WO2021085592A1 - Nucleic acid for suppressing gene expression of disease-specific col3a1 mutant allele and pharmaceutical composition for treating vascular ehlers-danlos syndrome - Google Patents

Nucleic acid for suppressing gene expression of disease-specific col3a1 mutant allele and pharmaceutical composition for treating vascular ehlers-danlos syndrome Download PDF

Info

Publication number
WO2021085592A1
WO2021085592A1 PCT/JP2020/040786 JP2020040786W WO2021085592A1 WO 2021085592 A1 WO2021085592 A1 WO 2021085592A1 JP 2020040786 W JP2020040786 W JP 2020040786W WO 2021085592 A1 WO2021085592 A1 WO 2021085592A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nos
sirna
combinations
combination
Prior art date
Application number
PCT/JP2020/040786
Other languages
French (fr)
Japanese (ja)
Inventor
哲郎 吉田
原 光信
Original Assignee
ナノキャリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナノキャリア株式会社 filed Critical ナノキャリア株式会社
Publication of WO2021085592A1 publication Critical patent/WO2021085592A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a nucleic acid that suppresses gene expression of a disease-specific COL3A1 mutant allele and a pharmaceutical composition for treating vascular Ehlers-Danlos syndrome.
  • Ehlers-Danlos syndrome is a hereditary disease based on the fragility of systemic connective tissues such as skin, joints, and blood vessels. Based on the causes and symptoms, it is classified into 6 main disease types (classical type, joint type, vascular type, kyphoscoliosis type, multiple joint relaxation type, skin fragile type), and the estimated frequency of all disease types combined is It is said to be about 1 / 5,000.
  • the cause of EDS is based on genetic mutations in collagen molecules or enzymes involved in the collagen maturation process.
  • Vascular Type EDS (VEDS) (MIM 130050), which is a category of EDS, is the most severe type EDS with serious complications that also cause sudden death such as rupture of arteries, gastrointestinal tract, and uterus during pregnancy. And the mode of inheritance is autosomal dominant inheritance. Vascular EDS develops due to an abnormality in the type III collagen molecule due to a mutation in the type III collagen gene (COL3A1). At present, there is no radical cure for vEDS, and symptomatic treatment is the main treatment.
  • the present invention provides a nucleic acid that suppresses gene expression of a disease-specific COL3A1 mutant allele and a pharmaceutical composition for treating vascular Ehlers-Danlos syndrome.
  • the variant is a gene encoding collagen 3A1 having a G-to-T substitution of the 755th corresponding base in the nucleotide sequence of SEQ ID NO: 27, or 547 in the nucleotide sequence of SEQ ID NO: 27.
  • the nucleic acid can strongly suppress the expression of the mutant form rather than the expression of the wild type.
  • composition [2] The pharmaceutical composition according to the above [1], wherein the subject is a subject suffering from vascular Ehlers-Danlos syndrome (vEDS). [3] The above-mentioned [1] or [2], wherein the variant is a gene encoding collagen 3A1 having a G-to-T substitution of the base corresponding to the 755th base in the base sequence shown in SEQ ID NO: 27. The pharmaceutical composition described. [4] The above-mentioned [1] or [2], wherein the variant is a gene encoding collagen 3A1 having a G-to-A substitution of the base corresponding to the 547th in the base sequence shown in SEQ ID NO: 27. The pharmaceutical composition described.
  • vEDS vascular Ehlers-Danlos syndrome
  • the base sequence of the sense strand and antisense strand of siRNA or shRNA has a base sequence selected from the group consisting of SEQ ID NOs: 1 and 2, SEQ ID NOs: 3 and 4, and SEQ ID NOs: 5 and 6, respectively.
  • the base sequences of the sense strand and antisense strand of siRNA or shRNA are the combination of SEQ ID NOs: 7 and 8, the combination of SEQ ID NOs: 9 and 10, the combination of SEQ ID NOs: 11 and 12, and the combination of SEQ ID NOs: 13 and 14, respectively.
  • the pharmaceutical composition according to the above [4] which has the combination of.
  • the base sequences of the sense strand and the antisense strand of siRNA are a combination of the base sequences shown in SEQ ID NOs: 9 and 10, respectively, or a combination of the base sequences shown in SEQ ID NOs: 13 and 14, respectively.
  • SiRNA or shRNA whose sense strand and antisense strand are combinations of SEQ ID NOs: 7 and 8, combinations of SEQ ID NOs: 9 and 10, combinations of SEQ ID NOs: 11 and 12, and SEQ ID NOs: 13 and 14, respectively.
  • a base selected from the group consisting of combinations, combinations of SEQ ID NOs: 15 and 16, combinations of SEQ ID NOs: 17 and 18, combinations of SEQ ID NOs: 51 and 52, combinations of SEQ ID NOs: 53 and 54, and combinations of SEQ ID NOs: 55 and 56.
  • SiRNA or shRNA having a combination of sequences. [10] SiRNA or shRNA whose sense and antisense strands are a combination of SEQ ID NOs: 7 and 8, a combination of SEQ ID NOs: 9 and 10, a combination of SEQ ID NOs: 11 and 12, and SEQ ID NOs: 13 and 14, respectively.
  • a base selected from the group consisting of combinations, combinations of SEQ ID NOs: 15 and 16, combinations of SEQ ID NOs: 17 and 18, combinations of SEQ ID NOs: 51 and 52, combinations of SEQ ID NOs: 53 and 54, and combinations of SEQ ID NOs: 55 and 56.
  • SiRNA or shRNA having a base sequence with an additional mismatch of 1 to several bases for a combination of sequences.
  • the siRNA or shRNA of the above [10], the sense strand and the antisense strand thereof are the combination of SEQ ID NOs: 33 and 34, the combination of SEQ ID NOs: 35 and 36, the combination of SEQ ID NOs: 37 and 38, SEQ ID NO: 39 and, respectively.
  • the variant is a gene encoding collagen 3A1 having a G-to-A substitution of the 547th corresponding base in the nucleotide sequence set forth in SEQ ID NO: 27.
  • FIG. 1 shows the knockdown efficiency of various siRNAs against wild-type (548G and 755G) and mutant (755T) or mutant (548A) collagen 3A1 in HeLa cells.
  • FIG. 2 shows the concentration dependence (1-100 nM) of knockdown efficiency on the wild type (548G and 755G) and mutant (755T) or mutant (548A) of collagen 3A1 by various siRNAs in HeLa cells.
  • the number at the end of the siRNA name and the concentration are linked by a hyphen and displayed.
  • FIG. 3 shows the concentration dependence (1-100 nM) of knockdown efficiency of collagen 3A1 by various siRNAs on wild type (548G and 755G) and mutant type (755T) or mutant type (548A) in HEK293 cells.
  • FIG. 3 shows the number at the end of the siRNA name and the concentration.
  • FIG. 4 shows the concentration dependence (0.01 to 10 nM) of knockdown efficiency for the wild type (548G) and the mutant type (548A) of collagen 3A1 by various siRNAs in HeLa cells.
  • FIG. 4 shows the number at the end of the siRNA name and the concentration are linked by a hyphen and displayed.
  • FIG. 5 shows the concentration dependence (0.01-10 nM) of knockdown efficiency on the wild type (548G) and mutant type (548A) of collagen 3A1 by various siRNAs in HEK293 cells.
  • the number at the end of the siRNA name and the concentration are linked by a hyphen and displayed.
  • FIG. 6 shows the knockdown efficiency of collagen 3A1 by various siRNAs in HeLa cells against the wild type (548G) and the mutant type (548A).
  • FIG. 7 shows the knockdown efficiency of collagen 3A1 by various siRNAs in HeLa cells against the wild type (548G) and the mutant type (548A).
  • FIG. 8 shows the knockdown efficiency of collagen 3A1 by various siRNAs in HeLa cells against the wild type (547G) and the mutant type (547A).
  • FIG. 9 shows the knockdown efficiency of collagen 3A1 by various siRNAs in HEK293 cells against the wild type (547G) and the mutant type (547A).
  • the "subject” is a mammal, and may be a human in particular.
  • treatment means therapeutic and prophylactic treatment.
  • treatment means the treatment, cure, prevention, improvement of remission, or reduction of the rate of progression of a disease or disorder.
  • prevention means reducing the likelihood of developing a disease or condition, or delaying the onset of a disease or condition.
  • disease means a symptomatology for which treatment is beneficial.
  • the term "therapeutically effective amount” means the amount of a drug effective for treating (preventing or treating) a disease or condition.
  • a therapeutically effective amount of a drug slows the rate of exacerbation of a symptom of a disease or condition, stops the exacerbation of the symptom, ameliorates the symptom, cures the symptom, or develops or develops the symptom. It is possible to suppress.
  • collagen 3A1 is also called type III collagen ⁇ -1 or COL3A1 and is a fibrogenic collagen containing three ⁇ -1 (III) chains. Collagen 3A1 is expressed throughout early embryonic and embryonic development. In adults, collagen 3A1 is a major component of the extracellular matrix of internal organs and skin. Examples of the gene encoding human collagen 3A1 include a base sequence registered with NCBI reference number: NM_0000900.3, and may have, for example, a base sequence corresponding to the base sequence set forth in SEQ ID NO: 27. The gene encoding human collagen 3A1 may have, for example, the nucleotide sequence set forth in SEQ ID NO: 27.
  • vascular Ehlers-Danlos syndrome is a hereditary disease based on the fragility of systemic connective tissues such as skin, joints, and blood vessels. Symptoms include skin fragility (easy to tear, atrophic scarring), joint fragility (flexible, easy to dislocate), vascular fragility (easy to bleed internally), heart valve deviation / regurgitation, Presents with ascending aortic dilatation. Vascular EDS presents with serious complications such as arterial dissection / aneurysm / rupture, intestinal rupture, and uterine rupture, and has physical characteristics such as relaxation of small joints, characteristic facial features, and see-through of subcutaneous veins.
  • vEDS develops only with mutations in one-sided alleles. This is because the mutant form forms a trimer with the wild type (normal type) and produces abnormal collagen.
  • Selective knockdown of mutants is a treatment for vEDS because increasing the production of trimers consisting only of wild-type (normal) by reducing the expression of mutants reduces the symptoms of vEDS. It can be a strategy.
  • siRNA is a nucleic acid molecule used for knockdown of a gene, and is a nucleic acid molecule containing a double-stranded RNA having a length of about 19 to 25 mer.
  • a siRNA designed complementary to the base sequence of a target mRNA can inhibit the translation of a protein from the mRNA by binding to the mRNA and degrading the mRNA.
  • RNA used for siRNA includes stabilized nucleic acid analogs (for example, cross-linked artificial nucleic acids such as AmNA, 2', 4'cross-linked nucleic acids (locked nucleic acids), and the 2'position of ribose of RNA.
  • nucleic acids having) or nucleic acids containing DNA can be used. Those skilled in the art can appropriately design siRNA using these stabilized nucleic acid analogs and DNA.
  • SHRNA is a nucleic acid molecule containing double-stranded RNA having a hairpin structure.
  • the hairpin structure of the shRNA is cleaved intracellularly and converted to siRNA, which allows silencing of the target gene.
  • the hairpin structure can be appropriately designed by those skilled in the art.
  • vascular Ehlers-Danlos syndrome the mutation of collagen 3A1 is a dominant mutation. That is, collagen 3A1 functions by forming a trimer, and one of them is mutated to inhibit the function of collagen 3A1.
  • treatments that reduce the expression of mutant collagen 3A1 compared to wild-type can increase the proportion of functional collagen 3A1 trimers, which can treat vEDS. Be expected.
  • the present inventors have found a method that can be used for a treatment that reduces the expression of a mutant form of collagen 3A1 as compared with the wild type.
  • a pharmaceutical composition for treating a disease caused by a mutant type of collagen 3A1 in a subject having a gene encoding a mutant type and a gene encoding a wild type respectively.
  • Contains nucleic acids selected from siRNA or shRNA Is the variant a gene encoding collagen 3A1 having a G-to-T substitution of the base corresponding to position 755 in the base sequence shown in SEQ ID NO: 27 (for example, the base sequence shown in SEQ ID NO: 29)? , Or a gene encoding collagen 3A1 having a G-to-A substitution of the 547th corresponding base in the base sequence of SEQ ID NO: 27 (for example, the base sequence of SEQ ID NO: 31).
  • the nucleic acid can strongly suppress the expression of the mutant form rather than the expression of the wild type.
  • Pharmaceutical compositions are provided.
  • the subject can be a subject suffering from vascular Ehlers-Danlos syndrome (vEDS).
  • the variant may preferably be a gene encoding collagen 3A1 in which the variant has a G-to-T substitution of the 755th corresponding base in the nucleotide sequence set forth in SEQ ID NO: 27.
  • the variant can preferably be a gene encoding collagen 3A1 having a G-to-A substitution of the base corresponding to position 547 in the base sequence set forth in SEQ ID NO: 27.
  • the variant may be a gene encoding collagen 3A1 having a G-to-A substitution of the base corresponding to position 548 in the nucleotide sequence set forth in SEQ ID NO: 27.
  • the nucleotide sequences of the sense and antisense strands of siRNA or shRNA are selected from the group consisting of SEQ ID NOs: 1 and 2, SEQ ID NOs: 3 and 4, and SEQ ID NOs: 5 and 6, respectively.
  • the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 1 and 2, respectively.
  • the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 3 and 4, respectively.
  • the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 5 and 6, respectively.
  • the base sequences of the sense and antisense strands of siRNA or shRNA are SEQ ID NOs: 7 and 8, SEQ ID NOs: 9 and 10, SEQ ID NOs: 11 and 12, SEQ ID NOs: 13 and 14, and SEQ ID NO: 15, respectively.
  • And 16 may have a base sequence selected from the group consisting of SEQ ID NOs: 17 and 18, SEQ ID NOs: 51 and 52, SEQ ID NOs: 53 and 54, and SEQ ID NOs: 55 and 56.
  • the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 7 and 8, respectively.
  • the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 9 and 10, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 11 and 12, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 13 and 14, respectively. In some aspects of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 15 and 16, respectively.
  • the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 17 and 18, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 51 and 52, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 53 and 54, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 55 and 56, respectively.
  • the nucleotide sequences of the sense and antisense strands of siRNA or shRNA are SEQ ID NOs: 7 and 8, SEQ ID NOs: 9 and 10, SEQ ID NOs: 11 and 12, SEQ ID NOs: 13 and 14, and SEQ ID NO: 15, respectively. 1 to several bases (eg, 1 or 2) for a base sequence selected from the group consisting of 16 and 16, SEQ ID NOs: 17 and 18, SEQ ID NOs: 51 and 52, SEQ ID NOs: 53 and 54, and SEQ ID NOs: 55 and 56. It may have a base sequence with one and three) additional mismatches.
  • the siRNA or shRNA encodes collagen 3A1 having a G-to-A substitution of the 547th corresponding base in the nucleotide sequence set forth in SEQ ID NO: 27, rather than the gene encoding the wild-type of collagen 3A1. Strongly silence genes.
  • the base sequences of the sense and antisense strands of siRNA or shRNA are SEQ ID NOs: 33 and 34, SEQ ID NOs: 35 and 36, SEQ ID NOs: 37 and 38, SEQ ID NOs: 39 and 40, SEQ ID NO: 41, respectively.
  • the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 33 and 34, respectively.
  • the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 35 and 36, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 37 and 38, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 39 and 40, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 41 and 42, respectively.
  • the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 43 and 44, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 45 and 46, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 47 and 48, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 49 and 50, respectively.
  • ShRNA can be obtained by linking the base sequences of the sense strand and the antisense strand with a linker loop.
  • shRNA the sense strand and the antisense strand are hybridized within the molecule.
  • siRNA the base sequences of the sense strand and the antisense strand are present on separate nucleic acids, but the sense strand and the antisense strand are hybridized between the molecules.
  • siRNA or shRNA whose sense and antisense strands are SEQ ID NOs: 7 and 8, SEQ ID NOs: 9 and 10, SEQ ID NOs: 11 and 12, SEQ ID NOs: 13 and 14, and SEQ ID NO: 15, respectively.
  • siRNA or shRNA having a base sequence selected from the group consisting of SEQ ID NOs: 17 and 18, SEQ ID NOs: 51 and 52, SEQ ID NOs: 53 and 54, and SEQ ID NOs: 55 and 56 are provided. These siRNA or shRNA may be included in the pharmaceutical composition.
  • siRNA or shRNA the sense strand and the antisense strand thereof, are SEQ ID NOs: 7 and 8, SEQ ID NOs: 9 and 10, SEQ ID NOs: 11 and 12, SEQ ID NOs: 13 and 14, respectively.
  • One to several bases eg, one
  • SiRNA or shRNA having a base sequence with two and three) additional mismatches may be included in the pharmaceutical composition.
  • siRNA or shRNA the sense strand and the antisense strand thereof, are SEQ ID NOs: 33 and 34, SEQ ID NOs: 35 and 36, SEQ ID NOs: 37 and 38, SEQ ID NOs: 39 and 40, and SEQ ID NOs, respectively.
  • SiRNAs or shRNAs having a base sequence selected from the group consisting of 41 and 42, SEQ ID NOs: 43 and 44, SEQ ID NOs: 45 and 46, SEQ ID NOs: 47 and 48, and SEQ ID NOs: 49 and 50 are included in the pharmaceutical composition. May be.
  • mutant expression can be significantly reduced compared to wild-type expression.
  • the expression of the variant can be reduced to 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, or 20% or less as compared to before treatment.
  • the rate of decrease means the rate of decrease after the treatment as compared with the rate before the treatment.
  • wild-type expression can be reduced to 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, or 20% or less as compared to before treatment, but mutant expression.
  • the rate of decrease can be 60% or less, 50% or less, 40% or less, 30% or less, or 20% or less.
  • the rate of decrease in gene expression can be determined by a method of analyzing gene expression levels well known to those skilled in the art, such as Northern blot and quantitative RT-PCR.
  • the pharmaceutical composition of the present invention may further contain a pharmaceutically acceptable excipient.
  • Excipients are not particularly limited, but include, for example, diluents, buffers, salts, solvents (such as water), tonicity agents, preservatives, and production aids (eg, lubricants, talc, magnesium, calcium stearate). , Zinc stearate, or stearic acid).
  • the pharmaceutical composition may have solution conditions suitable for storage of nucleic acids.
  • the pharmaceutical composition has a formulation composition suitable for parenteral administration.
  • the pharmaceutical composition of the present invention may be encapsulated in vesicles such as micelles and liposomes.
  • the micelles and liposomes can be polycationic polymers or cationic lipids as constituents, or lipid vesicles (lipid nanovesicles).
  • Micelle or liposome is a targeting molecule (eg, a molecule that binds to a molecule expressed extracellularly in a target cell, tissue, or organ) that imparts targeting orientation to the target cell, tissue, or organ. It may be modified.
  • a targeting molecule eg, a molecule that binds to a molecule expressed extracellularly in a target cell, tissue, or organ
  • the pharmaceutical composition of the present invention can be administered by an appropriate route of administration such as intraperitoneal administration, intravenous administration, subcutaneous administration, or intramuscular administration.
  • the pharmaceutical composition of the present invention may be administered topically in some embodiments.
  • the present invention It is a method for treating a disease caused by the mutant type in a subject having a gene encoding a mutant type of collagen 3A1 and a gene encoding a wild type, respectively. Including administering to the subject a therapeutically effective amount of nucleic acid selected from siRNA or shRNA.
  • the variant is a gene encoding collagen 3A1 having a G-to-T substitution of the 755th corresponding base in the nucleotide sequence of SEQ ID NO: 27, or 547 in the nucleotide sequence of SEQ ID NO: 27.
  • a method is provided in which the nucleic acid can strongly suppress the expression of the mutant form rather than the expression of the wild type.
  • the siRNA or shRNA may be encapsulated in micelles or liposomes.
  • a nucleic acid selected from siRNA or shRNA in the manufacture of a drug for treating a disease caused by the variant in a subject having a gene encoding a variant of collagen 3A1 and a gene encoding the wild type, respectively.
  • the variant is a gene encoding collagen 3A1 having a G-to-T substitution of the 755th corresponding base in the nucleotide sequence of SEQ ID NO: 27, or 547 in the nucleotide sequence of SEQ ID NO: 27.
  • a gene encoding collagen 3A1 having a G-to-A substitution of the second corresponding base The use is provided in which the nucleic acid can strongly suppress the expression of the mutant form rather than the expression of the wild type.
  • the siRNA or shRNA may be encapsulated in micelles or liposomes.
  • the present invention is a nucleic acid selected from siRNA or shRNA for treating a disease caused by the variant in a subject having a gene encoding a variant of collagen 3A1 and a gene encoding a wild form, respectively.
  • the variant is a gene encoding collagen 3A1 having a G-to-T substitution of the 755th corresponding base in the base sequence set forth in SEQ ID NO: 27, or the base sequence set forth in SEQ ID NO: 27.
  • the nucleic acid the nucleic acid specified in the present specification can be used.
  • the siRNA or shRNA may be encapsulated in micelles or liposomes.
  • Example 1 Design of siRNA targeting mutant Col3A1 gene Design the following siRNA targeting two human mutant Col3A1 genes (NCBI RefSeq number: NM_0000900) responsible for vascular Ehlers-Danlos syndrome (vEDS) (Table 1). As a mutant, 755T and 548A of Col3A were prepared as model cases, respectively, and the silencing ability of the wild type and the mutant by siRNA was examined below.
  • the 755th G from the start codon was mutated to A, and as a result, the 252nd Gly of the COL3A1 protein was mutated to Val (c.755G> T; pG252V), and from the start codon.
  • the 548th G is mutated to A, and as a result, the 183rd Gly of the COL3A1 protein is mutated to Asp (c.548G> A; pG183D).
  • the siRNA was designed to include the mutation site in the sequence, the antisense side was made a completely complementary sequence with the mutant allele, and the sense side was made to be completely complementary to the sequence.
  • the terminal overhang was 21mer (19mer double strand + 2 overhang residues) siRNA as dTdT. The synthesis was done by Gene Design.
  • Example 2 Preparation of luciferase reporter plasmid for evaluating siRNA targeting the mutant Col3A1 gene
  • a plasmid for evaluating the siRNA designed and synthesized in Example 1 with the luciferase reporter system was prepared as follows. Cleavage was performed at the restriction enzyme sites XhoI and NotI located downstream of N-Luc of pNFL1-N [CMV / Hygro] (Promega), a plasmid encoding the NanoLuc (Nluc) reporter gene downstream of the CMV promoter. A synthetic DNA consisting of 60 base pairs was inserted. The synthetic DNA was derived from the human Col3A1 sequence and was designed so that the mutant residue was located in the center. Mutation c.
  • wild-type pNLF1-N-755G was prepared using SEQ ID NOs: 19 and 20, and mutant pNLF1-N-755T was prepared using SEQ ID NOs: 21 and 22, respectively.
  • mutation c wild-type pNLF1-N-548G was prepared using SEQ ID NOs: 23 and 24, and mutant pNLF1-N-548A was prepared using SEQ ID NOs: 25 and 26 (Table 2).
  • Example 3 Evaluation of siRNA Targeting Mutant Col3A1 Gene by Reporter Assay
  • the Col3A1 mutation-specific siRNA candidates designed and synthesized in Example 1 were evaluated using the luciferase reporter system prepared in Example 2.
  • HeLa cells and HEK293 cells were used as cells (both obtained from RIKEN BRC).
  • HeLa cells and HEK293 cells were cultured in MEM (Sigma, M2279) + 10% FBS (Sigma) + 2 mM L-Glutamine (FUJIFILM Wako Pure Chemical Corporation) + 1% NEAA (MP Biomedicals). 8 ⁇ 10 3 / well (HeLa) and 2 ⁇ 10 4 / well (HEK293) cells were seeded on a 96-well plate.
  • a reporter plasmid (one of those prepared in Example 2) 20 pg / well, an internal control vector pGL4.54 1.2 ng / well (HeLa experiments 1 and 2) encoding Fluc, 0.2 ng / well (HeLa experiments 1 and 2), 0.2 ng / well ( HEK293 Experiment 3) or pGL4.53 0.2 ng / well (Experiment 4 and 5), and final concentrations 100 nM (Experiment 1), 1-100 nM (Experiment 2 and 3), 0.01-10 nM (Experiment 4 and 5) SiRNA was introduced using a transfection reagent (Libofectoamine2000 (Thermo Experiment Scientific) 0.1 ⁇ L / Well).
  • luciferase activity was measured with a plate reader (TECAN Microplate Reader Infinity M1000 PRO) using a Nano-GloR Dual-LuciferaseR Reporter Assay System (Promega).
  • the Nluc value was corrected using the internal standard Fluc.
  • the inhibitory activity of each siRNA was shown in comparison with the control (vector only) sample.
  • the results of Experiments 1 to 5 are shown in FIGS. 1 to 5, respectively. All experiments were performed in triplets and the data were shown as mean ⁇ SEM.
  • siRNA 755T-6, 755T-8, 755T-10 is Col3A1 c.
  • siRNA 547A-5, 547A-6, 547A-7, 547A-8, 547A-11, 547A-15 are Col3A1 c. It was shown to be 547G> A mutation-selective siRNA.
  • Missense mutations account for 70% of the COL3A1 mutations, which is the majority, but since these are dominant negative mutations as described above, it is considered theoretically beneficial to specifically silence the missense mutations in the present invention. That is, when the expression level of mutant collagen 3A1 is halved with respect to normal collagen 3A1, the ratio of normal COL3A1 trimer theoretically recovers to about 30%, and the ratio of normal COL3A1 trimer is increased. It improves about 2.4 times as much as when no treatment is performed. Therefore, if the COL3A1 gene can be suppressed specifically for the mutant allele, it is considered that the effective normal COL3A1 trimer can be increased and the missense type can be converted to the haploinsufficiency type. A pharmaceutical composition that suppresses the COL3A1 gene is expected to improve various symptoms of EDS.
  • Example 4 Design of siRNA targeting the mutant Col3A1 gene (Part 2) In Example 3, c. To further increase mutant selective suppression of the two siRNAs that showed particularly strong activity against 548G> A, 547A-6 (SEQ ID NOs: 9 and 10) and 547A-8 (SEQ ID NOs: 13 and 14). , SiRNAs with one additional mutation were designed respectively (Table 3). The synthesis was performed by Thermo Fisher Scientific.
  • Example 5 Evaluation of siRNA targeting the mutant Col3A1 gene by a reporter assay (Part 2)
  • the Col3A1 mutation-specific siRNA candidates designed and synthesized in Example 4 were evaluated using the luciferase reporter system prepared in Example 2.
  • HeLa cells and HEK293 cells were used as cells (both obtained from RIKEN BRC).
  • HeLa cells were cultured in MEM medium (Sigma, M2279) containing 10% FBS (Sigma), 2 mM L-Glutamine (FUJIFILM Wako Pure Chemical Corporation), and 1% NEAA (MP Biomedicals). 8 ⁇ 10 3 / well cells were seeded on a 96-well plate.
  • a reporter plasmid (one of those prepared in Example 2) 20 pg / well, an internal control vector pGL4.53 0.2 ng / well encoding Fluc, and a siRNA having a final concentration of 1 nM were used as a transfection reagent (Lipofectoamine2000). (Thermo Fisher Scientific) 0.1 ⁇ L / Well was used for introduction.
  • luciferase activity was measured with a plate reader (TECAN Microplate Reader Infinite M1000 PRO) using the Nano-GloR Dual-LuciferaseR Assay System (Promega). The Nluc value was corrected using the internal standard Fluc.
  • the inhibitory activity of each siRNA was shown in comparison with the control (vector only) sample. The results are shown in FIGS. 6 and 7. All experiments were performed in triplets and the data were shown as mean ⁇ SEM.
  • Example 6 Design of siRNA targeting the mutant Col3A1 gene (Part 2) Similar to Example 1, the following siRNAs targeting the (c.547G>A; pG183S) mutations responsible for vascular Ehlers-Danlos syndrome (vEDS) were additionally designed (Table 4). The synthesis was done by Gene Design. In the following examples, "547A” means the actual replacement of the 547th G with A.
  • Example 7 Preparation of a luciferase reporter plasmid for evaluating siRNA targeting the mutant Col3A1 gene (Part 2)
  • a plasmid for evaluating the siRNA designed and synthesized in Example 6 with a luciferase reporter system was prepared in the same manner as in Example 2 as follows. Similar to Example 2, pNFL1-N [CMV / Hygro] was cleaved with restriction enzyme sites XhoI and NotI, and synthetic DNA consisting of 60 base pairs was inserted therein. The synthetic DNA was derived from the human Col3A1 sequence and was designed so that the mutant residue was located in the center. Mutation c. Mutant pNLF1-N-547A-2 was prepared using SEQ ID NOs: 57 and 58 for 547G> A (Table 5).
  • Example 8 Evaluation of siRNA targeting the mutant Col3A1 gene by a reporter assay (Part 3)
  • the Col3A1 mutation-specific siRNA candidates designed and synthesized in Example 6 were evaluated using the luciferase reporter system prepared in Examples 2 and 7.
  • HeLa cells and HEK293 cells were used as cells.
  • the culture conditions for HeLa cells and HEK293 cells are the same as in Example 3. 8 ⁇ 10 3 / well (HeLa) and 2 ⁇ 10 4 / well (HEK293) cells were seeded on a 96-well plate.
  • a reporter plasmid (pNLF1-N-547G or pNLF1-N-547A-2) 20 pg / well, an internal control vector pGL4.53 0.2 ng / well encoding Fluc, and a final concentration of 1-10 nM (HeLa experiment 8). ), 0.1-10 nM (HEK293 Experiment 9) siRNA was introduced using a transfection reagent (Pofectamine2000 (Thermo Fisher Scientific) 0.1 ⁇ L / Well.
  • PNLF1-N-547G was pNLF1-N-548G. It is a plasmid containing a gene encoding wild-type COL3A1 having the same base sequence as.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Wood Science & Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention provides a pharmaceutical composition for use in treatment of a disease caused by a mutation in collagen 3A1. This pharmaceutical composition is for treating a disease caused by a collagen 3A1 mutant in a subject having a gene encoding the mutant and a gene encoding the wild type, said pharmaceutical composition containing a nucleic acid selected from siRNAs and shRNAs. The mutant is a gene encoding collagen 3A1 in which the base G at position 755 in the base sequence represented by SEQ ID No:27 is substituted with T or a gene encoding collagen 3A1 in which the base G at position 547 in the base sequence represented by SEQ ID No:27 is substituted with A. The nucleic acid suppresses the expression of the mutant more strongly than the expression of the wild type.

Description

疾患特異的なCOL3A1変異アレルの遺伝子発現を抑制する核酸および血管型エーラス・ダンロス症候群を処置するための医薬組成物Nucleic acid that suppresses gene expression of disease-specific COL3A1 mutant allele and pharmaceutical composition for treating vascular Ehlers-Danlos syndrome
 本発明は、疾患特異的なCOL3A1変異アレルの遺伝子発現を抑制する核酸および血管型エーラス・ダンロス症候群を処置するための医薬組成物に関する。 The present invention relates to a nucleic acid that suppresses gene expression of a disease-specific COL3A1 mutant allele and a pharmaceutical composition for treating vascular Ehlers-Danlos syndrome.
エーラス・ダンロス症候群(Ehlers-Danlos syndrome:EDS)は、皮膚、関節、血管など全身的な結合組織の脆弱性に基づく遺伝性疾患である。その原因と症状から、6つの主病型(古典型、関節型、血管型、後側彎型、多発関節弛緩型、皮膚脆弱型)に分類されており、全病型を合わせた推定頻度は約1/5,000人とされている。EDSの原因はコラーゲン分子又はコラーゲン成熟過程に関与する酵素の遺伝子変異に基づく。 Ehlers-Danlos syndrome (EDS) is a hereditary disease based on the fragility of systemic connective tissues such as skin, joints, and blood vessels. Based on the causes and symptoms, it is classified into 6 main disease types (classical type, joint type, vascular type, kyphoscoliosis type, multiple joint relaxation type, skin fragile type), and the estimated frequency of all disease types combined is It is said to be about 1 / 5,000. The cause of EDS is based on genetic mutations in collagen molecules or enzymes involved in the collagen maturation process.
EDSの一分類である血管型EDS(Vascular TypeEDS、またはvEDS)(MIM 130050)は、動脈・消化管・妊娠中の子宮の破裂など突然死をももたらす重篤な合併症をもつ最重症型EDSであり、遺伝様式は常染色体優性遺伝である。血管型EDSはIII型コラーゲン遺伝子(COL3A1)の変異によりIII型コラーゲン分子の異常をきたし発症する。vEDSには現在のところ、根本的な治療法はなく対症療法が主となっている。 Vascular Type EDS (VEDS) (MIM 130050), which is a category of EDS, is the most severe type EDS with serious complications that also cause sudden death such as rupture of arteries, gastrointestinal tract, and uterus during pregnancy. And the mode of inheritance is autosomal dominant inheritance. Vascular EDS develops due to an abnormality in the type III collagen molecule due to a mutation in the type III collagen gene (COL3A1). At present, there is no radical cure for vEDS, and symptomatic treatment is the main treatment.
WO2011/019793AWO2011 / 019793A
 本発明は、疾患特異的なCOL3A1変異アレルの遺伝子発現を抑制する核酸および血管型エーラス・ダンロス症候群を処置するための医薬組成物を提供する。 The present invention provides a nucleic acid that suppresses gene expression of a disease-specific COL3A1 mutant allele and a pharmaceutical composition for treating vascular Ehlers-Danlos syndrome.
 本発明によれば、以下の発明が提供され得る。
[1]コラーゲン3A1の変異型をコードする遺伝子と野生型をコードする遺伝子をそれぞれ有する対象において、当該変異型に起因する疾患を処置するための医薬組成物であって、
 siRNAまたはshRNAから選択される核酸を含み、
 当該変異型が、配列番号27に記載の塩基配列における755番目に対応する塩基のGからTへの置換を有するコラーゲン3A1をコードする遺伝子であるか、または配列番号27に記載の塩基配列における547番目に対応する塩基のGからAへの置換を有するコラーゲン3A1をコードする遺伝子であり、
 前記核酸が、野生型の発現よりも前記変異型の発現を強く抑制することができる、
医薬組成物。
[2]対象が、血管型エーラス・ダンロス症候群(vEDS)に罹患した対象である、上記[1]に記載の医薬組成物。
[3]前記変異型が、配列番号27に記載の塩基配列における755番目に対応する塩基のGからTへの置換を有するコラーゲン3A1をコードする遺伝子である、上記[1]または[2]に記載の医薬組成物。
[4]前記変異型が、配列番号27に記載の塩基配列における547番目に対応する塩基のGからAへの置換を有するコラーゲン3A1をコードする遺伝子である、上記[1]または[2]に記載の医薬組成物。
[5]siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号1および2、配列番号3および4、並びに配列番号5および6からなる群から選択される塩基配列を有する、上記[3]に記載の医薬組成物。
[6]siRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号3および4に記載の塩基配列を有する、上記[5]に記載の医薬組成物。
[7]siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号7および8の組合せ、配列番号9および10の組合せ、配列番号11および12の組合せ、配列番号13および14の組合せ、配列番号15および16の組合せ、配列番号17および18の組合せ、配列番号51および52の組合せ、配列番号53および54の組合せ、並びに配列番号55および56の組合せからなる群から選択される塩基配列の組合せを有する、上記[4]に記載の医薬組成物。
[8]siRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号9および10に記載の塩基配列の組合せであるか、または、配列番号13および14に記載の塩基配列の組合せである、上記[7]に記載の医薬組成物。
[9]siRNAまたはshRNAであって、そのセンス鎖およびアンチセンス鎖がそれぞれ、配列番号7および8の組合せ、配列番号9および10の組合せ、配列番号11および12の組合せ、配列番号13および14の組合せ、配列番号15および16の組合せ、配列番号17および18の組合せ、配列番号51および52の組合せ、配列番号53および54の組合せ、並びに配列番号55および56の組合せからなる群から選択される塩基配列の組合せを有する、siRNAまたはshRNA。
[10]siRNAまたはshRNAであって、そのセンス鎖およびアンチセンス鎖がそれぞれ、配列番号7および8の組合せ、配列番号9および10の組合せ、配列番号11および12の組合せ、配列番号13および14の組合せ、配列番号15および16の組合せ、配列番号17および18の組合せ、配列番号51および52の組合せ、配列番号53および54の組合せ、並びに配列番号55および56の組合せからなる群から選択される塩基配列の組合せに対して1~数塩基の追加のミスマッチを有する塩基配列を有する、siRNAまたはshRNA。
[11]
 上記[10]のsiRNAまたはshRNAであって、そのセンス鎖およびアンチセンス鎖がそれぞれ、配列番号33および34の組合せ、配列番号35および36の組合せ、配列番号37および38の組合せ、配列番号39および40の組合せ、配列番号41および42の組合せ、配列番号43および44の組合せ、配列番号45および46の組合せ、配列番号47および48の組合せ、並びに配列番号49および50の組合せからなる群から選択される塩基配列の組合せを有する、siRNAまたはshRNA。
[12]コラーゲン3A1の変異型をコードする遺伝子と野生型をコードする遺伝子をそれぞれ有する細胞において変異型の発現を抑制することに用いるための組成物であって、
 上記[9]~[11]のいずれかに記載のsiRNAまたはshRNAから選択される核酸を含み、
 当該変異型が、配列番号27に記載の塩基配列における547番目に対応する塩基のGからAへの置換を有するコラーゲン3A1をコードする遺伝子である、
組成物。
According to the present invention, the following inventions can be provided.
[1] A pharmaceutical composition for treating a disease caused by a mutant type of collagen 3A1 in a subject having a gene encoding a mutant type and a gene encoding a wild type, respectively.
Contains nucleic acids selected from siRNA or shRNA
The variant is a gene encoding collagen 3A1 having a G-to-T substitution of the 755th corresponding base in the nucleotide sequence of SEQ ID NO: 27, or 547 in the nucleotide sequence of SEQ ID NO: 27. A gene encoding collagen 3A1 having a G-to-A substitution of the second corresponding base.
The nucleic acid can strongly suppress the expression of the mutant form rather than the expression of the wild type.
Pharmaceutical composition.
[2] The pharmaceutical composition according to the above [1], wherein the subject is a subject suffering from vascular Ehlers-Danlos syndrome (vEDS).
[3] The above-mentioned [1] or [2], wherein the variant is a gene encoding collagen 3A1 having a G-to-T substitution of the base corresponding to the 755th base in the base sequence shown in SEQ ID NO: 27. The pharmaceutical composition described.
[4] The above-mentioned [1] or [2], wherein the variant is a gene encoding collagen 3A1 having a G-to-A substitution of the base corresponding to the 547th in the base sequence shown in SEQ ID NO: 27. The pharmaceutical composition described.
[5] The base sequence of the sense strand and antisense strand of siRNA or shRNA has a base sequence selected from the group consisting of SEQ ID NOs: 1 and 2, SEQ ID NOs: 3 and 4, and SEQ ID NOs: 5 and 6, respectively. The pharmaceutical composition according to [3].
[6] The pharmaceutical composition according to the above [5], wherein the base sequences of the sense strand and the antisense strand of siRNA have the base sequences shown in SEQ ID NOs: 3 and 4, respectively.
[7] The base sequences of the sense strand and antisense strand of siRNA or shRNA are the combination of SEQ ID NOs: 7 and 8, the combination of SEQ ID NOs: 9 and 10, the combination of SEQ ID NOs: 11 and 12, and the combination of SEQ ID NOs: 13 and 14, respectively. , A base sequence selected from the group consisting of combinations of SEQ ID NOs: 15 and 16, combinations of SEQ ID NOs: 17 and 18, combinations of SEQ ID NOs: 51 and 52, combinations of SEQ ID NOs: 53 and 54, and combinations of SEQ ID NOs: 55 and 56. The pharmaceutical composition according to the above [4], which has the combination of.
[8] The base sequences of the sense strand and the antisense strand of siRNA are a combination of the base sequences shown in SEQ ID NOs: 9 and 10, respectively, or a combination of the base sequences shown in SEQ ID NOs: 13 and 14, respectively. The pharmaceutical composition according to the above [7].
[9] SiRNA or shRNA whose sense strand and antisense strand are combinations of SEQ ID NOs: 7 and 8, combinations of SEQ ID NOs: 9 and 10, combinations of SEQ ID NOs: 11 and 12, and SEQ ID NOs: 13 and 14, respectively. A base selected from the group consisting of combinations, combinations of SEQ ID NOs: 15 and 16, combinations of SEQ ID NOs: 17 and 18, combinations of SEQ ID NOs: 51 and 52, combinations of SEQ ID NOs: 53 and 54, and combinations of SEQ ID NOs: 55 and 56. SiRNA or shRNA having a combination of sequences.
[10] SiRNA or shRNA whose sense and antisense strands are a combination of SEQ ID NOs: 7 and 8, a combination of SEQ ID NOs: 9 and 10, a combination of SEQ ID NOs: 11 and 12, and SEQ ID NOs: 13 and 14, respectively. A base selected from the group consisting of combinations, combinations of SEQ ID NOs: 15 and 16, combinations of SEQ ID NOs: 17 and 18, combinations of SEQ ID NOs: 51 and 52, combinations of SEQ ID NOs: 53 and 54, and combinations of SEQ ID NOs: 55 and 56. SiRNA or shRNA having a base sequence with an additional mismatch of 1 to several bases for a combination of sequences.
[11]
The siRNA or shRNA of the above [10], the sense strand and the antisense strand thereof are the combination of SEQ ID NOs: 33 and 34, the combination of SEQ ID NOs: 35 and 36, the combination of SEQ ID NOs: 37 and 38, SEQ ID NO: 39 and, respectively. Selected from the group consisting of 40 combinations, SEQ ID NOs: 41 and 42 combinations, SEQ ID NOs: 43 and 44 combinations, SEQ ID NOs: 45 and 46 combinations, SEQ ID NOs: 47 and 48 combinations, and SEQ ID NOs: 49 and 50 combinations. SiRNA or shRNA having a combination of base sequences.
[12] A composition for use in suppressing the expression of a mutant type in cells having a gene encoding a mutant type of collagen 3A1 and a gene encoding a wild type, respectively.
Contains nucleic acid selected from the siRNA or shRNA according to any one of the above [9] to [11].
The variant is a gene encoding collagen 3A1 having a G-to-A substitution of the 547th corresponding base in the nucleotide sequence set forth in SEQ ID NO: 27.
Composition.
図1は、HeLa細胞における、コラーゲン3A1の野生型(548Gおよび755G)と変異型(755T)または変異型(548A)に対する各種siRNAのノックダウン効率を示す。FIG. 1 shows the knockdown efficiency of various siRNAs against wild-type (548G and 755G) and mutant (755T) or mutant (548A) collagen 3A1 in HeLa cells. 図2は、HeLa細胞における、各種siRNAによるコラーゲン3A1の野生型(548Gおよび755G)と変異型(755T)または変異型(548A)に対するノックダウン効率の濃度依存性(1~100nM)を示す。図2中、siRNA名の末尾の数字と濃度とがハイフンで連結されて表示されている。FIG. 2 shows the concentration dependence (1-100 nM) of knockdown efficiency on the wild type (548G and 755G) and mutant (755T) or mutant (548A) of collagen 3A1 by various siRNAs in HeLa cells. In FIG. 2, the number at the end of the siRNA name and the concentration are linked by a hyphen and displayed. 図3は、HEK293細胞における、HEK293細胞における、各種siRNAによるコラーゲン3A1の野生型(548Gおよび755G)と変異型(755T)または変異型(548A)に対するノックダウン効率の濃度依存性(1~100nM)を示す。図3中、siRNA名の末尾の数字と濃度とがハイフンで連結されて表示されている。FIG. 3 shows the concentration dependence (1-100 nM) of knockdown efficiency of collagen 3A1 by various siRNAs on wild type (548G and 755G) and mutant type (755T) or mutant type (548A) in HEK293 cells. Is shown. In FIG. 3, the number at the end of the siRNA name and the concentration are linked by a hyphen and displayed. 図4は、HeLa細胞における、各種siRNAによるコラーゲン3A1の野生型(548G)と変異型(548A)に対するノックダウン効率の濃度依存性(0.01~10nM)を示す。図4中、siRNA名の末尾の数字と濃度とがハイフンで連結されて表示されている。FIG. 4 shows the concentration dependence (0.01 to 10 nM) of knockdown efficiency for the wild type (548G) and the mutant type (548A) of collagen 3A1 by various siRNAs in HeLa cells. In FIG. 4, the number at the end of the siRNA name and the concentration are linked by a hyphen and displayed. 図5は、HEK293細胞における、各種siRNAによるコラーゲン3A1の野生型(548G)と変異型(548A)に対するノックダウン効率の濃度依存性(0.01~10nM)を示す。図5中、siRNA名の末尾の数字と濃度とがハイフンで連結されて表示されている。FIG. 5 shows the concentration dependence (0.01-10 nM) of knockdown efficiency on the wild type (548G) and mutant type (548A) of collagen 3A1 by various siRNAs in HEK293 cells. In FIG. 5, the number at the end of the siRNA name and the concentration are linked by a hyphen and displayed. 図6は、HeLa細胞における各種siRNAによるコラーゲン3A1の野生型(548G)と変異型(548A)に対するノックダウン効率を示す。FIG. 6 shows the knockdown efficiency of collagen 3A1 by various siRNAs in HeLa cells against the wild type (548G) and the mutant type (548A). 図7は、HeLa細胞における各種siRNAによるコラーゲン3A1の野生型(548G)と変異型(548A)に対するノックダウン効率を示す。FIG. 7 shows the knockdown efficiency of collagen 3A1 by various siRNAs in HeLa cells against the wild type (548G) and the mutant type (548A). 図8は、HeLa細胞における各種siRNAによるコラーゲン3A1の野生型(547G)と変異型(547A)に対するノックダウン効率を示す。FIG. 8 shows the knockdown efficiency of collagen 3A1 by various siRNAs in HeLa cells against the wild type (547G) and the mutant type (547A). 図9は、HEK293細胞における各種siRNAによるコラーゲン3A1の野生型(547G)と変異型(547A)に対するノックダウン効率を示すFIG. 9 shows the knockdown efficiency of collagen 3A1 by various siRNAs in HEK293 cells against the wild type (547G) and the mutant type (547A).
発明の具体的な説明Specific description of the invention
 本明細書では、「対象」は、哺乳動物であり、特にヒトであり得る。 In the present specification, the "subject" is a mammal, and may be a human in particular.
 本明細書では、「処置」は、治療的処置および予防的処置を意味する。本明細書では、「治療」とは、疾患若しくは障害の治療、治癒、防止若しくは、寛解の改善、または、疾患若しくは障害の進行速度の低減を意味する。本明細書では、「予防」とは、疾患もしくは病態の発症の可能性を低下させる、または疾患もしくは病態の発症を遅らせることを意味する。 As used herein, "treatment" means therapeutic and prophylactic treatment. As used herein, "treatment" means the treatment, cure, prevention, improvement of remission, or reduction of the rate of progression of a disease or disorder. As used herein, "prevention" means reducing the likelihood of developing a disease or condition, or delaying the onset of a disease or condition.
 本明細書では、「疾患」とは、治療が有益な症状を意味する。 As used herein, the term "disease" means a symptomatology for which treatment is beneficial.
 本明細書では、「治療上有効量」とは、疾患や状態を処置(予防または治療)するために有効な薬剤の量を意味する。治療上有効量の薬剤は、疾患または状態の症状の悪化速度を低下させること、前記症状の悪化を止めること、前記症状を改善すること、前記症状を治癒すること、または前記症状の発症または発展を抑制することが可能である。 As used herein, the term "therapeutically effective amount" means the amount of a drug effective for treating (preventing or treating) a disease or condition. A therapeutically effective amount of a drug slows the rate of exacerbation of a symptom of a disease or condition, stops the exacerbation of the symptom, ameliorates the symptom, cures the symptom, or develops or develops the symptom. It is possible to suppress.
 本明細書では、「コラーゲン3A1」は、III型コラーゲンα-1またはCOL3A1とも呼ばれ、3つのα-1(III)鎖を含む繊維形成性のコラーゲンである。コラーゲン3A1は、初期胚および胚発生にわたって発現している。成体においては、コラーゲン3A1は、内部臓器や皮膚の細胞外マトリックスの主要構成要素である。ヒトコラーゲン3A1をコードする遺伝子は、例えば、NCBI参照番号:NM_000090.3で登録された塩基配列が挙げられ、例えば、配列番号27に記載の塩基配列に対応する塩基配列を有し得る。ヒトコラーゲン3A1をコードする遺伝子は、例えば、配列番号27に記載の塩基配列を有し得る。 In the present specification, "collagen 3A1" is also called type III collagen α-1 or COL3A1 and is a fibrogenic collagen containing three α-1 (III) chains. Collagen 3A1 is expressed throughout early embryonic and embryonic development. In adults, collagen 3A1 is a major component of the extracellular matrix of internal organs and skin. Examples of the gene encoding human collagen 3A1 include a base sequence registered with NCBI reference number: NM_0000900.3, and may have, for example, a base sequence corresponding to the base sequence set forth in SEQ ID NO: 27. The gene encoding human collagen 3A1 may have, for example, the nucleotide sequence set forth in SEQ ID NO: 27.
 本明細書では、「血管型エーラス・ダンロス症候群(vEDS)」は、皮膚、関節、および血管などの全身的な結合組織の脆弱性に基づく遺伝性疾患である。症状としては、皮膚の脆弱性(容易に裂ける、萎縮性瘢痕を来す)、関節の脆弱性(柔軟、脱臼しやすい)、血管の脆弱性(内出血しやすい)、心臓弁の逸脱・逆流、上行大動脈拡張を呈する。血管型EDSにおいては、動脈解離・瘤・破裂、腸管破裂、子宮破裂といった重篤な合併症を呈するとともに、小関節の弛緩、特徴的顔貌、皮下静脈の透見などの身体的特徴がある。vEDSの原因は、大多数は、コラーゲン3A1の遺伝子変異であるとされる。特に、vEDSの原因として、コラーゲン3A1の塩基配列の置換(配列番号27に記載の塩基配列において547番目のGに対応する塩基のAへの置換、および755番目のGに対応する塩基のTへの置換)が挙げられる。vEDSは、片側アレルの変異のみで発症する。変異型が産生されることによって、野生型(正常型)と三量体を形成し、異常なコラーゲンが生じるためである。変異型の発現量を低下させることにより、野生型(正常型)のみからなる三量体産生量を増加させると、vEDSの症状は軽減するため、変異型の選択的なノックダウンはvEDSの治療戦略となり得る。 As used herein, "vascular Ehlers-Danlos syndrome (vEDS)" is a hereditary disease based on the fragility of systemic connective tissues such as skin, joints, and blood vessels. Symptoms include skin fragility (easy to tear, atrophic scarring), joint fragility (flexible, easy to dislocate), vascular fragility (easy to bleed internally), heart valve deviation / regurgitation, Presents with ascending aortic dilatation. Vascular EDS presents with serious complications such as arterial dissection / aneurysm / rupture, intestinal rupture, and uterine rupture, and has physical characteristics such as relaxation of small joints, characteristic facial features, and see-through of subcutaneous veins. The majority of the causes of vEDS are attributed to collagen 3A1 gene mutations. In particular, as the cause of vEDS, substitution of the base sequence of collagen 3A1 (substitution of the base corresponding to the 547th G in the base sequence shown in SEQ ID NO: 27 to A, and substitution of the base corresponding to the 755th G to T) Replacement of). vEDS develops only with mutations in one-sided alleles. This is because the mutant form forms a trimer with the wild type (normal type) and produces abnormal collagen. Selective knockdown of mutants is a treatment for vEDS because increasing the production of trimers consisting only of wild-type (normal) by reducing the expression of mutants reduces the symptoms of vEDS. It can be a strategy.
 本明細書では、「siRNA」とは、遺伝子のノックダウンに用いられる核酸分子であり、19~25mer程度の長さの二本鎖RNAを含む核酸分子である。標的mRNAの塩基配列と相補的に設計されたsiRNAは、当該mRNAに結合し、mRNAを分解することによってmRNAからのタンパク質の翻訳を阻害することができる。siRNAに用いられるRNAは、天然のRNAに加えて、安定化した核酸アナログ(例えば、AmNA、2’,4’架橋核酸(ロックド核酸)などの架橋型人工核酸、並びにRNAのリボースの2’位がメトキシ基で修飾された2’-OMe体、メトキシエチルで修飾された2’-MOE体およびフルオロ基で修飾された2’-F体、リン酸ジエステル結合に代えてホスホロチオアート結合を有する核酸)またはDNAを含む核酸(例えば、ギャップマーおよびミックスマー)が用いられ得る。当業者であれば、これらの安定化した核酸アナログやDNAを用いてsiRNAを適宜設計することができる。 In the present specification, "siRNA" is a nucleic acid molecule used for knockdown of a gene, and is a nucleic acid molecule containing a double-stranded RNA having a length of about 19 to 25 mer. A siRNA designed complementary to the base sequence of a target mRNA can inhibit the translation of a protein from the mRNA by binding to the mRNA and degrading the mRNA. In addition to natural RNA, RNA used for siRNA includes stabilized nucleic acid analogs (for example, cross-linked artificial nucleic acids such as AmNA, 2', 4'cross-linked nucleic acids (locked nucleic acids), and the 2'position of ribose of RNA. 2'-OMe form modified with methoxy group, 2'-MOE form modified with methoxyethyl and 2'-F form modified with fluoro group, phosphorothioate bond instead of phosphate diester bond Nucleic acids having) or nucleic acids containing DNA (eg, gapmers and mixmers) can be used. Those skilled in the art can appropriately design siRNA using these stabilized nucleic acid analogs and DNA.
 本明細書では、「shRNA」とは、ヘアピン構造を有する二本鎖RNAを含む核酸分子である。shRNAのヘアピン構造は、細胞内で切断され、siRNAに変換され、これによって標的遺伝子をサイレンシングすることができる。ヘアピン構造は、当業者であれば適宜設計することができる。 In the present specification, "SHRNA" is a nucleic acid molecule containing double-stranded RNA having a hairpin structure. The hairpin structure of the shRNA is cleaved intracellularly and converted to siRNA, which allows silencing of the target gene. The hairpin structure can be appropriately designed by those skilled in the art.
 血管型エーラス・ダンロス症候群(vEDS)において、コラーゲン3A1の変異は、優性変異である。すなわち、コラーゲン3A1は、三量体を形成して機能し、そのうち1つが変異することでコラーゲン3A1の機能を阻害する。これに対して、コラーゲン3A1の変異型の発現を野生型と比較して減少させる処置は、機能的なコラーゲン3A1の三量体の割合を増加させることができ、これにより、vEDSを処置できると期待される。 In vascular Ehlers-Danlos syndrome (vEDS), the mutation of collagen 3A1 is a dominant mutation. That is, collagen 3A1 functions by forming a trimer, and one of them is mutated to inhibit the function of collagen 3A1. In contrast, treatments that reduce the expression of mutant collagen 3A1 compared to wild-type can increase the proportion of functional collagen 3A1 trimers, which can treat vEDS. Be expected.
 本発明者らは、コラーゲン3A1の変異型の発現を野生型と比較して減少させる処置に用いることができる方法を見出した。 The present inventors have found a method that can be used for a treatment that reduces the expression of a mutant form of collagen 3A1 as compared with the wild type.
 本発明のある態様では、
コラーゲン3A1の変異型をコードする遺伝子と野生型をコードする遺伝子をそれぞれ有する対象において、当該変異型に起因する疾患を処置するための医薬組成物であって、
 siRNAまたはshRNAから選択される核酸を含み、
 当該変異型が、配列番号27に記載の塩基配列における755番目に対応する塩基のGからTへの置換を有するコラーゲン3A1をコードする遺伝子(例えば、配列番号29に記載の塩基配列)であるか、または配列番号27に記載の塩基配列における547番目に対応する塩基のGからAへの置換を有するコラーゲン3A1をコードする遺伝子(例えば、配列番号31に記載の塩基配列)であり、
 前記核酸が、野生型の発現よりも前記変異型の発現を強く抑制することができる、
医薬組成物
が提供される。この態様において、対象は、血管型エーラス・ダンロス症候群(vEDS)に罹患した対象であり得る。この態様では、変異型は、好ましくは、前記変異型が、配列番号27に記載の塩基配列における755番目に対応する塩基のGからTへの置換を有するコラーゲン3A1をコードする遺伝子であり得る。この態様ではまた、変異型は、好ましくは、配列番号27に記載の塩基配列における547番目に対応する塩基のGからAへの置換を有するコラーゲン3A1をコードする遺伝子であり得る。また、ある態様では、変異型は、配列番号27に記載の塩基配列における548番目に対応する塩基のGからAへの置換を有するコラーゲン3A1をコードする遺伝子であり得る。
In certain aspects of the invention
A pharmaceutical composition for treating a disease caused by a mutant type of collagen 3A1 in a subject having a gene encoding a mutant type and a gene encoding a wild type, respectively.
Contains nucleic acids selected from siRNA or shRNA
Is the variant a gene encoding collagen 3A1 having a G-to-T substitution of the base corresponding to position 755 in the base sequence shown in SEQ ID NO: 27 (for example, the base sequence shown in SEQ ID NO: 29)? , Or a gene encoding collagen 3A1 having a G-to-A substitution of the 547th corresponding base in the base sequence of SEQ ID NO: 27 (for example, the base sequence of SEQ ID NO: 31).
The nucleic acid can strongly suppress the expression of the mutant form rather than the expression of the wild type.
Pharmaceutical compositions are provided. In this embodiment, the subject can be a subject suffering from vascular Ehlers-Danlos syndrome (vEDS). In this aspect, the variant may preferably be a gene encoding collagen 3A1 in which the variant has a G-to-T substitution of the 755th corresponding base in the nucleotide sequence set forth in SEQ ID NO: 27. Also in this aspect, the variant can preferably be a gene encoding collagen 3A1 having a G-to-A substitution of the base corresponding to position 547 in the base sequence set forth in SEQ ID NO: 27. Also, in some embodiments, the variant may be a gene encoding collagen 3A1 having a G-to-A substitution of the base corresponding to position 548 in the nucleotide sequence set forth in SEQ ID NO: 27.
 本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号1および2、配列番号3および4、並びに配列番号5および6からなる群から選択される塩基配列を有し得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号1および2であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号3および4であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号5および6であり得る。 In some embodiments of the invention, the nucleotide sequences of the sense and antisense strands of siRNA or shRNA are selected from the group consisting of SEQ ID NOs: 1 and 2, SEQ ID NOs: 3 and 4, and SEQ ID NOs: 5 and 6, respectively. Can have. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 1 and 2, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 3 and 4, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 5 and 6, respectively.
 本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号7および8、配列番号9および10、配列番号11および12、配列番号13および14、配列番号15および16、配列番号17および18、配列番号51および52、配列番号53および54、並びに配列番号55および56からなる群から選択される塩基配列を有し得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号7および8であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号9および10であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号11および12であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号13および14であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号15および16であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号17および18であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号51および52であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号53および54であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号55および56であり得る。 In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA are SEQ ID NOs: 7 and 8, SEQ ID NOs: 9 and 10, SEQ ID NOs: 11 and 12, SEQ ID NOs: 13 and 14, and SEQ ID NO: 15, respectively. And 16, may have a base sequence selected from the group consisting of SEQ ID NOs: 17 and 18, SEQ ID NOs: 51 and 52, SEQ ID NOs: 53 and 54, and SEQ ID NOs: 55 and 56. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 7 and 8, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 9 and 10, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 11 and 12, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 13 and 14, respectively. In some aspects of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 15 and 16, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 17 and 18, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 51 and 52, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 53 and 54, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 55 and 56, respectively.
 本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号7および8、配列番号9および10、配列番号11および12、配列番号13および14、配列番号15および16、配列番号17および18、配列番号51および52、配列番号53および54、並びに配列番号55および56からなる群から選択される塩基配列に対して1~数塩基(例えば、1つ、2つ、および3つ)の追加のミスマッチを有する塩基配列を有し得る。この態様では、siRNAまたはshRNAは、コラーゲン3A1の野生型をコードする遺伝子よりも、配列番号27に記載の塩基配列における547番目に対応する塩基のGからAへの置換を有するコラーゲン3A1をコードする遺伝子を強くサイレンシングする。 In some embodiments of the invention, the nucleotide sequences of the sense and antisense strands of siRNA or shRNA are SEQ ID NOs: 7 and 8, SEQ ID NOs: 9 and 10, SEQ ID NOs: 11 and 12, SEQ ID NOs: 13 and 14, and SEQ ID NO: 15, respectively. 1 to several bases (eg, 1 or 2) for a base sequence selected from the group consisting of 16 and 16, SEQ ID NOs: 17 and 18, SEQ ID NOs: 51 and 52, SEQ ID NOs: 53 and 54, and SEQ ID NOs: 55 and 56. It may have a base sequence with one and three) additional mismatches. In this aspect, the siRNA or shRNA encodes collagen 3A1 having a G-to-A substitution of the 547th corresponding base in the nucleotide sequence set forth in SEQ ID NO: 27, rather than the gene encoding the wild-type of collagen 3A1. Strongly silence genes.
 本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号33および34、配列番号35および36、配列番号37および38、配列番号39および40、配列番号41および42、配列番号43および44、配列番号45および46、配列番号47および48、並びに配列番号49および50からなる群から選択される塩基配列を有し得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号33および34であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号35および36であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号37および38であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号39および40であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号41および42であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号43および44であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号45および46であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号47および48であり得る。本発明のある態様では、siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号49および50であり得る。 In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA are SEQ ID NOs: 33 and 34, SEQ ID NOs: 35 and 36, SEQ ID NOs: 37 and 38, SEQ ID NOs: 39 and 40, SEQ ID NO: 41, respectively. And 42, SEQ ID NOs: 43 and 44, SEQ ID NOs: 45 and 46, SEQ ID NOs: 47 and 48, and a base sequence selected from the group consisting of SEQ ID NOs: 49 and 50. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 33 and 34, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 35 and 36, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 37 and 38, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 39 and 40, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 41 and 42, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 43 and 44, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 45 and 46, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 47 and 48, respectively. In some embodiments of the invention, the base sequences of the sense and antisense strands of siRNA or shRNA can be SEQ ID NOs: 49 and 50, respectively.
 shRNAは、センス鎖およびアンチセンス鎖の塩基配列をリンカーループで連結して得られ得る。shRNAにおいて、センス鎖とアンチセンス鎖は分子内でハイブリダイズしている。また、siRNAは、センス鎖およびアンチセンス鎖の塩基配列は、別々の核酸上に存在するが、センス鎖とアンチセンス鎖は分子間でハイブリダイズしている。 ShRNA can be obtained by linking the base sequences of the sense strand and the antisense strand with a linker loop. In shRNA, the sense strand and the antisense strand are hybridized within the molecule. Further, in siRNA, the base sequences of the sense strand and the antisense strand are present on separate nucleic acids, but the sense strand and the antisense strand are hybridized between the molecules.
 本発明によれば、siRNAまたはshRNAであって、そのセンス鎖およびアンチセンス鎖がそれぞれ、配列番号7および8、配列番号9および10、配列番号11および12、配列番号13および14、配列番号15および16、配列番号17および18、配列番号51および52、配列番号53および54、並びに配列番号55および56からなる群から選択される塩基配列を有する、siRNAまたはshRNAが提供される。これらのsiRNAまたはshRNAは、医薬組成物に含まれていてもよい。 According to the present invention, siRNA or shRNA whose sense and antisense strands are SEQ ID NOs: 7 and 8, SEQ ID NOs: 9 and 10, SEQ ID NOs: 11 and 12, SEQ ID NOs: 13 and 14, and SEQ ID NO: 15, respectively. And 16, siRNA or shRNA having a base sequence selected from the group consisting of SEQ ID NOs: 17 and 18, SEQ ID NOs: 51 and 52, SEQ ID NOs: 53 and 54, and SEQ ID NOs: 55 and 56 are provided. These siRNA or shRNA may be included in the pharmaceutical composition.
 本発明によればまた、siRNAまたはshRNAであって、そのセンス鎖およびアンチセンス鎖がそれぞれ、配列番号7および8、配列番号9および10、配列番号11および12、配列番号13および14、配列番号15および16、配列番号17および18、配列番号51および52、配列番号53および54、並びに配列番号55および56からなる群から選択される塩基配列に対して1~数塩基(例えば、1つ、2つ、および3つ)の追加のミスマッチを有する塩基配列を有するsiRNAまたはshRNAは、医薬組成物に含まれていてもよい。 According to the present invention, siRNA or shRNA, the sense strand and the antisense strand thereof, are SEQ ID NOs: 7 and 8, SEQ ID NOs: 9 and 10, SEQ ID NOs: 11 and 12, SEQ ID NOs: 13 and 14, respectively. One to several bases (eg, one) for a base sequence selected from the group consisting of 15 and 16, SEQ ID NOs: 17 and 18, SEQ ID NOs: 51 and 52, SEQ ID NOs: 53 and 54, and SEQ ID NOs: 55 and 56. SiRNA or shRNA having a base sequence with two and three) additional mismatches may be included in the pharmaceutical composition.
 本発明によればまた、siRNAまたはshRNAであって、そのセンス鎖およびアンチセンス鎖がそれぞれ、配列番号33および34、配列番号35および36、配列番号37および38、配列番号39および40、配列番号41および42、配列番号43および44、配列番号45および46、配列番号47および48、並びに配列番号49および50からなる群から選択される塩基配列を有するsiRNAまたはshRNAは、医薬組成物に含まれていてもよい。 According to the present invention, siRNA or shRNA, the sense strand and the antisense strand thereof, are SEQ ID NOs: 33 and 34, SEQ ID NOs: 35 and 36, SEQ ID NOs: 37 and 38, SEQ ID NOs: 39 and 40, and SEQ ID NOs, respectively. SiRNAs or shRNAs having a base sequence selected from the group consisting of 41 and 42, SEQ ID NOs: 43 and 44, SEQ ID NOs: 45 and 46, SEQ ID NOs: 47 and 48, and SEQ ID NOs: 49 and 50 are included in the pharmaceutical composition. May be.
 本発明のある態様では、変異型の発現が野生型の発現よりも大きく低下し得る。好ましい態様では、変異型の発現は、処置前と比較して70%以下、60%以下、50%以下、40%以下、30%以下、または20%以下に低下し得る。ここで、低下率とは処置前と比較したときの処置後の低下の割合を意味する。一方で、野生型の発現は、処置前と比較して、70%以下、60%以下、50%以下、40%以下、30%以下、または20%以下に低下し得るが、変異型の発現の低下率の60%以下、50%以下、40%以下、30%以下、または20%以下の低下率であり得る。 In some aspects of the invention, mutant expression can be significantly reduced compared to wild-type expression. In a preferred embodiment, the expression of the variant can be reduced to 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, or 20% or less as compared to before treatment. Here, the rate of decrease means the rate of decrease after the treatment as compared with the rate before the treatment. On the other hand, wild-type expression can be reduced to 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, or 20% or less as compared to before treatment, but mutant expression. The rate of decrease can be 60% or less, 50% or less, 40% or less, 30% or less, or 20% or less.
 遺伝子発現の低下率は、ノーザンブロット、および定量的RT-PCRなどの当業者に周知の遺伝子発現量の分析方法によって決定することができる。 The rate of decrease in gene expression can be determined by a method of analyzing gene expression levels well known to those skilled in the art, such as Northern blot and quantitative RT-PCR.
 本発明の医薬組成物は、薬学的に許容可能な賦形剤をさらに含んでいてもよい。賦形剤としては、特に限定されないが例えば、希釈剤、緩衝剤、塩、溶媒(水など)、等張化剤、保存剤、および製造補助剤(例えば、潤滑剤、タルク、マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、またはステアリン酸)が挙げられる。医薬組成物は、核酸の保存に適した溶液条件を有し得る。医薬組成物は、非経口投与に適した製剤組成を有する。
 本発明の医薬組成物は、ミセルやリポソームなどの小胞に内包されていてもよい。ミセルやリポソームは、ポリカチオン性ポリマーやカチオン性脂質を構成成分として有するもの、または脂質小胞(脂質ナノ小胞)であり得る。ミセルやリポソームは、標的細胞、組織、又は臓器への標的指向性を付与する、標的化分子(例えば、標的細胞、組織、又は臓器の細胞外に発現する分子に結合する分子)で外表面が修飾されていてもよい。当業者であれば、公知のドラッグデリバリーシステムを用いて、標的細胞、組織、又は臓器へのミセルやリポソームの標的指向性を向上させることができる。
 本発明の医薬組成物は、腹腔内投与、静脈内投与、皮下投与、または筋肉内投与などの適切な投与経路から投与され得る。本発明の医薬組成物は、ある態様では局所投与され得る。
The pharmaceutical composition of the present invention may further contain a pharmaceutically acceptable excipient. Excipients are not particularly limited, but include, for example, diluents, buffers, salts, solvents (such as water), tonicity agents, preservatives, and production aids (eg, lubricants, talc, magnesium, calcium stearate). , Zinc stearate, or stearic acid). The pharmaceutical composition may have solution conditions suitable for storage of nucleic acids. The pharmaceutical composition has a formulation composition suitable for parenteral administration.
The pharmaceutical composition of the present invention may be encapsulated in vesicles such as micelles and liposomes. The micelles and liposomes can be polycationic polymers or cationic lipids as constituents, or lipid vesicles (lipid nanovesicles). Micelle or liposome is a targeting molecule (eg, a molecule that binds to a molecule expressed extracellularly in a target cell, tissue, or organ) that imparts targeting orientation to the target cell, tissue, or organ. It may be modified. Those skilled in the art can use known drug delivery systems to improve the targeting orientation of micelles and liposomes to target cells, tissues, or organs.
The pharmaceutical composition of the present invention can be administered by an appropriate route of administration such as intraperitoneal administration, intravenous administration, subcutaneous administration, or intramuscular administration. The pharmaceutical composition of the present invention may be administered topically in some embodiments.
 本発明によれば、
 コラーゲン3A1の変異型をコードする遺伝子と野生型をコードする遺伝子をそれぞれ有する対象において、当該変異型に起因する疾患を処置する方法であって、
 当該対象に治療上有効量のsiRNAまたはshRNAから選択される核酸を投与することを含み、
 当該変異型が、配列番号27に記載の塩基配列における755番目に対応する塩基のGからTへの置換を有するコラーゲン3A1をコードする遺伝子であるか、または配列番号27に記載の塩基配列における547番目に対応する塩基のGからAへの置換を有するコラーゲン3A1をコードする遺伝子であり、
 前記核酸が、野生型の発現よりも前記変異型の発現を強く抑制することができる、方法が提供される。siRNAまたはshRNAは、ミセルやリポソーム内に内包されていてもよい。
According to the present invention
It is a method for treating a disease caused by the mutant type in a subject having a gene encoding a mutant type of collagen 3A1 and a gene encoding a wild type, respectively.
Including administering to the subject a therapeutically effective amount of nucleic acid selected from siRNA or shRNA.
The variant is a gene encoding collagen 3A1 having a G-to-T substitution of the 755th corresponding base in the nucleotide sequence of SEQ ID NO: 27, or 547 in the nucleotide sequence of SEQ ID NO: 27. A gene encoding collagen 3A1 having a G-to-A substitution of the second corresponding base.
A method is provided in which the nucleic acid can strongly suppress the expression of the mutant form rather than the expression of the wild type. The siRNA or shRNA may be encapsulated in micelles or liposomes.
 本発明によれば、
 コラーゲン3A1の変異型をコードする遺伝子と野生型をコードする遺伝子をそれぞれ有する対象において、当該変異型に起因する疾患を処置するための医薬の製造における、siRNAまたはshRNAから選択される核酸の使用であって、
 当該変異型が、配列番号27に記載の塩基配列における755番目に対応する塩基のGからTへの置換を有するコラーゲン3A1をコードする遺伝子であるか、または配列番号27に記載の塩基配列における547番目に対応する塩基のGからAへの置換を有するコラーゲン3A1をコードする遺伝子であり、
 前記核酸が、野生型の発現よりも前記変異型の発現を強く抑制することができる、使用が提供される。siRNAまたはshRNAは、ミセルやリポソーム内に内包されていてもよい。
According to the present invention
In the use of a nucleic acid selected from siRNA or shRNA in the manufacture of a drug for treating a disease caused by the variant in a subject having a gene encoding a variant of collagen 3A1 and a gene encoding the wild type, respectively. There,
The variant is a gene encoding collagen 3A1 having a G-to-T substitution of the 755th corresponding base in the nucleotide sequence of SEQ ID NO: 27, or 547 in the nucleotide sequence of SEQ ID NO: 27. A gene encoding collagen 3A1 having a G-to-A substitution of the second corresponding base.
The use is provided in which the nucleic acid can strongly suppress the expression of the mutant form rather than the expression of the wild type. The siRNA or shRNA may be encapsulated in micelles or liposomes.
 本発明によれば、コラーゲン3A1の変異型をコードする遺伝子と野生型をコードする遺伝子をそれぞれ有する対象において、当該変異型に起因する疾患を処置するためのsiRNAまたはshRNAから選択される核酸であって、当該変異型が、配列番号27に記載の塩基配列における755番目に対応する塩基のGからTへの置換を有するコラーゲン3A1をコードする遺伝子であるか、または配列番号27に記載の塩基配列における547番目に対応する塩基のGからAへの置換を有するコラーゲン3A1をコードする遺伝子であり、前記核酸が、野生型の発現よりも前記変異型の発現を強く抑制することができる、核酸が提供される。上記核酸は、本明細書で規定した核酸を用いることができる。siRNAまたはshRNAは、ミセルやリポソーム内に内包されていてもよい。 According to the present invention, it is a nucleic acid selected from siRNA or shRNA for treating a disease caused by the variant in a subject having a gene encoding a variant of collagen 3A1 and a gene encoding a wild form, respectively. The variant is a gene encoding collagen 3A1 having a G-to-T substitution of the 755th corresponding base in the base sequence set forth in SEQ ID NO: 27, or the base sequence set forth in SEQ ID NO: 27. A gene encoding collagen 3A1 having a G-to-A substitution of the base corresponding to the 547th position in the above, wherein the nucleic acid can strongly suppress the expression of the mutant type rather than the expression of the wild type. Provided. As the nucleic acid, the nucleic acid specified in the present specification can be used. The siRNA or shRNA may be encapsulated in micelles or liposomes.
実施例1:変異Col3A1遺伝子を標的とするsiRNAのデザイン
 血管型エーラス・ダンロス症候群(vEDS)の原因となる2種類のヒト変異Col3A1遺伝子(NCBI RefSeq番号:NM_000090)を標的とする以下のsiRNAをデザインした(表1)。変異体としてはモデルケースとしてCol3Aの755Tと548Aをそれぞれ作製し、野生型と変異体のそれぞれに対する以下siRNAによるサイレンシング能を調べた。
Example 1: Design of siRNA targeting mutant Col3A1 gene Design the following siRNA targeting two human mutant Col3A1 genes (NCBI RefSeq number: NM_0000900) responsible for vascular Ehlers-Danlos syndrome (vEDS) (Table 1). As a mutant, 755T and 548A of Col3A were prepared as model cases, respectively, and the silencing ability of the wild type and the mutant by siRNA was examined below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 標的とした変異Col3A1アレルは、開始コドンより755番目のGがAに変異し、結果としてCOL3A1蛋白質の252番目のGlyがValに変異したもの(c.755G>T; pG252V)、及び開始コドンより548番目のGがAに変異し、結果としてCOL3A1蛋白質の183番目のGlyがAspに変異したもの(c.548G>A; pG183D)の2種類である。 In the targeted mutant Col3A1 allele, the 755th G from the start codon was mutated to A, and as a result, the 252nd Gly of the COL3A1 protein was mutated to Val (c.755G> T; pG252V), and from the start codon. The 548th G is mutated to A, and as a result, the 183rd Gly of the COL3A1 protein is mutated to Asp (c.548G> A; pG183D).
 siRNAは配列中に変異箇所を含む形で設計し、アンチセンス側は変異アレルと完全相補配列とし、センス側がその配列と完全相補するようにした。末端オーバーハングはdTdTとして21mer(19merの2本鎖+オーバーハング2残基)のsiRNAとした。合成はジーンデザイン社で行った。 The siRNA was designed to include the mutation site in the sequence, the antisense side was made a completely complementary sequence with the mutant allele, and the sense side was made to be completely complementary to the sequence. The terminal overhang was 21mer (19mer double strand + 2 overhang residues) siRNA as dTdT. The synthesis was done by Gene Design.
実施例2:変異Col3A1遺伝子を標的とするsiRNAを評価するルシフェラーゼレポータープラスミドの作製
 実施例1で設計、合成したsiRNAをルシフェラーゼレポーター系で評価するためのプラスミドを以下の通りに作製した。
 CMVプロモーターの下流にNanoLuc(Nluc)レポーター遺伝子をコードするプラスミド、pNFL1-N[CMV/Hygro](プロメガ社)のN-Lucの下流に位置する制限酵素サイトXhoI、及びNotIで切断し、そこに60塩基対からなる合成DNAを挿入した。合成DNAはヒトCol3A1配列に由来し、中央部に変異残基が位置するように設計した。変異c.755G>Tに対し、配列番号19、20を用いて野生型pNLF1-N-755Gを、配列番号21、22を用いて変異型pNLF1-N-755Tをそれぞれ作製した。同様に変異c.548G>Aに対し、配列番号23、24を用いて野生型pNLF1-N-548Gを、配列番号25、26を用いて変異型pNLF1-N-548Aをそれぞれ作製した(表2)。
Example 2: Preparation of luciferase reporter plasmid for evaluating siRNA targeting the mutant Col3A1 gene A plasmid for evaluating the siRNA designed and synthesized in Example 1 with the luciferase reporter system was prepared as follows.
Cleavage was performed at the restriction enzyme sites XhoI and NotI located downstream of N-Luc of pNFL1-N [CMV / Hygro] (Promega), a plasmid encoding the NanoLuc (Nluc) reporter gene downstream of the CMV promoter. A synthetic DNA consisting of 60 base pairs was inserted. The synthetic DNA was derived from the human Col3A1 sequence and was designed so that the mutant residue was located in the center. Mutation c. For 755G> T, wild-type pNLF1-N-755G was prepared using SEQ ID NOs: 19 and 20, and mutant pNLF1-N-755T was prepared using SEQ ID NOs: 21 and 22, respectively. Similarly, mutation c. For 548G> A, wild-type pNLF1-N-548G was prepared using SEQ ID NOs: 23 and 24, and mutant pNLF1-N-548A was prepared using SEQ ID NOs: 25 and 26 (Table 2).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例3:変異Col3A1遺伝子を標的とするsiRNAのレポーターアッセイによる評価
 実施例1で設計、合成したCol3A1変異特異的siRNA候補を実施例2で作製したルシフェラーゼレポーター系を用いて評価した。細胞はHeLa細胞及びHEK293細胞を用いた(どちらも理研BRCより入手)。
 HeLa細胞及びHEK293細胞はMEM(Sigma、M2279)+10%FBS(Sigma)+2mM L-Glutamine(FUJIFILM Wako Pure Chemical Corporation)+1% NEAA(MP Biomedicals)で培養した。96穴プレートに8×10/well個(HeLa)、2×10/well個(HEK293)の細胞を播種した。翌日、レポータープラスミド(実施例2で作製したうちの1種) 20pg/wellと、Flucをコードする内部コントロールベクターpGL4.54 1.2ng/well(HeLa実験1及び2)、0.2ng/well(HEK293実験3)またはpGL4.53 0.2ng/well(実験4及び5)、及び終濃度100nM(実験1)、1-100nM(実験2及び3)、0.01-10nM(実験4及び5)のsiRNAを、トランスフェクション試薬(Lipofectoamine2000(Thermo Fischer Scientific)0.1μL/Well を用いて、導入した。
Example 3: Evaluation of siRNA Targeting Mutant Col3A1 Gene by Reporter Assay The Col3A1 mutation-specific siRNA candidates designed and synthesized in Example 1 were evaluated using the luciferase reporter system prepared in Example 2. HeLa cells and HEK293 cells were used as cells (both obtained from RIKEN BRC).
HeLa cells and HEK293 cells were cultured in MEM (Sigma, M2279) + 10% FBS (Sigma) + 2 mM L-Glutamine (FUJIFILM Wako Pure Chemical Corporation) + 1% NEAA (MP Biomedicals). 8 × 10 3 / well (HeLa) and 2 × 10 4 / well (HEK293) cells were seeded on a 96-well plate. The next day, a reporter plasmid (one of those prepared in Example 2) 20 pg / well, an internal control vector pGL4.54 1.2 ng / well (HeLa experiments 1 and 2) encoding Fluc, 0.2 ng / well (HeLa experiments 1 and 2), 0.2 ng / well ( HEK293 Experiment 3) or pGL4.53 0.2 ng / well (Experiment 4 and 5), and final concentrations 100 nM (Experiment 1), 1-100 nM (Experiment 2 and 3), 0.01-10 nM (Experiment 4 and 5) SiRNA was introduced using a transfection reagent (Libofectoamine2000 (Thermo Experiment Scientific) 0.1 μL / Well).
 24時間後、ルシフェラーゼ活性をNano-GloR  Dual-LuciferaseR  Reporter Assay System(Promega)を用いてプレートリーダー(TECAN社 Microplate Reader Infinite M1000 PRO)で測定した。 After 24 hours, the luciferase activity was measured with a plate reader (TECAN Microplate Reader Infinity M1000 PRO) using a Nano-GloR Dual-LuciferaseR Reporter Assay System (Promega).
 Nlucの値を内部標準のFlucを用いて補正した。コントロール(ベクターのみ)のサンプルとの比で各siRNAの抑制活性を示した。実験1~5の結果をそれぞれ、図1~5に示す。全ての実験は3連で行い、データは平均値±SEMで示した。 The Nluc value was corrected using the internal standard Fluc. The inhibitory activity of each siRNA was shown in comparison with the control (vector only) sample. The results of Experiments 1 to 5 are shown in FIGS. 1 to 5, respectively. All experiments were performed in triplets and the data were shown as mean ± SEM.
 以上の結果より、siRNA 755T-6、755T-8、755T-10はCol3A1 c.755G>T変異選択的siRNAであり、siRNA 547A-5、547A-6、547A-7、547A-8、547A-11、547A-15はCol3A1 c.547G>A変異選択的siRNAであることが示された。 From the above results, siRNA 755T-6, 755T-8, 755T-10 is Col3A1 c. 755G> T mutation-selective siRNA, and siRNA 547A-5, 547A-6, 547A-7, 547A-8, 547A-11, 547A-15 are Col3A1 c. It was shown to be 547G> A mutation-selective siRNA.
 正常のCOL3A1蛋白質はホモ三量体を形成して機能する。機能を失った変異COL3A1蛋白質が一つでも混じると、その複合体は機能を失うと考えられている。従って、片方のアレルにミスセンス変異が生じ、そこから機能を失ったCOL3A1が発現すると、正常のCOL3A1三量体の割合は1/2×1/2×1/2=1/8に減弱すると考えられる。 Normal COL3A1 protein functions by forming a homotrimer. It is believed that the complex loses its function when even one mutated COL3A1 protein that has lost its function is mixed. Therefore, it is considered that when a missense mutation occurs in one of the alleles and COL3A1 that has lost its function is expressed, the ratio of the normal COL3A1 trimer is attenuated to 1/2 × 1/2 × 1/2 = 1/8. Be done.
 一方、片方のアレルが欠失したハプロ不全型(ヌル変異)COL3A1では、変異COL3A1蛋白質が発現しないため、正常の1/2のCOL3A1三量体が発現する。これらは全体の約5%を占めるが、ハプロ不全型を示す患者の予後は良好で軽症、期待寿命も健常人と変わらないという結果が出ている(非特許文献2)。 On the other hand, in the haploinsufficidal (null mutant) COL3A1 in which one allele is deleted, the mutant COL3A1 protein is not expressed, so that 1/2 of the normal COL3A1 trimer is expressed. These account for about 5% of the total, but the results show that the prognosis of patients with haploinsufficiency is good, mild, and the expected life expectancy is the same as that of healthy subjects (Non-Patent Document 2).
 ミスセンス変異はCOL3A1変異の70%と大多数を占めるが、これらは上記の通りドミナントネガティブ変異のため、本発明でミスセンス変異を特異的にサイレンシングするすることは理論上有益であると考えられる。すなわち、正常型コラーゲン3A1に対して変異型コラーゲン3A1の発現量が半分になると、正常のCOL3A1三量体の割合は、理論上約30%にまで回復し、正常のCOL3A1三量体の割合が処置しない場合の約2.4倍に向上する。従って、変異型アレル特異的にCOL3A1遺伝子を抑制することができれば、有効な正常COL3A1三量体は増加し、ミスセンス型をハプロ不全型に変換できると考えられ、本発明の変異型アレル特異的にCOL3A1遺伝子を抑制する医薬組成物は、EDSの各種症状は改善すると期待される。 Missense mutations account for 70% of the COL3A1 mutations, which is the majority, but since these are dominant negative mutations as described above, it is considered theoretically beneficial to specifically silence the missense mutations in the present invention. That is, when the expression level of mutant collagen 3A1 is halved with respect to normal collagen 3A1, the ratio of normal COL3A1 trimer theoretically recovers to about 30%, and the ratio of normal COL3A1 trimer is increased. It improves about 2.4 times as much as when no treatment is performed. Therefore, if the COL3A1 gene can be suppressed specifically for the mutant allele, it is considered that the effective normal COL3A1 trimer can be increased and the missense type can be converted to the haploinsufficiency type. A pharmaceutical composition that suppresses the COL3A1 gene is expected to improve various symptoms of EDS.
実施例4:変異Col3A1遺伝子を標的とするsiRNAのデザイン(その2)
 実施例3でc.548G>Aに対して特に強い活性を示した2種のsiRNA、547A-6(配列番号9及び10)と547A-8(配列番号13及び14)に関して、さらに変異型選択的抑制を増すために、追加で1か所の変異を入れたsiRNAをそれぞれデザインした(表3)。合成はサーモフィッシャーサイエンティフィック社で行った。
Example 4: Design of siRNA targeting the mutant Col3A1 gene (Part 2)
In Example 3, c. To further increase mutant selective suppression of the two siRNAs that showed particularly strong activity against 548G> A, 547A-6 (SEQ ID NOs: 9 and 10) and 547A-8 (SEQ ID NOs: 13 and 14). , SiRNAs with one additional mutation were designed respectively (Table 3). The synthesis was performed by Thermo Fisher Scientific.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例5:変異Col3A1遺伝子を標的とするsiRNAのレポーターアッセイによる評価(その2)
 実施例4で設計、合成したCol3A1変異特異的siRNA候補を実施例2で作製したルシフェラーゼレポーター系を用いて評価した。細胞はHeLa細胞及びHEK293細胞を用いた(どちらも理研BRCより入手)。
 HeLa細胞は、10%FBS(Sigma)、2mM L-Glutamine(FUJIFILM Wako Pure Chemical Corporation)、および1% NEAA(MP Biomedicals)を含むMEM培地(Sigma、M2279)で培養した。96穴プレートに8×10/well個の細胞を播種した。翌日、レポータープラスミド(実施例2で作製したうちの1種) 20pg/wellと、Flucをコードする内部コントロールベクターpGL4.53 0.2ng/well、及び終濃度1nMのsiRNAを、トランスフェクション試薬(Lipofectoamine2000(Thermo Fischer Scientific)0.1μL/Well を用いて、導入した。
 24時間後、ルシフェラーゼ活性をNano-GloR  Dual-LuciferaseR  Reporter Assay System(Promega)を用いてプレートリーダー(TECAN社 Microplate Reader Infinite M1000 PRO)で測定した。
 Nlucの値を内部標準のFlucを用いて補正した。コントロール(ベクターのみ)のサンプルとの比で各siRNAの抑制活性を示した。結果を図6及び7に示す。全ての実験は3連で行い、データは平均値±SEMで示した。
Example 5: Evaluation of siRNA targeting the mutant Col3A1 gene by a reporter assay (Part 2)
The Col3A1 mutation-specific siRNA candidates designed and synthesized in Example 4 were evaluated using the luciferase reporter system prepared in Example 2. HeLa cells and HEK293 cells were used as cells (both obtained from RIKEN BRC).
HeLa cells were cultured in MEM medium (Sigma, M2279) containing 10% FBS (Sigma), 2 mM L-Glutamine (FUJIFILM Wako Pure Chemical Corporation), and 1% NEAA (MP Biomedicals). 8 × 10 3 / well cells were seeded on a 96-well plate. The next day, a reporter plasmid (one of those prepared in Example 2) 20 pg / well, an internal control vector pGL4.53 0.2 ng / well encoding Fluc, and a siRNA having a final concentration of 1 nM were used as a transfection reagent (Lipofectoamine2000). (Thermo Fisher Scientific) 0.1 μL / Well was used for introduction.
After 24 hours, luciferase activity was measured with a plate reader (TECAN Microplate Reader Infinite M1000 PRO) using the Nano-GloR Dual-LuciferaseR Assay System (Promega).
The Nluc value was corrected using the internal standard Fluc. The inhibitory activity of each siRNA was shown in comparison with the control (vector only) sample. The results are shown in FIGS. 6 and 7. All experiments were performed in triplets and the data were shown as mean ± SEM.
 図6及び7に示されるように、表3に記載のいずれのsiRNAを用いた場合にも、野生型Col3A1遺伝子の発現に対するサイレンシングが弱まり、かつ、変異型Col3A1遺伝子の発現をより強くサイレンシングした。 As shown in FIGS. 6 and 7, when any of the siRNAs shown in Table 3 was used, silencing for wild-type Col3A1 gene expression was weakened, and silencing for mutant Col3A1 gene expression was stronger. did.
実施例6:変異Col3A1遺伝子を標的とするsiRNAのデザイン(その2)
 実施例1と同様に、血管型エーラス・ダンロス症候群(vEDS)の原因となる(c.547G>A; pG183S)変異を標的とする以下のsiRNAを追加でデザインした(表4)。合成はジーンデザイン社で行った。以下実施例において、「547A」は、実際の547番目のGのAへの置換を意味する。
Example 6: Design of siRNA targeting the mutant Col3A1 gene (Part 2)
Similar to Example 1, the following siRNAs targeting the (c.547G>A; pG183S) mutations responsible for vascular Ehlers-Danlos syndrome (vEDS) were additionally designed (Table 4). The synthesis was done by Gene Design. In the following examples, "547A" means the actual replacement of the 547th G with A.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例7:変異Col3A1遺伝子を標的とするsiRNAを評価するルシフェラーゼレポータープラスミドの作製(その2)
 実施例6で設計、合成したsiRNAをルシフェラーゼレポーター系で評価するためのプラスミドを実施例2と同様に以下の通りに作製した。
 実施例2と同様にpNFL1-N[CMV/Hygro]を制限酵素サイトXhoI、及びNotIで切断し、そこに60塩基対からなる合成DNAを挿入した。合成DNAはヒトCol3A1配列に由来し、中央部に変異残基が位置するように設計した。変異c.547G>Aに対し、配列番号57、58を用いて変異型pNLF1-N-547A-2を作製した(表5)。
Example 7: Preparation of a luciferase reporter plasmid for evaluating siRNA targeting the mutant Col3A1 gene (Part 2)
A plasmid for evaluating the siRNA designed and synthesized in Example 6 with a luciferase reporter system was prepared in the same manner as in Example 2 as follows.
Similar to Example 2, pNFL1-N [CMV / Hygro] was cleaved with restriction enzyme sites XhoI and NotI, and synthetic DNA consisting of 60 base pairs was inserted therein. The synthetic DNA was derived from the human Col3A1 sequence and was designed so that the mutant residue was located in the center. Mutation c. Mutant pNLF1-N-547A-2 was prepared using SEQ ID NOs: 57 and 58 for 547G> A (Table 5).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
実施例8:変異Col3A1遺伝子を標的とするsiRNAのレポーターアッセイによる評価(その3)
 実施例6で設計、合成したCol3A1変異特異的siRNA候補を実施例2及び7で作製したルシフェラーゼレポーター系を用いて評価した。細胞はHeLa細胞及びHEK293細胞を用いた。
 HeLa細胞及びHEK293細胞の培養条件は実施例3と同様である。96穴プレートに8×10/well個(HeLa)、2×10/well個(HEK293)個の細胞を播種した。翌日、レポータープラスミド(pNLF1-N-547GまたはpNLF1-N-547A-2) 20pg/wellと、Flucをコードする内部コントロールベクターpGL4.53 0.2ng/well、及び終濃度1-10nM(HeLa実験8)、0.1-10nM(HEK293実験9)のsiRNAを、トランスフェクション試薬(Lipofectamine2000(Thermo Fisher Scientific)0.1μL/Well を用いて、導入した。pNLF1-N-547Gは、pNLF1-N-548Gと同一の塩基配列を有する野生型のCOL3A1をコードする遺伝子を含むプラスミドである。
24時間後、ルシフェラーゼ活性をNano-Glo(商標) Dual-LuciferaseR Reporter Assay System(Promega)を用いてプレートリーダーで測定した。
 Nlucの値を内部標準のFlucを用いて補正した。コントロール(ベクターのみ)のサンプルとの比で各siRNAの抑制活性を示した。結果を図8及び9に示す。全ての実験は3連で行い、データは平均値±SEMで示した。
Example 8: Evaluation of siRNA targeting the mutant Col3A1 gene by a reporter assay (Part 3)
The Col3A1 mutation-specific siRNA candidates designed and synthesized in Example 6 were evaluated using the luciferase reporter system prepared in Examples 2 and 7. HeLa cells and HEK293 cells were used as cells.
The culture conditions for HeLa cells and HEK293 cells are the same as in Example 3. 8 × 10 3 / well (HeLa) and 2 × 10 4 / well (HEK293) cells were seeded on a 96-well plate. The next day, a reporter plasmid (pNLF1-N-547G or pNLF1-N-547A-2) 20 pg / well, an internal control vector pGL4.53 0.2 ng / well encoding Fluc, and a final concentration of 1-10 nM (HeLa experiment 8). ), 0.1-10 nM (HEK293 Experiment 9) siRNA was introduced using a transfection reagent (Pofectamine2000 (Thermo Fisher Scientific) 0.1 μL / Well. PNLF1-N-547G was pNLF1-N-548G. It is a plasmid containing a gene encoding wild-type COL3A1 having the same base sequence as.
After 24 hours, luciferase activity was measured with a plate reader using the Nano-Glo ™ Dual-Luciferase R Reporter Assay System (Promega).
The Nluc value was corrected using the internal standard Fluc. The inhibitory activity of each siRNA was shown in comparison with the control (vector only) sample. The results are shown in FIGS. 8 and 9. All experiments were performed in triplets and the data were shown as mean ± SEM.
 図8及び9に示されるように、表4に記載のいずれのsiRNAを用いた場合にも、野生型Col3A1遺伝子の発現に対するサイレンシングが弱まり、かつ、変異型Col3A1遺伝子の発現をより強くサイレンシングした。 As shown in FIGS. 8 and 9, when any of the siRNAs shown in Table 4 is used, silencing for wild-type Col3A1 gene expression is weakened, and silencing for mutant Col3A1 gene expression is stronger. did.
配列表についての補足事項
配列番号27:ヒトコラーゲン3A1遺伝子およびアミノ酸配列
配列番号28:ヒトコラーゲン3A1のアミノ酸配列
配列番号29:ヒトコラーゲン3A1のc.547G>A変異体の遺伝子およびアミノ酸列
配列番号30:ヒトコラーゲン3A1のc.547G>A変異体のアミノ酸配列
配列番号31:ヒトコラーゲン3A1のc.755G>T変異体の遺伝子およびアミノ酸
配列
配列番号32:ヒトコラーゲン3A1のc.755G>T変異体のアミノ酸配列
Supplementary notes on the sequence listing SEQ ID NO: 27: Human collagen 3A1 gene and amino acid SEQ ID NO: 28: Amino acid sequence of human collagen 3A1 SEQ ID NO: 29: c.I. 547G> A mutant gene and amino acid sequence SEQ ID NO: 30: human collagen 3A1 c. Amino acid sequence of 547G> A variant SEQ ID NO: 31: c. Of human collagen 3A1. Gene and amino acid sequence of 755G> T mutant SEQ ID NO: 32: c. of human collagen 3A1. Amino acid sequence of 755G> T mutant

Claims (12)

  1.  コラーゲン3A1の変異型をコードする遺伝子と野生型をコードする遺伝子をそれぞれ有する対象において、当該変異型に起因する疾患を処置するための医薬組成物であって、
     siRNAまたはshRNAから選択される核酸を含み、
     当該変異型が、配列番号27に記載の塩基配列における755番目に対応する塩基のGからTへの置換を有するコラーゲン3A1をコードする遺伝子であるか、または配列番号27に記載の塩基配列における547番目に対応する塩基のGからAへの置換を有するコラーゲン3A1をコードする遺伝子であり、
     前記核酸が、野生型の発現よりも前記変異型の発現を強く抑制することができる、
    医薬組成物。
    A pharmaceutical composition for treating a disease caused by a mutant type of collagen 3A1 in a subject having a gene encoding a mutant type and a gene encoding a wild type, respectively.
    Contains nucleic acids selected from siRNA or shRNA
    The variant is a gene encoding collagen 3A1 having a G-to-T substitution of the 755th corresponding base in the nucleotide sequence of SEQ ID NO: 27, or 547 in the nucleotide sequence of SEQ ID NO: 27. A gene encoding collagen 3A1 having a G-to-A substitution of the second corresponding base.
    The nucleic acid can strongly suppress the expression of the mutant form rather than the expression of the wild type.
    Pharmaceutical composition.
  2.  対象が、血管型エーラス・ダンロス症候群(vEDS)に罹患した対象である、請求項1に記載の医薬組成物。 The pharmaceutical composition according to claim 1, wherein the subject is a subject suffering from vascular Ehlers-Danlos syndrome (vEDS).
  3.  前記変異型が、配列番号27に記載の塩基配列における755番目に対応する塩基のGからTへの置換を有するコラーゲン3A1をコードする遺伝子である、請求項1または2に記載の医薬組成物。 The pharmaceutical composition according to claim 1 or 2, wherein the variant is a gene encoding collagen 3A1 having a G-to-T substitution of the base corresponding to the 755th in the base sequence shown in SEQ ID NO: 27.
  4.  前記変異型が、配列番号27に記載の塩基配列における547番目に対応する塩基のGからAへの置換を有するコラーゲン3A1をコードする遺伝子である、請求項1または2に記載の医薬組成物。 The pharmaceutical composition according to claim 1 or 2, wherein the variant is a gene encoding collagen 3A1 having a G-to-A substitution of the base corresponding to the 547th in the base sequence shown in SEQ ID NO: 27.
  5.  siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号1および2、配列番号3および4、並びに配列番号5および6からなる群から選択される塩基配列を有する、請求項3に記載の医薬組成物。 3. The base sequence of the sense strand and antisense strand of siRNA or shRNA has a base sequence selected from the group consisting of SEQ ID NOs: 1 and 2, SEQ ID NOs: 3 and 4, and SEQ ID NOs: 5 and 6, respectively. The pharmaceutical composition according to the description.
  6.  siRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号3および4に記載の塩基配列を有する、請求項5に記載の医薬組成物。 The pharmaceutical composition according to claim 5, wherein the base sequences of the sense strand and the antisense strand of siRNA have the base sequences shown in SEQ ID NOs: 3 and 4, respectively.
  7.  siRNAまたはshRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号7および8の組合せ、配列番号9および10の組合せ、配列番号11および12の組合せ、配列番号13および14の組合せ、配列番号15および16の組合せ、配列番号17および18の組合せ、配列番号51および52の組合せ、配列番号53および54の組合せ、並びに配列番号55および56の組合せからなる群から選択される塩基配列の組合せを有する、請求項4に記載の医薬組成物。 The base sequences of the sense strand and antisense strand of siRNA or shRNA are the combination of SEQ ID NOs: 7 and 8, the combination of SEQ ID NOs: 9 and 10, the combination of SEQ ID NOs: 11 and 12, the combination of SEQ ID NOs: 13 and 14, and the SEQ ID NOs: Combinations of nucleotide sequences selected from the group consisting of combinations of 15 and 16, combinations of SEQ ID NOs: 17 and 18, combinations of SEQ ID NOs: 51 and 52, combinations of SEQ ID NOs: 53 and 54, and combinations of SEQ ID NOs: 55 and 56. The pharmaceutical composition according to claim 4.
  8.  siRNAのセンス鎖およびアンチセンス鎖の塩基配列がそれぞれ、配列番号9および10に記載の塩基配列の組合せであるか、または、配列番号13および14に記載の塩基配列の組合せである、請求項7に記載の医薬組成物。 7. Claim 7 where the base sequences of the sense strand and the antisense strand of siRNA are a combination of the base sequences shown in SEQ ID NOs: 9 and 10, respectively, or a combination of the base sequences shown in SEQ ID NOs: 13 and 14, respectively. The pharmaceutical composition according to.
  9.  siRNAまたはshRNAであって、そのセンス鎖およびアンチセンス鎖がそれぞれ、配列番号7および8の組合せ、配列番号9および10の組合せ、配列番号11および12の組合せ、配列番号13および14の組合せ、配列番号15および16の組合せ、配列番号17および18の組合せ、配列番号51および52の組合せ、配列番号53および54の組合せ、並びに配列番号55および56の組合せからなる群から選択される塩基配列の組合せを有する、siRNAまたはshRNA。 A siRNA or shRNA whose sense and antisense strands are a combination of SEQ ID NOs: 7 and 8, a combination of SEQ ID NOs: 9 and 10, a combination of SEQ ID NOs: 11 and 12, a combination of SEQ ID NOs: 13 and 14, and a sequence. A combination of base sequences selected from the group consisting of combinations of numbers 15 and 16, combinations of SEQ ID NOs: 17 and 18, combinations of SEQ ID NOs: 51 and 52, combinations of SEQ ID NOs: 53 and 54, and combinations of SEQ ID NOs: 55 and 56. SiRNA or shRNA having.
  10.  siRNAまたはshRNAであって、そのセンス鎖およびアンチセンス鎖がそれぞれ、配列番号7および8の組合せ、配列番号9および10の組合せ、配列番号11および12の組合せ、配列番号13および14の組合せ、配列番号15および16の組合せ、配列番号17および18の組合せ、配列番号51および52の組合せ、配列番号53および54の組合せ、並びに配列番号55および56の組合せからなる群から選択される塩基配列の組合せに対して1~数塩基の追加のミスマッチを有する塩基配列の組合せを有する、siRNAまたはshRNA。 A siRNA or shRNA whose sense and antisense strands are a combination of SEQ ID NOs: 7 and 8, a combination of SEQ ID NOs: 9 and 10, a combination of SEQ ID NOs: 11 and 12, a combination of SEQ ID NOs: 13 and 14, and a sequence. A combination of base sequences selected from the group consisting of combinations of numbers 15 and 16, combinations of SEQ ID NOs: 17 and 18, combinations of SEQ ID NOs: 51 and 52, combinations of SEQ ID NOs: 53 and 54, and combinations of SEQ ID NOs: 55 and 56. SiRNA or shRNA having a combination of base sequences having an additional mismatch of 1 to several bases with respect to.
  11.  請求項10のsiRNAまたはshRNAであって、そのセンス鎖およびアンチセンス鎖がそれぞれ、配列番号33および34の組合せ、配列番号35および36の組合せ、配列番号37および38の組合せ、配列番号39および40の組合せ、配列番号41および42の組合せ、配列番号43および44の組合せ、配列番号45および46の組合せ、配列番号47および48の組合せ、並びに配列番号49および50の組合せからなる群から選択される塩基配列の組合せを有する、siRNAまたはshRNA。 The siRNA or shRNA of claim 10, wherein the sense strand and the antisense strand thereof are a combination of SEQ ID NOs: 33 and 34, a combination of SEQ ID NOs: 35 and 36, a combination of SEQ ID NOs: 37 and 38, and SEQ ID NOs: 39 and 40, respectively. Selected from the group consisting of combinations of SEQ ID NOs: 41 and 42, combinations of SEQ ID NOs: 43 and 44, combinations of SEQ ID NOs: 45 and 46, combinations of SEQ ID NOs: 47 and 48, and combinations of SEQ ID NOs: 49 and 50. SiRNA or shRNA having a combination of base sequences.
  12.  コラーゲン3A1の変異型をコードする遺伝子と野生型をコードする遺伝子をそれぞれ有する細胞において変異型の発現を抑制することに用いるための組成物であって、
     請求項9~11のいずれか一項に記載のsiRNAまたはshRNAから選択される核酸を含み、
     当該変異型が、配列番号27に記載の塩基配列における547番目に対応する塩基のGからAへの置換を有するコラーゲン3A1をコードする遺伝子である、
    組成物。

     
    A composition for use in suppressing the expression of a mutant type in cells having a gene encoding a mutant type of collagen 3A1 and a gene encoding a wild type, respectively.
    A nucleic acid selected from the siRNA or shRNA according to any one of claims 9 to 11 is included.
    The variant is a gene encoding collagen 3A1 having a G-to-A substitution of the 547th corresponding base in the nucleotide sequence set forth in SEQ ID NO: 27.
    Composition.

PCT/JP2020/040786 2019-10-31 2020-10-30 Nucleic acid for suppressing gene expression of disease-specific col3a1 mutant allele and pharmaceutical composition for treating vascular ehlers-danlos syndrome WO2021085592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019198998A JP2022177340A (en) 2019-10-31 2019-10-31 Nucleic Acids that Suppress Gene Expression of Disease-Specific COL3A1 Mutant Alleles and Pharmaceutical Compositions for Treating Vascular Ehlers-Danlos Syndrome
JP2019-198998 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021085592A1 true WO2021085592A1 (en) 2021-05-06

Family

ID=75715171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040786 WO2021085592A1 (en) 2019-10-31 2020-10-30 Nucleic acid for suppressing gene expression of disease-specific col3a1 mutant allele and pharmaceutical composition for treating vascular ehlers-danlos syndrome

Country Status (2)

Country Link
JP (1) JP2022177340A (en)
WO (1) WO2021085592A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE Nucleotide 26 June 2008 (2008-06-26), ANONYMOUS: "Homo sapiens collagen, type III, alpha 1, mRNA (cDNA clone MGC:39848 IMAGE:5405119), complete cds", XP055553545, retrieved from NCBI Database accession no. BC028178.1 *
MÜLLER GERD A., HANSEN UWE, XU ZHI, GRISWOLD BENJAMIN, TALAN MARK I., MCDONNELL NAZLI B., BRIEST WILFRIED: "Allele‐specific siRNA knockdown as a personalized treatment strategy for vascular Ehlers‐Danlos syndrome in human fibroblasts", THE FASEB JOURNAL, FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY, US, vol. 26, no. 2, 1 February 2012 (2012-02-01), US, pages 668 - 677, XP055930586, ISSN: 0892-6638, DOI: 10.1096/fj.11-182162 *
PEPIN MELANIE G., SCHWARZE ULRIKE, RICE KENNETH M., LIU MINGDONG, LEISTRITZ, DRU, BYERS PETER H.: "Survival is affected by mutation type and molecular mechanism in vascular Ehlers–Danlos syndrome (EDS type IV)", GENETICS IN MEDICINE, NATURE PUBLISHING GROUP US, NEW YORK, vol. 16, no. 12, 1 December 2014 (2014-12-01), New York, pages 881 - 888, XP055930580, ISSN: 1098-3600, DOI: 10.1038/gim.2014.72 *
SCHWARZ DIANNE S ET AL: "Designing siRNA that distinguish between genes that differ by a single nucleotide", PLOS GENETICS, PUBLIC LIBRARY OF SCIENCE, USA, vol. 2, no. 9, 1 September 2006 (2006-09-01), USA, pages 1307 - 1318, XP002434423, ISSN: 1553-7390, DOI: 10.1371/journal.pgen.0020140 *

Also Published As

Publication number Publication date
JP2022177340A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP6637121B2 (en) Compositions and methods for modulation of SMN2 splicing in a subject
JP5241718B2 (en) Pharmaceutical containing HIF-1α and HIF-2α expression inhibitor
AU2021204399A1 (en) Compositions and methods for inhibiting gene expression of alpha-1 antitrypsin
US20060263422A1 (en) Pharmaceutical composition containing decoy and use of the same
PT2049664E (en) Single stranded oligonucleotides complementary to repetitive elements for treating dna repeat instability associated genetic disorders
EP2535412A1 (en) New treatment for muscular dystrophies
CA2629664A1 (en) Modulation of gene expression by oligomers targeted to chromosomal dna
JP2023538284A (en) Compositions and methods for inhibiting PLP1 expression
WO2021085592A1 (en) Nucleic acid for suppressing gene expression of disease-specific col3a1 mutant allele and pharmaceutical composition for treating vascular ehlers-danlos syndrome
JP2024515344A (en) Compositions and methods for inhibiting expression of complement component 3
WO2015156237A1 (en) Pharmaceutical composition for treating chronic kidney disease
JP7360170B2 (en) Ischemic lesion site-specific gene therapy
US11952574B2 (en) Compositions and methods for inhibiting transmembrane serine protease 6 (TMPRSS6) expression
WO2023171587A1 (en) MODIFIED siRNA FOR SELECTIVELY INHIBITING EXPRESSION OF MUTANT FUS
WO2022022617A1 (en) Combinatory treatment of sma with sarna and mrna modulators
WO2023152369A1 (en) Nucleic acid mir-9 inhibitor for the treatment of cystic fibrosis
WO2024108217A1 (en) Methods and compositions for preventing, treating, or reversing cardiac diastolic dysfunction
TW202411424A (en) Oligonucleotides conjugated to oleic acid and uses thereof
KR20200131847A (en) Combination therapy for TTR amyloidosis
WO2014024820A1 (en) Pharmaceutical composition for treating new chronic kidney disease and method for screening medicine for new chronic kidney disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.08.2022)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 20880890

Country of ref document: EP

Kind code of ref document: A1