WO2021085279A1 - Liquid crystal composition, liquid crystal element, sensor, liquid crystal lens, optical communication device, and antenna - Google Patents

Liquid crystal composition, liquid crystal element, sensor, liquid crystal lens, optical communication device, and antenna Download PDF

Info

Publication number
WO2021085279A1
WO2021085279A1 PCT/JP2020/039639 JP2020039639W WO2021085279A1 WO 2021085279 A1 WO2021085279 A1 WO 2021085279A1 JP 2020039639 W JP2020039639 W JP 2020039639W WO 2021085279 A1 WO2021085279 A1 WO 2021085279A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
groups
present
general formula
Prior art date
Application number
PCT/JP2020/039639
Other languages
French (fr)
Japanese (ja)
Inventor
丸山 和則
源基 伊藤
一輝 初阪
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2021085279A1 publication Critical patent/WO2021085279A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • C09K19/16Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon double bonds, e.g. stilbenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • C09K19/18Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon triple bonds, e.g. tolans
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/24Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing nitrogen-to-nitrogen bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element

Definitions

  • the liquid crystal composition according to the present invention contains a compound represented by the general formula (i) as a first component.
  • Ri1 preferably has 1 to 19 carbon atoms and is preferably a linear alkyl group, alkenyl group, alkoxy group or alkenyloxy group, and has 1 to 8 carbon atoms and is linear. Alkyl groups, alkenyl groups, alkoxy groups, or alkenyloxy groups are more preferable.
  • a i1 to A i3 may be independently substituted with a substituent ( Si ), a divalent cyclic group, specifically, the following groups (a) to (c).
  • a i1 to A i3 include divalent cyclic groups represented by the following (a1) to (a25).
  • the liquid crystal composition according to the present invention has a wide liquid crystal phase temperature range (absolute value of the difference between the liquid crystal phase lower limit temperature and the liquid crystal phase upper limit temperature), but the liquid crystal phase temperature range is preferably 100 ° C. or higher, preferably 130 ° C. The above is more preferable.
  • the upper limit temperature of the liquid crystal phase is preferably 80 ° C. or higher, more preferably 100 ° C. or higher.
  • the lower limit temperature of the liquid crystal phase is preferably ⁇ 20 ° C. or lower, more preferably ⁇ 30 ° C. or lower.
  • the nematic phase-isotropic liquid phase transition temperature ( TNI ) of the liquid crystal composition according to the present invention is preferably 80 to 180 ° C, preferably 100 to 160 ° C, and preferably 120 to 140 ° C.
  • the liquid crystal composition according to the present invention has a viscosity ( ⁇ ) at 20 ° C. of 10 to 100 mPa ⁇ s, preferably 10 to 90 mPa ⁇ s, preferably 10 to 80 mPa ⁇ s, and 10 to 80 mPa ⁇ s. It is preferably 70 mPa ⁇ s, preferably 10 to 60 mPa ⁇ s, more preferably 10 to 50 mPa ⁇ s, preferably 10 to 40 mPa ⁇ s, and 10 to 30 mPa ⁇ s. Is particularly preferred.
  • the content of each of the compounds of the general formulas (i-2-1) to (i-2-65) in the entire liquid crystal composition is preferably the general formula (i).
  • the content can be applied.
  • the following formulas (i-2-7a), (i-2-34a), (i-2-41a) and (i-2-55a) to (i-2-58a) ) Is preferable.
  • the content of each of the compounds of the above general formulas (i-2-1.1) to (i-2-64.10) in the entire liquid crystal composition is the general formula (i-2-64.10).
  • the preferred content of i) can be applied.
  • the liquid crystal composition according to the present invention comprises one or more compounds selected from the group consisting of four-ring liquid crystal compounds represented by the general formulas (i-3-1) to (i-3-21). It is preferable to contain it.
  • the compounds represented by the general formulas (i-3-1) to (i-3-21) they may be used alone or in combination of two or more.
  • Preferable examples of the compound represented by the general formula (i) according to the present invention are as follows for the four-ring liquid crystal compound represented by the following general formulas (i-3-1) to (i-3-21). is there.
  • the content of each of the compounds of the general formulas (i-2-1) to (i-3-21) in the entire liquid crystal composition is preferably the general formula (i).
  • the content can be applied.
  • a ii1 and A ii2 are each independently preferably represents any one of the following groups (a) or group (b).
  • the hydrogen atom in the group (a) or group (b) is a cyano group, a halogen atom (preferably a chlorine atom), or a linear or branched alkyl group or alkyl halide having 1 to 10 carbon atoms, respectively. It may be replaced. It is more preferable that A ii1 and A ii2 are independently described in (a1), (a3) and (a19), respectively.
  • X ii11 ⁇ X ii13 are each independently a hydrogen atom, a halogen atom, or represents a straight-chain or branched alkyl group or halogenated alkyl group having 1 to 10 carbon atoms. It is more preferable that X ii 11 to X ii 13 are independently hydrogen atoms or fluorine atoms.
  • Y ii1 is fluorine atom, chlorine atom, thiocyanato group, a trifluoromethoxy group, a trifluoromethyl group, may represent a 2,2,2-trifluoroethyl group, or a difluoromethoxy group preferable.
  • Y i1 is more preferably a fluorine atom, a trifluoromethoxy group, or a trifluoromethyl group, and even more preferably a fluorine atom.
  • Z ii1 and Z ii2 are each independently a single bond, -COO -, - OCO -, - CH 2 CH 2 -, - (CH 2) 4 -, - OCH 2 - , -CH 2 O-, -OCF 2- , -CF 2 O- or -C ⁇ C- is preferred.
  • Z ii1 and Z ii2 are each independently a single bond, -CH 2 CH 2 -, - OCH 2 -, - CH 2 O -, - OCF 2 - or more preferably represents -CF 2 O-.
  • n preferably represents an integer from 0 to 2, and more preferably 1 or 2.
  • a ii1 and Z ii1 that n is more present when the 2 may each be the same or different.
  • the lower limit of the preferable content (mass%) of the compound represented by the formula (ii) with respect to the total amount of the liquid crystal composition of the present invention is 0.9% and 1.3%. 7%, 4%, 5%, 8%, 10%, 11%, 13%, 16%, 19%, 21%, It is 23%. If the content (% by mass) of the compound of the general formula (ii) in the liquid crystal composition of the present invention is large, problems such as precipitation may occur. Therefore, the upper limit of the preferable content is 23% and 20%. 18%, 14%, 13%, 10%, 8%, 5%.
  • the range of the preferable content (mass%) of the compound represented by the general formula (ii) with respect to the entire composition (100% by mass) is 2 to 50%, more preferably. It is 5 to 40%, particularly preferably 10 to 30%.
  • Riii1 preferably represents a linear or branched alkyl group or alkyl halide group having 1 to 40 carbon atoms, and is a methylene group or a thethylene group present in these groups.
  • Riii1 more preferably represents an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an alkenyl group having 2 to 8 carbon atoms.
  • Aiii1 to Aiii3 independently represent any one of the following groups (a) to (c).
  • the hydrogen atoms in the groups (a) to (c) are cyano groups, halogen atoms (preferably chlorine atoms), or linear or branched alkyl groups or alkyl halides having 1 to 10 carbon atoms, respectively. It may be replaced. It is more preferable that A ii 1 and A ii 2 are independently described in (a1), (a3), (a5), (a10), (a19) and (a24), respectively.
  • Z III1 and Z III2 are each independently a single bond, -COO -, - OCO -, - CH 2 CH 2 -, - (CH 2) 4 -, - OCH 2 - , -CH 2 O-, -OCF 2- , -CF 2 O- or -C ⁇ C-, preferably single bond, -CH 2 CH 2- , -OCH 2- , -CH 2 O-, It is more preferable to represent ⁇ OCF 2 -or ⁇ CF 2 O—.
  • l preferably represents an integer of 0 to 2, and more preferably represents an integer of 1 or 2.
  • a plurality of Aiii1 and Ziii1 may be the same or different from each other.
  • the lower limit of the preferable content (mass%) of the compound represented by the general formula (iii) with respect to the total amount of the liquid crystal composition of the present invention is 0.7%, 1%, and 2%. Yes, 5%, 8%, 10%, 11%, 13%, 16%. If the content (% by mass) of the compound of the general formula (iii) in the liquid crystal composition of the present invention is large, problems such as precipitation may occur. Therefore, the upper limit of the preferable content is 23% and 20%. 18%, 14%, 13%, 10%, 8%, 5%.
  • the preferable content range of the compound represented by the general formula (iii) with respect to the entire liquid crystal composition (100% by mass) is 2 to 30%, more preferably 4 to 25%. It is particularly preferably 6 to 20%.
  • the compound represented by the general formula (ii) is preferably represented by the following general formulas (ii.1) to (ii.33).
  • R 36 represents an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an alkenyl group having 2 to 8 carbon atoms.
  • Y 35 is a fluorine atom, a chlorine atom, trifluoromethyl group, trifluoromethoxy group, a structure represented by.) representing a difluoromethoxy group or a trifluoromethoxy group are preferred.
  • the compound represented by the general formula (iii) is preferably represented by the following general formulas (iii.1) to (iii.9).
  • R 35 represents. An alkyl group, or a 1 to 8 carbon atoms alkoxyl group, or an alkenyl group having 2 to 8 carbon atoms having 1 to 8 carbon atoms) represented by Structure is preferable.
  • each of the compounds of the general formulas (iii.1) to (ii.33) and the general formulas (iii.1) to (iii.9) is contained in the entire liquid crystal composition. As the amount, a preferable content of the general formula (iii) can be applied.
  • the liquid crystal composition according to the present invention preferably further contains one or more compounds selected from the group consisting of compounds represented by the general formula (iv).
  • R iv1 preferably represents a linear or branched alkyl group or alkyl halide group having 1 to 40 carbon atoms, and is a methylene group or a thethylene group present in these groups.
  • L 31 and L 32 are each independently a single bond, -COO -, - OCO -, - CH 2 CH 2 -, - (CH 2) 4 -, - OCH 2 -, - CH 2 O -, - Represents OCF 2- , -CF 2 O- or -C ⁇ C- p represents 0, 1 or 2,
  • M 32 and / or L 31 may be the same or different.
  • X 31 and X 32 independently represent a hydrogen atom or a fluorine atom, respectively.
  • M 31a and M 32a independently represent a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a naphthalene-2,6-diyl group
  • X 32a represents a hydrogen atom or a fluorine atom
  • Y 31a represents a fluorine atom, a trifluoromethyl group, a fluoromethoxy group, a difluoromethoxy group or a trifluoromethoxy group
  • the hydrogen atom contained in M 31a and M 32a is a cyano group, respectively.
  • Fluorine atom, chlorine atom, trifluoromethyl group or trifluoromethoxy group may be substituted.
  • the lower limit of the preferable content (mass%) of the compound represented by the formula (v) with respect to the total amount of the liquid crystal composition of the present invention is 1.7%, 2%, and 4%. 4.3%, 5%, 5.7%, 6%. If the content (% by mass) of the compound of the general formula (v) in the liquid crystal composition of the present invention is large, problems such as precipitation may occur. Therefore, the upper limit of the preferable content is 33% and 30%. 27%, 23%, 20%, 18%, 14%, 13%, 10%, 8%, 5%. In the liquid crystal composition of the present invention, the range of the preferable content of the compound represented by the general formula (v) is 2 to 30%, more preferably 4 to 25%, and particularly preferably 6 to 20%. is there. Specific structures of the compound represented by the general formula (v) in the present invention include, for example, the following compounds.
  • R 36 represents an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms
  • Y 35 represents a cyano group and a fluorine atom.
  • a structure represented by a chlorine atom, a trifluoromethyl group, a fluoromethoxy group, a difluoromethoxy group or a trifluoromethoxy group) is preferable.
  • the preferable content of the general formula (v) is applied to the content of each of the compounds of the above general formulas (v.1) to (v.20) with respect to the entire liquid crystal composition. can do.
  • liquid crystal composition according to the present invention may contain compounds represented by the following general formulas (1a) and (1b) as liquid crystal compounds having a dielectric anisotropy ( ⁇ ) of 2 or more. ..
  • R 11 and R 12 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, and one methylene group existing in these groups or adjacent to each other. Two or more methylene groups that are not formed may be substituted with —O— or —S—, and one or more hydrogen atoms present in these groups may be replaced with fluorine or chlorine atoms. May be replaced, M 11 , M 12 , M 13 , M 14 , M 15 , and M 16 independently represent any one of the following groups (d), groups (i), or groups (j).
  • L 11, L 12, L 13 , L 14, L 15, and L 16 are each independently a single bond, -COO -, - OCO -, - CH 2 CH 2 -, - (CH 2) 4 - , -OCH 2- , -CH 2 O-, -OCF 2- , -CF 2 O- or -C ⁇ C- p, q, r, s and t independently represent 0, 1 or 2, but q + r and s + t are 2 or less. If there are multiple M 12 , M 13 , M 15 , M 16 , L 11 , L 13 , L 14 and / or L 16 , they may be the same or different.
  • X 11 , X 12 , X 13 , X 14 , and X 15 each independently represent a hydrogen atom or a fluorine atom.
  • Y 11 and Y 12 independently represent a fluorine atom, a chlorine atom, a thiocyanato group, a trifluoromethoxy group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, or a difluoromethoxy group.
  • the compounds represented by the general formulas (1a) and (1b) exclude the compounds represented by the general formula (ii).
  • the lower limit of the content of the compound represented by the general formula (1b) are preferably 0% by mass, more preferably 5% by mass, and preferably 16% by mass.
  • the upper limit is preferably 70% by mass, preferably 66% by mass, preferably 58% by mass, and even more preferably 49% by mass.
  • the total amount (mass%) of the compounds represented by the general formulas (i) to (ii) is preferably 90 to 30% with respect to the entire liquid crystal composition, and is preferably 80 to 35. It is preferably%, and it is preferable that it is 70 to 40%.
  • the total amount (mass%) of the compounds represented by the general formulas (i) to (v) is preferably 100 to 40% with respect to the entire liquid crystal composition, and is 95 to 45. It is preferably%, preferably 90 to 50%.
  • R 21 and R 22 independently represent an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, and one existing in these groups.
  • Methylene groups or two or more non-adjacent methylene groups may be substituted with -O- or -S-, and one or more hydrogen atoms present in these groups may be fluorine atoms or May be replaced with a chlorine atom
  • M 21 , M 22 and M 23 are independent of each other
  • Trans-1,4-cyclohexylene groups one methylene group present in this group or two or more non-adjacent methylene groups are present.
  • a compound having two or more aromatic rings is preferable.
  • Both R 21 and R 22 are preferably alkyl groups when reliability is important, and alkoxy groups are preferable when reducing the volatility of the compound is important, and reduction of viscosity is important. It is preferable that at least one of them is an alkenyl group.
  • the number of halogen atoms present in the molecule is preferably 0, 1, 2 or 3, preferably 0 or 1, and preferably 1 when compatibility with other liquid crystal molecules is important.
  • R 21 and R 22 are linear alkyl groups having 1 to 5 carbon atoms and linear carbon atoms 1 to 4 when the ring structure to which they are bonded is a phenyl group (aromatic).
  • the alkoxy group and the alkenyl group having 4 to 5 carbon atoms are preferable, and when the ring structure to which the alkoxy group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane, the linear carbon atom number is 1 to 5.
  • Alkyl groups, linear alkoxy groups having 1 to 4 carbon atoms and linear alkenyl groups having 2 to 5 carbon atoms are preferable.
  • the total of carbon atoms and oxygen atoms when present is preferably 5 or less, and it is preferably linear.
  • M 21 , M 22 and M 23 are preferably aromatic when it is required to increase ⁇ n, and preferably aliphatic in order to improve the response rate, and each of them is independently trans-trans.
  • 1,4-Cyclohexylene group 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group , 1,4-Cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6 -It is preferable to represent a diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and it is more preferable to represent the following structure.
  • O is preferably 0, 1 or 2, and more preferably 0 or 1.
  • the content of the liquid crystal compound represented by the general formula (L) is solubility at low temperature, transition temperature, electrical reliability, birefringence, process compatibility, and dropping marks. It is necessary to make appropriate adjustments according to the required performance such as seizure and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L) with respect to the total amount of the non-polymerizable liquid crystal compound contained in the liquid crystal composition according to the present invention is 1% by mass, and the upper limit is 85. It is mass%.
  • the lower limit of the more preferable content is 3% by mass, and the upper limit is 65% by mass.
  • the above lower limit value is high and the upper limit value is high. Further, when a composition having a high TNI of the composition according to the present invention and having good temperature stability is required, it is preferable that the above lower limit value is high and the upper limit value is high. Further, when it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable that the above lower limit value is low and the upper limit value is low.
  • the general formula (L) is preferably a compound represented by a group consisting of the following general formulas (La) to (Lq) as a specific structure.
  • the present invention it is preferable to contain at least one compound represented by the general formula (L), preferably 1 to 10 kinds, and particularly preferably 2 to 8 kinds.
  • the liquid crystal composition according to the present invention may appropriately contain additives such as known stabilizers, known polymerizable liquid crystal compounds or polymerized compounds in addition to the above liquid crystal compounds, depending on the mode of use.
  • the liquid crystal element according to the present invention is characterized by using the above-mentioned liquid crystal composition, and is preferably driven by an active matrix method or a passive matrix method. Further, the liquid crystal element according to the present invention is preferably a liquid crystal element that reversibly switches the dielectric constant by reversibly changing the orientation direction of the liquid crystal molecules of the above-mentioned liquid crystal composition.
  • the sensor according to the present invention is characterized by using the above-mentioned liquid crystal composition, and as its embodiment, for example, a distance measuring sensor using electromagnetic waves, visible light or infrared light, an infrared sensor using temperature change, and cholesteric.
  • a distance measuring sensor using electromagnetic waves, visible light or infrared light an infrared sensor using temperature change
  • cholesteric a temperature sensor that uses changes in the reflected light wavelength due to changes in the pitch of the liquid crystal
  • a pressure sensor that uses changes in the reflected light wavelength
  • an ultraviolet sensor that uses changes in the reflected light wavelength due to composition changes
  • an electric sensor that uses temperature changes due to voltage and current.
  • the range-finding sensor is preferably for LiDAR (Light Detection And Ringing) that uses a light source.
  • the LiDAR is preferably for artificial satellites, aircraft, unmanned aerial vehicles (drones), automobiles, railways, and ships. For automobiles, those for self-driving cars are particularly preferable.
  • the light source is preferably an LED or a laser, and is preferably a laser.
  • the light used for LiDAR is preferably infrared light, and the wavelength is preferably 800 to 2000 nm.
  • an infrared laser having a wavelength of 905 nm or 1550 nm is preferable.
  • An infrared laser of 905 nm is preferable when the cost of the photodetector to be used and sensitivity in all weather are important, and an infrared laser of 1550 nm is preferable when safety regarding human vision is important. Since the liquid crystal composition according to the present invention exhibits high ⁇ n, it is possible to provide a sensor having a large phase modulation force in the visible light, infrared light and electromagnetic wave regions and excellent detection sensitivity.
  • the liquid crystal lens according to the present invention is characterized in that the above-mentioned liquid crystal composition is used.
  • a first transparent electrode layer, a second transparent electrode layer, and the first transparent electrode layer are used.
  • the liquid crystal lens according to the present invention is used, for example, as a 2D / 3D switching lens, a lens for adjusting the focus of a camera, and the like.
  • the optical communication device is characterized in that the above-mentioned liquid crystal composition is used.
  • a liquid crystal constituting each of a plurality of pixels is formed on a reflective layer (electrode).
  • Examples thereof include LCOS (Liquid Crystal on Silicon) having a structure having liquid crystal layers arranged in a two-dimensional manner.
  • the optical communication device according to the present invention is used as, for example, a spatial phase modulator.
  • control plate 4 is composed of a CPU, RAM, ROM, etc., which are known microcomputers, and controls the operation of each part of the antenna main body 1, the transmitter, and / or the receiver in a controlled manner. A predetermined process is executed by reading various programs stored in advance in the CPU or ROM included in the control board 4 into the RAM and executing the programs.
  • the control plate 4 is a storage unit that stores various setting information or control programs, various calculations related to the amount and direction of voltage applied to the liquid crystal layer in the antenna body 1, various calculations related to radio wave transmission, and / or reception of radio waves. It has functions such as a calculation unit that executes various operations in the above, a detection unit that detects reception or transmission radio waves, or a detection unit that detects the voltage applied to the liquid crystal layer.
  • a hexagonal prism-shaped case 3 and an upper lid 5 are described as an example of a case 3 capable of accommodating a disk-shaped antenna main body 1.
  • the case 3 and the upper lid 5 are provided according to the shape of the antenna main body 1. , Cylindrical, octagonal column, triangular column, etc. can be appropriately changed to a known shape.
  • FIG. 5 is a top view of the antenna main body 10 in the present invention. More specifically, the antenna main body 10 is viewed from the patch array portion 7, and the patch 9, the feeding portion 12, and the slot pair 8 are discs. It is the figure which projected perpendicular to the main surface of the body Q. Therefore, the patch 9, the power feeding unit 12, and the slot pair 8 are indicated by broken lines. Further, when the shape of the patch 9 is circular, it can be operated in an electromagnetic field distribution generally called TM 11 mode. As shown in FIG. 5, since the projection body of the patch 9 and the projection body of the slot pair 8 overlap each other, a disk is formed for each slot 8 formed on the surface of the disk-shaped conductor P.
  • the radiating element for example, patch 9
  • a general transmission line such as a coaxial line or a flat transmission line
  • an electromagnetic coupling power supply method which is a method of exciting the radiation element by directly connecting the transmission line to the patch 9 (radiating element), and the transmission line and the patch electrode (radiating element) are used.
  • the electromagnetic coupling feeding method which is a method of exciting a patch electrode (radiating element) by an electromagnetic field generated around a feeding line with an open end or a short circuit without direct connection.
  • an aspect of the electromagnetically coupled power feeding system is shown.
  • the feeding line by the (coaxial) feeding section 12 since the feeding line by the (coaxial) feeding section 12 is open at the end, a current standing wave is generated in which the ending of the feeding line coincides with the node.
  • a magnetic field surrounding the power feeding line ((coaxial) power feeding unit 12) is generated, and the magnetic field is incident on the slot 8 to excite the slot (pair) 8.
  • the patch 9 is excited by the magnetic field generated by the excitation of the slot (pair) 8 incident on the patch 9. Since the excitation intensity is maximized when the magnetic field incident on the slot 8 is maximum, the position where the magnetic field generated from the feed line ((coaxial) feed section 12) is maximum (the antinode of the current standing wave) is set. It is preferable to form slots (pairs) 8.
  • a preferred embodiment of the antenna according to the present invention is a configuration in which a radial slot line array and a patch antenna array are combined.
  • FIG. 6 is a cross-sectional view of the antenna main body 10 shown in FIG. Needless to say, FIG. 6 is a schematic view showing the configuration of the antenna.
  • the antenna main body 10 has a disk-shaped first substrate 14 in which a disk-shaped second substrate 14 and a plurality of slots (pairs) 8 are formed from the center toward the outside in the radial direction.
  • the substrate 13 (corresponding to the disc-shaped conductor P; also referred to as a slot array substrate), the first dielectric layer 17 provided between the second substrate 14 and the first substrate 13, and the disc-shaped first substrate.
  • a power feeding unit 12 provided at the center of the substrate 13 and the disk-shaped second substrate 14, a disk-shaped third substrate 15 (corresponding to the disk body Q, also referred to as a patch substrate), and a third.
  • each patch 9 corresponds to each slot pair 8.
  • (each) patch 9 corresponds to (each) slot pair 8
  • the patch 9 is perpendicular to the main surface of the second substrate 14 as described in FIG. 5 described above. It means that the projected projection surface overlaps with the slot (pair) 8. In other words, it means that the projection surface obtained by vertically projecting the slots (pairs) 8 onto the main surface of the third substrate 15 overlaps with the patch 9.
  • the radio wave (arrow) fed by the (coaxial) feeding unit 12 becomes a cylindrical wave and propagates outward in the radial direction in the first dielectric layer 17, the liquid crystal layer is formed from the slot (pair) 8. It describes how it is transmitted to 16.
  • the slots (pairs) 8 generate circularly polarized waves when two so-called “C” -shaped orthogonal slots are arranged with a 1/4 wavelength shift. Can be done.
  • the magnetic field generated from the slot (pair) 8 is incident on the patch 9 by the excitation of the slot (pair) 8 by the electromagnetic coupling power feeding method, and the patch 9 is fed and excited.
  • patch 9 can emit highly directional radio waves.
  • circularly polarized waves are radio waves whose electric field direction rotates with the passage of time.
  • the antenna according to the present invention can receive any polarized wave.
  • the orientation direction of the liquid crystal molecules in the liquid crystal layer 16 can be changed.
  • the permittivity of the liquid crystal layer 16 changes, the capacitance of the slot (pair) 8 changes, and as a result, the reactance and the resonance frequency of the slot (pair) 8 can be controlled.
  • the reactance and resonance frequency of the slot 8 can be adjusted by controlling the dielectric constant of the liquid crystal layer 16, the power supply to each patch 9 is controlled by adjusting the excitation of the slot (pair) 8 and the patch 9. be able to. This makes it possible to adjust the radiated radio waves via the liquid crystal layer 16.
  • an applied voltage adjusting means for adjusting the voltage applied to the liquid crystal layer 16 such as a TFT may be provided. Further, the refractive index changes by changing the orientation direction of the liquid crystal molecules of the liquid crystal layer 16, and as a result, the phase of the electromagnetic wave transmitted through the liquid crystal layer 16 shifts, and as a comprehensive result, phased array control becomes possible. ..
  • the materials of the first substrate 13 and the second substrate 14 are not particularly limited as long as they are conductors such as copper.
  • the material of the third substrate 15 is not particularly limited, and known materials such as glass substrate, acrylic substrate, ceramic (alumina), silicon, and glass cloth Teflon (registered trademark) (PTFE) are known depending on the mode of use. The material can be used.
  • PTFE Teflon
  • the material of the first dielectric layer 17 a known material can be appropriately selected according to a desired relative permittivity, and a vacuum may be used.
  • the material of the patch 9 is not particularly limited as long as it is a conductor such as
  • the antenna main body 10 is a circular body in which a plurality of slots (pairs) 8 are formed on one surface thereof, and is housed inside a hollow first substrate 13 and the hollow first substrate 13.
  • the power feeding unit 12 has a liquid crystal layer 16 provided between the substrates 13, and the feeding portion 12 is formed between the surface of the other first substrate 13 and the second substrate 14 on which the plurality of slots (pairs) 8 are not formed. It is provided and is provided at the center of the first substrate 13 and the disk-shaped second substrate 14.
  • each patch 9 corresponds to each slot pair 8. Further, in FIG. 7, both side surface portions of the first substrate 13 of the hollow body project outward from the hollow body, and specifically, have an inclined surface of 45 ° with respect to the horizontal direction.
  • the radio wave (arrow) fed by the (coaxial) feeding unit 12 becomes a cylindrical wave and propagates in the first dielectric layer 17 outward in the radial direction. Then, the propagated cylindrical wave is reflected on both side surfaces of the hollow first substrate 13, so that the cylindrical wave that wraps around the second substrate 14 goes from the outer periphery of the disk-shaped first substrate 13 toward the center. It is converted into a traveling wave (arrow) and propagates in the first dielectric layer 17. At that time, the traveling wave is transmitted from the slot (pair) 8 to the liquid crystal layer 16. As a result, the patch 9 can be excited and emit a highly directional radio wave as in the embodiment shown in FIG.
  • the incoming radio wave propagates to the power feeding unit 12 through the slot (pair) 8 provided directly under the patch 9.
  • the patch 9 and the slot 8 are arranged concentrically from the center of the disc body Q toward the outer peripheral direction of the disc body Q. Therefore, since the conical beam is emitted by the coaxial mode power supply, the phases can be aligned in front of the disk body Q and the electromagnetic fields can be strengthened.
  • the antenna main body 10 has a disk-shaped second substrate 14 and a plurality of slots 8 formed concentrically from the center toward the outside in the radial direction.
  • 1 substrate 13 a buffer layer 22 provided on the surface of the first substrate 13 on the side of the second substrate 14, a first dielectric layer 17 provided between the buffer layer 22 and the second substrate 14, and a disk.
  • the feeding portion 12 provided at the center of the first substrate 13 and the second substrate 14 in the shape of a disk and in contact with the first dielectric layer 17, and the third substrate 15 in the shape of a disk.
  • a TFT thin film transistor
  • an alignment film may be provided in each sealed region 20 in order to fix the orientation direction of the liquid crystal molecules constituting the liquid crystal layer 16.
  • a homeotropic alignment film that facilitates the vertical orientation of the liquid crystal molecules or a homogeneous alignment film that facilitates the horizontal orientation of the liquid crystal molecules is provided between the first substrate 13 and the liquid crystal layer 16.
  • the sealing region 20 is a sealing space surrounded on all four sides by the sealing wall 24, the buffer layer 22, the first substrate 13, and the third substrate 15, and at least one patch is contained therein.
  • 9 and at least one slot 8 are provided in the same sealed space so as to face each other, and the liquid crystal layer 16 is filled.
  • the seal wall 24 may be formed of a known insulator or the like. Further, the buffer layer 22 may be formed of a known dielectric material or the like.
  • a TFT thin film transistor
  • the application of the voltage of the liquid crystal layer 16 can be controlled by the active method.
  • the patch 9 and the first substrate 13 are formed by the TFT formed on the first substrate 13 with the patch 9 as a common electrode and the first substrate 13 as a pixel electrode.
  • a method of controlling the orientation of the liquid crystal molecule of the above can be mentioned.
  • the method of controlling the application of the voltage of the liquid crystal layer 16 by the active method is not limited to the above method.
  • an alignment film may be provided in each sealed region 20 in order to fix the orientation direction of the liquid crystal molecules constituting the liquid crystal layer 16.
  • a homeotropic alignment film that facilitates the vertical orientation of the liquid crystal molecules or a homogeneous alignment film that facilitates the horizontal orientation of the liquid crystal molecules is provided between the first substrate 13 and the liquid crystal layer 16. You may.
  • the voltage applied to the liquid crystal layer 16 between the patch 9 and the first substrate 13 may be modulated.
  • the capacitance of the slot 8 changes, and as a result, the reactance and the resonance frequency of the slot 8 are controlled. be able to.
  • the resonance frequency of the slot 8 has a correlation with the energy radiated from the radio wave propagating on the line or the like. Therefore, by adjusting the resonance frequency of the slot 8, the slot 8 is substantially not coupled with the cylindrical wave energy from the feeding unit 12, or is coupled with the cylindrical wave energy and radiated into the free space.
  • Such control of the reactance and the resonance frequency of the slot 8 can be performed in each of the plurality of sealed regions 20 formed.
  • the power supply to the patch 9 in each sealed region 20 can be controlled by the TFT. Therefore, since the patch 9 that transmits radio waves and the patch that does not transmit radio waves can be controlled, it is possible to adjust the transmission and reception of the radiated radio waves via the liquid crystal layer 16.
  • TNI Physical characteristic value
  • Example 1 and 2 and Comparative Example 1 The liquid crystal compounds shown in Table 2 below were prepared, nematic liquid crystal compositions were prepared, and various physical property values were measured.
  • a compound in which fluorine is substituted with chlorine or a compound in which fluorine is substituted with chlorine and an alkyl group is substituted with an alkoxy group in a three-ring compound in which the terminal of Comparative Example 1 is substituted with fluorine by NCS. (Compound represented by the general formula (i)) is used at 30%.
  • Examples 3 and 4 Comparative Example 2
  • the liquid crystal compounds shown in Table 3 below were prepared, nematic liquid crystal compositions were prepared, and various physical property values were measured.
  • Example 3 and 4 in the three-ring compound in which the terminal of Comparative Example 2 was substituted with fluorine by NCS, the compound in which fluorine was substituted with chlorine, or the compound in which fluorine was substituted with chlorine and the alkyl group was substituted with an alkoxy group. (Compound represented by the general formula (i)) is used at 24%.
  • ⁇ n in the visible light region correlates with ⁇ in the several tens of GHz band, and the higher the ⁇ n, the larger the change in the dielectric constant in the GHz band, which is preferable as a liquid crystal for an antenna. From the experimental results shown in Table 3 below, it was found that Examples 3 and 4 had substantially the same ⁇ n and Tni as compared with Comparative Example 2.
  • Example 5 Comparative Example 3
  • the liquid crystal compounds shown in Table 4 below were prepared, nematic liquid crystal compositions were prepared, and various physical property values were measured.
  • Example 5 in a three-ring compound in which the terminal of Comparative Example 3 was substituted with fluorine by NCS, a compound in which fluorine was substituted with chlorine, or a compound in which fluorine was substituted with chlorine and an alkyl group was substituted with an alkoxy group (generally). 24% of the compound represented by the formula (i) is used.
  • Example 5 had substantially the same ⁇ n and Tni as compared with Comparative Example 3.
  • Antenna unit 2 Vehicle 3: Case 4: Control board 5: Top lid 6: Slot array part 7: Patch array part 8: Slot 9: Patch 10: Antenna body 11: Antenna assembly 12: Feeding part 12a: Feeding line 13: 1st substrate 14: 2nd substrate 15: 3rd substrate 16: Liquid crystal layer 17: 1st dielectric layer 20: Sealed area 21, 23, 24: Seal wall 22: Buffer layer P: Conductor Q: Disc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

In order to enable larger phase control for microwave or millimeter electromagnetic waves, the present invention provides a nematic liquid crystal composition as a liquid crystal material having a large dielectric anisotropy Δε and a large refractive index anisotropy Δn, the nematic liquid crystal composition having a wide nematic liquid crystal temperature range, being stable at low temperatures, and having high reliability against external stimuli such as heat, and also provides a liquid crystal element, a sensor, a liquid crystal lens, an optical communication device, and an antenna using the nematic liquid crystal composition. Specifically, provided are a liquid crystal composition having a liquid crystal compound represented by the general formula (i), and also a liquid crystal element, a sensor, a liquid crystal lens, an optical communication device, and an antenna using the liquid crystal composition.

Description

液晶組成物、液晶素子、センサ、液晶レンズ、光通信機器及びアンテナLiquid crystal composition, liquid crystal element, sensor, liquid crystal lens, optical communication equipment and antenna
 本発明は液晶組成物及びこれを使用した液晶素子、センサ、液晶レンズ、光通信機器及びアンテナに関する。 The present invention relates to a liquid crystal composition and a liquid crystal element, a sensor, a liquid crystal lens, an optical communication device, and an antenna using the liquid crystal composition.
 近年、自然界には存在しない特性を発現できるメタマテリアル技術に関する研究が進んでおり、光学分野を始めとする種々の技術分野で注目を集めている。なかでも、メタマテリアル技術を用いることにより電磁波の制御を可能にする観点から、当該メタマテリアル技術を、高周波デバイス、マイクロ波デバイス又はアンテナなどの技術分野に応用することが挙げられる。一般にアンテナの大きさは、電磁波の波長に依存することが知られている。そのため、アンテナを介した電波の送受信可能な自動運転技術の導入等に起因して、メタマテリアル技術を用いるアンテナの小型化に大きな期待が寄せられている。このようなメタマテリアル技術に用いられる材料の一つとして液晶媒質が挙げられる。 In recent years, research on metamaterial technology that can express properties that do not exist in the natural world has been progressing, and it is attracting attention in various technical fields including the optical field. In particular, from the viewpoint of enabling control of electromagnetic waves by using metamaterial technology, application of the metamaterial technology to technical fields such as high-frequency devices, microwave devices, and antennas can be mentioned. It is generally known that the size of an antenna depends on the wavelength of an electromagnetic wave. Therefore, due to the introduction of automatic driving technology capable of transmitting and receiving radio waves via an antenna, there are great expectations for miniaturization of antennas using metamaterial technology. One of the materials used in such metamaterial technology is a liquid crystal medium.
 また、多種多様な機能のシステムをひとつのハードウェアで切り替えて利用する、あるいはソフトウェアによりプログラム的に切り替えて利用するためには、高周波アナログステージで周波数帯又は帯域幅などを電子的に可変できるデバイスの技術開発が必要となる。このため、例えば、電子同調フィルタ、電圧制御発振器、可変特性増幅器、移相器・減衰器といった可変回路又はデバイス等の性能・機能を可変制御できる技術の開発が進められている。 In addition, in order to switch and use a system with a wide variety of functions with a single piece of hardware, or to switch and use a system programmatically with software, a device that can electronically change the frequency band or bandwidth on a high-frequency analog stage. Technology development is required. Therefore, for example, the development of a technique capable of variably controlling the performance / function of a variable circuit or device such as an electronic tuning filter, a voltage controlled oscillator, a variable characteristic amplifier, and a phase shifter / attenuator is being promoted.
 液晶媒質を可変機能デバイスに利用した高周波デバイスとして、駆動電圧の無印加と駆動電圧の印加により液晶層の誘電率が変化することを利用して、マイクロストリップ線路を伝搬する電磁波の位相の可変、あるいは当該電磁波の位相の遅延を可能とするマイクロ波帯可変位相器が開示されている(非特許文献1)。 As a high-frequency device that uses a liquid crystal medium as a variable function device, the phase of electromagnetic waves propagating through the microstrip line can be changed by utilizing the fact that the dielectric constant of the liquid crystal layer changes due to no application of drive voltage and application of drive voltage. Alternatively, a microwave band variable phase device capable of delaying the phase of the electromagnetic wave is disclosed (Non-Patent Document 1).
 また、液晶媒質を利用した可変機能デバイスの液晶層として、高分子分散型液晶(特許文献1参照)、二周波駆動液晶(特許文献2)を用いた技術が報告されている。
 さらに、特許文献3では、高周波デバイスの構成成分として液晶材料の使用が提唱されている。
Further, a technique using a polymer-dispersed liquid crystal (see Patent Document 1) and a dual-frequency drive liquid crystal (Patent Document 2) as a liquid crystal layer of a variable-function device using a liquid crystal medium has been reported.
Further, Patent Document 3 proposes the use of a liquid crystal material as a component of a high-frequency device.
特開2000-315902号公報Japanese Unexamined Patent Publication No. 2000-315902 特開2001-237606号公報Japanese Unexamined Patent Publication No. 2001-237606 特開2005-120280号公報Japanese Unexamined Patent Publication No. 2005-120280
 しかしながら、上記特許文献1~3に記載の液晶組成物の使用可能な温度範囲を確認すると、特に、低温保存安定性が低いことが確認された。そのため、液晶組成物の低温輸送又は寒冷地における、高周波デバイス等のアンテナの使用ができないという新たな問題が生じる。また、高周波デバイスの分野でも、誘電率異方性Δεがより大きく、駆動温度範囲がより広く、かつ低温下において安定である液晶材料が要求されている。 However, when the usable temperature range of the liquid crystal compositions described in Patent Documents 1 to 3 was confirmed, it was confirmed that the low temperature storage stability was particularly low. Therefore, there arises a new problem that an antenna such as a high-frequency device cannot be used for low-temperature transportation of the liquid crystal composition or in a cold region. Further, in the field of high frequency devices, there is a demand for a liquid crystal material having a larger dielectric anisotropy Δε, a wider driving temperature range, and stability at a low temperature.
 そこで、本発明は、高い屈折率異方性Δnと広い駆動温度範囲とを有し、かつ低温下において安定である、液晶組成物、及びこれを使用した液晶素子、センサ、液晶レンズ、光通信機器及びアンテナを提供することを目的とする。 Therefore, the present invention presents a liquid crystal composition having a high refractive index anisotropy Δn and a wide driving temperature range and being stable at a low temperature, and a liquid crystal element, a sensor, a liquid crystal lens, and optical communication using the liquid crystal composition. The purpose is to provide equipment and antennas.
 本発明者らが鋭意検討した結果、一般式(i)で表される化合物を1種又は2種以上含有する液晶組成物により上記課題を解決できることを見出し、本願発明を完成するに至った。 As a result of diligent studies by the present inventors, it has been found that the above problem can be solved by a liquid crystal composition containing one or more compounds represented by the general formula (i), and the present invention has been completed.
 本発明は、以下の一般式(i)で表される化合物を含む、液晶組成物である。 The present invention is a liquid crystal composition containing a compound represented by the following general formula (i).
Figure JPOXMLDOC01-appb-C000007
(上記一般式(i)中、
 Ri1は、炭素原子数1~40の直鎖又は分岐の、アルキル基又はハロゲン化アルキル基を表し、これらの基中に存在する、メチレン基又は第二級炭素原子を1つ含むハロゲン化アルキレン基は、酸素原子が直接隣接しないように、-O-、-CH=CH-、又は-C≡C-で置換されてもよく、
 m1は、1又は2の整数を表し、
 Ai1~Ai3は、それぞれ独立して、下記の基(a)~基(c)のいずれか1種を表わし、
(a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は-O-又は-S-に置き換えられてもよい)、
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は相互に隣接していない2個以上の-CH=は-N=に置き換えられてもよい)、
(c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
 上記基(a)~基(c)中の水素原子はフッ素原子、塩素原子、又は炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはハロゲン化アルキル基に置換されていてもよいが、Ai1~Ai3中の水素原子の少なくとも一つは塩素原子に置換されており、
 Zi1及びZi2は、それぞれ独立して、単結合、-C≡C-、-CH=CH-、-CF=CF-、又は-C(Ria)=N-N=C(Rib)-を表し、この際、Ria及びRibは、それぞれ独立して、水素原子、ハロゲン原子、又は、炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはハロゲン化アルキル基を表し、
 m1が2のときに複数存在するAi1及びZi1は、それぞれ同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000007
(In the above general formula (i),
R i1 represents a linear or branched alkyl group or alkyl halide group having 1 to 40 carbon atoms, and a halogenated alkylene containing one methylene group or secondary carbon atom present in these groups. The groups may be substituted with -O-, -CH = CH-, or -C≡C- so that the oxygen atoms are not directly adjacent.
m1 represents an integer of 1 or 2 and represents
A i1 to A i3 independently represent any one of the following groups (a) to (c).
(A) Trans-1,4-cyclohexylene group (one methylene group present in this group or two or more methylene groups not adjacent to each other is replaced with -O- or -S-. May be good),
(B) 1,4-phenylene group (one -CH = existing in this group or two or more -CH = not adjacent to each other may be replaced with -N =),
(C) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or One -CH = present in the 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or two or more non-adjacent -CH = may be replaced with -N =. )
The hydrogen atom in the groups (a) to (c) may be substituted with a fluorine atom, a chlorine atom, or a linear or branched alkyl group having 1 to 10 carbon atoms or an alkyl halide group. At least one of the hydrogen atoms in Ai1 to Ai3 is replaced with a chlorine atom.
Z i1 and Z i2 are independently single-bonded, -C≡C-, -CH = CH-, -CF = CF-, or -C ( Ria ) = NN = C (R ib ). -In this case, Ria and Rib independently represent a hydrogen atom, a halogen atom, or a linear or branched alkyl group or halogenated alkyl group having 1 to 10 carbon atoms.
A plurality of A i1 and Z i1 existing when m1 is 2 may be the same or different from each other. )
 本発明は、上記液晶組成物を有する液晶層を備えた、液晶素子、センサ、液晶レンズ、光通信機器又はアンテナである。 The present invention is a liquid crystal element, a sensor, a liquid crystal lens, an optical communication device, or an antenna provided with a liquid crystal layer having the above liquid crystal composition.
 本発明により、高い屈折率異方性Δnと広い駆動温度範囲とを有し、低温下において安定である液晶組成物を提供することができる。
 本発明により、高い屈折率異方性(Δn)と広い駆動温度範囲とを有し、低温下において安定である液晶組成物を有する液晶層を備えた、液晶素子、センサ、液晶レンズ、光通信機器及びアンテナを提供することができる。
 本発明により、マイクロ波又はミリ波の電磁波に対してより大きな位相制御を可能とするため、大きな誘電率異方性Δε、高い屈折率異方性Δnを有する液晶材料において、駆動温度範囲が広く、低温下において安定である、液晶組成物、及びこれを使用した液晶素子、センサ、液晶レンズ、光通信機器及びアンテナを提供できる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a liquid crystal composition having a high refractive index anisotropy Δn and a wide driving temperature range and being stable at a low temperature.
According to the present invention, a liquid crystal element, a sensor, a liquid crystal lens, and optical communication provided with a liquid crystal layer having a high refractive index anisotropy (Δn), a wide driving temperature range, and a liquid crystal composition that is stable at low temperatures. Equipment and antennas can be provided.
INDUSTRIAL APPLICABILITY In order to enable larger phase control for microwave or millimeter wave electromagnetic waves, the present invention has a wide driving temperature range in a liquid crystal material having a large dielectric anisotropy Δε and a high refractive index anisotropy Δn. , A liquid crystal composition which is stable at a low temperature, and a liquid crystal element, a sensor, a liquid crystal lens, an optical communication device, and an antenna using the liquid crystal composition.
本発明に係るアンテナを搭載した車両の概要図の一例である。This is an example of a schematic diagram of a vehicle equipped with an antenna according to the present invention. 本発明に係るアンテナの分解図の一例である。This is an example of an exploded view of the antenna according to the present invention. 本発明に係るアンテナ本体の分解図の一例である。This is an example of an exploded view of the antenna body according to the present invention. 本発明におけるスロットアレイ部の上面図の一例である。This is an example of a top view of the slot array portion in the present invention. 本発明に係るアンテナ本体の投影図の上面図の一例である。This is an example of a top view of a projection drawing of the antenna body according to the present invention. 図5のアンテナ本体をA-A線で切断した断面図の一形態である。This is a cross-sectional view of the antenna body of FIG. 5 cut along the AA line. 図5のアンテナ本体をA-A線で切断した断面図の別の形態である。This is another form of a cross-sectional view in which the antenna body of FIG. 5 is cut along the line AA. 本発明に係るアンテナ本体の投影図を示す上面図の他の一例である。It is another example of the top view which shows the projection drawing of the antenna body which concerns on this invention. 図8のアンテナ本体をC-C線で切断した断面図である。FIG. 5 is a cross-sectional view of the antenna body of FIG. 8 cut along the CC line. 図8のアンテナ本体をB-B線で切断した断面図である。It is sectional drawing which cut | cut the antenna body of FIG. 8 by line BB.
 以下、本発明を詳細に説明する。
 本発明に係る液晶組成物は、第一成分として一般式(i)で表わされる化合物を含有する。
Hereinafter, the present invention will be described in detail.
The liquid crystal composition according to the present invention contains a compound represented by the general formula (i) as a first component.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記一般式(i)中、Ri1は、直鎖状の基又は分岐状の基であり、直鎖状の基であることが好ましい。また、Ri1は、炭素原子数1~40の、アルキル基又はハロゲン化アルキル基を表し、好ましくは、炭素原子数2~30の、アルキル基又はハロゲン化アルキル基を表し、より好ましくは、炭素原子数2~19の、アルキル基又はハロゲン化アルキル基を表し、さらに好ましくは、炭素原子数2~10の、アルキル基又はハロゲン化アルキル基を表し、特に好ましくは、炭素原子数2~8の直鎖状のアルキル基を表す。 In the general formula (i), R i1 is a linear group or a branched group, and is preferably a linear group. Further, Ri1 represents an alkyl group or an alkyl halide group having 1 to 40 carbon atoms, preferably an alkyl group or an alkyl halide group having 2 to 30 carbon atoms, and more preferably carbon. It represents an alkyl group or an alkyl halide having 2 to 19 atoms, more preferably an alkyl group having 2 to 10 carbon atoms or an alkyl halide group, and particularly preferably having 2 to 8 carbon atoms. Represents a linear alkyl group.
 本明細書におけるアルキル基は、特に制限されることは無く、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デシル基、イソデシル基、ドデシル基、ヘキサデシル基、オクタデシル基、及び2-エチルヘキシル基等を含み、直鎖状のアルキル基が好ましい。 The alkyl group in the present specification is not particularly limited, and is, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group and an isodecyl. A linear alkyl group containing a group, a dodecyl group, a hexadecyl group, an octadecyl group, a 2-ethylhexyl group and the like is preferable.
 本明細書におけるハロゲン化アルキル基は、特に制限されることは無く、例えば、2-フルオロエチル、2-クロロエチル、3-フルオロプロピル、3-クロロプロピル、4-フルオロブチル、4-クロロブチル、5-フルオロペンチル、5-クロロペンチル、6-フルオロヘキシル、6-クロロヘキシル、7-フルオロヘプチル、7-クロロヘプチル、トリクロロ
メチル基、及びトリフルオロメチル基等を含む。
The alkyl halide group in the present specification is not particularly limited, and is, for example, 2-fluoroethyl, 2-chloroethyl, 3-fluoropropyl, 3-chloropropyl, 4-fluorobutyl, 4-chlorobutyl, 5-. Includes fluoropentyl, 5-chloropentyl, 6-fluorohexyl, 6-chlorohexyl, 7-fluoroheptyl, 7-chloroheptyl, trichloromethyl group, trifluoromethyl group and the like.
 上記一般式(i)のRi1において、当該Ri1中に存在する、メチレン基又は第二級炭素原子を1つ含むアルキレン基又はハロゲン化アルキレン基は、酸素原子が直接隣接しないように、-O-、-CH=CH-、又は-C≡C-で置換されてもよい。具体的には、Ri1は、炭素原子数1~19であり、かつ直鎖状のアルキル基、アルケニル基、アルコキシ基又はアルケニルオキシ基が好ましく、炭素原子数1~8であり、かつ直鎖状のアルキル基、アルケニル基、アルコキシ基、又はアルケニルオキシ基がより好ましい。 In R i1 of the above general formula (i), the alkylene group or halogenated alkylene group containing one methylene group or secondary carbon atom present in the R i1 is formed so that the oxygen atom is not directly adjacent to the alkylene group or the halogenated alkylene group. It may be replaced with O-, -CH = CH-, or -C≡C-. Specifically, Ri1 preferably has 1 to 19 carbon atoms and is preferably a linear alkyl group, alkenyl group, alkoxy group or alkenyloxy group, and has 1 to 8 carbon atoms and is linear. Alkyl groups, alkenyl groups, alkoxy groups, or alkenyloxy groups are more preferable.
 本明細書におけるアルケニル基は、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点は環構造中の炭素原子を表す。) The alkenyl group in the present specification is preferably selected from the groups represented by any of the formulas (R1) to (R5). (The black dots in each equation represent carbon atoms in the ring structure.)
Figure JPOXMLDOC01-appb-C000009
 本明細書におけるアルケニルオキシ基は、式(R6)から式(R10)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点は環構造中の炭素原子を表す。)
Figure JPOXMLDOC01-appb-C000009
The alkenyloxy group in the present specification is preferably selected from the groups represented by any of the formulas (R6) to (R10). (The black dots in each equation represent carbon atoms in the ring structure.)
Figure JPOXMLDOC01-appb-C000010
 本明細書におけるアルコキシ基は、特に制限されることは無く、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、及びヘキソキシ基を含み、直鎖状のアルコキシ基であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
The alkoxy group in the present specification is not particularly limited, and is preferably a linear alkoxy group containing a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, and a hexoxy group.
 Ri1が結合する環構造がフェニル基(芳香族)である場合において、当該Ri1は、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましい。Ri1が結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合において、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。ネマチック相を安定化させるためには、炭素原子及び必要により存在する酸素原子の合計が、5以下であることが好ましい。また、Ri1が結合する環構造がいずれの場合でも、直鎖状であることが好ましい。 When the ring structure to which R i1 is bonded is a phenyl group (aromatic), the R i1 is a linear alkyl group having 1 to 5 carbon atoms and a linear alkoxy having 1 to 4 carbon atoms. A group and an alkenyl group having 4 to 5 carbon atoms are preferable. When the ring structure to which Ri1 is bonded is a saturated ring structure such as cyclohexane, pyran, or dioxane, a linear alkyl group having 1 to 5 carbon atoms and a linear alkoxy group having 1 to 4 carbon atoms are used. And a linear alkenyl group having 2 to 5 carbon atoms is preferable. In order to stabilize the nematic phase, the total of carbon atoms and, if necessary, oxygen atoms present is preferably 5 or less. Further, in any case, the ring structure to which Ri1 is bonded is preferably linear.
 Ai1~Ai3はそれぞれ独立して、置換基(S)に置換されてもよい、二価の環式基、具体的には、下記の基(a)~基(c)
(a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は-O-又は-S-に置き換えられてもよい)、
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は相互に隣接していない2個以上の-CH=は-N=に置き換えられてもよい)、
(c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
のいずれか1種を表わし、かつAi1~Ai3中の水素原子の少なくとも一つは塩素原子に置換されている。したがって、一般式(i)で表わされる化合物中の環式基の少なくとも1つには塩素原子が存在する。当該環式基としては、基(a)~(c)のいずれかであり、基(a)又は(b)であることがより好ましい。
 m1が2のときに複数存在するAi1は、それぞれ同一であっても異なっていてもよい。
A i1 to A i3 may be independently substituted with a substituent ( Si ), a divalent cyclic group, specifically, the following groups (a) to (c).
(A) Trans-1,4-cyclohexylene group (one methylene group present in this group or two or more methylene groups not adjacent to each other is replaced with -O- or -S-. May be good),
(B) 1,4-phenylene group (one -CH = existing in this group or two or more -CH = not adjacent to each other may be replaced with -N =),
(C) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or One -CH = present in the 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or two or more non-adjacent -CH = may be replaced with -N =. )
At least one of the hydrogen atoms in Ai1 to Ai3 is replaced with a chlorine atom. Therefore, a chlorine atom is present in at least one of the cyclic groups in the compound represented by the general formula (i). The cyclic group is any of the groups (a) to (c), and more preferably the group (a) or (b).
When m1 is 2, a plurality of Ai1s may be the same or different.
 当該置換基(S)としては、フッ素原子、塩素原子、又は炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはハロゲン化アルキル基が挙げられる。 Examples of the substituent ( Si ) include a fluorine atom, a chlorine atom, and a linear or branched alkyl group having 1 to 10 carbon atoms or an alkyl halide group.
 Ai1~Ai3の具体例としては、以下の(a1)~(a25)で表わされる二価の環式基が挙げられる。 Specific examples of A i1 to A i3 include divalent cyclic groups represented by the following (a1) to (a25).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
   (上記式中、*は炭素原子又は他の原子と結合する結合手を表わす。)
上記二価の環式基のうち、(a1)~(a3)、(a5)~(a6)、(a9)~(a10)、(a12)~(a25)が好ましく、(a1)~(a3)、(a12)~(a25)がより好ましく、(a1)~(a3)、(a12)~(a18)がさらに好ましい。二価の環式基を好ましい条件にすることにより、熱等の外部刺激に対して高い信頼性を備える。また、二価の環式基を好ましい条件にすることにより、大きな屈折率異方性を得ることができる。
(In the above formula, * represents a bond that bonds to a carbon atom or another atom.)
Of the above divalent cyclic groups, (a1) to (a3), (a5) to (a6), (a9) to (a10), (a12) to (a25) are preferable, and (a1) to (a3). ), (A12) to (a25) are more preferable, and (a1) to (a3), (a12) to (a18) are further preferable. By setting the divalent cyclic group under favorable conditions, high reliability is provided against external stimuli such as heat. Further, by setting the divalent cyclic group under preferable conditions, a large refractive index anisotropy can be obtained.
 Zi1及びZi2は、それぞれ独立して、単結合、-C≡C-、-CH=CH-、-CF=CF-、又は-C(Ria)=N-N=C(Rib)-を表し、この際、Ria及びRibは、それぞれ独立して、水素原子、ハロゲン原子、又は、炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはハロゲン化アルキル基を表す。
 液晶性、例えばネマチック液晶性を維持する観点から、Zi1及びZi2はそれぞれ独立して、単結合、-C≡C-、又は-C(Ria)=N-N=C(Rib)-(Ria及びRibは水素原子、あるいは炭素原子数2、4、6又は8のアルキル基若しくはハロゲン化アルキル基を表す)であることが好ましく、単結合、-C(Ria)=N-N=C(Rib)-(Ria及びRibは水素原子、あるいは炭素原子数2、4又は6のアルキル基若しくはハロゲン化アルキル基を表す)、又は-C≡C-であることがより好ましい。-C(Ria)=N-N=C(Rib)-中のRia及びRibは、水素原子を表すことが好ましい。Zi1及びZi2が上記条件であると、メソゲンを構成する環構造間の連結基が直線性を確保しやすい。
 m1が2のときに複数存在するZi1は、それぞれ同一であっても異なっていてもよい。
Z i1 and Z i2 are independently single-bonded, -C≡C-, -CH = CH-, -CF = CF-, or -C ( Ria ) = NN = C (R ib ). -, In this case, Ria and Rib independently represent a hydrogen atom, a halogen atom, or a linear or branched alkyl group or halogenated alkyl group having 1 to 10 carbon atoms.
From the viewpoint of maintaining liquidity, for example, nematic liquidity , Z i1 and Z i2 are independently single-bonded, -C≡C-, or -C ( Ria ) = N-N = C ( Rib ). -( Ria and Rib represent a hydrogen atom, or an alkyl group having 2, 4, 6 or 8 carbon atoms or an alkyl halide group), preferably a single bond, -C ( Ria ) = N. -N = C (R ib )-(R ia and R ib represent a hydrogen atom, or an alkyl group having 2, 4 or 6 carbon atoms or an alkyl halide group), or -C ≡ C-. More preferred. It is preferable that R ia and R ib in -C (R ia ) = NN = C (R ib) -represent a hydrogen atom. When Z i1 and Z i2 are the above conditions, it is easy to ensure the linearity of the linking groups between the ring structures constituting the mesogen.
When m1 is 2, a plurality of Z i1s may be the same or different.
 m1は、1又は2を表わし、1が好ましい。m1が1又は2であると、一般式(i)で表わされる化合物は、3環~4環の液晶化合物に相当し、高い相容性を示す。 M1 represents 1 or 2, and 1 is preferable. When m1 is 1 or 2, the compound represented by the general formula (i) corresponds to a liquid crystal compound having 3 to 4 rings and exhibits high compatibility.
 一般式(i)で表わされる化合物の誘電率異方性(Δε)は、0~35であることが好ましく、3~33であることがより好ましく、4~30であることがさらに好ましい。誘電率異方性が、4~30の範囲であると、その化合物を用いた組成物のΔεは、大きい値を示すため、駆動電圧の低下が可能となり、好ましい。 The dielectric anisotropy (Δε) of the compound represented by the general formula (i) is preferably 0 to 35, more preferably 3 to 33, and even more preferably 4 to 30. When the dielectric anisotropy is in the range of 4 to 30, the Δε of the composition using the compound shows a large value, so that the driving voltage can be lowered, which is preferable.
 一般式(i)で表わされる化合物の屈折率異方性(Δn)は、0.1~0.7であるこ
とが好ましく、0.12~0.65であることがより好ましく、0.15~0.6である
ことがさらに好ましい。屈折率異方性が、0.15~0.6の範囲であると、その化合物
を用いた組成物のΔnは、大きい値を示すため、高周波用途の液晶として好ましい。
The refractive index anisotropy (Δn) of the compound represented by the general formula (i) is preferably 0.1 to 0.7, more preferably 0.12 to 0.65, and 0.15. It is more preferably ~ 0.6. When the refractive index anisotropy is in the range of 0.15 to 0.6, Δn of the composition using the compound shows a large value, which is preferable as a liquid crystal for high frequency use.
 本発明に係る液晶組成物は、広い液晶相温度範囲(液晶相下限温度と液晶相上限温度の差の絶対値)を有するが、液晶相温度範囲が100℃以上であることが好ましく、130℃以上がより好ましい。また、液晶相上限温度は80℃以上であることが好ましく、100℃以上がより好ましい。更に、液晶相下限温度は-20℃以下であることが好ましく、-30℃以下がより好ましい。
 本発明に係る液晶組成物のネマチック相-等方性液体相転移温度(TNI)は、80~180℃が好ましく、100~160℃が好ましく、120~140℃が好ましい。
The liquid crystal composition according to the present invention has a wide liquid crystal phase temperature range (absolute value of the difference between the liquid crystal phase lower limit temperature and the liquid crystal phase upper limit temperature), but the liquid crystal phase temperature range is preferably 100 ° C. or higher, preferably 130 ° C. The above is more preferable. The upper limit temperature of the liquid crystal phase is preferably 80 ° C. or higher, more preferably 100 ° C. or higher. Further, the lower limit temperature of the liquid crystal phase is preferably −20 ° C. or lower, more preferably −30 ° C. or lower.
The nematic phase-isotropic liquid phase transition temperature ( TNI ) of the liquid crystal composition according to the present invention is preferably 80 to 180 ° C, preferably 100 to 160 ° C, and preferably 120 to 140 ° C.
 本発明に係る液晶組成物は、20℃における粘度(η)が10から100mPa・sであるが、10から90mPa・sであることが好ましく、10から80mPa・sであることが好ましく、10から70mPa・sであることが好ましく、10から60mPa・sであることが好ましく、10から50mPa・sであることが更に好ましく、10から40mPa・sであることが好ましく、10から30mPa・sであることが特に好ましい。
 本発明に係る液晶組成物は、589.0nmにおけるΔn(屈折率異方性)が0.2以上であることが好ましく、0.30~0.40であることが好ましい。可視光領域のΔnは、数十GHz帯のΔεと相関し、Δnが高いほどGHz帯の誘電率の変化を大きくすることができる。従って、液晶組成物の、589.0nmにおけるΔnが0.2以上であれば、GHz帯の誘電率の変化を大きくすることができるため、アンテナ用の液晶組成物として好適となる。
 ここで、位相差Reと、液晶層の厚さd(セルギャップ)と、Δnと、の間には、式:Δn=Re/dの関係が成り立ち、本明細書においては、位相差測定装置から、Δnを求める。より具体的には、ポリイミド配向膜付きのガラスセルに、本発明の液晶組成物のサンプルを注入し、測定温度25℃、589nmにおける面内のリタデーション(位相差Re)を位相差フィルム・光学材料検査装置RETS-100(大塚電子株式会社製)で測定する。なお、ガラス基板間のセルギャップ3.0μm、ポリイミド配向膜のラビング方向が平行のガラスセルを使用する。
 また、アッベ屈折計で、液晶組成物のne、noを測定し、Δnを算出してもよい。
The liquid crystal composition according to the present invention has a viscosity (η) at 20 ° C. of 10 to 100 mPa · s, preferably 10 to 90 mPa · s, preferably 10 to 80 mPa · s, and 10 to 80 mPa · s. It is preferably 70 mPa · s, preferably 10 to 60 mPa · s, more preferably 10 to 50 mPa · s, preferably 10 to 40 mPa · s, and 10 to 30 mPa · s. Is particularly preferred.
The liquid crystal composition according to the present invention preferably has Δn (refractive index anisotropy) at 589.0 nm of 0.2 or more, and preferably 0.30 to 0.40. Δn in the visible light region correlates with Δε in the several tens of GHz band, and the higher the Δn, the larger the change in the dielectric constant in the GHz band. Therefore, when Δn of the liquid crystal composition at 589.0 nm is 0.2 or more, the change in the dielectric constant in the GHz band can be made large, which makes it suitable as a liquid crystal composition for an antenna.
Here, the relationship of the equation: Δn = Re / d is established between the phase difference Re, the thickness d (cell gap) of the liquid crystal layer, and Δn, and in the present specification, the phase difference measuring device. From, Δn is obtained. More specifically, a sample of the liquid crystal composition of the present invention is injected into a glass cell with a polyimide alignment film, and in-plane retardation (phase difference Re) at a measurement temperature of 25 ° C. and 589 nm is applied to a retardation film / optical material. Measure with the inspection device RETS-100 (manufactured by Otsuka Electronics Co., Ltd.). A glass cell having a cell gap of 3.0 μm between glass substrates and a polyimide alignment film having parallel rubbing directions is used.
Alternatively, Δn may be calculated by measuring ne and no of the liquid crystal composition with an Abbe refractometer.
 本発明に係る液晶組成物において、一般式(i)で表される化合物は単独で使用しても、あるいは2種以上組み合わせて使用してもよい。組み合わせ可能な化合物の種類に特に制限は無いが、誘電率異方性、低温における溶解性、転移温度、複屈折率などの所望の性能に応じて適宜組み合わせて使用する。使用する液晶化合物の種類は、例えば本発明の一つの実施形態としては1種類である。あるいは本発明の別の実施形態では2種類であり、3種類であり、4種類であり、5種類であり、6種類であり、7種類であり、8種類であり、9種類であり、10種類以上である。 In the liquid crystal composition according to the present invention, the compound represented by the general formula (i) may be used alone or in combination of two or more. The types of compounds that can be combined are not particularly limited, but they are appropriately combined and used according to desired performance such as dielectric anisotropy, solubility at low temperature, transition temperature, and birefringence. The type of liquid crystal compound used is, for example, one type as one embodiment of the present invention. Alternatively, in another embodiment of the present invention, there are two types, three types, four types, five types, six types, seven types, eight types, nine types, and ten. More than a kind.
 本発明の液晶組成物の総量に対しての式(i)で表される化合物の好ましい含有量の下限値(質量%)は、1%であり、2%であり、5%であり、8%であり、10%であり、13%であり、15%であり、18%であり、20%であり、22%であり、25%であり、30%であり、40%であり、50%であり、55%であり、60%であり、65%であり、70%であり、75%であり、80%である。又、含有量が多いと析出等の問題を引き起こすため、好ましい含有量の上限値(質量%)は85%であり、75%であり、65%であり、55%であり、45%であり、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%であり、10%であり、8%であり、5%である。 The lower limit (mass%) of the preferable content of the compound represented by the formula (i) with respect to the total amount of the liquid crystal composition of the present invention is 1%, 2%, 5%, and 8%. %, 10%, 13%, 15%, 18%, 20%, 22%, 25%, 30%, 40%, 50. %, 55%, 60%, 65%, 70%, 75%, 80%. Further, since a large content causes problems such as precipitation, the upper limit value (mass%) of the preferable content is 85%, 75%, 65%, 55%, and 45%. , 35%, 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10%. , 8% and 5%.
 本発明の一般式(i)の好ましい形態は、Ri1が、炭素原子数1~8であり、かつ直鎖状の、アルキル基、アルケニル基、アルコキシ基、又はアルケニルオキシ基であり、Ai1~Ai3はそれぞれ独立して、上記式(a1)~(a3)又は(a9)であり、Zi1及びZi2はそれぞれ独立して、単結合、-C≡C-、又は-CRia=CRib-(Ria及びRibはそれぞれ独立して、水素原子、あるいは炭素原子数2、4、6又は8のアルキル基若しくはハロゲン化アルキル基を表す)であり、m1は、1を表わす。また、一般式(i)で表される化合物の好ましい含有量は、液晶組成物全体(100質量%)に対して、10~80質量%であることが好ましく、15~77質量%であることがより好ましく、20~75質量%であることが特に好ましい。 A preferred embodiment of the general formula (i) of the present invention is that R i1 has 1 to 8 carbon atoms and is a linear alkyl group, alkenyl group, alkoxy group, or alkenyloxy group, and A i1. ~ A i3 are independently of the above formulas (a1) to (a3) or (a9), and Z i1 and Z i2 are independently of single bond, -C≡C-, or -CR ia =. CR ib- ( Ria and Rib each independently represent a hydrogen atom, or an alkyl group having 2, 4, 6 or 8 carbon atoms or an alkyl halide group), and m1 represents 1. The preferable content of the compound represented by the general formula (i) is preferably 10 to 80% by mass and 15 to 77% by mass with respect to the entire liquid crystal composition (100% by mass). Is more preferable, and 20 to 75% by mass is particularly preferable.
 一般式(i)で表される化合物は大きいΔnと高いTni、また良好な溶解性を有し、広い液晶温度範囲や低温安定性等を維持しながら、組成物に非常に大きいΔnを付与できる。 The compound represented by the general formula (i) has a large Δn and a high Tni, and has good solubility, and can impart a very large Δn to the composition while maintaining a wide liquid crystal temperature range, low temperature stability, and the like. ..
 本発明における一般式(i)の具体的な構造としては、以下の一般式(i-2-1)~(i-2-64)で表わされる3環の液晶化合物、及び以下の一般式(i-3-1)~(i-3-21)で表わされる4環の液晶化合物からなる群から選択される1種又は2種以上であることが好ましい。当該一般式(i-2-1)~(i-3-21)で表される化合物としては、単独で使用しても、あるいは2種以上を組み合わせて使用してもよい。
 本発明に係る液晶組成物は、一般式(i-2-1)~(i-2-65)で表わされる3環の液晶化合物からなる群から選択される1種又は2種以上の化合物を含有することが好ましい。当該一般式(i-2-1)~(i-2-65)で表される化合物としては、単独で使用しても、あるいは2種以上を組み合わせて使用してもよい。
 本発明に係る一般式(i)で表わされる化合物の好適例は、以下の一般式(i-2-1)~(i-2-65)で表わされる3環の液晶化合物は以下の通りである。
Specific structures of the general formula (i) in the present invention include a three-ring liquid crystal compound represented by the following general formulas (i-2-1) to (i-2-64), and the following general formula ( It is preferably one or more selected from the group consisting of the four-ring liquid crystal compounds represented by i-3-1) to (i-3-21). As the compounds represented by the general formulas (i-2-1) to (i-3-21), they may be used alone or in combination of two or more.
The liquid crystal composition according to the present invention comprises one or more compounds selected from the group consisting of three-ring liquid crystal compounds represented by the general formulas (i-2-1) to (i-2-65). It is preferable to contain it. As the compounds represented by the general formulas (i-2-1) to (i-2-65), they may be used alone or in combination of two or more.
Preferable examples of the compound represented by the general formula (i) according to the present invention are as follows for the three-ring liquid crystal compound represented by the following general formulas (i-2-1) to (i-2-65). is there.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(上記一般式(i-2-1)~(i-2-65)中のRi1は、一般式(i)中のRi1と同様である。)
 なお、本発明に係る液晶組成物において、液晶組成物全体に対する上記一般式(i-2-1)~(i-2-65)の化合物のそれぞれの含有量は、一般式(i)の好ましい含有量を適用することができる。
 上記3環の液晶化合物のうち、以下の式(i-2-7a)、(i-2-34a)、(i-2-41a)及び(i-2―55a)~(i-2-58a)で表わされる化合物が好ましい。
(R i1 in the general formula (i-2-1) ~ (i -2-65) is the same as R i1 in the general formula (i).)
In the liquid crystal composition according to the present invention, the content of each of the compounds of the general formulas (i-2-1) to (i-2-65) in the entire liquid crystal composition is preferably the general formula (i). The content can be applied.
Among the above three-ring liquid crystal compounds, the following formulas (i-2-7a), (i-2-34a), (i-2-41a) and (i-2-55a) to (i-2-58a) ) Is preferable.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(上記式中、R35は炭素原子数1~8のアルキル基、又は炭素原子数2~8のアルケニル基を表し、R36は炭素原子数1~8のアルキル基、又は炭素原子数1~8アルコキシル基、又は炭素原子数2~8のアルケニル基を表す。)
 なお、本発明に係る液晶組成物において、液晶組成物全体に対する上記一般式(i-2-7a)~(i-2-64a)の化合物のそれぞれの含有量は、一般式(i)の好ましい含有量を適用することができる。
(In the above formula, R 35 represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 2 to 8 carbon atoms, and R 36 is an alkyl group having 1 to 8 carbon atoms or 1 to 8 carbon atoms. Represents an 8-alkoxyl group or an alkenyl group having 2 to 8 carbon atoms.)
In the liquid crystal composition according to the present invention, the content of each of the compounds of the general formulas (i-2-7a) to (i-2-64a) in the entire liquid crystal composition is preferably the general formula (i). The content can be applied.
 上記一般式(i-2-1)~(i-2-64)で表わされる3環の液晶化合物の好ましい形態の一例として、以下の一般式(i-2-1.1)~(i-2-64.10)が挙げられる。 As an example of a preferable form of the three-ring liquid crystal compound represented by the general formulas (i-2-1) to (i-2-64), the following general formulas (i-2-1.1) to (i-) 2-64.10) can be mentioned.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 なお、本発明に係る液晶組成物において、液晶組成物全体に対する上記一般式(i-2-1.1)~(i-2-64.10)の化合物のそれぞれの含有量は、一般式(i)の好ましい含有量を適用することができる。
 本発明に係る液晶組成物は、一般式(i-3-1)~(i-3-21)で表わされる4環の液晶化合物からなる群から選択される1種又は2種以上の化合物を含有することが好ましい。当該一般式(i-3-1)~(i-3-21)で表される化合物としては、単独で使用しても、あるいは2種以上を組み合わせて使用してもよい。
 本発明に係る一般式(i)で表わされる化合物の好適例は、以下の一般式(i-3-1)~(i-3-21)で表わされる4環の液晶化合物は以下の通りである。
Figure JPOXMLDOC01-appb-C000047
In the liquid crystal composition according to the present invention, the content of each of the compounds of the above general formulas (i-2-1.1) to (i-2-64.10) in the entire liquid crystal composition is the general formula (i-2-64.10). The preferred content of i) can be applied.
The liquid crystal composition according to the present invention comprises one or more compounds selected from the group consisting of four-ring liquid crystal compounds represented by the general formulas (i-3-1) to (i-3-21). It is preferable to contain it. As the compounds represented by the general formulas (i-3-1) to (i-3-21), they may be used alone or in combination of two or more.
Preferable examples of the compound represented by the general formula (i) according to the present invention are as follows for the four-ring liquid crystal compound represented by the following general formulas (i-3-1) to (i-3-21). is there.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 なお、本発明に係る液晶組成物において、液晶組成物全体に対する上記一般式(i-2-1)~(i-3-21)の化合物のそれぞれの含有量は、一般式(i)の好ましい含有量を適用することができる。 In the liquid crystal composition according to the present invention, the content of each of the compounds of the general formulas (i-2-1) to (i-3-21) in the entire liquid crystal composition is preferably the general formula (i). The content can be applied.
 本発明に係る液晶組成物は、一般式(ii)で表わされる化合物及び一般式(iii)で表わされる化合物からなる群から選択される化合物を1種又は2種以上さらに含有してもよい。
 上記一般式(ii)で表わされる化合物の好ましい形態は以下の通りである。
The liquid crystal composition according to the present invention may further contain one or more compounds selected from the group consisting of the compound represented by the general formula (ii) and the compound represented by the general formula (iii).
Preferred forms of the compound represented by the general formula (ii) are as follows.
Figure JPOXMLDOC01-appb-C000052
 上記一般式(ii)中、Rii1は、炭素原子数1~40の直鎖又は分岐の、アルキル基又はハロゲン化アルキル基を表すことが好ましく、これらの基中に存在する、メチレン基又は第二級炭素原子を1つ含むハロゲン化アルキレン基は、酸素原子が直接隣接しないように、-O-、-CH=CH-、又は-C≡C-で置換されてもよい。Rii1は、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシル基又は炭素原子数2~8のアルケニル基を表わすことがより好ましい。
 上記一般式(ii)中、Aii1及びAii2は、それぞれ独立して、下記の基(a)又は基(b)のいずれか1種を表わすことが好ましい。
(a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は-O-又は-S-に置き換えられてもよい)、
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は相互に隣接していない2個以上の-CH=は-N=に置き換えられてもよい)、
 上記基(a)又は基(b)中の水素原子は、それぞれシアノ基、ハロゲン原子(好ましくは塩素原子)、又は炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはハロゲン化アルキル基に置換されていてもよい。Aii1及びAii2はそれぞれ独立して、上述した(a1)、(a3)及び(a19)であることがより好ましい。
 上記一般式(ii)中、Xii11~Xii13は、それぞれ独立して、水素原子、ハロゲン原子、又は、炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはハロゲン化アルキル基を表す。Xii11~Xii13は、それぞれ独立して、水素原子又はフッ素原子であることがより好ましい。
 上記一般式(ii)中、Yii1は、フッ素原子、塩素原子、チオシアナト基、トリフルオロメトキシ基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、又はジフルオロメトキシ基を表すことが好ましい。Yii1は、フッ素原子、トリフルオロメトキシ基、トリフルオロメチル基がより好ましく、フッ素原子が更に好ましい。
 上記一般式(ii)中、Zii1及びZii2は、それぞれ独立して、単結合、-COO-、-OCO-、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-又は-C≡C-を表すことが好ましい。Zii1及びZii2は、それぞれ独立して、単結合、-CHCH-、-OCH-、-CHO-、-OCF-又は-CFO-を表すことがより好ましい。 上記一般式(ii)中、nは、0から2の整数を表すことが好ましく、1又は2がより好ましい。また、上記一般式(ii)中、nが2のときに複数存在するAii1及びZii1は、それぞれ同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000052
In the above general formula (ii), R ii1 preferably represents a linear or branched alkyl group or alkyl halide group having 1 to 40 carbon atoms, and is a methylene group or a thethylene group present in these groups. The halogenated alkylene group containing one secondary carbon atom may be substituted with -O-, -CH = CH-, or -C≡C- so that the oxygen atom is not directly adjacent to the group. Rii1 more preferably represents an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an alkenyl group having 2 to 8 carbon atoms.
In the general formula (ii), A ii1 and A ii2 are each independently preferably represents any one of the following groups (a) or group (b).
(A) Trans-1,4-cyclohexylene group (one methylene group present in this group or two or more methylene groups not adjacent to each other is replaced with -O- or -S-. May be good),
(B) 1,4-phenylene group (one -CH = existing in this group or two or more -CH = not adjacent to each other may be replaced with -N =),
The hydrogen atom in the group (a) or group (b) is a cyano group, a halogen atom (preferably a chlorine atom), or a linear or branched alkyl group or alkyl halide having 1 to 10 carbon atoms, respectively. It may be replaced. It is more preferable that A ii1 and A ii2 are independently described in (a1), (a3) and (a19), respectively.
In the general formula (ii), X ii11 ~ X ii13 are each independently a hydrogen atom, a halogen atom, or represents a straight-chain or branched alkyl group or halogenated alkyl group having 1 to 10 carbon atoms. It is more preferable that X ii 11 to X ii 13 are independently hydrogen atoms or fluorine atoms.
In the general formula (ii), Y ii1 is fluorine atom, chlorine atom, thiocyanato group, a trifluoromethoxy group, a trifluoromethyl group, may represent a 2,2,2-trifluoroethyl group, or a difluoromethoxy group preferable. Y i1 is more preferably a fluorine atom, a trifluoromethoxy group, or a trifluoromethyl group, and even more preferably a fluorine atom.
In the general formula (ii), Z ii1 and Z ii2 are each independently a single bond, -COO -, - OCO -, - CH 2 CH 2 -, - (CH 2) 4 -, - OCH 2 - , -CH 2 O-, -OCF 2- , -CF 2 O- or -C ≡ C- is preferred. Z ii1 and Z ii2 are each independently a single bond, -CH 2 CH 2 -, - OCH 2 -, - CH 2 O -, - OCF 2 - or more preferably represents -CF 2 O-. In the general formula (ii), n preferably represents an integer from 0 to 2, and more preferably 1 or 2. Further, in the above general formula (ii), A ii1 and Z ii1 that n is more present when the 2 may each be the same or different.
 本発明の液晶組成物の総量に対しての式(ii)で表される化合物の好ましい含有量(質量%)の下限値は、0.9%であり、1.3%であり、2.7%であり、4%であり、5%であり、8%であり、10%であり、11%であり、13%であり、16%であり、19%であり、21%であり、23%である。本発明の液晶組成物中における一般式(ii)の化合物の含有量(質量%)が多いと析出等の問題を引き起こすため、好ましい含有量の上限値は23%であり、20%であり、18%であり、14%であり、13%であり、10%であり、8%であり、5%である。 The lower limit of the preferable content (mass%) of the compound represented by the formula (ii) with respect to the total amount of the liquid crystal composition of the present invention is 0.9% and 1.3%. 7%, 4%, 5%, 8%, 10%, 11%, 13%, 16%, 19%, 21%, It is 23%. If the content (% by mass) of the compound of the general formula (ii) in the liquid crystal composition of the present invention is large, problems such as precipitation may occur. Therefore, the upper limit of the preferable content is 23% and 20%. 18%, 14%, 13%, 10%, 8%, 5%.
 本発明の液晶組成物において、当該組成物全体(100質量%)に対する一般式(ii)で表される化合物の好ましい含有量(質量%)の範囲は、2~50%であり、より好ましくは5~40%であり、特に好ましくは10~30%である。 In the liquid crystal composition of the present invention, the range of the preferable content (mass%) of the compound represented by the general formula (ii) with respect to the entire composition (100% by mass) is 2 to 50%, more preferably. It is 5 to 40%, particularly preferably 10 to 30%.
 上記一般式(iii)で表わされる化合物の好ましい形態は以下の通りである。 The preferred form of the compound represented by the above general formula (iii) is as follows.
Figure JPOXMLDOC01-appb-C000053
 上記一般式(iii)中、Riii1は、炭素原子数1~40の直鎖又は分岐の、アルキル基又はハロゲン化アルキル基を表すことが好ましく、これらの基中に存在する、メチレン基又は第二級炭素原子を1つ含むハロゲン化アルキレン基は、酸素原子が直接隣接しないように、-O-、-CH=CH-、又は-C≡C-で置換されてもよい。Riii1は、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシル基又は炭素原子数2~8のアルケニル基を表わすことがより好ましい。
 上記一般式(iii)中、Aiii1~Aiii3は、それぞれ独立して、下記の基(a)~は基(c)のいずれか1種を表わすことが好ましい。
(a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は-O-又は-S-に置き換えられてもよい)、
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は相互に隣接していない2個以上の-CH=は-N=に置き換えられてもよい)、
(c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
 上記基(a)~基(c)中の水素原子は、それぞれシアノ基、ハロゲン原子(好ましくは塩素原子)、又は炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはハロゲン化アルキル基に置換されていてもよい。Aiii1及びAiii2はそれぞれ独立して、上述した(a1)、(a3)、(a5)、(a10)、(a19)及び(a24)であることがより好ましい。
Figure JPOXMLDOC01-appb-C000053
In the above general formula (iii), Riii1 preferably represents a linear or branched alkyl group or alkyl halide group having 1 to 40 carbon atoms, and is a methylene group or a thethylene group present in these groups. The halogenated alkylene group containing one secondary carbon atom may be substituted with -O-, -CH = CH-, or -C≡C- so that the oxygen atom is not directly adjacent to the group. Riii1 more preferably represents an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an alkenyl group having 2 to 8 carbon atoms.
In the above general formula (iii), it is preferable that Aiii1 to Aiii3 independently represent any one of the following groups (a) to (c).
(A) Trans-1,4-cyclohexylene group (one methylene group present in this group or two or more methylene groups not adjacent to each other is replaced with -O- or -S-. May be good),
(B) 1,4-phenylene group (one -CH = existing in this group or two or more -CH = not adjacent to each other may be replaced with -N =),
(C) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or One -CH = present in the 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or two or more non-adjacent -CH = may be replaced with -N =. )
The hydrogen atoms in the groups (a) to (c) are cyano groups, halogen atoms (preferably chlorine atoms), or linear or branched alkyl groups or alkyl halides having 1 to 10 carbon atoms, respectively. It may be replaced. It is more preferable that A ii 1 and A ii 2 are independently described in (a1), (a3), (a5), (a10), (a19) and (a24), respectively.
 上記一般式(iii)中、Ziii1及びZiii2は、それぞれ独立して、単結合、-COO-、-OCO-、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-又は-C≡C-を表すことが好ましく、単結合、-CHCH-、-OCH-、-CHO-、-OCF-又は-CFO-を表すことがより好ましい。
 上記一般式(iii)中、lは、0から2の整数を表すことが好ましく、1又は2の整数を表すことがより好ましい。lが2以上のときに複数存在するAiii1及びZiii1は、それぞれ同一であっても異なっていてもよい。
In the general formula (iii), Z III1 and Z III2 are each independently a single bond, -COO -, - OCO -, - CH 2 CH 2 -, - (CH 2) 4 -, - OCH 2 - , -CH 2 O-, -OCF 2- , -CF 2 O- or -C ≡ C-, preferably single bond, -CH 2 CH 2- , -OCH 2- , -CH 2 O-, It is more preferable to represent −OCF 2 -or −CF 2 O—.
In the above general formula (iii), l preferably represents an integer of 0 to 2, and more preferably represents an integer of 1 or 2. When l is 2 or more, a plurality of Aiii1 and Ziii1 may be the same or different from each other.
 本発明の液晶組成物の総量に対しての一般式(iii)で表される化合物の好ましい含有量(質量%)の下限値は、0.7%であり、1%であり、2%であり、5%であり、8%であり、10%であり、11%であり、13%であり、16%である。本発明の液晶組成物中における一般式(iii)の化合物の含有量(質量%)が多いと析出等の問題を引き起こすため、好ましい含有量の上限値は23%であり、20%であり、18%であり、14%であり、13%であり、10%であり、8%であり、5%である。 The lower limit of the preferable content (mass%) of the compound represented by the general formula (iii) with respect to the total amount of the liquid crystal composition of the present invention is 0.7%, 1%, and 2%. Yes, 5%, 8%, 10%, 11%, 13%, 16%. If the content (% by mass) of the compound of the general formula (iii) in the liquid crystal composition of the present invention is large, problems such as precipitation may occur. Therefore, the upper limit of the preferable content is 23% and 20%. 18%, 14%, 13%, 10%, 8%, 5%.
 本発明の液晶組成物において、当該液晶組成物全体(100質量%)に対する一般式(iii)で表される化合物の好ましい含有量の範囲は2~30%であり、より好ましくは4~25%であり、特に好ましくは6~20%である。 In the liquid crystal composition of the present invention, the preferable content range of the compound represented by the general formula (iii) with respect to the entire liquid crystal composition (100% by mass) is 2 to 30%, more preferably 4 to 25%. It is particularly preferably 6 to 20%.
 本発明において、一般式(ii)及び(iii)で表わされる化合物の具体的な構造を以下説明する。一般式(ii)で表わされる化合物は、以下の一般式(ii.1)~(ii.33)で表わされることが好ましい。 In the present invention, the specific structures of the compounds represented by the general formulas (ii) and (iii) will be described below. The compound represented by the general formula (ii) is preferably represented by the following general formulas (ii.1) to (ii.33).
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
(上記式(ii.1)~(ii.33)中、R36は炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシル基又は炭素原子数2~8のアルケニル基を表し、Y35は、フッ素原子、塩素原子、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基又はトリフルオロメトキシ基を表す。)で表される構造が好ましい。
Figure JPOXMLDOC01-appb-C000057
(In the above formulas (ii.1) to (ii.33), R 36 represents an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an alkenyl group having 2 to 8 carbon atoms. , Y 35 is a fluorine atom, a chlorine atom, trifluoromethyl group, trifluoromethoxy group, a structure represented by.) representing a difluoromethoxy group or a trifluoromethoxy group are preferred.
 本発明において、一般式(iii)で表わされる化合物は、以下の一般式(iii.1)~(iii.9)で表わされることが好ましい。 In the present invention, the compound represented by the general formula (iii) is preferably represented by the following general formulas (iii.1) to (iii.9).
Figure JPOXMLDOC01-appb-C000058
(上記式(iii.1)中、R35は炭素原子数1~8のアルキル基、又は炭素原子数1~8アルコキシル基、又は炭素原子数2~8のアルケニル基を表す。)で表される構造が好ましい。
 なお、本発明に係る液晶組成物において、液晶組成物全体に対する上記一般式(ii.1)~(ii.33)及び一般式(iii.1)~(iii.9)の化合物のそれぞれの含有量は、一般式(iii)の好ましい含有量を適用することができる。
Figure JPOXMLDOC01-appb-C000058
(In the formula (iii.1), R 35 represents. An alkyl group, or a 1 to 8 carbon atoms alkoxyl group, or an alkenyl group having 2 to 8 carbon atoms having 1 to 8 carbon atoms) represented by Structure is preferable.
In the liquid crystal composition according to the present invention, each of the compounds of the general formulas (iii.1) to (ii.33) and the general formulas (iii.1) to (iii.9) is contained in the entire liquid crystal composition. As the amount, a preferable content of the general formula (iii) can be applied.
 本発明に係る液晶組成物は、一般式(iv)で表わされる化合物からなる群から選択される1種又は2種以上の化合物をさらに含有することが好ましい。 The liquid crystal composition according to the present invention preferably further contains one or more compounds selected from the group consisting of compounds represented by the general formula (iv).
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 上記一般式(iv)中、Riv1は、炭素原子数1~40の直鎖又は分岐の、アルキル基又はハロゲン化アルキル基を表すことが好ましく、これらの基中に存在する、メチレン基又は第二級炭素原子を1つ含むハロゲン化アルキレン基は、酸素原子が直接隣接しないように、-O-、-CH=CH-、又は-C≡C-で置換されてもよい。 In the above general formula (iv), R iv1 preferably represents a linear or branched alkyl group or alkyl halide group having 1 to 40 carbon atoms, and is a methylene group or a thethylene group present in these groups. The halogenated alkylene group containing one secondary carbon atom may be substituted with -O-, -CH = CH-, or -C≡C- so that the oxygen atom is not directly adjacent to the group.
 上記一般式(iv)中、Aiv1~Aiv3は、それぞれ独立して、下記の基(a)~基(c)のいずれか1種を表わすことが好ましい。
(a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は-O-又は-S-に置き換えられてもよい)、
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は相互に隣接していない2個以上の-CH=は-N=に置き換えられてもよい)、
(c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
 上記基(a)~基(c)中の水素原子は、フッ素原子、塩素原子又は炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはフッ素化アルキル基に置換されていてもよい。
 上記一般式(iv)中、Aiv1~Aiv3は、それぞれ独立して、トランス-1,4-シクロへキシレン基又は1,4-フェニレン基が好ましい。
In the above general formula (iv), it is preferable that A iv1 to A iv3 independently represent any one of the following groups (a) to (c).
(A) Trans-1,4-cyclohexylene group (one methylene group present in this group or two or more methylene groups not adjacent to each other is replaced with -O- or -S-. May be good),
(B) 1,4-phenylene group (one -CH = existing in this group or two or more -CH = not adjacent to each other may be replaced with -N =),
(C) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or One -CH = present in the 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or two or more non-adjacent -CH = may be replaced with -N =. )
The hydrogen atom in the groups (a) to (c) may be substituted with a fluorine atom, a chlorine atom, a linear or branched alkyl group having 1 to 10 carbon atoms, or a fluorinated alkyl group.
In the above general formula (iv), A iv1 to Aiv3 are each independently preferably a trans-1,4-cyclohexylene group or a 1,4-phenylene group.
 上記一般式(iv)中、Ziv1及びZiv2は、それぞれ独立して、単結合、-C≡C-、-CH=CH-、-CF=CF-、又は-C(Riva)=N-N=C(Rivb)-を表し、この際、Ziv2及び0以上2以下存在するZiv1のうち少なくとも1つが-C≡C-を表わし、Riva及びRivbは、それぞれ独立して、水素原子、ハロゲン原子、又は、炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはハロゲン化アルキル基を表すことが好ましい。
 上記一般式(iv)中、Ziv1及びZiv2は、それぞれ独立して、単結合又は-C≡C-が好ましい。また、一般式(iv)で表わされる化合物1分子中には、少なくとも1つの-C≡C-を有することが好ましい。
In the above general formula (iv), Z iv1 and Z iv2 are independently single-bonded, -C≡C-, -CH = CH-, -CF = CF-, or -C (R iva ) = N. -N = C (R ivb) - represents, this time, at least one represents -C≡C- of Z iv1 present Z iv2 and 0 to 2, R iva and R ivb are each independently , Hydrogen atom, halogen atom, or linear or branched alkyl group or alkyl halide group having 1 to 10 carbon atoms is preferable.
In the above general formula (iv), Z iv1 and Z iv2 are each independently preferably single-bonded or -C≡C-. Further, it is preferable that one molecule of the compound represented by the general formula (iv) has at least one −C≡C−.
 上記一般式(iv)中、m2は、0、1又は2の整数を表すことが好ましい。m2が2のときに複数存在するAiv1及びZiv1は、それぞれ同一であっても異なっていてもよい。本発明に係る液晶組成物において、任意成分である一般式(iv)中の記号の説明は以上の通りである。但し、本発明に係る液晶組成物において、一般式(iv)で表わされる化合物のうち、一般式(i)で表わされる化合物を除く。すなわち、本発明に係る液晶組成物において、一般式(iv)で表わされる化合物と、一般式(i)で表わされる化合物とが重複する化合物は、一般式(i)に属する。 In the above general formula (iv), m2 preferably represents an integer of 0, 1 or 2. A plurality of A iv1 and Z iv1 existing when m2 is 2 may be the same or different from each other. The description of the symbols in the general formula (iv), which are optional components in the liquid crystal composition according to the present invention, is as described above. However, in the liquid crystal composition according to the present invention, among the compounds represented by the general formula (iv), the compounds represented by the general formula (i) are excluded. That is, in the liquid crystal composition according to the present invention, the compound in which the compound represented by the general formula (iv) and the compound represented by the general formula (i) overlap belongs to the general formula (i).
 本発明の液晶組成物の総量に対しての式(iv)で表される化合物の好ましい含有量(質量%)の下限値は、1.7%であり、2%であり、4%であり、4.3%であり、5%であり、5.7%であり、6%である。本発明の液晶組成物中における一般式(iv)の化合物の含有量(質量%)が多いと析出等の問題を引き起こすため、好ましい含有量の上限値は23%であり、20%であり、18%であり、14%であり、13%であり、10%であり、8%であり、5%である。本発明の液晶組成物において、一般式(iv)で表される化合物の好ましい含有量(質量%)は2~20%であり、より好ましくは4~15%であり、特に好ましくは6~12%である。 The lower limit of the preferable content (mass%) of the compound represented by the formula (iv) with respect to the total amount of the liquid crystal composition of the present invention is 1.7%, 2%, and 4%. 4.3%, 5%, 5.7%, 6%. If the content (mass%) of the compound of the general formula (iv) in the liquid crystal composition of the present invention is large, problems such as precipitation may occur. Therefore, the upper limit of the preferable content is 23% and 20%. 18%, 14%, 13%, 10%, 8%, 5%. In the liquid crystal composition of the present invention, the preferable content (mass%) of the compound represented by the general formula (iv) is 2 to 20%, more preferably 4 to 15%, and particularly preferably 6 to 12. %.
上記一般式(iv)の具体的な構造としては、以下の一般式(iv.1)~(iv.18)で表わされる化合物が挙げられる。 Specific examples of the specific structure of the general formula (iv) include compounds represented by the following general formulas (iv.1) to (iv.18).
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
(上記一般式(iv.1)~(iv.18)中、R35は炭素原子数1~8のアルキル基、又は炭素原子数1~8アルコキシル基、又は炭素原子数2~8のアルケニル基を表し、R36は炭素原子数1~8のアルキル基、又は炭素原子数2~8のアルケニル基を表わす。)で表される構造が好ましい。
 なお、本発明に係る液晶組成物において、液晶組成物全体に対する上記一般式(iv.1)~(iv.18)の化合物のそれぞれの含有量は、一般式(iv)の好ましい含有量を適用することができる。
Figure JPOXMLDOC01-appb-C000061
(In the general formula (iv.1) ~ (iv.18), R 35 is an alkyl group, or a 1 to 8 carbon atoms alkoxyl group, or an alkenyl group having 2 to 8 carbon atoms of 1 to 8 carbon atoms R 36 represents an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms).
In the liquid crystal composition according to the present invention, the preferable content of the general formula (iv) is applied to the content of each of the compounds of the above general formulas (iv.1) to (iv.18) with respect to the entire liquid crystal composition. can do.
 本発明に係る液晶組成物は、一般式(v)から選択される化合物を1種又は2種以上をさらに含有することが好ましい。 The liquid crystal composition according to the present invention preferably further contains one or more compounds selected from the general formula (v).
Figure JPOXMLDOC01-appb-C000062
(上記一般式(v)中、
 R31は、炭素原子数1~10のアルキル基又は炭素原子数2~10のアルケニル基を表し、これらの基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は、-O-又は-S-に置換されてもよく、またこれらの基中に存在する1個又は2個以上の水素原子は、フッ素原子又は塩素原子に置換されてもよく、
 M31及びM32は、それぞれ独立して、下記の基(a)、基(b)、又は基(c)のいずれか1種を表わし、
(a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は-O-又は-S-に置き換えられてもよい)、
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は相互に隣接していない2個以上の-CH=は-N=に置き換えられてもよい)、3-フルオロ-1,4-フェニレン基、又は3,5-ジフルオロ-1,4-フェニレン基、並びに
(c) 1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、又はデカヒドロナフタレン-2,6-ジイル基、
上記の基(a)、基(b)又は基(c)に含まれる水素原子はそれぞれシアノ基、フッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基で置換されていてもよく、
 L31及びL32は、それぞれ独立して、単結合、-COO-、-OCO-、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-又は-C≡C-を表し、
 pは、0、1又は2を表す、
 M32及び/又はL31がそれぞれ複数存在する場合は、それらは同一でもよく異なっていてもよく、
 X31及びX32は、それぞれ独立して、水素原子又はフッ素原子を表し、
 Y31は、フッ素原子、塩素原子、チオシアナト基、トリフルオロメトキシ基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、又はジフルオロメトキシ基を表す。)
 本発明における一般式(v)で表わされる化合物は、具体的には、以下の一般式(v-a)で表わされることが好ましい。
Figure JPOXMLDOC01-appb-C000062
(In the above general formula (v),
R 31 represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, and one methylene group existing in these groups or two or more methylene groups not adjacent to each other. The groups may be substituted with —O— or —S—, and one or more hydrogen atoms present in these groups may be substituted with fluorine or chlorine atoms.
M 31 and M 32 independently represent any one of the following groups (a), group (b), or group (c).
(A) Trans-1,4-cyclohexylene group (one methylene group present in this group or two or more methylene groups not adjacent to each other is replaced with -O- or -S-. May be good),
(B) 1,4-Phenylene group (one -CH = existing in this group or two or more -CH = not adjacent to each other may be replaced with -N =), 3- Fluoro-1,4-phenylene group, or 3,5-difluoro-1,4-phenylene group, and (c) 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group , Piperidine-2,5-diyl group, naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, or decahydronaphthalene-2,6-diyl group,
The hydrogen atom contained in the above group (a), group (b) or group (c) may be substituted with a cyano group, a fluorine atom, a chlorine atom, a trifluoromethyl group or a trifluoromethoxy group, respectively.
L 31 and L 32 are each independently a single bond, -COO -, - OCO -, - CH 2 CH 2 -, - (CH 2) 4 -, - OCH 2 -, - CH 2 O -, - Represents OCF 2- , -CF 2 O- or -C≡C-
p represents 0, 1 or 2,
When a plurality of M 32 and / or L 31 are present, they may be the same or different.
X 31 and X 32 independently represent a hydrogen atom or a fluorine atom, respectively.
Y 31 represents a fluorine atom, a chlorine atom, a thiocyanato group, a trifluoromethoxy group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, or a difluoromethoxy group. )
Specifically, the compound represented by the general formula (v) in the present invention is preferably represented by the following general formula (va).
Figure JPOXMLDOC01-appb-C000063
(上記一般式(v-1)中、R31aは炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシル基又は炭素原子数2~8のアルケニル基を表し、L31a及びL32aはそれぞれ独立して、単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、又は-CFO-を表し、M31a及びM32aはそれぞれ独立して、1,4-フェニレン基、トランス-1,4-シクロヘキシレン基又はナフタレン-2,6-ジイル基を表し、X32aは水素原子又はフッ素原子を表し、pは0又は1を表し、Y31aは、フッ素原子、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基又はトリフルオロメトキシ基を表わし、M31a及びM32aに含まれる水素原子はそれぞれシアノ基、フッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000063
(In the above general formula (v-1), R 31a represents an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an alkenyl group having 2 to 8 carbon atoms, and L 31a and L. 32a are each independently a single bond, -CH 2 CH 2 -, - (CH 2) 4 -, - OCH 2 -, - CH 2 O -, - OCF 2 -, or -CF 2 O-, M 31a and M 32a independently represent a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a naphthalene-2,6-diyl group, and X 32a represents a hydrogen atom or a fluorine atom. p a represents 0 or 1, Y 31a represents a fluorine atom, a trifluoromethyl group, a fluoromethoxy group, a difluoromethoxy group or a trifluoromethoxy group, and the hydrogen atom contained in M 31a and M 32a is a cyano group, respectively. , Fluorine atom, chlorine atom, trifluoromethyl group or trifluoromethoxy group may be substituted.)
 本発明の液晶組成物の総量に対しての式(v)で表される化合物の好ましい含有量(質量%)の下限値は、1.7%であり、2%であり、4%であり、4.3%であり、5%であり、5.7%であり、6%である。本発明の液晶組成物中における一般式(v)の化合物の含有量(質量%)が多いと析出等の問題を引き起こすため、好ましい含有量の上限値は33%であり、30%であり、27%であり、23%であり、20%であり、18%であり、14%であり、13%であり、10%であり、8%であり、5%である。本発明の液晶組成物において、一般式(v)で表される化合物の好ましい含有量の範囲は2~30%であり、より好ましくは4~25%であり、特に好ましくは6~20%である。
 本発明における一般式(v)で表わされる化合物の具体的な構造としては、例えば以下の化合物が挙げられる。
The lower limit of the preferable content (mass%) of the compound represented by the formula (v) with respect to the total amount of the liquid crystal composition of the present invention is 1.7%, 2%, and 4%. 4.3%, 5%, 5.7%, 6%. If the content (% by mass) of the compound of the general formula (v) in the liquid crystal composition of the present invention is large, problems such as precipitation may occur. Therefore, the upper limit of the preferable content is 33% and 30%. 27%, 23%, 20%, 18%, 14%, 13%, 10%, 8%, 5%. In the liquid crystal composition of the present invention, the range of the preferable content of the compound represented by the general formula (v) is 2 to 30%, more preferably 4 to 25%, and particularly preferably 6 to 20%. is there.
Specific structures of the compound represented by the general formula (v) in the present invention include, for example, the following compounds.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
(上記一般式中、R36は炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシル基又は炭素原子数2~8のアルケニル基を表し、Y35はシアノ基、フッ素原子、塩素原子、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基又はトリフルオロメトキシ基を表す。)で表される構造が好ましい。
 なお、本発明に係る液晶組成物において、液晶組成物全体に対する上記一般式(v.1)~(v.20)の化合物のそれぞれの含有量は、一般式(v)の好ましい含有量を適用することができる。
Figure JPOXMLDOC01-appb-C000066
(In the above general formula, R 36 represents an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms, and Y 35 represents a cyano group and a fluorine atom. A structure represented by a chlorine atom, a trifluoromethyl group, a fluoromethoxy group, a difluoromethoxy group or a trifluoromethoxy group) is preferable.
In the liquid crystal composition according to the present invention, the preferable content of the general formula (v) is applied to the content of each of the compounds of the above general formulas (v.1) to (v.20) with respect to the entire liquid crystal composition. can do.
 また、本発明に係る液晶組成物は、誘電率異方性(Δε)が2以上の液晶化合物として、以下の一般式(1a)、一般式(1b)で表わされる化合物を含有してもよい。 Further, the liquid crystal composition according to the present invention may contain compounds represented by the following general formulas (1a) and (1b) as liquid crystal compounds having a dielectric anisotropy (Δε) of 2 or more. ..
Figure JPOXMLDOC01-appb-C000067
(上記一般式(1a)~(1b)中、
 R11及びR12は、それぞれ独立して、炭素原子数1~10のアルキル基又は炭素原子数2~10のアルケニル基を表し、これらの基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は、-O-又は-S-に置換されてもよく、またこれらの基中に存在する1個又は2個以上の水素原子は、フッ素原子又は塩素原子に置換されてもよく、
 M11、M12、M13、M14、M15、及びM16は、それぞれ独立して、下記の基(d)、基(i)、又は基(j)のいずれか1種を表わし、
(d) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は-O-又は-S-に置き換えられてもよい)、
(i) 1,4-フェニレン基(この基中に存在する1個の-CH=又は相互に隣接していない2個以上の-CH=は-N=に置き換えられてもよい)、3-フルオロ-1,4-フェニレン基、又は3,5-ジフルオロ-1,4-フェニレン基、並びに
(j) 1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、又はデカヒドロナフタレン-2,6-ジイル基、
上記の基(d)、基(i)又は基(j)に含まれる水素原子はそれぞれシアノ基、フッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基で置換されていてもよく、
 L11、L12、L13、L14、L15、及びL16は、それぞれ独立して、単結合、-COO-、-OCO-、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-又は-C≡C-を表し、
 p、q、r、s及びtは、それぞれ独立して、0、1又は2を表すが、q+r及びs+tは2以下であり、
 M12、M13、M15、M16、L11、L13、L14及び/又はL16がそれぞれ複数存在する場合は、それらは同一でもよく異なっていてもよく、
 X11、X12、X13、X14、及びX15は、それぞれ独立して、水素原子又はフッ素原子を表し、
 Y11、及びY12は、それぞれ独立して、フッ素原子、塩素原子、チオシアナト基、トリフルオロメトキシ基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、又はジフルオロメトキシ基を表す。但し、上記一般式(1a)及び(1b)で表わされる化合物は、上記一般式(ii)で表わされる化合物を除く。)
 一般式(1a)及び一般式(1b)で表される化合物からなる群から選ばれる化合物を少なくとも1種を含有することが好ましく、2種~8種含有することが特に好ましく、一般式(1a)及び一般式(1b)で表される化合物からなる群の含有率の下限値は0質量%であることが好ましく、5質量%であることがより好ましく、16質量%であることが好ましく、上限値は70質量%が好ましく、66質量%が好ましく、58質量%が好ましく、49質量%が更に好ましい。
Figure JPOXMLDOC01-appb-C000067
(In the above general formulas (1a) to (1b),
R 11 and R 12 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, and one methylene group existing in these groups or adjacent to each other. Two or more methylene groups that are not formed may be substituted with —O— or —S—, and one or more hydrogen atoms present in these groups may be replaced with fluorine or chlorine atoms. May be replaced,
M 11 , M 12 , M 13 , M 14 , M 15 , and M 16 independently represent any one of the following groups (d), groups (i), or groups (j).
(D) Trans-1,4-cyclohexylene group (one methylene group present in this group or two or more methylene groups not adjacent to each other is replaced with -O- or -S-. May be good),
(I) 1,4-phenylene group (one -CH = existing in this group or two or more -CH = not adjacent to each other may be replaced with -N =), 3- Fluoro-1,4-phenylene group, or 3,5-difluoro-1,4-phenylene group, and (j) 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group , Piperidine-2,5-diyl group, naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, or decahydronaphthalene-2,6-diyl group,
The hydrogen atom contained in the above group (d), group (i) or group (j) may be substituted with a cyano group, a fluorine atom, a chlorine atom, a trifluoromethyl group or a trifluoromethoxy group, respectively.
L 11, L 12, L 13 , L 14, L 15, and L 16 are each independently a single bond, -COO -, - OCO -, - CH 2 CH 2 -, - (CH 2) 4 - , -OCH 2- , -CH 2 O-, -OCF 2- , -CF 2 O- or -C≡C-
p, q, r, s and t independently represent 0, 1 or 2, but q + r and s + t are 2 or less.
If there are multiple M 12 , M 13 , M 15 , M 16 , L 11 , L 13 , L 14 and / or L 16 , they may be the same or different.
X 11 , X 12 , X 13 , X 14 , and X 15 each independently represent a hydrogen atom or a fluorine atom.
Y 11 and Y 12 independently represent a fluorine atom, a chlorine atom, a thiocyanato group, a trifluoromethoxy group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, or a difluoromethoxy group. However, the compounds represented by the general formulas (1a) and (1b) exclude the compounds represented by the general formula (ii). )
It is preferable to contain at least one compound selected from the group consisting of the compounds represented by the general formula (1a) and the general formula (1b), and it is particularly preferable to contain 2 to 8 kinds, and the general formula (1a). ) And the lower limit of the content of the compound represented by the general formula (1b) are preferably 0% by mass, more preferably 5% by mass, and preferably 16% by mass. The upper limit is preferably 70% by mass, preferably 66% by mass, preferably 58% by mass, and even more preferably 49% by mass.
 上記一般式(i)~(v)において、選択肢の組み合わせにより形成される構造のうち、-CH=CH-CH=CH-、-C≡C-C≡C-及び-CH=CH-C≡C-は化学的な安定性から好ましくない。またこれら構造中の水素原子がフッ素原子に置き換わったものも同様に好ましくない。また酸素同士が結合する構造、硫黄原子同士が結合する構造及び硫黄原子と酸素原子が結合する構造となることも同様に好ましくない。また窒素原子同士が結合する構造、窒素原子と酸素原子が結合する構造及び窒素原子と硫黄原子が結合する構造も同様に好ましくない。
 本発明に係る液晶組成物において、一般式(i)~(ii)で表わされる化合物の総量(質量%)は、液晶組成物全体に対して90~30%であることが好ましく、80~35%であることが好ましく、70~40%であることが好ましい。
 本発明に係る液晶組成物において、一般式(i)~(iii)で表わされる化合物の総量(質量%)は、液晶組成物全体に対して95~30%であることが好ましく、85~35%であることが好ましく、80~40%であることが好ましい。
 本発明に係る液晶組成物において、一般式(i)~(iv)で表わされる化合物の総量(質量%)は、液晶組成物全体に対して95~30%であることが好ましく、85~35%であることが好ましく、80~40%であることが好ましい。
 本発明に係る液晶組成物において、一般式(i)~(v)で表わされる化合物の総量(質量%)は、液晶組成物全体に対して100~40%であることが好ましく、95~45%であることが好まく、90~50%であることが好ましい。
In the above general formulas (i) to (v), among the structures formed by the combination of choices, -CH = CH-CH = CH-, -C≡C-C≡C- and -CH = CH-C≡ C- is not preferable due to its chemical stability. Further, it is also not preferable that the hydrogen atom in these structures is replaced with the fluorine atom. Similarly, it is also not preferable to have a structure in which oxygen is bonded to each other, a structure in which sulfur atoms are bonded to each other, and a structure in which sulfur atoms and oxygen atoms are bonded to each other. Further, a structure in which nitrogen atoms are bonded to each other, a structure in which a nitrogen atom and an oxygen atom are bonded, and a structure in which a nitrogen atom and a sulfur atom are bonded are also not preferable.
In the liquid crystal composition according to the present invention, the total amount (mass%) of the compounds represented by the general formulas (i) to (ii) is preferably 90 to 30% with respect to the entire liquid crystal composition, and is preferably 80 to 35. It is preferably%, and it is preferable that it is 70 to 40%.
In the liquid crystal composition according to the present invention, the total amount (mass%) of the compounds represented by the general formulas (i) to (iii) is preferably 95 to 30%, preferably 85 to 35% with respect to the entire liquid crystal composition. It is preferably%, and it is preferable that it is 80 to 40%.
In the liquid crystal composition according to the present invention, the total amount (mass%) of the compounds represented by the general formulas (i) to (iv) is preferably 95 to 30%, preferably 85 to 35% with respect to the entire liquid crystal composition. It is preferably%, and it is preferable that it is 80 to 40%.
In the liquid crystal composition according to the present invention, the total amount (mass%) of the compounds represented by the general formulas (i) to (v) is preferably 100 to 40% with respect to the entire liquid crystal composition, and is 95 to 45. It is preferably%, preferably 90 to 50%.
 本発明に係る液晶組成物は、以下の一般式(L)を含んでもよい。当該一般式(L)で表される化合物を以下に示す。一般式(L)で表される液晶化合物は誘電的にほぼ中性の化合物(誘電率異方性Δεの値が-2~2)に該当する。 The liquid crystal composition according to the present invention may contain the following general formula (L). The compound represented by the general formula (L) is shown below. The liquid crystal compound represented by the general formula (L) corresponds to a dielectrically substantially neutral compound (the value of the dielectric anisotropy Δε is -2 to 2).
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
(上記一般式(L)中、R21及びR22はお互い独立して炭素原子数1から10のアルキル基又は炭素原子数2から10のアルケニル基を表し、これらの基中に存在する1個のメチレン基又は隣接していない2個以上のメチレン基は-O-又は-S-に置換されても良く、またこれらの基中に存在する1個又は2個以上の水素原子はフッ素原子又は塩素原子に置換されても良く、
 M21、M22及びM23はお互い独立して
(a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は隣接していない2個以上のメチレン基は-O-又は-S-に置き換えられてもよい)、
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は窒素原子に置き換えられてもよい)、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、3,5-ジフルオロ-1,4-フェニレン基及び
(c) 1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基
、ピペリジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基及び1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
oは0、1又は2を表し、
21及びL22はお互い独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-、-CH=CH-、-CH=N-N=CH-又は-C≡C-を表し、L22が複数存在する場合は、それらは同一でも良く異なっていても良く、M23が複数存在する場合は、それらは同一でも良く異なっていても良い。)
 また、本発明における一般式(L)で表わされる化合物としては、2以上の芳香族環を有する化合物が好ましい。
(In the above general formula (L), R 21 and R 22 independently represent an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, and one existing in these groups. Methylene groups or two or more non-adjacent methylene groups may be substituted with -O- or -S-, and one or more hydrogen atoms present in these groups may be fluorine atoms or May be replaced with a chlorine atom
M 21 , M 22 and M 23 are independent of each other (a) Trans-1,4-cyclohexylene groups (one methylene group present in this group or two or more non-adjacent methylene groups are present. May be replaced with -O- or -S-),
(B) 1,4-phenylene group (one -CH = existing in this group or two or more -CH = not adjacent to each other may be replaced with a nitrogen atom), 2-fluoro-1. , 4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group and (c) 1,4-cyclohexenylene group, 1,4-bicyclo [2. 2.2] Octylene group, piperidine-2,5-diyl group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group and 1,2,3,4-tetrahydronaphthalene-2,6 -Represents a group selected from the group consisting of diyl groups, and the above groups (a), group (b) and group (c) may be independently substituted with a cyano group, a fluorine atom or a chlorine atom, respectively.
o represents 0, 1 or 2,
L 21 and L 22 are independently of one another, are a single bond, -CH 2 CH 2 -, - (CH 2) 4 -, - OCH 2 -, - CH 2 O -, - OCF 2 -, - CF 2 O-, -CH = CH -, - CH = N-N = CH- or an -C≡C-, if L 22 there are a plurality, they may be different may be the same, M 23 there are a plurality of If so, they may be the same or different. )
Further, as the compound represented by the general formula (L) in the present invention, a compound having two or more aromatic rings is preferable.
 一般式(L)で表される化合物において、R21及びR22はお互い独立して炭素原子数1から10のアルキル基又は炭素原子数2から10のアルケニル基(これらの基中に存在する1個のメチレン基又は隣接していない2個以上のメチレン基は-O-又は-S-に置換されたもの、またこれらの基中に存在する1個又は2個以上の水素原子はフッ素原子又は塩素原子に置換されたものも含む。)が好ましく、炭素原子数1から5のアルキル基、炭素原子数1から5のアルコキシ基、炭素原子数2から5のアルケニル基又は炭素原子数3から6のアルケニルオキシ基がより好ましく、炭素原子数1から5のアルキル基又は炭素原子数1から5のアルコキシ基が特に好ましい。 In the compound represented by the general formula (L), R 21 and R 22 are independent of each other as an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms (1 existing in these groups). One methylene group or two or more non-adjacent methylene groups are substituted with -O- or -S-, and one or more hydrogen atoms present in these groups are fluorine atoms or It also includes those substituted with chlorine atoms), preferably an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or 3 to 6 carbon atoms. The alkenyloxy group is more preferable, and an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms is particularly preferable.
 信頼性を重視する場合にはR21及びR22はともにアルキル基であることが好ましく、化合物の揮発性を低減させることを重視する場合にはアルコキシ基であることが好ましく、粘性の低下を重視する場合には少なくとも一方はアルケニル基であることが好ましい。 Both R 21 and R 22 are preferably alkyl groups when reliability is important, and alkoxy groups are preferable when reducing the volatility of the compound is important, and reduction of viscosity is important. It is preferable that at least one of them is an alkenyl group.
 分子内に存在するハロゲン原子は0、1、2又は3個が好ましく、0又は1が好ましく、他の液晶分子との相溶性を重視する場合には1が好ましい。 The number of halogen atoms present in the molecule is preferably 0, 1, 2 or 3, preferably 0 or 1, and preferably 1 when compatibility with other liquid crystal molecules is important.
 R21及びR22は、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合の酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。 R 21 and R 22 are linear alkyl groups having 1 to 5 carbon atoms and linear carbon atoms 1 to 4 when the ring structure to which they are bonded is a phenyl group (aromatic). The alkoxy group and the alkenyl group having 4 to 5 carbon atoms are preferable, and when the ring structure to which the alkoxy group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane, the linear carbon atom number is 1 to 5. Alkyl groups, linear alkoxy groups having 1 to 4 carbon atoms and linear alkenyl groups having 2 to 5 carbon atoms are preferable. In order to stabilize the nematic phase, the total of carbon atoms and oxygen atoms when present is preferably 5 or less, and it is preferably linear.
 M21、M22及びM23はお互い独立してトランス-1,4-シクロヘキシレン基(この基中に存在する1個のCH基又は隣接していない2個のCH基が酸素原子に置換されているものを含む)、1,4-フェニレン基(この基中に存在する1個又は2個以上のCH基は窒素原子に置換されているものを含む)、3-フルオロ-1,4-フェニレン基、3,5-ジフルオロ-1,4-フェニレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基が好ましく、トランス-1,4-シクロヘキシレン基、1,4-フェニレン基又は1,4-ビシクロ[2.2.2]オクチレン基がより好ましく、トランス-1,4-シクロヘキシレン基又は1,4-フェニレン基が特に好ましい。M21、M22及びM23はΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、それぞれ独立してトランス-1,4-シクロへキシレン基、1,4-フェニレン基、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、3,5-ジフルオロ-1,4-フェニレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基を表すことが好ましく、下記の構造を表すことがより好ましく、 M 21, M 22 and M 23 are mutually independently trans-1,4-cyclohexylene group (one CH 2 group or not adjoining two CH 2 group oxygen atoms present in the radical (Including those substituted), 1,4-phenylene group (including one in which one or more CH groups present in this group are substituted with a nitrogen atom), 3-fluoro-1, 4-phenylene group, 3,5-difluoro-1,4-phenylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group , Naphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group is preferable, and trans-1,4-cyclohexylene group. , 1,4-phenylene group or 1,4-bicyclo [2.2.2] octylene group is more preferable, and trans-1,4-cyclohexylene group or 1,4-phenylene group is particularly preferable. M 21 , M 22 and M 23 are preferably aromatic when it is required to increase Δn, and preferably aliphatic in order to improve the response rate, and each of them is independently trans-trans. 1,4-Cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group , 1,4-Cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6 -It is preferable to represent a diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and it is more preferable to represent the following structure.
Figure JPOXMLDOC01-appb-C000069
トランス-1,4-シクロへキシレン基又は1,4-フェニレン基を表すことがより好ましい。
Figure JPOXMLDOC01-appb-C000069
It is more preferable to represent a trans-1,4-cyclohexylene group or a 1,4-phenylene group.
 oは0、1又は2が好ましく、0又は1がより好ましい。 O is preferably 0, 1 or 2, and more preferably 0 or 1.
 L21及びL22はお互い独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-、-CH=CH-、-CH=N-N=CH-又は-C≡C-が好ましく、単結合、-CHCH-、-(CH-、-OCH-又は-CHO-がより好ましく、単結合又は-CHCH-が更に好ましい。 L 21 and L 22 are independently of one another, are a single bond, -CH 2 CH 2 -, - (CH 2) 4 -, - OCH 2 -, - CH 2 O -, - OCF 2 -, - CF 2 O-, -CH = CH -, - CH = N-N = CH- or -C≡C-, more preferably a single bond, -CH 2 CH 2 -, - (CH 2) 4 -, - OCH 2 - or -CH 2 O-is more preferred, and single bond or -CH 2 CH 2- is even more preferred.
 上記の選択肢の組み合わせにより形成される構造のうち、-CH=CH-CH=CH-、-C≡C-C≡C-及び-CH=CH-C≡C-は化学的な安定性から好ましくない。またこれら構造中の水素原子がフッ素原子に置き換わったものも同様に好ましくない。また酸素同士が結合する構造、硫黄原子同士が結合する構造及び硫黄原子と酸素原子が結合する構造となることも同様に好ましくない。また窒素原子同士が結合する構造、窒素原子と酸素原子が結合する構造及び窒素原子と硫黄原子が結合する構造も同様に好ましくない。 Among the structures formed by the combination of the above options, -CH = CH-CH = CH-, -C≡C-C≡C- and -CH = CH-C≡C- are preferable from the viewpoint of chemical stability. Absent. Further, it is also not preferable that the hydrogen atom in these structures is replaced with the fluorine atom. Similarly, it is also not preferable to have a structure in which oxygen is bonded to each other, a structure in which sulfur atoms are bonded to each other, and a structure in which sulfur atoms and oxygen atoms are bonded to each other. Further, a structure in which nitrogen atoms are bonded to each other, a structure in which a nitrogen atom and an oxygen atom are bonded, and a structure in which a nitrogen atom and a sulfur atom are bonded are also not preferable.
 本発明に係る液晶組成物において、一般式(L)で表される液晶化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。 In the liquid crystal composition according to the present invention, the content of the liquid crystal compound represented by the general formula (L) is solubility at low temperature, transition temperature, electrical reliability, birefringence, process compatibility, and dropping marks. It is necessary to make appropriate adjustments according to the required performance such as seizure and dielectric anisotropy.
 本発明に係る液晶組成物に含まれる非重合性液晶化合物の総量に対しての、式(L)で表される化合物の、好ましい含有量の下限値は1質量%であり、上限値は85質量%である。より好ましい含有量の下限値は3質量%であり、上限値は65質量%である。 The lower limit of the preferable content of the compound represented by the formula (L) with respect to the total amount of the non-polymerizable liquid crystal compound contained in the liquid crystal composition according to the present invention is 1% by mass, and the upper limit is 85. It is mass%. The lower limit of the more preferable content is 3% by mass, and the upper limit is 65% by mass.
 該組成物の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値が高く上限値が高いことが好ましい。さらに、本発明に係る組成物のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値が高く上限値が高いことが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を低く上限値が低いことが好ましい。 When a composition having a low viscosity and a high response rate is required, it is preferable that the above lower limit value is high and the upper limit value is high. Further, when a composition having a high TNI of the composition according to the present invention and having good temperature stability is required, it is preferable that the above lower limit value is high and the upper limit value is high. Further, when it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable that the above lower limit value is low and the upper limit value is low.
 更に詳述すると、一般式(L)は具体的な構造として以下の一般式(L-a)から一般式(L-q)からなる群で表される化合物が好ましい。 More specifically, the general formula (L) is preferably a compound represented by a group consisting of the following general formulas (La) to (Lq) as a specific structure.
Figure JPOXMLDOC01-appb-C000070
(上記一般式(L-a)~(L-q)中、R23及びR24はそれぞれ独立して、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数2~10のアルケニル基又は炭素数3~10のアルケニルオキシ基を表す。)
 R23及びR24はそれぞれ独立して、炭素数1から10のアルキル基、炭素数1から10のアルコキシ基又は炭素数2から10のアルケニル基がより好ましく、炭素数1から5のアルキル基又は炭素数1から10のアルコキシ基が更に好ましい。
 なお、本発明に係る液晶組成物において、液晶組成物全体に対する上記一般式(L-a)~(L-q)の化合物のそれぞれの含有量は、一般式(L)の好ましい含有量を適用することができる。
Figure JPOXMLDOC01-appb-C000070
(In the above general formulas (La) to (Lq), R 23 and R 24 are independently alkyl groups having 1 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, and 2 to 2 carbon atoms, respectively. Represents an alkenyl group of 10 or an alkoxyoxy group having 3 to 10 carbon atoms.)
R 23 and R 24 are each independently preferably an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, and an alkyl group having 1 to 5 carbon atoms or an alkyl group having 1 to 5 carbon atoms. Alkoxy groups having 1 to 10 carbon atoms are more preferable.
In the liquid crystal composition according to the present invention, the preferable content of the general formula (L) is applied to the content of each of the compounds of the general formulas (La) to (Lq) in the entire liquid crystal composition. can do.
 一般式(L-a)から一般式(L-q)で表される化合物中、一般式(L-e)~一般式(L-g)、一般式(L-i)、一般式(L-j)、一般式(L-l)、一般式(L-m)~一般式(L-p)で表される化合物が好ましい。 Among the compounds represented by the general formulas (La) to the general formula (Lq), the general formulas (Le) to the general formulas (Lg), the general formulas (Li), and the general formulas (L). -J), the compound represented by the general formula (L-l), the general formula (Lm) to the general formula (L-p) is preferable.
 本願発明では一般式(L)で表される化合物を少なくとも1種を含有することが好ましく、1種~10種含有することが好ましく、2種~8種含有することが特に好ましい。 In the present invention, it is preferable to contain at least one compound represented by the general formula (L), preferably 1 to 10 kinds, and particularly preferably 2 to 8 kinds.
 本発明に係る液晶組成物は、上記の液晶化合物以外、公知の安定剤、公知の重合性液晶化合物又は重合化合物などの添加剤を使用態様に応じて適宜含んでもよい。 The liquid crystal composition according to the present invention may appropriately contain additives such as known stabilizers, known polymerizable liquid crystal compounds or polymerized compounds in addition to the above liquid crystal compounds, depending on the mode of use.
 上記安定剤としては、例えば、ヒドロキノン類、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール類、ピロガロール類、チオフェノール類、ニトロ化合物類、β-ナフチルアミン類、β-ナフトール類、ニトロソ化合物類やヒンダードフェノール類、ヒンダードアミン類等が挙げられる。安定剤を使用する場合の添加量は、液晶組成物に対して0.005~1質量%の範囲が好ましく、0.02~0.5質量%が更に好ましく、0.03~0.1質量%が特に好ましい。 Examples of the stabilizer include hydroquinones, hydroquinone monoalkyl ethers, tertiary butyl catechols, pyrogallols, thiophenols, nitro compounds, β-naphthylamines, β-naphthols, nitroso compounds and hindered substances. Examples thereof include phenols and hindered amines. When a stabilizer is used, the amount added is preferably in the range of 0.005 to 1% by mass, more preferably 0.02 to 0.5% by mass, and 0.03 to 0.1% by mass with respect to the liquid crystal composition. % Is particularly preferable.
 以下、本発明に係る液晶組成物を用いた液晶素子、センサ、液晶レンズ、光通信機器、アンテナについて説明する。
 本発明に係る液晶素子は、上述の液晶組成物を用いたことを特徴とし、好ましくはアクティブマトリクス方式又はパッシブマトリクス方式で駆動する。
 また、本発明に係る液晶素子は、上述の液晶組成物の液晶分子の配向方向を可逆的に変えることにより誘電率を可逆的にスイッチングする液晶素子であることが好ましい。
 本発明に係るセンサは、上述の液晶組成物を用いたことを特徴とし、例えば、その態様として、電磁波、可視光または赤外光を利用する測距センサ、温度変化を利用する赤外線センサ、コレステリック液晶のピッチ変化による反射光波長変化を利用する温度センサ、反射光波長変化を利用する圧力センサ、組成変化による反射光波長変化を利用する紫外線センサ、電圧、電流による温度変化を利用する電気センサ、放射線粒子の飛跡に伴った温度変化を利用する放射線センサ、超音波の機械的振動による液晶分子配列変化を利用する超音波センサ、温度変化による反射光波長変化または電界による液晶分子配列変化を利用する電磁界センサ等が挙げられる。
 測距センサとしては、光源を用いるLiDAR(Light Detection And Ranging)用であることが好ましい。
 LiDARとしては、人工衛星用、航空機用、無人航空機(ドローン)用、自動車用、鉄道用、船舶用が好ましい。
 自動車用としては、自動運転自動車用が特に好ましい。
 光源はLED又はレーザであることが好ましく、レーザであることが好ましい。
 LiDARに用いられる光は赤外光であることが好ましく、波長は800~2000nmであることが好ましい。
 特に、905nmまたは1550nmの波長の赤外レーザが好ましい。
 用いる光検出器のコストや全天候における感度を重視する場合は905nmの赤外レーザが好ましく、人間の視覚に関する安全性を重視する場合には1550nmの赤外レーザが好ましい。
 本発明に係る液晶組成物は、高いΔnを示すことから、可視光、赤外光および電磁波領域での位相変調力が大きく、検出感度に優れたセンサを提供できる。
 本発明に係る液晶レンズは、上述の液晶組成物を用いたことを特徴とし、例えば、その態様の一つとして、第1の透明電極層と、第2の透明電極層と、前記第1の透明電極層及び前記第2の透明電極層の間に設けられた上述の液晶組成物を含む液晶層と、前記第2の透明電極層及び前記液晶層の間に設けられた絶縁層と、前記絶縁層及び前記液晶層の間に設けられた高抵抗層とを有する。本発明に係る液晶レンズは、例えば、2D、3Dの切り替えレンズ、カメラの焦点調節用のレンズなどとして利用される。
 本発明に係る光通信機器は、上述の液晶組成物を用いたことを特徴とし、例えば、その態様の一つとして、反射層(電極)の上に、複数の画素の各々を構成する液晶が2次元状に配置された液晶層を有する構成のLCOS(Liquid crystal on silicon)が挙げられる。本発明に係る光通信機器は、例えば、空間位相変調器として利用される。
Hereinafter, a liquid crystal element, a sensor, a liquid crystal lens, an optical communication device, and an antenna using the liquid crystal composition according to the present invention will be described.
The liquid crystal element according to the present invention is characterized by using the above-mentioned liquid crystal composition, and is preferably driven by an active matrix method or a passive matrix method.
Further, the liquid crystal element according to the present invention is preferably a liquid crystal element that reversibly switches the dielectric constant by reversibly changing the orientation direction of the liquid crystal molecules of the above-mentioned liquid crystal composition.
The sensor according to the present invention is characterized by using the above-mentioned liquid crystal composition, and as its embodiment, for example, a distance measuring sensor using electromagnetic waves, visible light or infrared light, an infrared sensor using temperature change, and cholesteric. A temperature sensor that uses changes in the reflected light wavelength due to changes in the pitch of the liquid crystal, a pressure sensor that uses changes in the reflected light wavelength, an ultraviolet sensor that uses changes in the reflected light wavelength due to composition changes, and an electric sensor that uses temperature changes due to voltage and current. Radiation sensor that uses temperature change due to track of radiation particles, ultrasonic sensor that uses change in liquid crystal molecular arrangement due to mechanical vibration of ultrasonic waves, change in reflected light wavelength due to temperature change or change in liquid crystal molecular arrangement due to electric field Examples include an electromagnetic field sensor.
The range-finding sensor is preferably for LiDAR (Light Detection And Ringing) that uses a light source.
The LiDAR is preferably for artificial satellites, aircraft, unmanned aerial vehicles (drones), automobiles, railways, and ships.
For automobiles, those for self-driving cars are particularly preferable.
The light source is preferably an LED or a laser, and is preferably a laser.
The light used for LiDAR is preferably infrared light, and the wavelength is preferably 800 to 2000 nm.
In particular, an infrared laser having a wavelength of 905 nm or 1550 nm is preferable.
An infrared laser of 905 nm is preferable when the cost of the photodetector to be used and sensitivity in all weather are important, and an infrared laser of 1550 nm is preferable when safety regarding human vision is important.
Since the liquid crystal composition according to the present invention exhibits high Δn, it is possible to provide a sensor having a large phase modulation force in the visible light, infrared light and electromagnetic wave regions and excellent detection sensitivity.
The liquid crystal lens according to the present invention is characterized in that the above-mentioned liquid crystal composition is used. For example, as one of the embodiments, a first transparent electrode layer, a second transparent electrode layer, and the first transparent electrode layer are used. A liquid crystal layer containing the above-mentioned liquid crystal composition provided between the transparent electrode layer and the second transparent electrode layer, an insulating layer provided between the second transparent electrode layer and the liquid crystal layer, and the above. It has an insulating layer and a high resistance layer provided between the liquid crystal layers. The liquid crystal lens according to the present invention is used, for example, as a 2D / 3D switching lens, a lens for adjusting the focus of a camera, and the like.
The optical communication device according to the present invention is characterized in that the above-mentioned liquid crystal composition is used. For example, as one of the embodiments, a liquid crystal constituting each of a plurality of pixels is formed on a reflective layer (electrode). Examples thereof include LCOS (Liquid Crystal on Silicon) having a structure having liquid crystal layers arranged in a two-dimensional manner. The optical communication device according to the present invention is used as, for example, a spatial phase modulator.
 本発明に係るアンテナは、上述の液晶組成物を用いたことを特徴とする。
 本発明に係るアンテナは、より具体的には、複数のスロットを備えた第1基板と、前記第1基板と対向し、給電部が設けられた第2基板と、前記第1基板と前記第2基板との間に設けられた第1誘電体層と、前記複数のスロットに対応して配置される複数のパッチ電極と、前記パッチ電極が設けられた第3基板と、前記第1基板と前記第3基板との間に設けられた液晶層と、を有し、前記液晶層として、上記一般式(i)で表わされる液晶化合物を含有する。
The antenna according to the present invention is characterized by using the above-mentioned liquid crystal composition.
More specifically, the antenna according to the present invention includes a first substrate provided with a plurality of slots, a second substrate facing the first substrate and provided with a feeding portion, the first substrate, and the first substrate. A first dielectric layer provided between the two substrates, a plurality of patch electrodes arranged corresponding to the plurality of slots, a third substrate provided with the patch electrodes, and the first substrate. It has a liquid crystal layer provided between the third substrate and the liquid crystal layer, and contains a liquid crystal compound represented by the general formula (i).
 一般式(i)で表わされる液晶化合物を含有する液晶層を利用することにより、大きな誘電率異方性Δε、大きな屈折率異方性Δnを有し、かつネマチック液晶温度範囲が広く、低温下において安定であり、更に熱等の外部刺激に対して高い信頼性を有するアンテナを提供できる。これにより、マイクロ波又はミリ波の電磁波に対してより大きな位相制御を可能とするアンテナを提供できる。 By using a liquid crystal layer containing a liquid crystal compound represented by the general formula (i), it has a large dielectric anisotropy Δε and a large refractive index anisotropy Δn, and has a wide nematic liquid crystal temperature range under low temperature. It is possible to provide an antenna that is stable in the liquid crystal display and has high reliability against external stimuli such as heat. This makes it possible to provide an antenna capable of greater phase control for microwave or millimeter wave electromagnetic waves.
 以下、図を用いて本発明に係るアンテナについて説明する。 Hereinafter, the antenna according to the present invention will be described with reference to the drawings.
 図1に示すように、アンテナユニット1が4つ連結されたアンテナ組立体11が車両(自動車)2のルーフ部に取り付けられている。アンテナユニット1は、平面型アンテナであり、ルーフ部に取り付けられていることから、通信衛星方向に対してアンテナユニット1が常に向けられている。これにより、双方で送受信が可能な衛星通信を行うことができる。 As shown in FIG. 1, an antenna assembly 11 to which four antenna units 1 are connected is attached to a roof portion of a vehicle (automobile) 2. Since the antenna unit 1 is a planar antenna and is attached to the roof portion, the antenna unit 1 is always directed toward the communication satellite direction. As a result, satellite communication that can be transmitted and received by both parties can be performed.
 なお、本明細書における「アンテナ」とは、アンテナユニット1又はアンテナユニット1を複数連結したアンテナ組立体11を含む。 Note that the "antenna" in the present specification includes an antenna unit 1 or an antenna assembly 11 in which a plurality of antenna units 1 are connected.
 本発明に係るアンテナは、衛星通信に使用されるKa帯周波数又はK帯周波数もしくはKu帯周波数において動作することが好ましい。 The antenna according to the present invention preferably operates at the Ka band frequency, the K band frequency, or the Ku band frequency used for satellite communication.
 次にアンテナユニット1の構成要素の実施形態の一例を図2に示す。図2は、図1で示すアンテナユニット1の分解図である。具体的には、アンテナユニット1は、アンテナ本体10と、アンテナ本体10を制御する制御板4と、アンテナ本体10及び制御板4とを収容可能な凹部を備えたケース3と、ケース3を封止する上蓋5とを有する構成である。 Next, FIG. 2 shows an example of an embodiment of the components of the antenna unit 1. FIG. 2 is an exploded view of the antenna unit 1 shown in FIG. Specifically, the antenna unit 1 seals a case 3 having a recess for accommodating the antenna main body 10, a control plate 4 for controlling the antenna main body 10, the antenna main body 10 and the control plate 4, and the case 3. It is configured to have an upper lid 5 for stopping.
 制御板4には、送信機及び/又は受信機が設けられている。送信機は、音声又は画像等のデータといった信号源からの情報を、情報源符号化処理により、例えば、音声符号化又は画像符号化等され、伝送路符号化処理で誤り訂正符号した後、変調されて電波として伝送する機構を有する。一方、受信機は、到来電波を変調して、伝送路復号処理により誤り訂正した後、情報源復号処理により、例えば音声復号又は画像復号を経て、音声又は画像等のデータといった情報へ変換する機構を有する。また、制御板4は、公知のマイクロコンピュータであるCPU、RAM、ROM等により構成されており、アンテナ本体1、送信機及び/又は受信機の各部の動作を統轄的に制御する。制御板4が備えるCPU又はROMには予め格納された各種プログラムをRAMに読み出して実行することにより、所定の処理が実行される。制御板4は、各種の設定情報又は制御プログラムを記憶する記憶部、アンテナ本体1内の液晶層に印加する電圧量及び電圧方向に関する各種演算、電波の送信に関する各種演算、並びに/又は電波の受信における各種演算を実行する演算部、受信又は送信電波の検出あるいは液晶層への印加電圧の検出を行う検出部等の機能を備えている。 The control board 4 is provided with a transmitter and / or a receiver. The transmitter performs information from a signal source such as voice or data such as an image by information source coding processing, for example, voice coding or image coding, error correction coding in transmission path coding processing, and then modulation. It has a mechanism to be transmitted as radio waves. On the other hand, the receiver is a mechanism that modulates the incoming radio wave, corrects the error by the transmission line decoding process, and then converts it into information such as voice or image data by the information source decoding process, for example, through voice decoding or image decoding. Has. Further, the control plate 4 is composed of a CPU, RAM, ROM, etc., which are known microcomputers, and controls the operation of each part of the antenna main body 1, the transmitter, and / or the receiver in a controlled manner. A predetermined process is executed by reading various programs stored in advance in the CPU or ROM included in the control board 4 into the RAM and executing the programs. The control plate 4 is a storage unit that stores various setting information or control programs, various calculations related to the amount and direction of voltage applied to the liquid crystal layer in the antenna body 1, various calculations related to radio wave transmission, and / or reception of radio waves. It has functions such as a calculation unit that executes various operations in the above, a detection unit that detects reception or transmission radio waves, or a detection unit that detects the voltage applied to the liquid crystal layer.
 図2では、円盤型のアンテナ本体1を収容可能なケース3の一例として、6角柱型のケース3及び上蓋5を記載しているが、アンテナ本体1の形状に応じてケース3及び上蓋5を、円柱状、八角柱状、三角柱状など公知の形状に適宜変更できる。 In FIG. 2, a hexagonal prism-shaped case 3 and an upper lid 5 are described as an example of a case 3 capable of accommodating a disk-shaped antenna main body 1. However, the case 3 and the upper lid 5 are provided according to the shape of the antenna main body 1. , Cylindrical, octagonal column, triangular column, etc. can be appropriately changed to a known shape.
 アンテナ本体10の構成を説明するために、図3~10を用いて以下説明する。図3は、アンテナ本体10の構成要素を分解した概略図である。 In order to explain the configuration of the antenna main body 10, the following will be described with reference to FIGS. 3 to 10. FIG. 3 is an exploded schematic view of the components of the antenna body 10.
 図3に示すように、アンテナ本体10は、スロットアレイ部6と、パッチアレイ部7とを備えている。そして、スロットアレイ部6には、円板状の導体P面上にスロット(切り欠き部)8が複数形成されており、スロットアレイ部6の中心部の内部に給電部12が設けられている。また、パッチアレイ部7には、一例として長さLであり幅Wである方形のパッチ9が円板体Qに複数形成されている。そして、アンテナ本体10は、スロット8が複数形成された円板状の導体Pであるスロットアレイ部6と、パッチが複数形成された円板状のパッチアレイ部7とを有し、かつ当該円板状の導体Pの表面上に形成されたそれぞれのスロット8対して、パッチ9が対峙して配置されるよう、パッチアレイ部7とスロットアレイ部6とが貼り合わされた構造を有する。 As shown in FIG. 3, the antenna main body 10 includes a slot array unit 6 and a patch array unit 7. A plurality of slots (notches) 8 are formed in the slot array portion 6 on the disk-shaped conductor P surface, and a feeding portion 12 is provided inside the central portion of the slot array portion 6. .. Further, in the patch array portion 7, as an example, a plurality of square patches 9 having a length L and a width W are formed on the disk body Q. The antenna body 10 has a slot array portion 6 which is a disk-shaped conductor P in which a plurality of slots 8 are formed, and a disk-shaped patch array portion 7 in which a plurality of patches are formed, and the circle. The patch array portion 7 and the slot array portion 6 are bonded to each other so that the patch 9 is arranged to face each of the slots 8 formed on the surface of the plate-shaped conductor P.
 スロットアレイ部6は、円板状の導体Q面上に空いた切り欠き部(以下、スロット8)を放射素子(又は入射素子)として用いるアンテナ部である。そして、スロットアレイ部6は、スロット8と円板状の導体Qの中心部に設けられた給電部12とを有する。一般的には、スロットアレイ部6は、伝送線路の先端で直接励振する、あるいはスロット背面に設けた空洞を介して励振する機構を有する。そして、スロットアレイ部6は、地板を利用したアンテナ又はマイクロストリップ線路等からスロットを介したパッチアンテナへの給電等に用いることができる。図3では、スロットアレイ部6の一例として、ラジアルラインスロットアレイの形態を記載しているが、本発明の範囲はこれに限定されるものではない。 The slot array portion 6 is an antenna portion that uses a notch portion (hereinafter, slot 8) vacant on the disk-shaped conductor Q surface as a radiating element (or incident element). The slot array portion 6 has a slot 8 and a feeding portion 12 provided at the center of the disc-shaped conductor Q. Generally, the slot array unit 6 has a mechanism for exciting directly at the tip of a transmission line or through a cavity provided on the back surface of the slot. The slot array unit 6 can be used for feeding power from an antenna using a main plate, a microstrip line, or the like to a patch antenna via a slot. Although FIG. 3 shows the form of the radial line slot array as an example of the slot array unit 6, the scope of the present invention is not limited to this.
 図3におけるスロットアレイ部6の上面図を図4に示す。以下、図4を用いてスロットアレイ部6を説明する。スロットアレイ部6は、その中心部に設けられた同軸線により給電する構造を備えている。そのため、図4に示すスロットアレイ部6の中心部には給電部12が設けられている。また、スロットアレイ部6は、円板状の導体Pの表面上に、一組のスロット8(以下スロットペアと称する)が複数形成されている。スロットペア8は、2つの長方形状の切り欠き部が“ハ”の字に配置された構造を備えている。より詳細には、2つの直方体状のスロット8が直交するように配置されており、スロットペア8の一方のスロットが他方のスロットに対して1/4波長離間して配置されている。これによりアンテナの方位角によって異なる回転方向を持つ円偏波を送受信できる。 A top view of the slot array unit 6 in FIG. 3 is shown in FIG. Hereinafter, the slot array unit 6 will be described with reference to FIG. The slot array unit 6 has a structure in which power is supplied by a coaxial line provided at the center of the slot array unit 6. Therefore, a power feeding unit 12 is provided at the center of the slot array unit 6 shown in FIG. Further, in the slot array portion 6, a plurality of sets of slots 8 (hereinafter referred to as slot pairs) are formed on the surface of the disk-shaped conductor P. The slot pair 8 has a structure in which two rectangular notches are arranged in a “C” shape. More specifically, the two rectangular parallelepiped slots 8 are arranged so as to be orthogonal to each other, and one slot of the slot pair 8 is arranged so as to be separated from the other slot by 1/4 wavelength. This makes it possible to transmit and receive circularly polarized waves having different rotation directions depending on the azimuth angle of the antenna.
 なお、本明細書では、2つのスロット8をスロットペア8と称し、1つのスロット8を単にスロット8と称し、スロット及びスロットペアの総称をスロット(ペア)8と称する。 In this specification, two slots 8 are referred to as slot pairs 8, one slot 8 is simply referred to as slot 8, and slots and slot pairs are collectively referred to as slots (pairs) 8.
 スロットペア8は、円板状の導体基板Pの中心部から放射方向外方に向かってらせん状に複数形成されている。そして、スロットペア8は、らせんに沿って隣接するスロットペア8間の距離がいずれも一定となるよう円盤型の基板表面に形成されている。これにより、スロットアレイ部6の正面で位相が揃って電磁界が強め合うことができ、正面にペンシルビームを形成することができる。 A plurality of slot pairs 8 are spirally formed from the center of the disc-shaped conductor substrate P toward the outside in the radial direction. The slot pair 8 is formed on the surface of the disk-shaped substrate so that the distances between the slot pairs 8 adjacent to each other along the spiral are constant. As a result, the electromagnetic fields can be strengthened by aligning the phases in front of the slot array portion 6, and a pencil beam can be formed in front of the slot array portion 6.
 なお、図3及び4では、スロット8の形状の一例を直方体の形状として示しているが、本発明におけるスロット8の形状は、直方体に限定されず、円形、楕円形、多角形など公知の形状を採用できる。また、図3及び4では、スロット8の一例として、スロットペアの態様を示しているが、本発明におけるスロット8は、スロットペアに限定されることはない。さらには、円板状の導体基板Pの表面におけるスロット8の配置をらせん状の例を示しているが、スロット8の配置はらせん状に限定されることはなく、スロット8を例えば後述の図8に示すような同心円状に配置してもよい。 Although an example of the shape of the slot 8 is shown as a rectangular parallelepiped shape in FIGS. 3 and 4, the shape of the slot 8 in the present invention is not limited to the rectangular parallelepiped, and is a known shape such as a circle, an ellipse, or a polygon. Can be adopted. Further, although FIGS. 3 and 4 show an aspect of a slot pair as an example of the slot 8, the slot 8 in the present invention is not limited to the slot pair. Further, although the arrangement of the slots 8 on the surface of the disc-shaped conductor substrate P is shown in a spiral shape, the arrangement of the slots 8 is not limited to the spiral shape, and the slots 8 are shown in the figure described later, for example. It may be arranged concentrically as shown in 8.
 本発明における給電部12は、電磁波を受信する及び/又は電磁波を放射する機能を有する。そして、本発明における給電部12は、放射素子又は入射素子であるパッチ9で電波を捕らえて発生した高周波電力を受信機に伝送する部分、あるいは高周波電力を供給するため放射素子と給電線とを接続する部分であれば、特に制限されることはなく、公知の給電部及び給電線を利用することができる。図3及び図4では、同軸給電部を一例として示している。 The power feeding unit 12 in the present invention has a function of receiving an electromagnetic wave and / or radiating an electromagnetic wave. Then, the feeding unit 12 in the present invention is a portion that captures radio waves by a patch 9 that is a radiating element or an incident element and transmits the high-frequency power generated to the receiver, or a radiating element and a feeding line for supplying the high-frequency power. As long as it is a connecting portion, there is no particular limitation, and a known power feeding unit and feeding line can be used. In FIGS. 3 and 4, the coaxial feeding unit is shown as an example.
 パッチアレイ部7は、図3に示すように、長さL、幅Wの方形状のパッチ9を複数有する円板体Qと、スロットアレイ部6との間に充填された液晶層(図示せず)と、を備えている。本実施形態におけるパッチアレイ部7は、いわゆるマイクロストリップアンテナの構成であり、長さLが1/2波長の整数倍に一致する周波数で共振する共振器である。 As shown in FIG. 3, the patch array portion 7 is a liquid crystal layer (shown) filled between a disk body Q having a plurality of rectangular patches 9 having a length L and a width W and a slot array portion 6. It is equipped with. The patch array unit 7 in the present embodiment has a so-called microstrip antenna configuration, and is a resonator whose length L resonates at a frequency corresponding to an integral multiple of 1/2 wavelength.
 なお、図3では、パッチ9の一例として、長さL、幅Wの方形状のパッチ9を示しているが、パッチ9の形状は、四角形に限定されることはなく、円状のパッチ9であってもよい。図5に本発明の他の実施形態として、円状のパッチ9の実施形態を示す。 Note that FIG. 3 shows a square patch 9 having a length L and a width W as an example of the patch 9, but the shape of the patch 9 is not limited to a quadrangle, and the circular patch 9 is formed. It may be. FIG. 5 shows an embodiment of the circular patch 9 as another embodiment of the present invention.
 図5は、本発明におけるアンテナ本体10の上面図であり、より詳細には、アンテナ本体10をパッチアレイ部7から見た場合であって、パッチ9、給電部12、スロットペア8を円板体Qの主面に対して垂直投影した図である。そのため、パッチ9、給電部12、及びスロットペア8を破線で表示している。また、パッチ9の形状が円状である場合、一般的には、TM11モードと呼ばれる電磁界分布で動作させることができる。図5に示す通り、パッチ9の投影体と、スロットペア8の投影体とが重なっていることから、円板状の導体Pの表面上に形成されたそれぞれのスロット8に対して、円板体Qに設けられたパッチ9が対峙して配置される状態が理解できる。このようにそれぞれのスロット8に対して、それぞれのパッチ9が対応して配置される構成を利用することで、電磁結合給電方式によりスロット8からパッチ9へ給電する、あるいは、パッチ9からスロット8へ到来電波を伝播することができる。そのため、電波の送信及び/又は受信が可能なアンテナを提供することができる。 FIG. 5 is a top view of the antenna main body 10 in the present invention. More specifically, the antenna main body 10 is viewed from the patch array portion 7, and the patch 9, the feeding portion 12, and the slot pair 8 are discs. It is the figure which projected perpendicular to the main surface of the body Q. Therefore, the patch 9, the power feeding unit 12, and the slot pair 8 are indicated by broken lines. Further, when the shape of the patch 9 is circular, it can be operated in an electromagnetic field distribution generally called TM 11 mode. As shown in FIG. 5, since the projection body of the patch 9 and the projection body of the slot pair 8 overlap each other, a disk is formed for each slot 8 formed on the surface of the disk-shaped conductor P. It is possible to understand the state in which the patches 9 provided on the body Q are arranged facing each other. By using the configuration in which each patch 9 is arranged correspondingly to each slot 8 in this way, power is supplied from slot 8 to patch 9 by an electromagnetic coupling power supply method, or from patch 9 to slot 8 It can propagate the incoming radio waves. Therefore, it is possible to provide an antenna capable of transmitting and / or receiving radio waves.
 一般には、同軸線等の一般的な伝送線路又は平面型伝送線路を用いてパッチアレイ部7の放射素子(例えば、パッチ9)を給電する方法は、直結給電方式及び電磁結合給電方式の2種類に大別される。そのため、本発明における給電方式としては、伝送線路を直接、パッチ9(放射素子)に接続することで放射素子を励振する方法である直結給電方式と、伝送線路とパッチ電極(放射素子)とを直接接続することなく、終端開放又は短絡とした給電線路の周囲に生じる電磁界によりパッチ電極(放射素子)を励振する方法である電磁結合給電方式との2つが挙げられる。本発明では、電磁結合給電方式の態様を示している。 In general, there are two types of methods for feeding the radiating element (for example, patch 9) of the patch array unit 7 using a general transmission line such as a coaxial line or a flat transmission line: a direct connection power supply method and an electromagnetic coupling power supply method. It is roughly divided into. Therefore, as the power feeding method in the present invention, the direct power feeding method, which is a method of exciting the radiation element by directly connecting the transmission line to the patch 9 (radiating element), and the transmission line and the patch electrode (radiating element) are used. There are two methods, the electromagnetic coupling feeding method, which is a method of exciting a patch electrode (radiating element) by an electromagnetic field generated around a feeding line with an open end or a short circuit without direct connection. In the present invention, an aspect of the electromagnetically coupled power feeding system is shown.
 本実施形態では、(同軸)給電部12による給電線路は終端開放であるため、当該給電線路の終端が節に一致する電流定在波が生じる。これにより、当該給電線路((同軸)給電部12)を取り巻くような磁界が発生し、この磁界がスロット8へ入射することによりスロット(ペア)8が励振される。そして、スロット(ペア)8の励振により生じた磁界がパッチ9に入射することによってパッチ9が励振される。励振強度が最大になるのはスロット8に入射する磁界が最大のときであるため、給電線路((同軸)給電部12)から発生する磁界が最大となる位置(電流定在波の腹)にスロット(ペア)8を形成することが好ましい。 In the present embodiment, since the feeding line by the (coaxial) feeding section 12 is open at the end, a current standing wave is generated in which the ending of the feeding line coincides with the node. As a result, a magnetic field surrounding the power feeding line ((coaxial) power feeding unit 12) is generated, and the magnetic field is incident on the slot 8 to excite the slot (pair) 8. Then, the patch 9 is excited by the magnetic field generated by the excitation of the slot (pair) 8 incident on the patch 9. Since the excitation intensity is maximized when the magnetic field incident on the slot 8 is maximum, the position where the magnetic field generated from the feed line ((coaxial) feed section 12) is maximum (the antinode of the current standing wave) is set. It is preferable to form slots (pairs) 8.
 本発明に係るアンテナの好適な態様は、ラジアルスロットラインアレイと、パッチアンテナアレイとを組み合わせた構成である。 A preferred embodiment of the antenna according to the present invention is a configuration in which a radial slot line array and a patch antenna array are combined.
 次に、図5に示すアンテナ本体10の断面図である図6を用いて、アンテナ本体10の実施形態を説明する。図6は、アンテナの構成を示す概略図であることはいうまでもない。 Next, an embodiment of the antenna main body 10 will be described with reference to FIG. 6, which is a cross-sectional view of the antenna main body 10 shown in FIG. Needless to say, FIG. 6 is a schematic view showing the configuration of the antenna.
 図6に示すように、アンテナ本体10は、円板状の第2基板14と、複数のスロット(ペア)8が中心部から放射方向外方に向かって形成された、円板状の第1基板13(円板状の導体Pに対応する。スロットアレイ基板とも称する)と、第2基板14及び第1基板13の間に設けられた第1誘電体層17と、円板状の第1基板13及び円板状の第2基板14の中心部に設けられた給電部12と、円板状の第3基板15(円板体Qに対応する。パッチ基板とも称する。)と、第3基板15に取り付けられたパッチ9(放射素子又は入射素子)と、第3基板15及び第1基板13の間に設けられた液晶層16とを有する。また、給電部12は給電線12aを介して、制御基板に設けられた送信機及び/又は受信機と電気的に接続されている。そして、それぞれのスロットペア8に対してそれぞれのパッチ9が対応している。 As shown in FIG. 6, the antenna main body 10 has a disk-shaped first substrate 14 in which a disk-shaped second substrate 14 and a plurality of slots (pairs) 8 are formed from the center toward the outside in the radial direction. The substrate 13 (corresponding to the disc-shaped conductor P; also referred to as a slot array substrate), the first dielectric layer 17 provided between the second substrate 14 and the first substrate 13, and the disc-shaped first substrate. A power feeding unit 12 provided at the center of the substrate 13 and the disk-shaped second substrate 14, a disk-shaped third substrate 15 (corresponding to the disk body Q, also referred to as a patch substrate), and a third. It has a patch 9 (radiating element or incident element) attached to the substrate 15 and a liquid crystal layer 16 provided between the third substrate 15 and the first substrate 13. Further, the power feeding unit 12 is electrically connected to a transmitter and / or a receiver provided on the control board via a feeding line 12a. Then, each patch 9 corresponds to each slot pair 8.
 ここでいう「(それぞれ)スロットペア8に対して(それぞれ)パッチ9が対応している」とは、上述した図5の説明の通り、第2基板14の主面に対してパッチ9を垂直投影した投影面がスロット(ペア)8と重なることをいう。換言すると、第3基板15の主面に対してスロット(ペア)8を垂直投影した投影面がパッチ9と重なることをいう。 Here, "(each) patch 9 corresponds to (each) slot pair 8" means that the patch 9 is perpendicular to the main surface of the second substrate 14 as described in FIG. 5 described above. It means that the projected projection surface overlaps with the slot (pair) 8. In other words, it means that the projection surface obtained by vertically projecting the slots (pairs) 8 onto the main surface of the third substrate 15 overlaps with the patch 9.
 また、第1基板13、第2基板14及び第3基板15は、同一の面積を有する円板体であることが好ましい。 Further, the first substrate 13, the second substrate 14, and the third substrate 15 are preferably discs having the same area.
 図6において、(同軸)給電部12により給電された電波(矢印)が円筒波になって第1誘電体層17内を放射方向外方へ伝播する間に、スロット(ペア)8から液晶層16へと伝送される様子を記している。そして、スロット(ペア)8は、図4に示したように、いわゆる“ハ”の字型の直交する2つのスロットを1/4波長ずらして配置されていると、円偏波を発生することができる。上述したように、電磁結合給電方式により、スロット(ペア)8が励振されることによってスロット(ペア)8から生じた磁界が、パッチ9に入射してパッチ9が給電励振される。その結果、パッチ9は指向性の高い電波を放射することができる。 In FIG. 6, while the radio wave (arrow) fed by the (coaxial) feeding unit 12 becomes a cylindrical wave and propagates outward in the radial direction in the first dielectric layer 17, the liquid crystal layer is formed from the slot (pair) 8. It describes how it is transmitted to 16. Then, as shown in FIG. 4, the slots (pairs) 8 generate circularly polarized waves when two so-called “C” -shaped orthogonal slots are arranged with a 1/4 wavelength shift. Can be done. As described above, the magnetic field generated from the slot (pair) 8 is incident on the patch 9 by the excitation of the slot (pair) 8 by the electromagnetic coupling power feeding method, and the patch 9 is fed and excited. As a result, patch 9 can emit highly directional radio waves.
 一方、到来電波を受信する場合は、送受可逆の定理により、上記とは逆にパッチ9が到来電波を受信した後、当該パッチ9の直下に設けられたスロット(ペア)8を介して給電部12に到来電波が伝播される。 On the other hand, in the case of receiving the incoming radio wave, according to the theorem of reversible transmission / reception, after the patch 9 receives the incoming radio wave, contrary to the above, the power feeding unit is passed through the slot (pair) 8 provided directly under the patch 9. The radio wave arriving at 12 is propagated.
 円偏波は、直線偏波とは異なり、時間経過とともに電界方向が回転する電波であり、GPS又はETCで使用される右旋円偏波と、衛星ラジオ放送等で使用される左旋円偏波とに分類され、本発明に係るアンテナは、いずれの偏波であっても受信することができる。 Unlike linearly polarized waves, circularly polarized waves are radio waves whose electric field direction rotates with the passage of time. Right-handed circularly polarized waves used in GPS or ETC and left-handed circularly polarized waves used in satellite radio broadcasting and the like. The antenna according to the present invention can receive any polarized wave.
 パッチ9と第1基板13との間の液晶層16に電圧を印加することにより液晶層16の液晶分子の配向方向を変えることができる。その結果、液晶層16の誘電率が変わるためスロット(ペア)8の静電容量が変化し、結果的にはスロット(ペア)8のリアクタンス、及び共振周波数を制御することができる。換言すると、液晶層16の誘電率を制御することにより、スロット8のリアクタンス、及び共振周波数を調節できるため、スロット(ペア)8及びパッチ9の励振の調節による各パッチ9への給電を制御することができる。これにより、液晶層16を介する放射電波の調節が可能となる。そのため、例えば、TFTなど液晶層16に印加する電圧を調節する印加電圧調節手段を設けてもよい。また、液晶層16の液晶分子の配向方向を変えることにより屈折率が変化し、その結果として液晶層16を透過する電磁波の位相がずれて、その総合的な結果としてフェーズドアレイ制御が可能となる。
 第1基板13及び第2基板14の材料は、銅などの導体であれば特に制限されることはない。また、第3基板15の材料は特に制限されることはなく、使用態様に応じて、ガラス基板、アクリル基板、セラミック(アルミナ)、シリコン、ガラスクロステフロン(登録商標)(PTFE)等の公知の材料を使用することができる。第1誘電体層17の材料は、所望の比誘電率に応じて適宜公知の材料を選択することができ、真空であってもよい。さらに、パッチ9の材料は、銅、銀などの導体であれば特に制限されることはない。
By applying a voltage to the liquid crystal layer 16 between the patch 9 and the first substrate 13, the orientation direction of the liquid crystal molecules in the liquid crystal layer 16 can be changed. As a result, since the permittivity of the liquid crystal layer 16 changes, the capacitance of the slot (pair) 8 changes, and as a result, the reactance and the resonance frequency of the slot (pair) 8 can be controlled. In other words, since the reactance and resonance frequency of the slot 8 can be adjusted by controlling the dielectric constant of the liquid crystal layer 16, the power supply to each patch 9 is controlled by adjusting the excitation of the slot (pair) 8 and the patch 9. be able to. This makes it possible to adjust the radiated radio waves via the liquid crystal layer 16. Therefore, for example, an applied voltage adjusting means for adjusting the voltage applied to the liquid crystal layer 16 such as a TFT may be provided. Further, the refractive index changes by changing the orientation direction of the liquid crystal molecules of the liquid crystal layer 16, and as a result, the phase of the electromagnetic wave transmitted through the liquid crystal layer 16 shifts, and as a comprehensive result, phased array control becomes possible. ..
The materials of the first substrate 13 and the second substrate 14 are not particularly limited as long as they are conductors such as copper. The material of the third substrate 15 is not particularly limited, and known materials such as glass substrate, acrylic substrate, ceramic (alumina), silicon, and glass cloth Teflon (registered trademark) (PTFE) are known depending on the mode of use. The material can be used. As the material of the first dielectric layer 17, a known material can be appropriately selected according to a desired relative permittivity, and a vacuum may be used. Further, the material of the patch 9 is not particularly limited as long as it is a conductor such as copper or silver.
 次に、図7を用いて、アンテナ本体10の他の実施形態を説明する。図7において示す実施形態は、アンテナ本体10のスロットアレイ部6の部分が図6で示す実施形態とは異なる態様である。 Next, another embodiment of the antenna body 10 will be described with reference to FIG. 7. In the embodiment shown in FIG. 7, the portion of the slot array portion 6 of the antenna main body 10 is different from the embodiment shown in FIG.
 図7において、アンテナ本体10は、一方の表面に複数のスロット(ペア)8が形成された、中空体の第1基板13と、当該中空体の第1基板13の内部に収容された、円板状の第2基板14、第1誘電体層17、及び給電部12と、円板状の第3基板15と、第3基板15に取り付けられたパッチ9と、第3基板15及び第1基板13の間に設けられた液晶層16とを有し、給電部12は、複数のスロット(ペア)8が形成されていない他方の第1基板13の表面と第2基板14との間に設けられ、かつ第1基板13及び円板状の第2基板14の中心部に設けられている。また、給電部12は給電線12aを介して、制御基板に設けられた送信機及び/又は受信機と電気的に接続されている。そして、それぞれのスロットペア8に対してそれぞれのパッチ9が対応している。また、図7において、中空体の第1基板13の両側面部は、中空体の外方に突出しており、具体的には、水平方向に対して45°の傾斜面を有する。 In FIG. 7, the antenna main body 10 is a circular body in which a plurality of slots (pairs) 8 are formed on one surface thereof, and is housed inside a hollow first substrate 13 and the hollow first substrate 13. The plate-shaped second substrate 14, the first dielectric layer 17, and the feeding portion 12, the disc-shaped third substrate 15, the patch 9 attached to the third substrate 15, the third substrate 15, and the first The power feeding unit 12 has a liquid crystal layer 16 provided between the substrates 13, and the feeding portion 12 is formed between the surface of the other first substrate 13 and the second substrate 14 on which the plurality of slots (pairs) 8 are not formed. It is provided and is provided at the center of the first substrate 13 and the disk-shaped second substrate 14. Further, the power feeding unit 12 is electrically connected to a transmitter and / or a receiver provided on the control board via a feeding line 12a. Then, each patch 9 corresponds to each slot pair 8. Further, in FIG. 7, both side surface portions of the first substrate 13 of the hollow body project outward from the hollow body, and specifically, have an inclined surface of 45 ° with respect to the horizontal direction.
 図7において示すように、(同軸)給電部12により給電された電波(矢印)が円筒波になって第1誘電体層17内を放射方向外方へ伝播する。そして、伝播した円筒波が中空体の第1基板13の両側面部で反射されることにより、第2基板14を回り込んだ円筒波が、円板状の第1基板13の外周から中心に向かう進行波(矢印)に変換されて第1誘電体層17内を伝播する。その際、スロット(ペア)8から液晶層16へ進行波が伝送される。これにより、図6で示した実施形態と同様にパッチ9が励振されて、指向性の高い電波を放射することができる。 As shown in FIG. 7, the radio wave (arrow) fed by the (coaxial) feeding unit 12 becomes a cylindrical wave and propagates in the first dielectric layer 17 outward in the radial direction. Then, the propagated cylindrical wave is reflected on both side surfaces of the hollow first substrate 13, so that the cylindrical wave that wraps around the second substrate 14 goes from the outer periphery of the disk-shaped first substrate 13 toward the center. It is converted into a traveling wave (arrow) and propagates in the first dielectric layer 17. At that time, the traveling wave is transmitted from the slot (pair) 8 to the liquid crystal layer 16. As a result, the patch 9 can be excited and emit a highly directional radio wave as in the embodiment shown in FIG.
 一方、到来電波を受信する場合も同様に、パッチ9が到来電波を受信した後、当該パッチ9の直下に設けられたスロット(ペア)8を介して給電部12に到来電波が伝播する。 On the other hand, in the case of receiving the incoming radio wave, similarly, after the patch 9 receives the incoming radio wave, the incoming radio wave propagates to the power feeding unit 12 through the slot (pair) 8 provided directly under the patch 9.
 次に、図8~図10を用いて、アンテナ本体10の別の実施形態について説明する。上述した図5~図7のアンテナ本体10の実施形態では、第1基板13と第3基板15との間に液晶層16が一様に設けられたアンテナ本体10の構成について説明した。一方、図8~図10の実施形態では、パッチ9とスロット8とそれぞれ配置された空間内(以下、密封領域20)に液晶層16が充填されたアンテナ本体10の構成について説明する。 Next, another embodiment of the antenna main body 10 will be described with reference to FIGS. 8 to 10. In the embodiment of the antenna main body 10 of FIGS. 5 to 7 described above, the configuration of the antenna main body 10 in which the liquid crystal layer 16 is uniformly provided between the first substrate 13 and the third substrate 15 has been described. On the other hand, in the embodiment of FIGS. 8 to 10, the configuration of the antenna main body 10 in which the liquid crystal layer 16 is filled in the space (hereinafter, the sealed region 20) arranged in the patch 9 and the slot 8 respectively will be described.
 図8は、本発明に係るアンテナ本体10の実施形態の一例を示す上面図である。より詳細には、図8は、アンテナ本体10をパッチアレイ部7から見た場合であって、パッチ9、給電部12、スロット8を円板体Qの主面に対して垂直投影した図である。そのため、図5と同様に、パッチ9、給電部12、及びスロット8を破線で表示している。図8では、方形状のパッチ9と、1つの直方体状のスロット8とが密封領域20にそれぞれ対応して配置されている。また、図8に示す通り、パッチ9の投影体と、スロット8の投影体とが重なっていることから、パッチ9の直下にスロット8が形成されている。これにより、図8で示すアンテナ本体10の実施形態は、電磁結合給電方式によりスロット8からパッチ9へ給電する、あるいはパッチ9からスロット8へ到来電波を伝播することができる。そのため、電波の送信及び/又は受信が可能なアンテナを提供することができる。 FIG. 8 is a top view showing an example of an embodiment of the antenna body 10 according to the present invention. More specifically, FIG. 8 is a view of the antenna body 10 as viewed from the patch array unit 7, in which the patch 9, the feeding unit 12, and the slot 8 are projected vertically onto the main surface of the disk body Q. is there. Therefore, as in FIG. 5, the patch 9, the power feeding unit 12, and the slot 8 are indicated by broken lines. In FIG. 8, a rectangular parallelepiped patch 9 and one rectangular parallelepiped slot 8 are arranged corresponding to the sealing region 20, respectively. Further, as shown in FIG. 8, since the projection body of the patch 9 and the projection body of the slot 8 overlap each other, the slot 8 is formed directly under the patch 9. As a result, the embodiment of the antenna body 10 shown in FIG. 8 can supply power from the slot 8 to the patch 9 or propagate the incoming radio wave from the patch 9 to the slot 8 by the electromagnetic coupling power feeding method. Therefore, it is possible to provide an antenna capable of transmitting and / or receiving radio waves.
 また、図8で示すように、本実施形態において、パッチ9及びスロット8は、円板体Qの中心から円板体Qの外周方向に向かって、同心円状に配置されている。そのため、同軸モード給電により、円錐ビームが出るため、円板体Qの正面で位相が揃って電磁界が強め合うことができる。 Further, as shown in FIG. 8, in the present embodiment, the patch 9 and the slot 8 are arranged concentrically from the center of the disc body Q toward the outer peripheral direction of the disc body Q. Therefore, since the conical beam is emitted by the coaxial mode power supply, the phases can be aligned in front of the disk body Q and the electromagnetic fields can be strengthened.
 次に、図8に示すアンテナ本体10の断面図である図9を用いて、アンテナ本体10の実施形態を説明する。なお、図9は、アンテナの構成を示す概略図であることは言うまでもない。 Next, an embodiment of the antenna main body 10 will be described with reference to FIG. 9, which is a cross-sectional view of the antenna main body 10 shown in FIG. Needless to say, FIG. 9 is a schematic view showing the configuration of the antenna.
 図9に示すように、アンテナ本体10は、円板状の第2基板14と、複数のスロット8が中心部から放射方向外方に向かって同心軸状に形成された、円板状の第1基板13と、第2基板14側の第1基板13表面に設けられたバッファー層22と、バッファー層22と第2基板14との間に設けられた第1誘電体層17と、円板状の第1基板13及び円板状の第2基板14の中心部に設けられ、かつ第1誘電体層17と接触するよう設けられた給電部12と、円板状の第3基板15と、第3基板15に取り付けられたパッチ9(放射素子又は入射素子)と、第3基板15及び第1基板13の間のシール壁24によって隔離され、かつパッチ9が設けられた複数の密封領域20内をパッチ9と接触するように充填された液晶層16と、を有する。また、給電部12は給電線12aを介して、制御基板に設けられた送信機及び/又は受信機と電気的に接続されている。そして、それぞれのスロット8に対してそれぞれのパッチ9が対応しており、各密封領域20内には、少なくとも1つのパッチ9と、少なくとも1つのスロット8と、液晶層16とが存在しており、複数の密封領域20のそれぞれはシール壁21,23,24を介して隔離されている。 As shown in FIG. 9, the antenna main body 10 has a disk-shaped second substrate 14 and a plurality of slots 8 formed concentrically from the center toward the outside in the radial direction. 1 substrate 13, a buffer layer 22 provided on the surface of the first substrate 13 on the side of the second substrate 14, a first dielectric layer 17 provided between the buffer layer 22 and the second substrate 14, and a disk. The feeding portion 12 provided at the center of the first substrate 13 and the second substrate 14 in the shape of a disk and in contact with the first dielectric layer 17, and the third substrate 15 in the shape of a disk. , A plurality of sealing regions isolated by a sealing wall 24 between the patch 9 (radiating element or incident element) attached to the third substrate 15 and the third substrate 15 and the first substrate 13 and provided with the patch 9. It has a liquid crystal layer 16 in which the inside of the 20 is filled so as to come into contact with the patch 9. Further, the power feeding unit 12 is electrically connected to a transmitter and / or a receiver provided on the control board via a feeding line 12a. Each patch 9 corresponds to each slot 8, and at least one patch 9, at least one slot 8, and a liquid crystal layer 16 are present in each sealed region 20. , Each of the plurality of sealing regions 20 is isolated via sealing walls 21, 23, 24.
 図9には示されていないが、必要により各密封領域20内に液晶層16の電圧を制御するTFT(薄膜トランジスタ)を例えば、第1基板13上に設けてもよい。これにより、液晶層16の電圧の印加をアクティブ方式で制御することができる。また、必要により、各密封領域20内に液晶層16を構成する液晶分子の配向方向を固定するために配向膜を設けてもよい。上記配向膜としては、液晶分子の垂直方向へ配向を容易にするホメオトロピック配向膜又は液晶分子の水平方向へ配向を容易にするホモジニアス配向膜を第1基板13と液晶層16との間に設けてもよい。例えば、ポリイミド配向膜、光配向膜等が挙げられる。 Although not shown in FIG. 9, if necessary, a TFT (thin film transistor) that controls the voltage of the liquid crystal layer 16 may be provided on the first substrate 13 in each sealed region 20. Thereby, the application of the voltage of the liquid crystal layer 16 can be controlled by the active method. Further, if necessary, an alignment film may be provided in each sealed region 20 in order to fix the orientation direction of the liquid crystal molecules constituting the liquid crystal layer 16. As the alignment film, a homeotropic alignment film that facilitates the vertical orientation of the liquid crystal molecules or a homogeneous alignment film that facilitates the horizontal orientation of the liquid crystal molecules is provided between the first substrate 13 and the liquid crystal layer 16. You may. For example, a polyimide alignment film, a photoalignment film, and the like can be mentioned.
 次に、図8に示すアンテナ本体10のB-B線で切断した断面図である図10を用いて、本実施形態における密封領域20を説明する。なお、図10は、密封領域20を示す概略図であることは言うまでもない。 Next, the sealed region 20 in the present embodiment will be described with reference to FIG. 10, which is a cross-sectional view taken along the line BB of the antenna body 10 shown in FIG. Needless to say, FIG. 10 is a schematic view showing the sealed region 20.
 図10に示すように、密封領域20は、シール壁24と、バッファー層22及び第1基板13と第3基板15とによって、上下四方囲まれた密封空間であり、内部には少なくとも1つのパッチ9と、少なくとも1つのスロット8とが対峙するよう同一の密封空間内に設けられ、かつ液晶層16が充填されている。 As shown in FIG. 10, the sealing region 20 is a sealing space surrounded on all four sides by the sealing wall 24, the buffer layer 22, the first substrate 13, and the third substrate 15, and at least one patch is contained therein. 9 and at least one slot 8 are provided in the same sealed space so as to face each other, and the liquid crystal layer 16 is filled.
 本実施形態において、シール壁24は、公知の絶縁体などから形成されていてもよい。また、バッファー層22は、公知の誘電体材料などから形成されていてもよい。 In the present embodiment, the seal wall 24 may be formed of a known insulator or the like. Further, the buffer layer 22 may be formed of a known dielectric material or the like.
 図10には示していないが、必要により密封領域20内に液晶層16の電圧を制御するTFT(薄膜トランジスタ)を、例えば、第1基板13上に設けてもよい。これにより、液晶層16の電圧の印加をアクティブ方式で制御することができる。当該アクティブ方式よる駆動方法についてより詳細に説明すると、例えば、パッチ9を共通電極とし、かつ第1基板13を画素電極として、第1基板13上に形成されたTFTによりパッチ9と第1基板13との間の電圧を制御して液晶層16の液晶分子の配向を制御する方法、あるいは第1基板13を画素電極とし、かつ第1基板13上に電極層及びTFTを形成して、パッチ9と第1基板13との間の電圧を制御して液晶層16の液晶分子の配向を制御する方法、さらには第1基板13上に櫛歯電極及びTFTを設けて、当該TFTにより液晶層16の液晶分子の配向を制御する方法等が挙げられる。なお、液晶層16の電圧の印加をアクティブ方式で制御する方法は上記方法に限定されることはない。 Although not shown in FIG. 10, if necessary, a TFT (thin film transistor) that controls the voltage of the liquid crystal layer 16 may be provided on the first substrate 13 in the sealed region 20. Thereby, the application of the voltage of the liquid crystal layer 16 can be controlled by the active method. To explain the driving method by the active method in more detail, for example, the patch 9 and the first substrate 13 are formed by the TFT formed on the first substrate 13 with the patch 9 as a common electrode and the first substrate 13 as a pixel electrode. A method of controlling the orientation of the liquid crystal molecules of the liquid crystal layer 16 by controlling the voltage between the two, or a method in which the first substrate 13 is used as a pixel electrode and the electrode layer and the TFT are formed on the first substrate 13, and the patch 9 A method of controlling the orientation of the liquid crystal molecules of the liquid crystal layer 16 by controlling the voltage between the first substrate 13 and the first substrate 13, and further, a comb tooth electrode and a TFT are provided on the first substrate 13, and the liquid crystal layer 16 is provided by the TFT. A method of controlling the orientation of the liquid crystal molecule of the above can be mentioned. The method of controlling the application of the voltage of the liquid crystal layer 16 by the active method is not limited to the above method.
 また、この際、各密封領域20内に液晶層16を構成する液晶分子の配向方向を固定するために配向膜を設けてもよい。上記配向膜としては、液晶分子の垂直方向へ配向を容易にするホメオトロピック配向膜又は液晶分子の水平方向へ配向を容易にするホモジニアス配向膜を第1基板13と液晶層16との間に設けてもよい。 Further, at this time, an alignment film may be provided in each sealed region 20 in order to fix the orientation direction of the liquid crystal molecules constituting the liquid crystal layer 16. As the alignment film, a homeotropic alignment film that facilitates the vertical orientation of the liquid crystal molecules or a homogeneous alignment film that facilitates the horizontal orientation of the liquid crystal molecules is provided between the first substrate 13 and the liquid crystal layer 16. You may.
 液晶層16を同調させるために、パッチ9と第1基板13との間の液晶層16に印加する電圧を変調してもよい。例えば上述したように、液晶層16への印加電圧がアクティブ方式を用いて制御されることにより、スロット8の静電容量が変化し、結果的にはスロット8のリアクタンス、及び共振周波数を制御することができる。スロット8の共振周波数は、線路等を伝播する電波から放射されるエネルギーに対して相関関係を有する。そのため、スロット8の共振周波数を調整することにより、スロット8が給電部12からの円筒波エネルギーと実質的に結合しないようにする、あるいは円筒波エネルギーと結合し、自由空間に放射する。このような、スロット8のリアクタンス及び共振周波数の制御は、複数形成されている密封領域20のそれぞれで行うことができる。換言すると、液晶層16の誘電率を制御することにより、各密封領域20内のパッチ9への給電をTFTにより制御することができる。そのため、電波を送信するパッチ9と電波を送信しないパッチとを制御することができるため、液晶層16を介する放射電波の送信及び受信の調節が可能となる。 In order to synchronize the liquid crystal layer 16, the voltage applied to the liquid crystal layer 16 between the patch 9 and the first substrate 13 may be modulated. For example, as described above, by controlling the voltage applied to the liquid crystal layer 16 using the active method, the capacitance of the slot 8 changes, and as a result, the reactance and the resonance frequency of the slot 8 are controlled. be able to. The resonance frequency of the slot 8 has a correlation with the energy radiated from the radio wave propagating on the line or the like. Therefore, by adjusting the resonance frequency of the slot 8, the slot 8 is substantially not coupled with the cylindrical wave energy from the feeding unit 12, or is coupled with the cylindrical wave energy and radiated into the free space. Such control of the reactance and the resonance frequency of the slot 8 can be performed in each of the plurality of sealed regions 20 formed. In other words, by controlling the dielectric constant of the liquid crystal layer 16, the power supply to the patch 9 in each sealed region 20 can be controlled by the TFT. Therefore, since the patch 9 that transmits radio waves and the patch that does not transmit radio waves can be controlled, it is possible to adjust the transmission and reception of the radiated radio waves via the liquid crystal layer 16.
 実施例に記載のネマチック液晶組成物を製作し、各種物性値を測定した。以下の実施例及び比較例の組成物は各化合物を表中の割合で含有し、含有量は「質量%」で記載した。実施例において化合物の記載について以下の略号を用いる。 The nematic liquid crystal composition described in the examples was produced, and various physical property values were measured. The compositions of the following Examples and Comparative Examples contained each compound in the ratio shown in the table, and the content was described in "mass%". The following abbreviations are used for the description of compounds in the examples.
Figure JPOXMLDOC01-appb-C000071
 以下の実施例において、特に断りがない限り、トランス体を表す。
Figure JPOXMLDOC01-appb-C000071
In the following examples, unless otherwise specified, a trans body is represented.
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
 (物性値)
TNI(℃):組成物がネマチック相から等方相へ転移する温度(Tni)
Δn  :ホスト液晶組成物の25℃、589nmにおける屈折率異方性
(Physical characteristic value)
TNI (° C.): Temperature at which the composition transitions from the nematic phase to the isotropic phase (Tni)
Δn: Refractive index anisotropy of the host liquid crystal composition at 25 ° C. and 589 nm
 (実施例1、2及び比較例1)
 下記表2に示した液晶化合物を調製し、ネマチック液晶組成物を製作して各種物性値を測定した。実施例1、2は、比較例1の末端がNCSでフッ素置換された3環の化合物において、フッ素を塩素に置換した化合物、又はフッ素を塩素に置換し、アルキル基をアルコキシ基に置換した化合物(一般式(i)で表される化合物)を30%用いている。
(Examples 1 and 2 and Comparative Example 1)
The liquid crystal compounds shown in Table 2 below were prepared, nematic liquid crystal compositions were prepared, and various physical property values were measured. In Examples 1 and 2, a compound in which fluorine is substituted with chlorine or a compound in which fluorine is substituted with chlorine and an alkyl group is substituted with an alkoxy group in a three-ring compound in which the terminal of Comparative Example 1 is substituted with fluorine by NCS. (Compound represented by the general formula (i)) is used at 30%.
 可視光領域のΔnは、数十GHz帯のΔεと相関し、Δnが高いほどGHz帯の誘電率の変化を大きくすることが出来るため、アンテナ用の液晶として好ましい。以下の表2に示す実験結果から、実施例1、2は、比較例1に比べ、Δnがほぼ同等であることが判った。またTniもほぼ同等であることが判った。 Δn in the visible light region correlates with Δε in the several tens of GHz band, and the higher the Δn, the larger the change in the dielectric constant in the GHz band, which is preferable as a liquid crystal for an antenna. From the experimental results shown in Table 2 below, it was found that Δn of Examples 1 and 2 was almost the same as that of Comparative Example 1. It was also found that Tni was almost the same.
 実施例1、2の液晶組成物と比較例1の液晶組成物とで低温保存安定性を比較したところ、比較例1の液晶組成物は-20℃で240時間後に析出が見られた。それに対して実施例1、2の液晶組成物は240時間経過時点でもネマチック液晶相を維持しており、低温保存安定性に優れることが確認された。 When the low temperature storage stability was compared between the liquid crystal compositions of Examples 1 and 2 and the liquid crystal composition of Comparative Example 1, the liquid crystal composition of Comparative Example 1 was found to precipitate after 240 hours at −20 ° C. On the other hand, it was confirmed that the liquid crystal compositions of Examples 1 and 2 maintained the nematic liquid crystal phase even after 240 hours, and were excellent in low temperature storage stability.
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
 (実施例3、4、比較例2)
 下記表3に示した液晶化合物を調製し、ネマチック液晶組成物を製作して各種物性値を測定した。実施例3、4は、比較例2の末端がNCSでフッ素置換された3環の化合物において、フッ素を塩素に置換した化合物、又はフッ素を塩素に置換し、アルキル基をアルコキシ基に置換した化合物(一般式(i)で表される化合物)を24%用いている。
(Examples 3 and 4, Comparative Example 2)
The liquid crystal compounds shown in Table 3 below were prepared, nematic liquid crystal compositions were prepared, and various physical property values were measured. In Examples 3 and 4, in the three-ring compound in which the terminal of Comparative Example 2 was substituted with fluorine by NCS, the compound in which fluorine was substituted with chlorine, or the compound in which fluorine was substituted with chlorine and the alkyl group was substituted with an alkoxy group. (Compound represented by the general formula (i)) is used at 24%.
 可視光領域のΔnは、数十GHz帯のΔεと相関し、Δnが高いほどGHz帯の誘電率の変化を大きくすることが出来るため、アンテナ用の液晶として好ましい。以下の表3に示す実験結果から、実施例3、4は、比較例2に比べ、Δnがほぼ同等であり、またTniもほぼ同等であることが判った。 Δn in the visible light region correlates with Δε in the several tens of GHz band, and the higher the Δn, the larger the change in the dielectric constant in the GHz band, which is preferable as a liquid crystal for an antenna. From the experimental results shown in Table 3 below, it was found that Examples 3 and 4 had substantially the same Δn and Tni as compared with Comparative Example 2.
 実施例3、4の液晶組成物と比較例2の液晶組成物とで低温保存安定性を比較したところ、比較例2の液晶組成物は-20℃で240時間後に析出が見られた。それに対して、実施例3、4の液晶組成物は240時間経過時点でもネマチック液晶相を維持しており、低温保存安定性に優れることが確認された。 When the low temperature storage stability was compared between the liquid crystal compositions of Examples 3 and 4 and the liquid crystal composition of Comparative Example 2, the liquid crystal composition of Comparative Example 2 was found to precipitate after 240 hours at −20 ° C. On the other hand, it was confirmed that the liquid crystal compositions of Examples 3 and 4 maintained the nematic liquid crystal phase even after 240 hours, and were excellent in low temperature storage stability.
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
 (実施例5、比較例3)
 下記表4に示した液晶化合物を調製し、ネマチック液晶組成物を製作して各種物性値を測定した。実施例5は、比較例3の末端がNCSでフッ素置換された3環の化合物において、フッ素を塩素に置換した化合物、又はフッ素を塩素に置換し、アルキル基をアルコキシ基に置換した化合物(一般式(i)で表される化合物)を24%用いている。
(Example 5, Comparative Example 3)
The liquid crystal compounds shown in Table 4 below were prepared, nematic liquid crystal compositions were prepared, and various physical property values were measured. In Example 5, in a three-ring compound in which the terminal of Comparative Example 3 was substituted with fluorine by NCS, a compound in which fluorine was substituted with chlorine, or a compound in which fluorine was substituted with chlorine and an alkyl group was substituted with an alkoxy group (generally). 24% of the compound represented by the formula (i) is used.
 可視光領域のΔnは、数十GHz帯のΔεと相関し、Δnが高いほどGHz帯の誘電率の変化を大きくすることが出来るため、アンテナ用の液晶として好ましい。以下の表4に示す実験結果から、実施例5は、比較例3に比べ、Δnがほぼ同等であり、またTniもほぼ同等であることが判った。 Δn in the visible light region correlates with Δε in the several tens of GHz band, and the higher the Δn, the larger the change in the dielectric constant in the GHz band, which is preferable as a liquid crystal for an antenna. From the experimental results shown in Table 4 below, it was found that Example 5 had substantially the same Δn and Tni as compared with Comparative Example 3.
 実施例5の液晶組成物と比較例3の液晶組成物とで低温保存安定性を比較したところ、比較例3の液晶組成物は-20℃で240時間後に析出が見られた。それに対し、実施例5の液晶組成物は240時間経過時点でも液晶相を維持しており、低温保存安定性に優れることが確認された。 When the low temperature storage stability was compared between the liquid crystal composition of Example 5 and the liquid crystal composition of Comparative Example 3, the liquid crystal composition of Comparative Example 3 was found to precipitate after 240 hours at −20 ° C. On the other hand, it was confirmed that the liquid crystal composition of Example 5 maintained the liquid crystal phase even after 240 hours, and was excellent in low temperature storage stability.
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
 本発明によれば、低温保存安定性を長期間維持する高いΔnを有する液晶組成物を提供することを目的とする。そのため、高周波デバイス、マイクロ波デバイス又はアンテナ用の液晶材料に利用することができる。 According to the present invention, it is an object of the present invention to provide a liquid crystal composition having a high Δn that maintains low temperature storage stability for a long period of time. Therefore, it can be used as a liquid crystal material for a high frequency device, a microwave device, or an antenna.
 本発明によれば、低温保存安定性を長期間維持する高いΔnを有する液晶組成物を備えたアンテナを提供することを目的とする。 According to the present invention, it is an object of the present invention to provide an antenna provided with a liquid crystal composition having a high Δn that maintains low temperature storage stability for a long period of time.
 1:アンテナユニット
 2:車両
 3:ケース
 4:制御板
 5:上蓋
 6:スロットアレイ部
 7:パッチアレイ部
 8:スロット
 9:パッチ
 10:アンテナ本体
 11:アンテナ組立体
 12:給電部
 12a:給電線
 13:第1基板
 14:第2基板
 15:第3基板
 16:液晶層
 17:第1誘電体層
 20:密封領域
 21,23,24:シール壁
 22:バッファー層
 P:導体
 Q:円板体
1: Antenna unit 2: Vehicle 3: Case 4: Control board 5: Top lid 6: Slot array part 7: Patch array part 8: Slot 9: Patch 10: Antenna body 11: Antenna assembly 12: Feeding part 12a: Feeding line 13: 1st substrate 14: 2nd substrate 15: 3rd substrate 16: Liquid crystal layer 17: 1st dielectric layer 20: Sealed area 21, 23, 24: Seal wall 22: Buffer layer P: Conductor Q: Disc

Claims (13)

  1.  一般式(i)で表される化合物を含む、液晶組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(i)中、
     Ri1は、炭素原子数1~40の直鎖又は分岐の、アルキル基又はハロゲン化アルキル基を表し、これらの基中に存在する、メチレン基又は第二級炭素原子を1つ含むアルキル基又はハロゲン化アルキレン基は、酸素原子が直接隣接しないように、-O-、-CH=CH-、又は-C≡C-で置換されてもよく、
     m1は、1又は2の整数を表し、
     Ai1~Ai3は、それぞれ独立して、下記の基(a)~基(c)のいずれか1種を表わし、
    (a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は-O-又は-S-に置き換えられてもよい)、
    (b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は相互に隣接していない2個以上の-CH=は-N=に置き換えられてもよい)、
    (c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
     上記基(a)~基(c)中の水素原子はフッ素原子、塩素原子、又は炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはハロゲン化アルキル基に置換されていてもよいが、Ai1~Ai3中の水素原子の少なくとも一つは塩素原子に置換されており、
     Zi1及びZi2は、それぞれ独立して、単結合、-C≡C-、-CH=CH-、-CF=CF-、又は-C(Ria)=N-N=C(Rib)-を表し、この際、Ria及びRibは、それぞれ独立して、水素原子、ハロゲン原子、又は、炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはハロゲン化アルキル基を表し、
     m1が2のときに複数存在するAi1及びZi1は、それぞれ同一であっても異なっていてもよい。)
    A liquid crystal composition containing a compound represented by the general formula (i).
    Figure JPOXMLDOC01-appb-C000001
    (In the above general formula (i),
    R i1 represents a linear or branched alkyl group or halogenated alkyl group having 1 to 40 carbon atoms, and is an alkyl group or an alkyl group containing one methylene group or a secondary carbon atom present in these groups. The halogenated alkylene group may be substituted with -O-, -CH = CH-, or -C≡C- so that the oxygen atoms are not directly adjacent to each other.
    m1 represents an integer of 1 or 2 and represents
    A i1 to A i3 independently represent any one of the following groups (a) to (c).
    (A) Trans-1,4-cyclohexylene group (one methylene group present in this group or two or more methylene groups not adjacent to each other is replaced with -O- or -S-. May be good),
    (B) 1,4-phenylene group (one -CH = existing in this group or two or more -CH = not adjacent to each other may be replaced with -N =),
    (C) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or One -CH = present in the 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or two or more non-adjacent -CH = may be replaced with -N =. )
    The hydrogen atom in the groups (a) to (c) may be substituted with a fluorine atom, a chlorine atom, or a linear or branched alkyl group having 1 to 10 carbon atoms or an alkyl halide group. At least one of the hydrogen atoms in Ai1 to Ai3 is replaced with a chlorine atom.
    Z i1 and Z i2 are independently single-bonded, -C≡C-, -CH = CH-, -CF = CF-, or -C ( Ria ) = NN = C (R ib ). -In this case, Ria and Rib independently represent a hydrogen atom, a halogen atom, or a linear or branched alkyl group or halogenated alkyl group having 1 to 10 carbon atoms.
    A plurality of A i1 and Z i1 existing when m1 is 2 may be the same or different from each other. )
  2.  一般式(ii)及び一般式(iii)からなる群から選択される少なくとも1種の化合物をさらに含む、請求項1に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式(ii)中、
     Rii1は、炭素原子数1~40の直鎖又は分岐の、アルキル基又はハロゲン化アルキル基を表し、これらの基中に存在する、メチレン基又は第二級炭素原子を1つ含むハロゲン化アルキレン基は、酸素原子が直接隣接しないように、-O-、-CH=CH-、又は-C≡C-で置換されてもよく、
     nは、0から2の整数を表し、
     Aii1及びAii2は、それぞれ独立して、下記の基(a)又は基(b)のいずれか1種を表わし、
    (a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は-O-又は-S-に置き換えられてもよい)、
    (b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は相互に隣接していない2個以上の-CH=は-N=に置き換えられてもよい)、
     上記基(a)又は基(b)中の水素原子は、それぞれシアノ基、ハロゲン原子、又は炭素原子数1~10の直鎖若しくは分岐の、アルキル基若しくはハロゲン化アルキル基に置換されていてもよく、
     Xii11~Xii13は、それぞれ独立して、水素原子、ハロゲン原子、又は炭素原子数1~10の直鎖若しくは分岐の、アルキル基若しくはハロゲン化アルキル基を表し、
     Yii1は、フッ素原子、塩素原子、チオシアナト基、トリフルオロメトキシ基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、又はジフルオロメトキシ基を表し、
     Zii1及びZii2は、それぞれ独立して、単結合、-COO-、-OCO-、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-又は-C≡C-を表し、
     nが2のときに複数存在するAii1及びZii1は、それぞれ同一であっても異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000003
    (上記一般式(iii)中、
     Riii1は、炭素原子数1~40の直鎖又は分岐の、アルキル基又はハロゲン化アルキル基を表し、これらの基中に存在する、メチレン基又は第二級炭素原子を1つ含むハロゲン化アルキレン基は、酸素原子が直接隣接しないように、-O-、-CH=CH-、又は-C≡C-で置換されてもよく、
     lは、0から2の整数を表し、
     Aiii1~Aiii3は、それぞれ独立して、下記の基(a)~は基(c)のいずれか1種を表わし、
    (a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は-O-又は-S-に置き換えられてもよい)、
    (b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は相互に隣接していない2個以上の-CH=は-N=に置き換えられてもよい)、
    (c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
     上記基(a)~基(c)中の水素原子はそれぞれ、シアノ基、ハロゲン原子、又は炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはハロゲン化アルキル基に置換されていてもよく、
     Ziii1及びZiii2は、それぞれ独立して、単結合、-COO-、-OCO-、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-又は-C≡C-を表し、
     lが2以上のときに複数存在するAiii1及びZiii1は、それぞれ同一であっても異なっていてもよい。)
    The liquid crystal composition according to claim 1, further comprising at least one compound selected from the group consisting of the general formula (ii) and the general formula (iii).
    Figure JPOXMLDOC01-appb-C000002
    (In the above general formula (ii),
    Rii1 represents a linear or branched alkyl group or alkyl halide group having 1 to 40 carbon atoms, and a halogenated alkylene containing one methylene group or secondary carbon atom present in these groups. The groups may be substituted with -O-, -CH = CH-, or -C≡C- so that the oxygen atoms are not directly adjacent.
    n represents an integer from 0 to 2 and represents
    A ii1 and A ii2 independently represent any one of the following groups (a) or groups (b).
    (A) Trans-1,4-cyclohexylene group (one methylene group present in this group or two or more methylene groups not adjacent to each other is replaced with -O- or -S-. May be good),
    (B) 1,4-phenylene group (one -CH = existing in this group or two or more -CH = not adjacent to each other may be replaced with -N =),
    Even if the hydrogen atom in the group (a) or group (b) is substituted with a cyano group, a halogen atom, or a linear or branched alkyl group or alkyl halide having 1 to 10 carbon atoms, respectively. Often,
    X ii11 to X ii13 independently represent a hydrogen atom, a halogen atom, or a linear or branched alkyl group or halogenated alkyl group having 1 to 10 carbon atoms.
    Y i1 represents a fluorine atom, a chlorine atom, a thiocyanato group, a trifluoromethoxy group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, or a difluoromethoxy group.
    Z ii1 and Z ii2 are each independently a single bond, -COO -, - OCO -, - CH 2 CH 2 -, - (CH 2) 4 -, - OCH 2 -, - CH 2 O -, - Represents OCF 2- , -CF 2 O- or -C≡C-
    When n is 2, a plurality of Aii1 and Zii1 may be the same or different from each other. )
    Figure JPOXMLDOC01-appb-C000003
    (In the above general formula (iii),
    Riii1 represents a linear or branched alkyl group or alkyl halide group having 1 to 40 carbon atoms, and a halogenated alkylene containing one methylene group or secondary carbon atom present in these groups. The groups may be substituted with -O-, -CH = CH-, or -C≡C- so that the oxygen atoms are not directly adjacent.
    l represents an integer from 0 to 2
    A iii1 to A iii3 independently represent any one of the following groups (a) to (c).
    (A) Trans-1,4-cyclohexylene group (one methylene group present in this group or two or more methylene groups not adjacent to each other is replaced with -O- or -S-. May be good),
    (B) 1,4-phenylene group (one -CH = existing in this group or two or more -CH = not adjacent to each other may be replaced with -N =),
    (C) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or One -CH = present in the 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or two or more non-adjacent -CH = may be replaced with -N =. )
    The hydrogen atoms in the groups (a) to (c) may be substituted with a cyano group, a halogen atom, or a linear or branched alkyl group or an alkyl halide group having 1 to 10 carbon atoms, respectively. ,
    Z III1 and Z III2 are each independently a single bond, -COO -, - OCO -, - CH 2 CH 2 -, - (CH 2) 4 -, - OCH 2 -, - CH 2 O -, - Represents OCF 2- , -CF 2 O- or -C≡C-
    When l is 2 or more, a plurality of Aiii1 and Ziii1 may be the same or different from each other. )
  3.  一般式(iv)からなる群から選択される少なくとも1種の化合物をさらに含む、請求項1又は2に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000004
    (上記一般式(iv)中、
     Riv1は、炭素原子数1~40の直鎖又は分岐の、アルキル基又はハロゲン化アルキル基を表し、これらの基中に存在する、メチレン基又は第二級炭素原子を1つ含むハロゲン化アルキレン基は、酸素原子が直接隣接しないように、-O-、-CH=CH-、又は-C≡C-で置換されてもよく、
     m2は、0、1又は2の整数を表し、
     Aiv1~Aiv3は、それぞれ独立して、下記の基(a)~基(c)のいずれか1種を表わし、
    (a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は-O-又は-S-に置き換えられてもよい)、
    (b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は相互に隣接していない2個以上の-CH=は-N=に置き換えられてもよい)、
    (c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
     上記基(a)~基(c)中の水素原子は、フッ素原子、塩素原子又は炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはフッ素化アルキル基に置換されていてもよく、
     Ziv1及びZiv2は、それぞれ独立して、単結合、-C≡C-、-CH=CH-、-CF=CF-、又は-C(Riva)=N-N=C(Rivb)-を表し、この際、Ziv2及び0以上2以下存在するZiv1のうち少なくとも1つが-C≡C-を表わし、Riva及びRivbは、それぞれ独立して、水素原子、ハロゲン原子、又は、炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはハロゲン化アルキル基を表し、
     m2が2のときに複数存在するAiv1及びZiv1は、それぞれ同一であっても異なっていてもよい。但し、一般式(iv)で表わされる化合物のうち、一般式(i)で表わされる化合物を除く。)
    The liquid crystal composition according to claim 1 or 2, further comprising at least one compound selected from the group consisting of the general formula (iv).
    Figure JPOXMLDOC01-appb-C000004
    (In the above general formula (iv),
    Riv1 represents a linear or branched alkyl group or alkyl halide group having 1 to 40 carbon atoms, and a halogenated alkylene containing one methylene group or secondary carbon atom present in these groups. The groups may be substituted with -O-, -CH = CH-, or -C≡C- so that the oxygen atoms are not directly adjacent.
    m2 represents an integer of 0, 1 or 2,
    A iv1 to A iv3 independently represent any one of the following groups (a) to (c).
    (A) Trans-1,4-cyclohexylene group (one methylene group present in this group or two or more methylene groups not adjacent to each other is replaced with -O- or -S-. May be good),
    (B) 1,4-phenylene group (one -CH = existing in this group or two or more -CH = not adjacent to each other may be replaced with -N =),
    (C) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or One -CH = present in the 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or two or more non-adjacent -CH = may be replaced with -N =. )
    The hydrogen atom in the groups (a) to (c) may be substituted with a fluorine atom, a chlorine atom, a linear or branched alkyl group having 1 to 10 carbon atoms, or a fluorinated alkyl group.
    Z iv1 and Z iv2 are independently single-bonded, -C≡C-, -CH = CH-, -CF = CF-, or -C (R iva ) = NN = C (R ivb ). - it represents, this time, represent at least one of Z iv1 present Z iv2 and 0 to 2 -C≡C-, R iva and R ivb are each independently a hydrogen atom, a halogen atom, or Represents a linear or branched alkyl group or halogenated alkyl group having 1 to 10 carbon atoms.
    A plurality of A iv1 and Z iv1 existing when m2 is 2 may be the same or different from each other. However, among the compounds represented by the general formula (iv), the compounds represented by the general formula (i) are excluded. )
  4.  一般式(v)から選択される化合物を一種又は2種以上をさらに含有する、請求項1~3のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000005
    (上記一般式(v)中、
     R31は、炭素原子数1~10のアルキル基又は炭素原子数2~10のアルケニル基を表し、これらの基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は、-O-又は-S-に置換されてもよく、またこれらの基中に存在する1個又は2個以上の水素原子は、フッ素原子又は塩素原子に置換されてもよく、
     M31及びM32は、それぞれ独立して、下記の基(a)、基(b)、又は基(c)のいずれか1種を表わし、
    (a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は-O-又は-S-に置き換えられてもよい)、
    (b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は相互に隣接していない2個以上の-CH=は-N=に置き換えられてもよい)、3-フルオロ-1,4-フェニレン基、又は3,5-ジフルオロ-1,4-フェニレン基、並びに
    (c) 1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、又はデカヒドロナフタレン-2,6-ジイル基、
    上記の基(a)、基(b)又は基(c)に含まれる水素原子はそれぞれシアノ基、フッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基で置換されていてもよく、
     L31及びL32は、それぞれ独立して、単結合、-COO-、-OCO-、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-又は-C≡C-を表し、
     pは、0、1又は2を表す、
     M32及び/又はL31がそれぞれ複数存在する場合は、それらは同一でもよく異なっていてもよく、
     X31及びX32は、それぞれ独立して、水素原子又はフッ素原子を表し、
     Y31は、フッ素原子、塩素原子、チオシアナト基、トリフルオロメトキシ基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、又はジフルオロメトキシ基を表す。)
    The liquid crystal composition according to any one of claims 1 to 3, further containing one or more compounds selected from the general formula (v).
    Figure JPOXMLDOC01-appb-C000005
    (In the above general formula (v),
    R 31 represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, and one methylene group existing in these groups or two or more methylene groups not adjacent to each other. The groups may be substituted with —O— or —S—, and one or more hydrogen atoms present in these groups may be substituted with fluorine or chlorine atoms.
    M 31 and M 32 independently represent any one of the following groups (a), group (b), or group (c).
    (A) Trans-1,4-cyclohexylene group (one methylene group present in this group or two or more methylene groups not adjacent to each other is replaced with -O- or -S-. May be good),
    (B) 1,4-Phenylene group (one -CH = existing in this group or two or more -CH = not adjacent to each other may be replaced with -N =), 3- Fluoro-1,4-phenylene group, or 3,5-difluoro-1,4-phenylene group, and (c) 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group , Piperidine-2,5-diyl group, naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, or decahydronaphthalene-2,6-diyl group,
    The hydrogen atom contained in the above group (a), group (b) or group (c) may be substituted with a cyano group, a fluorine atom, a chlorine atom, a trifluoromethyl group or a trifluoromethoxy group, respectively.
    L 31 and L 32 are each independently a single bond, -COO -, - OCO -, - CH 2 CH 2 -, - (CH 2) 4 -, - OCH 2 -, - CH 2 O -, - Represents OCF 2- , -CF 2 O- or -C≡C-
    p represents 0, 1 or 2,
    When a plurality of M 32 and / or L 31 are present, they may be the same or different.
    X 31 and X 32 independently represent a hydrogen atom or a fluorine atom, respectively.
    Y 31 represents a fluorine atom, a chlorine atom, a thiocyanato group, a trifluoromethoxy group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, or a difluoromethoxy group. )
  5.  589.0nmにおけるΔnは0.2以上である、請求項1~4のいずれか1項に記載の液晶組成物。 The liquid crystal composition according to any one of claims 1 to 4, wherein Δn at 589.0 nm is 0.2 or more.
  6.  請求項1~5のいずれか一項に記載の液晶組成物を用いた、液晶素子。 A liquid crystal element using the liquid crystal composition according to any one of claims 1 to 5.
  7.  アクティブマトリクス方式又はパッシブマトリクス方式で駆動する、請求項6に記載の液晶素子。 The liquid crystal element according to claim 6, which is driven by an active matrix method or a passive matrix method.
  8.  請求項1~4のいずれか一項に記載の液晶組成物の液晶分子の配向方向を可逆的に変えることにより誘電率を可逆的にスイッチングする液晶素子。 A liquid crystal element that reversibly switches the dielectric constant by reversibly changing the orientation direction of the liquid crystal molecules of the liquid crystal composition according to any one of claims 1 to 4.
  9.  請求項1~5のいずれか1項に記載の液晶組成物を用いた、センサ。 A sensor using the liquid crystal composition according to any one of claims 1 to 5.
  10.  請求項1~5のいずれか1項に記載の液晶組成物を用いた、液晶レンズ。 A liquid crystal lens using the liquid crystal composition according to any one of claims 1 to 5.
  11.  請求項1~5のいずれか1項に記載の液晶組成物を用いた、光通信機器。 An optical communication device using the liquid crystal composition according to any one of claims 1 to 5.
  12.  請求項1~5のいずれか1項に記載の液晶組成物を用いた、アンテナ。 An antenna using the liquid crystal composition according to any one of claims 1 to 5.
  13.  請求項12に記載のアンテナであって、
     複数のスロットを備えた第1基板と、
     前記第1基板と対向し、給電部が設けられた第2基板と、
     前記第1基板と前記第2基板との間に設けられた第1誘電体層と、
     前記複数のスロットに対応して配置される複数のパッチ電極と、
     前記パッチ電極が設けられた第3基板と、
     前記第1基板と前記第3基板との間に設けられた液晶層と、を備え、
     前記液晶層は、一般式(i):
    Figure JPOXMLDOC01-appb-C000006
    (上記一般式(i)中、
     Ri1は、炭素原子数1~40の直鎖又は分岐の、アルキル基又はハロゲン化アルキル基を表し、これらの基中に存在する、メチレン基又は第二級炭素原子を1つ含むハロゲン化アルキレン基は、酸素原子が直接隣接しないように、-O-、-CH=CH-、又は-C≡C-で置換されてもよく、
     m1は、1又は2の整数を表し、
     Ai1~Ai3は、それぞれ独立して、下記の基(a)~基(c)のいずれか1種を表わし、
    (a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は相互に隣接していない2個以上のメチレン基は-O-又は-S-に置き換えられてもよい)、
    (b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は相互に隣接していない2個以上の-CH=は-N=に置き換えられてもよい)、
    (c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
     上記基(a)~基(c)中の水素原子はフッ素原子、塩素原子、又は炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはハロゲン化アルキル基に置換されていてもよいが、Ai1~Ai3中の水素原子の少なくとも一つは塩素原子に置換されており、
     Zi1及びZi2は、それぞれ独立して、単結合、-C≡C-、-CH=CH-、-CF=CF-、又は-C(Ria)=N-N=C(Rib)-を表し、この際、Ria及びRibは、それぞれ独立して、水素原子、ハロゲン原子、又は、炭素原子数1~10の直鎖若しくは分岐のアルキル基若しくはハロゲン化アルキル基を表し、
     m1が2のときに複数存在するAi1及びZi1は、それぞれ同一であっても異なっていてもよい。)で表わされる液晶化合物を含有する、アンテナ。
    The antenna according to claim 12.
    A first board with multiple slots and
    A second board facing the first board and provided with a power feeding unit,
    A first dielectric layer provided between the first substrate and the second substrate,
    A plurality of patch electrodes arranged corresponding to the plurality of slots, and
    A third substrate provided with the patch electrode and
    A liquid crystal layer provided between the first substrate and the third substrate is provided.
    The liquid crystal layer has a general formula (i):
    Figure JPOXMLDOC01-appb-C000006
    (In the above general formula (i),
    R i1 represents a linear or branched alkyl group or alkyl halide group having 1 to 40 carbon atoms, and a halogenated alkylene containing one methylene group or secondary carbon atom present in these groups. The groups may be substituted with -O-, -CH = CH-, or -C≡C- so that the oxygen atoms are not directly adjacent.
    m1 represents an integer of 1 or 2 and represents
    A i1 to A i3 independently represent any one of the following groups (a) to (c).
    (A) Trans-1,4-cyclohexylene group (one methylene group present in this group or two or more methylene groups not adjacent to each other is replaced with -O- or -S-. May be good),
    (B) 1,4-phenylene group (one -CH = existing in this group or two or more -CH = not adjacent to each other may be replaced with -N =),
    (C) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or One -CH = present in the 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or two or more non-adjacent -CH = may be replaced with -N =. )
    The hydrogen atom in the groups (a) to (c) may be substituted with a fluorine atom, a chlorine atom, or a linear or branched alkyl group having 1 to 10 carbon atoms or an alkyl halide group. At least one of the hydrogen atoms in Ai1 to Ai3 is replaced with a chlorine atom.
    Z i1 and Z i2 are independently single-bonded, -C≡C-, -CH = CH-, -CF = CF-, or -C ( Ria ) = NN = C (R ib ). -In this case, Ria and Rib independently represent a hydrogen atom, a halogen atom, or a linear or branched alkyl group or halogenated alkyl group having 1 to 10 carbon atoms.
    A plurality of A i1 and Z i1 existing when m1 is 2 may be the same or different from each other. An antenna containing a liquid crystal compound represented by).
PCT/JP2020/039639 2019-10-30 2020-10-22 Liquid crystal composition, liquid crystal element, sensor, liquid crystal lens, optical communication device, and antenna WO2021085279A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-198021 2019-10-30
JP2019198021A JP2022174353A (en) 2019-10-30 2019-10-30 Liquid crystal compositions, liquid crystal elements, and antennas

Publications (1)

Publication Number Publication Date
WO2021085279A1 true WO2021085279A1 (en) 2021-05-06

Family

ID=75715101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039639 WO2021085279A1 (en) 2019-10-30 2020-10-22 Liquid crystal composition, liquid crystal element, sensor, liquid crystal lens, optical communication device, and antenna

Country Status (3)

Country Link
JP (1) JP2022174353A (en)
TW (1) TW202116981A (en)
WO (1) WO2021085279A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114665270A (en) * 2022-05-25 2022-06-24 佛山市粤海信通讯有限公司 Antenna is transferred to independent electricity of multifrequency multibeam

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580716A (en) * 2008-05-15 2009-11-18 石家庄永生华清液晶有限公司 Terminal isothiocyano liquid-crystal compound containing pyrimidine ring and preparation method thereof
US20170051202A1 (en) * 2015-08-19 2017-02-23 Samsung Electronics Co., Ltd. Liquid crystal compositions comprising mesogenic compounds, and devices for high-frequency thechnology
JP2019509356A (en) * 2015-12-21 2019-04-04 エシロール アンテルナショナルEssilor International Birefringent liquid crystal composition comprising an alkylsulfanylarylisothiocyanatotolan compound
WO2019189151A1 (en) * 2018-03-29 2019-10-03 Jsr株式会社 Scanned antenna and technology related thereto
CN110776927A (en) * 2019-10-31 2020-02-11 武汉轻工大学 Isothiocyano fluorine-containing tetrabiphenyl liquid crystal compound, preparation method thereof, liquid crystal composition and application
DE102019008592A1 (en) * 2018-12-12 2020-06-18 Merck Patent Gmbh Components for high frequency technology and liquid crystal media

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580716A (en) * 2008-05-15 2009-11-18 石家庄永生华清液晶有限公司 Terminal isothiocyano liquid-crystal compound containing pyrimidine ring and preparation method thereof
US20170051202A1 (en) * 2015-08-19 2017-02-23 Samsung Electronics Co., Ltd. Liquid crystal compositions comprising mesogenic compounds, and devices for high-frequency thechnology
JP2019509356A (en) * 2015-12-21 2019-04-04 エシロール アンテルナショナルEssilor International Birefringent liquid crystal composition comprising an alkylsulfanylarylisothiocyanatotolan compound
WO2019189151A1 (en) * 2018-03-29 2019-10-03 Jsr株式会社 Scanned antenna and technology related thereto
DE102019008592A1 (en) * 2018-12-12 2020-06-18 Merck Patent Gmbh Components for high frequency technology and liquid crystal media
CN110776927A (en) * 2019-10-31 2020-02-11 武汉轻工大学 Isothiocyano fluorine-containing tetrabiphenyl liquid crystal compound, preparation method thereof, liquid crystal composition and application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOWIORSKI, K. ET AL.: "Application of Modified Interference Wedge Method in Measurements of Indices of Refraction and Birefringence of Nematic Liquid Crystals", ACTA PHYSICA POLONICA A, vol. 124, no. 6, December 2013 (2013-12-01), pages 946 - 948, XP055451770, DOI: 10.12693/APhysPolA.124.946 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114665270A (en) * 2022-05-25 2022-06-24 佛山市粤海信通讯有限公司 Antenna is transferred to independent electricity of multifrequency multibeam
CN114665270B (en) * 2022-05-25 2022-09-02 佛山市粤海信通讯有限公司 Multi-frequency multi-beam independent electrically tunable antenna
US11901648B2 (en) 2022-05-25 2024-02-13 Foshan Eahison Communication Co., Ltd. Multi-frequency and multi-beam independent electrically adjustable antenna

Also Published As

Publication number Publication date
TW202116981A (en) 2021-05-01
JP2022174353A (en) 2022-11-24

Similar Documents

Publication Publication Date Title
US9493703B2 (en) Liquid crystal medium and high-frequency components comprising same
WO2022030344A1 (en) Liquid crystal composition, and liquid crystal display element, sensor, liquid crystal lens, optical communication equipment, and antenna using same
CN107109235B (en) Liquid-crystalline medium and high-frequency module comprising same
JP2018119130A (en) Liquid-crystalline medium and high-frequency components comprising same
JP2022075534A (en) Liquid crystal composition, and liquid crystal display device, sensor, liquid crystal lens, light communication device and antenna including the same
Kowerdziej et al. Dielectric properties of highly anisotropic nematic liquid crystals for tunable microwave components
WO2021157188A1 (en) Liquid crystal composition, liquid crystal element, sensor, liquid crystal lens, optical communication device, and antenna
WO2021085279A1 (en) Liquid crystal composition, liquid crystal element, sensor, liquid crystal lens, optical communication device, and antenna
JP6904498B1 (en) Liquid crystal composition, liquid crystal element, sensor, liquid crystal lens, optical communication equipment and antenna
Ma et al. Liquid Crystals for Advanced Smart Devices with Microwave and Millimeter‐Wave Applications: Recent Progress for Next‐Generation Communications
US11345854B2 (en) Liquid crystal dielectric applicable to high-frequency electromagnetic wave modulation, and component thereof
JP2022048990A (en) Liquid crystal composition used in element for phase control of electromagnetic wave signal
JP7484991B2 (en) Compound and liquid crystal composition
WO2021085280A1 (en) Liquid crystal composition, liquid crystal element, sensor, liquid crystal lens, optical communication device, and antenna
JP6954493B1 (en) Liquid crystal composition and liquid crystal elements, sensors, liquid crystal lenses, optical communication equipment and antennas using the liquid crystal composition.
KR20240004668A (en) liquid crystal medium
US20240110101A1 (en) Ferroelectric liquid crystal (FLC) material and chiral compound
CN117295802A (en) Liquid crystal medium and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP