WO2021085164A1 - Light source device and lighting device - Google Patents

Light source device and lighting device Download PDF

Info

Publication number
WO2021085164A1
WO2021085164A1 PCT/JP2020/038971 JP2020038971W WO2021085164A1 WO 2021085164 A1 WO2021085164 A1 WO 2021085164A1 JP 2020038971 W JP2020038971 W JP 2020038971W WO 2021085164 A1 WO2021085164 A1 WO 2021085164A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
fluorescent member
source device
light
fluorescent
Prior art date
Application number
PCT/JP2020/038971
Other languages
French (fr)
Japanese (ja)
Inventor
雅洋 村山
秀和 川西
簗嶋 克典
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2021085164A1 publication Critical patent/WO2021085164A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings

Definitions

  • the present technology relates to, for example, a light source device using a semiconductor laser element and a phosphor, and a lighting device equipped with the light source device.
  • Patent Document 1 discloses a light source device that easily removes heat generated by a semiconductor laser by surface-contacting the semiconductor laser and a base portion on a substrate made of a material having excellent thermal conductivity.
  • the light source device includes a substrate, a fluorescent member whose bottom is bonded to the substrate, a semiconductor light emitting element mounted on the substrate and irradiating excitation light on the side surface of the fluorescent member, a fluorescent member, and a semiconductor. It is provided with a package member that seals the light emitting element and has an opening on the upper surface where the fluorescent member is exposed.
  • the lighting device includes the light source device of the above-described embodiment.
  • the heat exhaust efficiency of the heat generated inside the fluorescent member due to the irradiation of the excitation light is improved by joining the bottom surface of the fluorescent member to the substrate. To do.
  • FIG. 5 is a schematic cross-sectional view showing an example of a schematic configuration of a lighting device including the light source device shown in FIG. It is an exploded perspective view which shows the typical structure of the lighting apparatus shown in FIG. It is sectional drawing which shows an example of the structure of the light source apparatus which concerns on the modification 1 of this disclosure. It is sectional drawing which shows an example of the structure of the light source apparatus which concerns on the modification 2 of this disclosure. It is sectional drawing which shows an example of the structure of the light source apparatus which concerns on the modification 3 of this disclosure.
  • FIG. 1 It is a schematic diagram which shows another example of the planar shape of the fluorescent member and the arrangement of the semiconductor laser as the modification 7 of this disclosure. It is an exploded perspective view which shows an example of the structure of the lighting apparatus which concerns on the modification 8 of this disclosure. It is a figure which shows an example of the structure of the projection type display device to which the light source device shown in FIG.
  • Modification 1 (Example in which a mirror that reflects fluorescence and excitation light is provided on the side surface of the fluorescent member) 2-2.
  • Modification 2 (Example in which a diffusion mechanism is provided on the side surface of the fluorescent member) 2-3.
  • Modification 3 (Example in which a mirror is further provided on the bottom surface of the fluorescent member) 2-4.
  • Deformation example 4 (Example in which a part of the side surface of the fluorescent member is an inclined surface) 2-5.
  • Modification 5 (Example in which the fluorescent member is formed by using two different types of phosphors) 2-6.
  • Modification 6 (Example in which a light confining member is arranged between the semiconductor laser element and the fluorescent member) 2-7.
  • Deformation example 7 (another example of the planar shape of the fluorescent member) 2-8.
  • Modification 8 (another example of a lighting device) 3. 3.
  • Application example (example of projection type display device)
  • FIG. 1 schematically shows an example of a cross-sectional configuration of a light source device (light source device 1) according to an embodiment of the present disclosure.
  • FIG. 2 schematically shows an example of the planar configuration of the light source device 1 shown in FIG. Note that FIG. 1 shows a cross section taken along the line II shown in FIG.
  • the light source device 1 is a packaged surface mount device (SMD).
  • the light source device 1 includes a semiconductor laser element 11, a fluorescent member 12, a substrate 21, and a package member 22.
  • the semiconductor laser element 11 and the fluorescent member 12 are mounted on the substrate 21, for example, and covered with the package member 22.
  • the substrate 21 and the package member 22 are joined to each other via, for example, solder, whereby the semiconductor laser element 11 and the fluorescent member 12 are hermetically sealed.
  • the light source device 1 of the present embodiment has a semiconductor laser element 11 and a fluorescent member 12, and is sealed in a package 20.
  • the semiconductor laser element 11 is mounted on the substrate 21 via, for example, a submount 13.
  • the fluorescent member 12 has, for example, a columnar shape, at least a part of the side surface thereof is covered with a mirror 14, and the bottom surface thereof is joined to the substrate 21.
  • the package 20 includes a substrate 21 and a package member 22.
  • the package member 22 has a recess 22C that opens downward.
  • the package 20 has an airtight storage space X by joining the upper surface 21S1 of the substrate 21 and the frame-shaped lower surface 22S2 surrounding the recess 22C of the package member 22 with, for example, solder.
  • the semiconductor laser element 11, the fluorescent member 12, and the submount 13 are housed in the accommodation space X.
  • the package member 22 further has an opening 22H on the upper surface 22S1. At least a part of the side surface of the opening 22H is in contact with the fluorescent member 12 (more precisely, the mirror 14 provided on the side surface of the fluorescent member 12), and the upper surface of the fluorescent member 12 is exposed in the opening 22H. There is.
  • each component constituting the light source device 1 will be described in detail.
  • the semiconductor laser device 11 is a specific example of the "semiconductor light emitting device" of the present disclosure, and includes, for example, a gallium nitride (GaN) -based semiconductor material, such as light in the blue wavelength region, specifically, 430 nm. It emits light having a wavelength of 480 nm or less.
  • the semiconductor laser device 11 may include, for example, a semiconductor material such as gallium arsenide (GaAs).
  • GaAs gallium arsenide
  • the semiconductor laser element 11 is arranged so that the emission surface faces the side surface of the fluorescent member 12, which will be described later.
  • the fluorescent member 12 absorbs the light emitted from the semiconductor laser element 11 as the excitation light EL, and emits a fluorescent FL having a wavelength different from that of the excitation light EL.
  • the fluorescent member 12 can be formed by using, for example, a single crystal phosphor.
  • the fluorescent member 12 is arranged on the optical path of the excitation light EL emitted from the semiconductor laser element 11.
  • the fluorescent member 12 is, for example, a columnar structure having a rectangular planar shape (cross-sectional shape in the XY planar direction), and is arranged to face the emission surface of the semiconductor laser element 11 so that the side surface is irradiated with the excitation light EL. ing.
  • the bottom surface of the fluorescent member 12 is joined to the substrate 21 as described above.
  • the fluorescent member 12 and the substrate 21 are joined by using, for example, silver (Ag) paste or solder.
  • the fluorescent member 12 and the substrate 21 may be adhered to each other by using a resin.
  • Al 2 O 3 aluminum oxide
  • the fluorescent member 12 is, for example, a phosphor that is excited by a blue laser beam having a wavelength in the blue wavelength region (for example, 430 nm to 480 nm) and emits yellow fluorescence (light in the wavelength band between the red wavelength region and the green wavelength region).
  • a blue laser beam having a wavelength in the blue wavelength region (for example, 430 nm to 480 nm) and emits yellow fluorescence (light in the wavelength band between the red wavelength region and the green wavelength region).
  • a phosphor include a YAG (yttrium aluminum garnet) -based material and a LAG (lutetium aluminum garnet) -based material.
  • the submount 13 is for mounting the semiconductor laser element 11 on the substrate 21, and is provided between the semiconductor laser element 11 and the substrate 21.
  • the submount 13 is, for example, a plate-shaped member, and the incident position (height) of the excitation light EL with respect to the side surface of the fluorescent member 12 is adjusted according to the thickness of the submount 13 (the size in the Z direction in FIG. 1). Can be done. As a result, the incident light rate of the excitation light EL with respect to the fluorescent member 12 is improved.
  • the submount 13 is preferably formed using a material having excellent thermal conductivity such as aluminum nitride (AlN), silicon carbide (SiC), silicon (Si) or copper (Cu). This makes it possible to easily remove the heat generated in the semiconductor laser element 11.
  • the semiconductor laser device 11 is eutectic bonded to the submount 13 by, for example, AuSn (gold-tin), and the submount 13 is eutectic bonded to the substrate 21 by, for example, AuSn.
  • the submount 13 may be bonded to the substrate 21 with, for example, silver (Ag) paste, sintered gold (Au), sintered silver (Ag), or the like.
  • the mirror 14 is provided on the side surface of the fluorescent member 12 to reflect the fluorescent FL emitted by the fluorescent member 12 and confine it inside the fluorescent member 12, and is the "first reflective member" of the present disclosure.
  • the mirror 14 can be formed, for example, by using a reflective film such as a dielectric multilayer film designed to efficiently reflect the fluorescent FL.
  • it may be formed by using a metal film having light reflectivity. When the metal film is used, it is formed on the entire side surface excluding the irradiation region irradiated with the excitation light EL so as not to interfere with the incident of the excitation light EL.
  • the substrate 21 is, for example, a plate-shaped member having a rectangular planar shape.
  • the substrate 21 is preferably constructed using a material having excellent thermal conductivity. As a result, the heat generated in the semiconductor laser element 11 and the fluorescent member 12 can be efficiently exhausted.
  • the substrate 21 is made of, for example, aluminum nitride (AlN), silicon carbide (SiC), silicon (Si) or copper (Cu).
  • the package member 22 is, for example, a rectangular parallelepiped having an upper surface 22S1 facing the surface and a lower surface 22S2 joined to the substrate 21 and having a recess 22C opening in the lower surface 22S2.
  • the package member 22 forms an airtight storage space X by joining the frame-shaped lower surface 22S2 surrounding the recess 22C and the upper surface 21S1 of the substrate 21 via, for example, solder.
  • An opening 22H is formed on the upper surface 22S1 of the package member 22 at a position facing the fluorescent member 12.
  • the opening 22H has substantially the same shape as the cross-sectional shape of the fluorescent member 12 in the XY plane direction, for example.
  • the side surface of the fluorescent member 12 (to be exact, the mirror 14) is in contact with at least a part of the side surface of the opening 22H. That is, the upper surface of the fluorescent member 12 is exposed in the opening 22H, and forms the same surface as the upper surface 22S1 of the package member 22, for example.
  • the inside of the accommodation space X is replaced by, for example, nitrogen (N 2 ) or dry air.
  • the package member 22 is made of, for example, glass or ceramic, and contains, for example, a sintered body such as aluminum nitride (AlN), aluminum oxide (alumina), or silicon carbide (SiC).
  • AlN aluminum nitride
  • alumina aluminum oxide
  • SiC silicon carbide
  • the substrate 21 and the package member 22 are joined by using, for example, solder.
  • a base layer is formed on each of the joint portion of the upper surface 21S1 of the substrate 21 with the package member 22 and the joint portion of the lower surface 22S2 of the package member 22 with the substrate 21, and these base layers are formed.
  • the substrate 21 and the package member 22 are joined to each other via solder.
  • the base layer can be formed by using, for example, chromium (Cr), titanium (Ti), gold (Au), or the like.
  • solder for example, SnAgCu (tin-silver-copper) -based solder or (gold-tin) -based, Sn (tin) -based or In (indium) -based solder can be used.
  • the light source device 1 for example, light is extracted as follows.
  • the light emitted from the semiconductor laser device 11 for example, light in the blue wavelength region, excitation light EL
  • the excitation light EL incident on the side surface of the fluorescent member 12 excites the phosphor constituting the fluorescent member 12.
  • the phosphor excited by the excitation light EL emits light having a wavelength band different from that of the excitation light EL (for example, light in the yellow band, fluorescent FL).
  • the fluorescent FL is reflected upward by the mirror 14 formed on the side surface of the fluorescent member 12, and together with the excitation light EL that does not contribute to the excitation of the phosphor, moves upward (for example, in the Z-axis direction) in the fluorescent member 12.
  • white light in which the fluorescent FL and the excitation light EL are combined is taken out from the upper surface of the fluorescent member 12.
  • FIG. 3 shows an example of a schematic side configuration of the lighting device (lighting device 100A) provided with the light source device 1 shown in FIG. 1, and FIG. 3 shows the lighting device 100A shown in FIG. It is an exploded perspective view of.
  • the illumination device 100A includes a light source device 1, a base plate 31, a lens holding member 32, and an array lens 33.
  • the array lens 33 has a lens 331 corresponding to each light source device 1.
  • the base plate 31 is a member on which the light source device 1 is placed.
  • the base plate 31 is, for example, a flat plate-shaped member, and has a front surface 31A and a back surface 31B facing each other.
  • a plurality of light source devices 1 are provided on the front surface 31A, and the back surface 31B is thermally connected to, for example, a heat sink or the like (not shown).
  • the base plate 31 is made of, for example, a ceramic material or a metal material.
  • the base plate 31 made of a metal material can improve heat dissipation.
  • the metal material include iron (Fe), iron alloy, copper (Cu), aluminum (Al), and copper alloy.
  • the copper alloy include copper-tungsten (CuW) and the like.
  • the ceramic material include aluminum nitride (AlN) and the like.
  • the base plate 31 may be provided with a cooling water channel.
  • the base plate 31 may be provided with a recess for mounting the light source device 1. By providing the light source device 1 in the recess of the base plate 31, the light source device 1 can be protected.
  • a plurality of light source devices 1 are mounted on the surface 31A of the base plate 31.
  • the plurality of light source devices 1 are arranged in a matrix on the surface 31A of the base plate 31, for example (X direction and Y direction in FIG. 4).
  • a part of the light source device 1 arranged in a matrix may be omitted. This part of the light source device 1 is missing, for example, for the purpose of removing defective products or lowering the power density of a part of the surface.
  • the arrangement of the light source device 1 may be another arrangement such as a substantially hexagonal shape or a staggered shape.
  • the distance between the plurality of light source devices 1 arranged in a matrix on the surface 31A of the base plate 31 is smaller in the ⁇ // direction than in the ⁇ direction, for example. Since the FFP (Far Field Pattern) half width in the ⁇ // direction is narrower than the FFP half width in the ⁇ direction, the distance between the light source devices 1 in the ⁇ // direction can be reduced. This makes it possible to improve the light density.
  • a plurality of light source devices 1 may be arranged in a row.
  • the lens holding member 32 provided between the base plate 31 and the array lens 33 has, for example, a frame-like shape surrounding a plurality of light source devices 1 mounted on the surface 31A of the base plate 31 (FIG. 4). ). That is, a plurality of light source devices 1 are provided inside the frame-shaped lens holding member 32.
  • the planar shape of the lens holding member 32 is, for example, a quadrangular shape.
  • the lens holding member 32 has, for example, a holding portion 321 having a quadrangular frame shape, and an expanding portion 322 extended inside and outside the holding portion 321.
  • the expansion portion 322 is provided on, for example, two opposing sides of the quadrangular holding portion 321.
  • the lens holding member 32 may not be provided over the entire circumference of the base plate 31, and may be provided on three sides of the rectangular base plate 31, for example. Alternatively, the lens holding member 32 may be provided on two opposite sides of the rectangular base plate 31.
  • the lens holding member 32 is fixed to the base plate 31 using, for example, screws or the like (not shown).
  • the method of fixing the lens holding member 32 to the base plate 31 may be any method, and for example, the lens holding member 32 may be fixed to the base plate 31 using an adhesive.
  • the adhesive is made of, for example, a resin material.
  • the lens holding member 32 and the base plate 31 may be collectively molded by using an insert molding process or the like.
  • the thickness of the holding portion 321 (the size in the Z direction in FIG. 4) is larger than the thickness of the expansion portion 322, for example.
  • the holding portion 321 is in contact with the base plate 31 and the array lens 33. Therefore, the size of the distance between each light source device 1 and the lens 331 is adjusted according to the thickness of the holding portion 321.
  • the thickness of the holding portion 321 is preferably such that a space having a size that allows gas flow can be maintained between the package member 22 and the array lens 33 and between the base plate 31 and the array lens 33. ..
  • the size at which gas can flow is, for example, 0.01 mm, which is a processing tolerance by a mechanism, or about 0.5 mm, which is a tolerance in resin molding.
  • the thickness of the holding portion 321 is, for example, about 1 mm to 30 mm.
  • the thickness of the holding portion 321 may be adjusted according to, for example, the focal length of the lens 331, the optical path length in the light source device 1, and the like.
  • the holding portion 321 is made of, for example, a resin material.
  • the expansion unit 322 is provided with, for example, a terminal unit 322E.
  • the terminal portion 322E is for electrically connecting the light source device 1 (semiconductor laser element 11) and the outside via the wiring WA, for example, and is provided in plurality from the inside to the outside of the expansion portion 322. ..
  • the terminal portion 322E is made of a conductive metal material such as aluminum (Al).
  • the expansion portion 322 of the portion other than the terminal portion 322E is made of, for example, the same resin material as the holding portion 321.
  • the expansion portion 322 and the holding portion 321 may be made of different resin materials.
  • the holding portion 321 and the expanding portion 322 may be individually fixed to the base plate 31. Further, in the holding portion 321 and the expanding portion 322, the holding portion 321 may be fixed to the expanding portion 322.
  • the holding portion 321 is made of resin or metal
  • the expansion portion 322 and the terminal portion 322E are made of PCB (Printed Circuit Board), so that the holding portion 321 can be expanded to the base plate 31 or expanded by using UV adhesive or solder. It can be adhered to the portion 322.
  • the array lens 33 and the holding portion 321 may be collectively molded by using an insert molding method.
  • the lens holding member 32 may be made of a metal material such as aluminum (Al), SUS (Steel Use Stainless), iron (Fe), and copper (Cu).
  • the lens holding member 32 may be made of a ceramic material or the like.
  • the shape of the lens holding member 32 may be formed by machining such as cutting, or may be formed by die casting or sintering.
  • the lens holding member 32 including the terminal portion 322E is preferably composed of one component integrated by, for example, batch molding. This makes it possible to reduce costs.
  • the array lens 33 faces the base plate 31 with a plurality of light source devices 1 in between.
  • the array lens 33 has, for example, an array portion 33A in a central portion and a frame portion 33F surrounding the array portion 33A.
  • a plurality of lenses 331 are provided at positions facing each light source device 1.
  • Each lens 331 is arranged at a position overlapping the fluorescent member 12 in a plan view, for example.
  • the lens 331 is composed of, for example, a convex lens.
  • the lens 331 may be composed of a plano-convex lens, a biconvex lens, a meniscus lens, and the like.
  • the light emitted from the upper surface of each fluorescent member 12 is collimated by passing through the lens 331.
  • the array lens 33 may have different configurations on the lower surface (for example, the surface facing the base plate 31) side and the upper surface side.
  • one surface side of the array lens 33 may have an FAC (Fast Axis Collimator) function, and the other surface side may have a SAC (Slow Axis Collimator) function.
  • the array lens 33 is composed of, for example, lenticular lenses arranged in a direction orthogonal to each other, for example, a biconvex single lens or two plano-convex lenses bonded together on a flat surface. ..
  • the array lens 33 is configured by aligning the two plano-convex lenses so that the plane side faces the light source device 1 side, and holding and integrating the array lens 33 with the frame portion 33F of the array lens 33.
  • the frame portion 33F around the array portion 33A has, for example, a quadrangular planar shape, and the frame portion 33F is fixed to the holding portion 321 of the lens holding member 32 by, for example, an adhesive (not shown).
  • an adhesive not shown
  • a photocurable resin such as a UV (Ultra Violet) curable resin can be used.
  • the resin shrinks due to photocuring, the array lens 33 and the lens holding member 32 are likely to be displaced. Therefore, for example, it is preferable to use a resin material having a curing shrinkage amount of about several% or less, and 1% or less. It is more preferable to use a resin material having a curing shrinkage amount.
  • the array lens 33 may be fixed to the lens holding member 32 by, for example, a screw or the like. Alternatively, the array lens 33 and the lens holding member 32 may be collectively molded by an insert molding process or the like. A space having a size capable of gas flow is provided between the array unit 33A and the base plate 31 and between the array unit 33A and the light source device 1.
  • the array lens 33 is made of, for example, borosilicate glass or the like.
  • each light source device 1 mounted on the base plate 31 passes through a lens 331 at a position corresponding to the fluorescent member 12 of each light source device 1, and becomes collimated light. Therefore, the traveling directions of the light passing through each lens 331 are parallel to each other and are taken out from the illuminating device 100A.
  • the bottom surface of the fluorescent member 12 is joined to the substrate 21 in the package 20 that hermetically seals the semiconductor laser element 11 and the fluorescent member 12.
  • the heat generated in the fluorescent member 12 due to the irradiation of the excitation light EL can be effectively exhausted via the substrate 21.
  • an opening 22H is provided on the upper surface of the package 20 (upper surface 22S1 of the package member 22) so that the upper surface of the fluorescent member 12 is exposed in the opening 22H.
  • the light emitting point becomes smaller, and the light emitted from the light source device 1 can be easily combined with the external optical system (for example, the lens 331). This will be described below.
  • laser-excited phosphor light sources There are two types of laser-excited phosphor light sources, a transmission type and a reflection type.
  • improvement of cooling efficiency is one of the problems in order to reduce the temperature quenching of the phosphor, but in the transmission type laser-excited phosphor light source, the heat dissipation path of the phosphor is secured. There is a problem that it is difficult. Further, when the semiconductor laser element which is an excitation light source is driven, the siloxane in the atmosphere reacts with light in the vicinity of the light emitting point, and the reactant is likely to be deposited on the end face of the semiconductor laser element.
  • This reactant may cause a change in the end face reflectance, resulting in deterioration of optical characteristics and destruction of the semiconductor laser device. Therefore, as a technique for suppressing the occurrence of defects caused by siloxane in the atmosphere, a method of packaging a semiconductor laser device and airtightly sealing it is used.
  • a method of packaging a semiconductor laser device and airtightly sealing it is used.
  • the packaging of this semiconductor laser element is applied to a laser-excited phosphor light source, in the reflection type laser-excited phosphor light source, the light emitting point is inside the package, so that there is a problem that the coupling efficiency with the external optical system deteriorates. Occurs.
  • the heat dissipation path of the heat generated inside the fluorescent member 12 by the irradiation of the excitation light EL is secured. Therefore, the heat generated inside the fluorescent member 12 can be efficiently exhausted, and the temperature quenching of the phosphor due to the decrease in the internal quantum efficiency of the phosphor can be reduced.
  • the heat generated inside the fluorescent member 12 can be efficiently exhausted via the substrate 21, so that the phosphor due to the decrease in the internal quantum efficiency of the phosphor. Temperature quenching is reduced. That is, it is possible to improve the power-optical conversion efficiency. In addition, the wavelength conversion efficiency can be improved. Further, it is possible to improve the brightness of the white light extracted from the light source device 1.
  • an opening 22H in which the upper surface of the fluorescent member 12 is exposed is formed on the upper surface of the package member 22 that covers the fluorescent member 12 together with the semiconductor laser element 11.
  • the fluorescent FL emitted inside the fluorescent member 12 propagates upward of the fluorescent member 12 together with the excitation light EL that did not contribute to the excitation of the phosphor, and is emitted from the upper surface of the fluorescent member 12.
  • the upper surface of the fluorescent member 12 becomes a substantial light emitting point. Therefore, for example, it is possible to facilitate coupling to an external optical system such as a lens 331.
  • the fluorescent FL emitted inside the fluorescent member 12 and the excitation light EL that did not contribute to the excitation of the phosphor are propagated upward of the fluorescent member 12 without using a start-up mirror or the like. Therefore, it is possible to reduce the component cost, the mounting cost, and the like.
  • FIG. 5 schematically shows an example of the cross-sectional configuration of the light source device (light source device 1A) according to the first modification of the present disclosure.
  • FIG. 5 shows a cross section of the light source device 1A corresponding to the line II shown in FIG. 2, similarly to FIG.
  • the light source device 1A is a packaged surface mount device (SMD) as in the above embodiment.
  • SMD packaged surface mount device
  • a mirror 15 that reflects the fluorescent FL and the excitation light EL is provided on the side surface of the fluorescent member 12 excluding the irradiation region irradiated with the excitation light EL. It is different from the form.
  • This mirror 15 corresponds to a specific example of the "first reflective member" of the present disclosure.
  • the above-mentioned mirror 14 and the mirror 15 are provided on the side surface of the fluorescent member 12.
  • a mirror 14 is provided in the irradiation region where the excitation light EL is irradiated
  • a mirror 15 is provided on the side surface excluding the irradiation region where the excitation light EL is irradiated.
  • the mirror 15 can be formed, for example, by using a reflective film such as a dielectric multilayer film designed to efficiently reflect the excitation light EL and the fluorescent FL. In addition, it may be formed by using a metal film having light reflectivity.
  • the mirror 15 that reflects the excitation light EL in addition to the fluorescence FL is provided on the side surface of the fluorescence member 12, the fluorescence FL and the excitation light EL can be confined in the fluorescence member 12. .. As a result, the reabsorption of the excitation light EL in the fluorescent member 12 is promoted. Therefore, in addition to the effects of the above-described embodiment, the wavelength conversion efficiency can be further improved.
  • FIG. 6 schematically shows an example of the cross-sectional configuration of the light source device (light source device 1B) according to the second modification of the present disclosure.
  • FIG. 6 shows a cross section of the light source device 1B corresponding to the line II shown in FIG. 2, similarly to FIG.
  • the light source device 1B is a packaged surface mount device (SMD) as in the above embodiment.
  • SMD packaged surface mount device
  • the light source device 1B of the present modification is different from the above-described embodiment in that a fluorescent member 42 having a rough surface on a part of the side surface is used.
  • the fluorescent member 42 has a rough surface shape on a part of the side surface, for example, the side surface excluding the irradiation region irradiated with the excitation light EL.
  • This rough surface shape corresponds to the "first scattering mechanism" of the present disclosure.
  • the rough surface shape of the side surface of the fluorescent member 42 can obtain a more scattering effect by designing the surface roughness to be about the same as the light wavelength in the phosphor.
  • the side surface of the fluorescent member 42 has a rough surface having an arithmetic mean roughness (Ra) of, for example, 200 nm or more and 400 nm or less. It is desirable to have a shape.
  • the side surface of the fluorescent member 42 corresponding to the irradiation region irradiated with the excitation light EL is preferably a flat surface as in the above embodiment. Further, as shown in FIG. 6, a mirror 14 may be formed on the side surface of the fluorescent member 42 corresponding to the irradiation region irradiated with the excitation light EL.
  • the side surface of the fluorescent member 42 may be directly roughened by sandblasting or the like, or for example, the surface of the mirror 14 may be roughened and the side surface of the fluorescent member 42 may be indirectly roughened. It may be a rough surface.
  • the fluorescent member 42 having a rough side surface By using the fluorescent member 42 having a rough side surface in this way, the fluorescent FL and the excitation light EL reaching the side surface from the inside of the fluorescent member 42 are scattered and returned to the inside of the fluorescent member 42. That is, the fluorescent FL and the excitation light EL leaking to the outside are reduced. As a result, the reabsorption of the excitation light EL in the fluorescent member 12 is promoted. Therefore, similarly to the above-mentioned modification 1, in addition to the effect of the above-described embodiment, the wavelength conversion efficiency can be further improved.
  • FIG. 7 schematically shows an example of the cross-sectional configuration of the light source device (light source device 1C) according to the third modification of the present disclosure.
  • FIG. 7 shows a cross section of the light source device 1C corresponding to the line II shown in FIG. 2, similarly to FIG.
  • the light source device 1C is a packaged surface mount device (SMD) as in the above embodiment.
  • the light source device 1C of the present modification is different from the above-described embodiment in that the mirror 16 is provided on the bottom surface of the fluorescent member 12.
  • the mirror 16 corresponds to a specific example of the "second reflective member" of the present disclosure.
  • the mirror 16 can be formed by using a reflective film such as a dielectric multilayer film designed to efficiently reflect the fluorescent FL. Further, similarly to the above-mentioned modification 1, for example, it may be formed by using a reflective film such as a dielectric multilayer film designed to efficiently reflect the excitation light EL and the fluorescent FL. In addition, it may be formed by using a metal film having light reflectivity.
  • the surface of the mirror 16 may be a rough surface and the bottom surface of the fluorescent member 12 may be a rough surface.
  • the mirror 16 on the bottom surface of the fluorescent member 12 or making the bottom surface a rough surface shape, in addition to the effects of the above-described embodiment, the light extraction efficiency from the upper surface of the fluorescent member 12 can be improved. Is possible. That is, it is possible to further improve the brightness of the white light extracted from the light source device 1.
  • FIG. 8 schematically shows an example of the cross-sectional configuration of the light source device (light source device 1D) according to the modified example 4 of the present disclosure.
  • FIG. 8 shows a cross section of the light source device 1D corresponding to the line II shown in FIG. 2, similarly to FIG.
  • the light source device 1D is a packaged surface mount device (SMD) as in the above embodiment.
  • the light source device 1D of the present modification is different from the above-described embodiment in that a fluorescent member 52 having an inclined surface 42S1 on a part of the side surface is used.
  • the fluorescent member 52 has an inclined surface 42S1 on a part of the side surface, specifically, the lower side surface on which the excitation light EL is irradiated.
  • the excitation light EL incident on the inclined surface 42S1 of the fluorescent member 52 is refracted upward due to the difference in refractive index between the outside of the phosphor and the phosphor, so that the inside of the fluorescent member 52 is directed upward. It becomes easy to propagate.
  • the excitation light EL can easily propagate upward in the fluorescent member 52. Therefore, in addition to the effects of the above-described embodiment, it is possible to improve the wavelength conversion efficiency and the light extraction efficiency.
  • the effect of this modification can also be obtained by forming the inclined surface 42S1 only on any side surface below the fluorescent member 52.
  • the excitation light EL when the excitation light EL is irradiated from one direction, only the side surface facing the side surface on which the excitation light EL is incident may be the inclined surface 42S1.
  • the entire side surface of the fluorescent member 52 may be an inclined surface 42S1. This makes it possible to further improve the light extraction efficiency of the excitation light EL and the fluorescent FL.
  • FIG. 10 schematically shows an example of the cross-sectional configuration of the light source device (light source device 1E) according to the modified example 5 of the present disclosure.
  • FIG. 10 shows a cross section of the light source device 1E corresponding to the line II shown in FIG. 2, similarly to FIG.
  • the light source device 1E is a packaged surface mount device (SMD) as in the above embodiment.
  • the light source device 1E of the present modification is different from the above-described embodiment in that the fluorescent member 62 is made of, for example, a composite material of a single crystal phosphor and a ceramic phosphor.
  • the fluorescent member 62 is composed of, for example, a phosphor layer 62A made of a single crystal phosphor and a phosphor layer 62B made of a polycrystalline phosphor such as a ceramic phosphor.
  • the phosphor layer 62A and the phosphor layer 62B are laminated in this order from the substrate 21 side.
  • the phosphor layer 62A and the phosphor layer 62B are adhered to each other by, for example, an adhesive.
  • Single crystal phosphors have high thermal conductivity and good temperature characteristics, but tend to transmit light easily and have low internal quantum efficiency.
  • the ceramic phosphor since the ceramic phosphor has a high scattering intensity at the interface, the internal quantum efficiency is higher than that of the single crystal phosphor. Therefore, by using the single crystal phosphor and the ceramic phosphor in combination, it is possible to improve the temperature characteristics and the internal quantum efficiency of the fluorescent member 62.
  • the fluorescent member 62 may be laminated in the order of the phosphor layer 62B and the phosphor layer 62A from the substrate 21 side, for example, the phosphor layer 62A / the phosphor layer 62B / the phosphor layer 62A and the fluorescence.
  • a multi-layer structure having three or more layers may be used, such as the body layer 62B / phosphor layer 62A / phosphor layer 62B.
  • the fluorescent member 62 As described above, by forming the fluorescent member 62 using a composite material of a single crystal phosphor and a ceramic phosphor, it is possible to further improve the heat exhaust efficiency and the internal quantum efficiency.
  • FIG. 11 schematically shows an example of the cross-sectional configuration of the light source device (light source device 1F) according to the modified example 6 of the present disclosure. Note that FIG. 11 shows a cross section of the light source device 1E corresponding to the line II shown in FIG. 2, similarly to FIG.
  • the light source device 1F is a packaged surface mount device (SMD) as in the above embodiment.
  • the light confinement member 17 is arranged between the semiconductor laser element 11 and the fluorescent member 52.
  • the light confinement member 17 is for suppressing the emission of the excitation light EL emitted from the semiconductor laser element 11.
  • a rod integrator can be used as the light confinement member 17.
  • the light confinement member 17 can be formed by using, for example, GaN or a material constituting a general waveguide, which has a small absorption rate of the excitation light EL and a large refractive index.
  • the light source device 1F of the present modification has an effect that the light utilization efficiency can be improved in addition to the effect of the modification 4.
  • the cross-sectional shape of the fluorescent member 12 may be a trapezoidal shape, for example, as shown in FIG. 12A.
  • the side surface facing the side surface (incident surface) on which the excitation light EL is incident at an angle not parallel to the incident surface the excitation light EL reaching the opposite side surface is reflected inside the fluorescent member 12. It becomes easy to be done. That is, the excitation light EL can be easily confined inside the fluorescent member 12, and the internal quantum efficiency can be improved.
  • the cross-sectional shape of the fluorescent member 12 may be a polygonal shape such as a hexagon as shown in FIG. 12B, for example.
  • FIG. 12B an example in which the mirror 14 covers the entire side surface of the fluorescent member 12 is shown.
  • the side surface facing the incident surface of the excitation light EL is incident.
  • the same effect can be obtained by forming the mirror 14 only on the opposite side surfaces. The same applies to the rough surface.
  • the cross-sectional shape of the fluorescent member 12 by making the cross-sectional shape of the fluorescent member 12 polygonal, more semiconductor laser elements 11 can be arranged according to the number of side surfaces thereof. This makes it possible to increase the amount of excitation light incident on the fluorescent member 12 and provide a light source device 1 having higher brightness.
  • FIG. 13 is a schematic exploded perspective view of a main part of the lighting device (lighting device 100B) according to the modified example 8 of the present disclosure.
  • the lighting device 100B has a base plate 31, a light source device (for example, a light source device 1), and an array lens 33 in this order. That is, the lighting device 100B is not provided with a lens holding member (for example, the lens holding member 32 in FIG. 5).
  • the base plate 31 of the lighting device 100B has, for example, a plate portion 311 and a holding portion 312 and a terminal portion 313E. Except for this point, the lighting device 100B of the present modification has the same configuration as the lighting device 100A of the above embodiment, and its action and effect are also the same.
  • the plate portion 311 of the base plate 31 is, for example, a plate-shaped member having a quadrangular planar shape.
  • a plurality of light source devices 1 are placed on the plate portion 311 in a matrix, for example.
  • the holding portion 312 has a quadrangular frame-shaped planar shape surrounding a plurality of light source devices 1 arranged in the central portion of the plate portion 311.
  • the holding portion 312 is in contact with the plate portion 311 and the array lens 33 (frame portion 33F), and the size of the distance between each light source device 1 and the lens 331 is adjusted by the size of the thickness of the holding part 312. It is supposed to be done.
  • the terminal portion 313E has, for example, a strip-shaped planar shape extending in one direction (Y direction in FIG. 13), and is provided on the plate portion 311.
  • the terminal portion 313E extends from the inside to the outside of the holding portion 312.
  • the plate portion 311 and the holding portion 312 and the terminal portion 313E are integrated, for example.
  • the plate portion 311 is made of, for example, aluminum
  • the holding portion 312 is made of, for example, PEEK (polyetheretherketone)
  • the terminal portion 313E is made of a metal material.
  • the plate portion 311 and the holding portion 312 are collectively molded by, for example, insert injection molding or the like.
  • the plate portion 311 is made of, for example, aluminum (Al), copper (Cu), copper-tungsten (Cu-W), aluminum nitride (AlN), or the like
  • the holding portion 312 is, for example, alumina, aluminum nitride, Kovar, or the like. It may be configured by.
  • the plate portion 311 and the holding portion 312 and the terminal portion 313E are insulated by, for example, low melting point glass or the like.
  • the lighting devices 100A and 100B described in the above embodiments and modifications can be applied to, for example, a projection type display device.
  • FIG. 14 is a diagram showing a configuration example of a projection type display device (projection type display device 200) to which the lighting devices 100A and 100B are applied as a light source.
  • the projection type display device 200 is, for example, a display device that projects an image on a screen.
  • the projection type display device 200 is connected to an external image supply device such as a computer such as a PC or various image players via an I / F (interface), and is based on an image signal input to the I / F.
  • the image is projected onto a screen or the like.
  • the configuration of the projection type display device 200 described below is an example, and the projection type display device according to the present technology is not limited to such a configuration.
  • the projection type display device 200 includes a lighting device 100A, 100B, a multi-lens array 212, a PBS array 213, a focus lens 214, a mirror 215a, 215c to 215e, a dichroic mirror 216, 217, a light modulation element 218a to 218c, and a dichroic prism 219. And a projection lens 220.
  • the light emitted from the semiconductor laser element 11 passes through the array lens 33 and is taken out as collimated light. This light is incident on the multi-lens array 212.
  • the multi-lens array 212 has a structure in which a plurality of lens elements are provided in an array, and collects light emitted from the illumination devices 100A and 100B.
  • the PBS array 213 polarizes the light focused by the multi-lens array 212 into light in a predetermined polarization direction, for example, a P-polarized wave.
  • the focus lens 214 collects the light converted into light in a predetermined polarization direction by the PBS array 213.
  • the dichroic mirror 216 transmits the red light R among the light incident through the focus lens 214 and the mirror 215e, and reflects the green light G and the blue light B.
  • the red light R transmitted by the dichroic mirror 216 is guided to the light modulation element 218a via the mirror 215a.
  • the dichroic mirror 217 transmits the blue light B of the light reflected by the dichroic mirror 216 and reflects the green light G.
  • the green light G reflected by the dichroic mirror 217 is guided to the light modulation element 218b.
  • the blue light B transmitted by the dichroic mirror 217 is guided to the light modulation element 218c via the mirror 215d and the mirror 215c.
  • Each of the light modulation elements 218a to 218c photomodulates each incident color light, and each light-modulated color light is incident on the dichroic prism 219.
  • the dichroic prism 219 synthesizes each color light that has been light-modulated and incident on one optical axis.
  • Each of the combined colored lights is projected onto a screen or the like via the projection lens 220.
  • the projection type display device 200 In the projection type display device 200, three light modulation elements 218a to 218c corresponding to the three primary colors of red, green, and blue are combined to display all colors. That is, the projection type display device 200 is a so-called three-plate type projection type display device.
  • the substrate 21 and the package member 22 may be provided with, for example, a wiring structure for electrically connecting the semiconductor laser element 11 and the outside.
  • the components, arrangements, numbers, etc. of the light source devices 1 (and the light source devices 1A to 1F) and the lighting devices 100A and 100B illustrated in the above embodiments and the like are merely examples, and it is necessary to include all the components. It may also have other components.
  • the light source device for example, the light source device 1 described in the above-described embodiment and the like and the lighting device provided with the light source device (for example, the lighting device 100A) is applied to the projection type display device.
  • the light source device for example, the light source device 1 described in the above-described embodiment can be used for, for example, in-vehicle lighting such as a headlight, a spotlight, an intelligent lighting, a searchlight, and the like.
  • the present technology can also have the following configurations. According to this technology having the following configuration, since the bottom surface of the fluorescent member is bonded to the substrate, the heat exhaust efficiency of the heat generated inside the fluorescent member by the irradiation of the excitation light is improved, and the power light conversion efficiency is improved. It becomes possible. Further, since the opening is provided on the upper surface of the package member so that the fluorescent member is exposed on the upper surface of the package member, the light emitting point becomes smaller and the fluorescent member can be easily coupled to the external optical system. (1) With the board A fluorescent member whose bottom is bonded to the substrate, A semiconductor light emitting device mounted on the substrate and irradiating the side surface of the fluorescent member with excitation light.
  • a light source device including a package member that seals the fluorescent member and the semiconductor light emitting element and has an opening on the upper surface from which the fluorescent member is exposed.
  • the first reflective member is provided on the entire side surface of the fluorescent member.
  • the light source device according to (3) or (4), wherein the fluorescence and the excitation light are reflected in a region other than the irradiation region of the excitation light.
  • the light source device according to any one of (1) to (5) above, further comprising a first scattering mechanism for scattering fluorescence on at least a part of a side surface of the fluorescent member.
  • the light source device wherein the first scattering mechanism is provided on the entire side surface of the fluorescent member excluding the irradiation region of the excitation light.
  • the fluorescent member has a polygonal prism shape and has a polygonal prism shape.
  • the semiconductor light emitting device is arranged at a position facing at least one surface forming a side surface of the fluorescent member.
  • Light source device. (10) The invention according to any one of (1) to (9), further comprising a second scattering mechanism that scatters at least one of fluorescence and excitation light between the bottom surface of the fluorescent member and the substrate.
  • Light source device. (11) The light source device according to any one of (1) to (10) above, wherein the fluorescent member has an inclined surface at least a part of a side surface. (12) The light source device according to (11), wherein the inclined surface is formed on a side surface of the fluorescent member facing an incident surface of the excitation light.
  • the light source device contains at least a part of a single crystal phosphor.
  • the fluorescent member is made of a composite material of a single crystal and ceramic.
  • the light source device according to any one of (1) to (14), further comprising a light confining member between the semiconductor light emitting device and the fluorescent member.
  • the semiconductor light emitting element is a semiconductor laser.
  • the semiconductor laser emits a wavelength of 430 nm or more and 480 nm or less.

Abstract

A light source device according to an embodiment of the present disclosure comprises: a substrate; a fluorescent member that has a bottom section joined to the substrate; a semiconductor light emitting element that is mounted on the substrate and emits excitation light to a side surface of the fluorescent member; and a package member that seals the fluorescent member and the semiconductor light emitting element and has, in an upper surface thereof, an opening that exposes the fluorescent member.

Description

光源装置および照明装置Light source device and lighting device
 本技術は、例えば半導体レーザ素子および蛍光体を用いた光源装置およびこれを備えた照明装置に関する。 The present technology relates to, for example, a light source device using a semiconductor laser element and a phosphor, and a lighting device equipped with the light source device.
 例えば、特許文献1では、熱伝導性に優れた材料からなる基板上に半導体レーザおよびベース部を面接触させることで、半導体レーザによって発生する熱を容易に除去する光源装置が開示されている。 For example, Patent Document 1 discloses a light source device that easily removes heat generated by a semiconductor laser by surface-contacting the semiconductor laser and a base portion on a substrate made of a material having excellent thermal conductivity.
特開2013-254889号公報Japanese Unexamined Patent Publication No. 2013-254889
 ところで、上記光源装置のように、半導体レーザから入射した光を蛍光体に照射し、異なる波長の蛍光を取り出す光源装置では、電力光変換効率の向上が求められている。 By the way, in a light source device such as the above light source device, which irradiates a phosphor with light incident from a semiconductor laser and extracts fluorescence of different wavelengths, improvement in power light conversion efficiency is required.
 電力光変換効率を向上させることが可能な光源装置および照明装置を提供することが望ましい。 It is desirable to provide a light source device and a lighting device that can improve the power-light conversion efficiency.
 本開示の一実施形態に係る光源装置は、基板と、底部が基板に接合された蛍光部材と、基板に実装され、蛍光部材の側面に励起光を照射する半導体発光素子と、蛍光部材および半導体発光素子を封止すると共に、上面に蛍光部材が露出する開口を有するパッケージ部材とを備えたものである。 The light source device according to the embodiment of the present disclosure includes a substrate, a fluorescent member whose bottom is bonded to the substrate, a semiconductor light emitting element mounted on the substrate and irradiating excitation light on the side surface of the fluorescent member, a fluorescent member, and a semiconductor. It is provided with a package member that seals the light emitting element and has an opening on the upper surface where the fluorescent member is exposed.
 本開示の一実施形態に係る照明装置は、上記一実施の形態の光源装置を備えたものである。 The lighting device according to the embodiment of the present disclosure includes the light source device of the above-described embodiment.
 本開示の一実施形態に係る光源装置および一実施の形態に係る照明装置では、蛍光部材の底面を基板に接合することにより、励起光の照射によって蛍光部材内部で発生した熱の排熱効率が向上する。 In the light source device according to the embodiment and the lighting device according to the embodiment of the present disclosure, the heat exhaust efficiency of the heat generated inside the fluorescent member due to the irradiation of the excitation light is improved by joining the bottom surface of the fluorescent member to the substrate. To do.
本開示の実施の形態に係る光源装置の構成の一例を表す断面模式図である。It is sectional drawing which shows an example of the structure of the light source apparatus which concerns on embodiment of this disclosure. 図1に示した光源装置の平面模式図である。It is a plane schematic diagram of the light source apparatus shown in FIG. 図1に示した光源装置を備えた照明装置の概略構成の一例を表す断面模式図である。FIG. 5 is a schematic cross-sectional view showing an example of a schematic configuration of a lighting device including the light source device shown in FIG. 図3に示した照明装置の模式的な構成を表す分解斜視図である。It is an exploded perspective view which shows the typical structure of the lighting apparatus shown in FIG. 本開示の変形例1に係る光源装置の構成の一例を表す断面模式図である。It is sectional drawing which shows an example of the structure of the light source apparatus which concerns on the modification 1 of this disclosure. 本開示の変形例2に係る光源装置の構成の一例を表す断面模式図である。It is sectional drawing which shows an example of the structure of the light source apparatus which concerns on the modification 2 of this disclosure. 本開示の変形例3に係る光源装置の構成の一例を表す断面模式図である。It is sectional drawing which shows an example of the structure of the light source apparatus which concerns on the modification 3 of this disclosure. 本開示の変形例4に係る光源装置の構成の一例を表す断面模式図である。It is sectional drawing which shows an example of the structure of the light source apparatus which concerns on the modification 4 of this disclosure. 本開示の変形例4に係る光源装置の構成の他の例を表す断面模式図である。It is sectional drawing which shows the other example of the structure of the light source apparatus which concerns on the modification 4 of this disclosure. 本開示の変形例5に係る光源装置の構成の一例を表す断面模式図である。It is sectional drawing which shows an example of the structure of the light source apparatus which concerns on the modification 5 of this disclosure. 本開示の変形例6に係る光源装置の構成の一例を表す断面模式図である。It is sectional drawing which shows an example of the structure of the light source apparatus which concerns on the modification 6 of this disclosure. 本開示の変形例7としての蛍光部材の平面形状および半導体レーザの配置の一例を表す模式図である。It is a schematic diagram which shows an example of the planar shape of the fluorescent member and the arrangement of the semiconductor laser as the modification 7 of this disclosure. 本開示の変形例7としての蛍光部材の平面形状および半導体レーザの配置の他の例を表す模式図である。It is a schematic diagram which shows another example of the planar shape of the fluorescent member and the arrangement of the semiconductor laser as the modification 7 of this disclosure. 本開示の変形例7としての蛍光部材の平面形状および半導体レーザの配置の他の例を表す模式図である。It is a schematic diagram which shows another example of the planar shape of the fluorescent member and the arrangement of the semiconductor laser as the modification 7 of this disclosure. 本開示の変形例8に係る照明装置の構成の一例を表す分解斜視図である。It is an exploded perspective view which shows an example of the structure of the lighting apparatus which concerns on the modification 8 of this disclosure. 図1等に示した光源装置が適用された投射型表示装置の構成の一例を表す図である。It is a figure which shows an example of the structure of the projection type display device to which the light source device shown in FIG.
 以下、本開示における一実施形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比などについても、それらに限定されるものではない。なお、説明する順序は、下記の通りである。
 1.実施の形態
(蛍光部材の底面を基板に接合し、且つ、上面をパッケージ部材から露出させた光源装置の例)
   1-1.光源装置の構成
   1-2.照明装置の構成
   1-3.作用・効果
 2.変形例
   2-1.変形例1(蛍光部材の側面に蛍光および励起光を反射するミラーを設けた例)
   2-2.変形例2(蛍光部材の側面に拡散機構を設けた例)
   2-3.変形例3(蛍光部材の底面にさらにミラーを設けた例)
   2-4.変形例4(蛍光部材の側面に一部を傾斜面とした例)
   2-5.変形例5(蛍光部材を異なる2種類の蛍光体を用いて形成した例)
   2-6.変形例6(半導体レーザ素子と蛍光部材との間に光閉じ込め部材を配置した例)
   2-7.変形例7(蛍光部材の平面形状の他の例)
   2-8.変形例8(照明装置の他の例)
 3.適用例(投射型表示装置の例)
Hereinafter, one embodiment in the present disclosure will be described in detail with reference to the drawings. The following description is a specific example of the present disclosure, and the present disclosure is not limited to the following aspects. Further, the present disclosure is not limited to the arrangement, dimensions, dimensional ratio, etc. of each component shown in each figure. The order of explanation is as follows.
1. 1. Embodiment (Example of a light source device in which the bottom surface of a fluorescent member is joined to a substrate and the upper surface is exposed from a package member)
1-1. Configuration of light source device 1-2. Configuration of lighting equipment 1-3. Action / effect 2. Modification example 2-1. Modification 1 (Example in which a mirror that reflects fluorescence and excitation light is provided on the side surface of the fluorescent member)
2-2. Modification 2 (Example in which a diffusion mechanism is provided on the side surface of the fluorescent member)
2-3. Modification 3 (Example in which a mirror is further provided on the bottom surface of the fluorescent member)
2-4. Deformation example 4 (Example in which a part of the side surface of the fluorescent member is an inclined surface)
2-5. Modification 5 (Example in which the fluorescent member is formed by using two different types of phosphors)
2-6. Modification 6 (Example in which a light confining member is arranged between the semiconductor laser element and the fluorescent member)
2-7. Deformation example 7 (another example of the planar shape of the fluorescent member)
2-8. Modification 8 (another example of a lighting device)
3. 3. Application example (example of projection type display device)
<1.実施の形態>
 図1は、本開示の一実施の形態に係る光源装置(光源装置1)の断面構成の一例を模式的に表したものである。図2は、図1に示した光源装置1の平面構成の一例を模式的に表したものである。なお、図1では、図2に示したI-I線における断面を表している。光源装置1は、パッケージ化された表面実装型デバイス(surface mount device;SMD)である。光源装置1は、半導体レーザ素子11、蛍光部材12、基板21およびパッケージ部材22を有する。半導体レーザ素子11および蛍光部材12は、例えば、基板21に実装され、パッケージ部材22によって覆われている。基板21とパッケージ部材22とは、例えばはんだを介して接合されており、これによって、半導体レーザ素子11および蛍光部材12は気密封止されている。
<1. Embodiment>
FIG. 1 schematically shows an example of a cross-sectional configuration of a light source device (light source device 1) according to an embodiment of the present disclosure. FIG. 2 schematically shows an example of the planar configuration of the light source device 1 shown in FIG. Note that FIG. 1 shows a cross section taken along the line II shown in FIG. The light source device 1 is a packaged surface mount device (SMD). The light source device 1 includes a semiconductor laser element 11, a fluorescent member 12, a substrate 21, and a package member 22. The semiconductor laser element 11 and the fluorescent member 12 are mounted on the substrate 21, for example, and covered with the package member 22. The substrate 21 and the package member 22 are joined to each other via, for example, solder, whereby the semiconductor laser element 11 and the fluorescent member 12 are hermetically sealed.
(1-1.光源装置の構成)
 本実施の形態の光源装置1は、半導体レーザ素子11および蛍光部材12を有し、パッケージ20内に封止されている。半導体レーザ素子11は、例えばサブマウント13を介して基板21に実装されている。蛍光部材12は、例えば柱状形状を有し、側面の少なくとも一部はミラー14によって覆われており、底面は基板21に接合されている。パッケージ20は、基板21とパッケージ部材22とを含んで構成されている。パッケージ部材22は、下方に開口する凹部22Cを有している。パッケージ20は、基板21の上面21S1と、パッケージ部材22の凹部22Cを囲む額縁状の下面22S2とを、例えばはんだによって接合することで、気密性を有する収容空間Xを有している。半導体レーザ素子11、蛍光部材12およびサブマウント13は、この収容空間Xに収容されている。パッケージ部材22は、さらに、上面22S1に開口22Hを有している。開口22Hの側面の少なくとも一部は、蛍光部材12(正確には、蛍光部材12の側面に設けられたミラー14)と接しており、開口22H内には、蛍光部材12の上面が露出している。以下、光源装置1を構成する各構成部材について詳細に説明する。
(1-1. Configuration of light source device)
The light source device 1 of the present embodiment has a semiconductor laser element 11 and a fluorescent member 12, and is sealed in a package 20. The semiconductor laser element 11 is mounted on the substrate 21 via, for example, a submount 13. The fluorescent member 12 has, for example, a columnar shape, at least a part of the side surface thereof is covered with a mirror 14, and the bottom surface thereof is joined to the substrate 21. The package 20 includes a substrate 21 and a package member 22. The package member 22 has a recess 22C that opens downward. The package 20 has an airtight storage space X by joining the upper surface 21S1 of the substrate 21 and the frame-shaped lower surface 22S2 surrounding the recess 22C of the package member 22 with, for example, solder. The semiconductor laser element 11, the fluorescent member 12, and the submount 13 are housed in the accommodation space X. The package member 22 further has an opening 22H on the upper surface 22S1. At least a part of the side surface of the opening 22H is in contact with the fluorescent member 12 (more precisely, the mirror 14 provided on the side surface of the fluorescent member 12), and the upper surface of the fluorescent member 12 is exposed in the opening 22H. There is. Hereinafter, each component constituting the light source device 1 will be described in detail.
 半導体レーザ素子11は、本開示の「半導体発光素子」の一具体例であり、例えば、例えば窒化ガリウム(GaN)系の半導体材料を含んでおり、青色波長域の光、具体的には、430nm以上480nm以下の波長の光を出射する。半導体レーザ素子11は、例えば、ガリウム砒素(GaAs)系等の半導体材料を含んでいてもよい。半導体レーザ素子11は、出射面が後述す蛍光部材12の側面と正対するように配置されている。 The semiconductor laser device 11 is a specific example of the "semiconductor light emitting device" of the present disclosure, and includes, for example, a gallium nitride (GaN) -based semiconductor material, such as light in the blue wavelength region, specifically, 430 nm. It emits light having a wavelength of 480 nm or less. The semiconductor laser device 11 may include, for example, a semiconductor material such as gallium arsenide (GaAs). The semiconductor laser element 11 is arranged so that the emission surface faces the side surface of the fluorescent member 12, which will be described later.
 蛍光部材12は、半導体レーザ素子11から出射された光を励起光ELとして吸収し、励起光ELとは異なる波長の蛍光FLを出射するものである。蛍光部材12は、例えば単結晶の蛍光体を用いて形成することができる。蛍光部材12は、半導体レーザ素子11から出射される励起光ELの光路上に配置されている。蛍光部材12は、例えば、平面形状(XY平面方向の断面形状)が矩形状の柱状構造体であり、側面に励起光ELが照射されるように、半導体レーザ素子11の出射面と対向配置されている。蛍光部材12の底面は、上記のように、基板21に接合されている。蛍光部材12と基板21とは、例えば、銀(Ag)ペーストやはんだを用いて接合されている。この他、樹脂を用いて蛍光部材12と基板21とを接着するようにしてもよい。その際には、樹脂中に酸化アルミニウム(Al23)等の優れた熱伝導性を有する微粒子を分散させることが好ましい。これにより、励起光ELの照射による蛍光部材12の内部の発熱が、基板21を介して放熱されやすくなる。 The fluorescent member 12 absorbs the light emitted from the semiconductor laser element 11 as the excitation light EL, and emits a fluorescent FL having a wavelength different from that of the excitation light EL. The fluorescent member 12 can be formed by using, for example, a single crystal phosphor. The fluorescent member 12 is arranged on the optical path of the excitation light EL emitted from the semiconductor laser element 11. The fluorescent member 12 is, for example, a columnar structure having a rectangular planar shape (cross-sectional shape in the XY planar direction), and is arranged to face the emission surface of the semiconductor laser element 11 so that the side surface is irradiated with the excitation light EL. ing. The bottom surface of the fluorescent member 12 is joined to the substrate 21 as described above. The fluorescent member 12 and the substrate 21 are joined by using, for example, silver (Ag) paste or solder. In addition, the fluorescent member 12 and the substrate 21 may be adhered to each other by using a resin. In that case, it is preferable to disperse fine particles having excellent thermal conductivity such as aluminum oxide (Al 2 O 3) in the resin. As a result, the heat generated inside the fluorescent member 12 due to the irradiation of the excitation light EL is easily dissipated through the substrate 21.
 蛍光部材12は、例えば、青色波長域(例えば430nm~480nm)の波長を有する青色レーザ光により励起されて黄色の蛍光(赤色波長域から緑色波長域の間の波長帯域の光)を発する蛍光体が用いられている。このような蛍光体として、例えばYAG(イットリウム・アルミニウム・ガーネット)系材料やLAG(ルテチウム・アルミニウム・ガーネット)系材料が挙げられる。 The fluorescent member 12 is, for example, a phosphor that is excited by a blue laser beam having a wavelength in the blue wavelength region (for example, 430 nm to 480 nm) and emits yellow fluorescence (light in the wavelength band between the red wavelength region and the green wavelength region). Is used. Examples of such a phosphor include a YAG (yttrium aluminum garnet) -based material and a LAG (lutetium aluminum garnet) -based material.
 サブマウント13は、半導体レーザ素子11を基板21上に実装するためのものであり、半導体レーザ素子11と基板21との間に設けられている。サブマウント13は、例えば板状の部材であり、サブマウント13の厚み(図1のZ方向の大きさ)により、蛍光部材12の側面に対する励起光ELの入射位置(高さ)を調整することができる。これにより、蛍光部材12に対する励起光ELの入射光率が向上する。サブマウント13は、例えば、窒化アルミニウム(AlN)、炭化シリコン(SiC)、シリコン(Si)または銅(Cu)等の優れた熱伝導性を有する材料を用いて形成されていることが好ましい。これにより、半導体レーザ素子11において発生する熱を容易に除去することが可能となる。 The submount 13 is for mounting the semiconductor laser element 11 on the substrate 21, and is provided between the semiconductor laser element 11 and the substrate 21. The submount 13 is, for example, a plate-shaped member, and the incident position (height) of the excitation light EL with respect to the side surface of the fluorescent member 12 is adjusted according to the thickness of the submount 13 (the size in the Z direction in FIG. 1). Can be done. As a result, the incident light rate of the excitation light EL with respect to the fluorescent member 12 is improved. The submount 13 is preferably formed using a material having excellent thermal conductivity such as aluminum nitride (AlN), silicon carbide (SiC), silicon (Si) or copper (Cu). This makes it possible to easily remove the heat generated in the semiconductor laser element 11.
 半導体レーザ素子11は、サブマウント13に例えばAuSn(金-錫)により共晶接合されており、サブマウント13は、基板21に例えばAuSnにより共晶接合されている。サブマウント13は、基板21に例えば、銀(Ag)ペースト、焼結金(Au)または焼結銀(Ag)等により接合されていてもよい。 The semiconductor laser device 11 is eutectic bonded to the submount 13 by, for example, AuSn (gold-tin), and the submount 13 is eutectic bonded to the substrate 21 by, for example, AuSn. The submount 13 may be bonded to the substrate 21 with, for example, silver (Ag) paste, sintered gold (Au), sintered silver (Ag), or the like.
 ミラー14は、蛍光部材12の側面に設けられ、蛍光部材12において発せられた蛍光FLを反射して蛍光部材12の内部に閉じ込めるためのものであり、本開示の「第1の反射部材」の一具体例に相当する。ミラー14は、例えば、蛍光FLを効率的に反射するように設計された誘電体多層膜等の反射膜を用いて形成することができる。この他、光反射性を有する金属膜を用いて形成するようにしてもよい。なお、金属膜を用いて形成する場合には、励起光ELの入射を妨げないように、励起光ELが照射される照射領域を除いた側面全体に形成する。 The mirror 14 is provided on the side surface of the fluorescent member 12 to reflect the fluorescent FL emitted by the fluorescent member 12 and confine it inside the fluorescent member 12, and is the "first reflective member" of the present disclosure. Corresponds to a specific example. The mirror 14 can be formed, for example, by using a reflective film such as a dielectric multilayer film designed to efficiently reflect the fluorescent FL. In addition, it may be formed by using a metal film having light reflectivity. When the metal film is used, it is formed on the entire side surface excluding the irradiation region irradiated with the excitation light EL so as not to interfere with the incident of the excitation light EL.
 基板21は、例えば、矩形状の平面形状を有する板状部材ある。基板21は、優れた熱伝導性を有する材料を用いて構成されていることが好ましい。これにより、半導体レーザ素子11および蛍光部材12において発生する熱を、効率よく排熱することが可能となる。基板21は、例えば、窒化アルミニウム(AlN)、炭化シリコン(SiC)、シリコン(Si)または銅(Cu)によって構成されている。 The substrate 21 is, for example, a plate-shaped member having a rectangular planar shape. The substrate 21 is preferably constructed using a material having excellent thermal conductivity. As a result, the heat generated in the semiconductor laser element 11 and the fluorescent member 12 can be efficiently exhausted. The substrate 21 is made of, for example, aluminum nitride (AlN), silicon carbide (SiC), silicon (Si) or copper (Cu).
 パッケージ部材22は、対向する上面22S1と、基板21と接合される下面22S2とを有すると共に、下面22S2に開口する凹部22Cを有する、例えば直方体である。パッケージ部材22が、凹部22Cを囲む額縁状の下面22S2と、基板21の上面21S1とを、例えばはんだを介して接合することで、気密性を有する収容空間Xを形成する。パッケージ部材22の上面22S1には、蛍光部材12と対向する位置に開口22Hが形成されている。開口22Hは、例えば、蛍光部材12のXY平面方向の断面形状と略同じ形状を有している。開口22Hの側面の少なくとも一部には、上記のように、蛍光部材12の側面(正確には、ミラー14)が接している。即ち、蛍光部材12の上面は、開口22H内に露出しており、例えば、パッケージ部材22の上面22S1と同一面を形成している。収容空間X内は、例えば、窒素(N2)やドライエアによって置換されている。 The package member 22 is, for example, a rectangular parallelepiped having an upper surface 22S1 facing the surface and a lower surface 22S2 joined to the substrate 21 and having a recess 22C opening in the lower surface 22S2. The package member 22 forms an airtight storage space X by joining the frame-shaped lower surface 22S2 surrounding the recess 22C and the upper surface 21S1 of the substrate 21 via, for example, solder. An opening 22H is formed on the upper surface 22S1 of the package member 22 at a position facing the fluorescent member 12. The opening 22H has substantially the same shape as the cross-sectional shape of the fluorescent member 12 in the XY plane direction, for example. As described above, the side surface of the fluorescent member 12 (to be exact, the mirror 14) is in contact with at least a part of the side surface of the opening 22H. That is, the upper surface of the fluorescent member 12 is exposed in the opening 22H, and forms the same surface as the upper surface 22S1 of the package member 22, for example. The inside of the accommodation space X is replaced by, for example, nitrogen (N 2 ) or dry air.
 パッケージ部材22は、例えば、ガラスやセラミックによって構成されており、例えば、窒化アルミニウム(AlN)、酸化アルミニウム(アルミナ)または炭化シリコン(SiC)等の焼結体を含んでいる。 The package member 22 is made of, for example, glass or ceramic, and contains, for example, a sintered body such as aluminum nitride (AlN), aluminum oxide (alumina), or silicon carbide (SiC).
 上記のように、基板21とパッケージ部材22とは、例えば、はんだを用いて接合されている。具体的には、基板21の上面21S1の、パッケージ部材22との接合部分およびパッケージ部材22の下面22S2の、基板21との接合部分には、それぞれ、下地層が形成されており、これら下地層およびはんだを介して、基板21とパッケージ部材22とは接合されている。下地層は、例えば、クロム(Cr)、チタン(Ti)または金(Au)等を用いて形成することができる。はんだとしては、例えば、SnAgCu(錫-銀-銅)系等のはんだや、(金-錫)系,Sn(錫)系またはIn(インジウム)系等のはんだを用いることができる。 As described above, the substrate 21 and the package member 22 are joined by using, for example, solder. Specifically, a base layer is formed on each of the joint portion of the upper surface 21S1 of the substrate 21 with the package member 22 and the joint portion of the lower surface 22S2 of the package member 22 with the substrate 21, and these base layers are formed. The substrate 21 and the package member 22 are joined to each other via solder. The base layer can be formed by using, for example, chromium (Cr), titanium (Ti), gold (Au), or the like. As the solder, for example, SnAgCu (tin-silver-copper) -based solder or (gold-tin) -based, Sn (tin) -based or In (indium) -based solder can be used.
 光源装置1では、例えば、以下のようにして光が取り出される。半導体レーザ素子11から出射された光(例えば、青色波長域の光、励起光EL)は、蛍光部材12の側面に入射する。蛍光部材12の側面に入射した励起光ELは、蛍光部材12を構成する蛍光体を励起する。励起光ELによって励起された蛍光体は、励起光ELとは異なる波長帯域の光(例えば、黄色帯域の光、蛍光FL)を発する。蛍光FLは、蛍光部材12の側面に形成されたミラー14によって反射されながら、蛍光体の励起に寄与しなかった励起光ELと共に、蛍光部材12内を上方(例えば、Z軸方向)に向かって伝搬する。その結果、光源装置1では、蛍光FLと励起光ELとが合波された白色光が、蛍光部材12の上面から取り出される。 In the light source device 1, for example, light is extracted as follows. The light emitted from the semiconductor laser device 11 (for example, light in the blue wavelength region, excitation light EL) is incident on the side surface of the fluorescent member 12. The excitation light EL incident on the side surface of the fluorescent member 12 excites the phosphor constituting the fluorescent member 12. The phosphor excited by the excitation light EL emits light having a wavelength band different from that of the excitation light EL (for example, light in the yellow band, fluorescent FL). The fluorescent FL is reflected upward by the mirror 14 formed on the side surface of the fluorescent member 12, and together with the excitation light EL that does not contribute to the excitation of the phosphor, moves upward (for example, in the Z-axis direction) in the fluorescent member 12. Propagate. As a result, in the light source device 1, white light in which the fluorescent FL and the excitation light EL are combined is taken out from the upper surface of the fluorescent member 12.
(1-2.照明装置の構成)
 図3は、図1に示した光源装置1を備えた照明装置(照明装置100A)の模式的な側面の構成の一例を表したものであり、図3は、図4に示した照明装置100Aの分解斜視図である。照明装置100Aは、光源装置1、ベースプレート31、レンズ保持部材32およびアレイレンズ33を有している。アレイレンズ33は、各々の光源装置1に対応するレンズ331を有している。
(1-2. Configuration of lighting equipment)
FIG. 3 shows an example of a schematic side configuration of the lighting device (lighting device 100A) provided with the light source device 1 shown in FIG. 1, and FIG. 3 shows the lighting device 100A shown in FIG. It is an exploded perspective view of. The illumination device 100A includes a light source device 1, a base plate 31, a lens holding member 32, and an array lens 33. The array lens 33 has a lens 331 corresponding to each light source device 1.
 ベースプレート31は、光源装置1を載置するための部材である。ベースプレート31は、例えば平板状の部材であり、互いに対向する表面31Aおよび裏面31Bを有している。表面31Aには、複数の光源装置1が設けられており、裏面31Bは例えばヒートシンク等(図示せず)と熱的に接続されている。 The base plate 31 is a member on which the light source device 1 is placed. The base plate 31 is, for example, a flat plate-shaped member, and has a front surface 31A and a back surface 31B facing each other. A plurality of light source devices 1 are provided on the front surface 31A, and the back surface 31B is thermally connected to, for example, a heat sink or the like (not shown).
 ベースプレート31は、例えば、セラミック材料または金属材料等により構成されている。金属材料により構成されたベースプレート31では、放熱性を高めることが可能となる。金属材料としては、例えば、鉄(Fe)、鉄合金、銅(Cu)、アルミニウム(Al)および銅合金等が挙げられる。銅合金としては、例えば銅-タングステン(CuW)等が挙げられる。セラミック材料としては、例えば窒化アルミニウム(AlN)等が挙げられる。ベースプレート31には、冷却用の水路が設けられていてもよい。 The base plate 31 is made of, for example, a ceramic material or a metal material. The base plate 31 made of a metal material can improve heat dissipation. Examples of the metal material include iron (Fe), iron alloy, copper (Cu), aluminum (Al), and copper alloy. Examples of the copper alloy include copper-tungsten (CuW) and the like. Examples of the ceramic material include aluminum nitride (AlN) and the like. The base plate 31 may be provided with a cooling water channel.
 ベースプレート31には、光源装置1を載置するための凹部が設けられていてもよい。ベースプレート31の凹部に光源装置1を設けることにより、光源装置1を保護することができる。 The base plate 31 may be provided with a recess for mounting the light source device 1. By providing the light source device 1 in the recess of the base plate 31, the light source device 1 can be protected.
 ベースプレート31の表面31Aには、複数の光源装置1が載置されている。複数の光源装置1は、例えば、ベースプレート31の表面31Aにマトリクス状に配置されている(図4のX方向およびY方向)。例えば、マトリクス状に配置された光源装置1の一部が抜けていてもよい。この一部の光源装置1の抜けは、例えば、不良品の除去または面内の一部のパワー密度を下げる目的等のためである。光源装置1の配置は、例えば、略六角形状または千鳥状等、他の配置であってもよい。 A plurality of light source devices 1 are mounted on the surface 31A of the base plate 31. The plurality of light source devices 1 are arranged in a matrix on the surface 31A of the base plate 31, for example (X direction and Y direction in FIG. 4). For example, a part of the light source device 1 arranged in a matrix may be omitted. This part of the light source device 1 is missing, for example, for the purpose of removing defective products or lowering the power density of a part of the surface. The arrangement of the light source device 1 may be another arrangement such as a substantially hexagonal shape or a staggered shape.
 ベースプレート31の表面31Aにマトリクス状に配置された、複数の光源装置1の間隔は、例えば、θ⊥方向の間隔よりもθ//方向の間隔の方が小さくなっている。θ//方向のFFP(Far Field Pattern)半値幅は、θ⊥方向のFFP半値幅よりも狭いため、θ//方向の光源装置1の間隔を小さくすることが可能となる。これにより、光密度を向上させることが可能となる。複数の光源装置1を一列に配置するようにしてもよい。 The distance between the plurality of light source devices 1 arranged in a matrix on the surface 31A of the base plate 31 is smaller in the θ // direction than in the θ⊥ direction, for example. Since the FFP (Far Field Pattern) half width in the θ // direction is narrower than the FFP half width in the θ⊥ direction, the distance between the light source devices 1 in the θ // direction can be reduced. This makes it possible to improve the light density. A plurality of light source devices 1 may be arranged in a row.
 ベースプレート31とアレイレンズ33との間に設けられたレンズ保持部材32は、例えば、ベースプレート31の表面31Aに載置された複数の光源装置1を囲む枠状の形状を有している(図4)。即ち、枠状のレンズ保持部材32の内側に、複数の光源装置1が設けられている。レンズ保持部材32の平面形状は、例えば、四角形状である。このレンズ保持部材32は、例えば、四角形の枠形状を有する保持部321と、この保持部321の内側および外側に拡張して設けられた拡張部322とを有している。拡張部322は、例えば、四角形の保持部321の対向する2辺に設けられている。レンズ保持部材32は、ベースプレート31の全周にわたって設けられていなくてもよく、例えば、四角形状のベースプレート31の3辺に設けられていてもよい。あるいは、四角形状のベースプレート31の対向する2辺にレンズ保持部材32を設けるようにしてもよい。 The lens holding member 32 provided between the base plate 31 and the array lens 33 has, for example, a frame-like shape surrounding a plurality of light source devices 1 mounted on the surface 31A of the base plate 31 (FIG. 4). ). That is, a plurality of light source devices 1 are provided inside the frame-shaped lens holding member 32. The planar shape of the lens holding member 32 is, for example, a quadrangular shape. The lens holding member 32 has, for example, a holding portion 321 having a quadrangular frame shape, and an expanding portion 322 extended inside and outside the holding portion 321. The expansion portion 322 is provided on, for example, two opposing sides of the quadrangular holding portion 321. The lens holding member 32 may not be provided over the entire circumference of the base plate 31, and may be provided on three sides of the rectangular base plate 31, for example. Alternatively, the lens holding member 32 may be provided on two opposite sides of the rectangular base plate 31.
 レンズ保持部材32は、例えば、ネジ等(図示せず)を用いてベースプレート31に固定されている。レンズ保持部材32をベースプレート31に固定する方法は、どのような方法であってもよく、例えば接着剤を用いてレンズ保持部材32をベースプレート31に固定するようにしてもよい。接着剤は、例えば樹脂材料により構成されている。あるいは、レンズ保持部材32およびベースプレート31は、インサートモールド工程等を用いて一括成形されていてもよい。 The lens holding member 32 is fixed to the base plate 31 using, for example, screws or the like (not shown). The method of fixing the lens holding member 32 to the base plate 31 may be any method, and for example, the lens holding member 32 may be fixed to the base plate 31 using an adhesive. The adhesive is made of, for example, a resin material. Alternatively, the lens holding member 32 and the base plate 31 may be collectively molded by using an insert molding process or the like.
 保持部321の厚み(図4のZ方向の大きさ)は、例えば、拡張部322の厚みよりも大きくなっている。この保持部321は、ベースプレート31およびアレイレンズ33に接している。したがって、保持部321の厚みにより、各々の光源装置1とレンズ331との距離の大きさが調整されるようになっている。保持部321の厚みは、パッケージ部材22とアレイレンズ33との間、およびベースプレート31とアレイレンズ33との間に、気体流動可能な大きさの空間を維持できる程度の大きさであることが好ましい。気体流動可能な大きさとは、例えば、メカによる加工公差程度の0.01mmあるいは、樹脂成形での公差0.5mm程度である。パッケージ部材22とアレイレンズ33とが接近し過ぎていると、接着剤等に起因する脱離物がこれらの間に滞留する。この脱離物が光と反応し、パッケージ部材22またはアレイレンズ33に吸着すると、光学特性が低下する。パッケージ部材22とアレイレンズ33との間に気体流動可能な大きさの空間を設けることにより、このような光学特性の低下を抑えることができる。保持部321の厚みは、例えば1mm~30mm程度である。保持部321の厚みは、例えば、レンズ331の焦点距離および光源装置1内の光路長等に応じて調整すればよい。保持部321は、例えば樹脂材料により構成されている。 The thickness of the holding portion 321 (the size in the Z direction in FIG. 4) is larger than the thickness of the expansion portion 322, for example. The holding portion 321 is in contact with the base plate 31 and the array lens 33. Therefore, the size of the distance between each light source device 1 and the lens 331 is adjusted according to the thickness of the holding portion 321. The thickness of the holding portion 321 is preferably such that a space having a size that allows gas flow can be maintained between the package member 22 and the array lens 33 and between the base plate 31 and the array lens 33. .. The size at which gas can flow is, for example, 0.01 mm, which is a processing tolerance by a mechanism, or about 0.5 mm, which is a tolerance in resin molding. If the package member 22 and the array lens 33 are too close to each other, desorbed substances due to an adhesive or the like will stay between them. When this desorbed substance reacts with light and is adsorbed on the package member 22 or the array lens 33, the optical characteristics deteriorate. By providing a space having a size capable of gas flow between the package member 22 and the array lens 33, such a decrease in optical characteristics can be suppressed. The thickness of the holding portion 321 is, for example, about 1 mm to 30 mm. The thickness of the holding portion 321 may be adjusted according to, for example, the focal length of the lens 331, the optical path length in the light source device 1, and the like. The holding portion 321 is made of, for example, a resin material.
 拡張部322には、例えば、端子部322Eが設けられている。この端子部322Eは、例えば、配線WAを介して光源装置1(半導体レーザ素子11)と外部とを電気的に接続するためのものであり、拡張部322の内側から外側にわたって複数設けられている。端子部322Eは、例えばアルミニウム(Al)等の導電性金属材料により構成されている。端子部322E以外の部分の拡張部322は、例えば、保持部321と同じ樹脂材料により構成されている。拡張部322と保持部321とを、異なる樹脂材料により構成するようにしてもよい。 The expansion unit 322 is provided with, for example, a terminal unit 322E. The terminal portion 322E is for electrically connecting the light source device 1 (semiconductor laser element 11) and the outside via the wiring WA, for example, and is provided in plurality from the inside to the outside of the expansion portion 322. .. The terminal portion 322E is made of a conductive metal material such as aluminum (Al). The expansion portion 322 of the portion other than the terminal portion 322E is made of, for example, the same resin material as the holding portion 321. The expansion portion 322 and the holding portion 321 may be made of different resin materials.
 保持部321および拡張部322は、個々にベースプレート31に固定されていてもよい。また、保持部321および拡張部322は、拡張部322に保持部321が固定されていてもよい。例えば、保持部321を樹脂や金属で構成し、拡張部322および端子部322EをPCB(Printed Circuit Board)で構成することで、保持部321をUV接着剤やはんだを使用してベースプレート31もしくは拡張部322へ接着することができる。また、アレイレンズ33と保持部321とは、インサートモールド成形法を用いて一括成形してもよい。レンズ保持部材32は、アルミニウム(Al)、SUS(Steel Use Stainless)、鉄(Fe)および銅(Cu)等の金属材料により構成するようにしてもよい。あるいは、レンズ保持部材32は、セラミック材料等により構成するようにしてもよい。レンズ保持部材32の形状は、切削加工等の機械加工により形成されていてもよく、あるいは、ダイキャストまたは焼結等により形成されていてもよい。端子部322Eを含むレンズ保持部材32は、例えば一括成形によって一体化された1つの部品により構成されていることが好ましい。これにより、コストを抑えることが可能となる。 The holding portion 321 and the expanding portion 322 may be individually fixed to the base plate 31. Further, in the holding portion 321 and the expanding portion 322, the holding portion 321 may be fixed to the expanding portion 322. For example, the holding portion 321 is made of resin or metal, and the expansion portion 322 and the terminal portion 322E are made of PCB (Printed Circuit Board), so that the holding portion 321 can be expanded to the base plate 31 or expanded by using UV adhesive or solder. It can be adhered to the portion 322. Further, the array lens 33 and the holding portion 321 may be collectively molded by using an insert molding method. The lens holding member 32 may be made of a metal material such as aluminum (Al), SUS (Steel Use Stainless), iron (Fe), and copper (Cu). Alternatively, the lens holding member 32 may be made of a ceramic material or the like. The shape of the lens holding member 32 may be formed by machining such as cutting, or may be formed by die casting or sintering. The lens holding member 32 including the terminal portion 322E is preferably composed of one component integrated by, for example, batch molding. This makes it possible to reduce costs.
 アレイレンズ33は、複数の光源装置1を間にしてベースプレート31に対向している。このアレイレンズ33は、例えば中央部のアレイ部33Aと、このアレイ部33Aを囲む枠部33Fとを有している。アレイ部33Aでは、各々の光源装置1に対向する位置に複数のレンズ331が設けられている。各々のレンズ331は、例えば、平面視で蛍光部材12に重なる位置に配置されている。レンズ331は、例えば凸レンズにより構成されている。レンズ331は、平凸レンズ、両凸レンズおよびメニスカスレンズ等により構成されていてもよい。各々の蛍光部材12の上面から出射された光が、レンズ331を通過することにより、コリメートされるようになっている。アレイレンズ33は、下面(例えば、ベースプレート31との対向面)側と上面側とで、互いに異なる構成を有していてもよい。例えば、アレイレンズ33の一方の面側がFAC(Fast Axis Collimator)機能を有し、他方の面側がSAC(Slow Axis Collimator)機能を有していてもよい。このときのアレイレンズ33は、例えば、レンチキュラーレンズが互いに直交する方向で配置されており、例えば両凸形状の1枚レンズや平凸レンズ2枚を平面同士で貼り合わせ一体化したもので構成される。あるいは、アレイレンズ33は、平凸レンズ2枚の平面側が光源装置1側を向くように揃え、アレイレンズ33の枠部33Fで保持し一体化したもので構成される。 The array lens 33 faces the base plate 31 with a plurality of light source devices 1 in between. The array lens 33 has, for example, an array portion 33A in a central portion and a frame portion 33F surrounding the array portion 33A. In the array unit 33A, a plurality of lenses 331 are provided at positions facing each light source device 1. Each lens 331 is arranged at a position overlapping the fluorescent member 12 in a plan view, for example. The lens 331 is composed of, for example, a convex lens. The lens 331 may be composed of a plano-convex lens, a biconvex lens, a meniscus lens, and the like. The light emitted from the upper surface of each fluorescent member 12 is collimated by passing through the lens 331. The array lens 33 may have different configurations on the lower surface (for example, the surface facing the base plate 31) side and the upper surface side. For example, one surface side of the array lens 33 may have an FAC (Fast Axis Collimator) function, and the other surface side may have a SAC (Slow Axis Collimator) function. At this time, the array lens 33 is composed of, for example, lenticular lenses arranged in a direction orthogonal to each other, for example, a biconvex single lens or two plano-convex lenses bonded together on a flat surface. .. Alternatively, the array lens 33 is configured by aligning the two plano-convex lenses so that the plane side faces the light source device 1 side, and holding and integrating the array lens 33 with the frame portion 33F of the array lens 33.
 アレイ部33Aの周囲の枠部33Fは、例えば、四角形状の平面形状を有しており、この枠部33Fがレンズ保持部材32の保持部321に、例えば接着剤等(図示せず)により固定されている。この接着剤としてはUV(Ultra Violet)硬化性樹脂等の光硬化性樹脂等を用いることができる。光硬化によって樹脂が収縮すると、アレイレンズ33とレンズ保持部材32との間で位置ずれが生じやすいので、例えば数%程度以下の硬化収縮量を有する樹脂材料を用いることが好ましく、1%以下の硬化収縮量を有する樹脂材料を用いることがより好ましい。アレイレンズ33は、例えばネジ等によりレンズ保持部材32に固定されていてもよい。あるいは、アレイレンズ33とレンズ保持部材32とが、インサートモールド工程等により一括成形されていてもよい。アレイ部33Aとベースプレート31との間、およびアレイ部33Aと光源装置1との間には、気体流動可能な大きさの空間が設けられている。アレイレンズ33は、例えばホウケイ酸ガラス等により構成されている。 The frame portion 33F around the array portion 33A has, for example, a quadrangular planar shape, and the frame portion 33F is fixed to the holding portion 321 of the lens holding member 32 by, for example, an adhesive (not shown). Has been done. As this adhesive, a photocurable resin such as a UV (Ultra Violet) curable resin can be used. When the resin shrinks due to photocuring, the array lens 33 and the lens holding member 32 are likely to be displaced. Therefore, for example, it is preferable to use a resin material having a curing shrinkage amount of about several% or less, and 1% or less. It is more preferable to use a resin material having a curing shrinkage amount. The array lens 33 may be fixed to the lens holding member 32 by, for example, a screw or the like. Alternatively, the array lens 33 and the lens holding member 32 may be collectively molded by an insert molding process or the like. A space having a size capable of gas flow is provided between the array unit 33A and the base plate 31 and between the array unit 33A and the light source device 1. The array lens 33 is made of, for example, borosilicate glass or the like.
 照明装置100Aでは、例えば、以下のようにして光が取り出される。ベースプレート31に載置された各々の光源装置1から取り出された光は、例えば、各々の光源装置1の蛍光部材12と対応する位置のレンズ331を通り、コリメート光となる。したがって、各々のレンズ331を通過した光の進行方向は互いに平行となり、照明装置100Aから取り出される。 In the lighting device 100A, for example, light is extracted as follows. The light extracted from each light source device 1 mounted on the base plate 31 passes through a lens 331 at a position corresponding to the fluorescent member 12 of each light source device 1, and becomes collimated light. Therefore, the traveling directions of the light passing through each lens 331 are parallel to each other and are taken out from the illuminating device 100A.
(1-3.作用・効果)
 本実施の形態の光源装置1では、半導体レーザ素子11および蛍光部材12を密閉封止するパッケージ20内において、蛍光部材12の底面を基板21に接合するようにした。これにより、励起光ELの照射によって蛍光部材12内で発生した熱を、基板21を介して効果的に排熱することが可能となる。また、パッケージ20の上面(パッケージ部材22の上面22S1)に開口22Hを設け、蛍光部材12の上面が開口22H内に露出するようにした。これにより、発光点が小さくなり、光源装置1から出射される光と、外部光学系(例えば、レンズ331)とを容易に結合させることが可能となる。以下、これについて説明する。
(1-3. Action / effect)
In the light source device 1 of the present embodiment, the bottom surface of the fluorescent member 12 is joined to the substrate 21 in the package 20 that hermetically seals the semiconductor laser element 11 and the fluorescent member 12. As a result, the heat generated in the fluorescent member 12 due to the irradiation of the excitation light EL can be effectively exhausted via the substrate 21. Further, an opening 22H is provided on the upper surface of the package 20 (upper surface 22S1 of the package member 22) so that the upper surface of the fluorescent member 12 is exposed in the opening 22H. As a result, the light emitting point becomes smaller, and the light emitted from the light source device 1 can be easily combined with the external optical system (for example, the lens 331). This will be described below.
 レーザ励起蛍光体光源には、透過型と反射型の2種類の励起形態がある。レーザ励起蛍光体光源では、蛍光体の温度消光を低減するために冷却効率の改善が課題の1つとなっているが、透過型のレーザ励起蛍光体光源では、蛍光体の放熱経路を確保するのが難しいという課題がある。また、励起光源である半導体レーザ素子を駆動すると、大気中のシロキサンが発光点近傍で光と反応し、半導体レーザ素子の端面に反応物が堆積しやすい。この反応物が端面反射率の変化を引き起こし、光特性の低下および半導体レーザ素子の破壊が生じる虞がある。このため、この大気中のシロキサンに起因した不具合の発生を抑える技術として、半導体レーザ素子をパッケージ化して気密封止する方法が用いられている。この半導体レーザ素子のパッケージ化をレーザ励起蛍光体光源に適用すると、反射型のレーザ励起蛍光体光源では、発光点がパッケージの内部となるため、外部光学系との結合効率が悪化するという課題が生じる。 There are two types of laser-excited phosphor light sources, a transmission type and a reflection type. In the laser-excited phosphor light source, improvement of cooling efficiency is one of the problems in order to reduce the temperature quenching of the phosphor, but in the transmission type laser-excited phosphor light source, the heat dissipation path of the phosphor is secured. There is a problem that it is difficult. Further, when the semiconductor laser element which is an excitation light source is driven, the siloxane in the atmosphere reacts with light in the vicinity of the light emitting point, and the reactant is likely to be deposited on the end face of the semiconductor laser element. This reactant may cause a change in the end face reflectance, resulting in deterioration of optical characteristics and destruction of the semiconductor laser device. Therefore, as a technique for suppressing the occurrence of defects caused by siloxane in the atmosphere, a method of packaging a semiconductor laser device and airtightly sealing it is used. When the packaging of this semiconductor laser element is applied to a laser-excited phosphor light source, in the reflection type laser-excited phosphor light source, the light emitting point is inside the package, so that there is a problem that the coupling efficiency with the external optical system deteriorates. Occurs.
 これに対して本実施の形態では、蛍光部材12の底面を基板21に接合するようにしたので、励起光ELの照射によって蛍光部材12の内部で発生した熱の放熱経路が確保される。よって、蛍光部材12の内部で発生した熱を、効率よく排熱することが可能となり、蛍光体の内部量子効率の低下による蛍光体の温度消光を低減することができる。 On the other hand, in the present embodiment, since the bottom surface of the fluorescent member 12 is bonded to the substrate 21, the heat dissipation path of the heat generated inside the fluorescent member 12 by the irradiation of the excitation light EL is secured. Therefore, the heat generated inside the fluorescent member 12 can be efficiently exhausted, and the temperature quenching of the phosphor due to the decrease in the internal quantum efficiency of the phosphor can be reduced.
 以上により、本実施の形態の光源装置1では、蛍光部材12の内部で発生した熱を、基板21を介して効率よく排熱することができるため、蛍光体の内部量子効率の低下による蛍光体の温度消光が低減される。即ち、電力光変換効率を向上させることが可能となる。加えて、波長変換効率も向上させることが可能となる。更に、光源装置1から取り出される白色光の輝度を向上させることが可能となる。 As described above, in the light source device 1 of the present embodiment, the heat generated inside the fluorescent member 12 can be efficiently exhausted via the substrate 21, so that the phosphor due to the decrease in the internal quantum efficiency of the phosphor. Temperature quenching is reduced. That is, it is possible to improve the power-optical conversion efficiency. In addition, the wavelength conversion efficiency can be improved. Further, it is possible to improve the brightness of the white light extracted from the light source device 1.
 また、本実施の形態では、半導体レーザ素子11と共に蛍光部材12を覆うパッケージ部材22の上面に、蛍光部材12の上面が露出する開口22Hを形成するようにした。これにより、蛍光部材12の内部で発せられた蛍光FLは、蛍光体の励起に寄与しなかった励起光ELと共に、蛍光部材12の上方に向かって伝搬し、蛍光部材12の上面から出射されるようになる。即ち、蛍光部材12の上面が実質的な発光点となる。よって、例えば、レンズ331等の外部光学系への結合を容易にすることが可能となる。 Further, in the present embodiment, an opening 22H in which the upper surface of the fluorescent member 12 is exposed is formed on the upper surface of the package member 22 that covers the fluorescent member 12 together with the semiconductor laser element 11. As a result, the fluorescent FL emitted inside the fluorescent member 12 propagates upward of the fluorescent member 12 together with the excitation light EL that did not contribute to the excitation of the phosphor, and is emitted from the upper surface of the fluorescent member 12. Will be. That is, the upper surface of the fluorescent member 12 becomes a substantial light emitting point. Therefore, for example, it is possible to facilitate coupling to an external optical system such as a lens 331.
 また、本実施の形態では、蛍光部材12内部で発せられた蛍光FLおよび蛍光体の励起に寄与しなかった励起光ELを、立ち上げミラー等を用いることなく蛍光部材12の上方に向かって伝搬させることができるため、部品コストや実装コスト等を低減することが可能となる。 Further, in the present embodiment, the fluorescent FL emitted inside the fluorescent member 12 and the excitation light EL that did not contribute to the excitation of the phosphor are propagated upward of the fluorescent member 12 without using a start-up mirror or the like. Therefore, it is possible to reduce the component cost, the mounting cost, and the like.
 以下、上記実施の形態の変形例ならびに適用例について説明するが、以降の説明において上記実施の形態と同一構成部分については同一符号を付してその説明は適宜省略する。 Hereinafter, a modified example and an application example of the above-described embodiment will be described, but in the following description, the same components as those of the above-described embodiment are designated by the same reference numerals and the description thereof will be omitted as appropriate.
<2.変形例>
(2-1.変形例1)
 図5は、本開示の変形例1に係る光源装置(光源装置1A)の断面構成の一例を模式的に表したものである。なお、図5は、図1と同様に、図2に示したI-I線に対応する光源装置1Aの断面を表している。光源装置1Aは、上記実施の形態と同様に、パッケージ化された表面実装型デバイス(SMD)である。本変形例の光源装置1Aは、蛍光部材12の、例えば、励起光ELが照射される照射領域を除く側面に、蛍光FLおよび励起光ELを反射するミラー15を設けた点が、上記実施の形態とは異なる。このミラー15が、本開示の「第1の反射部材」の一具体例に相当する。
<2. Modification example>
(2-1. Modification 1)
FIG. 5 schematically shows an example of the cross-sectional configuration of the light source device (light source device 1A) according to the first modification of the present disclosure. Note that FIG. 5 shows a cross section of the light source device 1A corresponding to the line II shown in FIG. 2, similarly to FIG. The light source device 1A is a packaged surface mount device (SMD) as in the above embodiment. In the light source device 1A of the present modification, for example, a mirror 15 that reflects the fluorescent FL and the excitation light EL is provided on the side surface of the fluorescent member 12 excluding the irradiation region irradiated with the excitation light EL. It is different from the form. This mirror 15 corresponds to a specific example of the "first reflective member" of the present disclosure.
 光源装置1Aでは、蛍光部材12の側面には、例えば、上述したミラー14と、ミラー15とが設けられている。具体的には、励起光ELが照射される照射領域にミラー14が、励起光ELが照射される照射領域を除く側面にミラー15が設けられている。ミラー15は、例えば、励起光ELおよび蛍光FLを効率的に反射するように設計された誘電体多層膜等の反射膜を用いて形成することができる。この他、光反射性を有する金属膜を用いて形成するようにしてもよい。 In the light source device 1A, for example, the above-mentioned mirror 14 and the mirror 15 are provided on the side surface of the fluorescent member 12. Specifically, a mirror 14 is provided in the irradiation region where the excitation light EL is irradiated, and a mirror 15 is provided on the side surface excluding the irradiation region where the excitation light EL is irradiated. The mirror 15 can be formed, for example, by using a reflective film such as a dielectric multilayer film designed to efficiently reflect the excitation light EL and the fluorescent FL. In addition, it may be formed by using a metal film having light reflectivity.
 このように、蛍光部材12の側面に、蛍光FLに加えて励起光ELを反射するミラー15を設けるようにしたので、蛍光部材12内に、蛍光FLおよび励起光ELを閉じ込めることが可能となる。これにより、蛍光部材12内における励起光ELの再吸収が促進されるようになる。よって、上記実施の形態の効果に加えて、波長変換効率をさらに向上させることが可能となる。 In this way, since the mirror 15 that reflects the excitation light EL in addition to the fluorescence FL is provided on the side surface of the fluorescence member 12, the fluorescence FL and the excitation light EL can be confined in the fluorescence member 12. .. As a result, the reabsorption of the excitation light EL in the fluorescent member 12 is promoted. Therefore, in addition to the effects of the above-described embodiment, the wavelength conversion efficiency can be further improved.
(2-2.変形例2)
 図6は、本開示の変形例2に係る光源装置(光源装置1B)の断面構成の一例を模式的に表したものである。なお、図6は、図1と同様に、図2に示したI-I線に対応する光源装置1Bの断面を表している。光源装置1Bは、上記実施の形態と同様に、パッケージ化された表面実装型デバイス(SMD)である。本変形例の光源装置1Bは、側面の一部が粗面となっている蛍光部材42を用いた点が、上記実施の形態とは異なる。
(2-2. Modification 2)
FIG. 6 schematically shows an example of the cross-sectional configuration of the light source device (light source device 1B) according to the second modification of the present disclosure. Note that FIG. 6 shows a cross section of the light source device 1B corresponding to the line II shown in FIG. 2, similarly to FIG. The light source device 1B is a packaged surface mount device (SMD) as in the above embodiment. The light source device 1B of the present modification is different from the above-described embodiment in that a fluorescent member 42 having a rough surface on a part of the side surface is used.
 蛍光部材42は、側面の一部、例えば、励起光ELが照射される照射領域を除く側面が粗面形状となっている。この粗面形状が、本開示の「第1の散乱機構」に相当する。このように、蛍光部材42の側面を粗面形状とすることにより、蛍光部材42の内部から側面に達した蛍光FLおよび励起光ELが散乱され、蛍光部材42の内部に戻るようになる。 The fluorescent member 42 has a rough surface shape on a part of the side surface, for example, the side surface excluding the irradiation region irradiated with the excitation light EL. This rough surface shape corresponds to the "first scattering mechanism" of the present disclosure. By forming the side surface of the fluorescent member 42 into a rough surface shape in this way, the fluorescent FL and the excitation light EL reaching the side surface from the inside of the fluorescent member 42 are scattered and returned to the inside of the fluorescent member 42.
 蛍光部材42の側面の粗面形状は、例えば、表面粗さを蛍光体中の光波長と同程度に設計することでより散乱効果を得ることができる。一般的に、蛍光体は空気よりも高い屈折率nを有している。空気(屈折率1)中の光の波長をλとすると、蛍光体内部での光の波長はλ/nとなる。例えば、蛍光体の屈折率がm=2であった場合、空気中で波長450nmの光は、蛍光体内部では450/2=225nmの波長の光となる。本実施の形態では、波長430nm以上480nm以下の青色光を励起光として用い、500以上600nm以下の蛍光を得ることを想定している。また、蛍光体の屈折率は約1.5~2.0であることから、具体的には、蛍光部材42の側面は、算術平均粗さ(Ra)が、例えば200nm以上400nm以下の粗面形状とすることが望ましい。なお、蛍光部材42の、励起光ELが照射される照射領域に対応する側面は、上記実施の形態と同様に、平坦面であることが好ましい。また、蛍光部材42の、励起光ELが照射される照射領域に対応する側面には、図6に示したように、ミラー14を形成するようにしてもよい。 The rough surface shape of the side surface of the fluorescent member 42 can obtain a more scattering effect by designing the surface roughness to be about the same as the light wavelength in the phosphor. Generally, a phosphor has a refractive index n higher than that of air. Assuming that the wavelength of light in air (refractive index 1) is λ, the wavelength of light inside the phosphor is λ / n. For example, when the refractive index of the phosphor is m = 2, light having a wavelength of 450 nm in the air becomes light having a wavelength of 450/2 = 225 nm inside the phosphor. In the present embodiment, it is assumed that blue light having a wavelength of 430 nm or more and 480 nm or less is used as excitation light to obtain fluorescence of 500 or more and 600 nm or less. Further, since the refractive index of the phosphor is about 1.5 to 2.0, specifically, the side surface of the fluorescent member 42 has a rough surface having an arithmetic mean roughness (Ra) of, for example, 200 nm or more and 400 nm or less. It is desirable to have a shape. The side surface of the fluorescent member 42 corresponding to the irradiation region irradiated with the excitation light EL is preferably a flat surface as in the above embodiment. Further, as shown in FIG. 6, a mirror 14 may be formed on the side surface of the fluorescent member 42 corresponding to the irradiation region irradiated with the excitation light EL.
 蛍光部材42の側面の粗面は、例えば、サンドブラスト等によって蛍光部材42の側面を直接粗面としてもよいし、例えば、ミラー14の表面を粗面形状とし、間接的に蛍光部材42の側面が粗面となるようにしてもよい。 As for the rough surface of the side surface of the fluorescent member 42, for example, the side surface of the fluorescent member 42 may be directly roughened by sandblasting or the like, or for example, the surface of the mirror 14 may be roughened and the side surface of the fluorescent member 42 may be indirectly roughened. It may be a rough surface.
 このように、側面が粗面な蛍光部材42を用いることにより、蛍光部材42の内部から側面に達した蛍光FLおよび励起光ELは散乱され、蛍光部材42の内部に戻るようになる。即ち、外部へ漏れ出す蛍光FLおよび励起光ELが低減される。これにより、蛍光部材12内における励起光ELの再吸収が促進されるようになる。よって、上記変形例1と同様に、上記実施の形態の効果に加えて、波長変換効率をさらに向上させることが可能となる。 By using the fluorescent member 42 having a rough side surface in this way, the fluorescent FL and the excitation light EL reaching the side surface from the inside of the fluorescent member 42 are scattered and returned to the inside of the fluorescent member 42. That is, the fluorescent FL and the excitation light EL leaking to the outside are reduced. As a result, the reabsorption of the excitation light EL in the fluorescent member 12 is promoted. Therefore, similarly to the above-mentioned modification 1, in addition to the effect of the above-described embodiment, the wavelength conversion efficiency can be further improved.
(2-3.変形例3)
 図7は、本開示の変形例3に係る光源装置(光源装置1C)の断面構成の一例を模式的に表したものである。なお、図7は、図1と同様に、図2に示したI-I線に対応する光源装置1Cの断面を表している。光源装置1Cは、上記実施の形態と同様に、パッケージ化された表面実装型デバイス(SMD)である。本変形例の光源装置1Cは、蛍光部材12の底面にミラー16を設けた点が、上記実施の形態とは異なる。このミラー16が、本開示の「第2の反射部材」の一具体例に相当する。
(2-3. Modification 3)
FIG. 7 schematically shows an example of the cross-sectional configuration of the light source device (light source device 1C) according to the third modification of the present disclosure. Note that FIG. 7 shows a cross section of the light source device 1C corresponding to the line II shown in FIG. 2, similarly to FIG. The light source device 1C is a packaged surface mount device (SMD) as in the above embodiment. The light source device 1C of the present modification is different from the above-described embodiment in that the mirror 16 is provided on the bottom surface of the fluorescent member 12. The mirror 16 corresponds to a specific example of the "second reflective member" of the present disclosure.
 ミラー16は、上記実施の形態におけるミラー14と同様に、蛍光FLを効率的に反射するように設計された誘電体多層膜等の反射膜を用いて形成することができる。また、上記変形例1と同様に、例えば、励起光ELおよび蛍光FLを効率的に反射するように設計された誘電体多層膜等の反射膜を用いて形成するようにしてもよい。この他、光反射性を有する金属膜を用いて形成するようにしてもよい。 Similar to the mirror 14 in the above embodiment, the mirror 16 can be formed by using a reflective film such as a dielectric multilayer film designed to efficiently reflect the fluorescent FL. Further, similarly to the above-mentioned modification 1, for example, it may be formed by using a reflective film such as a dielectric multilayer film designed to efficiently reflect the excitation light EL and the fluorescent FL. In addition, it may be formed by using a metal film having light reflectivity.
 また、例えば、上記変形例2と同様に、例えばミラー16の表面を粗面として蛍光部材12の底面を粗面形状としてもよい。 Further, for example, similarly to the above-mentioned modification 2, for example, the surface of the mirror 16 may be a rough surface and the bottom surface of the fluorescent member 12 may be a rough surface.
 このように、蛍光部材12の底面にミラー16を設けたり、底面を粗面形状とすることにより、上記実施の形態の効果に加えて、蛍光部材12の上面からの光取り出し効率を向上させることが可能となる。即ち、光源装置1から取り出される白色光の輝度をさらに向上させることが可能となる。 In this way, by providing the mirror 16 on the bottom surface of the fluorescent member 12 or making the bottom surface a rough surface shape, in addition to the effects of the above-described embodiment, the light extraction efficiency from the upper surface of the fluorescent member 12 can be improved. Is possible. That is, it is possible to further improve the brightness of the white light extracted from the light source device 1.
(2-4.変形例4)
 図8は、本開示の変形例4に係る光源装置(光源装置1D)の断面構成の一例を模式的に表したものである。なお、図8は、図1と同様に、図2に示したI-I線に対応する光源装置1Dの断面を表している。光源装置1Dは、上記実施の形態と同様に、パッケージ化された表面実装型デバイス(SMD)である。本変形例の光源装置1Dは、側面の一部に傾斜面42S1を有する蛍光部材52を用いた点が、上記実施の形態とは異なる。
(2-4. Modification 4)
FIG. 8 schematically shows an example of the cross-sectional configuration of the light source device (light source device 1D) according to the modified example 4 of the present disclosure. Note that FIG. 8 shows a cross section of the light source device 1D corresponding to the line II shown in FIG. 2, similarly to FIG. The light source device 1D is a packaged surface mount device (SMD) as in the above embodiment. The light source device 1D of the present modification is different from the above-described embodiment in that a fluorescent member 52 having an inclined surface 42S1 on a part of the side surface is used.
 蛍光部材52は、側面の一部、具体的には、励起光ELが照射される下方の側面が傾斜面42S1となっている。これにより、蛍光部材52の傾斜面42S1に入射した励起光ELは、蛍光体外部と蛍光体との屈折率差から光軸が上方に向けて屈折されるため、蛍光部材52内を上方に向けて伝搬しやすくなる。 The fluorescent member 52 has an inclined surface 42S1 on a part of the side surface, specifically, the lower side surface on which the excitation light EL is irradiated. As a result, the excitation light EL incident on the inclined surface 42S1 of the fluorescent member 52 is refracted upward due to the difference in refractive index between the outside of the phosphor and the phosphor, so that the inside of the fluorescent member 52 is directed upward. It becomes easy to propagate.
 このように、蛍光部材52の下方の側面を傾斜面42S1とすることにより、蛍光部材52内において、励起光ELが上方に向かって伝搬しやすくなる。よって、上記実施の形態の効果に加えて、波長変換効率および光取り出し効率を向上させることが可能となる。 By forming the lower side surface of the fluorescent member 52 as the inclined surface 42S1 in this way, the excitation light EL can easily propagate upward in the fluorescent member 52. Therefore, in addition to the effects of the above-described embodiment, it is possible to improve the wavelength conversion efficiency and the light extraction efficiency.
 また、本変形例の効果は、蛍光部材52の下方のいずれかの側面にのみに傾斜面42S1を形成することでも得られる。例えば、図9に示したように、励起光ELを一方向から照射する場合には、励起光ELが入射する側面と対向する側面のみを傾斜面42S1としてもよい。 Further, the effect of this modification can also be obtained by forming the inclined surface 42S1 only on any side surface below the fluorescent member 52. For example, as shown in FIG. 9, when the excitation light EL is irradiated from one direction, only the side surface facing the side surface on which the excitation light EL is incident may be the inclined surface 42S1.
 更に、蛍光部材52の側面全体を傾斜面42S1としてもよい。これにより、励起光ELおよび蛍光FLの光取り出し効率をさらに向上させることが可能となる。 Further, the entire side surface of the fluorescent member 52 may be an inclined surface 42S1. This makes it possible to further improve the light extraction efficiency of the excitation light EL and the fluorescent FL.
(2-5.変形例5)
 図10は、本開示の変形例5に係る光源装置(光源装置1E)の断面構成の一例を模式的に表したものである。なお、図10は、図1と同様に、図2に示したI-I線に対応する光源装置1Eの断面を表している。光源装置1Eは、上記実施の形態と同様に、パッケージ化された表面実装型デバイス(SMD)である。本変形例の光源装置1Eは、蛍光部材62が、例えば、単結晶蛍光体とセラミック蛍光体との複合材料をからなる点が、上記実施の形態とは異なる。
(2-5. Modification 5)
FIG. 10 schematically shows an example of the cross-sectional configuration of the light source device (light source device 1E) according to the modified example 5 of the present disclosure. Note that FIG. 10 shows a cross section of the light source device 1E corresponding to the line II shown in FIG. 2, similarly to FIG. The light source device 1E is a packaged surface mount device (SMD) as in the above embodiment. The light source device 1E of the present modification is different from the above-described embodiment in that the fluorescent member 62 is made of, for example, a composite material of a single crystal phosphor and a ceramic phosphor.
 蛍光部材62は、例えば、単結晶蛍光体からなる蛍光体層62Aと、セラミック蛍光体等の、多結晶蛍光体からなる蛍光体層62Bとから構成されている。蛍光部材62は、例えば、基板21側から蛍光体層62Aおよび蛍光体層62Bが、例えばこの順に積層されている。蛍光体層62Aと蛍光体層62Bとは、例えば、接着剤によって接着されている。単結晶蛍光体は、熱伝導率が高く、良好な温度特性を有する一方で、光が透過しやすく、内部量子効率が低い傾向がある。これに対して、セラミック蛍光体は、界面における散乱強度が高いため、単結晶蛍光体と比較して内部量子効率が高い。このため、単結晶蛍光体と、セラミック蛍光体とを組み合わせて用いることで、蛍光部材62の温度特性および内部量子効率の向上を図ることが可能となる。 The fluorescent member 62 is composed of, for example, a phosphor layer 62A made of a single crystal phosphor and a phosphor layer 62B made of a polycrystalline phosphor such as a ceramic phosphor. In the fluorescent member 62, for example, the phosphor layer 62A and the phosphor layer 62B are laminated in this order from the substrate 21 side. The phosphor layer 62A and the phosphor layer 62B are adhered to each other by, for example, an adhesive. Single crystal phosphors have high thermal conductivity and good temperature characteristics, but tend to transmit light easily and have low internal quantum efficiency. On the other hand, since the ceramic phosphor has a high scattering intensity at the interface, the internal quantum efficiency is higher than that of the single crystal phosphor. Therefore, by using the single crystal phosphor and the ceramic phosphor in combination, it is possible to improve the temperature characteristics and the internal quantum efficiency of the fluorescent member 62.
 なお、蛍光部材62は、例えば、基板21側から蛍光体層62B、蛍光体層62Aの順に積層されていてもよいし、例えば、蛍光体層62A/蛍光体層62B/蛍光体層62Aや蛍光体層62B/蛍光体層62A/蛍光体層62Bのように、3層以上の多層構造としてもよい。 The fluorescent member 62 may be laminated in the order of the phosphor layer 62B and the phosphor layer 62A from the substrate 21 side, for example, the phosphor layer 62A / the phosphor layer 62B / the phosphor layer 62A and the fluorescence. A multi-layer structure having three or more layers may be used, such as the body layer 62B / phosphor layer 62A / phosphor layer 62B.
 このように、蛍光部材62は、単結晶蛍光体とセラミック蛍光体との複合材料を用いて形成することにより、さらなる排熱効率の向上および内部量子効率の向上を実現することが可能となる。 As described above, by forming the fluorescent member 62 using a composite material of a single crystal phosphor and a ceramic phosphor, it is possible to further improve the heat exhaust efficiency and the internal quantum efficiency.
(2-6.変形例6)
 図11は、本開示の変形例6に係る光源装置(光源装置1F)の断面構成の一例を模式的に表したものである。なお、図11は、図1と同様に、図2に示したI-I線に対応する光源装置1Eの断面を表している。光源装置1Fは、上記実施の形態と同様に、パッケージ化された表面実装型デバイス(SMD)である。本変形例の光源装置1Fは、半導体レーザ素子11と蛍光部材52との間に光閉じ込め部材17を配置したものである。
(2-6. Modification 6)
FIG. 11 schematically shows an example of the cross-sectional configuration of the light source device (light source device 1F) according to the modified example 6 of the present disclosure. Note that FIG. 11 shows a cross section of the light source device 1E corresponding to the line II shown in FIG. 2, similarly to FIG. The light source device 1F is a packaged surface mount device (SMD) as in the above embodiment. In the light source device 1F of this modification, the light confinement member 17 is arranged between the semiconductor laser element 11 and the fluorescent member 52.
 光閉じ込め部材17は、半導体レーザ素子11から出射された励起光ELの発散を抑制するためのものである。光閉じ込め部材17としては、例えば、ロッドインテグレータを用いることができる。この他、光閉じ込め部材17は、励起光ELの吸収率が小さく、屈折率の大きな、例えばGaNや一般的な導波路を構成する材料を用いて形成することができる。 The light confinement member 17 is for suppressing the emission of the excitation light EL emitted from the semiconductor laser element 11. As the light confinement member 17, for example, a rod integrator can be used. In addition, the light confinement member 17 can be formed by using, for example, GaN or a material constituting a general waveguide, which has a small absorption rate of the excitation light EL and a large refractive index.
 上記変形例4では、側面の一部に傾斜面42S1を有する蛍光部材52を用いる例を示したが、レーザ光(励起光EL)は拡散するため、蛍光部材52に対する励起光ELの入射光量が減少する虞がある。 In the above modification 4, an example of using the fluorescent member 52 having the inclined surface 42S1 on a part of the side surface is shown, but since the laser light (excitation light EL) is diffused, the amount of incident light of the excitation light EL on the fluorescent member 52 is large. There is a risk of decrease.
 これに対して、本変形例では、半導体レーザ素子11と蛍光部材52との間に、光閉じ込め部材17を配置するようにしたので、励起光ELの発散が低減され、蛍光部材52への入射光率を向上させることが可能となる。よって、本変形例の光源装置1Fは、上記変形4の効果に加えて、光の利用効率を向上させることが可能となるという効果を奏する。 On the other hand, in this modification, since the light confining member 17 is arranged between the semiconductor laser element 11 and the fluorescent member 52, the emission of the excitation light EL is reduced and the light is incident on the fluorescent member 52. It is possible to improve the light rate. Therefore, the light source device 1F of the present modification has an effect that the light utilization efficiency can be improved in addition to the effect of the modification 4.
(2-7.変形例7)
 図12A~図12Cは、上記実施の形態等で用いた蛍光部材(例えば、蛍光部材12)の平面形状および半導体レーザ素子11の配置例を模式的に表したものである。上記実施の形態では、XY平面方向の断面が矩形形状を有する蛍光部材12を用いた例を示したが、これに限定されるものでなく、蛍光部材12の断面形状は多角柱形状であればよい。
(2-7. Modification 7)
12A to 12C schematically show the planar shape of the fluorescent member (for example, the fluorescent member 12) and the arrangement example of the semiconductor laser element 11 used in the above-described embodiment and the like. In the above embodiment, an example using the fluorescent member 12 having a rectangular cross section in the XY plane direction is shown, but the present invention is not limited to this, and the cross section shape of the fluorescent member 12 is a polygonal prism shape. Good.
 蛍光部材12の断面形状は、例えば、図12Aに示したように、台形形状としてもよい。このように、励起光ELが入射する側面(入射面)と対向する側面を入射面とは平行でない角度に設計することにより、対向する側面に達した励起光ELが蛍光部材12の内部に反射されやすくなる。即ち、励起光ELを蛍光部材12の内部に閉じ込めやすくなり、内部量子効率を向上させることが可能となる。 The cross-sectional shape of the fluorescent member 12 may be a trapezoidal shape, for example, as shown in FIG. 12A. In this way, by designing the side surface facing the side surface (incident surface) on which the excitation light EL is incident at an angle not parallel to the incident surface, the excitation light EL reaching the opposite side surface is reflected inside the fluorescent member 12. It becomes easy to be done. That is, the excitation light EL can be easily confined inside the fluorescent member 12, and the internal quantum efficiency can be improved.
 蛍光部材12の断面形状は、例えば、図12Bに示したように、六角形等の多角形状としてもよい。更に、上記実施の形態では、ミラー14が蛍光部材12の側面全体を覆っている例を示したが、例えば、図12Bに示したように、励起光ELの入射面と対向する側面が、入射面と平行である場合には、この対向する側面のみにミラー14を形成することでも同様の効果を得ることができる。また、粗面についても同様である。 The cross-sectional shape of the fluorescent member 12 may be a polygonal shape such as a hexagon as shown in FIG. 12B, for example. Further, in the above embodiment, an example in which the mirror 14 covers the entire side surface of the fluorescent member 12 is shown. For example, as shown in FIG. 12B, the side surface facing the incident surface of the excitation light EL is incident. When it is parallel to the surface, the same effect can be obtained by forming the mirror 14 only on the opposite side surfaces. The same applies to the rough surface.
 更にまた、図12Cに示したように、蛍光部材12の断面形状を多角形状とすることにより、その側面の数に応じてより多くの半導体レーザ素子11を配置することができる。これにより、蛍光部材12に入射する励起光量を増やし、より高輝度な光源装置1を提供することが可能となる。 Furthermore, as shown in FIG. 12C, by making the cross-sectional shape of the fluorescent member 12 polygonal, more semiconductor laser elements 11 can be arranged according to the number of side surfaces thereof. This makes it possible to increase the amount of excitation light incident on the fluorescent member 12 and provide a light source device 1 having higher brightness.
(2-8.変形例8)
 図13は、本開示の変形例8に係る照明装置(照明装置100B)の要部の模式的な分解斜視図である。この照明装置100Bは、ベースプレート31、光源装置(例えば、光源装置1)およびアレイレンズ33をこの順に有している。即ち、照明装置100Bには、レンズ保持部材(例えば、図5のレンズ保持部材32)が設けられていない。照明装置100Bのベースプレート31は、例えば、プレート部311、保持部312および端子部313Eを有している。この点を除き、本変形例の照明装置100Bは、上記実施の形態の照明装置100Aと同様の構成を有し、その作用および効果も同様である。
(2-8. Modification 8)
FIG. 13 is a schematic exploded perspective view of a main part of the lighting device (lighting device 100B) according to the modified example 8 of the present disclosure. The lighting device 100B has a base plate 31, a light source device (for example, a light source device 1), and an array lens 33 in this order. That is, the lighting device 100B is not provided with a lens holding member (for example, the lens holding member 32 in FIG. 5). The base plate 31 of the lighting device 100B has, for example, a plate portion 311 and a holding portion 312 and a terminal portion 313E. Except for this point, the lighting device 100B of the present modification has the same configuration as the lighting device 100A of the above embodiment, and its action and effect are also the same.
 ベースプレート31のプレート部311は、例えば四角形状の平面形状を有する板状部材である。このプレート部311に複数の光源装置1が、例えばマトリクス状に載置されている。 The plate portion 311 of the base plate 31 is, for example, a plate-shaped member having a quadrangular planar shape. A plurality of light source devices 1 are placed on the plate portion 311 in a matrix, for example.
 保持部312は、プレート部311の中央部に配置された複数の光源装置1を囲む四角形の枠状の平面形状を有している。保持部312は、プレート部311およびアレイレンズ33(枠部33F)に接しており、保持部312の厚みの大きさにより、各々の光源装置1とレンズ331との間の距離の大きさが調整されるようになっている。 The holding portion 312 has a quadrangular frame-shaped planar shape surrounding a plurality of light source devices 1 arranged in the central portion of the plate portion 311. The holding portion 312 is in contact with the plate portion 311 and the array lens 33 (frame portion 33F), and the size of the distance between each light source device 1 and the lens 331 is adjusted by the size of the thickness of the holding part 312. It is supposed to be done.
 端子部313Eは、例えば、一方向(図13のY方向)に延びる帯状の平面形状を有しており、プレート部311上に設けられている。この端子部313Eは、保持部312の内側から外側にかけて延在している。この端子部313Eに光源装置1の電極取出部14E1,14E2が電気的に接続されることにより、半導体レーザ素子11と外部とが電気的に接続されるようになっている。 The terminal portion 313E has, for example, a strip-shaped planar shape extending in one direction (Y direction in FIG. 13), and is provided on the plate portion 311. The terminal portion 313E extends from the inside to the outside of the holding portion 312. By electrically connecting the electrode extraction portions 14E1 and 14E2 of the light source device 1 to the terminal portion 313E, the semiconductor laser element 11 and the outside are electrically connected.
 プレート部311、保持部312および端子部313Eは、例えば一体化されている。プレート部311は例えばアルミニウム、保持部312は例えばPEEK(ポリエーテルエーテルケトン)、端子部313Eは、金属材料により構成されている。プレート部311および保持部312は、例えば、インサート・インジェクションモールド成形等により一括成形されている。プレート部311を、例えば、アルミニウム(Al),銅(Cu),銅-タングステン(Cu-W)または窒化アルミニウム(AlN)等により構成し、保持部312を、例えば、アルミナ,窒化アルミニウムまたはコバール等により構成するようにしてもよい。このとき、プレート部311および保持部312と端子部313Eとは、例えば、低融点ガラス等により絶縁される。 The plate portion 311 and the holding portion 312 and the terminal portion 313E are integrated, for example. The plate portion 311 is made of, for example, aluminum, the holding portion 312 is made of, for example, PEEK (polyetheretherketone), and the terminal portion 313E is made of a metal material. The plate portion 311 and the holding portion 312 are collectively molded by, for example, insert injection molding or the like. The plate portion 311 is made of, for example, aluminum (Al), copper (Cu), copper-tungsten (Cu-W), aluminum nitride (AlN), or the like, and the holding portion 312 is, for example, alumina, aluminum nitride, Kovar, or the like. It may be configured by. At this time, the plate portion 311 and the holding portion 312 and the terminal portion 313E are insulated by, for example, low melting point glass or the like.
<3.適用例>
 上記実施の形態および変形例で説明した照明装置100A,100Bは、例えば投射型表示装置に適用することができる。
<3. Application example>
The lighting devices 100A and 100B described in the above embodiments and modifications can be applied to, for example, a projection type display device.
 図14は、光源として照明装置100A,100Bが適用された投射型表示装置(投射型表示装置200)の構成例を示す図である。この投射型表示装置200は、例えばスクリーンに画像を投射する表示装置である。投射型表示装置200は、例えばPC等のコンピュータや各種画像プレーヤ等の外部の画像供給装置にI/F(インターフェイス)を介して接続されており、このI/Fに入力される画像信号に基づいて、スクリーン等への投影を行うものである。なお、以下に説明する投射型表示装置200の構成は一例であり、本技術に係る投射型表示装置は、このような構成に限定されるものではない。 FIG. 14 is a diagram showing a configuration example of a projection type display device (projection type display device 200) to which the lighting devices 100A and 100B are applied as a light source. The projection type display device 200 is, for example, a display device that projects an image on a screen. The projection type display device 200 is connected to an external image supply device such as a computer such as a PC or various image players via an I / F (interface), and is based on an image signal input to the I / F. The image is projected onto a screen or the like. The configuration of the projection type display device 200 described below is an example, and the projection type display device according to the present technology is not limited to such a configuration.
 投射型表示装置200は、照明装置100A,100B、マルチレンズアレイ212、PBSアレイ213、フォーカスレンズ214、ミラー215a,215c~215e、ダイクロイックミラー216、217、光変調素子218a~218c、ダイクロイックプリズム219、および投写レンズ220を備える。 The projection type display device 200 includes a lighting device 100A, 100B, a multi-lens array 212, a PBS array 213, a focus lens 214, a mirror 215a, 215c to 215e, a dichroic mirror 216, 217, a light modulation element 218a to 218c, and a dichroic prism 219. And a projection lens 220.
 照明装置100A,100Bでは、半導体レーザ素子11から出射された光が、アレイレンズ33を通過し、コリメート光として取り出される。この光は、マルチレンズアレイ212に入射するようになっている。マルチレンズアレイ212は、複数のレンズ素子がアレイ状に設けられた構造であり、照明装置100A,100Bから出射された光を集光する。PBSアレイ213は、マルチレンズアレイ212によって集光された光を、所定の偏光方向の光、例えばP偏光波に偏光する。フォーカスレンズ214は、PBSアレイ213によって所定の偏光方向の光に変換された光を集光する。 In the lighting devices 100A and 100B, the light emitted from the semiconductor laser element 11 passes through the array lens 33 and is taken out as collimated light. This light is incident on the multi-lens array 212. The multi-lens array 212 has a structure in which a plurality of lens elements are provided in an array, and collects light emitted from the illumination devices 100A and 100B. The PBS array 213 polarizes the light focused by the multi-lens array 212 into light in a predetermined polarization direction, for example, a P-polarized wave. The focus lens 214 collects the light converted into light in a predetermined polarization direction by the PBS array 213.
 ダイクロイックミラー216は、フォーカスレンズ214、ミラー215eを介して入射してきた光のうちの赤色光Rを透過し、緑色光G、青色光Bを反射する。ダイクロイックミラー216によって透過された赤色光Rは、ミラー215aを介して光変調素子218aに導かれる。 The dichroic mirror 216 transmits the red light R among the light incident through the focus lens 214 and the mirror 215e, and reflects the green light G and the blue light B. The red light R transmitted by the dichroic mirror 216 is guided to the light modulation element 218a via the mirror 215a.
 ダイクロイックミラー217は、ダイクロイックミラー216によって反射された光のうちの青色光Bを透過し、緑色光Gを反射する。ダイクロイックミラー217によって反射された緑色光Gは、光変調素子218bに導かれる。一方、ダイクロイックミラー217によって透過された青色光Bは、ミラー215dとおよびミラー215cを介して光変調素子218cに導かれる。 The dichroic mirror 217 transmits the blue light B of the light reflected by the dichroic mirror 216 and reflects the green light G. The green light G reflected by the dichroic mirror 217 is guided to the light modulation element 218b. On the other hand, the blue light B transmitted by the dichroic mirror 217 is guided to the light modulation element 218c via the mirror 215d and the mirror 215c.
 光変調素子218a~218cの各々は、入射された各色光を光変調し、光変調された各色光をダイクロイックプリズム219に入射する。ダイクロイックプリズム219は、光変調されて入射してきた各色光を1つの光軸に合成する。合成された各色光は、投写レンズ220を介してスクリーン等に投影される。 Each of the light modulation elements 218a to 218c photomodulates each incident color light, and each light-modulated color light is incident on the dichroic prism 219. The dichroic prism 219 synthesizes each color light that has been light-modulated and incident on one optical axis. Each of the combined colored lights is projected onto a screen or the like via the projection lens 220.
 投射型表示装置200では、色の3原色である赤、緑、青の3色に対応した3つの光変調素子218a~218cが組み合わされ、あらゆる色が表示される。即ち、投射型表示装置200は、いわゆる3板式の投射型表示装置である。 In the projection type display device 200, three light modulation elements 218a to 218c corresponding to the three primary colors of red, green, and blue are combined to display all colors. That is, the projection type display device 200 is a so-called three-plate type projection type display device.
 以上、実施の形態および変形例1~8ならびに適用例を挙げて本技術を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々変形可能である。例えば、基板21およびパッケージ部材22には、例えば、半導体レーザ素子11と外部とを電気的に接続するための配線構造が設けられていてもよい。 Although the present technology has been described above with reference to the embodiments, modifications 1 to 8 and application examples, the present technology is not limited to the above-described embodiments and can be variously modified. For example, the substrate 21 and the package member 22 may be provided with, for example, a wiring structure for electrically connecting the semiconductor laser element 11 and the outside.
 また、上記実施の形態等において例示した光源装置1(および光源装置1A~1F)ならびに照明装置100A,100Bの構成要素、配置および数等は、あくまで一例であり、全ての構成要素を備える必要はなく、また、他の構成要素をさらに備えていてもよい。 Further, the components, arrangements, numbers, etc. of the light source devices 1 (and the light source devices 1A to 1F) and the lighting devices 100A and 100B illustrated in the above embodiments and the like are merely examples, and it is necessary to include all the components. It may also have other components.
 更に、上記適用例では、上記実施の形態等で説明した光源装置(例えば、光源装置1)およびこれを備えた照明装置(例えば、照明装置100A)を投射型表示装置に適用した例を示したが、これに限らない。上記実施の形態等で説明した光源装置(例えば、光源装置1)は、例えば、ヘッドライト等の車載用の照明や、スポットライト、インテリジェント照明およびサーチライト等にも用いることができる。 Further, in the above application example, an example in which the light source device (for example, the light source device 1) described in the above-described embodiment and the like and the lighting device provided with the light source device (for example, the lighting device 100A) is applied to the projection type display device is shown. However, it is not limited to this. The light source device (for example, the light source device 1) described in the above-described embodiment can be used for, for example, in-vehicle lighting such as a headlight, a spotlight, an intelligent lighting, a searchlight, and the like.
 なお、本明細書に記載された効果はあくまで例示であってこれに限定されるものではなく、また他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples and are not limited thereto, and other effects may be obtained.
 なお、本技術は、以下のような構成をとることも可能である。以下の構成の本技術によれば、蛍光部材の底面を基板に接合するようにしたので、励起光の照射によって蛍光部材内部で発生した熱の排熱効率が向上し、電力光変換効率を向上させることが可能となる。また、パッケージ部材の上面に開口を設け、蛍光部材をパッケージ部材の上面に露出させるようにしたので、発光点が小さくなり、外部光学系と容易に結合させることが可能となる。
(1)
 基板と、
 底部が前記基板に接合された蛍光部材と、
 前記基板に実装され、前記蛍光部材の側面に励起光を照射する半導体発光素子と、
 前記蛍光部材および前記半導体発光素子を封止すると共に、上面に前記蛍光部材が露出する開口を有するパッケージ部材と
 を備えた光源装置。
(2)
 前記蛍光部材は柱状形状を有する、前記(1)に記載の光源装置。
(3)
 前記蛍光部材の側面の少なくとも一部に、蛍光を反射する第1の反射部材をさらに有する、前記(1)または(2)に記載の光源装置。
(4)
 前記第1の反射部材は、さらに前記励起光を反射する、前記(3)に記載の光源装置。
(5)
 前記第1の反射部材は、前記蛍光部材の側面全体に設けられ、
 前記励起光の照射領域を除く領域において前記蛍光および前記励起光を反射する、前記(3)または(4)に記載の光源装置。
(6)
 前記蛍光部材の側面の少なくとも一部に、蛍光を散乱させる第1の散乱機構をさらに有する、前記(1)乃至(5)のうちのいずれか1つに記載の光源装置。
(7)
 前記第1の散乱機構は、前記励起光の照射領域を除く前記蛍光部材の側面全体に設けられている、前記(6)に記載の光源装置。
(8)
 前記蛍光部材は多角柱形状を有し、
 前記半導体発光素子は、前記蛍光部材の側面を形成する少なくとも1つの面と正対する位置に配置されている、前記(1)乃至(7)のうちのいずれか1つに記載の光源装置。
(9)
 前記蛍光部材の底面と前記基板との間に、蛍光および前記励起光の少なくとも一方を反射する第2の反射部材をさらに有する、前記(1)乃至(8)のうちのいずれか1つに記載の光源装置。
(10)
 前記蛍光部材の底面と前記基板との間に、蛍光および励起光の少なくとも一方を散乱する第2の散乱機構をさらに有する、前記(1)乃至(9)のうちのいずれか1つに記載の光源装置。
(11)
 前記蛍光部材は、側面の少なくとも一部に傾斜面を有する、前記(1)乃至(10)のうちのいずれか1つに記載の光源装置。
(12)
 前記傾斜面は、前記蛍光部材の前記励起光の入射面と対向する側面に形成されている、前記(11)に記載の光源装置。
(13)
 前記蛍光部材は、少なくとも一部が単結晶の蛍光体を含んでいる、前記(1)乃至(12)のうちのいずれか1つに記載の光源装置。
(14)
 前記蛍光部材は、単結晶とセラミックとの複合材料からなる、前記(1)乃至(12)のうちのいずれか1つに記載の光源装置。
(15)
 前記半導体発光素子と前記蛍光部材との間に、光閉じ込め部材をさらに有する、前記(1)乃至(14)のうちのいずれか1つに記載の光源装置。
(16)
 前記半導体発光素子は、半導体レーザである、前記(1)乃至(15)のうちのいずれか1つに記載の光源装置。
(17)
 前記半導体レーザは、430nm以上480nm以下の波長を出射する、前記(16)に記載の光源装置。
(18)
 前記基板と前記パッケージ部材とは気密封止されている、前記(1)乃至(17)のうちのいずれか1つに記載の光源装置。
(19)
 基板と、
 底部が前記基板に接合された蛍光部材と、
 前記基板に実装され、前記蛍光部材の側面に励起光を照射する半導体発光素子と、
 前記蛍光部材および前記半導体発光素子を封止すると共に、上面に前記蛍光部材が露出する開口を有するパッケージ部材と
 を有する光源装置を備えた照明装置。
The present technology can also have the following configurations. According to this technology having the following configuration, since the bottom surface of the fluorescent member is bonded to the substrate, the heat exhaust efficiency of the heat generated inside the fluorescent member by the irradiation of the excitation light is improved, and the power light conversion efficiency is improved. It becomes possible. Further, since the opening is provided on the upper surface of the package member so that the fluorescent member is exposed on the upper surface of the package member, the light emitting point becomes smaller and the fluorescent member can be easily coupled to the external optical system.
(1)
With the board
A fluorescent member whose bottom is bonded to the substrate,
A semiconductor light emitting device mounted on the substrate and irradiating the side surface of the fluorescent member with excitation light.
A light source device including a package member that seals the fluorescent member and the semiconductor light emitting element and has an opening on the upper surface from which the fluorescent member is exposed.
(2)
The light source device according to (1) above, wherein the fluorescent member has a columnar shape.
(3)
The light source device according to (1) or (2) above, further comprising a first reflecting member that reflects fluorescence on at least a part of a side surface of the fluorescent member.
(4)
The light source device according to (3) above, wherein the first reflecting member further reflects the excitation light.
(5)
The first reflective member is provided on the entire side surface of the fluorescent member.
The light source device according to (3) or (4), wherein the fluorescence and the excitation light are reflected in a region other than the irradiation region of the excitation light.
(6)
The light source device according to any one of (1) to (5) above, further comprising a first scattering mechanism for scattering fluorescence on at least a part of a side surface of the fluorescent member.
(7)
The light source device according to (6), wherein the first scattering mechanism is provided on the entire side surface of the fluorescent member excluding the irradiation region of the excitation light.
(8)
The fluorescent member has a polygonal prism shape and has a polygonal prism shape.
The light source device according to any one of (1) to (7) above, wherein the semiconductor light emitting device is arranged at a position facing at least one surface forming a side surface of the fluorescent member.
(9)
The invention according to any one of (1) to (8) above, further comprising a second reflecting member that reflects at least one of fluorescence and the excitation light between the bottom surface of the fluorescent member and the substrate. Light source device.
(10)
The invention according to any one of (1) to (9), further comprising a second scattering mechanism that scatters at least one of fluorescence and excitation light between the bottom surface of the fluorescent member and the substrate. Light source device.
(11)
The light source device according to any one of (1) to (10) above, wherein the fluorescent member has an inclined surface at least a part of a side surface.
(12)
The light source device according to (11), wherein the inclined surface is formed on a side surface of the fluorescent member facing an incident surface of the excitation light.
(13)
The light source device according to any one of (1) to (12) above, wherein the fluorescent member contains at least a part of a single crystal phosphor.
(14)
The light source device according to any one of (1) to (12) above, wherein the fluorescent member is made of a composite material of a single crystal and ceramic.
(15)
The light source device according to any one of (1) to (14), further comprising a light confining member between the semiconductor light emitting device and the fluorescent member.
(16)
The light source device according to any one of (1) to (15) above, wherein the semiconductor light emitting element is a semiconductor laser.
(17)
The light source device according to (16) above, wherein the semiconductor laser emits a wavelength of 430 nm or more and 480 nm or less.
(18)
The light source device according to any one of (1) to (17) above, wherein the substrate and the package member are hermetically sealed.
(19)
With the board
A fluorescent member whose bottom is bonded to the substrate,
A semiconductor light emitting device mounted on the substrate and irradiating the side surface of the fluorescent member with excitation light.
A lighting device including a light source device that seals the fluorescent member and the semiconductor light emitting element, and also has a package member having an opening on the upper surface where the fluorescent member is exposed.
 本出願は、日本国特許庁において2019年10月31日に出願された日本特許出願番号2019-198482号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2019-198482 filed on October 31, 2019 at the Japan Patent Office, and this application is made by referring to all the contents of this application. Invite to.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 One of ordinary skill in the art can conceive of various modifications, combinations, sub-combinations, and changes, depending on design requirements and other factors, which are included in the appended claims and their equivalents. It is understood that it is something to be done.

Claims (19)

  1.  基板と、
     底部が前記基板に接合された蛍光部材と、
     前記基板に実装され、前記蛍光部材の側面に励起光を照射する半導体発光素子と、
     前記蛍光部材および前記半導体発光素子を封止すると共に、上面に前記蛍光部材が露出する開口を有するパッケージ部材と
     を備えた光源装置。
    With the board
    A fluorescent member whose bottom is bonded to the substrate,
    A semiconductor light emitting device mounted on the substrate and irradiating the side surface of the fluorescent member with excitation light.
    A light source device including a package member that seals the fluorescent member and the semiconductor light emitting element and has an opening on the upper surface from which the fluorescent member is exposed.
  2.  前記蛍光部材は柱状形状を有する、請求項1に記載の光源装置。 The light source device according to claim 1, wherein the fluorescent member has a columnar shape.
  3.  前記蛍光部材の側面の少なくとも一部に、蛍光を反射する第1の反射部材をさらに有する、請求項1に記載の光源装置。 The light source device according to claim 1, further comprising a first reflecting member that reflects fluorescence on at least a part of a side surface of the fluorescent member.
  4.  前記第1の反射部材は、さらに前記励起光を反射する、請求項3に記載の光源装置。 The light source device according to claim 3, wherein the first reflecting member further reflects the excitation light.
  5.  前記第1の反射部材は、前記蛍光部材の側面全体に設けられ、
     前記励起光の照射領域を除く領域において前記蛍光および前記励起光を反射する、請求項3に記載の光源装置。
    The first reflective member is provided on the entire side surface of the fluorescent member.
    The light source device according to claim 3, wherein the fluorescence and the excitation light are reflected in a region other than the irradiation region of the excitation light.
  6.  前記蛍光部材の側面の少なくとも一部に、蛍光を散乱させる第1の散乱機構をさらに有する、請求項1に記載の光源装置。 The light source device according to claim 1, further comprising a first scattering mechanism for scattering fluorescence on at least a part of a side surface of the fluorescent member.
  7.  前記第1の散乱機構は、前記励起光の照射領域を除く前記蛍光部材の側面全体に設けられている、請求項6に記載の光源装置。 The light source device according to claim 6, wherein the first scattering mechanism is provided on the entire side surface of the fluorescent member excluding the irradiation region of the excitation light.
  8.  前記蛍光部材は多角柱形状を有し、
     前記半導体発光素子は、前記蛍光部材の側面を形成する少なくとも1つの面と正対する位置に配置されている、請求項1に記載の光源装置。
    The fluorescent member has a polygonal prism shape and has a polygonal prism shape.
    The light source device according to claim 1, wherein the semiconductor light emitting device is arranged at a position facing at least one surface forming a side surface of the fluorescent member.
  9.  前記蛍光部材の底面と前記基板との間に、蛍光および前記励起光の少なくとも一方を反射する第2の反射部材をさらに有する、請求項1に記載の光源装置。 The light source device according to claim 1, further comprising a second reflecting member that reflects at least one of fluorescence and the excitation light between the bottom surface of the fluorescent member and the substrate.
  10.  前記蛍光部材の底面と前記基板との間に、蛍光および励起光の少なくとも一方を散乱する第2の散乱機構をさらに有する、請求項1に記載の光源装置。 The light source device according to claim 1, further comprising a second scattering mechanism that scatters at least one of fluorescence and excitation light between the bottom surface of the fluorescent member and the substrate.
  11.  前記蛍光部材は、側面の少なくとも一部に傾斜面を有する、請求項1に記載の光源装置。 The light source device according to claim 1, wherein the fluorescent member has an inclined surface at least a part of a side surface.
  12.  前記傾斜面は、前記蛍光部材の前記励起光の入射面と対向する側面に形成されている、請求項11に記載の光源装置。 The light source device according to claim 11, wherein the inclined surface is formed on a side surface of the fluorescent member facing an incident surface of the excitation light.
  13.  前記蛍光部材は、少なくとも一部が単結晶の蛍光体を含んでいる、請求項1に記載の光源装置。 The light source device according to claim 1, wherein the fluorescent member contains at least a part of a single crystal phosphor.
  14.  前記蛍光部材は、単結晶とセラミックとの複合材料からなる、請求項1に記載の光源装置。 The light source device according to claim 1, wherein the fluorescent member is made of a composite material of a single crystal and ceramic.
  15.  前記半導体発光素子と前記蛍光部材との間に、光閉じ込め部材をさらに有する、請求項1に記載の光源装置。 The light source device according to claim 1, further comprising a light confining member between the semiconductor light emitting element and the fluorescent member.
  16.  前記半導体発光素子は、半導体レーザである、請求項1に記載の光源装置。 The light source device according to claim 1, wherein the semiconductor light emitting element is a semiconductor laser.
  17.  前記半導体レーザは、430nm以上480nm以下の波長を出射する、請求項16に記載の光源装置。 The light source device according to claim 16, wherein the semiconductor laser emits a wavelength of 430 nm or more and 480 nm or less.
  18.  前記基板と前記パッケージ部材とは気密封止されている、請求項1に記載の光源装置。 The light source device according to claim 1, wherein the substrate and the package member are hermetically sealed.
  19.  基板と、
     底部が前記基板に接合された蛍光部材と、
     前記基板に実装され、前記蛍光部材の側面に励起光を照射する半導体発光素子と、
     前記蛍光部材および前記半導体発光素子を封止すると共に、上面に前記蛍光部材が露出する開口を有するパッケージ部材と
     を有する光源装置を備えた照明装置。
    With the board
    A fluorescent member whose bottom is bonded to the substrate,
    A semiconductor light emitting device mounted on the substrate and irradiating the side surface of the fluorescent member with excitation light.
    A lighting device including a light source device that seals the fluorescent member and the semiconductor light emitting element, and also has a package member having an opening on the upper surface where the fluorescent member is exposed.
PCT/JP2020/038971 2019-10-31 2020-10-15 Light source device and lighting device WO2021085164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019198482 2019-10-31
JP2019-198482 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021085164A1 true WO2021085164A1 (en) 2021-05-06

Family

ID=75716245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038971 WO2021085164A1 (en) 2019-10-31 2020-10-15 Light source device and lighting device

Country Status (1)

Country Link
WO (1) WO2021085164A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4283691A1 (en) * 2022-05-26 2023-11-29 Nichia Corporation Light-emitting device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005483A (en) * 2005-06-22 2007-01-11 Toshiba Corp Semiconductor light emitting device
JP2008177227A (en) * 2007-01-16 2008-07-31 Toshiba Corp Light-emitting apparatus
JP2011171504A (en) * 2010-02-18 2011-09-01 Stanley Electric Co Ltd Light-emitting device
JP2012186376A (en) * 2011-03-07 2012-09-27 Stanley Electric Co Ltd Light-emitting device
JP2014010908A (en) * 2012-06-27 2014-01-20 Olympus Corp Lighting system
JP2017059475A (en) * 2015-09-18 2017-03-23 シチズン時計株式会社 Light emitting device and its manufacturing method
JP2017068923A (en) * 2015-09-28 2017-04-06 株式会社小糸製作所 Light source module
US20170241619A1 (en) * 2014-05-05 2017-08-24 CRYTUR, spol.s.r.o. Light source
WO2017195620A1 (en) * 2016-05-13 2017-11-16 パナソニックIpマネジメント株式会社 Light source device and lighting device
JP2018056160A (en) * 2016-09-26 2018-04-05 日亜化学工業株式会社 Light emitting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005483A (en) * 2005-06-22 2007-01-11 Toshiba Corp Semiconductor light emitting device
JP2008177227A (en) * 2007-01-16 2008-07-31 Toshiba Corp Light-emitting apparatus
JP2011171504A (en) * 2010-02-18 2011-09-01 Stanley Electric Co Ltd Light-emitting device
JP2012186376A (en) * 2011-03-07 2012-09-27 Stanley Electric Co Ltd Light-emitting device
JP2014010908A (en) * 2012-06-27 2014-01-20 Olympus Corp Lighting system
US20170241619A1 (en) * 2014-05-05 2017-08-24 CRYTUR, spol.s.r.o. Light source
JP2017059475A (en) * 2015-09-18 2017-03-23 シチズン時計株式会社 Light emitting device and its manufacturing method
JP2017068923A (en) * 2015-09-28 2017-04-06 株式会社小糸製作所 Light source module
WO2017195620A1 (en) * 2016-05-13 2017-11-16 パナソニックIpマネジメント株式会社 Light source device and lighting device
JP2018056160A (en) * 2016-09-26 2018-04-05 日亜化学工業株式会社 Light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4283691A1 (en) * 2022-05-26 2023-11-29 Nichia Corporation Light-emitting device

Similar Documents

Publication Publication Date Title
US20220052506A1 (en) Light emitting device
US8669575B2 (en) Light emitting module, method of manufacturing the light emitting module, and lamp unit
US20190081452A1 (en) Optical component, light emitting device using the optical component, and method of manufacturing the optical component
US20120250329A1 (en) Light emitting device
JP6740713B2 (en) Light source device and projector
WO2013183556A1 (en) Light source device and illumination device
US20130322055A1 (en) Light source device and projector
CN110955102B (en) Projector with a light source
WO2021085164A1 (en) Light source device and lighting device
JP7428129B2 (en) Light emitting device and projection display device
US10816166B2 (en) Light source apparatus and projector
JP2020122868A (en) Wavelength conversion component and light-emitting device using the same
US20200343689A1 (en) Light emitting device
JP6822452B2 (en) Light source device and projector
JP7371642B2 (en) semiconductor light emitting device
WO2021085071A1 (en) Semiconductor device
JP7306538B2 (en) projector
WO2021070587A1 (en) Light-emitting device
JP7294152B2 (en) Light source device and projector
TWI833971B (en) Laser device
US11939667B2 (en) Method for manufacturing wavelength conversion member and light emitting device
JP6759714B2 (en) Light source device and projector
JP2022123425A (en) Light-emitting device
JP2023136541A (en) Light source device and projector
JP2023043376A (en) Light-emitting device and backlight

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP