca (calcium), Mg-In (magnesium-indium), Mg-Ag (magnesium -Silver) or a compound or mixture containing them (eg, a mixture of Ag and Mg). Alternatively, a plurality of layer structures including a reflective film or a semi-transmissive film formed of the material and a transparent conductive film formed of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium tin zinc oxide (ITZO), etc. Can be
도시하지는 않았으나, 제2 전극(120)은 보조 전극과 연결될 수 있다. 제2 전극(120)가 보조 전극과 연결되면, 제2 전극(120)의 저항을 감소시킬 수 있다.Although not shown, the second electrode 120 may be connected to the auxiliary electrode. When the second electrode 120 is connected to the auxiliary electrode, the resistance of the second electrode 120 may be reduced.
도시된 기판(100) 상에 전극 및 유기물층을 형성하며, 이때 기판(100) 재료는 경성 또는 연성 재료를 사용할 수 있으며, 예를 들어 경성 재료로는 소다라임 글래스, 무알칼리 글래스, 알루미노 실리케이트 글래스 등을 사용할 수 있으며, 연성 재료로는 PC(폴리카보네이트), PES(폴리에테르술폰), COC(싸이클릭올리펜코폴리머), PET(폴리에틸렌테레프탈레이트), PEN(폴리에틸렌나프탈레이트) 등을 사용할 수 있다.An electrode and an organic material layer are formed on the illustrated substrate 100, and in this case, a hard or soft material may be used as the material of the substrate 100. For example, the hard material is soda lime glass, alkali-free glass, aluminosilicate glass PC (polycarbonate), PES (polyethersulfone), COC (cyclic olefin copolymer), PET (polyethylene terephthalate), PEN (polyethylene naphthalate), etc. can be used as the soft material. .
유기 발광 소자에서, 제1 전극(110)과 제2 전극(120)에 각각 전압이 인가됨에 따라 제1 전극(110)으로부터 주입된 정공(hole)은 정공 수송 영역(210~215)을 거쳐 발광층(220)으로 이동되고, 제2 전극(120)로부터 주입된 전자가 전자 수송 영역(230~235)을 거쳐 발광층(220)으로 이동된다. 전자와 정공은 발광층(220)에서 재결합하여 여기자(exciton)를 생성하며, 여기자가 여기 상태에서 바닥 상태로 떨어지면서 발광하게 된다.In the organic light emitting diode, as voltages are applied to the first electrode 110 and the second electrode 120, respectively, holes injected from the first electrode 110 pass through the hole transport regions 210 to 215 and the emission layer The electrons are moved to 220, and electrons injected from the second electrode 120 are transferred to the emission layer 220 through the electron transport regions 230 to 235. The electrons and holes recombine in the emission layer 220 to generate excitons, and the excitons fall from the excited state to the ground state to emit light.
발광층(220)에서 발생된 광경로는 유기 발광 소자를 구성하는 유무기물들의 굴절률에 따라 매우 다른 경향을 나타낼 수 있다. 제2 전극(120)을 통과하는 빛은 제2 전극(120)의 임계각보다 작은 각도로 투과되는 빛들만 통과할 수 있다. 그 외 임계각보다 크게 제2 전극(120)에 접촉하는 빛들은 전반사 또는 반사되어 유기 발광 소자 외부로 방출되지 못한다.The light path generated in the light emitting layer 220 may exhibit very different trends depending on the refractive indexes of organic and inorganic materials constituting the organic light emitting device. Light passing through the second electrode 120 may pass only light transmitted at an angle smaller than the critical angle of the second electrode 120. In addition, light that contacts the second electrode 120 greater than the critical angle is totally reflected or reflected, and thus cannot be emitted to the outside of the organic light-emitting device.
캡핑층(300)의 굴절률이 높으면 이러한 전반사 또는 반사 현상을 줄여서 발광효율 향상에 기여하고 또한 적절한 두께를 갖게 되면 미소공동현상(Micro-cavity)현상의 극대화로 높은 효율 향상과 색순도 향상에도 기여하게 된다.When the refractive index of the capping layer 300 is high, it contributes to the improvement of luminous efficiency by reducing such total reflection or reflection, and when it has an appropriate thickness, it contributes to high efficiency improvement and color purity by maximizing the micro-cavity phenomenon. .
캡핑층(300)은 유기 발광 소자의 가장 바깥에 위치하게 되며, 소자의 구동에 전혀 영향을 주지 않으면서 소자특성에는 지대한 영향을 미친다. 따라서 캡핑층(300)은 유기 발광 소자의 내부 보호역할과 동시에 소자특성 향상 두 가지 관점에서 모두 중요하다. 유기물질들은 특정 파장영역의 광에너지를 흡수하며 이는 에너지밴드갭에 의존한다. 이 에너지밴드갭을 유기 발광 소자 내부의 유기물질들에 영향을 줄 수 있는 UV영역의 흡수를 목적으로 조정하면 캡핑층(300)이 광학특성 개선을 포함하여 유기 발광 소자 보호의 목적으로도 사용될 수 있다.The capping layer 300 is positioned on the outermost side of the organic light-emitting device, and does not affect the driving of the device at all and has a profound effect on device characteristics. Therefore, the capping layer 300 is important from both viewpoints of improving device characteristics as well as an internal protection role of an organic light-emitting device. Organic materials absorb light energy in a specific wavelength range, which depends on the energy band gap. If the energy band gap is adjusted for the purpose of absorption of the UV region that may affect organic materials inside the organic light emitting device, the capping layer 300 can be used for the purpose of protecting the organic light emitting device including improving optical properties. have.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다. The organic light-emitting device according to the present specification may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
이하 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 명세서에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 출원의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 출원의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail in order to describe the present specification in detail. However, the embodiments according to the present specification may be modified in various forms, and the scope of the present application is not construed as being limited to the embodiments described below. The embodiments of the present application are provided to more completely describe the present specification to those of ordinary skill in the art.
[제조예] [Production Example]
중간체 Intermediate 합성예Synthesis example 1: 중간체(1)의 합성 1: Synthesis of intermediate (1)
Figure PCTKR2020010960-appb-I000056
Figure PCTKR2020010960-appb-I000056
4-브로모디벤조[b,d]퓨란(4-bromodibenzo[b,d]furan) 10.0 g(40.5 mmol), 벤조페논 이민(Benzophenone imine) 8.1 g(44.7 mmol), Pd(dba)2 0.7 g(1.2 mmol), BINAP 1.5 g(2.5 mmol), tert-부톡시나트륨 11.7 g(121.7 mmol) 및 톨루엔 200 mL의 혼합물을 110 ℃에서 하루 종일 교반하였다. 반응 혼합물을 상온으로 냉각하여 셀라이트 패드에 통과시킨 후 감압 증류하여 용매를 제거하였다. 얻어진 화합물을 테트라하이드로퓨란 100 mL에 용해한 후 4N 염산용액으로 천천히 산성화(pH<2)하여 50 ℃에서 4 시간 동안 교반하였다. 상온으로 냉각한 후 테트라하이드로퓨란을 감압 증류하여 제거한 후 디에틸에테르를 가하여 교반하였다. 생성된 고체를 감압 여과하고, 여과한 습체를 물 200 mL에 부유시키고 포화 탄산나트륨 용액으로 산도를 8 이상으로 조정하여 1시간 동안 교반하였다. 생성된 고체를 여과하고 물로 세척한 후 감압 건조하였다. 얻어진 화합물은 컬럼 크로마토그래피로 정제하여 화합물(중간체(1)) 5.0 g(수율: 67%)을 얻었다.4-bromodibenzo[b,d]furan (4-bromodibenzo[b,d]furan) 10.0 g (40.5 mmol), benzophenone imine 8.1 g (44.7 mmol), Pd (dba) 2 0.7 g A mixture of (1.2 mmol), 1.5 g (2.5 mmol) of BINAP, 11.7 g (121.7 mmol) of tert -butoxy sodium, and 200 mL of toluene was stirred at 110° C. all day. The reaction mixture was cooled to room temperature, passed through a pad of Celite, and then distilled under reduced pressure to remove the solvent. The obtained compound was dissolved in 100 mL of tetrahydrofuran, slowly acidified (pH<2) with a 4N hydrochloric acid solution, and stirred at 50° C. for 4 hours. After cooling to room temperature, tetrahydrofuran was removed by distillation under reduced pressure, and diethyl ether was added thereto, followed by stirring. The resulting solid was filtered under reduced pressure, and the filtered wet body was suspended in 200 mL of water, and the acidity was adjusted to 8 or more with a saturated sodium carbonate solution, followed by stirring for 1 hour. The resulting solid was filtered, washed with water, and dried under reduced pressure. The obtained compound was purified by column chromatography to obtain 5.0 g (yield: 67%) of a compound (intermediate (1)).
중간체 Intermediate 합성예Synthesis example 2: 중간체(3)의 합성 2: Synthesis of intermediate (3)
Figure PCTKR2020010960-appb-I000057
Figure PCTKR2020010960-appb-I000057
(중간체(2)의 합성)(Synthesis of intermediate (2))
4-브로모-1-요오드벤젠(4-bromo-1-iodobenzene) 10.0 g(35.3 mmol), 디벤조퓨란-4-일보론산(dibenzofuran-4-ylboronic acid) 8.2 g(38.9 mmol), Pd(PPh3)4 0.2 g(1.1 mmol), 2M 탄산나트륨 용액 36.0 mL(72.0 mmol), 톨루엔 90 mL 및 에탄올 36 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 톨루엔 100 mL로 희석하고 물로 세척하였다. 유기층을 분리하여 무수 황산마그네슘으로 건조, 여과, 농축하여 고체의 화합물(중간체(2)) 10.7 g(수율: 93%)을 얻었다.4-bromo-1-iodobenzene 10.0 g (35.3 mmol), dibenzofuran-4-ylboronic acid 8.2 g (38.9 mmol), Pd ( PPh 3 ) 4 0.2 g (1.1 mmol), 2M sodium carbonate solution 36.0 mL (72.0 mmol), a mixture of toluene 90 mL and ethanol 36 mL was stirred under reflux for 12 hours. The reaction mixture was cooled to room temperature, diluted with 100 mL of toluene, and washed with water. The organic layer was separated, dried over anhydrous magnesium sulfate, filtered, and concentrated to obtain 10.7 g (yield: 93%) of a solid compound (intermediate (2)).
(중간체(3)의 합성)(Synthesis of intermediate (3))
중간체(2) 60.0 g(185.7 mmol), 벤조페논 이민(Benzophenone imine) 37.0 g(204.2 mmol), Pd(dba)2 5.3 g(9.3 mmol), BINAP 11.5 g(18.5 mmol), tert-부톡시나트륨 44.6 g(464.1 mmol), 톨루엔 600 mL의 혼합물을 12시간 동안 환류 교반하였다. 반응혼합물을 상온으로 냉각한 후 클로로포름으로 용해하였다. 이 용액을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 얻어진 화합물을 테트라하이드로퓨란 500 mL에 용해시킨 후 6N 염산 80 mL를 천천히 가하여 상온에서 하룻밤 교반하였다. 생성된 침전을 감압 여과한 후 클로로포름으로 세척하였다. 여과한 습체를 600 mL의 물에 부유시키고, 포화 탄산나트륨 용액으로 pH를 8 이상으로 조정한 후 클로로포름으로 추출하여 층분리하였다. 분리한 클로로포름층을 무수황산나트륨으로 건조, 여과하고 감압 농축하였다. 농축 잔류물을 디클로로메탄과 노말헥산으로 슬러리화하여 노란색 고체의 화합물(중간체(3)) 28.0 g(수율: 58%)을 얻었다.Intermediate (2) 60.0 g (185.7 mmol), Benzophenone imine 37.0 g (204.2 mmol), Pd (dba) 2 5.3 g (9.3 mmol), BINAP 11.5 g (18.5 mmol), tert -butoxy sodium A mixture of 44.6 g (464.1 mmol) and 600 mL of toluene was stirred under reflux for 12 hours. After cooling the reaction mixture to room temperature, it was dissolved in chloroform. After passing this solution through a pad of Celite, it was concentrated under reduced pressure. After dissolving the obtained compound in 500 mL of tetrahydrofuran, 80 mL of 6N hydrochloric acid was slowly added, followed by stirring at room temperature overnight. The resulting precipitate was filtered under reduced pressure and washed with chloroform. The filtered wet body was suspended in 600 mL of water, and the pH was adjusted to 8 or higher with saturated sodium carbonate solution, followed by extraction with chloroform and layer separation. The separated chloroform layer was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The concentrated residue was slurried with dichloromethane and normal hexane to obtain 28.0 g (yield: 58%) of a yellow solid compound (intermediate (3)).
중간체 Intermediate 합성예Synthesis example 3: 중간체(4)의 합성 3: Synthesis of intermediate (4)
Figure PCTKR2020010960-appb-I000058
Figure PCTKR2020010960-appb-I000058
1-(2-브로모디벤조[b,d]퓨란)(1-(2-bromodibenzo[b,d]furan)) 10.0 g(40.5 mmol), 벤조페논 이민(Benzophenone imine) 8.07 g(44.5 mmol), Pd(dba)2 0.70 g(1.22 mmol), BINAP 1.51 g(2.43 mmol), tert-부톡시나트륨 7.78 g(81.0 mmol) 및 톨루엔 100 mL의 혼합물을 12시간 동안 환류 교반하였다. 반응혼합물을 상온으로 냉각한 후 톨루엔 100 mL로 희석하고 물 200 mL로 2회 세척하였다. 유기층을 분리하여 무수황산나트륨으로 건조하고 여과, 농축하였다. 농축 잔류물을 테트라하이드로퓨란 100 mL에 용해한 후 6N 염산 5 mL를 천천히 첨가하여 50 ℃에서 1 시간 동안 교반하였다. 상온으로 냉각한 후 얻어진 고체를 감압 여과한 후 아세톤으로 세척하였다. 여과한 습체를 물 200 mL에 부유시키고 포화 탄산나트륨 용액으로 산도를 8 이상으로 조정한 후 1시간 동안 교반하였다. 생성된 침전을 여과하고 물로 세척, 감압 건조하여 중간체(4) 4.09 g(수율: 55%)을 얻었다.1-(2-bromodibenzo[b,d]furan)(1-(2-bromodibenzo[b,d]furan)) 10.0 g (40.5 mmol), benzophenone imine 8.07 g (44.5 mmol) A mixture of 0.70 g (1.22 mmol) of Pd(dba) 2 , 1.51 g (2.43 mmol) of BINAP, 7.78 g (81.0 mmol) of tert -butoxy sodium, and 100 mL of toluene was stirred under reflux for 12 hours. The reaction mixture was cooled to room temperature, diluted with 100 mL of toluene, and washed twice with 200 mL of water. The organic layer was separated, dried over anhydrous sodium sulfate, filtered and concentrated. After the concentrated residue was dissolved in 100 mL of tetrahydrofuran, 5 mL of 6N hydrochloric acid was slowly added, followed by stirring at 50° C. for 1 hour. After cooling to room temperature, the obtained solid was filtered under reduced pressure and washed with acetone. The filtered wet body was suspended in 200 mL of water, and the acidity was adjusted to 8 or more with a saturated sodium carbonate solution, followed by stirring for 1 hour. The resulting precipitate was filtered, washed with water, and dried under reduced pressure to obtain 4.09 g (yield: 55%) of the intermediate (4).
중간체 Intermediate 합성예Synthesis example 4: 중간체(5)의 합성 4: Synthesis of intermediate (5)
Figure PCTKR2020010960-appb-I000059
Figure PCTKR2020010960-appb-I000059
4-브로모디벤조[b,d]티오펜(4-bromodibenzo[b,d]thiophene) 10.0 g(38.0 mmol), 벤조페논 이민(benzophenone imine) 6.9 g(38.0 mmol), Pd(dba)2 1.1 g(1.9 mmol), BINAP 2.4 g(3.8 mmol), tert-부톡시나트륨 7.3 g(76.0 mmol), 톨루엔 190 mL의 혼합물을 3시간 동안 환류 교반하였다. 반응혼합물을 상온으로 냉각한 후 증류수 190 mL를 가하고 추출하였다. 유기층에 6 N HCl 100 mL를 가하고 3시간 동안 상온에서 교반한 후 생성된 고체를 감압 여과하였다. 여과된 습체를 포화 탄산나트륨 용액으로 염기성화(pH>8)시키고 디클로로메탄 190 mL로 추출하였다. 분리한 유기층을 무수 황산나트륨으로 건조, 여과하고 농축한 후 컬럼 크로마토그래피로 정제하여 옅은 주황색 고체의 화합물(중간체(5)) 3.6 g(수율: 47.6 %)을 얻었다.4-bromodibenzo[b,d]thiophene 10.0 g (38.0 mmol), benzophenone imine 6.9 g (38.0 mmol), Pd (dba) 2 1.1 A mixture of g (1.9 mmol), BINAP 2.4 g (3.8 mmol), tert -butoxy sodium 7.3 g (76.0 mmol), and 190 mL of toluene was stirred under reflux for 3 hours. After cooling the reaction mixture to room temperature, 190 mL of distilled water was added and extracted. 100 mL of 6 N HCl was added to the organic layer, stirred at room temperature for 3 hours, and then the resulting solid was filtered under reduced pressure. The filtered wet body was basified (pH>8) with saturated sodium carbonate solution and extracted with 190 mL of dichloromethane. The separated organic layer was dried over anhydrous sodium sulfate, filtered, concentrated, and purified by column chromatography to obtain 3.6 g (yield: 47.6%) of a pale orange solid compound (intermediate (5)).
중간체 Intermediate 합성예Synthesis example 5: 중간체(6)의 합성 5: Synthesis of intermediate (6)
Figure PCTKR2020010960-appb-I000060
Figure PCTKR2020010960-appb-I000060
2-브로모디벤조[b,d]티오펜(2-bromodibenzo[b,d]thiophene) 6.0 g(22.8 mmol), 벤조페논 이민(Benzophenone imine) 4.6 mL(27.4 mmol), Pd2(dba)3 1.04 g(1.14 mmol), BINAP 1.42 g(2.28 mmol), 탄산세슘 22.3 g(68.4 mmol) 및 톨루엔 110 mL의 혼합물을 12시간 동안 환류 교반하였다. 반응혼합물을 상온으로 냉각하고 셀라이트 패드로 여과한 후, 여과액을 감압 농축하였다. 여과한 습체를 테트라하이드로퓨란 70 mL에 용해시킨 후 6N 염산 30 mL를 가하여 1시간 동안 교반하였다. 혼합물을 포화 탄산나트륨 용액으로 염기성화(pH 7-8)시킨 후 디클로로메탄으로 추출하였다. 분리한 유기층을 무수 황산나트륨으로 건조, 여과하고 농축한 후 컬럼 크로마토그래피로 정제하여 갈색 고체의 화합물(중간체(6)) 2.72 g(수율: 59.9%)을 얻었다. 2-bromodibenzo[b,d]thiophene 6.0 g (22.8 mmol), benzophenone imine 4.6 mL (27.4 mmol), Pd 2 (dba) 3 A mixture of 1.04 g (1.14 mmol), 1.42 g (2.28 mmol) of BINAP, 22.3 g (68.4 mmol) of cesium carbonate and 110 mL of toluene was stirred under reflux for 12 hours. The reaction mixture was cooled to room temperature, filtered through a pad of Celite, and the filtrate was concentrated under reduced pressure. The filtered wet body was dissolved in 70 mL of tetrahydrofuran, 30 mL of 6N hydrochloric acid was added, and the mixture was stirred for 1 hour. The mixture was basified (pH 7-8) with saturated sodium carbonate solution and extracted with dichloromethane. The separated organic layer was dried over anhydrous sodium sulfate, filtered, concentrated, and purified by column chromatography to obtain 2.72 g (yield: 59.9%) of a brown solid compound (intermediate (6)).
중간체 Intermediate 합성예Synthesis example 6: 중간체(8)의 합성 6: Synthesis of intermediate (8)
Figure PCTKR2020010960-appb-I000061
Figure PCTKR2020010960-appb-I000061
(중간체(7)의 합성)(Synthesis of intermediate (7))
4-브로모-1-요오드벤젠(4-bromo-1-iodobenzene) 10.0 g(35.3 mmol), 디벤조퓨란-4-일보론산(dibenzofuran-4-ylboronic acid) 8.2 g(38.9 mmol), Pd(PPh3)4 0.2 g(1.1 mmol), 2M 탄산나트륨 용액 36.0 mL(72.0 mmol), 톨루엔 90 mL 및 에탄올 36 mL의 혼합물을 12시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 톨루엔 100 mL로 희석하고 물로 세척하였다. 유기층을 분리하여 무수 황산마그네슘으로 건조, 여과, 농축하여 고체의 화합물(중간체(7)) 10.7 g(수율: 93%)을 얻었다.4-bromo-1-iodobenzene 10.0 g (35.3 mmol), dibenzofuran-4-ylboronic acid 8.2 g (38.9 mmol), Pd ( PPh 3 ) 4 0.2 g (1.1 mmol), 2M sodium carbonate solution 36.0 mL (72.0 mmol), a mixture of toluene 90 mL and ethanol 36 mL was stirred under reflux for 12 hours. The reaction mixture was cooled to room temperature, diluted with 100 mL of toluene, and washed with water. The organic layer was separated, dried over anhydrous magnesium sulfate, filtered, and concentrated to obtain 10.7 g (yield: 93%) of a solid compound (intermediate (7)).
(중간체(8)의 합성)(Synthesis of intermediate (8))
중간체(7) 60.0 g(185.7 mmol), 벤조페논 이민(Benzophenone imine) 37.0 g(204.2 mmol), Pd(dba)2 5.3 g(9.3 mmol), BINAP 11.5 g(18.5 mmol), tert-부톡시나트륨 44.6 g(464.1 mmol), 톨루엔 600 mL의 혼합물을 12시간 동안 환류 교반하였다. 반응혼합물을 상온으로 냉각한 후 클로로포름으로 용해하였다. 이 용액을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 얻어진 화합물을 테트라하이드로퓨란 500 mL에 용해시킨 후 6N 염산 80 mL를 천천히 가하여 상온에서 하룻밤 교반하였다. 생성된 침전을 감압 여과한 후 클로로포름으로 세척하였다. 여과한 습체를 600 mL의 물에 부유시키고, 포화 탄산나트륨 용액으로 pH를 8 이상으로 조정한 후 클로로포름으로 추출하여 층분리하였다. 분리한 클로로포름층을 무수황산나트륨으로 건조, 여과하고 감압 농축하였다. 농축 잔류물을 디클로로메탄과 노말헥산으로 슬러리화하여 노란색 고체의 화합물(중간체(8)) 28.0 g(수율: 58%)을 얻었다.Intermediate (7) 60.0 g (185.7 mmol), Benzophenone imine 37.0 g (204.2 mmol), Pd (dba) 2 5.3 g (9.3 mmol), BINAP 11.5 g (18.5 mmol), tert -butoxysodium A mixture of 44.6 g (464.1 mmol) and 600 mL of toluene was stirred under reflux for 12 hours. After cooling the reaction mixture to room temperature, it was dissolved in chloroform. After passing this solution through a pad of Celite, it was concentrated under reduced pressure. After dissolving the obtained compound in 500 mL of tetrahydrofuran, 80 mL of 6N hydrochloric acid was slowly added, followed by stirring at room temperature overnight. The resulting precipitate was filtered under reduced pressure and washed with chloroform. The filtered wet body was suspended in 600 mL of water, and the pH was adjusted to 8 or higher with saturated sodium carbonate solution, followed by extraction with chloroform and layer separation. The separated chloroform layer was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The concentrated residue was slurried with dichloromethane and normal hexane to obtain 28.0 g (yield: 58%) of a yellow solid compound (intermediate (8)).
중간체 Intermediate 합성예Synthesis example 7: 중간체(9)의 합성 7: Synthesis of intermediate (9)
Figure PCTKR2020010960-appb-I000062
Figure PCTKR2020010960-appb-I000062
1구 250 mL 플라스크에 중간체(3) 4.6 g(17.7 mmol), 1-브로모-4-아이오도벤젠(1-Bromo-4-iodobenzene) 11.0 g(39.0 mmol), Pd(dba)2 0.5 g(0.9 mmol), DPPF 1.0 g(1.8 mmol), NaOtBu 5.1 g(53.2 mmol) 및 톨루엔 90 mL를 넣고 4시간 동안 환류 및 교반하였다. 상온에서 식힌 후 셀라이트 여과를 통해 불순물을 제거하였다. 용매를 제거한 후 디클로로메탄에 녹여 실리카겔 컬럼 크로마토그래피(DCM:HEX)로 정제하였다. 얻어진 고체를 혼합용액(디클로로메탄/아세톤)으로 여과하여 흰색 고체의 화합물(중간체(9)) 6.9 g(수율: 68.6%)을 얻었다.In a 1-neck 250 mL flask, intermediate (3) 4.6 g (17.7 mmol), 1-Bromo-4-iodobenzene 11.0 g (39.0 mmol), Pd (dba) 2 0.5 g (0.9 mmol), DPPF 1.0 g (1.8 mmol), NaOtBu 5.1 g (53.2 mmol), and 90 mL of toluene were added, followed by refluxing and stirring for 4 hours. After cooling at room temperature, impurities were removed through Celite filtration. After removing the solvent, it was dissolved in dichloromethane and purified by silica gel column chromatography (DCM:HEX). The obtained solid was filtered through a mixed solution (dichloromethane/acetone) to obtain 6.9 g (yield: 68.6%) of a white solid compound (intermediate (9)).
중간체 Intermediate 합성예Synthesis example 8: 중간체(10)의 합성 8: Synthesis of intermediate (10)
Figure PCTKR2020010960-appb-I000063
Figure PCTKR2020010960-appb-I000063
1구 500 mL 플라스크에 중간체(6) 4.0 g(20.1 mmol), 1-브로모-4-아이오도벤젠(1-Bromo-4-iodobenzene) 12.5 g(44.2 mmol), Pd(dba)2 0.6 g(1.0 mmol), DPPF 1.1 g(2.0 mmol), NaOtBu 5.8 g(60.2 mmol) 및 톨루엔 100 mL를 넣고 4시간 동안 환류 및 교반하였다. 상온에서 식힌 후 셀라이트 여과를 통해 불순물을 제거하였다. 용매를 제거한 후 디클로로메탄에 녹여 실리카겔 컬럼 크로마토그래피(DCM:HEX)로 정제하였다. 얻어진 고체를 혼합용액(아세톤/메탄올)으로 여과하여 노란색 고체의 화합물(중간체(10)) 8.8 g(수율: 86.2%)을 얻었다.In a 1-neck 500 mL flask, intermediate (6) 4.0 g (20.1 mmol), 1-Bromo-4-iodobenzene 12.5 g (44.2 mmol), Pd (dba) 2 0.6 g (1.0 mmol), DPPF 1.1 g (2.0 mmol), NaOtBu 5.8 g (60.2 mmol), and toluene 100 mL were added, followed by refluxing and stirring for 4 hours. After cooling at room temperature, impurities were removed through Celite filtration. After removing the solvent, it was dissolved in dichloromethane and purified by silica gel column chromatography (DCM:HEX). The obtained solid was filtered with a mixed solution (acetone/methanol) to obtain 8.8 g (yield: 86.2%) of a yellow solid compound (intermediate (10)).
중간체 Intermediate 합성예Synthesis example 8: 중간체(11)의 합성 8: Synthesis of intermediate (11)
Figure PCTKR2020010960-appb-I000064
Figure PCTKR2020010960-appb-I000064
6-하이드록시-2-나프토니트릴(6-Hydroxy-2-naphthonitrile) 10.0 g(59.1 mmol)을 다이클로로메탄(DCM) 300 mL에 녹이고 피리딘(Pyridine) 14.0 g(177.3 mmol)을 적가한 후 0℃로 온도를 낮췄다. Tf2O 20.0 g(70.9 mmol)를 천천히 적가한 후 상온으로 온도를 올린 후 12시간 동안 반응시켰다. 반응물을 물(500 mL)에 세척한 후, 분리한 유기층을 무수 황산나트륨으로 건조, 여과하고 농축한 후 컬럼 크로마토그래피(CHCl3)로 정제하여 노란색 고체의 화합물(중간체(11)) 15.8 g(수율: 88.7%)을 얻었다.6-hydroxy-2-naphthonitrile (6-Hydroxy-2-naphthonitrile) 10.0 g (59.1 mmol) was dissolved in dichloromethane (DCM) 300 mL, and pyridine (Pyridine) 14.0 g (177.3 mmol) was added dropwise. The temperature was lowered to 0°C. Tf 2 O 20.0 g (70.9 mmol) was slowly added dropwise, and the temperature was raised to room temperature, followed by reaction for 12 hours. After washing the reaction product with water (500 mL), the separated organic layer was dried over anhydrous sodium sulfate, filtered, concentrated, and purified by column chromatography (CHCl 3 ) to form a yellow solid compound (intermediate (11)) 15.8 g (yield : 88.7%) was obtained.
중간체 Intermediate 합성예Synthesis example 9: 중간체(13)의 합성 9: Synthesis of intermediate (13)
Figure PCTKR2020010960-appb-I000065
Figure PCTKR2020010960-appb-I000065
(중간체(12)의 합성)(Synthesis of intermediate (12))
1구 1000 mL 플라스크에 1-브로모-4-아이오도벤젠(1-bromo-4-iodobenzene) 37.2 g(131.5 mmol), 다이벤조[b,d]싸이오펜-4-일보론산(dibenzo[b,d]thiophen-4-ylboronic acid) 30.0 g(131.5 mmol), Pd(PPh3)4 4.6 g(3.9 mmol) 및 톨루엔 400 mL를 넣고 교반하다가 에탄올 200 mL, K2CO3 27.3 g(197.3 mmol)/물 200mL를 첨가하고, 가열 환류하에 8시간 동안 교반하였다. 반응이 종결되면 상온으로 냉각하고 용매를 제거하고 물을 첨가한 후 디클로로메탄으로 추출하고 유기상을 무수 MgSO4로 건조하고, 컬럼 크로마토그래피(DCM)로 정제하여 약간의 노란색 고체의 화합물(중간체(12)) 29.1 g(수율: 65.3%)을 얻었다. In a 1-neck 1000 mL flask, 1-bromo-4-iodobenzene 37.2 g (131.5 mmol), dibenzo[b,d]thiophen-4-ylboronic acid (dibenzo[b ,d]thiophen-4-ylboronic acid) 30.0 g (131.5 mmol), Pd (PPh 3 ) 4 4.6 g (3.9 mmol) and toluene 400 mL were added and stirred, then ethanol 200 mL, K 2 CO 3 27.3 g (197.3 mmol) )/200 mL of water was added, and the mixture was stirred for 8 hours under heating and refluxing. Upon completion of the reaction, the reaction mixture was cooled to room temperature, the solvent was removed, water was added, extracted with dichloromethane, the organic phase was dried over anhydrous MgSO 4 , and purified by column chromatography (DCM) to form a slightly yellow solid compound (intermediate (12 )) 29.1 g (yield: 65.3%) was obtained.
(중간체(13)의 합성)(Synthesis of intermediate (13))
1구 1000 mL 플라스크에 중간체(12) 29.1 g(85.8 mmol), 벤조페논 이민(Benzophenone imine) 17.1 g(94.4 mmol), NaOtBu 16.5 g(171.6 mmol), 톨루엔 500 mL를 넣고 교반하다가 Pd(dba)2 1.5 g(2.6 mmol), BINAP 3.2 g(5.2 mmol)를 첨가하고 가열 환류하에 하루종일 교반하였다. 반응이 종결되면 상온으로 냉각하고 용매를 제거하고 물을 첨가한 후 디클로로메탄으로 추출하고 유기상을 무수 MgSO4로 건조하고, 클로로포름 1000 mL로 셀라이트를 깐 패드에 통과시킨 후 감압 증류를 이용해 용매를 제거하였다. 약간 갈색 액체의 화합물를 테트라하이드로퓨란 500mL를 같이 넣고 교반하다가 4N HCl로 pH 2 이상으로 맞추고 50℃에서 4시간 교반하였다. 반응이 종결되면 용매를 날리고 얻어진 고체에 아세톤을 첨가하고 30분간 교반 후 여과하여 붉은색 고체를 얻었다. 이 고체를 NaOH로 pH 8 이상으로 맞추고 30분간 교반한 후 디클로로메탄 추출하고 용매를 제거하고 컬럼 크로마토그래피(Hex:CHCl3)로 정제하여 약간 붉은색 고체의 화합물(중간체(13)) 12.6 g(수율: 53.4%)을 얻었다.In a 1-neck 1000 mL flask, add 29.1 g (85.8 mmol) of the intermediate (12), 17.1 g (94.4 mmol) of benzophenone imine, 16.5 g (171.6 mmol) of NaOtBu, 500 mL of toluene, and stir, then Pd (dba). 2 1.5 g (2.6 mmol) and 3.2 g (5.2 mmol) of BINAP were added, and the mixture was stirred under heating and refluxing throughout the day. After the reaction was completed, the reaction was cooled to room temperature, the solvent was removed, water was added, extracted with dichloromethane, the organic phase was dried over anhydrous MgSO 4 , passed through a pad covered with Celite with 1000 mL of chloroform, and then distilled under reduced pressure to remove the solvent. Removed. A slightly brownish liquid compound was mixed with 500 mL of tetrahydrofuran, stirred, and then adjusted to pH 2 or higher with 4N HCl, followed by stirring at 50° C. for 4 hours. Upon completion of the reaction, the solvent was blown off, acetone was added to the obtained solid, stirred for 30 minutes, and filtered to obtain a red solid. This solid was adjusted to pH 8 or higher with NaOH, stirred for 30 minutes, extracted with dichloromethane, removed the solvent, and purified by column chromatography (Hex:CHCl 3 ) to form a slightly reddish solid compound (intermediate (13)) 12.6 g ( Yield: 53.4%) was obtained.
상기 합성된 중간체 화합물을 이용하여 이하와 같이 다양한 3차 아민 유도체를 제조하였다. Various tertiary amine derivatives were prepared as follows using the synthesized intermediate compound.
제조예Manufacturing example 1: 화합물 2-4(LT19-35-308)의 합성 1: Synthesis of compound 2-4 (LT19-35-308)
Figure PCTKR2020010960-appb-I000066
Figure PCTKR2020010960-appb-I000066
중간체(4) 2.8 g(15.4 mmol), 2-브로모디벤조[b,d]티오펜(2-bromodibenzo[b,d]thiophene) 8.9 g(33.9 mmol), Pd(dba)2 1.8 g(3.1 mmol), tert-부톡시나트륨 7.4 g(77.1 mmol), 트리-tert-부틸포스핀 1.3 g(3.0 mmol, 50wt% 톨루엔 용액), 자일렌 100 mL의 혼합물을 110 ℃에서 8시간 동안 교반하였다. 반응혼합물을 상온으로 냉각하여 물을 가한 후 클로로포름 300 mL로 2회 추출하였다. 유기층을 무수 황산마그네슘으로 건조, 여과하고 감압 농축하였다. 얻어진 혼합물을 컬럼 크로마토그래피로 정제하여 화합물 2-4(LT19-35-308) 4.9 g(수율: 58.1%)을 얻었다. Intermediate (4) 2.8 g (15.4 mmol), 2-bromodibenzo[b,d]thiophene 8.9 g (33.9 mmol), Pd (dba) 2 1.8 g (3.1 mmol), tert -butoxysodium 7.4 g (77.1 mmol), tri- tert -butylphosphine 1.3 g (3.0 mmol, 50 wt% toluene solution), and a mixture of xylene 100 mL were stirred at 110° C. for 8 hours. The reaction mixture was cooled to room temperature, water was added, and then extracted twice with 300 mL of chloroform. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The obtained mixture was purified by column chromatography to obtain 4.9 g (yield: 58.1%) of compound 2-4 (LT19-35-308).
제조예Manufacturing example 2: 화합물 2-5(LT19-30-224)의 합성 2: Synthesis of compound 2-5 (LT19-30-224)
Figure PCTKR2020010960-appb-I000067
Figure PCTKR2020010960-appb-I000067
중간체(4) 1.5 g(8.2 mmol), 중간체(2) 5.3 g(16.4 mmol), Pd(dba)2 0.2 g(0.4 mmol), tert-부톡시나트륨 2.4 g(24.6 mmol), 트리-tert-부틸포스핀 0.3 g(0.6 mmol, 50wt% 톨루엔 용액), 톨루엔 23 mL의 혼합물을 3시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 메탄올 115 mL를 가하였다. 생성된 반고체 상태의 침전을 분리한 후 컬럼 크로마토그래피로 정제하여 노란색 고체 화합물 2-5(LT19-30-224) 3.4 g(수율: 62.1%)을 얻었다.Intermediate (4) 1.5 g (8.2 mmol ), intermediate (2) 5.3 g (16.4 mmol ), Pd (dba) 2 0.2 g (0.4 mmol), tert - butoxy sodium 2.4 g (24.6 mmol), tree - tert - A mixture of 0.3 g (0.6 mmol, 50wt% toluene solution) of butylphosphine and 23 mL of toluene was stirred under reflux for 3 hours. After cooling the reaction mixture to room temperature, 115 mL of methanol was added. The resulting semi-solid precipitate was separated and purified by column chromatography to obtain 3.4 g (yield: 62.1%) of a yellow solid compound 2-5 (LT19-30-224).
제조예Manufacturing example 3: 화합물 2-9(LT19-30-192)의 합성 3: Synthesis of compound 2-9 (LT19-30-192)
Figure PCTKR2020010960-appb-I000068
Figure PCTKR2020010960-appb-I000068
중간체(1) 1.5 g(8.2 mmol), 중간체(2) 5.3 g(16.4 mmol), Pd(dba)2 0.2 g(1.2 mmol), 트리-tert-부틸포스핀 0.3 g(0.8 mmol, 50wt% 톨루엔 용액), tert-부톡시나트륨 1.6 g(16.4 mmol) 및 톨루엔 82 mL의 혼합물을 8시간 동안 환류 교반하였다. 반응혼합물을 상온으로 냉각한 후 물로 세척하고 유기층을 분리하여 무수 황산나트륨으로 건조하고 여과, 농축하였다. 농축된 혼합물을 컬럼 크로마토그래피로 정제한 후 디클로로메탄과 에틸아세테이트로 재결정하여 흰색의 고체 화합물 2-9(LT19-30-192) 3.9 g(수율: 71.2%)을 얻었다.Intermediate (1) 1.5 g (8.2 mmol), Intermediate (2) 5.3 g (16.4 mmol), Pd (dba) 2 0.2 g (1.2 mmol), tri- tert -butylphosphine 0.3 g (0.8 mmol, 50wt% toluene) Solution), tert -butoxy sodium 1.6 g (16.4 mmol), and a mixture of 82 mL of toluene were stirred under reflux for 8 hours. The reaction mixture was cooled to room temperature, washed with water, and the organic layer was separated, dried over anhydrous sodium sulfate, filtered and concentrated. The concentrated mixture was purified by column chromatography and recrystallized from dichloromethane and ethyl acetate to give 3.9 g (yield: 71.2%) of a white solid compound 2-9 (LT19-30-192).
제조예Manufacturing example 4: 화합물 2-13(LT18-30-239)의 합성 4: Synthesis of compound 2-13 (LT18-30-239)
Figure PCTKR2020010960-appb-I000069
Figure PCTKR2020010960-appb-I000069
중간체(4) 1.5 g(8.2 mmol), 2-(4-브로모페닐)벤조[d]옥사졸(2-(4-bromophenyl)benzo[d]oxazole) 5.3 g(19.3mmol), Pd(dba)2 483 mg(840.6 μ㏖), 트리-tert-부틸포스핀 680 mg(1.7 mmol, 50wt% 톨루엔 용액), tert-부톡시나트륨 4.9 g(50.4mmol) 및 자일렌 56 mL의 혼합물을 120 ℃에서 12시간 동안 교반 하였다. 반응혼합물을 상온으로 냉각하여 클로로포름으로 희석한 후 물로 세척하였다. 유기층을 분리하여 무수 황산나트륨으로 건조하고 여과, 농축하였다. 얻어진 혼합물을 컬럼 크로마토그래피로 정제하여, 노란색 고체의 화합물 2-13(LT18-30-239 1.8 g(수율: 38.5%)을 얻었다.Intermediate (4) 1.5 g(8.2 mmol), 2-(4-bromophenyl)benzo[d]oxazole(2-(4-bromophenyl)benzo[d]oxazole)5.3 g(19.3mmol), Pd(dba ) 2 483 mg (840.6 μmol), tri- tert -butylphosphine 680 mg (1.7 mmol, 50wt% toluene solution), tert -butoxy sodium 4.9 g (50.4 mmol) and a mixture of xylene 56 mL at 120°C The mixture was stirred for 12 hours. The reaction mixture was cooled to room temperature, diluted with chloroform, and washed with water. The organic layer was separated, dried over anhydrous sodium sulfate, filtered and concentrated. The obtained mixture was purified by column chromatography to obtain a yellow solid compound 2-13 (1.8 g (LT18-30-239) (yield: 38.5%)).
제조예Manufacturing example 5: 화합물 2-14(LT19-30-305)의 합성 5: Synthesis of compound 2-14 (LT19-30-305)
Figure PCTKR2020010960-appb-I000070
Figure PCTKR2020010960-appb-I000070
1구 250 mL 플라스크에 중간체(4) 1.3 g(7.0 mmol), 2-(4-브로모페닐)벤조티아졸(2-(4-bromophenyl)benzo[d]thiazole) 5.1 g(14.7 mmol) 및 Xylene 100 mL를 첨가한 후 50 ℃에서 교반한 후 Pd(dba)2 403.0 mg(0.7 mmol), Sodium tert-butoxide 2.0 g(21.0 mmol) 및 tri-tert-butylphospine(50wt% in Toluene) 567.2 mg(1.4 mmol)을 첨가한 후 125~130 ℃에서 하루 종일 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 CHCl3으로 셀라이트 패드에 통과시킨 후 감압 증류하여 용매를 제거하였다. 얻어진 화합물을 Hexane으로 고체화하여 노란색의 고체를 수득한 후 CHCl3 800 mL에 가열하여 녹인 후 charcoal을 첨가하여 30분간 교반하였다. 뜨거운 혼합 용매(Hot CHCl3:EA=20:1)를 사용하여 셀라이트와 SiO2 패드에 통과시킨 후 감압증류를 이용해 용매를 제거하였다. 얻어진 화합물은 SiO2 컬럼 크로마토그래피(EA:CHCl3:HEX=1:1:5)로 정제하였다. DCM과 Hexane으로 slurry화하여 노란색 고체의 화합물 2-14(LT19-35-305) 3.1 g(수율: 73.5%)을 얻었다.In a 250 mL one neck flask, 1.3 g (7.0 mmol) of intermediate (4), 5.1 g (14.7 mmol) of 2-(4-bromophenyl)benzothiazole (2-(4-bromophenyl)benzo[d]thiazole) and After adding 100 mL of xylene and stirring at 50 ℃, Pd(dba) 2 403.0 mg (0.7 mmol), Sodium tert -butoxide 2.0 g (21.0 mmol) and tri- tert -butylphospine (50wt% in Toluene) 567.2 mg ( 1.4 mmol) was added, followed by stirring at 125-130 °C all day. After the reaction was completed, the reaction mixture was cooled to room temperature, and the reaction product was passed through a Celite pad with CHCl 3 and distilled under reduced pressure to remove the solvent. The obtained compound was solidified with Hexane to obtain a yellow solid, dissolved by heating in 800 mL of CHCl 3, and then charcoal was added and stirred for 30 minutes. After passing through a pad of Celite and SiO 2 using a hot mixed solvent (Hot CHCl 3 :EA=20:1), the solvent was removed by distillation under reduced pressure. The obtained compound was purified by SiO 2 column chromatography (EA:CHCl 3 :HEX=1:1:5). Slurry was performed with DCM and Hexane to obtain 3.1 g (yield: 73.5%) of compound 2-14 (LT19-35-305) as a yellow solid.
제조예Manufacturing example 6: 화합물 2-21(LT19-30-312)의 합성 6: Synthesis of compound 2-21 (LT19-30-312)
Figure PCTKR2020010960-appb-I000071
Figure PCTKR2020010960-appb-I000071
중간체(8) 1.7 g(6.5 mmol), 중간체(2) 4.6 g(14.4 mmol), tert-부톡시나트륨 1.9 g(19.6 mmol), Pd(dba)2 0.2 g(0.4 mmol), 트리-tert-부틸포스핀 0.2 g(0.5 mmol, 50wt % 톨루엔 용액) 및 자일렌 150 mL의 혼합물을 하루 종일 환류 교반하였다. 반응 혼합물을 상온으로 냉각하여 클로로포름 500 mL로 희석한 후 셀라이트 패드로 여과하였다. 여과액을 농축한 후 잔류물을 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물 2-21(LT19-35-312) 2.9 g(수율: 60.7%)을 얻었다.Intermediate (8) 1.7 g (6.5 mmol), intermediate (2) 4.6 g (14.4 mmol), tert -butoxy sodium 1.9 g (19.6 mmol), Pd (dba) 2 0.2 g (0.4 mmol), tri- tert -butylphosphine A mixture of 0.2 g (0.5 mmol, 50 wt% toluene solution) and 150 mL of xylene was stirred under reflux throughout the day. The reaction mixture was cooled to room temperature, diluted with 500 mL of chloroform, and filtered through a pad of Celite. After the filtrate was concentrated, the residue was purified by column chromatography to obtain 2.9 g (yield: 60.7%) of compound 2-21 (LT19-35-312) as a yellow solid.
제조예Manufacturing example 7: 화합물 2-27(LT19-30-286)의 합성 7: Synthesis of compound 2-27 (LT19-30-286)
Figure PCTKR2020010960-appb-I000072
Figure PCTKR2020010960-appb-I000072
중간체(3) 4.0 g(15.4 mmol), 4-브로모벤조니트릴(4-bromobenzonitrile) 8.4 g(46.3 mmol), Pd(dba)2 1.8 g(3.1 mmol), 트리-tert-부틸포스핀 3.0 mL(6.2 mmol, 50wt% 톨루엔 용액), tert-부톡시나트륨 5.9 g(61.7 mmol) 및 톨루엔 154 mL의 혼합물을 16시간 동안 환류 교반하였다. 반응혼합물을 상온으로 냉각한 후 물로 세척하고 유기층을 분리하여 무수황산나트륨으로 건조하고 여과, 농축하였다. 농축된 혼합물을 컬럼 크로마토그래피로 정제 후 에틸아세테이트로 재결정하여 아이보리색의 고체 화합물 2-27(LT19-30-286) 1.3 g(수율: 18.3%)을 얻었다. Intermediate (3) 4.0 g (15.4 mmol), 4-bromobenzonitrile 8.4 g (46.3 mmol), Pd (dba) 2 1.8 g (3.1 mmol), tri- tert -butylphosphine 3.0 mL A mixture of (6.2 mmol, 50wt% toluene solution), tert -butoxysodium 5.9 g (61.7 mmol) and toluene 154 mL was stirred under reflux for 16 hours. The reaction mixture was cooled to room temperature, washed with water, and the organic layer was separated, dried over anhydrous sodium sulfate, filtered, and concentrated. The concentrated mixture was purified by column chromatography and recrystallized with ethyl acetate to obtain 1.3 g (yield: 18.3%) of an ivory solid compound 2-27 (LT19-30-286).
제조예Manufacturing example 8: 화합물 2-29(LT19-30-259)의 합성 8: Synthesis of compound 2-29 (LT19-30-259)
Figure PCTKR2020010960-appb-I000073
Figure PCTKR2020010960-appb-I000073
중간체(3) 4.0 g(15.4 mmol), 2-브로모디벤조[b,d]티오펜(2-bromodibenzo[b,d]thiophene) 8.9 g(33.9 mmol), Pd(dba)2 1.8 g(3.1 mmol), tert-부톡시나트륨 7.4 g(77.1 mmol), 트리-tert-부틸포스핀 1.3 g(3.0 mmol, 50wt% 톨루엔 용액), 자일렌 100 mL의 혼합물을 110 ℃에서 8시간 동안 교반하였다. 반응혼합물을 상온으로 냉각하여 물을 가한 후 클로로포름 300 mL로 2회 추출하였다. 유기층을 무수 황산마그네슘으로 건조, 여과하고 감압 농축하였다. 얻어진 혼합물을 컬럼 크로마토그래피로 정제하여 화합물 2-29(LT19-30-259) 1.7 g(수율: 17.7%)을 얻었다. Intermediate (3) 4.0 g (15.4 mmol), 2-bromodibenzo[b,d]thiophene 8.9 g (33.9 mmol), Pd (dba) 2 1.8 g (3.1 mmol), tert -butoxysodium 7.4 g (77.1 mmol), tri- tert -butylphosphine 1.3 g (3.0 mmol, 50 wt% toluene solution), and a mixture of xylene 100 mL were stirred at 110° C. for 8 hours. The reaction mixture was cooled to room temperature, water was added, and then extracted twice with 300 mL of chloroform. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The obtained mixture was purified by column chromatography to obtain 1.7 g (yield: 17.7%) of compound 2-29 (LT19-30-259).
제조예Manufacturing example 9: 화합물 2-36(LT19-30-278)의 합성 9: Synthesis of compound 2-36 (LT19-30-278)
Figure PCTKR2020010960-appb-I000074
Figure PCTKR2020010960-appb-I000074
중간체(6) 2.5 g(12.5 mmol), 4-브로모벤조니트릴(4-bromobenzonitrile) 4.8 g(26.3 mmol), Pd(dba)2 1.4 g(2.5 mmol), tert-부톡시나트륨 6.0 g(62.7 mmol), 트리-tert-부틸포스핀 1.0 g(2.5 mmol, 50wt% 톨루엔 용액), 자일렌 100 mL의 혼합물을 110 ℃에서 8시간 동안 교반하였다. 반응혼합물을 상온으로 냉각하여 물을 가한 후 클로로포름 300 mL로 2회 추출하였다. 유기층을 무수 황산마그네슘으로 건조, 여과하고 감압 농축하였다. 얻어진 화합물을 컬럼 크로마토그래피로 정제하여 화합물 2-36(LT19-30-278) 1.4 g(수율: 27.9%)을 얻었다. Intermediate (6) 2.5 g (12.5 mmol), 4-bromobenzonitrile 4.8 g (26.3 mmol), Pd (dba) 2 1.4 g (2.5 mmol), tert -butoxy sodium 6.0 g (62.7 mmol), tri- tert -butylphosphine 1.0 g (2.5 mmol, 50wt% toluene solution), and a mixture of xylene 100 mL were stirred at 110° C. for 8 hours. The reaction mixture was cooled to room temperature, water was added, and then extracted twice with 300 mL of chloroform. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The obtained compound was purified by column chromatography to obtain 1.4 g (yield: 27.9%) of compound 2-36 (LT19-30-278).
제조예Manufacturing example 10: 화합물 2-40(LT19-30-218)의 합성 10: Synthesis of compound 2-40 (LT19-30-218)
Figure PCTKR2020010960-appb-I000075
Figure PCTKR2020010960-appb-I000075
중간체(6) 1.3 g(6.5 mmol), 중간체(2) 4.6 g(14.4 mmol), tert-부톡시나트륨 1.9 g(19.6 mmol), Pd(dba)2 0.2 g(0.4 mmol), 트리-tert-부틸포스핀 0.2 g(0.5 mmol, 50wt% 톨루엔 용액) 및 자일렌 150 mL의 혼합물을 하루 종일 환류 교반하였다. 반응 혼합물을 상온으로 냉각하여 클로로포름 500 mL로 희석한 후 셀라이트 패드로 여과하였다. 여과액을 농축한 후 잔류물을 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물 2-40(LT19-30-218) 2.7 g(수율: 60.7%)을 얻었다.Intermediate (6) 1.3 g (6.5 mmol), Intermediate (2) 4.6 g (14.4 mmol), tert -butoxy sodium 1.9 g (19.6 mmol), Pd (dba) 2 0.2 g (0.4 mmol), tri- tert -butylphosphine A mixture of 0.2 g (0.5 mmol, 50 wt% toluene solution) and 150 mL of xylene was stirred under reflux throughout the day. The reaction mixture was cooled to room temperature, diluted with 500 mL of chloroform, and filtered through a pad of Celite. After the filtrate was concentrated, the residue was purified by column chromatography to obtain 2.7 g (yield: 60.7%) of compound 2-40 (LT19-30-218) as a yellow solid.
제조예Manufacturing example 11: 화합물 2-44(LT19-30-199)의 합성 11: Synthesis of compound 2-44 (LT19-30-199)
Figure PCTKR2020010960-appb-I000076
Figure PCTKR2020010960-appb-I000076
중간체(5) 2.0 g(10.0 mmol), 중간체(2) 6.5 g(20.1 mmol), Pd(dba)2 0.6 g (1.0 mmol), 트리-tert-부틸포스핀 1.0 mL(2.0 mmol, 50wt% 톨루엔 용액), tert-부톡시나트륨 3.9 g(40.2 mmol) 및 톨루엔 100 mL의 혼합물을 8시간 동안 환류 교반하였다. 반응혼합물을 상온으로 냉각한 후 물로 세척하고 유기층을 분리하여 Na2SO4으로 건조하고 여과, 농축하였다. 농축된 혼합물을 컬럼 크로마토그래피로 정제 후 디클로로메탄과 MeOH로 재결정하여 흰색의 고체 화합물 2-44(LT19-30-199) 1.5 g(수율: 21.9 %)을 얻었다. Intermediate (5) 2.0 g (10.0 mmol), Intermediate (2) 6.5 g (20.1 mmol), Pd (dba) 2 0.6 g (1.0 mmol), tri- tert -butylphosphine 1.0 mL (2.0 mmol, 50wt% toluene Solution), tert -butoxysodium 3.9 g (40.2 mmol), and a mixture of toluene 100 mL were stirred under reflux for 8 hours. The reaction mixture was cooled to room temperature, washed with water, and the organic layer was separated , dried over Na 2 SO 4 , filtered and concentrated. The concentrated mixture was purified by column chromatography and recrystallized with dichloromethane and MeOH to obtain 1.5 g (yield: 21.9%) of a white solid compound 2-44 (LT19-30-199).
제조예Manufacturing example 12: 화합물 2-48(LT18-30-263)의 합성 12: Synthesis of compound 2-48 (LT18-30-263)
Figure PCTKR2020010960-appb-I000077
Figure PCTKR2020010960-appb-I000077
중간체(6) 1.6 g(8.0 mmol), 2-(4-브로모페닐)벤조[d]옥사졸(2-(4-bromophenyl)benzo[d]oxazole) 5.5 g(20.1 mmol), Pd(dba)2 0.92 g(1.61 mmol), 트리-tert-부틸포스핀 1.3 g(3.2 mmol, 50wt% 톨루엔 용액), tert-부톡시나트륨 3.1 g(32.1 mmol) 및 자일렌 54 mL의 혼합물을 하루 종일 환류 교반하였다. 반응 혼합물을 상온으로 냉각하여 셀라이트 패드로 여과한 후 감압 증류하여 용매를 제거하였다. 얻어진 혼합물을 컬럼 크로마토그래피로 정제하여 갈색 고체의 화합물 2-48(LT18-30-263) 3.1 g(수율: 66.2%)을 얻었다.Intermediate (6) 1.6 g(8.0 mmol), 2-(4-bromophenyl)benzo[d]oxazole(2-(4-bromophenyl)benzo[d]oxazole) 5.5 g(20.1 mmol), Pd(dba ) 2 0.92 g (1.61 mmol), tri- tert -butylphosphine 1.3 g (3.2 mmol, 50wt% toluene solution), tert -butoxy sodium 3.1 g (32.1 mmol), and a mixture of xylene 54 mL were refluxed all day. Stirred. The reaction mixture was cooled to room temperature, filtered through a pad of Celite, and distilled under reduced pressure to remove the solvent. The obtained mixture was purified by column chromatography to obtain 3.1 g (yield: 66.2%) of compound 2-48 (LT18-30-263) as a brown solid.
제조예Manufacturing example 13: 화합물 2-87(LT20-30-070)의 합성 13: Synthesis of compound 2-87 (LT20-30-070)
Figure PCTKR2020010960-appb-I000078
Figure PCTKR2020010960-appb-I000078
1구 250 mL 플라스크에 중간체(4) 2.8 g(15.3 mmol), 4'-브로모-[1.1'-비페닐]-4-카보니트릴(4'-bromo-[1.1'-biphenyl]-4-carbonitrile) 8.7 g(33.6 mmol), NaOtBu 4.4 g(45.8 mmol) 및 자일렌 150 mL를 넣고 교반하다가 Pd(dba)2 0.5 g(0.9 mmol), P(t-Bu)3 0.3 mL(1.2 mmol)를 첨가하고 가열 환류하에 하루종일 교반하였다. 반응이 종결되면 상온으로 냉각하고 용매를 날리고 클로로포름 500 mL로 셀라이트 패드에 통과시킨 후 감압 증류를 이용해 용매를 제거한다. 컬럼 크로마토그래피(Hex:CHCl3)로 정제하여 노란색 고체의 화합물 2-87(LT20-30-070) 2.5 g(수율: 30.4%)을 얻었다.In a 250 mL one neck flask, 2.8 g (15.3 mmol) of intermediate (4), 4'-bromo-[1.1'-biphenyl]-4-carbonitrile (4'-bromo-[1.1'-biphenyl]-4- carbonitrile) 8.7 g (33.6 mmol), NaO t Bu 4.4 g (45.8 mmol) and xylene 150 mL were added and stirred.Pd(dba) 2 0.5 g (0.9 mmol), P( t -Bu) 3 0.3 mL (1.2 mmol) was added and stirred under heating to reflux throughout the day. When the reaction is complete, the mixture is cooled to room temperature, the solvent is blown off, and 500 mL of chloroform is passed through a Celite pad, and the solvent is removed by distillation under reduced pressure. Purified by column chromatography (Hex:CHCl 3 ) to give 2.5 g (yield: 30.4%) of compound 2-87 (LT20-30-070) as a yellow solid.
제조예Manufacturing example 14: 화합물 2-114(LT20-30-068)의 합성 14: Synthesis of compound 2-114 (LT20-30-068)
Figure PCTKR2020010960-appb-I000079
Figure PCTKR2020010960-appb-I000079
1구 250 mL 플라스크에 중간체(9) 4.7 g(8.3 mmol), 4-사이안화페닐보론산(4-Cyanophenylboronic acid) 3.6 g(24.8 mmol), Pd(dba)2 0.5 g(0.8 mmol), XPhos 0.8 g(1.7 mmol), 2M K3PO4 16 mL(33.0 mmol) 및 1,4-디옥산 40 mL를 넣고 85℃에서 2시간 동안 교반하였다. 상온에서 식힌 후 생성된 고체를 여과하였으며, 에탄올로 씻어주었다. 고체를 클로로포름(200 mL)으로 끓인 후 실리카겔 컬럼 크로마토그래피(CHCl3:HEX)를 통해 정제하였다. 얻어진 고체를 디클로로메탄으로 여과 및 아세톤으로 씻어주어 노란색 고체의 화합물 2-114(LT20-30-068) 2.9 g(수율: 58.3%)을 얻었다.In a 1-neck 250 mL flask, intermediate (9) 4.7 g (8.3 mmol), 4-cyanophenylboronic acid 3.6 g (24.8 mmol), Pd (dba) 2 0.5 g (0.8 mmol), XPhos 0.8 g (1.7 mmol), 2M K 3 PO 4 16 mL (33.0 mmol) and 1,4-dioxane 40 mL were added and stirred at 85° C. for 2 hours. After cooling at room temperature, the resulting solid was filtered and washed with ethanol. The solid was boiled in chloroform (200 mL) and purified through silica gel column chromatography (CHCl 3 :HEX). The obtained solid was filtered with dichloromethane and washed with acetone to obtain 2.9 g (yield: 58.3%) of a yellow solid compound 2-114 (LT20-30-068).
제조예Manufacturing example 15: 화합물 2-117(LT20-30-260)의 합성 15: Synthesis of compound 2-117 (LT20-30-260)
Figure PCTKR2020010960-appb-I000080
Figure PCTKR2020010960-appb-I000080
1구 250 mL 플라스크에 중간체(3) 5.0 g(19.3 mmol), 중간체(11) 12.2 g(40.5 mmol), Pd(dba)2 1.1 mg(1.9 mmol), 50% t-Bu3P 1.6 g(3.9 mmol), NaOtBu 5.6 g(57.9 mmol) 및 Xylene 80 mL를 넣고 혼합한 다음, 120℃에서 12시간 동안 반응하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 클로로포름으로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피(Hex:EA)로 정제하고 아세톤에 녹인 후 메탄올을 천천히 적가하면서 고체화하여, 노란색 고체의 화합물 2-117(LT20-30-260) 1.5 g(수율: 13.8%)을 얻었다.In a 1-neck 250 mL flask, intermediate (3) 5.0 g (19.3 mmol), intermediate (11) 12.2 g (40.5 mmol), Pd (dba) 2 1.1 mg (1.9 mmol), 50% t-Bu 3 P 1.6 g ( 3.9 mmol), NaOtBu 5.6 g (57.9 mmol) and Xylene 80 mL were added and mixed, and then reacted at 120° C. for 12 hours. After the reaction was completed, the mixture was cooled to room temperature, water was added, extracted with chloroform, and the solvent was removed under reduced pressure. The obtained compound was purified by silica gel column chromatography (Hex:EA), dissolved in acetone, and solidified by slowly adding methanol dropwise thereto to obtain 1.5 g (yield: 13.8%) of compound 2-117 (LT20-30-260) as a yellow solid. Got it.
제조예Manufacturing example 16: 화합물 2-123(LT20-30-051)의 합성 16: Synthesis of compound 2-123 (LT20-30-051)
Figure PCTKR2020010960-appb-I000081
Figure PCTKR2020010960-appb-I000081
1구 250 mL 플라스크에 중간체(10) 4.6 g(9.0 mmol), 4-사이안화페닐보론산(4-Cyanophenylboronic acid) 4.0 g(27.1 mmol), Pd(dba)2 0.5 g(0.9 mmol), XPhos 0.9 g(1.8 mmol), 2M K3PO4 18 mL(36.1 mmol) 및 1,4-디옥산 45 mL를 넣고 85℃에서 2시간 동안 교반하였다. 상온에서 식힌 후 생성된 고체를 여과하였으며, 에탄올로 씻어주었다. 고체를 클로로포름으로 끓인 후 실리카겔 컬럼 크로마토그래피(CHCl3:HEX)를 통해 정제하였다. 얻어진 고체를 디클로로메탄으로 끓인 후 식혀서 여과 및 아세톤으로 씻어주어 노란색 고체의 화합물 2-123(LT20-30-051) 3.4 g(수율: 68.7%)을 얻었다.In a 1-neck 250 mL flask, intermediate (10) 4.6 g (9.0 mmol), 4-cyanophenylboronic acid 4.0 g (27.1 mmol), Pd (dba) 2 0.5 g (0.9 mmol), XPhos 0.9 g (1.8 mmol), 2M K 3 PO 4 18 mL (36.1 mmol) and 1,4-dioxane 45 mL were added and stirred at 85° C. for 2 hours. After cooling at room temperature, the resulting solid was filtered and washed with ethanol. The solid was boiled in chloroform and purified through silica gel column chromatography (CHCl 3 :HEX). The obtained solid was boiled with dichloromethane, cooled, filtered, and washed with acetone to obtain 3.4 g (yield: 68.7%) of a yellow solid compound 2-123 (LT20-30-051).
제조예Manufacturing example 17: 화합물 2-153(LT20-35-365)의 합성 17: Synthesis of compound 2-153 (LT20-35-365)
Figure PCTKR2020010960-appb-I000082
Figure PCTKR2020010960-appb-I000082
1구 250 mL 플라스크에 중간체(13) 5.0 g(18.2 mmol), 중간체(11) 11.5 g(38.1 mmol), Pd(dba)2 1.0 mg(1.8 mmol), 50% t-Bu3P 1.5 g(3.6 mmol), NaOtBu 5.2 g(54.5 mmol) 및 Xylene 80 mL를 넣고 혼합한 다음, 120℃에서 12시간 동안 반응하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 클로로포름으로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피(Hex:EA)로 정제하고 아세톤에 녹인 후 메탄올을 천천히 적가하면서 고체화하여, 노란색 고체의 화합물 2-153(LT20-35-365) 1.1 g(수율: 10.5%)을 얻었다.In a 1-neck 250 mL flask, intermediate (13) 5.0 g (18.2 mmol), intermediate (11) 11.5 g (38.1 mmol), Pd (dba) 2 1.0 mg (1.8 mmol), 50% t-Bu 3 P 1.5 g ( 3.6 mmol), 5.2 g (54.5 mmol) of NaOtBu, and 80 mL of Xylene were added and mixed, and then reacted at 120° C. for 12 hours. After the reaction was completed, the mixture was cooled to room temperature, water was added, extracted with chloroform, and the solvent was removed under reduced pressure. The obtained compound was purified by silica gel column chromatography (Hex:EA), dissolved in acetone, and then solidified while slowly adding methanol dropwise to obtain 1.1 g (yield: 10.5%) of a yellow solid compound 2-153 (LT20-35-365). Got it.
<시험예><Test Example>
본 발명의 화합물에 대하여 J.A. WOOLLAM社 Ellipsometer 기기를 이용하여 n(refractive index)와 k(extinction coefficient)을 측정한다.For the compound of the present invention, J.A. Measure n (refractive index) and k (extinction coefficient) using WOOLLAM's Ellipsometer.
시험예를 위한 단막 제작 : Production of a single film for the test example:
화합물의 광학 특성 측정을 위해, 유리기판(0.7T)을 Ethanol, DI Water, Acetone에 각각 10분씩 세척한 후, 2×10-2Torr에서 125 W로 2분간 유리기판 위에 산소 플라즈마 처리하고 9×10- 7Torr의 진공도에서 1Å/sec의 속도로 유리기판 위에 화합물을 800Å 증착하여 단막을 제작한다. To measure the optical properties of the compound, the glass substrate (0.7T) was washed in Ethanol, DI Water, and Acetone for 10 minutes each, followed by oxygen plasma treatment on the glass substrate for 2 minutes at 125 W at 2×10 -2 Torr and 9× 10 to deposit the compound on the glass substrate at a vacuum degree of 7 Torr at a rate of 1Å / sec 800Å it will be produced danmak.
비교시험예 : Comparative Test Example:
상기 광학 특성 평가용 단막 제작에서 화합물로 REF01을 사용하였다. REF01 was used as a compound in the preparation of a single film for evaluation of optical properties.
Figure PCTKR2020010960-appb-I000083
Figure PCTKR2020010960-appb-I000083
< 시험예 1 내지 17 ><Test Examples 1 to 17>
상기 비교시험예에서, REF01을 이용하는 대신에 하기 표 1에 나타낸 각각의 화합물을 사용한 것을 제외하고는 상기 비교 시험예와 동일한 방법으로 단막을 제작하였다.In the Comparative Test Example, a single membrane was manufactured in the same manner as in the Comparative Test Example, except that each compound shown in Table 1 was used instead of using REF01.
상기 비교시험예 및 시험예 1 내지 17에 의한 화합물의 광학 특성을 표 1에 나타냈다.Table 1 shows the optical properties of the compounds according to Comparative Test Examples and Test Examples 1 to 17.
광학 특성은 450nm 및 620nm 파장에서 굴절률 상수와 380nm 파장에서의 흡수율 상수이다.Optical properties are the refractive index constant at 450 nm and 620 nm wavelength and the absorption constant at 380 nm wavelength.
구분division 화합물compound n(450nm, 620nm)n(450nm, 620nm) k(380nm)k(380nm)
비교시험예Comparative test example REF01REF01 2.000, 1.8462.000, 1.846 0.1930.193
시험예 1Test Example 1 2-4(LT19-35-308)2-4 (LT19-35-308) 2.020, 1.8842.020, 1.884 0.2530.253
시험예 2Test Example 2 2-5(LT19-30-224)2-5 (LT19-30-224) 2.076, 1.9222.076, 1.922 0.5570.557
시험예 3Test Example 3 2-9(LT19-30-192)2-9 (LT19-30-192) 2.081,1.8532.081,1.853 0.4560.456
시험예 4Test Example 4 2-13(LT18-30-239)2-13 (LT18-30-239) 2.241, 1.9412.241, 1.941 0.8640.864
시험예 5Test Example 5 2-14(LT19-35-305)2-14 (LT19-35-305) 2.282, 1.9832.282, 1.983 0.5920.592
시험예 6Test Example 6 2-21(LT19-35-312)2-21 (LT19-35-312) 2.123, 1.9212.123, 1.921 0.3210.321
시험예 7Test Example 7 2-27(LT19-30-286)2-27 (LT19-30-286) 2.111, 1.8882.111, 1.888 0.5320.532
시험예 8Test Example 8 2-29(LT19-30-259)2-29 (LT19-30-259) 2.041, 1.8992.041, 1.899 0.4210.421
시험예 9Test Example 9 2-36(LT19-30-278)2-36 (LT19-30-278) 2.123, 1.9212.123, 1.921 0.3210.321
시험예 10Test Example 10 2-40(LT19-30-218)2-40 (LT19-30-218) 2.086, 1.9292.086, 1.929 0.5390.539
시험예 11Test Example 11 2-44(LT19-30-199)2-44 (LT19-30-199) 2.020, 1.8842.020, 1.884 0.2530.253
시험예 12Test Example 12 2-48(LT18-30-263)2-48 (LT18-30-263) 2.283, 1.9682.283, 1.968 0.9200.920
시험예 13Test Example 13 2-87(LT20-30-070)2-87 (LT20-30-070) 2.253, 1.9732.253, 1.973 0.8090.809
시험예 14Test Example 14 2-114(LT20-30-068)2-114 (LT20-30-068) 2.302, 2.0152.302, 2.015 0.9360.936
시험예 15Test Example 15 2-117(LT20-30-260)2-117 (LT20-30-260) 2.294, 2.0142.294, 2.014 0.6720.672
시험예 16Test Example 16 2-123(LT20-30-051)2-123 (LT20-30-051) 2.265, 1.9862.265, 1.986 0.7580.758
시험예 17Test Example 17 2-153(LT20-35-365)2-153 (LT20-35-365) 2.284, 2.0192.284, 2.019 0.7140.714
상기 표 1에서 알 수 있는 바와 같이, 비교시험예(REF01)의 청색영역(450nm)과 적색영역(620nm)에서의 n값이 각각 2.000, 1.846 이었고, 이에 반해 대부분의 본 발명에 따른 화합물들은 대체적으로 청색영역, 녹색영역 및 적색영역에서 비교시험예 화합물(REF01) 보다 높은 굴절률을 갖는 것으로 확인되었다. 이것은 청색영역에서의 높은 시야각을 확보하기 위해 필요한 높은 굴절률 값에 만족한다. As can be seen from Table 1, n values in the blue region (450 nm) and red region (620 nm) of Comparative Test Example (REF01) were 2.000 and 1.846, respectively, whereas most of the compounds according to the present invention were As a result, it was confirmed to have a higher refractive index than Comparative Test Example compound (REF01) in the blue region, green region, and red region. This satisfies the high refractive index value required to secure a high viewing angle in the blue region.
또한 UV영역의 시작단계에 해당하는 380nm에서의 k값 또한 대부분의 실시예 화합물들이 높은 것으로 확인되었다. 이는, UV영역의 고에너지 외부광원을 효과적으로 흡수하여 유기 발광 소자 내부의 유기물들의 손상을 최소화시킴으로써 유기 전계 발광 소자의 실질적인 수명 향상에 기여할 수 있을 것이다.In addition, it was confirmed that the k value at 380 nm corresponding to the starting stage of the UV region was also high in most of the example compounds. This may contribute to substantially improving the lifespan of the organic electroluminescent device by effectively absorbing the high-energy external light source in the UV region and minimizing damage to organic materials inside the organic light-emitting device.
<실시예><Example>
소자 제작Device fabrication
소자 제작을 위해 투명 전극인 ITO는 양극 층으로 사용하였고, 2-TNATA는 정공 주입층, NPB는 정공 수송층, αβ-ADN은 발광층의 호스트, Pyene-CN은 청색 형광 도판트, Liq는 전자 주입층, Mg:Ag은 음극으로 사용하였다. 이 화합물들의 구조는 하기의 화학식과 같다.For device fabrication, ITO, a transparent electrode, was used as the anode layer, 2-TNATA was used as the hole injection layer, NPB was the hole transport layer, αβ-ADN was the host of the emission layer, Pyene-CN was the blue fluorescent dopant, Liq was the electron injection layer , Mg:Ag was used as a negative electrode. The structures of these compounds are as shown in the following formula.
Figure PCTKR2020010960-appb-I000084
Figure PCTKR2020010960-appb-I000084
비교실시예 : ITO / 2-TNATA(60 nm) / NPB(20 nm) / αβ-ADN:10% Pyrene-CN(30 nm) / Alq3(30 nm) / Liq(2 nm) / Mg:Ag(1:9, 10 nm)/REF01(60nm)Comparative Example: ITO / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN: 10% Pyrene-CN (30 nm) / Alq 3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm)/REF01 (60 nm)
청색 형광 유기발광소자는 ITO(180 nm) / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN:Pyrene-CN 10% (30 nm) / Alq3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm) / REF(60nm) 순으로 증착하여 소자를 제작하였다. 유기물을 증착하기 전에 ITO 전극은 2 × 10- 2Torr에서 125W로 2분간 산소 플라즈마 처리를 하였다. 유기물은 9 × 10- 7Torr의 진공도에서 증착하였으며, Liq는 0.1 Å/sec, αβ-ADN은 0.18 Å/sec의 기준으로 Pyrene-CN는 0.02 Å/sec으로 동시 증착하였고, 나머지 유기물들은 모두 1 Å/sec의 속도로 증착하였다. 실험에 사용된 캡핑층 물질은 REF01로 선택하였다. 소자 제작이 끝난 후 소자의 공기 및 수분의 접촉을 막기 위하여 질소 기체로 채워져 있는 글러브 박스 안에서 봉지를 하였다. 3M사의 접착용 테이프로 격벽을 형성 후 수분 등을 제거할 수 있는 흡습제인 바륨산화물(Barium Oxide)을 넣고 유리판을 붙였다.Blue fluorescent organic light emitting device is ITO (180 nm) / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN:Pyrene-CN 10% (30 nm) / Alq 3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm) / REF (60nm) was deposited in the order to fabricate a device. Before depositing the organic substance is applied to the ITO electrodes 2 × 10 - was for 2 minutes plasma treatment to 125W at 2 Torr. Organics are 9 × 10 - were deposited at a vacuum degree of 7 Torr, Liq was 0.1 Å / sec, αβ-ADN is 0.18 Å / on the basis of sec Pyrene-CN was co-deposited with 0.02 Å / sec, all the remaining organics were 1 It was deposited at a rate of Å/sec. The capping layer material used in the experiment was selected as REF01. After the device was manufactured, the device was sealed in a glove box filled with nitrogen gas to prevent contact with air and moisture. After forming a partition wall with 3M's adhesive tape, barium oxide, a moisture absorbent that can remove moisture, was added and a glass plate was attached.
Figure PCTKR2020010960-appb-I000085
Figure PCTKR2020010960-appb-I000085
< 실시예 1 내지 17 ><Examples 1 to 17>
상기 비교실시예에서, REF01을 이용하는 대신에 하기 표 2에 나타낸 각각의 화합물을 사용한 것을 제외하고는 상기 비교실시예와 동일한 방법으로 소자를 제작하였다.In the comparative example, a device was manufactured in the same manner as in the comparative example, except that each compound shown in Table 2 was used instead of using REF01.
상기 비교실시예 및 실시예 1 내지 17에서 제조된 유기 발광 소자에 대한 전기적 발광특성을 표 2에 나타냈다. Table 2 shows the electroluminescence characteristics of the organic light emitting devices prepared in Comparative Examples and Examples 1 to 17.
구분division 화합물compound 구동전압[V]Driving voltage [V] 효율[cd/A]Efficiency [cd/A] 수명(%)life span(%)
비교실시예Comparative Example REF01REF01 4.504.50 5.105.10 88.9288.92
실시예 1Example 1 2-4(LT19-35-308)2-4 (LT19-35-308) 4.424.42 6.116.11 97.5497.54
실시예 2Example 2 2-5(LT19-30-224)2-5 (LT19-30-224) 4.474.47 6.526.52 98.1398.13
실시예 3Example 3 2-9(LT19-30-192)2-9 (LT19-30-192) 4.454.45 6.136.13 97.4597.45
실시예 4Example 4 2-13(LT18-30-239)2-13 (LT18-30-239) 4.384.38 6.236.23 97.4097.40
실시예 5Example 5 2-14(LT19-35-305)2-14 (LT19-35-305) 4.404.40 6.106.10 97.3297.32
실시예 6Example 6 2-21(LT19-35-312)2-21 (LT19-35-312) 4.414.41 6.236.23 97.5597.55
실시예 7Example 7 2-27(LT19-30-286)2-27 (LT19-30-286) 4.424.42 6.006.00 98.0098.00
실시예 8Example 8 2-29(LT19-30-259)2-29 (LT19-30-259) 4.494.49 5.995.99 95.6195.61
실시예 9Example 9 2-36(LT19-30-278)2-36 (LT19-30-278) 4.404.40 6.226.22 98.1198.11
실시예 10Example 10 2-40(LT19-30-218)2-40 (LT19-30-218) 4.424.42 6.116.11 97.5497.54
실시예 11Example 11 2-44(LT19-30-199)2-44 (LT19-30-199) 4.404.40 6.256.25 97.4297.42
실시예 12Example 12 2-48(LT18-30-263)2-48 (LT18-30-263) 4.414.41 6.236.23 97.5597.55
실시예 13Example 13 2-87(LT20-30-070)2-87 (LT20-30-070) 4.454.45 6.126.12 97.3597.35
실시예 14Example 14 2-114(LT20-30-068)2-114 (LT20-30-068) 4.454.45 6.216.21 97.9197.91
실시예 15Example 15 2-117(LT20-30-260)2-117 (LT20-30-260) 4.434.43 6.116.11 97.5697.56
실시예 16Example 16 2-123(LT20-30-051)2-123 (LT20-30-051) 4.454.45 6.226.22 97.0097.00
실시예 17Example 17 2-153(LT20-35-365)2-153 (LT20-35-365) 4.444.44 6.156.15 97.4997.49
상기 표 2의 결과로부터, 본 발명에 따른 3차 아민 유도체 화합물은 유기 발광 소자를 비롯한 유기 전자 소자의 캡핑층의 재료로서 사용될 수 있고, 이를 이용한 유기 발광 소자를 비롯한 유기 전자 소자는 효율, 구동전압, 안정성 등에서 우수한 특성을 나타냄을 알 수 있다. 특히, 본 발명에 따른 화합물은 미소공동현상(Micro-cavity)의 능력이 우수하여 높은 효율 특성을 나타냈다.From the results of Table 2 above, the tertiary amine derivative compound according to the present invention can be used as a material for the capping layer of organic electronic devices including organic light emitting devices, and organic electronic devices including organic light emitting devices using the same have efficiency and driving voltage. It can be seen that it exhibits excellent properties in terms of stability, etc. In particular, the compound according to the present invention exhibited high efficiency characteristics due to excellent micro-cavity capability.
화학식 1의 화합물은 OLED에서 캡핑층으로 사용하기 위한 의외의 바람직한 특성을 가지고 있다. The compound of Formula 1 has surprisingly desirable properties for use as a capping layer in OLED.
본 발명의 화합물이 이러한 특성에 의해 산업용 유기 전자 소자 제품에 적용될 수 있다.The compounds of the present invention can be applied to industrial organic electronic device products due to these properties.
다만, 전술한 합성예는 일 예시이며, 반응 조건은 필요에 따라 변경될 수 있다. 또한, 본 발명의 일 실시예에 따른 화합물은 당 기술분야에 알려진 방법 및 재료를 이용하여 다양한 치환기를 가지도록 합성될 수 있다. 화학식 1로 표시되는 코어 구조에 다양한 치환체를 도입함으로써 유기 전계 발광 소자에 사용되기에 적합한 특성을 가질 수 있다. However, the above synthesis example is an example, and the reaction conditions may be changed as necessary. In addition, the compound according to an embodiment of the present invention may be synthesized to have various substituents using methods and materials known in the art. By introducing various substituents to the core structure represented by Chemical Formula 1, it may have properties suitable for use in an organic electroluminescent device.
본 발명에 따른 3차 아민 유도체 화합물은 유기 전계 발광 소자의 유기물층 및/또는 캡핑층에 사용되는 것에 의해 유기 전계 발광 소자의 품질 향상에 이용될 수 있다. The tertiary amine derivative compound according to the present invention may be used to improve the quality of an organic electroluminescent device by being used for an organic material layer and/or a capping layer of an organic electroluminescent device.
상기 화합물을 캡핑층에 사용할 경우에, 유기 전계 발광 소자가 본래의 특성을 발현하면서 동시에 상기 화합물의 광학적 특성에 의해 수명 향상이 가능해진다.When the compound is used for the capping layer, the organic electroluminescent device exhibits its original characteristics and at the same time, the lifespan can be improved by the optical characteristics of the compound.

Claims (3)

  1. 하기 화학식 1로 표시되는, 유기 전계 발광 소자의 캡핑층 용 3차 아민 유도체.A tertiary amine derivative for a capping layer of an organic electroluminescent device represented by the following formula (1).
    [화학식 1][Formula 1]
    Figure PCTKR2020010960-appb-I000086
    Figure PCTKR2020010960-appb-I000086
    상기 화학식 1에 있어서, In Formula 1,
    Z1는 O 또는 S이며,Z 1 is O or S,
    n, p 및 q는 각각 독립적으로 0 또는 1이고,n, p and q are each independently 0 or 1,
    Ar1 및 Ar2는 서로 동일하며, 시아노기; 시아노기가 치환된 아릴기; 치환 또는 비치환된 디벤조퓨란기; 치환 또는 비치환된 디벤조티오펜기; 치환 또는 비치환된 벤즈옥사졸기; 및 치환 또는 비치환된 벤즈티아졸기; 중에서 선택되는 어느 하나이다. Ar 1 and Ar 2 are the same as each other, and a cyano group; An aryl group substituted with a cyano group; A substituted or unsubstituted dibenzofuran group; A substituted or unsubstituted dibenzothiophene group; A substituted or unsubstituted benzoxazole group; And a substituted or unsubstituted benzthiazole group; It is any one selected from among.
  2. 제 1항에 있어서,The method of claim 1,
    상기 화학식 1은 하기 화학식 2로 표시되는 화합물들 중에서 선택되는 유기 전계 발광 소자의 캡핑층 용 3차 아민 유도체.Formula 1 is a tertiary amine derivative for a capping layer of an organic electroluminescent device selected from compounds represented by Formula 2 below.
    [화학식 2] [Formula 2]
    Figure PCTKR2020010960-appb-I000087
    Figure PCTKR2020010960-appb-I000087
    Figure PCTKR2020010960-appb-I000088
    Figure PCTKR2020010960-appb-I000088
    Figure PCTKR2020010960-appb-I000089
    Figure PCTKR2020010960-appb-I000089
    Figure PCTKR2020010960-appb-I000090
    Figure PCTKR2020010960-appb-I000090
    Figure PCTKR2020010960-appb-I000091
    Figure PCTKR2020010960-appb-I000091
    Figure PCTKR2020010960-appb-I000092
    Figure PCTKR2020010960-appb-I000092
    Figure PCTKR2020010960-appb-I000093
    Figure PCTKR2020010960-appb-I000093
    Figure PCTKR2020010960-appb-I000094
    Figure PCTKR2020010960-appb-I000094
    Figure PCTKR2020010960-appb-I000095
    Figure PCTKR2020010960-appb-I000095
    Figure PCTKR2020010960-appb-I000096
    Figure PCTKR2020010960-appb-I000096
    Figure PCTKR2020010960-appb-I000097
    Figure PCTKR2020010960-appb-I000097
    Figure PCTKR2020010960-appb-I000098
    Figure PCTKR2020010960-appb-I000098
    Figure PCTKR2020010960-appb-I000099
    Figure PCTKR2020010960-appb-I000099
    Figure PCTKR2020010960-appb-I000100
    Figure PCTKR2020010960-appb-I000100
    Figure PCTKR2020010960-appb-I000101
    Figure PCTKR2020010960-appb-I000101
    Figure PCTKR2020010960-appb-I000102
    Figure PCTKR2020010960-appb-I000102
    Figure PCTKR2020010960-appb-I000103
    Figure PCTKR2020010960-appb-I000103
    Figure PCTKR2020010960-appb-I000104
    Figure PCTKR2020010960-appb-I000104
    Figure PCTKR2020010960-appb-I000105
    Figure PCTKR2020010960-appb-I000105
    Figure PCTKR2020010960-appb-I000106
    Figure PCTKR2020010960-appb-I000106
    Figure PCTKR2020010960-appb-I000107
    Figure PCTKR2020010960-appb-I000107
    Figure PCTKR2020010960-appb-I000108
    Figure PCTKR2020010960-appb-I000108
    Figure PCTKR2020010960-appb-I000109
    Figure PCTKR2020010960-appb-I000109
    Figure PCTKR2020010960-appb-I000110
    Figure PCTKR2020010960-appb-I000110
    Figure PCTKR2020010960-appb-I000111
    Figure PCTKR2020010960-appb-I000111
    Figure PCTKR2020010960-appb-I000112
    Figure PCTKR2020010960-appb-I000112
    Figure PCTKR2020010960-appb-I000113
    Figure PCTKR2020010960-appb-I000113
    Figure PCTKR2020010960-appb-I000114
    Figure PCTKR2020010960-appb-I000114
    Figure PCTKR2020010960-appb-I000115
    Figure PCTKR2020010960-appb-I000115
    Figure PCTKR2020010960-appb-I000116
    Figure PCTKR2020010960-appb-I000116
    Figure PCTKR2020010960-appb-I000117
    Figure PCTKR2020010960-appb-I000117
    Figure PCTKR2020010960-appb-I000118
    Figure PCTKR2020010960-appb-I000118
    Figure PCTKR2020010960-appb-I000119
    Figure PCTKR2020010960-appb-I000119
    Figure PCTKR2020010960-appb-I000120
    Figure PCTKR2020010960-appb-I000120
    Figure PCTKR2020010960-appb-I000121
    Figure PCTKR2020010960-appb-I000121
    Figure PCTKR2020010960-appb-I000122
    Figure PCTKR2020010960-appb-I000122
    Figure PCTKR2020010960-appb-I000123
    Figure PCTKR2020010960-appb-I000123
    Figure PCTKR2020010960-appb-I000124
    Figure PCTKR2020010960-appb-I000124
    Figure PCTKR2020010960-appb-I000125
    Figure PCTKR2020010960-appb-I000125
    Figure PCTKR2020010960-appb-I000126
    Figure PCTKR2020010960-appb-I000126
    Figure PCTKR2020010960-appb-I000127
    Figure PCTKR2020010960-appb-I000127
    Figure PCTKR2020010960-appb-I000128
    Figure PCTKR2020010960-appb-I000128
    Figure PCTKR2020010960-appb-I000129
    Figure PCTKR2020010960-appb-I000129
    Figure PCTKR2020010960-appb-I000130
    Figure PCTKR2020010960-appb-I000130
    Figure PCTKR2020010960-appb-I000131
    Figure PCTKR2020010960-appb-I000131
    Figure PCTKR2020010960-appb-I000132
    Figure PCTKR2020010960-appb-I000132
    Figure PCTKR2020010960-appb-I000133
    Figure PCTKR2020010960-appb-I000133
    Figure PCTKR2020010960-appb-I000134
    Figure PCTKR2020010960-appb-I000134
  3. 제1 전극;A first electrode;
    상기 제1 전극 상에 배치된, 복수의 유기물층으로 구성된 유기물층;An organic material layer formed of a plurality of organic material layers disposed on the first electrode;
    상기 유기물층 상에 배치된 제2 전극; 및 A second electrode disposed on the organic material layer; And
    상기 제2 전극 상에 배치된 캡핑층;을 포함하고,Including; a capping layer disposed on the second electrode,
    상기 캡핑층은 상기 제 1항 내지 제 2항 중 어느 한 항에 따른 3차 아민 유도체를 포함하는 유기 전계 발광 소자. The capping layer is an organic electroluminescent device comprising the tertiary amine derivative according to any one of claims 1 to 2.
PCT/KR2020/010960 2019-10-31 2020-08-18 Tertiary amine derivative and organic electroluminescent device comprising same WO2021085817A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080076161.2A CN114641469A (en) 2019-10-31 2020-08-18 Tertiary amine derivative and organic electroluminescent element comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0137084 2019-10-31
KR20190137084 2019-10-31
KR1020200065216A KR102417622B1 (en) 2019-10-31 2020-05-29 Tertiary amine derivatives and organic electroluminescent device including the same
KR10-2020-0065216 2020-05-29

Publications (2)

Publication Number Publication Date
WO2021085817A2 true WO2021085817A2 (en) 2021-05-06
WO2021085817A3 WO2021085817A3 (en) 2021-06-24

Family

ID=75715292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010960 WO2021085817A2 (en) 2019-10-31 2020-08-18 Tertiary amine derivative and organic electroluminescent device comprising same

Country Status (2)

Country Link
CN (1) CN114641469A (en)
WO (1) WO2021085817A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057718A (en) * 2022-01-17 2022-02-18 浙江华显光电科技有限公司 Triphenylamine derivative, preparation, organic photoelectric device and display or lighting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101379133B1 (en) * 2008-05-29 2014-03-28 이데미쓰 고산 가부시키가이샤 Aromatic amine derivative and organic electroluminescent device using the same
WO2014104144A1 (en) * 2012-12-26 2014-07-03 出光興産株式会社 Oxygen-containing fused ring amine compound, sulphur-containing fused ring amine compound, and organic electroluminescent element
CN108699438B (en) * 2016-03-03 2021-11-30 默克专利有限公司 Material for organic electroluminescent device
KR102528355B1 (en) * 2016-05-11 2023-05-03 삼성디스플레이 주식회사 Organic light emitting diode and light emitting device including the same
KR102099171B1 (en) * 2017-12-29 2020-04-09 (주)랩토 Aryl amine derivatieves and organic electroluminescent device including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057718A (en) * 2022-01-17 2022-02-18 浙江华显光电科技有限公司 Triphenylamine derivative, preparation, organic photoelectric device and display or lighting device

Also Published As

Publication number Publication date
WO2021085817A3 (en) 2021-06-24
CN114641469A (en) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2020251180A1 (en) Tertiary amine derivative and organic electroluminescent device comprising same
WO2012091471A2 (en) Compound and organic electronic element using same, and electronic device comprising the organic electronic element
WO2016108596A2 (en) Novel compound and organic light-emitting device comprising same
WO2020122359A1 (en) Tribenzazole amine derivative and organic electroluminescent device comprising same
WO2021066319A2 (en) Tertiary amine derivative and organic electroluminescent element comprising same
WO2022103031A1 (en) Triazine or pyrimidine derivative and organic electroluminescent element comprising same
WO2021132895A1 (en) Benzazole derivative and organic electroluminescent device comprising same
WO2022025647A1 (en) Novel compound for capping layer and organic light-emitting device comprising same
WO2020122327A1 (en) Organic electroluminescent element and spiro compound for organic electroluminescent element
WO2012115394A2 (en) Compound, organic electronic device using same, and electronic device thereof
WO2022164086A1 (en) Organometallic complex and organic electroluminescent device comprising same
WO2021075856A1 (en) Polycyclic compound and organic light-emitting device using same
WO2021141378A1 (en) Polycyclic aromatic derivative compound and organoelectroluminescent device using same
WO2022270835A1 (en) Organic light-emitting compound and organic light-emitting device comprising same
WO2021230511A1 (en) Benzazole derivative and organic electroluminescent device comprising same
WO2020022811A1 (en) Organic light emitting device
WO2021230512A1 (en) Benzazole derivative, and organic electroluminescent device comprising same
WO2022050710A1 (en) Polycyclic aromatic derivative compound and organoelectroluminescent device using same
WO2021085817A2 (en) Tertiary amine derivative and organic electroluminescent device comprising same
WO2023063701A1 (en) Novel compound for capping layer, and organic light-emitting device comprising same
WO2023022417A1 (en) Cyano group-substituted heteroaryl amine derivative and organic electroluminescent device comprising same
WO2023018040A1 (en) Cyano group-substituted carbazole derivative and organic electroluminescent device comprising same
WO2015076601A1 (en) Novel light emission compound and organic light emitting device comprising same
WO2022065730A1 (en) Cyano group-substituted aryl or heteroaryl derivative and organic electroluminescent device comprising same
WO2022010087A1 (en) Compound, and organic light-emitting element including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881216

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881216

Country of ref document: EP

Kind code of ref document: A2