WO2021085727A1 - Cutting robot system and simulation method therefor - Google Patents

Cutting robot system and simulation method therefor Download PDF

Info

Publication number
WO2021085727A1
WO2021085727A1 PCT/KR2019/016436 KR2019016436W WO2021085727A1 WO 2021085727 A1 WO2021085727 A1 WO 2021085727A1 KR 2019016436 W KR2019016436 W KR 2019016436W WO 2021085727 A1 WO2021085727 A1 WO 2021085727A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
cutting robot
cutting
virtual
information
Prior art date
Application number
PCT/KR2019/016436
Other languages
French (fr)
Korean (ko)
Inventor
채장범
김성신
김재한
정진욱
이종화
Original Assignee
주식회사 엠앤디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠앤디 filed Critical 주식회사 엠앤디
Publication of WO2021085727A1 publication Critical patent/WO2021085727A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the following description is an invention relating to a cutting robot system and a simulation method thereof.
  • a nuclear reactor or nuclear reactor is a device that uses the heat generated during nuclear fission for power generation or obtains basic particles of substances such as neutrons and radiation and uses it for pre-scientific research or technology development.It is a device that continuously maintains and controls nuclear fission. It's a device. Nuclear reactors are mostly used to generate electrical energy and are also used as power for ships.
  • the nuclear power plant radiation structure refers to a structure that is radiated by absorbing neutrons in the structure, that is, a structure that exhibits radioactivity, among discarded structures generated when a nuclear reactor is dismantled in operation.
  • a cutting robot capable of remote control has been introduced to prevent damage caused by radioactivity of workers, and abolition or maintenance work has been performed.
  • Such a cutting robot cuts the nuclear power plant radiation structure and transports it so that it can be disposed of.
  • the load applied to each joint may vary according to the rotation of the joints of the cutting robot, and the load applied to the cutting robot may also vary according to the load of the cutting body of the nuclear power plant radiation structure. Accordingly, even with the same cutting body, the load applied to the cutting robot varies depending on the length and gripping position, resulting in a load on the rotation of the joint of the cutting robot, resulting in a problem that may lead to damage.
  • the purpose of the embodiment is to provide a virtual reality image by implementing the robot and the robot's working environment as a virtual reality, and through a robot model that interacts with the user's motion while the user checks the working motion of the robot in real time in the virtual reality, it is convenient. It is to provide a cutting robot system and a simulation method that supports intuitive direct operation by supporting seamless simulation.
  • robot model information that calculates the optimal operation form of the robot according to the operation to ensure stable and accurate operation is stored, and physical information and robot model information are stored when the cutting robot is actually operated. It is to provide a cutting robot system and a simulation method thereof that are provided and operate the cutting robot in an optimal operation form.
  • a cutting robot system that provides physical information for cutting a nuclear power plant radiation structure of a nuclear reactor in connection with a virtual reality interface device according to an embodiment will be described.
  • the cutting robot system is based on a master device that generates a control signal for controlling the cutting robot and the virtual reality-based virtual cutting robot, environmental model information preset with design information of the reactor, and robot model information preset for the cutting robot. It generates an image of a virtual reality and a virtual cutting robot, generates a motion event in a virtual environment according to a control signal of the virtual cutting robot, and the physics of the structure object by the interaction of the structure object in the virtual reality and the virtual cutting robot. It includes a simulator that calculates information and changes in joint load information of the virtual cutting robot, and a database that stores physical information and joint load information of the simulator.
  • the motion event of the virtual cutting robot includes at least one of a movement of the virtual cutting robot, a movement of a robot arm of the virtual cutting robot, an operation of a gripper of the cutting robot, and an operation of plasma of the cutting robot. can do.
  • the simulator may calculate the rotation of each joint corresponding to the position and posture of the end of the robot arm as inverse kinematics and reflect it in the robot model information.
  • the simulator may continuously update the robot model information by calculating a load applied to each joint.
  • the simulator may calculate the rotation of each joint so that the load applied to each joint does not exceed a preset range and reflect it in the robot model information.
  • a cutting robot that is input to an actual nuclear reactor to measure and cut the radiation structure may be further included, and when the cutting robot is actually operated, detailed operations of the cutting robot may be controlled based on physical information.
  • the environmental model information may be updated in real time with information measured by the cutting robot.
  • the simulation method of a virtual reality-based cutting robot system includes the steps of generating an image of a virtual reality and a virtual cutting robot based on preset environmental model information for the reactor design information and preset robot model information for the cutting robot. Determining an input of a control signal for manipulating the cutting robot, when the control signal is input, generating a motion event of the virtual cutting robot in virtual reality according to the control signal, the virtual cutting robot and the virtual reality It may include determining whether a cutting event of the cutting object occurs, generating physical information of the cutting object in virtual reality, and storing the physical information in a database.
  • it may further include calculating a load applied to each joint of the virtual cutting robot.
  • it may further include calculating the rotation angle of each joint so that the load applied to each joint does not exceed a preset range and reflecting it in the robot model information.
  • the purpose of the embodiment is to provide a virtual reality image by implementing the robot and the robot's working environment as a virtual reality, and through a robot model that interacts with the user's motion while the user checks the working motion of the robot in real time in the virtual reality, it is convenient. It can be supported so that it can be simulated so that intuitive direct operation is possible.
  • robot model information that calculates the optimal operation form of the robot according to the operation to ensure stable and accurate operation is stored, and physical information and robot model information are stored when the cutting robot is actually operated. It is provided and can operate the cutting robot in an optimal operation mode.
  • FIG. 1 is a block diagram of a virtual reality-based cutting robot system according to an embodiment.
  • FIG. 2 is a perspective view of a cutting robot according to an embodiment.
  • FIG. 3 is a flowchart illustrating a simulation method of a virtual reality-based cutting robot system according to an embodiment.
  • first, second, A, B, (a), and (b) may be used. These terms are for distinguishing the constituent element from other constituent elements, and the nature, order, or order of the constituent element is not limited by the term.
  • the method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded in the medium may be specially designed and configured for the embodiment, or may be known to and usable by a person skilled in computer software.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks.
  • -A hardware device specially configured to store and execute program instructions such as magneto-optical media, and ROM, RAM, flash memory, and the like.
  • Examples of program instructions include not only machine language codes such as those produced by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operation of the embodiment, and vice versa.
  • FIG. 1 is a block diagram of a virtual reality-based cutting robot system according to an embodiment
  • FIG. 2 is a perspective view of a cutting robot according to the embodiment.
  • the cutting robot system 1 includes a cutting robot 10, a virtual reality interface device 20, a master device 30, a simulator 40, and a database 50.
  • the cutting robot 10 is input to the nuclear reactor through remote control instead of the operator for the safety of the operator to perform maintenance work such as dismantling, replacement, and assembly of the radioactive structure.
  • the radioactive structure means at least a part of the structure of a nuclear reactor.
  • the cutting robot 10 is provided with a moving module 110 for moving the cutting robot 10 by having a motor for driving the plurality of wheels 111 and the plurality of wheels 111, and an elastic leg 121 for expanding and contracting.
  • the end of the fixing module 120 for fixing the cutting robot 10 so that it does not move to a certain place, the plasma unit 131 for cutting or welding the radioactive structure, or the gripper 132 for gripping the radioactive structure 3D scan information on the working environment by scanning the working place of the robot arm 130, which is provided in the robot arm 130 and provided in the robot arm 130 and provided in the robot arm 130 having a plurality of joints 133 to have excitation guidance It is controlled through remote control, including the observation unit 140 provided with a three-dimensional sensor to generate the and the communication module 150 communicating with the master device or database, it is possible to perform maintenance work of the structure in the nuclear power plant.
  • the virtual reality interface device 20 may include a head mounted display (HMD) device worn by a user.
  • the virtual reality interface device 20 may be composed of a plurality of different devices that provide an image to a user.
  • the virtual reality interface device 20 may include a separate communication module (not shown) connected to the simulator.
  • the master device 30 may include a controller or a teach pendant that generates a control signal for manipulating the cutting robot 10 and the virtual reality-based virtual cutting robot by a user's manipulation.
  • the master device 30 may be capable of generating a control signal by recognizing a user's motion.
  • the master device 30 generates a control signal for the user's manipulation according to the user's manipulation or automatically recognizes the user's type to generate a control signal, and then the simulator 40 through a separate communication module (not shown). Can be transferred to.
  • the simulator 40 generates an image of a virtual reality and a virtual cutting robot based on environment model information preset as the reactor design information and robot model information preset for the cutting robot.
  • the simulator 40 may generate a motion event according to a control signal of the virtual cutting robot to operate the virtual cutting robot in virtual reality.
  • the simulator 40 includes a communication unit 410, an environment modeling unit 420, a robot modeling unit 430, and a control unit 440.
  • the communication unit 410 is directly connected to and communicates with the virtual reality interface device 20, the master device 30, and the database 50 in a manner such as Bluetooth, cable, Wifi direct, and WMB.
  • the present invention is not limited thereto, and the communication unit 410 may be connected to the Internet to communicate with the virtual reality interface device 20, the master device 30, and the database 50.
  • the environment modeling unit 420 generates environment model information based on the design information of the reactor previously stored in the database 50 and generates a virtual reality image based on this.
  • the reactor design information may be information including at least one or more of a design diagram of a reactor, a material, a location, a shape, a density, a melting point, and a weight of the radioactive structure.
  • the design information of the reactor is based on the design drawing, but may be changed due to design changes in maintenance and construction.
  • the environmental modeling unit 420 may update and provide environmental model information in real time through information observed from a cutting robot that is actually put into a nuclear reactor.
  • the environment modeling unit 420 includes a collection unit 421 and an environment information generation unit 422.
  • the collection unit 421 collects design information of the reactor previously stored in the database 50 and observation information observed by the cutting robot 10. For example, the collection unit 421 collects design information by being directly connected to the database 50 and the communication unit 410 using Bluetooth WIFI DIRECT or connected through an Internet network. In addition, the collection unit 421 may be directly connected to the cutting robot 10 or connected through an Internet network to collect observation information.
  • the environment information generation unit 422 generates a virtual reality image by implementing a real reactor as a 3D image of a reactor in virtual reality through the design information. For example, the environmental information generation unit 422 receives a 2D design drawing created on a plane and a 3D design drawing created in 3D from the collection unit, and receives 3D point-cloud information (or point cloud data) for virtual reality. And a depth image may be generated based on depth information included in the point cloud information, and a preset image coordinate system may be applied to the depth image.
  • the environment information generation unit 422 may cluster point group information in a block form based on the image coordinates according to the image coordinate system applied to the depth image, thereby generating a plurality of different clusters, and generating a plurality of different clusters in the cluster through a preset algorithm.
  • the entire structure can be modeled as a 3D image by implementing the point group information to which it belongs as a single polygon or hexahedron.
  • the environmental information generation unit 422 may receive 3D scan information from the 3D sensor of the observation unit 140 provided in the cutting robot 10 that is actually put into the nuclear reactor, and update a previously implemented virtual reality 3D image.
  • the three-dimensional scan information can be composed of three-dimensional point-cloud information (or point-cloud data) for the work environment, and depth information is included in the entire group information, and the design information is a method of implementing a virtual reality 3D image. It is implemented in the same way, but for the same information, the previously implemented 3D image can be maintained, and the 3D image can be updated for the changed part.
  • the design information further includes at least one or more of physical information of material, location, shape, volume, density, melting point, weight, strength, and hardness of the radioactive structure object.
  • the environment information generation unit 422 may generate environment model information composed of a 3D image including physical information in a structure object.
  • the environmental information generation unit 422 compresses the point cloud information belonging to each cluster corresponding to the work environment into a polygon or a hexahedron to model it, and thus, based on the point cloud information on the work environment, the environment model information generated through modeling of the work environment is While reducing the amount of data, it is possible to support rapid modeling of the work environment by greatly reducing the computation time required for modeling the work environment.
  • the environmental information generation unit 422 may generate environmental model information identical to the actual nuclear reactor by implementing modeling based on the design information and 3D scan information measured by the actual cutting robot.
  • the robot modeling unit 430 includes a robot model generation unit 431, a joint load calculation unit 432, and a joint rotation unit 433.
  • the robot model generation unit 431 generates an image of a virtual cutting robot based on preset robot model information. For example, the robot model generation unit 431 generates a virtual cutting robot image composed of 3D graphic information based on the design information of the robot previously stored in the database 50. In addition, the robot model generation unit 431 generates an image of the virtual cutting robot including part information such as material, weight, size, volume, density, and rotation information of the joint for each part of the virtual cutting robot.
  • the robot model generator 431 When the robot model generator 431 receives the control signal of the master device through the communication unit, it extracts a motion event corresponding to the control signal from the database. For example, when the control signal is received, the robot model generation unit 431 may at least one of the movement of the virtual cutting robot, the movement of the robot arm of the virtual cutting robot, the operation of the gripper of the cutting robot, and the operation of the plasma of the cutting robot. A previously stored motion event including one or more is extracted from the database 50. Thereafter, the robot model generation unit 431 generates an image of the virtual cutting robot corresponding to the previously stored motion event.
  • the robot model generation unit 431 calculates the rotation of each joint corresponding to the position and posture of the end of the robot arm as inverse kinematics and reflects it in the robot model information to be virtual. Create an image of the cutting robot.
  • the robot model generation unit 431 first expresses a trajectory corresponding to the position and posture of the end of the robot arm of the virtual cutting robot, and then converts it into a joint trajectory of the robot to control the motor of the virtual cutting robot. It creates an image of a virtual cutting robot by creating movement.
  • the robot model generation unit may generate an image of a virtual cutting robot by superimposing an image of a virtual cutting robot on a virtual reality image, and may visually provide the superimposed image to a user by transmitting the superimposed image to a virtual reality interface device.
  • the joint load calculation unit 432 calculates the load of each joint of the generated virtual cutting robot 10. For example, the joint load calculation unit 432 continuously calculates the load of each joint for the movement of the robot arm from the initial loading of the virtual cutting robot.
  • the joint load calculation unit 432 is a joint applied to each joint by substituting at least one of the three-dimensional coordinate position, velocity, acceleration, and weight and size of a structure object of each joint of the robot arm into a preset static and dynamic equation. You can calculate the load.
  • the joint rotation unit 433 compares the joint load calculation value of the joint load calculation unit with a preset value, for example, a value set as an allowable value of the joint load that does not damage the joint, so that the calculation value of the joint load does not exceed a preset value.
  • the rotation value of each joint is calculated and reflected in the robot model information.
  • the robot model generation unit 431 controls the rotation of the joints so that the load does not exceed a preset value, and while maintaining the position of the end of the robot arm of the virtual cutting robot, the rotation of each joint is changed to virtually cut.
  • the load of each joint according to the posture can be maintained within a preset value.
  • the joint rotation unit 433 transmits the load applied to each joint to the robot model generation unit 431 to be continuously updated, and generates an optimized rotation value so that the load can be minimized at the rotation angle of the joint.
  • the joint rotation unit 433 reflects the optimized rotation value to the robot model information and stores it in a database.
  • the robot model generation unit 431 may regenerate the image according to the updated robot model information.
  • the control unit 440 generates a single image by integrating the images of the environment modeling unit 420 and the robot modeling unit 430, receives a control signal and operates the virtual cutting robot in a virtual reality environment, Extract the interaction event of the structure object. At this time, when a cutting event of a structure object occurs, the control unit divides the structure object into the cut structure object and calculates physical information such as material, volume, mass, and center of gravity, and the environment modeling unit 420 and the database 50 ) To regenerate the structure object.
  • the control unit 440 includes an event extraction unit 441, an object regeneration unit 442, and a physical information operation unit 443.
  • the event extraction unit 441 extracts an interaction event between the structure object and the virtual cutting robot from the virtual cutting robot image and the virtual reality image. For example, the event extraction unit 441 extracts an interaction event by determining the overlap of the virtual cutting robot and the structure object.
  • the interaction event may include a collision event, a cutting event, and a grip event.
  • the collision event is an event that occurs when the structure object and the virtual cutting robot overlap.
  • the robot modeling unit may limit the motion of the virtual cutting robot so that it does not overlap when the structure object and the virtual cutting robot come into contact.
  • the cutting event is an event in which the plasma unit of the virtual cutting robot cuts through a structure object.
  • the robot modeling unit 430 moves the plasma unit generating plasma of a predetermined intensity to pass through the structure object.
  • the joint load calculation unit 432 calculates by adding a reaction force in the direction opposite to the direction in which the cutting event occurs, and the joint rotation unit 433 calculates the rotation angle of each joint according to the calculated load, and responds thereto.
  • the robot modeling unit 430 rotates each joint.
  • the cutting load is a value previously stored in the database 50 and may be a repulsive force against cutting that actually occurs according to the material and melting point of the structure object.
  • the environmental information generation unit 422 divides the points of the plane of the structure object through which the plasma unit 311 has passed by using the equation of the plane, and uses the Delaunay triangle for the empty space of the cut surface. It fills in, regenerates physical information such as shape, density, volume, weight and center of gravity of the structure object, and stores it in the database.
  • the grip event is an event that grips a structure object using a gripper of a virtual cutting robot.
  • the joint load calculation unit calculates the torsion and gravity according to the shape, volume, weight, center of gravity of the structure object and the gripping position of the gripper, and calculates the load of the joint of the robot arm equipped with the gripper of the virtual cutting robot, By providing the calculated value to the joint rotation unit, the optimal rotation angle of each joint can be calculated.
  • Such physical information and joint load information generated when each event occurs are stored in the database 50 and may be provided when the actual cutting robot 10 is controlled. For example, it is possible to control the actual cutting robot 10 with the master device 30. At this time, only providing the end and position of the robot arm as a control signal, the joint stored in the database as an optimized value in virtual reality.
  • the rotation angle may be provided to the actual cutting robot 10.
  • the physical information and the value of the joint rotation angle are provided to the actual cutting robot 10, so that the weight according to the shape and size of the structure is determined in advance and optimized.
  • FIG. 3 is a flowchart illustrating a simulation method of a virtual reality-based cutting robot system according to an embodiment.
  • the simulation method of the virtual reality-based cutting robot system 1 includes the steps of generating an image (61), calculating the load (62), calculating the rotation angle of each joint (63), Determining input of a control signal for manipulating a virtual reality-based virtual cutting robot (64), generating a motion event of the virtual cutting robot (65), determining whether a cutting event has occurred (56), cutting object It includes a step of generating (67) physical information of the physical information and a step (58) of storing the physical information in the database (50). .
  • the step of generating the image 61 includes generating an image of a virtual reality and a virtual cutting robot based on preset environmental model information for the reactor design information and preset robot model information for the cutting robot 10. do.
  • step 62 of calculating the load the load applied to each joint of the virtual cutting robot is calculated from the generated image.
  • step 63 of calculating the rotation angle of the joint the load applied to each joint of the virtual cutting robot is compared with a preset value, and the rotation angle of the joint is calculated so that the load applied to each joint does not exceed a preset range.
  • the calculated rotation angle of the joint is stored in the database, but reflected in the robot model information and stored. After that, the robot model generator updates the image of the virtual cutting robot according to the robot model information.
  • the robot model generator determines whether there is a control signal input through the communication unit.
  • the robot model generator 431 determines the type of the control signal when there is an input control signal.
  • the type of the control signal may be a plurality of signals respectively corresponding to motion events including movement of the virtual cutting robot, movement of the robot arm of the virtual cutting robot, the operation of the gripper of the cutting robot, and the operation of the plasma of the cutting robot. .
  • step 65 of generating a motion event of the virtual cutting robot when a control signal is input, a motion event is generated according to the control signal to operate the virtual cutting robot in virtual reality and update the image.
  • step 66 of determining whether a cutting event has occurred it is determined that the cutting event of the virtual cutting robot and the cutting object in the virtual reality is generated.
  • the event extraction unit 441 detects a collision event, a cutting event, and a grip event in a state in which plasma operation and robot arm movement events occur, and determines whether a cutting event has occurred.
  • the physical information of the cut structure object is generated according to the cutting event in virtual reality.
  • the environmental information generation unit 422 divides the points of the plane of the structure object through which the plasma unit 311 has passed using the equation of the plane, fills the empty space of the cut surface using the Delaunay triangle, and the structure object Regenerate physical information such as shape, volume, weight and center of gravity.
  • the environmental information generation unit 422 stores the generated physical information event in the database.
  • the optimal joint rotation angle for the motion of the cutting robot and the shape of the structure object that is easy to transport through cutting are derived, updated and stored in the database, so that the actual cutting robot can be manipulated.
  • it is simple to operate with the same control signal, but it is possible to find the cutting structure of the optimized structure object through the information on the cutting shape, and by optimizing the rotation angle of the joint against the load applied to each joint according to the operation of the cutting robot. The load on each joint can be minimized.

Abstract

Disclosed is a cutting robot system that operates in conjunction with a virtual reality interface device to provide physical information for cutting a nuclear radioactive structure in a nuclear reactor, and a simulation method therefor. The system comprises: a cutting robot; a master device that generates a control signal to control a virtual reality-based virtual cutting robot; a simulator that generates a virtual reality image and an image of the virtual cutting robot on the basis of environmental model information set in advance by design information of the nuclear reactor and robot model information set in advance for the cutting robot, generates a motion event for the virtual cutting robot in a virtual environment according to the control signal, and calculates a change in physical information of a virtual reality structure object and joint load information of the virtual cutting robot due to interaction between the structure object and the virtual cutting robot; and a database that stores the physical information and joint load information of the simulator.

Description

절단로봇 시스템 및 그 시뮬레이션 방법Cutting robot system and its simulation method
이하의 설명은 절단 절단로봇 시스템 및 그 시뮬레이션 방법에 관한 발명이다.The following description is an invention relating to a cutting robot system and a simulation method thereof.
원자로 또는 핵 반응로는 핵분열 시 발생하는 열을 전력 생산에 이용하거나, 중성자와 방사선 같은 물질의 기본 입자들을 얻어 과학전인 연구 또는 기술개발에 활용하기 위해 만든 장치로, 핵분열을 지속적으로 유지하고 제어하는 장치다. 원자로는 대부분 전기 에너지를 만드는데 사용되고, 선박을 위한 동력으로 사용하기도 한다. A nuclear reactor or nuclear reactor is a device that uses the heat generated during nuclear fission for power generation or obtains basic particles of substances such as neutrons and radiation and uses it for pre-scientific research or technology development.It is a device that continuously maintains and controls nuclear fission. It's a device. Nuclear reactors are mostly used to generate electrical energy and are also used as power for ships.
이러한, 원자로에는 다양한 원전 방사화 구조물이 구비된다. 여기서, 원전 방사화 구조물이란 운전이 종료된 원자로의 해체 시 발생하는 폐기 구조물 중 구조물에 중성자가 흡수됨으로써 방사화된, 즉, 방사능을 띄는 구조물을 의미한다. 최근, 원자로 폐지 또는 유지보수를 위해서 작업자의 방사능에 의한 피해를 방지하기 위해 원격조종이 가능한 절단로봇을 투입하여 폐지 또는 유지보수 작업이 이루어 지고 있다. In such a nuclear reactor, various nuclear power plant radiation structures are provided. Here, the nuclear power plant radiation structure refers to a structure that is radiated by absorbing neutrons in the structure, that is, a structure that exhibits radioactivity, among discarded structures generated when a nuclear reactor is dismantled in operation. In recent years, in order to abolish or maintain a nuclear reactor, a cutting robot capable of remote control has been introduced to prevent damage caused by radioactivity of workers, and abolition or maintenance work has been performed.
이러한, 절단로봇은 원전 방사화 구조물을 절단하고, 폐기가 가능하도록 이송한다. 이때, 절단로봇의 관절의 회전에 따라 각 관절에 걸리는 하중이 달라질 수 있으며, 또한, 원전 방사화 구조물의 절단체의 하중에 따라서도 절단로봇에 걸리는 하중이 달라질 수 있다. 이에 따라, 동일한 절단체라 하더라도, 길이 및 파지 위치에 따라 절단로봇에 걸리는 하중이 달라져 절단로봇의 관절회전에 부하를 가져왔으며, 결국 파손까지 이르게 되는 문제가 발생할 수 있었다.Such a cutting robot cuts the nuclear power plant radiation structure and transports it so that it can be disposed of. At this time, the load applied to each joint may vary according to the rotation of the joints of the cutting robot, and the load applied to the cutting robot may also vary according to the load of the cutting body of the nuclear power plant radiation structure. Accordingly, even with the same cutting body, the load applied to the cutting robot varies depending on the length and gripping position, resulting in a load on the rotation of the joint of the cutting robot, resulting in a problem that may lead to damage.
실시 예의 목적은 로봇과 로봇의 작업 환경을 가상 현실로 구현하여 가상 현실 영상을 제공하고, 해당 가상 현실상에서 사용자가 로봇의 작업 동작을 실시간으로 확인하면서 사용자의 동작과 상호 작용하는 로봇 모델을 통해 편리하게 시뮬레이션 할 수 있도록 지원하여 직관적인 직접 조작이 가능하도록 지원하는 절단로봇 시스템 및 그 시뮬레이션 방법을 제공하는 것이다. The purpose of the embodiment is to provide a virtual reality image by implementing the robot and the robot's working environment as a virtual reality, and through a robot model that interacts with the user's motion while the user checks the working motion of the robot in real time in the virtual reality, it is convenient. It is to provide a cutting robot system and a simulation method that supports intuitive direct operation by supporting seamless simulation.
또한, 가상 현실 기반 절단로봇의 시물레이션을 통해서 조작에 따른 로봇의 최적의 동작 형태를 산출하여 안정적이고 정확한 동작이 이루어지도록 하는 로봇 모델 정보를 저장하고, 실제 절단로봇 조작 시 물리정보 및 로봇 모델정보를 제공받아 최적의 동작 형태로 절단로봇을 작동시키는 절단로봇 시스템 및 그 시뮬레이션 방법을 제공하는 것이다. In addition, through the simulation of the cutting robot based on virtual reality, robot model information that calculates the optimal operation form of the robot according to the operation to ensure stable and accurate operation is stored, and physical information and robot model information are stored when the cutting robot is actually operated. It is to provide a cutting robot system and a simulation method thereof that are provided and operate the cutting robot in an optimal operation form.
실시 예들에서 해결하려는 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems to be solved in the embodiments are not limited to the problems mentioned above, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
실시 예에 따른 가상현실 인터페이스 장치와 연동하여, 원자로의 원전 방사 구조물의 절단을 위한 물리정보를 제공하는 절단로봇 시스템에 대해 설명한다. A cutting robot system that provides physical information for cutting a nuclear power plant radiation structure of a nuclear reactor in connection with a virtual reality interface device according to an embodiment will be described.
절단로봇 시스템은 상기 절단로봇 및 가상현실 기반 가상 절단로봇을 조종하기 위한 제어신호를 생성하는 마스터 장치, 상기 원자로의 설계정보로 미리 설정된 환경 모델 정보 및 상기 절단로봇에 대한 미리 설정된 로봇 모델 정보를 기초로 가상 현실 및 가상 절단로봇의 영상을 생성하고, 상기 가상 절단로봇을 제어신호에 따라 가상환경 상에서 동작이벤트를 생성하고, 가상 현실상의 구조물 오브젝트와 상기 가상 절단로봇의 상호작용에 의한 구조물 오브젝트의 물리정보 및 상기 가상 절단로봇의 관절하중정보 변화를 연산하는 시뮬레이터 및 상기 시뮬레이터의 물리정보 및 관절하중 정보를 저장하는 데이터 베이스를 포함한다. The cutting robot system is based on a master device that generates a control signal for controlling the cutting robot and the virtual reality-based virtual cutting robot, environmental model information preset with design information of the reactor, and robot model information preset for the cutting robot. It generates an image of a virtual reality and a virtual cutting robot, generates a motion event in a virtual environment according to a control signal of the virtual cutting robot, and the physics of the structure object by the interaction of the structure object in the virtual reality and the virtual cutting robot. It includes a simulator that calculates information and changes in joint load information of the virtual cutting robot, and a database that stores physical information and joint load information of the simulator.
일측에 따르면, 상기 가상 절단로봇의 동작이벤트는, 상기 가상 절단로봇의 이동, 가상 절단로봇의 로봇암의 이동, 상기 절단로봇의 그리퍼의 동작 및 상기 절단로봇의 플라즈마의 작동 중 적어도 하나 이상을 포함할 수 있다. According to one side, the motion event of the virtual cutting robot includes at least one of a movement of the virtual cutting robot, a movement of a robot arm of the virtual cutting robot, an operation of a gripper of the cutting robot, and an operation of plasma of the cutting robot. can do.
일측에 따르면, 상기 시뮬레이터는 로봇암의 이동에 대응하는 동작이벤트 발생 시, 로봇암의 단부의 위치 및 자세에 대응하는 각 관절의 회전을 역기구학으로 산출하여 상기 로봇 모델 정보에 반영할 수 있다. According to one side, when a motion event corresponding to the movement of the robot arm occurs, the simulator may calculate the rotation of each joint corresponding to the position and posture of the end of the robot arm as inverse kinematics and reflect it in the robot model information.
일측에 따르면, 상기 시뮬레이터는, 상기 로봇 모델 정보에 각 관절에 걸리는 하중을 계산하여 지속적으로 업데이트할 수 있다. According to one side, the simulator may continuously update the robot model information by calculating a load applied to each joint.
일측에 따르면, 상기 시뮬레이터는, 각 관절에 걸리는 하중이 기설정범위를 초과하지 않도록 각 관절의 회전을 산출하여 상기 로봇 모델 정보에 반영할 수 있다. According to one side, the simulator may calculate the rotation of each joint so that the load applied to each joint does not exceed a preset range and reflect it in the robot model information.
일측에 따르면, 실제 원자로에 투입되어 방사 구조물을 실측 및 절단하는 절단로봇을 더 포함하고, 상기 절단로봇의 실제 조작 시, 물리정보를 기반으로 상기 절단로봇의 세부 동작을 제어할 수 있다. According to one side, a cutting robot that is input to an actual nuclear reactor to measure and cut the radiation structure may be further included, and when the cutting robot is actually operated, detailed operations of the cutting robot may be controlled based on physical information.
일측에 따르면, 상기 환경 모델 정보는, 상기 절단로봇에 의해 실측된 정보로 실시간 업데이트될 수 있다. According to one side, the environmental model information may be updated in real time with information measured by the cutting robot.
실시 예에 따른 가상 현실 기반 절단로봇 시스템의 시뮬레이션 방법에 대해 설명한다. A simulation method of a virtual reality-based cutting robot system according to an embodiment will be described.
가상 현실 기반 절단로봇 시스템의 시뮬레이션 방법은, 원자로의 설계정보에 대한 미리 설정된 환경 모델 정보 및 절단로봇에 대한 미리 설정된 로봇 모델 정보를 기초로 가상 현실 및 가상 절단로봇의 영상을 생성하는 단계, 상기 가상 절단로봇을 조종하기 위한 제어신호의 입력을 판단하는 단계, 상기 제어신호가 입력되면, 상기 제어신호에 따라 가상현실 상의 가상 절단로봇의 동작이벤트를 발생시키는 단계, 상기 가상 절단로봇 및 상기 가상 현실상의 절단 오브젝트의 절단 이벤트 발생여부를 판단하는 단계, 상기 가상 현실상의 절단 오브젝트의 물리정보를 생성하는 단계 및 상기 물리정보를 데이터 베이스에 저장하는 단계를 포함할 수 있다. The simulation method of a virtual reality-based cutting robot system includes the steps of generating an image of a virtual reality and a virtual cutting robot based on preset environmental model information for the reactor design information and preset robot model information for the cutting robot. Determining an input of a control signal for manipulating the cutting robot, when the control signal is input, generating a motion event of the virtual cutting robot in virtual reality according to the control signal, the virtual cutting robot and the virtual reality It may include determining whether a cutting event of the cutting object occurs, generating physical information of the cutting object in virtual reality, and storing the physical information in a database.
일측에 따르면, 상기 가상 절단로봇의 각 관절에 걸리는 하중을 연산하는 단계를 더 포함할 수 있다. According to one side, it may further include calculating a load applied to each joint of the virtual cutting robot.
일측에 따르면, 각 관절에 걸리는 하중이 기설정범위를 초과하지 않도록 각 관절의 회전각도를 산출하여 상기 로봇 모델 정보에 반영하는 단계를 더 포함할 수 있다.According to one side, it may further include calculating the rotation angle of each joint so that the load applied to each joint does not exceed a preset range and reflecting it in the robot model information.
실시 예의 목적은 로봇과 로봇의 작업 환경을 가상 현실로 구현하여 가상 현실 영상을 제공하고, 해당 가상 현실상에서 사용자가 로봇의 작업 동작을 실시간으로 확인하면서 사용자의 동작과 상호 작용하는 로봇 모델을 통해 편리하게 시뮬레이션 할 수 있도록 지원하여 직관적인 직접 조작이 가능하도록 지원할 수 있다. The purpose of the embodiment is to provide a virtual reality image by implementing the robot and the robot's working environment as a virtual reality, and through a robot model that interacts with the user's motion while the user checks the working motion of the robot in real time in the virtual reality, it is convenient. It can be supported so that it can be simulated so that intuitive direct operation is possible.
또한, 가상 현실 기반 절단로봇의 시물레이션을 통해서 조작에 따른 로봇의 최적의 동작 형태를 산출하여 안정적이고 정확한 동작이 이루어지도록 하는 로봇 모델 정보를 저장하고, 실제 절단로봇 조작 시 물리정보 및 로봇 모델정보를 제공받아 최적의 동작 형태로 절단로봇을 작동시킬 수 있다. In addition, through the simulation of the cutting robot based on virtual reality, robot model information that calculates the optimal operation form of the robot according to the operation to ensure stable and accurate operation is stored, and physical information and robot model information are stored when the cutting robot is actually operated. It is provided and can operate the cutting robot in an optimal operation mode.
실시 예에 따른 절단로봇 시스템 및 그 시뮬레이션 방법의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The effects of the cutting robot system and the simulation method according to the embodiment are not limited to those mentioned above, and other effects that are not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 실시 예에 따른 가상 현실 기반 절단로봇 시스템의 블록도이다. 1 is a block diagram of a virtual reality-based cutting robot system according to an embodiment.
도 2는 실시 예에 따른 절단로봇의 사시도이다. 2 is a perspective view of a cutting robot according to an embodiment.
도 3은 실시 예에 따른 가상 현실 기반 절단로봇 시스템의 시뮬레이션 방법을 나타내는 순서도이다. 3 is a flowchart illustrating a simulation method of a virtual reality-based cutting robot system according to an embodiment.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 일 실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings attached to the present specification illustrate a preferred embodiment of the present invention, and serve to further understand the technical idea of the present invention together with the detailed description of the present invention. It is limited and should not be interpreted.
이하, 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다. Hereinafter, embodiments will be described in detail through exemplary drawings. In adding reference numerals to elements of each drawing, it should be noted that the same elements are assigned the same numerals as possible, even if they are indicated on different drawings. In addition, in describing the embodiment, if it is determined that a detailed description of a related known configuration or function interferes with the understanding of the embodiment, the detailed description thereof will be omitted.
또한, 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다. In addition, in describing the constituent elements of the embodiment, terms such as first, second, A, B, (a), and (b) may be used. These terms are for distinguishing the constituent element from other constituent elements, and the nature, order, or order of the constituent element is not limited by the term. When a component is described as being "connected", "coupled" or "connected" to another component, the component may be directly connected or connected to that other component, but another component between each component It should be understood that may be “connected”, “coupled” or “connected”.
어느 하나의 실시 예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시 예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시 예에 기재한 설명은 다른 실시 예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다. Components included in one embodiment and components including common functions will be described using the same name in other embodiments. Unless otherwise stated, the description in one embodiment may be applied to other embodiments, and a detailed description will be omitted in the overlapping range.
실시 예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시 예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 통상의 기술자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시 예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.The method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer-readable medium. The computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination. The program instructions recorded in the medium may be specially designed and configured for the embodiment, or may be known to and usable by a person skilled in computer software. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks. -A hardware device specially configured to store and execute program instructions such as magneto-optical media, and ROM, RAM, flash memory, and the like. Examples of program instructions include not only machine language codes such as those produced by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like. The hardware device described above may be configured to operate as one or more software modules to perform the operation of the embodiment, and vice versa.
도 1은 실시 예에 따른 가상 현실 기반 절단로봇 시스템의 블록도이고, 도 2는 실시 예에 따른 절단로봇의 사시도이다. 1 is a block diagram of a virtual reality-based cutting robot system according to an embodiment, and FIG. 2 is a perspective view of a cutting robot according to the embodiment.
도 1 및 도 2를 참조하면 절단로봇 시스템(1)은 절단로봇(10), 가상현실 인터페이스 장치(20), 마스터 장치(30), 시뮬레이터(40) 및 데이터 베이스(50)를 포함한다. 1 and 2, the cutting robot system 1 includes a cutting robot 10, a virtual reality interface device 20, a master device 30, a simulator 40, and a database 50.
절단로봇(10)은 작업자의 안전을 위해 작업자 대신 원격조종을 통해 원자로에 투입되어 방사성 구조물의 해체, 교체 및 조립 등의 유지보수작업을 수행한다. 여기서 방사성 구조물은 원자로의 구조물 중 적어도 일부를 의미한다. The cutting robot 10 is input to the nuclear reactor through remote control instead of the operator for the safety of the operator to perform maintenance work such as dismantling, replacement, and assembly of the radioactive structure. Here, the radioactive structure means at least a part of the structure of a nuclear reactor.
절단로봇(10)은 복수의 바퀴(111)와 복수의 바퀴(111)를 구동하는 모터를 구비하여 절단로봇(10)을 이동시키는 이동모듈(110), 신축 구동하는 신축다리(121)를 구비하여 절단로봇(10)을 일정장소에 이동되지 않도록 고정하는 고정모듈(120), 방사성 구조물을 절단 또는 용접 등의 작업을 수행하는 플라즈마 유닛(131) 또는 방사성 구조물을 파지하는 그리퍼(132)가 단부에 구비되고 여자유도를 가지도록 복수의 관절(133)을 구비하는 로봇암(130), 로봇암(130)에 구비되어서 절단로봇(10)의 작업장소를 스캔하여 작업환경에 대한 3차원 스캔정보를 생성하는 3차원 센서가 구비되는 관측부(140) 및 마스터 장치 또는 데이터베이스와 통신하는 통신모듈(150)을 포함하여 원격조종을 통해 제어되어 원전내 구조물의 유지보수 작업을 수행할 수 있다.The cutting robot 10 is provided with a moving module 110 for moving the cutting robot 10 by having a motor for driving the plurality of wheels 111 and the plurality of wheels 111, and an elastic leg 121 for expanding and contracting. The end of the fixing module 120 for fixing the cutting robot 10 so that it does not move to a certain place, the plasma unit 131 for cutting or welding the radioactive structure, or the gripper 132 for gripping the radioactive structure 3D scan information on the working environment by scanning the working place of the robot arm 130, which is provided in the robot arm 130 and provided in the robot arm 130 and provided in the robot arm 130 having a plurality of joints 133 to have excitation guidance It is controlled through remote control, including the observation unit 140 provided with a three-dimensional sensor to generate the and the communication module 150 communicating with the master device or database, it is possible to perform maintenance work of the structure in the nuclear power plant.
가상현실 인터페이스 장치(20)는 사용자가 착용하는 HMD(Head Mounted Display) 장치를 포함할 수 있다. 또한, 가상현실 인터페이스 장치(20)는 사용자에게 영상을 제공하는 복수의 서로 다른 장치로 구성될 수 있다. 가상현실 인터페이스 장치(20)는 시뮬레이터와 연결되는 별도의 통신모듈(미도시)을 포함할 수 있다. The virtual reality interface device 20 may include a head mounted display (HMD) device worn by a user. In addition, the virtual reality interface device 20 may be composed of a plurality of different devices that provide an image to a user. The virtual reality interface device 20 may include a separate communication module (not shown) connected to the simulator.
마스터 장치(30)는 사용자의 조작에 의해 절단로봇(10) 및 가상현실 기반 가상 절단로봇을 조종하기 위한 제어신호를 생성하는 컨트롤러 또는 티치 펜던트(Teach Pendant) 등을 포함할 수 있다. 또한, 마스터 장치(30)는 사용자의 동작을 인식하여 제어신호를 생성하는 것도 가능할 수 있다. 또한, 마스터 장치(30)는 사용자의 조작에 따른 사용자의 조작에 대한 제어신호를 생성하거나 사용자의 종작을 자동 인식하여 제어신호를 생성한 후 별도의 통신모듈(미도시)을 통해 시뮬레이터(40)로 전송할 수 있다.The master device 30 may include a controller or a teach pendant that generates a control signal for manipulating the cutting robot 10 and the virtual reality-based virtual cutting robot by a user's manipulation. In addition, the master device 30 may be capable of generating a control signal by recognizing a user's motion. In addition, the master device 30 generates a control signal for the user's manipulation according to the user's manipulation or automatically recognizes the user's type to generate a control signal, and then the simulator 40 through a separate communication module (not shown). Can be transferred to.
시뮬레이터(40)는 원자로의 설계정보로 미리 설정된 환경 모델 정보 및 절단로봇에 대한 미리 설정된 로봇 모델 정보를 기초로 가상 현실 및 가상 절단로봇의 영상을 생성한다. 또한, 시뮬레이터(40)는 가상 절단로봇의 제어신호에 의한 동작이벤트를 생성하여, 가상 현실상에서 가상 절단로봇을 동작시킬 수 있다. 이때, 가상 현실상의 구조물 오브젝트와 가상 절단로봇의 상호작용에 의한 구조물 오브젝트의 물리정보 및 가상 절단로봇의 관절하중 정보변화를 연산할 수 있다. 시뮬레이터(40)는 통신부(410), 환경 모델링부(420), 로봇 모델링부(430) 및 제어부(440)를 포한다. The simulator 40 generates an image of a virtual reality and a virtual cutting robot based on environment model information preset as the reactor design information and robot model information preset for the cutting robot. In addition, the simulator 40 may generate a motion event according to a control signal of the virtual cutting robot to operate the virtual cutting robot in virtual reality. At this time, it is possible to calculate changes in physical information of the structure object and joint load information of the virtual cutting robot due to the interaction between the structure object in the virtual reality and the virtual cutting robot. The simulator 40 includes a communication unit 410, an environment modeling unit 420, a robot modeling unit 430, and a control unit 440.
통신부(410)는 가상현실 인터페이스 장치(20), 마스터 장치(30) 및 데이터 베이스(50)와 블루투스, 케이블, Wifi direct, WMB 등의 방식으로 직접적으로 연결되어 통신한다. 다만 이에 한정되는 것은 아니며, 통신부(410)는 인터넷에 연결되어 가상현실 인터페이스 장치(20), 마스터 장치(30) 및 데이터 베이스(50)와 통신하는 것이 가능할 수 있다. The communication unit 410 is directly connected to and communicates with the virtual reality interface device 20, the master device 30, and the database 50 in a manner such as Bluetooth, cable, Wifi direct, and WMB. However, the present invention is not limited thereto, and the communication unit 410 may be connected to the Internet to communicate with the virtual reality interface device 20, the master device 30, and the database 50.
환경 모델링부(420)는 데이터 베이스(50)에 기 저장된 원자로의 설계정보로 환경 모델 정보를 생성하고 이를 토대로 가상현실 영상을 생성한다. 여기서, 원자로의 설계정보는 원자로의 설계도, 방사성 구조물의 재질, 위치, 형상, 밀도, 용융점, 중량 중 적어도 하나 이상을 포함하는 정보일 수 있다. 원자로의 설계정보는 설계도를 기초로 하되, 유지보수 및 시공에서의 설계변경 등으로 변경될 수 있다. 또한, 환경 모델링부(420)는 실제 원자로에 투입된 절단로봇에서 관측되는 정보를 통해 환경 모델 정보를 실시간으로 업데이트 하여 제공할 수 있다. 환경 모델링부(420)는 수집부(421) 및 환경정보 생성부(422)를 포함한다. The environment modeling unit 420 generates environment model information based on the design information of the reactor previously stored in the database 50 and generates a virtual reality image based on this. Here, the reactor design information may be information including at least one or more of a design diagram of a reactor, a material, a location, a shape, a density, a melting point, and a weight of the radioactive structure. The design information of the reactor is based on the design drawing, but may be changed due to design changes in maintenance and construction. In addition, the environmental modeling unit 420 may update and provide environmental model information in real time through information observed from a cutting robot that is actually put into a nuclear reactor. The environment modeling unit 420 includes a collection unit 421 and an environment information generation unit 422.
수집부(421)는 데이터 베이스(50)에 기 저장된 원자로의 설계정보 및 절단로봇(10)에서 관측되는 관측정보를 수집한다. 예를 들어, 수집부(421)는 데이터 베이스(50)와 블루투스 WIFI DIRECT을 이용하는 통신부(410)를 통해 직접적으로 연결되거나 인터넷 망을 통해 연결되어서 설계정보를 수집한다. 또한, 수집부(421)는 절단로봇(10)과 직접 연결되거나, 인터넷 망을 통해 연결되어 관측정보를 수집할 수 있다. The collection unit 421 collects design information of the reactor previously stored in the database 50 and observation information observed by the cutting robot 10. For example, the collection unit 421 collects design information by being directly connected to the database 50 and the communication unit 410 using Bluetooth WIFI DIRECT or connected through an Internet network. In addition, the collection unit 421 may be directly connected to the cutting robot 10 or connected through an Internet network to collect observation information.
환경정보 생성부(422)는 설계정보를 통해 실제 원자로를 가상현실 상의 원자로 3D 이미지로 구현하여 가상현실 영상을 생성한다. 예를 들어 환경정보 생성부(422)는 평면에 작성된 2D 설계도면 및 3차원으로 작성된 3D 설계도면을 수집부로부터 전달받아 가상현실에 대한 3차원의 점군(Point-cloud) 정보(또는 점군 데이터)로 구성하고, 점군정보에 포함된 깊이정보를 기반으로 깊이 이미지를 생성할 수 있으며, 깊이 이미지에 미리 설정된 영상 좌표계를 적용할 있다. 환경정보 생성부(422)는 깊이 이미지에 적용된 영상 좌표계에 따른 영상 좌표를 기준으로 점군 정보를 블록 형태로 클러스터링 할 수 있으며, 이를 통해 복수의 서로 다른 클러스터를 생성하고, 기 설정된 알고리즘을 통해 클러스터에 속한 점군 정보를 하나의 다각형이나 육면체로 구현하여 전체 구조물을 3D 모델링하여 3D이미지로 구현할 수 있다. The environment information generation unit 422 generates a virtual reality image by implementing a real reactor as a 3D image of a reactor in virtual reality through the design information. For example, the environmental information generation unit 422 receives a 2D design drawing created on a plane and a 3D design drawing created in 3D from the collection unit, and receives 3D point-cloud information (or point cloud data) for virtual reality. And a depth image may be generated based on depth information included in the point cloud information, and a preset image coordinate system may be applied to the depth image. The environment information generation unit 422 may cluster point group information in a block form based on the image coordinates according to the image coordinate system applied to the depth image, thereby generating a plurality of different clusters, and generating a plurality of different clusters in the cluster through a preset algorithm. The entire structure can be modeled as a 3D image by implementing the point group information to which it belongs as a single polygon or hexahedron.
한편, 환경정보 생성부(422)는 실제 원자로에 투입된 절단로봇(10)에 구비된 관측부(140)의 3차원 센서로부터 3차원 스캔정보를 수신하여 기 구현된 가상현실 3D 이미지를 업데이트 할 수 있다. 3차원 스캔정보는 작업 환경에 대한 3차원의 점군(Point-cloud) 정보(또는 점군 데이터)로 구성될 수 있으며 전군 정보에 깊이정보가 포함되어, 설계정보를 가상현실 3D 이미지를 구현하는 방법과 동일하게 구현하나, 동일한 정보에 대해서는 기 구현된 3D 이미지를 유지하고, 변경된 부분에 대해서 3D 이미지를 업데이트 할 수 있다. On the other hand, the environmental information generation unit 422 may receive 3D scan information from the 3D sensor of the observation unit 140 provided in the cutting robot 10 that is actually put into the nuclear reactor, and update a previously implemented virtual reality 3D image. have. The three-dimensional scan information can be composed of three-dimensional point-cloud information (or point-cloud data) for the work environment, and depth information is included in the entire group information, and the design information is a method of implementing a virtual reality 3D image. It is implemented in the same way, but for the same information, the previously implemented 3D image can be maintained, and the 3D image can be updated for the changed part.
이 때, 설계정보는 방사성 구조물 오브젝트의 재질, 위치, 형상, 부피, 밀도, 용융점, 중량, 강도, 경도 중 적어도 어느 하나 이상의 물리 정보를 더 포함한다. 환경정보 생성부(422)는 구조물 오브젝트에 물리 정보를 포함된 3D 이미지로 구성된 환경 모델 정보를 생성할 수 있다. In this case, the design information further includes at least one or more of physical information of material, location, shape, volume, density, melting point, weight, strength, and hardness of the radioactive structure object. The environment information generation unit 422 may generate environment model information composed of a 3D image including physical information in a structure object.
환경정보 생성부(422)는 작업 환경에 대응되는 각 클러스터에 속한 점군 정보를 다각형이나 육면체로 압축하여 모델링함으로써, 작업 환경에 대한 점군 정보를 기반으로 작업 환경의 모델링을 통해 생성된 환경 모델 정보의 데이터량을 감소시키는 동시에 작업 환경의 모델링에 소요되는 연산시간을 크게 감소시켜 작업 환경에 대한 신속한 모델링을 지원할 수 있다. 또한, 환경정보 생성부(422)는 설계정보 및 실제 절단로봇에서 실측된 3차원 스캔정보를 바탕으로 모델링을 구현함으로써 실제 원자로와 동일한 환경 모델 정보를 생성할 수 있다. The environmental information generation unit 422 compresses the point cloud information belonging to each cluster corresponding to the work environment into a polygon or a hexahedron to model it, and thus, based on the point cloud information on the work environment, the environment model information generated through modeling of the work environment is While reducing the amount of data, it is possible to support rapid modeling of the work environment by greatly reducing the computation time required for modeling the work environment. In addition, the environmental information generation unit 422 may generate environmental model information identical to the actual nuclear reactor by implementing modeling based on the design information and 3D scan information measured by the actual cutting robot.
로봇 모델링부(430)는 로봇모델 생성부(431), 관절하중 연산부(432) 및 관절회전부(433)를 포함한다. The robot modeling unit 430 includes a robot model generation unit 431, a joint load calculation unit 432, and a joint rotation unit 433.
로봇모델 생성부(431)는 미리 설정된 로봇 모델 정보를 기초로 가상 절단로봇의 영상을 생성한다. 예를 들어, 로봇모델 생성부(431)는 데이터 베이스(50)에 기 저장된 로봇의 설계정보를 토대로 3차원 그래픽 정보로 구성된 가상 절단로봇 영상을 생성한다. 또한, 로봇모델 생성부(431)는 가상 절단로봇의 각각의 부품에 대한 재질, 무게, 크기, 부피, 밀도 등의 부품정보 및 관절의 회전정보를 포함하여 가상 절단로봇의 영상을 생성한다. The robot model generation unit 431 generates an image of a virtual cutting robot based on preset robot model information. For example, the robot model generation unit 431 generates a virtual cutting robot image composed of 3D graphic information based on the design information of the robot previously stored in the database 50. In addition, the robot model generation unit 431 generates an image of the virtual cutting robot including part information such as material, weight, size, volume, density, and rotation information of the joint for each part of the virtual cutting robot.
로봇모델 생성부(431)는 통신부를 통해 마스터 장치의 제어신호를 수신하면, 제어신호와 일치하는 동작이벤트를 데이터 베이스로부터 추출한다. 예를 들어, 로봇모델 생성부(431)는 제어신호가 수신되면, 가상 절단로봇의 이동, 가상 절단로봇의 로봇암의 이동, 상기 절단로봇의 그리퍼의 동작 및 상기 절단로봇의 플라즈마의 작동 중 적어도 하나 이상을 포함하는 기 저장된 동작이벤트를 데이터 베이스(50)로부터 추출한다. 이 후, 로봇모델 생성부(431)는 기 저장된 동작이벤트에 대응되는 가상 절단로봇의 영상을 생성한다. When the robot model generator 431 receives the control signal of the master device through the communication unit, it extracts a motion event corresponding to the control signal from the database. For example, when the control signal is received, the robot model generation unit 431 may at least one of the movement of the virtual cutting robot, the movement of the robot arm of the virtual cutting robot, the operation of the gripper of the cutting robot, and the operation of the plasma of the cutting robot. A previously stored motion event including one or more is extracted from the database 50. Thereafter, the robot model generation unit 431 generates an image of the virtual cutting robot corresponding to the previously stored motion event.
여기서, 로봇모델 생성부(431)는 로봇암의 이동에 대응하는 동작이벤트 발생 시, 로봇암의 단부의 위치 및 자세에 대응하는 각 관절의 회전을 역기구학으로 산출하여 로봇 모델 정보에 반영하여 가상 절단로봇의 영상을 생성한다. 예를 들어, 로봇모델 생성부(431)는 가상 절단로봇의 로봇암의 단부의 위치 및 자세에 대응한 궤적을 먼저 표현한 후, 로봇의 관절 궤적으로 변환하여 가상 절단로봇의 모터를 제어하여 로봇의 움직임을 만들어 내어 가상 절단로봇의 영상을 생성한다. 로봇모델 생성부는 가상현실 영상에 가상절단로봇의 영상을 중첩하여 생성할 수 있으며, 중첩된 영상을 가상현실 인터페이스 장치로 전송하여 사용자에게 시각적으로 제공할 수 있다. Here, when a motion event corresponding to the movement of the robot arm occurs, the robot model generation unit 431 calculates the rotation of each joint corresponding to the position and posture of the end of the robot arm as inverse kinematics and reflects it in the robot model information to be virtual. Create an image of the cutting robot. For example, the robot model generation unit 431 first expresses a trajectory corresponding to the position and posture of the end of the robot arm of the virtual cutting robot, and then converts it into a joint trajectory of the robot to control the motor of the virtual cutting robot. It creates an image of a virtual cutting robot by creating movement. The robot model generation unit may generate an image of a virtual cutting robot by superimposing an image of a virtual cutting robot on a virtual reality image, and may visually provide the superimposed image to a user by transmitting the superimposed image to a virtual reality interface device.
관절하중 연산부(432)는 생성된 가상 절단로봇(10)의 각 관절의 하중을 연산한다. 예를 들어, 관절하중 연산부(432)는 가상 절단로봇의 최초 로딩시부터 지속적으로 로봇암의 움직임에 대한 각 관절의 하중을 연산한다. 여기서, 관절하중 연산부(432)는 기 설정된 정역학 방정식 및 동역학 방정식에 로봇암의 각 관절의 3차원 좌표 위치, 속도, 가속도, 구조물 오브젝트의 무게 및 크기 중 적어도 하나 이상을 대입하여 각 관절에 걸리는 관절하중을 연산할 수 있다.The joint load calculation unit 432 calculates the load of each joint of the generated virtual cutting robot 10. For example, the joint load calculation unit 432 continuously calculates the load of each joint for the movement of the robot arm from the initial loading of the virtual cutting robot. Here, the joint load calculation unit 432 is a joint applied to each joint by substituting at least one of the three-dimensional coordinate position, velocity, acceleration, and weight and size of a structure object of each joint of the robot arm into a preset static and dynamic equation. You can calculate the load.
관절회전부(433)는 관절하중 연산부의 관절하중 연산 값을 기 설정된 값 예를 들어, 관절이 손상되지 않는 관절하중의 허용치로 설정된 값과 비교하여 관절하중의 연산 값이 기 설정된 값을 초과하지 않도록 각 관절의 회전값을 산출하여 로봇 모델 정보에 반영한다. 이 경우, 로봇모델 생성부(431)는 하중이 기 설정된 값보다 초과하지 않도록 관절의 회전을 제어하여 가상 절단로봇의 로봇암의 단부의 위치를 유지한 상태에서 각 관절의 회전을 달리하여 가상 절단로봇의 자세를 변경하여 자세에 따른 각 관절의 하중을 기 설정된 값 이내로 유지할 수 있다. The joint rotation unit 433 compares the joint load calculation value of the joint load calculation unit with a preset value, for example, a value set as an allowable value of the joint load that does not damage the joint, so that the calculation value of the joint load does not exceed a preset value. The rotation value of each joint is calculated and reflected in the robot model information. In this case, the robot model generation unit 431 controls the rotation of the joints so that the load does not exceed a preset value, and while maintaining the position of the end of the robot arm of the virtual cutting robot, the rotation of each joint is changed to virtually cut. By changing the robot's posture, the load of each joint according to the posture can be maintained within a preset value.
또한, 관절회전부(433)는 로봇모델 생성부(431)에 각 관절에 걸리는 하중을 계산하여 지속적으로 업데이트하도록 전달하고, 관절의 회전각도를 하중이 최소화될 수 있도록 최적화된 회전값을 생성한다. 관절회전부(433)는 최적화된 회전값을 로봇 모델 정보에 반영하고, 데이터베이스에 저장한다. 이 때, 로봇모델 생성부(431)는 업데이트된 로봇 모델 정보에 따라 영상을 재생성할 수 있다. In addition, the joint rotation unit 433 transmits the load applied to each joint to the robot model generation unit 431 to be continuously updated, and generates an optimized rotation value so that the load can be minimized at the rotation angle of the joint. The joint rotation unit 433 reflects the optimized rotation value to the robot model information and stores it in a database. In this case, the robot model generation unit 431 may regenerate the image according to the updated robot model information.
제어부(440)는 환경 모델링부(420)와 로봇 모델링부(430)의 영상을 통합하여 하나의 영상을 생성하고, 제어신호를 입력받아 가상 현실환경에서 가상 절단로봇을 작동시켜, 가상 절단로봇과 구조물 오브젝트의 상호작용 이벤트를 추출한다. 이때, 구조물 오브젝트의 절단이벤트가 발생하는 경우, 제어부는 구조물 오브젝트를 절단된 구조물 오브젝트로 나누고, 재질, 부피, 질량, 무게 중심 등의 물리정보를 연산하여 환경 모델링부(420) 및 데이터 베이스(50)에 업데이트하여 구조물 오브젝트를 재생성한다. 제어부(440)는 이벤트 추출부(441), 오브젝트 재생성부(442) 및 물리정보 연산부(443)를 포함한다. The control unit 440 generates a single image by integrating the images of the environment modeling unit 420 and the robot modeling unit 430, receives a control signal and operates the virtual cutting robot in a virtual reality environment, Extract the interaction event of the structure object. At this time, when a cutting event of a structure object occurs, the control unit divides the structure object into the cut structure object and calculates physical information such as material, volume, mass, and center of gravity, and the environment modeling unit 420 and the database 50 ) To regenerate the structure object. The control unit 440 includes an event extraction unit 441, an object regeneration unit 442, and a physical information operation unit 443.
이벤트 추출부(441)는 가상 절단로봇 영상과 가상현실 영상에서 구조물 오브젝트와 가상 절단로봇의 상호작용 이벤트를 추출한다. 예를 들어, 이벤트 추출부(441)는 가상 절단로봇과 구조물 오브젝트의 중첩을 판단하여 상호작용 이벤트를 추출한다. 여기서, 상호작용 이벤트는 충돌이벤트, 절단이벤트 및 그립이벤트를 포함할 수 있다. The event extraction unit 441 extracts an interaction event between the structure object and the virtual cutting robot from the virtual cutting robot image and the virtual reality image. For example, the event extraction unit 441 extracts an interaction event by determining the overlap of the virtual cutting robot and the structure object. Here, the interaction event may include a collision event, a cutting event, and a grip event.
충돌이벤트는 구조물 오브젝트와 가상 절단로봇의 중첩될 때 발생하는 이벤트이다. 충돌이벤트가 발생하면 로봇 모델링부는 구조물 오브젝트와 가상 절단로봇이 접촉될 때 중첩되지 않도록 가상 절단로봇의 동작을 제한할 수 있다. The collision event is an event that occurs when the structure object and the virtual cutting robot overlap. When a collision event occurs, the robot modeling unit may limit the motion of the virtual cutting robot so that it does not overlap when the structure object and the virtual cutting robot come into contact.
절단이벤트는 가상 절단로봇의 플라즈마유닛이 구조물 오브젝트를 통과하여 절단하는 이벤트이다. 절단이벤트가 발생하면, 로봇 모델링부(430)는 소정세기의 플라즈마를 발생시키는 플라즈마 유닛이 구조물 오브젝트를 통과하도록 이동시킨다. 이 때, 관절하중 연산부(432)는 절단이벤트가 발생하는 방향과 반대 방향으로의 반력하중을 추가하여 연산하고 관절회전부(433)는 연산된 하중에 따른 각 관절의 회전각도를 산출하고 이에 대응하여 로봇 모델링부(430)에서 각 관절을 회전시킨다. 여기서 절단하중은 데이터 베이스(50)에 기저장된 값으로 구조물 오브젝트의 재질, 융점에 따라 실제로 발생하는 절단에 대한 반발력일 수 있다. The cutting event is an event in which the plasma unit of the virtual cutting robot cuts through a structure object. When a cutting event occurs, the robot modeling unit 430 moves the plasma unit generating plasma of a predetermined intensity to pass through the structure object. At this time, the joint load calculation unit 432 calculates by adding a reaction force in the direction opposite to the direction in which the cutting event occurs, and the joint rotation unit 433 calculates the rotation angle of each joint according to the calculated load, and responds thereto. The robot modeling unit 430 rotates each joint. Here, the cutting load is a value previously stored in the database 50 and may be a repulsive force against cutting that actually occurs according to the material and melting point of the structure object.
또한, 절단이벤트가 발생하면, 환경정보 생성부(422)는 플라즈마 유닛(311)이 통과한 구조물 오브젝트의 평면의 점들을 평면의 방정식을 이용하여 나눠주고, 잘린 표면의 빈공간을 들로네 삼각형을 이용하여 채워주며, 구조물 오브젝트의 형상, 밀도, 부피, 무게 및 무게중심 등의 물리정보를 재생성하고, 데이터 베이스에 저장한다.In addition, when a cutting event occurs, the environmental information generation unit 422 divides the points of the plane of the structure object through which the plasma unit 311 has passed by using the equation of the plane, and uses the Delaunay triangle for the empty space of the cut surface. It fills in, regenerates physical information such as shape, density, volume, weight and center of gravity of the structure object, and stores it in the database.
그립이벤트는 가상 절단로봇의 그리퍼를 이용하여 구조물 오브젝트를 파지하는 이벤트이다. 그립이벤트가 발생하면, 관절하중 연산부는 구조물 오브젝트의 형상, 부피, 무게, 무게중심 및 그리퍼의 파지위치에 따른 비틀림 및 중력을 가상 절단로봇의 그리퍼가 구비된 로봇암의 관절의 하중을 연산하고, 연산값을 관절회전부에 제공하여 각 관절의 최적화된 회전각도를 산출할 수 있다. The grip event is an event that grips a structure object using a gripper of a virtual cutting robot. When a grip event occurs, the joint load calculation unit calculates the torsion and gravity according to the shape, volume, weight, center of gravity of the structure object and the gripping position of the gripper, and calculates the load of the joint of the robot arm equipped with the gripper of the virtual cutting robot, By providing the calculated value to the joint rotation unit, the optimal rotation angle of each joint can be calculated.
이러한, 각 이벤트의 발생 시 발생되는 물리정보 및 관절의 하중정보는 데이터 베이스(50)에 저장되고, 실제 절단로봇(10)를 제어할 때 제공될 수 있다. 예를 들어, 마스터장치(30)로 실제 절단로봇(10)를 제어할 수 있는데 이때, 제어신호로 로봇암의 단부 및 위치를 제공하는 것만으로 데이터 베이스에 가상현실상에서 최적화된 값으로 저장된 관절의 회전각도를 실제 절단로봇(10)에 제공될 수 있다. 또한, 각 이벤트와 동일한 상황이 실제로 발생하는 경우에도 물리정보 및 관절회전각도에 대한 값을 실제 절단로봇(10)에 제공함으로써 구조물의 절단에 따른 형상, 크기 등에 따른 무게를 미리 파악하고, 최적화된 관절회전 각도를 제공함으로써 구조물의 최적화된 절단크기 및 형상을 미리 결정할 수 있으며, 관절하중을 최소화할 수 있어 실제 절단로봇(10)의 고장 및 손상을 방지할 수 있다. Such physical information and joint load information generated when each event occurs are stored in the database 50 and may be provided when the actual cutting robot 10 is controlled. For example, it is possible to control the actual cutting robot 10 with the master device 30. At this time, only providing the end and position of the robot arm as a control signal, the joint stored in the database as an optimized value in virtual reality. The rotation angle may be provided to the actual cutting robot 10. In addition, even when the same situation as each event actually occurs, the physical information and the value of the joint rotation angle are provided to the actual cutting robot 10, so that the weight according to the shape and size of the structure is determined in advance and optimized. By providing the joint rotation angle, the optimized cutting size and shape of the structure can be determined in advance, and the joint load can be minimized, so that failure and damage of the actual cutting robot 10 can be prevented.
이하 도 3을 참조하여, 도 1 및 도 2의 실시 예에 따른 절단로봇 시스템의 시뮬레이션 방법에 대해 설명한다. Hereinafter, a simulation method of the cutting robot system according to the embodiment of FIGS. 1 and 2 will be described with reference to FIG. 3.
도 3은 실시 예에 따른 가상 현실 기반 절단로봇 시스템의 시뮬레이션 방법을 나타내는 순서도이다. 3 is a flowchart illustrating a simulation method of a virtual reality-based cutting robot system according to an embodiment.
도 3을 참조하면, 가상 현실 기반 절단로봇 시스템(1)의 시뮬레이션 방법은 영상을 생성하는 단계(61), 하중을 연산하는 단계(62),각 관절의 회전각도를 산출하는 단계(63), 가상현실 기반 가상 절단로봇을 조종하기 위한 제어신호의 입력을 판단하는 단계(64),가상 절단로봇의 동작이벤트를 발생시키는 단계(65), 절단 이벤트 발생여부를 판단하는 단계(56),절단 오브젝트의 물리정보를 생성하는 단계(67) 및 물리정보를 데이터 베이스(50)에 저장하는 단계(58)를 포함한다. .Referring to FIG. 3, the simulation method of the virtual reality-based cutting robot system 1 includes the steps of generating an image (61), calculating the load (62), calculating the rotation angle of each joint (63), Determining input of a control signal for manipulating a virtual reality-based virtual cutting robot (64), generating a motion event of the virtual cutting robot (65), determining whether a cutting event has occurred (56), cutting object It includes a step of generating (67) physical information of the physical information and a step (58) of storing the physical information in the database (50). .
영상을 생성하는 단계(61)는 원자로의 설계정보에 대한 미리 설정된 환경 모델 정보 및 절단로봇(10)에 대한 미리 설정된 로봇 모델 정보를 기초로 가상 현실 및 가상 절단로봇의 영상을 생성하는 단계를 포함한다. The step of generating the image 61 includes generating an image of a virtual reality and a virtual cutting robot based on preset environmental model information for the reactor design information and preset robot model information for the cutting robot 10. do.
하중을 연산하는 단계(62)는 생성된 영상에서 가상 절단로봇의 각 관절에 걸리는 하중을 연산한다. In step 62 of calculating the load, the load applied to each joint of the virtual cutting robot is calculated from the generated image.
관절의 회전 각도를 산출하는 단계(63)는 가상 절단로봇의 각 관절에 걸리는 하중은 기 설정된 값과 비교하여 각 관절에 걸리는 하중이 기설정범위를 초과하지 않도록 관절의 회전 각도를 산출한다. 산출된 관절의 회전각도는 데이터 베이스에 저장되되 로봇 모델 정보에 반영되어 저장된다. 이후 로봇모델 생성부에서 로봇 모델 정보에 따라 가상 절단로봇의 영상을 업데이트 한다. In step 63 of calculating the rotation angle of the joint, the load applied to each joint of the virtual cutting robot is compared with a preset value, and the rotation angle of the joint is calculated so that the load applied to each joint does not exceed a preset range. The calculated rotation angle of the joint is stored in the database, but reflected in the robot model information and stored. After that, the robot model generator updates the image of the virtual cutting robot according to the robot model information.
제어신호의 입력을 판단하는 단계(64)는 로봇모델 생성부가 통신부를 통해 입력된 제어신호가 있는지를 판단한다. 또한, 로봇모델 생성부(431)는 입력된 제어신호가 있는 경우 제어신호의 종류를 판단한다. 여기서 제어신호의 종류는 가상 절단로봇의 이동, 가상 절단로봇의 로봇암의 이동, 상기 절단로봇의 그리퍼의 동작 및 상기 절단로봇의 플라즈마의 작동을 포함하는 동작이벤트에 각각 대응되는 복수의 신호일 수 있다. In step 64 of determining the input of the control signal, the robot model generator determines whether there is a control signal input through the communication unit. In addition, the robot model generator 431 determines the type of the control signal when there is an input control signal. Here, the type of the control signal may be a plurality of signals respectively corresponding to motion events including movement of the virtual cutting robot, movement of the robot arm of the virtual cutting robot, the operation of the gripper of the cutting robot, and the operation of the plasma of the cutting robot. .
가상 절단로봇의 동작이벤트를 발생시키는 단계(65)는 제어신호가 입력되면 제어신호에 따라 동작이벤트를 발생시켜 가상현실 상에서 가상 절단로봇을 동작시키고 영상을 업데이트 한다. In the step 65 of generating a motion event of the virtual cutting robot, when a control signal is input, a motion event is generated according to the control signal to operate the virtual cutting robot in virtual reality and update the image.
절단이벤트 발생여부를 판단하는 단계(66)는 가상 절단로봇 및 가상 현실상의 절단 오브젝트의 절단이벤트 발생을 판단한다. 이벤트 추출부(441)는 플라즈마의 작동 및 로봇암의 이동이벤트가 발생한 상태에서, 충돌이벤트, 절단이벤트 및 그립이벤트를 검출하는데 절단이벤트의 발생여부를 판단한다. In step 66 of determining whether a cutting event has occurred, it is determined that the cutting event of the virtual cutting robot and the cutting object in the virtual reality is generated. The event extraction unit 441 detects a collision event, a cutting event, and a grip event in a state in which plasma operation and robot arm movement events occur, and determines whether a cutting event has occurred.
절단이벤트가 발생하지 않는 경우, 충돌 및 그립이벤트에 대한 관절하중을 연산하고 관절의 회전각도를 산출하여 데이터 베이스에 저장하고, 절단이벤트가 발생하는 경우 절단 오브젝트의 물리정보를 생성하는 단계(67)로 넘어간다. If the cutting event does not occur, calculating the joint load for the collision and grip events, calculating the rotation angle of the joint and storing it in the database, and generating the physical information of the cutting object when the cutting event occurs (67) Go to.
절단 오브젝트의 물리정보를 생성하는 단계(67)는 가상 현실상에서 절단이벤트에 따라 절단된 구조물 오브젝트의 물리정보를 생성한다. 이때, 환경정보 생성부(422)는 플라즈마 유닛(311)이 통과한 구조물 오브젝트의 평면의 점들을 평면의 방정식을 이용하여 나눠주고, 잘린 표면의 빈공간을 들로네 삼각형을 이용하여 채워주며, 구조물 오브젝트의 형상, 부피, 무게 및 무게중심 등의 물리정보를 재생성한다.In the step 67 of generating the physical information of the cut object, the physical information of the cut structure object is generated according to the cutting event in virtual reality. At this time, the environmental information generation unit 422 divides the points of the plane of the structure object through which the plasma unit 311 has passed using the equation of the plane, fills the empty space of the cut surface using the Delaunay triangle, and the structure object Regenerate physical information such as shape, volume, weight and center of gravity.
물리정보를 데이터 베이스(50)에 저장하는 단계(68)에서 환경정보 생성부(422)는 생성된 물리정보 이벤트를 데이터 베이스에 저장한다. In the step 68 of storing the physical information in the database 50, the environmental information generation unit 422 stores the generated physical information event in the database.
이와 같은 단계를 반복 수행하여, 절단로봇의 동작에 대한 최적화된 관절회전각도 및 절단을 통한 운반이 용이한 최적화된 구조물 오브젝트의 형상을 도출하여 데이터 베이스에 업데이트하여 저장함으로써, 실제 절단로봇을 조작할 때, 동일한 제어신호로 간단하게 조작하되 절단형상에 대한 정보를 통해 최적화된 구조물 오브젝트의 절단구조를 찾아낼 수 있으며, 절단로봇의 동작에 따라 각 관절에 걸리는 하중에 대한 관절의 회전각도를 최적화하여 각 관절에 걸리는 하중을 최소화할 수 있다. By repeating these steps, the optimal joint rotation angle for the motion of the cutting robot and the shape of the structure object that is easy to transport through cutting are derived, updated and stored in the database, so that the actual cutting robot can be manipulated. In this case, it is simple to operate with the same control signal, but it is possible to find the cutting structure of the optimized structure object through the information on the cutting shape, and by optimizing the rotation angle of the joint against the load applied to each joint according to the operation of the cutting robot. The load on each joint can be minimized.
이상과 같이 비록 한정된 도면에 의해 실시 예들이 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구조, 장치 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.As described above, although the embodiments have been described by the limited drawings, various modifications and variations are possible from the above description to those of ordinary skill in the art. For example, the described techniques are performed in a different order from the described method, and/or components such as the described structure, device, etc. are combined or combined in a form different from the described method, or in other components or equivalents. Even if substituted or substituted by, appropriate results can be achieved.

Claims (10)

  1. 가상현실 인터페이스 장치와 연동하여, 원자로의 원전 방사 구조물의 절단을 위한 물리정보를 제공하는 절단로봇 시스템에 있어서, In a cutting robot system that provides physical information for cutting a nuclear power plant radiation structure of a nuclear reactor in connection with a virtual reality interface device,
    상기 절단로봇 및 가상현실 기반 가상 절단로봇을 조종하기 위한 제어신호를 생성하는 마스터 장치;A master device for generating a control signal for controlling the cutting robot and the virtual reality-based virtual cutting robot;
    상기 원자로의 설계정보로 미리 설정된 환경 모델 정보 및 상기 절단로봇에 대한 미리 설정된 로봇 모델 정보를 기초로 가상 현실 및 가상 절단로봇의 영상을 생성하고, 상기 가상 절단로봇을 제어신호에 따라 가상환경 상에서 동작이벤트를 생성하고, 가상 현실상의 구조물 오브젝트와 상기 가상 절단로봇의 상호작용에 의한 구조물 오브젝트의 물리정보 및 상기 가상 절단로봇의 관절하중정보 변화를 연산하는 시뮬레이터; 및An image of a virtual reality and a virtual cutting robot is generated based on the environmental model information set in advance as the reactor design information and the robot model information set in advance for the cutting robot, and the virtual cutting robot is operated in a virtual environment according to a control signal. A simulator for generating an event and calculating a change in physical information of a structure object and joint load information of the virtual cutting robot by an interaction between the structure object in virtual reality and the virtual cutting robot; And
    상기 시뮬레이터의 물리정보 및 관절하중 정보를 저장하는 데이터 베이스;A database for storing physical information and joint load information of the simulator;
    를 포함하는 절단로봇 시스템.Cutting robot system comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 가상 절단로봇의 동작이벤트는, The motion event of the virtual cutting robot,
    상기 가상 절단로봇의 이동, 가상 절단로봇의 로봇암의 이동, 상기 절단로봇의 그리퍼의 동작 및 상기 절단로봇의 플라즈마의 작동 중 적어도 하나 이상을 포함하는 절단로봇 시스템.A cutting robot system comprising at least one of a movement of the virtual cutting robot, a movement of a robot arm of the virtual cutting robot, an operation of a gripper of the cutting robot, and an operation of plasma of the cutting robot.
  3. 제2항에 있어서, The method of claim 2,
    상기 시뮬레이터는 The simulator is
    로봇암의 이동에 대응하는 동작이벤트 발생 시, 로봇암의 단부의 위치 및 자세에 대응하는 각 관절의 회전을 역기구학으로 산출하여 상기 로봇 모델 정보에 반영하는 절단로봇 시스템.When a motion event corresponding to the movement of the robot arm occurs, the rotation of each joint corresponding to the position and posture of the end of the robot arm is calculated by inverse kinematics and reflected in the robot model information.
  4. 제3항에 있어서,The method of claim 3,
    상기 시뮬레이터는, The simulator,
    상기 로봇 모델 정보에 각 관절에 걸리는 하중을 계산하여 지속적으로 업데이트하는 절단로봇 시스템.A cutting robot system that continuously updates the robot model information by calculating the load applied to each joint.
  5. 제4항에 있어서,The method of claim 4,
    상기 시뮬레이터는,The simulator,
    각 관절에 걸리는 하중이 기설정범위를 초과하지 않도록 각 관절의 회전을 산출하여 상기 로봇 모델 정보에 반영하는 절단로봇 시스템.A cutting robot system that calculates the rotation of each joint so that the load applied to each joint does not exceed a preset range and reflects it in the robot model information.
  6. 제1항에 있어서, The method of claim 1,
    실제 원자로에 투입되어 방사 구조물을 실측 및 절단하는 절단로봇; 을 더 포함하고, A cutting robot that is put into an actual nuclear reactor to measure and cut the radiation structure; Including more,
    상기 절단로봇의 실제 조작 시, 물리정보를 기반으로 상기 절단로봇의 세부 동작을 제어하는 절단로봇 시스템.When the cutting robot is actually manipulated, a cutting robot system that controls detailed operations of the cutting robot based on physical information.
  7. 제6항에 있어서, The method of claim 6,
    상기 환경 모델 정보는,The environmental model information,
    상기 절단로봇에 의해 실측된 정보로 실시간 업데이트되는 절단로봇 시스템.A cutting robot system that is updated in real time with information measured by the cutting robot.
  8. 원자로의 설계정보에 대한 미리 설정된 환경 모델 정보 및 절단로봇에 대한 미리 설정된 로봇 모델 정보를 기초로 가상 현실 및 가상 절단로봇의 영상을 생성하는 단계;Generating an image of a virtual reality and a virtual cutting robot based on preset environmental model information for the reactor design information and preset robot model information for the cutting robot;
    상기 가상 절단로봇을 조종하기 위한 제어신호의 입력을 판단하는 단계;Determining an input of a control signal for manipulating the virtual cutting robot;
    상기 제어신호가 입력되면, 상기 제어신호에 따라 가상현실 상의 가상 절단로봇의 동작이벤트를 발생시키는 단계;Generating a motion event of a virtual cutting robot in virtual reality according to the control signal when the control signal is input;
    상기 가상 절단로봇 및 상기 가상 현실상의 절단 오브젝트의 절단 이벤트 발생여부를 판단하는 단계;Determining whether a cutting event of the virtual cutting robot and the cutting object in the virtual reality occurs;
    상기 가상 현실상의 절단 오브젝트의 물리정보를 생성하는 단계; 및Generating physical information of the cutting object in the virtual reality; And
    상기 물리정보를 데이터 베이스에 저장하는 단계;Storing the physical information in a database;
    를 포함하는 가상 현실기반 절단로봇 시스템의 시뮬레이션 방법.Simulation method of a virtual reality-based cutting robot system comprising a.
  9. 제8항에 있어서, The method of claim 8,
    상기 가상 절단로봇의 각 관절에 걸리는 하중을 연산하는 단계;Calculating a load applied to each joint of the virtual cutting robot;
    를 더 포함하는 가상 현실 기반 절단로봇 시스템의 시뮬레이션 방법.Simulation method of a virtual reality-based cutting robot system further comprising a.
  10. 제8항에 있어서, The method of claim 8,
    각 관절에 걸리는 하중이 기설정범위를 초과하지 않도록 각 관절의 회전각도를 산출하여 상기 로봇 모델 정보에 반영하는 단계;Calculating a rotation angle of each joint so that the load applied to each joint does not exceed a preset range and reflecting the rotation angle of each joint in the robot model information;
    를 더 포함하는 가상 현실기반 절단로봇 시스템의 시뮬레이션 방법.Simulation method of a virtual reality-based cutting robot system further comprising a.
PCT/KR2019/016436 2019-10-28 2019-11-27 Cutting robot system and simulation method therefor WO2021085727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190134344 2019-10-28
KR10-2019-0134344 2019-10-28

Publications (1)

Publication Number Publication Date
WO2021085727A1 true WO2021085727A1 (en) 2021-05-06

Family

ID=75716392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016436 WO2021085727A1 (en) 2019-10-28 2019-11-27 Cutting robot system and simulation method therefor

Country Status (1)

Country Link
WO (1) WO2021085727A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115981178A (en) * 2022-12-19 2023-04-18 广东若铂智能机器人有限公司 Simulation system and method for fish and aquatic product slaughtering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752068A (en) * 1993-08-17 1995-02-28 Fujitsu Ltd Remote control system
KR20110041950A (en) * 2009-10-16 2011-04-22 삼성전자주식회사 Teaching and playback method using redundancy resolution control for manipulator
KR20140104917A (en) * 2013-02-21 2014-08-29 가부시키가이샤 야스카와덴키 Robot simulator, robot teaching apparatus and robot teaching method
US20160114418A1 (en) * 2014-10-22 2016-04-28 Illinois Tool Works Inc. Virtual reality controlled mobile robot
KR20190048589A (en) * 2017-10-31 2019-05-09 충남대학교산학협력단 Apparatus and method for dual-arm robot teaching based on virtual reality

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752068A (en) * 1993-08-17 1995-02-28 Fujitsu Ltd Remote control system
KR20110041950A (en) * 2009-10-16 2011-04-22 삼성전자주식회사 Teaching and playback method using redundancy resolution control for manipulator
KR20140104917A (en) * 2013-02-21 2014-08-29 가부시키가이샤 야스카와덴키 Robot simulator, robot teaching apparatus and robot teaching method
US20160114418A1 (en) * 2014-10-22 2016-04-28 Illinois Tool Works Inc. Virtual reality controlled mobile robot
KR20190048589A (en) * 2017-10-31 2019-05-09 충남대학교산학협력단 Apparatus and method for dual-arm robot teaching based on virtual reality

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115981178A (en) * 2022-12-19 2023-04-18 广东若铂智能机器人有限公司 Simulation system and method for fish and aquatic product slaughtering

Similar Documents

Publication Publication Date Title
CN106393049B (en) A kind of robot for high-risk operations
CN102778886B (en) Planar simulation and verification platform for four-degree-of-freedom robot arm control system
CN205075054U (en) A robot for high -risk operation
CN109972674B (en) Unmanned excavation system and method under complex construction environment based on natural interaction
CN109760860A (en) The ground system test of non-cooperation rolling target is arrested in a kind of both arms collaboration
CN111598273B (en) VR (virtual reality) technology-based maintenance detection method and device for environment-friendly life protection system
WO2021085727A1 (en) Cutting robot system and simulation method therefor
CN111338287A (en) Robot motion control method, device and system, robot and storage medium
CN108582031A (en) A kind of hot line robot branch based on force feedback master & slave control connects gage lap method
CN114488848A (en) Unmanned aerial vehicle autonomous flight system and simulation experiment platform for indoor building space
Berns et al. Chapter unmanned ground robots for rescue tasks
Santamaria et al. Teleoperated robots for live power lines maintenance (ROBTET)
Sirouspour et al. Suppressing operator-induced oscillations in manual control systems with movable bases
Batsomboon et al. A survey of telesensation and teleoperation technology with virtual reality and force reflection capabilities
Bejczy Toward advanced teleoperation in space
Rossmann et al. A virtual testbed for human-robot interaction
CN115809508A (en) Aircraft landing gear mechanical system modeling method, equipment and storage medium
Bostelman et al. RCS-based RoboCrane integration
Kleer et al. Driving simulations for commercial vehicles-A technical overview of a robot based approach
Kim et al. Robotic virtual manipulations of a nuclear hot‐cell digital mock‐up system
Machida et al. Development of a graphic simulator augmented teleoperation system for space applications
Constantinescu et al. Haptic feedback using local models of interaction
Cichon et al. Towards a 3D simulation-based operator interface for teleoperated robots in disaster scenarios
Popescu et al. Dextrous Haptic Interface for JACK™
CN108544215A (en) A kind of hot line robot arrester replacing method based on force feedback master & slave control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950694

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 14.12.2022).

122 Ep: pct application non-entry in european phase

Ref document number: 19950694

Country of ref document: EP

Kind code of ref document: A1