WO2021085601A1 - Filter for liquid filtration - Google Patents

Filter for liquid filtration Download PDF

Info

Publication number
WO2021085601A1
WO2021085601A1 PCT/JP2020/040811 JP2020040811W WO2021085601A1 WO 2021085601 A1 WO2021085601 A1 WO 2021085601A1 JP 2020040811 W JP2020040811 W JP 2020040811W WO 2021085601 A1 WO2021085601 A1 WO 2021085601A1
Authority
WO
WIPO (PCT)
Prior art keywords
warp
filter
weft
woven fabric
water
Prior art date
Application number
PCT/JP2020/040811
Other languages
French (fr)
Japanese (ja)
Inventor
宮本竜馬
水野耀介
花田茂久
山村剛平
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021519185A priority Critical patent/JP7021719B2/en
Priority to CN202080075409.3A priority patent/CN114630702A/en
Publication of WO2021085601A1 publication Critical patent/WO2021085601A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2031Metallic material the material being particulate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28028Particles immobilised within fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0407Additives and treatments of the filtering material comprising particulate additives, e.g. adsorbents

Definitions

  • a filter in which a woven fabric made of a fibrous adsorbent on which a metal hydroxide capable of adsorbing the component is immobilized is laminated has been proposed.
  • a method of supporting it not only on the surface of the fiber base material but also on the inside has been proposed.
  • a cation exchange group is graft-polymerized on an organic polymer fiber to form a polymer compound layer having a cation exchange group on the outer periphery of the organic polymer fiber, and the polymer compound layer having the cation exchange group is formed.
  • a woven fabric or a non-woven fabric made of anion-adsorbing fibers carrying a metal hydroxide.
  • Patent Document 2 discloses a woven fabric made of deodorant fibers in which a resin layer containing a metal oxide is formed around the base fibers.
  • Patent Document 3 describes a fibrous adsorbent having a resin layer containing metal particles capable of removing arsenic contained in groundwater, phosphorus contained in wastewater, fluorine, boron contained in seawater, and the like.
  • a filter made of woven fabric or knitted fabric and surrounded by a perforated core material, which defines and discloses variations in fiber diameter, porosity, and porosity.
  • An object of the present invention is to provide a fibrous adsorbent that has a large amount of metal oxide capable of adsorbing components dissolved in water and that the supported metal oxide can effectively contribute to adsorption. It is an object of the present invention to provide a filter which can obtain a high removal rate and a long filtration life by adopting a woven structure.
  • the filter of the present invention A liquid filtration filter including a perforated core material and a woven fabric surrounded by the outer circumference of the perforated core material.
  • the warp and the weft include a multifilament containing 7 to 700 single yarns having a diameter of 1 ⁇ m to 100 ⁇ m, and the single yarns contained in the warp and the weft are thick in each cross section perpendicular to the longitudinal direction of the warp and the weft. There are three or more laminated parts in the direction, and the aspect ratio of the cross section of the warp and weft is 1.5 to 10.
  • the total cover factor of the warp and weft is 1200 or more and 2200 or less.
  • At least one of the warp or weft contains, as the single yarn, a fibrous adsorbent having a layer of a polymeric compound having an ion exchange group; metal particles supported on at least the surface of the layer (c).
  • the amount of the metal particles supported is 5 to 60% by mass with respect to the mass of the woven fabric.
  • the gaps between the fiber bundles constituting the woven or knitted fabric are not formed, the gaps between the single yarns are secured, and the raw water is prioritized on the surface of each single yarn. Because the contact area with the raw water is large and the adsorption rate is high, the removal rate is high as a result, and the metal oxide supported inside the single yarn can also effectively contribute to the adsorption. In addition, the filtration life is extended.
  • the flow of raw water between the single yarns, not between the fiber bundles causes an appropriate water flow resistance in the adsorption layer when the raw water is wound around the effective core material and used as a filter, and the effective core of the filter. Since the flow rate is less likely to be uneven in the axial direction of the material and the adsorbent in the filter is used uniformly, the filtration life is improved.
  • the filter in the present embodiment includes a perforated core material and a woven fabric wound around the perforated core material.
  • the perforated core material (hereinafter, simply referred to as “core material”) is a hollow cylinder, at least one end thereof is open, and a plurality of holes are provided on the side surface thereof.
  • core material for example, a synthetic resin is applied, and specifically, polyolefins such as polyethylene and polypropylene, or fluororesins such as PTFE and PFA are suitable.
  • the diameter (outer diameter) of the core material is preferably 5 mm or more or 8 mm or more, and preferably 50 mm or less or 30 mm or less.
  • the length of the core material is not particularly limited, but is, for example, 80 mm or more and 500 mm or less.
  • the woven fabric that is wrapped is called a wrapping body. It is preferable that the end in the winding direction of the woven fabric is fixed to the outer peripheral surface of the surrounding body by welding, adhesion, or the like.
  • the filter has a circular plate or the like on the end face, or has an end face for the purpose of preventing a short path of raw water from the end face of the winding body (the end face in the height direction of the surrounding body if the surrounding body is columnar). It is preferably sealed with an adhesive.
  • the adhesive is not particularly limited, and examples thereof include an epoxy resin adhesive, a silicone resin adhesive, and a urethane resin adhesive.
  • the filter 16 of FIG. 1 has a core material 13 and a woven fabric 11.
  • the core material 13 is a hollow member having an open top and a closed bottom.
  • a plurality of holes 14 are provided on the side surface of the core material 13.
  • the wrapping body 10 is formed by wrapping the woven fabric 11 around the core material 13.
  • the filter 16 is housed in the casing 17.
  • the casing 17 is configured so that the supply water enters the inside of the core material 13 through the opening at the upper part of the core material 13 by providing a water supply port (not shown) which is an opening at the upper portion thereof. There is.
  • An intake port (not shown), which is an opening, is also provided at the bottom of the casing 17, so that permeated water flows out of the filter from the water intake port.
  • the flow of water is drawn so as to go from the inside to the outside of the surrounding body 10 in FIG. 1, the flow of water may be reversed. That is, it is also possible to supply water to the side surface of the winding body and collect the permeated water from the core material.
  • a supply port capable of supplying water between the surrounding body 10 and the inner wall of the casing 17 is provided at the lower part, and the permeated water is permeated through the opening at the upper part of the core material 13.
  • a casing may be used that has an intake port at the top so that the water can be taken out.
  • a wrapping body is a woven fabric that is wrapped around a core material.
  • the outer shape of the winding body corresponds to the outer shape of the core material in many cases, but it can be adjusted by the shape of the woven fabric, the number of times of winding, etc.
  • As the outer shape of the surrounding body various shapes such as a cylinder; a prism such as a triangular prism or a quadrangular prism; a cone; a pyramid such as a triangular pyramid or a quadrangular pyramid; or a sphere or an elliptical sphere can be adopted.
  • Woven fabrics are fabrics having warp threads and weft threads that intersect each other, and examples thereof include three original structures such as plain weave, twill weave, and satin weave, and their modified structures.
  • Examples of the changing structure include the ridge weave and the satin weave, which are the changing structures of the plain weave, and the twill twill, the French twill weave, the bent twill weave, the torn twill weave, and the steep twill weave.
  • irregular twill weave, layered satin weave, wide twill weave, mikage satin weave, blurred satin weave, and day and night satin weave are examples.
  • woven fabric having these weaving structures can be woven by a normal method using a normal loom such as a rapier loom or an air jet loom.
  • a twill weave or a twill weave with few intersections is preferable, and a satin weave or a satin weave change structure is more preferable.
  • the woven fabric has multifilaments as warp and weft.
  • the multifilament contains 7 to 700 single yarns with a diameter of 1 ⁇ m to 100 ⁇ m.
  • In each cross section perpendicular to the longitudinal direction of the warp and the weft there is a place where three or more single yarns contained in the warp and the weft are laminated in the thickness direction of the woven fabric (vertical direction in FIG. 3), and the warp is
  • the aspect ratio of the cross section of the weft is 1.5 to 10, preferably 1.7 to 5, and more preferably 1.7 to 4.
  • the woven fabric 11 of FIG. 2 has a warp 31 and a weft 32, and each of the warp 31 and the weft 32 is a multifilament.
  • the warp and weft in the woven fabric 11 do not have to be all multifilaments, and some of them may be monofilaments.
  • the warp 31 or the weft 32 which is a multifilament does not have to have the same structure and composition, and the woven fabric 11 may contain a plurality of types of multifilaments having different structures or compositions.
  • the single yarns constituting one multifilament do not have to have the same structure and composition, and the multifilament may include a plurality of single yarns having different structures or compositions.
  • FIG. 3 shows the AA cross section, and the illustration and description of the BB cross section are omitted.
  • the warp 31 includes a plurality of single yarns 4.
  • the aspect ratio of the warp 31 is represented by its thickness H and width L to L / H. The same applies to the weft thread 32.
  • the aspect ratio of the cross section of the warp and weft is 1.5 or more, the raw water permeates uniformly between the single yarns, and the removal rate and the filtration life are improved.
  • the aspect ratio of the cross section of the warp and the weft is 10 or less, the misalignment of the woven fabric is suppressed, and the voids are evenly distributed in the winding body, so that the removal rate and the filtration life are improved.
  • the diameter of the single yarn 4 constituting the warp and weft is 1 ⁇ m or more, a gap having an appropriate width is generated between the single yarns. Due to the presence of this gap, raw water can be preferentially passed between the single yarns rather than between the multifilaments. Since the metal oxide supported inside the single yarn near the center of the fiber bundle can efficiently contribute to the adsorption of the target substance, a high removal rate of the target substance and a long filtration life are realized. it can.
  • the diameter d of the single yarn is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the single yarn diameter d is 100 ⁇ m or less, preferably 60 ⁇ m or less, and more preferably 45 ⁇ m or less.
  • the single yarn diameter d is 100 ⁇ m or less, the area where the single yarn comes into contact with the raw water can be increased, and the adsorption rate can be increased. Further, since the metal oxide supported on the inside of the single yarn can efficiently contribute to the adsorption of the target substance, the life of the filter can be extended.
  • the number of single yarns constituting the warp and weft is 7 or more, preferably 12 or more, and more preferably 24 or more.
  • 7 or more yarns it is possible to reduce the number of warp yarns and weft yarns per inch required for uniform permeation of raw water between single yarns, and as a result, the number of intersections of warp yarns and weft yarns is reduced. Since the contact area with raw water can be increased and the metal oxide supported inside the single yarn near the center of the fiber bundle can efficiently contribute to the adsorption of the target substance, the removal rate and the filtration life are improved. To do.
  • the number of single yarns constituting the warp and weft is 700 or less, preferably 400 or less, and more preferably 150 or less.
  • the number of yarns is 700 or less, the raw water easily flows between the single yarns instead of between the fiber bundles, and an excessive increase in pressure loss when the raw water flows between the single yarns can be reduced.
  • the warp and weft that make up the woven fabric have twists of 0 T / m or more and 100 T / m or less, more preferably 50 T / m or less, and even more preferably 10 T / m or less, respectively.
  • it is 100 T / m or less, a gap between single yarns can be secured, and when raw water is passed, water can be preferentially passed between single yarns instead of between multifilaments, and a fiber bundle can be passed. Since the metal oxide supported inside the single yarn near the center of the yarn can efficiently contribute to the adsorption of the target substance, a high removal rate of the target substance to be removed and a long filtration life can be realized.
  • each cover factor in the warp and weft is 1200 or more, more preferably 1300 or more, and further preferably 1800 or more. Further, it is preferably 2200 or less, more preferably 2100 or less, and further preferably 2000 or less.
  • the gap between the adjacent warp yarns and the gap between the adjacent weft yarns can be reduced, the raw water flows preferentially between the single yarns, and the effective core material is the same. Since it is possible to surround the woven fabric and impart an appropriate water flow resistance even when water is passed through it, non-uniformity of the flow rate is unlikely to occur, and the removal rate and the filtration life can be increased.
  • the total value of CF is 2200 or less, it is possible to secure a gap between single yarns and maintain an appropriate water flow resistance.
  • the woven fabric since the woven fabric has the above structure, raw water easily passes through the inside of the multifilament, and a filter having a high adsorption rate, a large adsorption capacity, and a long life is realized.
  • Fibrous Adsorbent At least one of the warp or weft in a woven fabric that is a multifilament contains a fibrous adsorbent as a single yarn.
  • the fibrous adsorbent adsorbs ions in the liquid. It is preferable that both the warp and the weft contain a fibrous adsorbent.
  • the multifilament containing the fibrous adsorbent may be a part or all of the warp and weft. Further, the fibrous adsorbent may be a part or all of the single yarn contained in the multifilament.
  • the single yarns constituting all the warp and weft yarns contained in the woven fabric are fibrous adsorbents, but in order to improve the strength or other performance, the woven fabric is used. It may contain a multifilament or a single yarn having no adsorptive capacity.
  • the cross-sectional shape of the fibrous adsorbent or a single yarn having no adsorption performance is not limited to a specific example, and may be circular or irregular. May be good.
  • a variant is a shape other than a circle.
  • the irregular shape is, for example, polygonal hexagon (preferably 3 to hexagonal); flat shape; lens type; the same number as a plurality of (preferably 3 to 8) convex parts called multilobes such as three leaves and hexagons.
  • a shape in which recesses are alternately arranged can be adopted.
  • a single yarn with a modified cross section has a large specific surface area. Further, in a filter including a single yarn having a modified cross section, a wide gap can be secured between the single yarns, so that the flow resistance becomes small. Further, since the contact area with the raw water is increased, high adsorption performance can be obtained.
  • the degree of deformation of the cross section is preferably 1.2 or more and 6.0 or less.
  • the degree of deformation is a value (R1 / R2) obtained by dividing the diameter R1 of the smallest circle including the cross section of the single yarn 4 by the diameter R2 of the largest circle that fits within the cross section of the single yarn 4 (FIG. 4).
  • R1 / R2 the degree of deformation
  • Fibrous adsorbents include, for example, ion exchange fibers capable of removing ions and metal particle-supporting fibers that can be removed by adsorbing inorganic ions such as boron, arsenic, phosphorus, and fluoride ions.
  • the ion exchange fiber contains a polymer compound having an ion exchange group.
  • a polymer compound having an ion exchange group has a cation exchange group such as a sulfonic acid group, a carboxy group, a phosphoric acid group or a hydroxyl group, or an anion exchange group such as a quaternary ammonium base or a tertiary amino group in the molecule.
  • a cation exchange group such as a sulfonic acid group, a carboxy group, a phosphoric acid group or a hydroxyl group
  • an anion exchange group such as a quaternary ammonium base or a tertiary amino group in the molecule.
  • the molecular chains may be cross-linked by covalent bonds at multiple points.
  • the cross-linking agent is copolymerized with a monomer having a carboxy group to suppress swelling, increase the density of cation exchange groups in the ion exchange fiber, and improve the ion exchange capacity.
  • bifunctional acrylamide examples include N, N'-methylenebisacrylamide.
  • bifunctional acrylate examples include 2-hydroxy-3-acryloyloxypropyl methacrylate, polyethylene glycol diacrylate, 1,6-hexanediol diacrylate, and the like.
  • bifunctional methacrylate examples include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and polyethylene glycol dimethacrylate.
  • a polymer compound having an ion-exchange group is formed, for example, by graft-polymerizing a vinyl monomer having a carboxy group with a substrate.
  • a polymer compound having a carboxy group is a compound having a plurality of carboxy groups in the molecule, and is composed of a homopolymer of acrylic acid and methacrylic acid, a copolymer, an acrylic acid ester, a methacrylic acid ester, and maleic anhydride.
  • a polymer obtained by hydrolyzing a copolymer can be mentioned.
  • the ion exchange capacity of the ion exchange fiber is preferably 1.0 meq / g or more, and more preferably 1.5 meq / g or more. When it is 1.0 meq / g or more, a life that can be practically used as an ion exchange fiber can be realized.
  • the ion exchange capacity is preferably 8.0 meq / g or less, and more preferably 6.0 meq / g or less. When the ion exchange capacity is 8.0 meq / g or less, excessive swelling of the polymer compound having an ion exchange group is suppressed, so that clogging during water flow is less likely to occur.
  • the metal particle-supporting fiber 2 contains a layer 21 of a polymer compound having an ion exchange group and metal particles 23 supported on at least the surface of the layer 21.
  • the metal particle-supporting fiber 2 may have a central base material 24.
  • the central base material 24 does not contain the metal particles 23.
  • the base material and the central base material 24 described in the description of the ion exchange fiber may be of the same type or different types, and may be, for example, a polyolefin such as polyethylene or polypropylene, a polyester such as polyethylene terephthalate or polycarbonate, or the like.
  • Synthetic fibers such as polyamide, aromatic polyamide, acrylic, polyacrylonitrile, polyvinyl chloride, PTFE, halogenated polyolefin such as polyvinylidene fluoride, and natural fibers such as wool, silk and cotton, or blended yarns or blended fibers thereof. Threads can be used.
  • polyamide and polyester are particularly preferable as the fiber structure, nylon is particularly preferable for polyamide, and polyethylene terephthalate (PET) is particularly preferable for polyester.
  • the metal particles 23 are supported on at least at least the surface of the layer 21 of the polymer compound having an ion exchange group. Further, the metal particles 23 may also be supported inside the layer 21 of the polymer compound having an ion exchange group. Since the metal particles 23 are present inside the layer 21, the mass of the metal particles 23 per unit mass of the metal particle-supporting fibers 2 is larger than that of being supported only on the surface, and the metal particles 23 are ion-exchange groups. It becomes difficult to separate from the layer 21 of the polymer compound having.
  • the metal particles 23 or their precursors are bonded to the ion exchange group so that the metal particles are efficiently supported on the layer 21.
  • the type of bond between the ion exchange group and the metal particle 23 is not particularly limited, and examples thereof include an ionic bond, a coordination bond, a metal bond, a hydrogen bond, and a van der Waals force bond.
  • the polymer compound having an ion exchange group is preferably a polymer compound having an anionic ion exchange group such as a carboxyl group, a sulfo group, or a phosphate group, and polystyrene sulfone is preferable.
  • examples thereof include acids, polyacrylic acid, polymethacrylic acid, and copolymers containing the above-mentioned polymer compound having an anionic ion exchange group.
  • the metal particles of cerium hydroxide are particularly preferable metal particles from the viewpoint of ion removal performance.
  • the functional group density C (meq / g) of the ion exchange group is preferably 0.5 (meq / g) or more, and more preferably 1.0 (meq / g) or more in the woven fabric described later. .. When it is 0.5 (meq / g) or more, the supported metal is less likely to be peeled off even when water is passed.
  • C (meq / g) is preferably 8.0 (meq / g), more preferably 5 (meq / g) or less. When it is 8.0 (meq / g) or less, excessive swelling is suppressed, so that clogging during water flow is less likely to occur.
  • C (meq / g) is measured as follows.
  • the woven fabric is immersed in a strongly acidic aqueous solution to dissolve the metal particles, the residue (fibrous structure) is washed with water, vacuum dried at 50 ° C. for 3 hours, and the absolute dry mass W (g) is measured. Then, the ion exchange capacity based on the absolute dry mass W (g) is measured with respect to the residue by a conventional method using neutralization titration, and the value is C (meq / g).
  • the metal constituting the metal particles 23 can be arbitrarily selected depending on the adsorption target.
  • the metal particles include at least one metal selected from the group consisting of silver, copper, iron, titanium, zirconium and cerium.
  • the adsorption target is boron, arsenic, phosphorus, or fluoride ion, metal oxides, metal hydroxides, and hydrates thereof can be mentioned.
  • the metal particles preferably contain at least one of a metal hydroxide and a metal hydroxide.
  • the metal hydroxide and the metal hydroxide include a rare earth element hydroxide, a rare earth element hydroxide, a zirconium hydroxide, a zirconium hydroxide, an iron hydroxide, and an iron hydroxide.
  • rare earth elements include scandium Sc with atomic number 21 and ytterbium Y with atomic number 39, and lanthanoid elements with atomic numbers 57 to 71, that is, lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd, and promethium Pm.
  • cerium is preferable from the viewpoint of ion removal performance, and tetravalent cerium is more preferable.
  • a mixture of these hydroxides and / or hydroxides is also useful.
  • the water content of the metal particles is preferably 1% by mass or more, and more preferably 5% by mass or more.
  • adsorption sites can be imparted to the inside of the particles, and the particles have sufficient adsorption ability.
  • the water content is preferably 30% by mass or less, and more preferably 20% by mass or less. When the water content is 30% by mass or less, the density of the adsorption sites inside the particles can be increased, and the particles have sufficient adsorption ability.
  • the particle size of the metal particles is preferably 1 nm or more and 1000 nm or less.
  • the particle size means the particle size of the dispersed state (primary particles) if each particle is dispersed, and the agglomerated state (2) if the particles are agglomerated.
  • the particle size of the metal particles is preferably 500 nm or less, more preferably 100 nm or less, and even more preferably 50 nm or less. When the particle size exceeds 1000 nm, the number of adsorption sites existing on the outer surface of the particles is reduced, and sufficient adsorption ability cannot be exhibited.
  • the particle size of the metal particles is preferably 5 nm or more, more preferably 10 nm or more, and even more preferably 15 nm or more. Considering the aggregation of particles during the production of the adsorbent, the lower limit of the particle size is 1 nm.
  • the amount of metal particles supported in the woven fabric is 5% by mass or more, preferably 8% by mass or more, and more preferably 15% by mass or more.
  • the amount of metal particles supported is 60% by mass or less, preferably 50% by mass or less, and more preferably 40% by mass or less.
  • the amount of the metal particles carried is 60% by mass or less, it is possible to suppress the peeling of the metal particles during water flow or the clogging of the filter due to the peeling of the metal particles.
  • the method for measuring the amount of metal particles supported is shown below. First, the mass W1 of the metal particle-supporting fiber is weighed. Next, the metal particles are taken out by dissolving the adsorbent in a good solvent such as a strong alkali / strong acid aqueous solution or by combining a method of heating at 800 ° C. or higher with an electric furnace, and the mass W2 of the metal particles is weighed. The amount of the metal particles supported, that is, the mass ratio of the metal particles to the entire metal-supported fibers is (W2 / W1) ⁇ 100 (parts by mass).
  • the filter of the present invention in addition to the requirements of single yarn diameter, number of single yarns of multifilament, aspect ratio of cross section, and cover factor for the warp and weft of the woven fabric, at least one of the warp or weft of the woven fabric is ionized as a single yarn.
  • a layer of a polymer compound having an exchange group By including a layer of a polymer compound having an exchange group, the water flow resistance is greatly reduced and the filtration performance is improved.
  • the mechanism is not clear, but it is considered that the adjacent site between the single yarns is not a base material having no ion exchange group but a layer of a polymer compound having an ion exchange group.
  • Water purifier The above filters can be applied to water purifiers.
  • a water purifier is a structure that can remove target components contained in raw water. By including the above-mentioned filter, the component to be removed in the raw water can be suitably removed, and a sufficient amount of permeated liquid until it breaks can be obtained.
  • the shape of the water purifier is not limited, such as a pot type or other gravity type or faucet type. As described above, it can also be used for gravity type water purifiers and the like that require low water flow resistance.
  • the above-mentioned filter can be used alone as a water purifier or in combination with another filter or a separation membrane, such as the filter 16 shown in FIG. 1 and the casing 17 accommodating the filter 16.
  • FIG. 6 illustrates a water purifier provided with a hollow fiber membrane and a filter.
  • the water purifier 6 shown in FIG. 6 includes a filter 16, a hollow fiber membrane 62, a casing 61, and a sealing material 63.
  • the filter 16 includes a core material 13 and a winding body 10 as described above.
  • the upper part of the core material 13 is open at the upper part of the casing 61 (water supply port 611). Further, the bottom of the core material 13 and the surrounding body 10, that is, the bottom of the filter 16 is sealed by the sealing material 63. The upper part of the filter 16 is sealed by the upper lid of the casing 61.
  • the hollow fiber membrane 62 is arranged below the filter 16 in the casing 61. Both ends of the hollow fiber membrane 62 are open at the bottom of the casing 61 (water intake 612).
  • the casing 61 is a hollow columnar member as a whole, and houses the filter 16 and the hollow fiber membrane 62 inside.
  • the casing 61 has openings at the upper part and the lower part thereof, which are connected to the core material 13 and the hollow fiber membrane 62, respectively.
  • the above-mentioned filter is suitable for water purification.
  • the water purification method may include passing raw water through the filter. Water is preferable as the raw water, and tap water and groundwater are exemplified.
  • the above-mentioned filter is suitably used for removing inorganic ions in water.
  • inorganic ions include hardness components and heavy metal ions. Specific examples of the hardness component include calcium ions and magnesium ions.
  • Heavy metal ions are metal elements having a specific gravity of 4 or more, and specifically, lead, mercury, arsenic, copper, cadmium, etc. Examples include chromium, nickel, manganese, cobalt and zinc.
  • raw water enters the perforated core material 13 from the water supply port (not shown) at the upper part of the casing 17 and moves to the surrounding body 10 through the holes 14 on the side surface of the perforated core material 13.
  • the solute contained in the raw water is removed while the raw water passes between the fabrics 11 of the surrounding body 10.
  • the permeated water flows from the side surface of the surrounding body to the space between the surrounding body and the casing 17, and flows out of the casing 17 from an outlet (not shown) at the lower part of the casing 17.
  • the radial direction coincides with the filtration direction.
  • the raw water enters the core material 13 from the upper part of the casing 61 and passes through the surrounding body 10.
  • the components in the raw water are adsorbed in the winding body 10, and the obtained permeated water is further filtered by the hollow fiber membrane 62.
  • the water that has passed through the hollow fiber membrane 62 passes through the inside of the hollow fiber membrane 62 and is discharged from the lower part of the casing 61.
  • the fiber that is the base material can be produced by melt spinning, electric field spinning, or wet spinning.
  • the sea-island melt spinning method is used, the base material is an island component, a component that is more soluble in an alkaline aqueous solution than an island component is a sea component, and a post-spinning alkaline aqueous solution is used.
  • the method for producing a polymer compound having an ion exchange group is as follows.
  • the fiber By imparting an ion exchange group or a chelate group to the fiber as the base material, the fiber becomes capable of ion exchange.
  • the ion exchange group imparted to the fiber include a strongly acidic cation exchange group such as a sulfonic acid group and a weakly acidic cation exchange group such as a carboxy group and a phosphoric acid group.
  • the monomer having a sulfonic acid group include styrene sulfonic acid, vinyl sulfonic acid, 2-acrylamide-2 methyl propane sulfonic acid, and sodium salts and ammonium salts thereof.
  • the monomer having a carboxyl group include acrylic monomers such as acrylic acid and methacrylic acid.
  • the monomer itself does not have an ion exchange group and / or a chelate group
  • examples of the monomer having a functional group that can be converted into an ion exchange group and / or a chelate group include acrylic acid ester, methacrylic acid ester, and methacrylic acid. Examples thereof include glycidyl, styrene, acrylonitrile, achlorine, and chloromethylstyrene. From the viewpoint of ion exchange capacity, it is particularly preferable to use an acrylic monomer.
  • a method for imparting such a functional group to the fiber it is preferable to graft-copolymerize the monomer having the above functional group to the fiber using an initiator, but an ion exchange group is irradiated with a gamma ray or an electron beam or the like.
  • the monomer having the above may be copolymerized with the fiber.
  • graft-copolymerizing a monomer having an ion-exchange group onto a fiber a layer of a polymer compound having an ion-exchange group is formed inside the fiber.
  • the initiator include ammonium persulfate (APS), azobisisobutyronitrile (AIBN), benzoyl peroxide (BPO) and the like.
  • a cross-linking agent may be added together with the monomer.
  • TEMED tetramethylethylenediamine
  • EDTA ethylenediaminetetraacetic acid
  • bifunctional acrylamide examples include N, N'-methylenebisacrylamide.
  • bifunctional acrylate examples include 2-hydroxy-3-acryloyloxypropyl methacrylate, polyethylene glycol diacrylate, 1,6-hexanediol diacrylate, and the like.
  • bifunctional methacrylate examples include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and polyethylene glycol dimethacrylate.
  • the metal particle-supporting fiber is produced by supporting the metal particles on the above-mentioned ion exchange fiber, and specifically, the metal particle-supporting fiber is produced. i) A solution of metal particles ii) A solution of a metal salt is prepared and brought into contact with an ion exchange fiber.
  • the metal particles form nanocolloids. After immersing the ion exchange fiber in the nanocolloidal solution of the metal particles, the excess adhered particles are washed with water to obtain the metal particle-supporting fiber.
  • the type of metal salt forming the metal salt solution is not particularly limited, but nitrates, sulfates, chlorides, fluorides, bromides having metal ions exemplified in "4. Fibrous adsorbent" above. , Iodide, acetate, carbonate, chromate, or salt having a metal oxide ion of the metal exemplified in the above "4. Fibrous adsorbent”.
  • the metal ion of the metal salt is adsorbed on the ion-exchange group, and if necessary, the metal ion of the metal salt is oxidized or reduced to form the ion-exchange fiber. Fine particles of metal oxide, metal hydroxide, or a single metal can be precipitated on the surface or inside.
  • the method of oxidation / reduction is not particularly limited, and in addition to the conventional method using a chemical oxidizing agent or a reducing agent, a catalyst, light irradiation, or the like can be used in combination. Further, by contacting the metal salt solution with the ion exchange fiber and then adding an alkali to the solution, it is also possible to precipitate metal oxide or metal hydrous oxide particles on the surface or inside of the fiber.
  • the woven fabric produced by the following method was wound around a perforated core material having an outer diameter of 10 mm and a length of 230 mm so as to have a thickness of 20 mm.
  • An epoxy resin adhesive was applied to the woven fabric surrounding portions on both end faces of the surrounding body.
  • the bottom of one end surface was sealed with a disk plate, and the enclosure was loaded into a case having an inner diameter of 54 mm to prepare a filter.
  • the target raw water is passed from the inside of the effective core material at one end of the surrounding body toward the outside of the woven fabric surrounding layer, and the raw water that has passed through the woven fabric surrounding layer is collected, and the opposite end is collected. It has a structure that can be discharged from the side.
  • ⁇ Single yarn diameter d> The woven fabric was immersed in RO water (reverse osmosis filtered water) for 24 hours, and then the diameter of 10 single yarns when observed with a microscope was measured, and the average value was taken as the single yarn diameter.
  • RO water reverse osmosis filtered water
  • ⁇ Aspect ratio of cross section of warp or weft> The woven fabric is immersed in RO water (back-penetration filtered water) for 24 hours, and the cross section perpendicular to the weft or warp is observed with a microscope, and the maximum in the thickness direction in the cross section of the warp or the fiber bundle constituting the weft.
  • the ratio of the maximum length in the direction perpendicular to the thickness direction to the length was defined as the aspect ratio, and 10 fibers were measured for each of the warp and weft fiber bundles, and the average value of each was defined as the aspect ratio.
  • ⁇ Cover Factor CF> The warp and weft were extracted from the woven fabric, and the weight (g) per 100,000 m was measured by 10 each, and the average diameter of each was taken as the warp or the multifilament diameter D (dtex) of the weft.
  • the woven fabric was observed from the upper surface with a microscope, the number of warp threads and weft threads per inch was measured at 10 points each, and the average value of each was taken as N (thread / inch), and CF was calculated from the above formula.
  • the total CF is twice that of CF.
  • ⁇ Amount of metal particles supported> A part of the woven fabric was cut out and its mass W1 was weighed. Next, the metal particles were taken out by dissolving the woven fabric in a good solvent such as a strong alkali or a strong acid aqueous solution, or heating at 800 ° C. or higher by an electric furnace, or a combination of these methods, and the mass W2 of the metal particles was weighed. .. The amount of the metal particles supported, that is, the mass ratio of the metal particles to the entire metal-supported fibers was calculated by (W2 / W1) ⁇ 100 (parts by mass).
  • a filter was prepared from the obtained woven fabric by the above-mentioned method.
  • Example 1 A woven fabric made of fibers carrying cerium hydroxide nanoparticles was produced by the following operation.
  • a woven fabric was produced using 170 decitex, 34 filament nylon 6 fibers, a twist of 0 T / m, and a plain weave machine with a number of meshes of warp and weft of 60 (pieces / inch).
  • the fabric about 1 part by weight, 0.375 parts by mass of methacrylic acid, 0.125 parts by weight of acrylic acid, Na0.15 parts by hydroxy sulfinic acid, EDTA ⁇ 2Na ⁇ 2H 2 O0.05 parts by mass of ammonium persulfate It was immersed in 100 parts by mass of an aqueous solution containing 0.05 parts by mass and allowed to stand at 70 ° C. for 1 hour. After standing, it was taken out and washed with RO water to obtain a woven fabric made of ion-exchange fibers.
  • the ion-exchange fiber was immersed in a 1 mol / L NaOH aqueous solution at room temperature for 3 hours to convert the carboxyl group, which is a functional group of the ion-exchange fiber, from H-type to Na-type.
  • the woven fabric was immersed in a 0.2 mol / L 3 aqueous solution of Ce (NO 3 ) at room temperature for 3 hours to convert the functional group from Na type to Ce type.
  • cerium hydroxide was precipitated near the surface of the woven fabric by immersing it in a 0.2 mol / L NaOH aqueous solution at room temperature for 3 hours. This was washed with RO water.
  • a filter was prepared from the obtained woven fabric by the above-mentioned method. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • Example 2 A woven fabric was prepared using 115 decitex, 34 filament nylon 6 fibers, a twist of 0 T / m, and a plain weave machine with a mesh number of warp and weft of 60 (pieces / inch).
  • Cerium hydroxide was supported on this woven fabric by the same method as in Example 1. However, methacrylic acid was 0.9 parts by mass and acrylic acid was 0.3 parts by mass. A filter was prepared from the obtained woven fabric by the above-mentioned method. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • Example 3 A woven fabric was prepared using 80 decitex, 34 filament nylon 6 fibers, a twist of 0 T / m, and a plain weave machine with a mesh number of 60 (pieces / inch) of warp and weft. Cerium hydroxide was supported on this woven fabric by the method described in Example 1. However, methacrylic acid was 3.75 parts by mass and acrylic acid was 1.25 parts by mass. A filter was prepared from the obtained woven fabric by the above-mentioned method. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • Example 4 A filter was produced in the same manner as in Example 2 except that the twist degree of the warp and weft was 80 T / m. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • Example 5 A filter was produced by the same method as described in Example 2 except that the number of meshes of the warp and weft was 42 (pieces / inch). Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • Example 6 A filter was prepared in the same manner as in Example 2 except that 115 decitex and 376 filament nylon 6 fibers were used. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • Example 7 A filter was prepared in the same manner as in Example 2 except that 115 decitex and 122 filaments of nylon 6 fibers were used. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • Example 8 A filter was prepared in the same manner as in Example 2 except that 115 decitex, 7 filament nylon 6 fibers were used. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • Example 9 A filter was prepared by the same method as described in Example 2 except that the twill structure was twill weave. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • Example 10 A filter was produced by the same method as described in Example 2 except that the weave structure was satin weave. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • Example 11 A filter was produced in the same manner as in Example 2 except that 115 decitex, 34 filaments, and three-leaf nylon 6 fibers having a single yarn shape having a degree of deformation of 3.0 were used. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • a woven fabric was prepared using 235 decitex, 34 filaments of polyethylene terephthalate fiber, a twist of 0 T / m, and a plain weave machine with a mesh number of 60 (pieces / inch) of warp and weft.
  • Both sides of this woven fabric were subjected to corona discharge treatment under a nitrogen atmosphere at a surface treatment strength of 30 W / min / m 2.
  • the treated woven fabric was immersed in a nanocolloidal solution of cerium oxide (solvent: water, concentration: 5% by mass) at room temperature for 1 day. Then, washing with water was performed to remove excess cerium oxide nanocolloidal solution.
  • a filter was prepared from the obtained woven fabric by the above method.
  • Comparative Example 2 A filter was produced in the same manner as in Comparative Example 1 except that the twist of the warp and weft was 80 T / m.
  • Comparative Example 3 A filter was produced by the same method as that described in Comparative Example 1 except that the number of meshes of the warp and weft was 50 (pieces / inch).
  • Comparative Example 4 A filter was prepared by the same method as that described in Comparative Example 1 except that the twill weave was used instead of the plain weave.
  • Comparative Example 5 A filter was prepared by the same method as that described in Comparative Example 1 except that the satin weave was used instead of the plain weave.
  • Comparative Example 6 A filter was produced in the same manner as in Comparative Example 1 except that the twist of the warp and weft was 750 T / m.
  • Comparative Example 7 A filter was produced by the same method as that described in Comparative Example 1 except that the number of meshes of the warp and weft was 80 (pieces / inch).
  • Comparative Example 8 Using one filament PET fiber having a fiber diameter of 25 ⁇ m, a woven fabric was produced with a plain weave machine having 220 (pieces / inch) meshes of warp and weft threads. For this woven fabric, a woven fabric made of fibers carrying cerium oxide nanoparticles was produced by the method described in Comparative Example 1. The obtained woven fabric was used to prepare a filter by the method described above.
  • Comparative Example 9 A filter was produced by the same method as that described in Comparative Example 1 except that the number of meshes of the warp and weft was 30 (pieces / inch).
  • Example 10 A filter was produced in the same manner as in Example 2 except that the twist degree of the warp and weft was 750 T / m. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • Example 11 A filter was produced by the same method as described in Example 2 except that the number of meshes of the warp and weft was 30 (pieces / inch). Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • Example 12 A filter was prepared in the same manner as in Example 2 except that 115 decitex and 1 filament nylon 6 fibers were used. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • Example 13 A filter was produced by the same method as in Example 2 except that nylon 6 fibers having a fiber diameter of 0.4 ⁇ m and 900 filaments were used and the number of meshes of warp and weft was 220 (pieces / inch). did. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • Example 14 A filter was produced by the same method as described in Example 2 except that the number of meshes of the warp and weft was 80 (pieces / inch). Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • Example 15 A filter was produced in the same manner as in Example 2 except that the fiber diameter was 16 ⁇ m and one filament of nylon 6 fibers was used and the number of meshes of the warp and weft was 220 (pieces / inch). Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
  • the filter of the present invention is suitably used for removing inorganic components dissolved in water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)
  • Filtering Materials (AREA)

Abstract

The present invention is a filter for liquid filtration, said filter being provided with a perforated core material and a woven fabric that is wound around the outer periphery of the perforated core material. This filter for liquid filtration satisfies conditions such that: a warp of the woven fabric contains a multifilament that contains from 7 to 700 single yarns having a diameter from 1 μm to 100 μm; a portion where three or more single yarns contained in a warp are stacked in the thickness direction is present in a cross-section of the warp, said cross-section being perpendicular to the longitudinal direction; the aspect ratio of a cross-section of a warp is from 1.5 to 10; and the like.

Description

液体ろ過用フィルタLiquid filtration filter
 液体中に溶解した無機イオン成分を吸着可能なフィルタに関する。 Regarding filters that can adsorb inorganic ion components dissolved in liquid.
 液体中に溶解した成分を吸着し除去する手段として、該成分を吸着可能な金属水酸化物を固定化した繊維状吸着材からなる織物を積層させたフィルタが提案されている。 As a means for adsorbing and removing a component dissolved in a liquid, a filter in which a woven fabric made of a fibrous adsorbent on which a metal hydroxide capable of adsorbing the component is immobilized is laminated has been proposed.
 繊維に固定化する金属水酸化物の担持量が大きいほど、液体中に溶解した成分の除去可能量が大きくなるため好ましい。金属水酸化物の担持量を大きくするために、繊維基材の表面だけでなく、内部にも担持する方法が提案されている。 The larger the amount of the metal hydroxide immobilized on the fiber, the larger the amount of the component dissolved in the liquid that can be removed, which is preferable. In order to increase the amount of metal hydroxide supported, a method of supporting it not only on the surface of the fiber base material but also on the inside has been proposed.
 特許文献1には、有機高分子繊維にカチオン交換基をグラフト重合し、有機高分子繊維の外周部にカチオン交換基を有する高分子化合物層を形成させ、該カチオン交換基を有する高分子化合物層に金属水酸化物を担持させた陰イオン吸着繊維からなる織物、または不織布が開示されている。 In Patent Document 1, a cation exchange group is graft-polymerized on an organic polymer fiber to form a polymer compound layer having a cation exchange group on the outer periphery of the organic polymer fiber, and the polymer compound layer having the cation exchange group is formed. Disclosed is a woven fabric or a non-woven fabric made of anion-adsorbing fibers carrying a metal hydroxide.
 また、特許文献2には、基材繊維の周囲に金属酸化物を含有した樹脂層が形成された消臭性繊維からなる織物が開示されている。 Further, Patent Document 2 discloses a woven fabric made of deodorant fibers in which a resin layer containing a metal oxide is formed around the base fibers.
 また、特許文献3には、地下水に含まれるヒ素、排水中に含まれるリン、フッ素、海水などに含まれているホウ素などを除去可能な金属粒子を含有する樹脂層を有する繊維状の吸着材を織物、編物にし、有孔芯材に巻囲したフィルタで、繊維径、空隙率、空隙率のバラつきを規定し、開示されている。 Further, Patent Document 3 describes a fibrous adsorbent having a resin layer containing metal particles capable of removing arsenic contained in groundwater, phosphorus contained in wastewater, fluorine, boron contained in seawater, and the like. Is a filter made of woven fabric or knitted fabric and surrounded by a perforated core material, which defines and discloses variations in fiber diameter, porosity, and porosity.
日本国特開2018-158327号公報Japanese Patent Application Laid-Open No. 2018-158327 日本国特開2017-66568号公報Japanese Patent Application Laid-Open No. 2017-666568 WO/2019/065092WO / 2019/065092
 本発明の目的は、水中に溶解した成分を吸着可能な金属酸化物の担持量が大きく、かつ、担持された金属酸化物が効果的に吸着に寄与することができるような繊維状吸着材の織物構造にすることで、高い除去率と長いろ過寿命が得られるフィルタを提供することにある。 An object of the present invention is to provide a fibrous adsorbent that has a large amount of metal oxide capable of adsorbing components dissolved in water and that the supported metal oxide can effectively contribute to adsorption. It is an object of the present invention to provide a filter which can obtain a high removal rate and a long filtration life by adopting a woven structure.
 上記目的を達成するために、本発明のフィルタは、
 有孔芯材と、前記有孔芯材の外周に巻囲された織物を備える液体ろ過用フィルタであって、
前記織物が、下記条件(a)~(d)を満たすフィルタ。
(a)経糸および緯糸が直径1μm~100μmの単糸を7本~700本含むマルチフィラメントを含み、経糸および緯糸の長手方向に垂直なそれぞれの断面において、経糸および緯糸に含まれる単糸が厚み方向に3本以上積層している箇所が存在し、かつ、縦糸および緯糸の断面のアスペクト比が1.5~10であり、
(b)経糸と緯糸のカバーファクターの合計が1200以上、2200以下であり、
(c)前記経糸または緯糸の少なくとも一方が、前記単糸として、イオン交換基を有する高分子化合物の層と;前記層の少なくとも表面に担持される金属粒子とを有する繊維状吸着材を含み
(d)前記金属粒子の担持量が、前記織物の質量に対して5~60質量%である。
In order to achieve the above object, the filter of the present invention
A liquid filtration filter including a perforated core material and a woven fabric surrounded by the outer circumference of the perforated core material.
A filter in which the woven fabric satisfies the following conditions (a) to (d).
(A) The warp and the weft include a multifilament containing 7 to 700 single yarns having a diameter of 1 μm to 100 μm, and the single yarns contained in the warp and the weft are thick in each cross section perpendicular to the longitudinal direction of the warp and the weft. There are three or more laminated parts in the direction, and the aspect ratio of the cross section of the warp and weft is 1.5 to 10.
(B) The total cover factor of the warp and weft is 1200 or more and 2200 or less.
(C) At least one of the warp or weft contains, as the single yarn, a fibrous adsorbent having a layer of a polymeric compound having an ion exchange group; metal particles supported on at least the surface of the layer (c). d) The amount of the metal particles supported is 5 to 60% by mass with respect to the mass of the woven fabric.
織物を上面、または、下面から見た際に、織編物を構成する繊維束間の空隙が形成されず、単糸間の空隙が確保され、単糸1本1本の表面を原水が優先的に透過するために原水との接触面積が大きく、吸着速度が高くなり、結果として除去率が高く、かつ、単糸の内部に担持された金属酸化物も吸着に有効に寄与することができるためにろ過寿命が長くなる。 When the woven fabric is viewed from the upper surface or the lower surface, the gaps between the fiber bundles constituting the woven or knitted fabric are not formed, the gaps between the single yarns are secured, and the raw water is prioritized on the surface of each single yarn. Because the contact area with the raw water is large and the adsorption rate is high, the removal rate is high as a result, and the metal oxide supported inside the single yarn can also effectively contribute to the adsorption. In addition, the filtration life is extended.
 加えて、繊維束間ではなく、単糸間を原水が流動することで、有効芯材に巻囲し、フィルタとして使用する際に、吸着層に適度な通水抵抗が生じ、フィルタの有効芯材の軸方向に流量の斑が生じにくく、フィルタ内の吸着材が均一に使用されるために、ろ過寿命が向上する。 In addition, the flow of raw water between the single yarns, not between the fiber bundles, causes an appropriate water flow resistance in the adsorption layer when the raw water is wound around the effective core material and used as a filter, and the effective core of the filter. Since the flow rate is less likely to be uneven in the axial direction of the material and the adsorbent in the filter is used uniformly, the filtration life is improved.
フィルタの概略図である。It is a schematic diagram of a filter. 織物の平面図である。It is a top view of a woven fabric. 織物の断面図である。It is sectional drawing of the woven fabric. 単糸である異形型の繊維状吸着材の断面図である。It is sectional drawing of the deformed fibrous adsorbent which is a single yarn. 単糸である繊維状吸着材の断面図である。It is sectional drawing of the fibrous adsorbent which is a single yarn. フィルタと中空糸型の分離膜とを有する浄水器の断面図である。It is sectional drawing of the water purifier which has a filter and a hollow fiber type separation membrane.
 1.フィルタ
 以下、本発明の液体ろ過用フィルタの実施形態について説明する。本実施形態におけるフィルタは、有孔芯材と、前記有孔芯材の外周に巻囲された織物を備える。
1. 1. Filter Hereinafter, embodiments of the liquid filtration filter of the present invention will be described. The filter in the present embodiment includes a perforated core material and a woven fabric wound around the perforated core material.
 有孔芯材(以下、単に「芯材」と称する。)は、中空の筒であり、少なくともその一端が開口しているとともに、その側面に複数の孔が設けられている。芯材の材質としては、例えば合成樹脂が適用され、具体的には、ポリエチレンおよびポリプロピレンなどのポリオレフィン、またはPTFEおよびPFAなどのフッ素樹脂が好適である。 The perforated core material (hereinafter, simply referred to as "core material") is a hollow cylinder, at least one end thereof is open, and a plurality of holes are provided on the side surface thereof. As the material of the core material, for example, a synthetic resin is applied, and specifically, polyolefins such as polyethylene and polypropylene, or fluororesins such as PTFE and PFA are suitable.
 芯材の直径(外径)は、5mm以上または8mm以上であることが好ましく、50mm以下または30mm以下であることが好ましい。芯材の長さは特には限定されないが、例えば80mm以上500mm以下である。 The diameter (outer diameter) of the core material is preferably 5 mm or more or 8 mm or more, and preferably 50 mm or less or 30 mm or less. The length of the core material is not particularly limited, but is, for example, 80 mm or more and 500 mm or less.
 巻囲された織物を巻囲体と称する。織物の巻囲方向末端は、溶着、接着などにより、巻囲体の外周面に対して固定されることが好ましい。 The woven fabric that is wrapped is called a wrapping body. It is preferable that the end in the winding direction of the woven fabric is fixed to the outer peripheral surface of the surrounding body by welding, adhesion, or the like.
 フィルタは、巻囲体の端面(巻囲体が円柱状であればその高さ方向における端面)からの原水のショートパスを防止する目的で、端面に円径のプレート等を有するか、端面が接着剤で封止されていることが好ましい。接着剤としては、特に限定されないが、例えば、エポキシ樹脂系接着剤や、シリコン樹脂系接着剤、ウレタン樹脂系接着剤などが挙げられる。 The filter has a circular plate or the like on the end face, or has an end face for the purpose of preventing a short path of raw water from the end face of the winding body (the end face in the height direction of the surrounding body if the surrounding body is columnar). It is preferably sealed with an adhesive. The adhesive is not particularly limited, and examples thereof include an epoxy resin adhesive, a silicone resin adhesive, and a urethane resin adhesive.
 フィルタについてより具体的に説明する。図1のフィルタ16は、芯材13と織物11とを有する。芯材13は上部が開口しかつ底がふさがれた中空の部材である。芯材13の側面には複数の孔14が設けられている。芯材13の周囲に織物11が巻囲されることで、巻囲体10が形成されている。 The filter will be explained more specifically. The filter 16 of FIG. 1 has a core material 13 and a woven fabric 11. The core material 13 is a hollow member having an open top and a closed bottom. A plurality of holes 14 are provided on the side surface of the core material 13. The wrapping body 10 is formed by wrapping the woven fabric 11 around the core material 13.
 図1の形態では、フィルタ16がケーシング17内に収容されている。ケーシング17は、その上部には開口である給水口(図示せず)が設けられることで、芯材13の上部の開口を介して、供給水が芯材13の内部に入るように構成されている。ケーシング17の底部にも開口である取水口(図示せず)が設けられており、取水口から透過水がフィルタ外に流出するようになっている。 In the form of FIG. 1, the filter 16 is housed in the casing 17. The casing 17 is configured so that the supply water enters the inside of the core material 13 through the opening at the upper part of the core material 13 by providing a water supply port (not shown) which is an opening at the upper portion thereof. There is. An intake port (not shown), which is an opening, is also provided at the bottom of the casing 17, so that permeated water flows out of the filter from the water intake port.
 なお、図1では水の流れが巻囲体10の内側から外側に向かうように描かれているが、水の流れは逆であってもよい。つまり、巻囲体の側面に水を供給し、芯材から透過水を採取することもできる。この場合は、例えば、図1のケーシング17として、巻囲体10とケーシング17の内壁との間に水を供給できる供給口を下部に有し、かつ、芯材13の上部の開口から透過水を取り出せるような取水口を上部に有するケーシングを用いればよい。 Although the flow of water is drawn so as to go from the inside to the outside of the surrounding body 10 in FIG. 1, the flow of water may be reversed. That is, it is also possible to supply water to the side surface of the winding body and collect the permeated water from the core material. In this case, for example, as the casing 17 in FIG. 1, a supply port capable of supplying water between the surrounding body 10 and the inner wall of the casing 17 is provided at the lower part, and the permeated water is permeated through the opening at the upper part of the core material 13. A casing may be used that has an intake port at the top so that the water can be taken out.
 2.巻囲体
 巻囲体とは、芯材を中心に巻囲された織物である。
2. Wrap body A wrapping body is a woven fabric that is wrapped around a core material.
 巻囲体の外形は多くの場合は芯材の外形に対応するが、織物の形状、巻囲回数などによって調整することができる。巻囲体の外形として、円柱;三角柱もしくは四角柱等の角柱;円錐;三角錐もしくは四角錐等の角錐;または球もしくは楕円球等、様々な形状が採用され得る。 The outer shape of the winding body corresponds to the outer shape of the core material in many cases, but it can be adjusted by the shape of the woven fabric, the number of times of winding, etc. As the outer shape of the surrounding body, various shapes such as a cylinder; a prism such as a triangular prism or a quadrangular prism; a cone; a pyramid such as a triangular pyramid or a quadrangular pyramid; or a sphere or an elliptical sphere can be adopted.
 3.織物
 織物は、互いに交差する経糸と緯糸とを有する布地であり、例として、平織、斜文織および朱子織等の三原組織、並びにそれらの変化組織が挙げられる。変化組織としては、例えば、平織の変化組織であるうね織、七子織や、斜文織の変化組織である杉綾織、フランス綾織、曲がり斜文織、破れ斜文織、急斜文織、緩斜文織、他にも、朱子織の変化組織である不規則朱子織、重ね朱子織、ひろげ朱子織、みかげ朱子織、ぼかし朱子織、昼夜朱子織が挙げられる。その他、たてビロード、タオル、ベロア等のたてパイル織、からみ織や模しゃ織などが挙げられる。なお、これらの織組織を有する織物は、レピア織機やエアージェット織機など通常の織機を用いて通常の方法により製織することができる。除去率、ろ過寿命の点においては、交点の少ない斜文織、または、斜文織の変化組織が好ましく、朱子織、または、朱子織の変化組織がさらに好ましい。
3. 3. Woven fabrics Woven fabrics are fabrics having warp threads and weft threads that intersect each other, and examples thereof include three original structures such as plain weave, twill weave, and satin weave, and their modified structures. Examples of the changing structure include the ridge weave and the satin weave, which are the changing structures of the plain weave, and the twill twill, the French twill weave, the bent twill weave, the torn twill weave, and the steep twill weave. In addition to the gentle twill weave, irregular twill weave, layered satin weave, wide twill weave, mikage satin weave, blurred satin weave, and day and night satin weave are examples. In addition, there are vertical pile weaves such as vertical velvet, towels and velor, entwined weaves and imitation weaves. The woven fabric having these weaving structures can be woven by a normal method using a normal loom such as a rapier loom or an air jet loom. In terms of removal rate and filtration life, a twill weave or a twill weave with few intersections is preferable, and a satin weave or a satin weave change structure is more preferable.
 織物は、経糸および緯糸としてマルチフィラメントを有する。マルチフィラメントは、1μm~100μmの直径を有する7本~700本の単糸を含む。経糸および緯糸の長手方向に垂直なそれぞれの断面において、経糸および緯糸に含まれる単糸が織物の厚み方向(図3の上下方向)に3本以上積層している箇所が存在し、かつ、縦糸および緯糸の断面のアスペクト比が1.5~10、好ましくは1.7~5、さらに好ましくは1.7~4である。 The woven fabric has multifilaments as warp and weft. The multifilament contains 7 to 700 single yarns with a diameter of 1 μm to 100 μm. In each cross section perpendicular to the longitudinal direction of the warp and the weft, there is a place where three or more single yarns contained in the warp and the weft are laminated in the thickness direction of the woven fabric (vertical direction in FIG. 3), and the warp is The aspect ratio of the cross section of the weft is 1.5 to 10, preferably 1.7 to 5, and more preferably 1.7 to 4.
 図2,図3を参照してより具体的に説明する。図2の織物11は、経糸31と緯糸32とを有し、経糸31と緯糸32のそれぞれがマルチフィラメントである。ただし、織物11内の経糸および緯糸が全てマルチフィラメントである必要はなく、一部がモノフィラメントであってもよい。また、マルチフィラメントである経糸31または緯糸32は、全て同じ構造および組成である必要はなく、織物11は、構造または組成の異なる複数種類のマルチフィラメントを含んでいてもよい。また、1本のマルチフィラメントを構成する単糸は、全て同じ構造および組成である必要はなく、マルチフィラメントは、構造または組成の異なる複数の単糸を含んでいてもよい。 A more specific explanation will be given with reference to FIGS. 2 and 3. The woven fabric 11 of FIG. 2 has a warp 31 and a weft 32, and each of the warp 31 and the weft 32 is a multifilament. However, the warp and weft in the woven fabric 11 do not have to be all multifilaments, and some of them may be monofilaments. Further, the warp 31 or the weft 32 which is a multifilament does not have to have the same structure and composition, and the woven fabric 11 may contain a plurality of types of multifilaments having different structures or compositions. Further, the single yarns constituting one multifilament do not have to have the same structure and composition, and the multifilament may include a plurality of single yarns having different structures or compositions.
 経糸31に垂直なA-A断面および緯糸32に垂直なB-B断面における形状について説明する。両断面についての説明は共通するので、図3にはA-A断面を示し、B-B断面の図示および説明は省略する。経糸31は複数の単糸4を含む。経糸31のアスペクト比は、その厚みHと幅LからL/Hで表される。緯糸32についても同様である。 The shapes in the AA cross section perpendicular to the warp 31 and the BB cross section perpendicular to the weft 32 will be described. Since the description of both cross sections is common, FIG. 3 shows the AA cross section, and the illustration and description of the BB cross section are omitted. The warp 31 includes a plurality of single yarns 4. The aspect ratio of the warp 31 is represented by its thickness H and width L to L / H. The same applies to the weft thread 32.
 経糸および緯糸の断面のアスペクト比が1.5以上であることで、単糸間に均一に原水が透過し、除去率およびろ過寿命が向上する。経糸および緯糸の断面のアスペクト比が10以下であることで、織物の目ズレが抑制され、巻囲体内に均等に空隙が分布するため、除去率およびろ過寿命が向上する。 When the aspect ratio of the cross section of the warp and weft is 1.5 or more, the raw water permeates uniformly between the single yarns, and the removal rate and the filtration life are improved. When the aspect ratio of the cross section of the warp and the weft is 10 or less, the misalignment of the woven fabric is suppressed, and the voids are evenly distributed in the winding body, so that the removal rate and the filtration life are improved.
 経糸、緯糸を構成する単糸4の直径が1μm以上であることで、単糸間に適切な広さの空隙が生じる。この空隙があることで、マルチフィラメント間より単糸間に優先的に原水を通過させることができる。繊維束の中心付近の単糸内部に担持された金属酸化物が対象物質の吸着に効率的に寄与することが可能となるので、除去対象物質の高除去率、ろ過寿命の長寿命化を実現できる。単糸の直径dは、好ましくは5μm以上、さらに好ましくは10μm以上である。 When the diameter of the single yarn 4 constituting the warp and weft is 1 μm or more, a gap having an appropriate width is generated between the single yarns. Due to the presence of this gap, raw water can be preferentially passed between the single yarns rather than between the multifilaments. Since the metal oxide supported inside the single yarn near the center of the fiber bundle can efficiently contribute to the adsorption of the target substance, a high removal rate of the target substance and a long filtration life are realized. it can. The diameter d of the single yarn is preferably 5 μm or more, more preferably 10 μm or more.
 また、単糸直径dは100μm以下、好ましくは60μm以下、さらに好ましくは45μm以下である。単糸径dが100μm以下であることで、単糸が原水と接する面積を大きくすることができ、吸着速度を大きくすることができると。また、単糸内部に担持された金属酸化物が対象物質の吸着に効率的に寄与することができるので、フィルタの寿命を長期化できる。 The single yarn diameter d is 100 μm or less, preferably 60 μm or less, and more preferably 45 μm or less. When the single yarn diameter d is 100 μm or less, the area where the single yarn comes into contact with the raw water can be increased, and the adsorption rate can be increased. Further, since the metal oxide supported on the inside of the single yarn can efficiently contribute to the adsorption of the target substance, the life of the filter can be extended.
 経糸、緯糸を構成する単糸は7本以上であり、12本以上が好ましく、24本以上がさらに好ましい。7本以上であることで、単糸間に原水を均一に透過させるために必要な、1インチ当たりの経糸、緯糸の本数を少なくすることができ、結果として経糸、緯糸の交点が少なくなり、原水との接触面積を大きくでき、繊維束の中心付近の単糸内部に担持された金属酸化物が対象物質の吸着に効率的に寄与することが可能となるので、除去率、ろ過寿命が向上する。 The number of single yarns constituting the warp and weft is 7 or more, preferably 12 or more, and more preferably 24 or more. By having 7 or more yarns, it is possible to reduce the number of warp yarns and weft yarns per inch required for uniform permeation of raw water between single yarns, and as a result, the number of intersections of warp yarns and weft yarns is reduced. Since the contact area with raw water can be increased and the metal oxide supported inside the single yarn near the center of the fiber bundle can efficiently contribute to the adsorption of the target substance, the removal rate and the filtration life are improved. To do.
 また、経糸、緯糸を構成する単糸は700本以下であり、400本以下であることが好ましく、150本以下であることが更に好ましい。700本以下であることで、繊維束間ではなく単糸間に原水が流動しやすくなり、また、単糸間に原水が流動した際の圧損の過度な上昇を低減できる。 Further, the number of single yarns constituting the warp and weft is 700 or less, preferably 400 or less, and more preferably 150 or less. When the number of yarns is 700 or less, the raw water easily flows between the single yarns instead of between the fiber bundles, and an excessive increase in pressure loss when the raw water flows between the single yarns can be reduced.
 織物を構成する経糸、および、緯糸はそれぞれ撚度として0T/m以上、100T/m以下であることが好ましく、50T/m以下であることがより好ましく、10T/m以下であることが更に好ましい。100T/m以下であることで、単糸間の空隙を確保することができ、原水を通水した際に、マルチフィラメント間ではなく単糸間を優先的に通水させることができ、繊維束の中心付近の単糸内部に担持された金属酸化物が対象物質の吸着に効率的に寄与することが可能となるので、除去対象物質の高除去率、ろ過寿命の長寿命化を実現できる。 The warp and weft that make up the woven fabric have twists of 0 T / m or more and 100 T / m or less, more preferably 50 T / m or less, and even more preferably 10 T / m or less, respectively. When it is 100 T / m or less, a gap between single yarns can be secured, and when raw water is passed, water can be preferentially passed between single yarns instead of between multifilaments, and a fiber bundle can be passed. Since the metal oxide supported inside the single yarn near the center of the yarn can efficiently contribute to the adsorption of the target substance, a high removal rate of the target substance to be removed and a long filtration life can be realized.
 また、織物の経糸、または、緯糸の密度を示す値として、次式に示すカバーファクターCFがある。 Further, as a value indicating the density of the warp or weft of the woven fabric, there is a cover factor CF shown in the following equation.
 CF=N×(D)1/2
N(本/inch):織物を構成する経糸、または、緯糸の1inch当たりのメッシュ個数、D:織物を構成する経糸または緯糸のマルチフィラメント径(dtex)
 経糸、緯糸におけるそれぞれのカバーファクターの合計値は1200以上であり、1300以上であることがより好ましく、1800以上であることが更に好ましい。また、2200以下であることが好ましく、2100以下であることがより好ましく、2000以下であることが更に好ましい。
CF = N × (D) 1/2
N (book / inch): the number of meshes of the warp or weft that constitutes the woven fabric per inch, D: the multifilament diameter (dtex) of the warp or weft that constitutes the woven fabric.
The total value of each cover factor in the warp and weft is 1200 or more, more preferably 1300 or more, and further preferably 1800 or more. Further, it is preferably 2200 or less, more preferably 2100 or less, and further preferably 2000 or less.
 CFの合計値が1200以上であることにより、隣り合う経糸間の間隙、および、隣り合う緯糸間の間隙を小さくでき、原水が単糸間を優先的に流動し、かつ、有効芯材に該織物を巻囲し、通水した際にも適度な通水抵抗を付与することができるので流量の不均一性が生じにくく、除去率とろ過寿命を大きくできる。CFの合計値が2200以下であることにより、単糸間の空隙を確保し、通水抵抗を適度に保つことができる。 When the total value of CF is 1200 or more, the gap between the adjacent warp yarns and the gap between the adjacent weft yarns can be reduced, the raw water flows preferentially between the single yarns, and the effective core material is the same. Since it is possible to surround the woven fabric and impart an appropriate water flow resistance even when water is passed through it, non-uniformity of the flow rate is unlikely to occur, and the removal rate and the filtration life can be increased. When the total value of CF is 2200 or less, it is possible to secure a gap between single yarns and maintain an appropriate water flow resistance.
 一般的なフィルタにおいては、マルチフィラメントの内部の空隙、つまり単糸の間隙よりも、繊維束の間隙に優先的に原水が流れる。そのため、原水に対する単糸の接触面積は、単糸の表面積の合計よりもはるかに小さい。つまり、個々の単糸が吸着能を有していても、繊維束の中心近くに存在する単糸は原水内の成分除去に十分に寄与することができない。また、繊維束の外側の単糸に集中して原水内の成分が付着するので、フィルタ全体の吸着材がその機能を発揮する前に、フィルタの寿命が尽きる。 In a general filter, raw water flows preferentially in the gaps inside the multifilament, that is, in the gaps between the fiber bundles rather than the gaps between the single yarns. Therefore, the contact area of the single yarn with the raw water is much smaller than the total surface area of the single yarn. That is, even if each single yarn has an adsorptive capacity, the single yarn existing near the center of the fiber bundle cannot sufficiently contribute to the removal of components in the raw water. In addition, since the components in the raw water adhere to the single yarn on the outside of the fiber bundle, the life of the filter expires before the adsorbent of the entire filter exerts its function.
 これに対して、織物が上記の構造を有することで、マルチフィラメントの内部を原水が通過しやすくなり、高い吸着速度、大きな吸着容量、長い寿命を持つフィルタが実現される。 On the other hand, since the woven fabric has the above structure, raw water easily passes through the inside of the multifilament, and a filter having a high adsorption rate, a large adsorption capacity, and a long life is realized.
 4.繊維状吸着材
 マルチフィラメントである織物における経糸または緯糸の少なくとも一方は、単糸として繊維状吸着材を含む。繊維状吸着材は、液体中のイオンを吸着する。経糸および緯糸の両方が繊維状吸着材を含むことが好ましい。織物において、繊維状吸着材を含むマルチフィラメントは、経糸および緯糸の一部であってもよいし、全てであってもよい。また、繊維状吸着材であるのは、マルチフィラメントに含まれる単糸の一部であってもよいし、全てであってもよい。吸着容量および吸着速度を高めるには、織物に含まれる全ての経糸および緯糸を構成する単糸が繊維状吸着材であることが好ましいが、強度またはその他の性能の向上のために、織物には吸着能を持たないマルチフィラメントまたは単糸が含まれていてもよい。
4. Fibrous Adsorbent At least one of the warp or weft in a woven fabric that is a multifilament contains a fibrous adsorbent as a single yarn. The fibrous adsorbent adsorbs ions in the liquid. It is preferable that both the warp and the weft contain a fibrous adsorbent. In the woven fabric, the multifilament containing the fibrous adsorbent may be a part or all of the warp and weft. Further, the fibrous adsorbent may be a part or all of the single yarn contained in the multifilament. In order to increase the adsorption capacity and the adsorption rate, it is preferable that the single yarns constituting all the warp and weft yarns contained in the woven fabric are fibrous adsorbents, but in order to improve the strength or other performance, the woven fabric is used. It may contain a multifilament or a single yarn having no adsorptive capacity.
 繊維状吸着材または吸着性能を持たない単糸(特に区別しない場合は単に「単糸」と呼ぶ)の断面形状は具体的な例に限定されるものではなく、円形、異形のいずれであってもよい。異形とは、円以外の形状である。異形としては、例えば多角6形(好ましくは3~6角形);偏平形;レンズ型;三葉、六葉等のいわゆるマルチローブと呼ばれる複数(好ましくは3~8個)の凸部と同数の凹部とが交互に並んだ形状等が採用可能である。 The cross-sectional shape of the fibrous adsorbent or a single yarn having no adsorption performance (referred to simply as "single yarn" unless otherwise specified) is not limited to a specific example, and may be circular or irregular. May be good. A variant is a shape other than a circle. The irregular shape is, for example, polygonal hexagon (preferably 3 to hexagonal); flat shape; lens type; the same number as a plurality of (preferably 3 to 8) convex parts called multilobes such as three leaves and hexagons. A shape in which recesses are alternately arranged can be adopted.
 異形断面を持つ単糸は大きな比表面積を有する。また、異形断面を持つ単糸を含むフィルタでは、単糸間に広い間隙を確保することができるので、流動抵抗が小さくなる。また、原水との接触面積が増加するために、高い吸着性能が得られる。 A single yarn with a modified cross section has a large specific surface area. Further, in a filter including a single yarn having a modified cross section, a wide gap can be secured between the single yarns, so that the flow resistance becomes small. Further, since the contact area with the raw water is increased, high adsorption performance can be obtained.
 断面の異形度は1.2以上6.0以下が好ましい。異形度とは、単糸4の断面を包含する最小の円の直径R1を単糸4の断面内に収まる最大の円の直径R2で除して得られる値(R1/R2)である(図4参照)。異形度が1.2以上であることで、単糸の比表面積が大きくなるので、原水との接触面積を増加させることができる。また、異形度が6.0以下であることで、糸切れが起こりにくい。 The degree of deformation of the cross section is preferably 1.2 or more and 6.0 or less. The degree of deformation is a value (R1 / R2) obtained by dividing the diameter R1 of the smallest circle including the cross section of the single yarn 4 by the diameter R2 of the largest circle that fits within the cross section of the single yarn 4 (FIG. 4). When the degree of deformation is 1.2 or more, the specific surface area of the single yarn becomes large, so that the contact area with raw water can be increased. Further, when the degree of deformation is 6.0 or less, thread breakage is unlikely to occur.
 繊維状吸着材には、例えば、イオンを除去可能なイオン交換繊維や、ホウ素、ヒ素、リン、フッ素イオン等の無機物イオンを吸着することで除去可能な金属粒子担持繊維がある。 Fibrous adsorbents include, for example, ion exchange fibers capable of removing ions and metal particle-supporting fibers that can be removed by adsorbing inorganic ions such as boron, arsenic, phosphorus, and fluoride ions.
 イオン交換繊維は、イオン交換基を有する高分子化合物を含有する。 The ion exchange fiber contains a polymer compound having an ion exchange group.
 イオン交換基を有する高分子化合物は、分子内にスルホン酸基、カルボキシ基、リン酸基、ヒドロキシル基などの陽イオン交換基、または四級アンモニウム塩基、三級アミノ基などの陰イオン交換基を含む。高分子化合物の膨潤を抑制するために、分子鎖同士は多点的に共有結合で架橋されていてもよい。 A polymer compound having an ion exchange group has a cation exchange group such as a sulfonic acid group, a carboxy group, a phosphoric acid group or a hydroxyl group, or an anion exchange group such as a quaternary ammonium base or a tertiary amino group in the molecule. Including. In order to suppress the swelling of the polymer compound, the molecular chains may be cross-linked by covalent bonds at multiple points.
 架橋剤は、カルボキシ基を有するモノマーと共に共重合することで膨潤が抑制され、イオン交換繊維のカチオン交換基の密度が大きくなり、イオン交換容量が向上する。 The cross-linking agent is copolymerized with a monomer having a carboxy group to suppress swelling, increase the density of cation exchange groups in the ion exchange fiber, and improve the ion exchange capacity.
 架橋剤としては、パラホルムアルデヒド、2官能アクリルアミド、2官能アクリレート、2官能メタクリレート、ジビニルベンゼンが好適に用いられる。2官能アクリルアミドとしては例えば、N,N’-メチレンビスアクリルアミドが挙げられる。2官能アクリレートとしては例えば、2―ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ポリエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、などが挙げられる。2官能メタクリレートとしては例えばエチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレートなどが挙げられる。 As the cross-linking agent, paraformaldehyde, bifunctional acrylamide, bifunctional acrylate, bifunctional methacrylate and divinylbenzene are preferably used. Examples of bifunctional acrylamide include N, N'-methylenebisacrylamide. Examples of the bifunctional acrylate include 2-hydroxy-3-acryloyloxypropyl methacrylate, polyethylene glycol diacrylate, 1,6-hexanediol diacrylate, and the like. Examples of the bifunctional methacrylate include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and polyethylene glycol dimethacrylate.
 イオン交換繊維について、イオン交換基を有する高分子化合物は、例えば、カルボキシ基を有するビニルモノマーを、基材に対してグラフト重合することによって形成される。カルボキシ基を有する高分子化合物とは分子内に複数のカルボキシ基を有する化合物であって、アクリル酸、メタクリル酸の単独重合体、共重合体、アクリル酸エステル、メタクリル酸エステル、および無水マレイン酸の共重合体を加水分解したポリマーを挙げることができる。 Regarding ion-exchange fibers, a polymer compound having an ion-exchange group is formed, for example, by graft-polymerizing a vinyl monomer having a carboxy group with a substrate. A polymer compound having a carboxy group is a compound having a plurality of carboxy groups in the molecule, and is composed of a homopolymer of acrylic acid and methacrylic acid, a copolymer, an acrylic acid ester, a methacrylic acid ester, and maleic anhydride. A polymer obtained by hydrolyzing a copolymer can be mentioned.
 イオン交換繊維のイオン交換容量は1.0meq/g以上であることが好ましく、1.5meq/g以上であることがより好ましい。1.0meq/g以上であることで、イオン交換繊維として実用できる程度の寿命を実現することができる。また、イオン交換容量は8.0meq/g以下であることが好ましく、6.0meq/g以下であることがより好ましい。イオン交換容量が8.0meq/g以下であることで、イオン交換基を有する高分子化合物が過度に膨潤することが抑制されるので、通水時の目詰りが生じにくくなる。 The ion exchange capacity of the ion exchange fiber is preferably 1.0 meq / g or more, and more preferably 1.5 meq / g or more. When it is 1.0 meq / g or more, a life that can be practically used as an ion exchange fiber can be realized. The ion exchange capacity is preferably 8.0 meq / g or less, and more preferably 6.0 meq / g or less. When the ion exchange capacity is 8.0 meq / g or less, excessive swelling of the polymer compound having an ion exchange group is suppressed, so that clogging during water flow is less likely to occur.
 図5に示すように、金属粒子担持繊維2は、イオン交換基を有する高分子化合物の層21と、前記層21の少なくとも表面に担持される金属粒子23とを含有する。 As shown in FIG. 5, the metal particle-supporting fiber 2 contains a layer 21 of a polymer compound having an ion exchange group and metal particles 23 supported on at least the surface of the layer 21.
 図5に示すように、金属粒子担持繊維2は、中心基材24を有していてもよい。中心基材24を有することで、金属粒子担持繊維2の強度を高く維持し、破断を抑制できる。中心基材24は金属粒子23を含まない。イオン交換繊維に関する説明で述べた基材と中心基材24とは、同種であってもよいし、異種であってもよく、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリカーボネート等のポリエステル、ポリアミド、芳香族ポリアミド、アクリル、ポリアクリロニトリル、ポリ塩化ビニル、PTFE、ポリフッ化ビニリデン等のハロゲン化ポリオレフィンなどの合成繊維、および、羊毛、絹、綿などの天然繊維、またはこれらの混紡糸若しくは混繊糸を用いることができる。これらの繊維の中でも、繊維構造物として、特にポリアミド、ポリエステルが好ましく、ポリアミドでは特にナイロン、ポリエステルでは特にポリエチレンテレフタレート(PET)が好ましい。 As shown in FIG. 5, the metal particle-supporting fiber 2 may have a central base material 24. By having the central base material 24, the strength of the metal particle-supporting fiber 2 can be maintained high and breakage can be suppressed. The central base material 24 does not contain the metal particles 23. The base material and the central base material 24 described in the description of the ion exchange fiber may be of the same type or different types, and may be, for example, a polyolefin such as polyethylene or polypropylene, a polyester such as polyethylene terephthalate or polycarbonate, or the like. Synthetic fibers such as polyamide, aromatic polyamide, acrylic, polyacrylonitrile, polyvinyl chloride, PTFE, halogenated polyolefin such as polyvinylidene fluoride, and natural fibers such as wool, silk and cotton, or blended yarns or blended fibers thereof. Threads can be used. Among these fibers, polyamide and polyester are particularly preferable as the fiber structure, nylon is particularly preferable for polyamide, and polyethylene terephthalate (PET) is particularly preferable for polyester.
 金属粒子23は、イオン交換基を有する高分子化合物の層21の少なくとも少なくとも表面に担持される。また、金属粒子23は、イオン交換基を有する高分子化合物の層21の内部にも担持されていてもよい。層21の内部に金属粒子23が存在することで、表面のみに担持されるよりも、金属粒子担持繊維2の単位質量当たりの金属粒子23の質量が大きくなると共に、金属粒子23がイオン交換基を有する高分子化合物の層21から脱離しにくくなる。 The metal particles 23 are supported on at least at least the surface of the layer 21 of the polymer compound having an ion exchange group. Further, the metal particles 23 may also be supported inside the layer 21 of the polymer compound having an ion exchange group. Since the metal particles 23 are present inside the layer 21, the mass of the metal particles 23 per unit mass of the metal particle-supporting fibers 2 is larger than that of being supported only on the surface, and the metal particles 23 are ion-exchange groups. It becomes difficult to separate from the layer 21 of the polymer compound having.
 金属粒子23、あるいはその前駆体が、イオン交換基と結合することで、金属粒子が効率的に層21に担持される。イオン交換基と金属粒子23の結合の種類は特に限定されないが、例えば、イオン結合、配位結合、金属結合、水素結合、ファンデルワールス力による結合などが例示される。 The metal particles 23 or their precursors are bonded to the ion exchange group so that the metal particles are efficiently supported on the layer 21. The type of bond between the ion exchange group and the metal particle 23 is not particularly limited, and examples thereof include an ionic bond, a coordination bond, a metal bond, a hydrogen bond, and a van der Waals force bond.
 イオン交換基を有する高分子化合物はセリウム水酸化物の金属粒子を担持させる観点からは、カルボキシル基、スルホ基、リン酸基などのアニオン性のイオン交換基を有する高分子化合物が好ましく、ポリスチレンスルホン酸や、ポリアクリル酸、ポリメタクリル酸、または、前記アニオン性のイオン交換基を有する高分子化合物を含む共重合体、などが挙げられる。セリウム水酸化物の金属粒子は、後述するが、イオン除去性能の観点から特に好ましい金属粒子である。 From the viewpoint of supporting the metal particles of cerium hydroxide, the polymer compound having an ion exchange group is preferably a polymer compound having an anionic ion exchange group such as a carboxyl group, a sulfo group, or a phosphate group, and polystyrene sulfone is preferable. Examples thereof include acids, polyacrylic acid, polymethacrylic acid, and copolymers containing the above-mentioned polymer compound having an anionic ion exchange group. As will be described later, the metal particles of cerium hydroxide are particularly preferable metal particles from the viewpoint of ion removal performance.
 イオン交換基の官能基密度C(meq/g)は、後述の織物において、0.5(meq/g)以上であることが好ましく、1.0(meq/g)以上であることが更に好ましい。0.5(meq/g)以上であることで、担持された金属が通水中にも剥離しにくくなる。C(meq/g)は、8.0(meq/g)であることが好ましく、5(meq/g)以下であることが更に好ましい。8.0(meq/g)以下であることで、過度に膨潤することが抑制されるので、通水時の目詰まりが生じにくくなる。 The functional group density C (meq / g) of the ion exchange group is preferably 0.5 (meq / g) or more, and more preferably 1.0 (meq / g) or more in the woven fabric described later. .. When it is 0.5 (meq / g) or more, the supported metal is less likely to be peeled off even when water is passed. C (meq / g) is preferably 8.0 (meq / g), more preferably 5 (meq / g) or less. When it is 8.0 (meq / g) or less, excessive swelling is suppressed, so that clogging during water flow is less likely to occur.
 C(meq/g)は、次のように測定する。織物を強酸性水溶液に浸漬させて金属粒子を溶解させ、残存物(繊維状構造物)を水洗し、50℃で3時間、真空乾燥し、絶乾質量W(g)を測定する。その後、該残存物に対して、中和滴定を用いた常法により、絶乾質量W(g)基準のイオン交換容量を測定し、C(meq/g)とする。 C (meq / g) is measured as follows. The woven fabric is immersed in a strongly acidic aqueous solution to dissolve the metal particles, the residue (fibrous structure) is washed with water, vacuum dried at 50 ° C. for 3 hours, and the absolute dry mass W (g) is measured. Then, the ion exchange capacity based on the absolute dry mass W (g) is measured with respect to the residue by a conventional method using neutralization titration, and the value is C (meq / g).
 金属粒子23を構成する金属は、吸着対象によって任意に選択することができる。例えば、金属粒子は、銀、銅、鉄、チタン、ジルコニウムおよびセリウムからなる群より選ばれる少なくとも1種の金属が挙げられる。例えば、吸着対象が、ホウ素、ヒ素、リン、フッ素イオンである場合、金属酸化物、金属水酸化物およびそれらの水和物が挙げられる。 The metal constituting the metal particles 23 can be arbitrarily selected depending on the adsorption target. For example, the metal particles include at least one metal selected from the group consisting of silver, copper, iron, titanium, zirconium and cerium. For example, when the adsorption target is boron, arsenic, phosphorus, or fluoride ion, metal oxides, metal hydroxides, and hydrates thereof can be mentioned.
 吸着容量の点から、金属粒子は、金属水酸化物および金属含水酸化物の少なくとも一方を含有することが好ましい。金属水酸化物、金属含水酸化物としては、例えば、希土類元素水酸化物、希土類元素含水酸化物、水酸化ジルコニウム、含水酸化ジルコニウム、水酸化鉄、含水酸化鉄が挙げられる。希土類元素としては、例えば、元素の周期表による原子番号21番のスカンジウムScと39番のイットリウムY、57番から71番のランタノイド元素、すなわちランタンLa、セリウムCe、プラセオジウムPr、ネオジウムNd、プロメチウムPm、サマリウムSm、ユウロピウムEu、カドリニウムGd、テルビウムTb、ジスプロシウムDy、ホルミウムHo、エルビウムEr、ツリウムTm、イッテルビウムYb、ルテチウムLuが該当する。なかでもイオン除去性能の観点から好ましい元素はセリウムであり、4価のセリウムがより好ましい。これらの水酸化物及び/又は含水酸化物の混合体も有用である。 From the viewpoint of adsorption capacity, the metal particles preferably contain at least one of a metal hydroxide and a metal hydroxide. Examples of the metal hydroxide and the metal hydroxide include a rare earth element hydroxide, a rare earth element hydroxide, a zirconium hydroxide, a zirconium hydroxide, an iron hydroxide, and an iron hydroxide. Examples of rare earth elements include scandium Sc with atomic number 21 and ytterbium Y with atomic number 39, and lanthanoid elements with atomic numbers 57 to 71, that is, lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd, and promethium Pm. , Samarium Sm, Europium Eu, Cadrinium Gd, Terbium Tb, Dysprosium Dy, Holmium Ho, Elbium Er, Thurium Tm, Ytterbium Yb, Lutetium Lu. Among them, cerium is preferable from the viewpoint of ion removal performance, and tetravalent cerium is more preferable. A mixture of these hydroxides and / or hydroxides is also useful.
 金属粒子の含水率は、1質量%以上であることが好ましく、5質量%以上であることがより好ましい。含水率が1質量%以上であることで、粒子内部にも吸着サイトを付与でき、十分な吸着能を有する。また、含水率は30質量%以下であることが好ましく、20質量%以下であることがより好ましい。含水率が30質量%以下であることで、粒子内部の吸着サイトの密度を大きくでき、十分な吸着能を有する。 The water content of the metal particles is preferably 1% by mass or more, and more preferably 5% by mass or more. When the water content is 1% by mass or more, adsorption sites can be imparted to the inside of the particles, and the particles have sufficient adsorption ability. The water content is preferably 30% by mass or less, and more preferably 20% by mass or less. When the water content is 30% by mass or less, the density of the adsorption sites inside the particles can be increased, and the particles have sufficient adsorption ability.
 金属粒子の粒子径は1nm以上1000nm以下であることが好ましい。なお、粒子の径とは、各粒子が分散している状態であれば分散した状態(1次粒子)の粒子径のことをいい、粒子が凝集している状態であれば凝集した状態(2次粒子)の粒子径のことをいう。金属粒子の粒子径は、500nm以下であることが好ましく、100nm以下であることがより好ましく、50nm以下であることがさらに好ましい。粒子径が1000nmを超えると、粒子の外表面に存在する吸着サイトが少なくなり、十分な吸着能を発揮できない。また、金属粒子の粒子径は、5nm以上であることが好ましく、10nm以上であることがより好ましく、15nm以上であることがさらに好ましい。吸着材作製時の粒子の凝集を考慮すると、粒子径の下限は1nmである。 The particle size of the metal particles is preferably 1 nm or more and 1000 nm or less. The particle size means the particle size of the dispersed state (primary particles) if each particle is dispersed, and the agglomerated state (2) if the particles are agglomerated. The particle size of the subatomic particle). The particle size of the metal particles is preferably 500 nm or less, more preferably 100 nm or less, and even more preferably 50 nm or less. When the particle size exceeds 1000 nm, the number of adsorption sites existing on the outer surface of the particles is reduced, and sufficient adsorption ability cannot be exhibited. The particle size of the metal particles is preferably 5 nm or more, more preferably 10 nm or more, and even more preferably 15 nm or more. Considering the aggregation of particles during the production of the adsorbent, the lower limit of the particle size is 1 nm.
 織物中の金属粒子の担持量は、5質量%以上であり、8質量%以上であることが好ましく、15質量%以上であることが更に好ましい。金属粒子の担持量が5質量%以上であることで、吸着繊維として実用できる程度の寿命を実現することができる。一方で、金属粒子の担持量は、60質量%以下であり、50質量%以下であることが好ましく、40質量%以下であることが更に好ましい。金属粒子の担持量が60質量%以下であることで、通水時の金属粒子の剥離、または、金属粒子の剥離に伴うフィルタの目詰まりを抑制することができる。 The amount of metal particles supported in the woven fabric is 5% by mass or more, preferably 8% by mass or more, and more preferably 15% by mass or more. When the amount of metal particles supported is 5% by mass or more, a life that can be practically used as an adsorption fiber can be realized. On the other hand, the amount of metal particles supported is 60% by mass or less, preferably 50% by mass or less, and more preferably 40% by mass or less. When the amount of the metal particles carried is 60% by mass or less, it is possible to suppress the peeling of the metal particles during water flow or the clogging of the filter due to the peeling of the metal particles.
 金属粒子の担持量の測定方法を以下に示す。まず、の金属粒子担持繊維の質量W1を秤量する。次に、吸着材を強アルカリ・強酸水溶液などの良溶媒に溶解するか、電気炉によって800℃以上で熱する方法を組み合わせて金属粒子を取り出し、金属粒子の質量W2を秤量する。金属粒子の担持量、すなわち、金属粒子の金属担持繊維全体に対する質量割合は(W2/W1)×100(質量部)である。 The method for measuring the amount of metal particles supported is shown below. First, the mass W1 of the metal particle-supporting fiber is weighed. Next, the metal particles are taken out by dissolving the adsorbent in a good solvent such as a strong alkali / strong acid aqueous solution or by combining a method of heating at 800 ° C. or higher with an electric furnace, and the mass W2 of the metal particles is weighed. The amount of the metal particles supported, that is, the mass ratio of the metal particles to the entire metal-supported fibers is (W2 / W1) × 100 (parts by mass).
 本発明のフィルタは、織物の経糸および緯糸に関する、単糸径、マルチフィラメントの単糸本数、断面のアスペクト比、カバーファクターの要件に加えて、織物の経糸または緯糸の少なくとも一方が単糸としてイオン交換基を有する高分子化合物の層を含むことで、通水抵抗が大きく低下しろ過性能が向上する。そのメカニズムは明らかではないが、単糸間の隣接部位がイオン交換基を持たない基材ではなく、イオン交換基を有する高分子化合物の層であるからだと考えられる。 In the filter of the present invention, in addition to the requirements of single yarn diameter, number of single yarns of multifilament, aspect ratio of cross section, and cover factor for the warp and weft of the woven fabric, at least one of the warp or weft of the woven fabric is ionized as a single yarn. By including a layer of a polymer compound having an exchange group, the water flow resistance is greatly reduced and the filtration performance is improved. The mechanism is not clear, but it is considered that the adjacent site between the single yarns is not a base material having no ion exchange group but a layer of a polymer compound having an ion exchange group.
 5.浄水器
 上述のフィルタは浄水器に適用することができる。浄水器とは、原水に含まれる対象成分を除去できる構造体である。上述のフィルタを含むことで、原水中の除去対象成分を好適に除去することができ、かつ、破過するまでの十分な量の透過液を得ることができる。
5. Water purifier The above filters can be applied to water purifiers. A water purifier is a structure that can remove target components contained in raw water. By including the above-mentioned filter, the component to be removed in the raw water can be suitably removed, and a sufficient amount of permeated liquid until it breaks can be obtained.
 浄水器としては、ポット型等の重力式、蛇口式等、形状は限定されない。上述のようにこのように低い通水抵抗が必要である重力式浄水器等にも使用できる。 The shape of the water purifier is not limited, such as a pot type or other gravity type or faucet type. As described above, it can also be used for gravity type water purifiers and the like that require low water flow resistance.
 また、上述のフィルタは、図1に示すフィルタ16とそれを収容するケーシング17のように、単独で浄水器として使用することもできるし、他のフィルタまたは分離膜と組み合わせてもよい。 Further, the above-mentioned filter can be used alone as a water purifier or in combination with another filter or a separation membrane, such as the filter 16 shown in FIG. 1 and the casing 17 accommodating the filter 16.
 図6に、中空糸膜とフィルタとを備える浄水器を例示する。図6に示す浄水器6は、フィルタ16、中空糸膜62、ケーシング61、封止材63を備える。 FIG. 6 illustrates a water purifier provided with a hollow fiber membrane and a filter. The water purifier 6 shown in FIG. 6 includes a filter 16, a hollow fiber membrane 62, a casing 61, and a sealing material 63.
 フィルタ16は上述したように芯材13および巻囲体10を備える。芯材13の上部はケーシング61の上部において開口している(給水口611)。また、芯材13および巻囲体10の底部、つまりフィルタ16の底部は封止材63により封止されている。フィルタ16の上部は、ケーシング61の上蓋により封止されている。 The filter 16 includes a core material 13 and a winding body 10 as described above. The upper part of the core material 13 is open at the upper part of the casing 61 (water supply port 611). Further, the bottom of the core material 13 and the surrounding body 10, that is, the bottom of the filter 16 is sealed by the sealing material 63. The upper part of the filter 16 is sealed by the upper lid of the casing 61.
 中空糸膜62はケーシング61内でフィルタ16の下方に配置される。中空糸膜62はその両端が、ケーシング61の底部においてに開口している(取水口612)。 The hollow fiber membrane 62 is arranged below the filter 16 in the casing 61. Both ends of the hollow fiber membrane 62 are open at the bottom of the casing 61 (water intake 612).
 ケーシング61は全体としては中空の円柱状の部材であり、フィルタ16および中空糸膜62を内部に収容する。ケーシング61は、その上部と下部に、それぞれ芯材13および中空糸膜62に連なる開口を有する。 The casing 61 is a hollow columnar member as a whole, and houses the filter 16 and the hollow fiber membrane 62 inside. The casing 61 has openings at the upper part and the lower part thereof, which are connected to the core material 13 and the hollow fiber membrane 62, respectively.
 6.浄水方法
 上述のフィルタは浄水に好適である。浄水方法は、フィルタに原水を通過させることを含めばよい。原水としては、水が好適であり、水道水や地下水が例示される。特に、上述のフィルタは、水中の無機イオンの除去に好適に用いられる。無機イオンとしては、硬度成分および重金属イオンが挙げられる。硬度成分として、具体的にはカルシウムイオンとマグネシウムイオンが挙げられ、重金属イオンとは、比重が4以上の金属元素のことであって、具体的には、鉛、水銀、ヒ素、銅、カドミウム、クロム、ニッケル、マンガン、コバルト、亜鉛などが挙げられる。
6. Water purification method The above-mentioned filter is suitable for water purification. The water purification method may include passing raw water through the filter. Water is preferable as the raw water, and tap water and groundwater are exemplified. In particular, the above-mentioned filter is suitably used for removing inorganic ions in water. Examples of inorganic ions include hardness components and heavy metal ions. Specific examples of the hardness component include calcium ions and magnesium ions. Heavy metal ions are metal elements having a specific gravity of 4 or more, and specifically, lead, mercury, arsenic, copper, cadmium, etc. Examples include chromium, nickel, manganese, cobalt and zinc.
 図1の巻囲体では、原水はケーシング17上部の給水口(図示せず)から有孔芯材13に入り、有孔芯材13の側面の孔14を通って巻囲体10へと移動する。原水が巻囲体10の織物11の間を通過する間に原水に含まれる溶質が除かれる。透過水は巻囲体の側面から巻囲体とケーシング17の間の空間へ流れ、ケーシング17の下部の取出口(図示せず)からケーシング17外に流出する。図1に示すように、巻囲体10では、径方向がろ過方向と一致する。 In the surrounding body of FIG. 1, raw water enters the perforated core material 13 from the water supply port (not shown) at the upper part of the casing 17 and moves to the surrounding body 10 through the holes 14 on the side surface of the perforated core material 13. The solute contained in the raw water is removed while the raw water passes between the fabrics 11 of the surrounding body 10. The permeated water flows from the side surface of the surrounding body to the space between the surrounding body and the casing 17, and flows out of the casing 17 from an outlet (not shown) at the lower part of the casing 17. As shown in FIG. 1, in the winding body 10, the radial direction coincides with the filtration direction.
 図6に示す形態では、原水はケーシング61の上部から芯材13に入り、巻囲体10を通過する。巻囲体10において原水中の成分が吸着され、得られた透過水はさらに中空糸膜62によってろ過される。中空糸膜62を透過した水は、中空糸膜62の内部を通ってケーシング61の下部から排出される。 In the form shown in FIG. 6, the raw water enters the core material 13 from the upper part of the casing 61 and passes through the surrounding body 10. The components in the raw water are adsorbed in the winding body 10, and the obtained permeated water is further filtered by the hollow fiber membrane 62. The water that has passed through the hollow fiber membrane 62 passes through the inside of the hollow fiber membrane 62 and is discharged from the lower part of the casing 61.
 7.繊維状吸着材の製造方法
 まず、イオン交換繊維の製造方法について述べる。
7. Method for producing fibrous adsorbent First, a method for producing an ion exchange fiber will be described.
 基材である繊維は溶融紡糸や電界紡糸、湿式紡糸によって作製できる。極細の複数の繊維が束になった構造を得るには、海島溶融紡糸法を用い、基材を島成分とし、島成分よりもアルカリ水溶液に溶解しやすい成分を海成分とし、紡糸後アルカリ水溶液にて海成分のみを溶解させる方法があるが、これに限らない。 The fiber that is the base material can be produced by melt spinning, electric field spinning, or wet spinning. In order to obtain a structure in which a plurality of ultrafine fibers are bundled, the sea-island melt spinning method is used, the base material is an island component, a component that is more soluble in an alkaline aqueous solution than an island component is a sea component, and a post-spinning alkaline aqueous solution is used. There is a method of dissolving only the sea component in, but it is not limited to this.
 イオン交換基を有する高分子化合物の作製方法は以下のとおりである。 The method for producing a polymer compound having an ion exchange group is as follows.
 基材である繊維に、イオン交換基またはキレート基を付与することで、イオン交換能を有するようになる。繊維に付与されるイオン交換基としては、スルホン酸基などの強酸性カチオン交換基や、カルボキシ基、リン酸基などの弱酸性カチオン交換基が挙げられる。スルホン酸基を有するモノマーとして、スチレンスルホン酸、ビニルスルホン酸、2-アクリルアミド-2メチルプロパンスルホン酸、及びこれらのナトリウム塩、アンモニウム塩等が挙げられる。カルボキシル基を有するモノマーとして、アクリル酸、メタクリル酸等のアクリル系モノマーを挙げることができる。また、それ自体はイオン交換基及び/又はキレート基を有していないが、イオン交換基及び/又はキレート基に変換可能な官能基を有するモノマーとしては、アクリル酸エステル、メタクリル酸エステル、メタクリル酸グリシジル、スチレン、アクリロニトリル、アクロレイン、クロロメチルスチレンなどを挙げることができる。イオン交換容量の観点から、特にアクリル系モノマーを用いることが好ましい。 By imparting an ion exchange group or a chelate group to the fiber as the base material, the fiber becomes capable of ion exchange. Examples of the ion exchange group imparted to the fiber include a strongly acidic cation exchange group such as a sulfonic acid group and a weakly acidic cation exchange group such as a carboxy group and a phosphoric acid group. Examples of the monomer having a sulfonic acid group include styrene sulfonic acid, vinyl sulfonic acid, 2-acrylamide-2 methyl propane sulfonic acid, and sodium salts and ammonium salts thereof. Examples of the monomer having a carboxyl group include acrylic monomers such as acrylic acid and methacrylic acid. In addition, although the monomer itself does not have an ion exchange group and / or a chelate group, examples of the monomer having a functional group that can be converted into an ion exchange group and / or a chelate group include acrylic acid ester, methacrylic acid ester, and methacrylic acid. Examples thereof include glycidyl, styrene, acrylonitrile, achlorine, and chloromethylstyrene. From the viewpoint of ion exchange capacity, it is particularly preferable to use an acrylic monomer.
 繊維へこのような官能基を付与する方法としては、上記官能基を有するモノマーを、開始剤を用い、繊維にグラフト共重合するのが好ましいが、ガンマ線または電子線などを照射してイオン交換基を有するモノマーを繊維に共重合しても良い。イオン交換基を有するモノマーを繊維にグラフト共重合することで、繊維の内部にイオン交換基を有する高分子化合物の層が形成される。開始剤としては、過硫酸アンモニウム(APS)、アゾビスイソブチロニトリル(AIBN)、過酸化ベンゾイル(BPO)などが挙げられる。グラフト重合時には、モノマーとともに、架橋剤を添加してもよい。 As a method for imparting such a functional group to the fiber, it is preferable to graft-copolymerize the monomer having the above functional group to the fiber using an initiator, but an ion exchange group is irradiated with a gamma ray or an electron beam or the like. The monomer having the above may be copolymerized with the fiber. By graft-copolymerizing a monomer having an ion-exchange group onto a fiber, a layer of a polymer compound having an ion-exchange group is formed inside the fiber. Examples of the initiator include ammonium persulfate (APS), azobisisobutyronitrile (AIBN), benzoyl peroxide (BPO) and the like. At the time of graft polymerization, a cross-linking agent may be added together with the monomer.
 特に、開始剤として過硫酸アンモニウム(APS)や過酸化ベンゾイル(BPO)などの過酸化物を用いる場合には、還元剤として、鉄(II)塩、亜硫酸塩、スルフィン酸塩、ヒドロキシルアミンなどを同時に用いることで、より反応を促進させることができる。 In particular, when a peroxide such as ammonium persulfate (APS) or benzoyl peroxide (BPO) is used as an initiator, an iron (II) salt, a sulfite, a sulfinate, a hydroxylamine or the like is simultaneously used as a reducing agent. By using it, the reaction can be further promoted.
 その他、ラジカル重合を促進させる物質としてテトラメチルエチレンジアミン(TEMED)、エチレンジアミンテトラ酢酸(EDTA)などを添加してもよい。 In addition, tetramethylethylenediamine (TEMED), ethylenediaminetetraacetic acid (EDTA) and the like may be added as substances that promote radical polymerization.
 イオン交換基を有するモノマーを架橋剤と共に共重合することで、イオン交換基の密度が大きくなり、イオン交換容量が向上する。 By copolymerizing a monomer having an ion exchange group together with a cross-linking agent, the density of the ion exchange group is increased and the ion exchange capacity is improved.
 架橋剤としては、パラホルムアルデヒド、2官能アクリルアミド、2官能アクリレート、2官能メタクリレート、ジビニルベンゼンが好適に用いられる。2官能アクリルアミドとしては例えば、N,N’-メチレンビスアクリルアミドが挙げられる。2官能アクリレートとしては例えば、2―ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ポリエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、などが挙げられる。2官能メタクリレートとしては例えばエチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレートなどが挙げられる。 As the cross-linking agent, paraformaldehyde, bifunctional acrylamide, bifunctional acrylate, bifunctional methacrylate and divinylbenzene are preferably used. Examples of bifunctional acrylamide include N, N'-methylenebisacrylamide. Examples of the bifunctional acrylate include 2-hydroxy-3-acryloyloxypropyl methacrylate, polyethylene glycol diacrylate, 1,6-hexanediol diacrylate, and the like. Examples of the bifunctional methacrylate include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and polyethylene glycol dimethacrylate.
 次に、金属粒子担持繊維の製造方法を述べる。金属粒子担持繊維は、上述のイオン交換繊維に金属粒子を担持させることにより製造され、具体的には、
i)金属粒子の溶液
ii)金属塩の溶液
のいずれかの溶液を調製し、これをイオン交換繊維に接触させることで製造される。
Next, a method for producing the metal particle-supporting fiber will be described. The metal particle-supporting fiber is produced by supporting the metal particles on the above-mentioned ion exchange fiber, and specifically, the metal particle-supporting fiber is produced.
i) A solution of metal particles ii) A solution of a metal salt is prepared and brought into contact with an ion exchange fiber.
 上記i)では、金属粒子はナノコロイドを形成していることが好ましい。金属粒子のナノコロイド溶液にイオン交換繊維を浸漬後、余剰に付着した粒子を水洗し、金属粒子担持繊維を得る。 In i) above, it is preferable that the metal particles form nanocolloids. After immersing the ion exchange fiber in the nanocolloidal solution of the metal particles, the excess adhered particles are washed with water to obtain the metal particle-supporting fiber.
 上記ii)では、金属塩溶液を形成する金属塩の種類は特に限定されないが、上記「4.繊維状吸着材」で例示した金属のイオンを有する硝酸塩、硫酸塩、塩化物、フッ化物、臭化物、ヨウ化物、酢酸塩、炭酸塩、クロム酸塩、もしくは、上記「4.繊維状吸着材」で例示した金属の金属酸化物イオンを有する塩などが挙げられる。 In ii) above, the type of metal salt forming the metal salt solution is not particularly limited, but nitrates, sulfates, chlorides, fluorides, bromides having metal ions exemplified in "4. Fibrous adsorbent" above. , Iodide, acetate, carbonate, chromate, or salt having a metal oxide ion of the metal exemplified in the above "4. Fibrous adsorbent".
 イオン交換繊維と金属塩溶液を接触させることで、該イオン交換基に金属塩の金属イオンを吸着させ、必要に応じ、金属塩の金属イオンを酸化、または、還元することで、イオン交換繊維の表面や内部に金属酸化物、金属水酸化物、もしくは、金属単体の微粒子を析出させることができる。酸化・還元する方法は特に限定されず、化学的酸化剤・あるいは還元剤を用いる定法に加え、さらに触媒や光照射などを併用することができる。また、金属塩溶液と、イオン交換繊維を接触させた後、アルカリを溶液に添加することで、繊維の表面や内部に金属酸化物、もしくは金属含水酸化物粒子を析出させることも可能である。 By bringing the ion-exchange fiber into contact with the metal salt solution, the metal ion of the metal salt is adsorbed on the ion-exchange group, and if necessary, the metal ion of the metal salt is oxidized or reduced to form the ion-exchange fiber. Fine particles of metal oxide, metal hydroxide, or a single metal can be precipitated on the surface or inside. The method of oxidation / reduction is not particularly limited, and in addition to the conventional method using a chemical oxidizing agent or a reducing agent, a catalyst, light irradiation, or the like can be used in combination. Further, by contacting the metal salt solution with the ion exchange fiber and then adding an alkali to the solution, it is also possible to precipitate metal oxide or metal hydrous oxide particles on the surface or inside of the fiber.
 以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。また、実施例における「単糸」は全て「繊維状吸着材」である。 The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples. Further, all the "single yarns" in the examples are "fibrous adsorbents".
 <フィルタ作製>
 下記の方法で作製した織物を、外径10mm、長さ230mmの有孔芯材に厚み20mmとなるように巻囲した。該巻囲体の両端面における織物巻囲部分にエポキシ樹脂製の接着剤を塗布した。片端面の底を円盤プレートで封止し、内径54mmのケースに該巻囲体を装填し、フィルタを作製した。該ケースは、対象の原水を、巻囲体片端の有効芯材の内側から、織物巻囲層の外側に向かって通水し、織物巻囲層を透過した原水を集水し、逆の片端側より吐出させることができる構造を有する。
<Making a filter>
The woven fabric produced by the following method was wound around a perforated core material having an outer diameter of 10 mm and a length of 230 mm so as to have a thickness of 20 mm. An epoxy resin adhesive was applied to the woven fabric surrounding portions on both end faces of the surrounding body. The bottom of one end surface was sealed with a disk plate, and the enclosure was loaded into a case having an inner diameter of 54 mm to prepare a filter. In the case, the target raw water is passed from the inside of the effective core material at one end of the surrounding body toward the outside of the woven fabric surrounding layer, and the raw water that has passed through the woven fabric surrounding layer is collected, and the opposite end is collected. It has a structure that can be discharged from the side.
 <単糸の直径d>
 織物を24時間RO水(逆浸透ろ過水)に浸漬し、その後マイクロスコープで観察した時の単糸直径を10本測定し、その平均値を単糸直径とした。
<Single yarn diameter d>
The woven fabric was immersed in RO water (reverse osmosis filtered water) for 24 hours, and then the diameter of 10 single yarns when observed with a microscope was measured, and the average value was taken as the single yarn diameter.
 <経糸、または、緯糸の断面のアスペクト比>
 織物を24時間RO水(逆浸透ろ過水)に浸漬し、緯糸、または、経糸に垂直な断面をマイクロスコープで観察し、経糸、または、緯糸を構成する繊維束の断面において、厚み方向の最大長さに対する、厚み方向に垂直な方向の最大長さの比をアスペクト比とし、経糸、緯糸の繊維束に対して10本ずつ測定し、それぞれの平均値をアスペクト比とした。
<Aspect ratio of cross section of warp or weft>
The woven fabric is immersed in RO water (back-penetration filtered water) for 24 hours, and the cross section perpendicular to the weft or warp is observed with a microscope, and the maximum in the thickness direction in the cross section of the warp or the fiber bundle constituting the weft. The ratio of the maximum length in the direction perpendicular to the thickness direction to the length was defined as the aspect ratio, and 10 fibers were measured for each of the warp and weft fiber bundles, and the average value of each was defined as the aspect ratio.
 <カバーファクターCF>
 織物から経糸および緯糸を抜き出し、100,000mあたりの重さ(g)を10本ずつ測定し、それぞれの平均径を経糸、または、緯糸のマルチフィラメント径D(dtex)とした。織物を上面からマイクロスコープで観察し、1インチ当たりの経糸および緯糸の本数を10か所ずつ測定し、それぞれの平均値をN(本/inch)とし、上述の式よりCFを算出した。CF合計は、CFの2倍である。
<Cover Factor CF>
The warp and weft were extracted from the woven fabric, and the weight (g) per 100,000 m was measured by 10 each, and the average diameter of each was taken as the warp or the multifilament diameter D (dtex) of the weft. The woven fabric was observed from the upper surface with a microscope, the number of warp threads and weft threads per inch was measured at 10 points each, and the average value of each was taken as N (thread / inch), and CF was calculated from the above formula. The total CF is twice that of CF.
 <初期除去率、ろ過寿命>
 原水として、イオン交換繊維の場合は、塩化カルシウム濃度0.2mmol/Lかつ炭酸水素ナトリウム濃度0.2mmol/Lの水溶液を使用し、カルシウムイオンの除去率を測定し、金属粒子担持繊維の場合には、ホウ酸1.0×10-3mmol/Lの水溶液を原水として使用し、ホウ素の除去率を測定した。フィルタに、空間速度SV値が100(hr-1)となるように原水を通液した。
<Initial removal rate, filtration life>
As raw water, in the case of ion-exchanged fibers, an aqueous solution having a calcium chloride concentration of 0.2 mmol / L and a sodium hydrogen carbonate concentration of 0.2 mmol / L was used, and the removal rate of calcium ions was measured. Used an aqueous solution of 1.0 × 10 -3 mmol / L boric acid as raw water, and the removal rate of boron was measured. Raw water was passed through the filter so that the space velocity SV value was 100 (hr -1).
 原水がフィルタを10bed vol.透過するごとに10mLサンプリングし、透過液中のカルシウムイオン濃度、または、ホウ素濃度をICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)により測定し、カルシウムイオン除去率、または、ホウ素除去率を算出した。bed vol.とは、透過液の体積を充填層の体積で割った値である。 Raw water filters the filter 10bed vol. 10 mL was sampled for each permeation, and the calcium ion concentration or boron concentration in the permeated solution was measured by ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrum) to calculate the calcium ion removal rate or boron removal rate. .. bed vol. Is the value obtained by dividing the volume of the permeate by the volume of the packed bed.
 10bed vol.透過後の除去率を「初期除去率」とし、除去率が50%に達した際のbed vol.を、「ろ過寿命」とした。 10bed vol. The removal rate after permeation is defined as the "initial removal rate", and the bed vol. Was defined as "filtration life".
 <通水抵抗>
 フィルタに空間速度SV値が100(hr-1)となるように純水を通液し、フィルタ入りおよびフィルタ出の圧力の差である圧力損失を測定した。
<Water flow resistance>
Pure water was passed through the filter so that the space velocity SV value was 100 (hr -1 ), and the pressure loss, which is the difference between the pressure between the filter and the filter, was measured.
 <金属粒子の担持量>
 織物の一部を切り取り、その質量W1を秤量した。次に、織物を強アルカリまたは強酸水溶液などの良溶媒に溶解するか、電気炉によって800℃以上で熱する方法か、これらの方法を組み合わせて金属粒子を取り出し、金属粒子の質量W2を秤量した。金属粒子の担持量、すなわち、金属粒子の金属担持繊維全体に対する質量割合を(W2/W1)×100(質量部)で算出した。
<Amount of metal particles supported>
A part of the woven fabric was cut out and its mass W1 was weighed. Next, the metal particles were taken out by dissolving the woven fabric in a good solvent such as a strong alkali or a strong acid aqueous solution, or heating at 800 ° C. or higher by an electric furnace, or a combination of these methods, and the mass W2 of the metal particles was weighed. .. The amount of the metal particles supported, that is, the mass ratio of the metal particles to the entire metal-supported fibers was calculated by (W2 / W1) × 100 (parts by mass).
 (参考例1)
 125デシテックス、34フィラメントのナイロン6繊維から、平織り機を用い、経糸・緯糸ともに撚度0T/m、メッシュ数60(個/inch)で織物を作製した。
(Reference example 1)
A woven fabric was produced from 125 decitex, 34 filament nylon 6 fibers using a plain weave machine with a twist of 0 T / m for both warp and weft and 60 meshes (pieces / inch).
 0.9質量部のメタクリル酸、0.3質量部のアクリル酸、ヒドロキシメタンスルフィン酸Na0.03質量部、EDTA・2Na・2HO0.01質量部、過硫酸アンモニウム0.01質量部を含む水溶液4質量部に、上記織物1質量部を浸漬し、70℃で1時間静置した。静置後に水溶液から取り出し、RO水で洗浄した。 0.9 parts by weight of methacrylic acid, an aqueous solution containing 0.3 parts by weight of acrylic acid, Na0.03 parts by hydroxy sulfinic acid, EDTA · 2Na · 2H 2 O0.01 parts by mass of ammonium persulfate 0.01 parts by weight 1 part by mass of the above woven fabric was immersed in 4 parts by mass and allowed to stand at 70 ° C. for 1 hour. After standing, it was taken out from the aqueous solution and washed with RO water.
 こうしてイオン交換繊維からなる織物を作製した。得られた織物から上述の方法でフィルタを作製した。 In this way, a woven fabric made of ion exchange fibers was produced. A filter was prepared from the obtained woven fabric by the above-mentioned method.
 (参考例2)
 実施例1に記載の方法に対し、経糸・緯糸の撚度を80T/mにしたこと以外は同様の方法でフィルタを作製した。
(Reference example 2)
A filter was produced in the same manner as in Example 1 except that the twist degree of the warp and weft was 80 T / m.
 (実施例1)
 以下の操作により、水酸化セリウムのナノ粒子を担持した繊維からなる織物を作製した。
(Example 1)
A woven fabric made of fibers carrying cerium hydroxide nanoparticles was produced by the following operation.
 170デシテックス、34フィラメントのナイロン6繊維を用い、撚度0T/mで、平織り機を用い、経糸および緯糸のメッシュ数が60(個/inch)で織物を作製した。    A woven fabric was produced using 170 decitex, 34 filament nylon 6 fibers, a twist of 0 T / m, and a plain weave machine with a number of meshes of warp and weft of 60 (pieces / inch).
 この織物約1質量部を、0.375質量部のメタクリル酸、0.125質量部のアクリル酸、ヒドロキシメタンスルフィン酸Na0.15質量部、EDTA・2Na・2HO0.05質量部、過硫酸アンモニウム0.05質量部を含む水溶液100質量部に浸漬し、70℃で1時間静置した。静置後に取り出し、RO水で洗浄し、イオン交換繊維からなる織物を得た。該イオン交換繊維を1mol/LのNaOH水溶液に常温で3時間浸漬し、該イオン交換繊維の官能基であるカルボキシル基をH型からNa型に変換した。続いて、該織物を0.2mol/LのCe(NO水溶液に常温で3時間浸漬し、官能基をNa型からCe型に変換した。その後、0.2mol/LのNaOH水溶液に常温で3時間浸漬することで、織物の表面近傍に水酸化セリウムを析出させた。これをRO水で水洗した。
得られた織物から上述の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
The fabric about 1 part by weight, 0.375 parts by mass of methacrylic acid, 0.125 parts by weight of acrylic acid, Na0.15 parts by hydroxy sulfinic acid, EDTA · 2Na · 2H 2 O0.05 parts by mass of ammonium persulfate It was immersed in 100 parts by mass of an aqueous solution containing 0.05 parts by mass and allowed to stand at 70 ° C. for 1 hour. After standing, it was taken out and washed with RO water to obtain a woven fabric made of ion-exchange fibers. The ion-exchange fiber was immersed in a 1 mol / L NaOH aqueous solution at room temperature for 3 hours to convert the carboxyl group, which is a functional group of the ion-exchange fiber, from H-type to Na-type. Subsequently, the woven fabric was immersed in a 0.2 mol / L 3 aqueous solution of Ce (NO 3 ) at room temperature for 3 hours to convert the functional group from Na type to Ce type. Then, cerium hydroxide was precipitated near the surface of the woven fabric by immersing it in a 0.2 mol / L NaOH aqueous solution at room temperature for 3 hours. This was washed with RO water.
A filter was prepared from the obtained woven fabric by the above-mentioned method. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (実施例2)
 115デシテックス、34フィラメントのナイロン6繊維を用い、撚度0T/mで、平織り機を用い、経糸および緯糸のメッシュ数が60(個/inch)で織物を作製した。
(Example 2)
A woven fabric was prepared using 115 decitex, 34 filament nylon 6 fibers, a twist of 0 T / m, and a plain weave machine with a mesh number of warp and weft of 60 (pieces / inch).
 この織物に対し、実施例1と同様の方法により水酸化セリウムを担持させた。ただし、メタクリル酸を0.9質量部、アクリル酸を0.3質量部とした。得られた織物から上述の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。 Cerium hydroxide was supported on this woven fabric by the same method as in Example 1. However, methacrylic acid was 0.9 parts by mass and acrylic acid was 0.3 parts by mass. A filter was prepared from the obtained woven fabric by the above-mentioned method. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (実施例3)
 80デシテックス、34フィラメントのナイロン6繊維を用い、撚度0T/mで、平織り機を用い、経糸および緯糸のメッシュ数が60(個/inch)で織物を作製した。この織物に対し、実施例1に記載の方法で水酸化セリウムを担持させた。ただし、メタクリル酸を3.75質量部、アクリル酸を1.25質量部とした。
得られた織物から上述の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
(Example 3)
A woven fabric was prepared using 80 decitex, 34 filament nylon 6 fibers, a twist of 0 T / m, and a plain weave machine with a mesh number of 60 (pieces / inch) of warp and weft. Cerium hydroxide was supported on this woven fabric by the method described in Example 1. However, methacrylic acid was 3.75 parts by mass and acrylic acid was 1.25 parts by mass.
A filter was prepared from the obtained woven fabric by the above-mentioned method. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (実施例4)
 実施例2に記載の方法に対し、経糸・緯糸の撚度を80T/mにしたこと以外は同様の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
(Example 4)
A filter was produced in the same manner as in Example 2 except that the twist degree of the warp and weft was 80 T / m. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (実施例5)
 実施例2に記載の方法に対し、経糸・緯糸のメッシュ数を42(個/inch)としたこと以外は同様の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
(Example 5)
A filter was produced by the same method as described in Example 2 except that the number of meshes of the warp and weft was 42 (pieces / inch). Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (実施例6)
 実施例2に記載の方法に対し、115デシテックス、376フィラメントのナイロン6繊維を用いたこと以外は同様の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
(Example 6)
A filter was prepared in the same manner as in Example 2 except that 115 decitex and 376 filament nylon 6 fibers were used. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (実施例7)
 実施例2に記載の方法に対し、115デシテックス、122フィラメントのナイロン6繊維を用いたこと以外は同様の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
(Example 7)
A filter was prepared in the same manner as in Example 2 except that 115 decitex and 122 filaments of nylon 6 fibers were used. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (実施例8)
 実施例2に記載の方法に対し、115デシテックス、7フィラメントのナイロン6繊維を用いたこと以外は同様の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
(Example 8)
A filter was prepared in the same manner as in Example 2 except that 115 decitex, 7 filament nylon 6 fibers were used. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (実施例9)
 実施例2に記載の方法に対し、織組織を斜文織にしたこと以外は同様の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
(Example 9)
A filter was prepared by the same method as described in Example 2 except that the twill structure was twill weave. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (実施例10)
 実施例2に記載の方法に対し、織組織を朱子織にしたこと以外は同様の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
(Example 10)
A filter was produced by the same method as described in Example 2 except that the weave structure was satin weave. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (実施例11)
 実施例2に記載の方法に対し、115デシテックス、34フィラメント、単糸形状が異形度3.0の三葉型ナイロン6繊維にしたこと以外は同様の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
(Example 11)
A filter was produced in the same manner as in Example 2 except that 115 decitex, 34 filaments, and three-leaf nylon 6 fibers having a single yarn shape having a degree of deformation of 3.0 were used. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (比較例1)
 235デシテックス、34フィラメントのポリエチレンテレフタレート繊維を用い、撚度0T/mで、平織り機を用い、経糸および緯糸のメッシュ数が60(個/inch)で織物を作製した。
(Comparative Example 1)
A woven fabric was prepared using 235 decitex, 34 filaments of polyethylene terephthalate fiber, a twist of 0 T / m, and a plain weave machine with a mesh number of 60 (pieces / inch) of warp and weft.
 この織物の両面に、窒素雰囲気下、表面処理強度30W・分/mで両面にコロナ放電処理を施した。処理後の織物を、酸化セリウムのナノコロイド溶液(溶媒:水、濃度:5質量%)に室温で1日間浸漬した。その後、余分の酸化セリウムのナノコロイド溶液を取り除くための水洗を行った。 Both sides of this woven fabric were subjected to corona discharge treatment under a nitrogen atmosphere at a surface treatment strength of 30 W / min / m 2. The treated woven fabric was immersed in a nanocolloidal solution of cerium oxide (solvent: water, concentration: 5% by mass) at room temperature for 1 day. Then, washing with water was performed to remove excess cerium oxide nanocolloidal solution.
 こうして、ポリエチレンテレフタレート繊維と、その官能基に結合した酸化セリウムを有する織物状の吸着材を得た。 Thus, a woven adsorbent having polyethylene terephthalate fiber and cerium oxide bonded to the functional group thereof was obtained.
 得られた織物から、上述の方法でフィルタを作製した。 A filter was prepared from the obtained woven fabric by the above method.
 (比較例2)
 比較例1に記載の方法に対し、経糸・緯糸の撚度を80T/mとしたこと以外は同様の方法でフィルタを作製した。
(Comparative Example 2)
A filter was produced in the same manner as in Comparative Example 1 except that the twist of the warp and weft was 80 T / m.
 (比較例3)
比較例1に記載の方法に対し、経糸・緯糸のメッシュ数を50(個/inch)としたこと以外は同様の方法でフィルタを作製した。
(Comparative Example 3)
A filter was produced by the same method as that described in Comparative Example 1 except that the number of meshes of the warp and weft was 50 (pieces / inch).
 (比較例4)
 比較例1に記載の方法に対し、平織ではなく斜文織にしたこと以外は同様の方法でフィルタを作製した。
(Comparative Example 4)
A filter was prepared by the same method as that described in Comparative Example 1 except that the twill weave was used instead of the plain weave.
 (比較例5)
 比較例1に記載の方法に対し、平織ではなく朱子織にしたこと以外は同様の方法でフィルタを作製した。
(Comparative Example 5)
A filter was prepared by the same method as that described in Comparative Example 1 except that the satin weave was used instead of the plain weave.
 (比較例6)
 比較例1に記載の方法に対し、経糸・緯糸の撚度を750T/mとしたこと以外は同様の方法でフィルタを作製した。
(Comparative Example 6)
A filter was produced in the same manner as in Comparative Example 1 except that the twist of the warp and weft was 750 T / m.
 (比較例7)
比較例1に記載の方法に対し、経糸・緯糸のメッシュ数を80(個/inch)としたこと以外は同様の方法でフィルタを作製した。
(Comparative Example 7)
A filter was produced by the same method as that described in Comparative Example 1 except that the number of meshes of the warp and weft was 80 (pieces / inch).
 (比較例8)
 繊維径25μmである1フィラメントのPET繊維を用い、平織り機で経糸および緯糸のメッシュ数が220(個/inch)で織物を作製した。この織物に対し、比較例1に記載の方法で酸化セリウムのナノ粒子を担持した繊維からなる織物を作製した。得られた織物を、上述の方法でフィルタを作製した。
(Comparative Example 8)
Using one filament PET fiber having a fiber diameter of 25 μm, a woven fabric was produced with a plain weave machine having 220 (pieces / inch) meshes of warp and weft threads. For this woven fabric, a woven fabric made of fibers carrying cerium oxide nanoparticles was produced by the method described in Comparative Example 1. The obtained woven fabric was used to prepare a filter by the method described above.
 (比較例9)
 比較例1に記載の方法に対し、経糸・緯糸のメッシュ数を30(個/inch)としたこと以外は同様の方法でフィルタを作製した。
(Comparative Example 9)
A filter was produced by the same method as that described in Comparative Example 1 except that the number of meshes of the warp and weft was 30 (pieces / inch).
 (比較例10)
 実施例2に記載の方法に対し、経糸・緯糸の撚度を750T/mとしたこと以外は同様の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
(Comparative Example 10)
A filter was produced in the same manner as in Example 2 except that the twist degree of the warp and weft was 750 T / m. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (比較例11)
 実施例2に記載の方法に対し、経糸・緯糸のメッシュ数を30(個/inch)としたこと以外は同様の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
(Comparative Example 11)
A filter was produced by the same method as described in Example 2 except that the number of meshes of the warp and weft was 30 (pieces / inch). Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (比較例12)
 実施例2に記載の方法に対し、115デシテックス、1フィラメントのナイロン6繊維を用いたこと以外は同様の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
(Comparative Example 12)
A filter was prepared in the same manner as in Example 2 except that 115 decitex and 1 filament nylon 6 fibers were used. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (比較例13)
 実施例2に記載の方法に対し、繊維径0.4μm、900フィラメントのナイロン6繊維を用い、経糸・緯糸のメッシュ数を220(個/inch)としたこと以外は同様の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
(Comparative Example 13)
A filter was produced by the same method as in Example 2 except that nylon 6 fibers having a fiber diameter of 0.4 μm and 900 filaments were used and the number of meshes of warp and weft was 220 (pieces / inch). did. Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (比較例14)
 実施例2に記載の方法に対し、経糸・緯糸のメッシュ数を80(個/inch)としたこと以外は同様の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
(Comparative Example 14)
A filter was produced by the same method as described in Example 2 except that the number of meshes of the warp and weft was 80 (pieces / inch). Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
 (比較例15)
 実施例2に記載の方法に対し、繊維径16μm、1フィラメントのナイロン6繊維を用い、経糸・緯糸のメッシュ数を220(個/inch)としたこと以外は同様の方法でフィルタを作製した。また、SEM-EDXを用いて単糸断面を観察し、Naをマッピングしたところ、単糸の表面近傍にNaが分布しており、イオン交換基であるカルボキシ基を含む高分子化合物層の存在が示唆された。
(Comparative Example 15)
A filter was produced in the same manner as in Example 2 except that the fiber diameter was 16 μm and one filament of nylon 6 fibers was used and the number of meshes of the warp and weft was 220 (pieces / inch). Further, when the cross section of the single yarn was observed using SEM-EDX and Na was mapped, Na was distributed near the surface of the single yarn, and the presence of a polymer compound layer containing a carboxy group which is an ion exchange group was found. It was suggested.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and modifications can be made without departing from the intent and scope of the present invention.
 本発明のフィルタは、水中に溶解した無機成分の除去に好適に用いられる。 The filter of the present invention is suitably used for removing inorganic components dissolved in water.
10 巻囲体
11 織物
13 芯材
14 孔
16 フィルタ
17 ケーシング
31 経糸(マルチフィラメント)
32 緯糸(マルチフィラメント)
4  単糸
H  マルチフィラメントの厚み
L  マルチフィラメントの幅
R1  単糸4の断面を包含する最小の円の直径
R2  単糸4の断面内に収まる最大の円の直径
2  金属粒子担持繊維
21 高分子化合物の層
22 
23 金属粒子
24 中心基材
6  浄水器
61 ケーシング
62 中空糸膜
63 封止材
611 給水口
612 取水口
 
10 Volume 11 Woven fabric 13 Core material 14 Holes 16 Filter 17 Casing 31 Warp (multifilament)
32 Weft (multifilament)
4 Single thread H Multifilament thickness L Multifilament width R1 Minimum circle diameter including the cross section of the single thread 4 R2 Maximum circle diameter that fits within the cross section of the single thread 4 Metal particle carrying fiber 21 Polymer compound Layer 22
23 Metal particles 24 Central base material 6 Water purifier 61 Casing 62 Hollow fiber membrane 63 Encapsulant 611 Water supply port 612 Water intake port

Claims (7)

  1.  有孔芯材と、前記有孔芯材の外周に巻囲された織物を備える液体ろ過用フィルタであって、
    前記織物が、下記条件(a)~(d)を満たすフィルタ。
    (a)経糸および緯糸として直径1μm~100μmの単糸を7本~700本含むマルチフィラメントを含み、経糸および緯糸の長手方向に垂直なそれぞれの断面において、経糸および緯糸に含まれる単糸が厚み方向に3本以上積層している箇所が存在し、かつ、縦糸および緯糸の断面のアスペクト比が1.5~10であり、
    (b)経糸と緯糸のカバーファクターの合計が1200以上、2200以下であり、
    (c)前記経糸または緯糸の少なくとも一方が、前記単糸として、イオン交換基を有する高分子化合物の層と;前記層の少なくとも表面に担持される金属粒子とを有する繊維状吸着材を含み
    (d)前記金属粒子の担持量が、前記織物の質量に対して5~60質量%である。
    A liquid filtration filter including a perforated core material and a woven fabric surrounded by the outer circumference of the perforated core material.
    A filter in which the woven fabric satisfies the following conditions (a) to (d).
    (A) The warp and the weft include a multifilament containing 7 to 700 single yarns having a diameter of 1 μm to 100 μm, and the single yarns contained in the warp and the weft are thick in each cross section perpendicular to the longitudinal direction of the warp and the weft. There are three or more laminated parts in the direction, and the aspect ratio of the cross section of the warp and weft is 1.5 to 10.
    (B) The total cover factor of the warp and weft is 1200 or more and 2200 or less.
    (C) At least one of the warp or weft contains, as the single yarn, a fibrous adsorbent having a layer of a polymeric compound having an ion exchange group; metal particles supported on at least the surface of the layer (c). d) The amount of the metal particles supported is 5 to 60% by mass with respect to the mass of the woven fabric.
  2.  前記縦糸または緯糸の少なくとも一方が、0T/m~100T/mの撚度を有するマルチフィラメントを含む
    請求項1に記載のフィルタ。
    The filter according to claim 1, wherein at least one of the warp or weft contains a multifilament having a twist of 0 T / m to 100 T / m.
  3.  前記織物が朱子織、または、その変化組織を有する、
    請求項1~2のいずれか1項に記載のフィルタ。
    The woven fabric has a satin weave or a modified structure thereof.
    The filter according to any one of claims 1 and 2.
  4.  前記イオン交換基がカルボキシ基、スルホ基およびリン酸基から選択される少なくとも1種のアニオン性イオン交換基である、
    請求項1~3のいずれか1項に記載のフィルタ。
    The ion exchange group is at least one anionic ion exchange group selected from a carboxy group, a sulfo group and a phosphate group.
    The filter according to any one of claims 1 to 3.
  5.  前記金属粒子が、銀、銅、鉄、チタン、ジルコニウム及びセリウム
    からなる群より選ばれる少なくとも1種の金属原子を含む、
    請求項1~4のいずれか1項に記載のフィルタ。
    The metal particles contain at least one metal atom selected from the group consisting of silver, copper, iron, titanium, zirconium and cerium.
    The filter according to any one of claims 1 to 4.
  6.  請求項1~5のいずれか1項に記載のフィルタに水を供給する工程と、
     前記フィルタを通過した水を回収する工程を有する
    浄水の製造方法。
    A step of supplying water to the filter according to any one of claims 1 to 5.
    A method for producing purified water, which comprises a step of recovering water that has passed through the filter.
  7.  給水口および取水口を有する筐体と、
     前記筐体内に収容された請求項1~5のいずれか1項に記載のフィルタと、
    を有する浄水器。
     
    A housing with a water supply port and an intake port,
    The filter according to any one of claims 1 to 5, which is housed in the housing.
    Water purifier with.
PCT/JP2020/040811 2019-10-31 2020-10-30 Filter for liquid filtration WO2021085601A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021519185A JP7021719B2 (en) 2019-10-31 2020-10-30 Liquid filtration filter
CN202080075409.3A CN114630702A (en) 2019-10-31 2020-10-30 Filter for filtering liquid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019198703 2019-10-31
JP2019-198703 2019-10-31
JP2020-079011 2020-04-28
JP2020079011 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021085601A1 true WO2021085601A1 (en) 2021-05-06

Family

ID=75715174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040811 WO2021085601A1 (en) 2019-10-31 2020-10-30 Filter for liquid filtration

Country Status (3)

Country Link
JP (1) JP7021719B2 (en)
CN (1) CN114630702A (en)
WO (1) WO2021085601A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658503A (en) * 1979-10-19 1981-05-21 Toray Ind Inc Functional fiber assembly
JP2012040526A (en) * 2010-08-20 2012-03-01 Kurita Water Ind Ltd Filter for liquid filtration, and liquid filtration method
WO2018194177A1 (en) * 2017-04-20 2018-10-25 東レ株式会社 Fibrous adsorbent, water purification filter, and water treatment method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384019A (en) * 1993-10-29 1995-01-24 E. I. Du Pont De Nemours And Company Membrane reinforced with modified leno weave fabric
JP4007994B2 (en) * 2005-03-10 2007-11-14 ジャパンゴアテックス株式会社 Fiber products
EP2276556B1 (en) * 2008-05-15 2018-05-30 Woongjincoway Co, Ltd. Spiral wound type filter cartridge
JP5658503B2 (en) 2010-07-27 2015-01-28 パナソニックIpマネジメント株式会社 Power supply device and lighting device provided with the power supply device
WO2016125838A1 (en) * 2015-02-03 2016-08-11 旭化成株式会社 Thin lightweight woven fabric
WO2016190202A1 (en) * 2015-05-27 2016-12-01 東レ株式会社 Tubular woven fabric structure
JP7020404B2 (en) * 2017-02-28 2022-02-16 東レ株式会社 filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658503A (en) * 1979-10-19 1981-05-21 Toray Ind Inc Functional fiber assembly
JP2012040526A (en) * 2010-08-20 2012-03-01 Kurita Water Ind Ltd Filter for liquid filtration, and liquid filtration method
WO2018194177A1 (en) * 2017-04-20 2018-10-25 東レ株式会社 Fibrous adsorbent, water purification filter, and water treatment method

Also Published As

Publication number Publication date
JP7021719B2 (en) 2022-02-17
JPWO2021085601A1 (en) 2021-05-06
CN114630702A (en) 2022-06-14

Similar Documents

Publication Publication Date Title
US9745644B2 (en) Composite nanofiber membrane for adsorbing lithium, method of manufacturing the same and apparatus and method for recovering lithium using the same
KR101938926B1 (en) Conjugated fiber and fiber structure comprising said conjugated fiber
JP7108622B2 (en) Method for producing ultrapure water
JP2006187731A (en) Separation membrane and water treatment apparatus
KR20160141910A (en) Gas filter
JP2010063959A (en) Chemical filter and method of manufacturing the same
WO2021085601A1 (en) Filter for liquid filtration
US10682613B2 (en) Adsorptive liquid filter
US20050218068A1 (en) Filter cartridge
WO2018159723A1 (en) Filter
WO2018043462A1 (en) Ion exchange fiber, water purification filter and water treatment method
JP2021171729A (en) Hollow fiber adsorbent, water purifier, and method for producing pure water
JP4560787B2 (en) Deodorant fiber structure
JP2007098362A (en) Cation adsorbing material and its manufacturing method
WO2018194177A1 (en) Fibrous adsorbent, water purification filter, and water treatment method
JP2015087369A (en) Strontium removal method by fiber formed by introducing iminodiacetic group to graft chain
WO2019065092A1 (en) Filter and fluid separation method
JP2012040526A (en) Filter for liquid filtration, and liquid filtration method
JP2018158327A (en) Anion absorbent carrying rare earth-containing hydroxide and manufacturing method therefor
JP2019209223A (en) Fiber bundle-like adsorbent
JP3887487B2 (en) Filter and liquid cleaning method using the filter
JP2000042374A (en) Apparatus for removing polar material
JP2012196625A (en) Ion exchange filter
JP2019189958A (en) Sea island fiber and method for producing the same
JP2019063709A (en) Fibrous ion exchange body, water purification filter, and water treatment method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021519185

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882663

Country of ref document: EP

Kind code of ref document: A1