WO2021085081A1 - Approximate data generation device and approximate data generation method - Google Patents

Approximate data generation device and approximate data generation method Download PDF

Info

Publication number
WO2021085081A1
WO2021085081A1 PCT/JP2020/038258 JP2020038258W WO2021085081A1 WO 2021085081 A1 WO2021085081 A1 WO 2021085081A1 JP 2020038258 W JP2020038258 W JP 2020038258W WO 2021085081 A1 WO2021085081 A1 WO 2021085081A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
approximate
break point
approximation
data
Prior art date
Application number
PCT/JP2020/038258
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 宏
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Publication of WO2021085081A1 publication Critical patent/WO2021085081A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/17Function evaluation by approximation methods, e.g. inter- or extrapolation, smoothing, least mean square method

Definitions

  • the present invention relates to an approximate data creation device and an approximate data creation method, and particularly to a technique for approximating measurement data.
  • the approximation interval R which is the approximation range is set. It was necessary to set a break point at the end point of the approximation interval R so that it could be covered by interpolation processing such as interpolation and straight line approximation. Similarly, even if the value of the break point “n + 1” and the value of the break point “n” in FIG. 12 are the same value within the tolerance range, the approximate interval R of the approximate range can be covered by the interpolation process.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an approximation data creation technique capable of further reducing the amount of memory used and the amount of calculation when performing polygonal line approximation.
  • the approximate data creation device creates approximate data of the data in a designated approximate interval along the X coordinate axis of the data represented by the graph on the XY coordinate plane.
  • the Y value of the data in the approximate section from each of the first end point which is both ends of the approximate section and the second end point which has an X value larger than the X value of the first end point in the approximate data creation device.
  • a fold point setting unit configured to set a first fold point and a second fold point at a point within the range of preset values, an arbitrary X value in the approximate section, and the first fold. It is provided with an approximate value calculation unit configured to calculate an approximate value of the Y value of the data corresponding to the arbitrary X value based on the comparison between the point and the X value of the second break point.
  • the break point setting unit sets a discrete third break point in the data in the approximate section between the first break point and the second break point.
  • the approximate value calculation unit sets the approximate value, and the arbitrary X value is among the break points including the first break point, the second break point, and the third break point set by the break point setting unit.
  • the Y value of the nearest bending point is calculated as an approximate value of the Y value corresponding to the arbitrary X value. 1 Approximate portion may be provided.
  • the arbitrary X value is set by the break point setting unit, the first break point, the second break point, and the first break point.
  • the fold points adjacent to each other are linearly interpolated and calculated, corresponding to the arbitrary X value.
  • a second approximation unit configured to obtain the Y value to be used as an approximation value may be provided.
  • the approximate data creation device further includes an approximate curve generation unit configured to generate an approximate curve of the approximate section based on the approximate value calculated by the approximate value calculation unit. May be good.
  • the approximate data creation device may further include a display device configured to display the approximate curve of the approximate section generated by the approximate curve generation unit.
  • the approximate data creation method creates approximate data of the data in a designated approximate interval along the X coordinate axis of the data represented by the graph on the XY coordinate plane.
  • a method for creating approximate data executed by an approximate data creation device, wherein the break point setting unit has an X value larger than the X values of the first end points at both ends of the approximate section and the first end point.
  • the first step of setting the first break point and the second break point at the point where the Y value of the data in the approximate section is within the range of the preset value and the approximate value calculation unit Based on the comparison between the arbitrary X value in the approximate section and the X value of the first break point and the second break point, an approximate value of the Y value of the data corresponding to the arbitrary X value is calculated. It includes a second step.
  • the first break point and the first break point and the first point from each of the first end point and the second end point, which are both ends of the approximate section are the points where the Y value of the data in the approximate section is within the preset value range.
  • Two break points are set, and the approximate value of the Y value of the data corresponding to the arbitrary X value is calculated based on the comparison between the arbitrary X value in the approximate interval and the X value of the first break point and the second break point. Since the calculation is performed, the memory usage amount and the calculation amount when performing the polygonal line approximation can be further reduced.
  • FIG. 1 is a block diagram showing a configuration of an approximate data creation device according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the operation of the approximate data creation device according to the present embodiment.
  • FIG. 3 is a block diagram showing an example of the hardware configuration of the approximate data creation device according to the present embodiment.
  • FIG. 4 is a flowchart illustrating the operation of the approximate data creation device according to the present embodiment.
  • FIG. 5 is a diagram for explaining a break point setting process according to the present embodiment.
  • FIG. 6 is a diagram for explaining an approximate value calculation process according to the present embodiment.
  • FIG. 7 is a diagram for explaining the operation of the approximate data creation device according to the present embodiment.
  • FIG. 8 is a diagram for explaining the operation of the approximate data creation device according to the present embodiment.
  • FIG. 1 is a block diagram showing a configuration of an approximate data creation device according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the operation of the approximate data creation device according to the
  • FIG. 9 is a diagram for explaining the operation of the approximate data creation device according to the present embodiment.
  • FIG. 10 is a diagram for explaining the operation of the approximate data creation device according to the present embodiment.
  • FIG. 11 is a diagram for explaining the operation of the approximate data creation device according to the present embodiment.
  • FIG. 12 is a diagram for explaining a conventional polygonal line approximation.
  • the approximation data creating device 1 approximates a non-linear data measured externally to a polygonal line within a set approximation range.
  • the approximation data creation device 1 according to the present embodiment is an extension of the above-mentioned conventional polygonal line approximation, and for the data in the approximation range not surrounded by the polygonal points, the approximate data using the value of the nearest polygonal point is used.
  • One of its features is to create.
  • the approximation data creation device 1 includes, for example, a data acquisition unit 10, a section designation unit 11, a break point setting unit 12, a determination unit 13, a first approximation unit 14, a second approximation unit 15, and an approximation curve.
  • a generation unit 16, a storage unit 17, and a presentation unit 18 are provided.
  • the determination unit 13, the first approximation unit 14, and the second approximation unit 15 constitute an approximation value calculation unit 40.
  • the data acquisition unit 10 acquires the data to be approximated.
  • the data acquisition unit 10 can acquire non-linear process data such as data measured by an external sensor or device via the communication network NW.
  • the data acquisition unit 10 can read the data of the approximation target stored in the storage unit 17 in advance.
  • the data is bivariate data consisting of (x, y), and can be represented by a two-dimensional planar point set of XY as shown in FIG.
  • the data is time-series data of a measured value of a physical quantity
  • x and y are a quantity representing time and a measured value of the physical quantity, respectively.
  • the section designation unit 11 designates an approximate section in the data acquired by the data acquisition unit 10.
  • this approximation interval is defined with respect to the X axis of the XY plane.
  • the approximate interval R [x 0 , x n + 1 ] is specified.
  • the lower limit of the approximate interval R is x 0
  • the upper limit is indicated by x n + 1
  • the data is continuous within the approximate interval R.
  • the section designation unit 11 can designate the approximate section R according to the operation input received from the outside by the input device 107 described later.
  • the break point setting unit 12 sets the break point in the approximate section R designated by the section designation unit 11.
  • the break point setting unit 12 has an end point (first end point) (x 0 , y 0 ) of data at both ends of the approximate interval R [x 0 , x n + 1 ] and the other end point having a value x n + 1 larger than the value x 0. From each of (second end point) (x n + 1 , y n + 1 ), the first break point (first break point) (1st break point) is set to a point where the y value of the data in the approximate interval R is within the preset value range.
  • the first break point and the last break point are break points having break points adjacent only in the inner direction of the approximate section R provided on the boundary line of the approximate section R or on both ends in the approximate section R.
  • the break point setting unit 12 acquires, for example, a section having an arbitrary y value y 1 and a y value within an error range.
  • the break point setting unit 12 can set the end point of the approximate section R in the section that is not the end point (x 0 , y 0 ) as the first break point (x 1 , y 1 ).
  • the break point setting unit 12 acquires, for example, a section having y n as a certain y value and a y value within the error range, and is not the end point (x n + 1 , y n + 1 ) of the approximate section R in the section.
  • the end point of can be set as the last break point (x n , y n).
  • the break point setting unit 12 does not set break points at both ends (x 0 , y 0 ) and (x n + 1 , y n + 1 ) of the approximated section R. That is, the y value from the end point (x 0 , y 0) of the approximate interval R to the first break point (x 1 , y 1 ) is within the error range. Further, the y value from the other end point (x n + 1 , y n + 1 ) of the approximate interval R to the last break point (x n , y n ) is also within the error range.
  • the break point setting unit 12 has a break point (third break point) (third break point) discrete with respect to the data between the first break point (x 1 , y 1 ) and the last break point (x n , y n).
  • Set x i , y i ) (i 2, ..., n-1).
  • the break point setting unit 12 sets, for example, a plurality of break points between the first break point (x 1 , y 1 ) and the last break point (x n , y n ).
  • the break point setting unit 12 uses a known method such as the Ramer-Douglas-Pucker algorithm to make a break point between the first break point (x 1 , y 1 ) and the last break point (x n , y n ). Can be provided.
  • the break points set by the break point setting unit 12 are stored in the storage unit 17.
  • the break point setting unit 12 can also set one break point between the first break point (x 1 , y 1 ) and the last break point (x n , y n ).
  • the first break point (x 1 , y 1 ) and the last break point (x 1, y 1) are included in the approximate interval R [x 0 , x n + 1 ] in order to approximate the data to a polygonal line.
  • a plurality of break points are set between the break points (x n , y n).
  • the break points can be set at equal intervals along the X-axis, for example.
  • the approximate value calculation unit 40 compares an arbitrary x value for which an approximate value in the approximate interval R is to be obtained with the x value of the first break point (x 1 , y 1 ), and the last break point (x n ,). Based on the comparison with the x value of y n ), the approximate value of the y value of the data corresponding to the x value for which the approximate value is to be obtained is calculated.
  • the approximation unit 40 includes a determination unit 13, a first approximation unit 14, and a second approximation unit 15.
  • the determination unit 13 determines whether or not an arbitrary x value for which an approximate value is to be obtained is smaller than the X coordinate value x 1 of the first break point (x 1 , y 1). Further, the determination unit 13 determines whether or not the x value for which the approximate value is to be obtained is larger than the X coordinate value x n of the last break point (x n , y n).
  • the first approximation unit 14 approximates y 1 , which is the y value of the first break point, when the determination unit 13 determines that the x value for which the approximate value is to be obtained is smaller than the value x 1 of the first break point. Returns as a value. Further, the first approximation unit 14 is y n, which is the y value of the last break point when the determination unit 13 determines that the x value for which the approximation value is to be obtained is larger than the value x n of the last break point. Is returned as an approximate value.
  • the first approximation unit 14 has a break point setting unit 12.
  • the y value of the nearest break point is used as it is and calculated as an approximate value.
  • the second approximation unit 15 when the x value for which the approximation value is to be obtained is sandwiched between the break points set by the break point setting unit 12 that are adjacent to each other on the X axis, the second approximation unit 15 is located between the break points.
  • the adjacent break points are linearly interpolated, the y value corresponding to the x value for which the approximate value is to be obtained is calculated, and the approximate value is obtained.
  • the portion indicated by "linear interpolation" of the approximation interval R is the data portion for which the approximation value is calculated by the second approximation unit 15. Further, both end portions of the approximated section R shown by the “takeover portion” in FIG. 2 are data portions calculated as approximate values by using the y value of the nearest bending point as it is by the first approximated portion 14.
  • the approximate curve generation unit 16 generates an approximate curve of the approximate interval R based on the approximate value calculated by the first approximate unit 14 and the approximate value calculated by the second approximate unit 15.
  • the generated approximate curve is stored in the storage unit 17.
  • the storage unit 17 stores the data to be approximated acquired by the data acquisition unit 10. Further, the storage unit 17 stores the information of the break point set by the break point setting unit 12. The storage unit 17 stores the approximate curve of the data generated by the approximate curve generation unit 16.
  • the presentation unit 18 presents an approximate curve of the data generated by the approximate curve generation unit 16.
  • the presentation unit 18 can display an approximate curve on the display screen of the display device 108 described later.
  • the presentation unit 18 can display, for example, the approximate curve shown in FIG. 2 on the display screen.
  • the presentation unit 18 can send the generated approximate curve to an external arithmetic unit (not shown).
  • the approximate data creation device 1 includes, for example, a processor 102, a main storage device 103, a communication interface 104, an auxiliary storage device 105, an input / output I / O 106, and an input device 107 connected via a bus 101. , And a computer equipped with a display device 108, and a program that controls these hardware resources.
  • the processor 102 is composed of a CPU, a GPU, and the like.
  • the main storage device 103 stores in advance programs for the processor 102 to perform various controls and calculations.
  • the processor 102 and the main storage device 103 approximate the section designation unit 11, the break point setting unit 12, the determination unit 13, the first approximation unit 14, the second approximation unit 15, the approximation curve generation unit 16, and the like shown in FIG.
  • Each function of the data creation device 1 is realized.
  • the communication interface 104 is an interface circuit for connecting a network between the approximate data creation device 1 and various external electronic devices.
  • the data acquisition unit 10 can receive data to be analyzed from an external device or terminal device (not shown) via the communication network NW from the communication interface 104.
  • the auxiliary storage device 105 is composed of a readable and writable storage medium and a drive device for reading and writing various information such as programs and data to the storage medium.
  • a semiconductor memory such as a hard disk or a flash memory can be used as the storage medium in the auxiliary storage device 105.
  • the auxiliary storage device 105 has a program storage area for storing a program for the approximate data creation device 1 to execute a break point setting process, an approximate process, and an approximate curve creation process.
  • the auxiliary storage device 105 realizes the storage unit 17 described with reference to FIG. Further, for example, it may have a backup area for backing up the above-mentioned data, programs, and the like.
  • the input / output I / O 106 is composed of I / O terminals that input signals from external devices and output signals to external devices.
  • the input device 107 is composed of physical keys, a touch panel, and the like, and outputs a signal corresponding to an operation input from the outside.
  • the display device 108 is composed of a liquid crystal display or the like.
  • the display device 108 realizes the presentation unit 18 described with reference to FIG.
  • the data acquisition unit 10 acquires the data of the approximation target represented by the graph on the XY coordinate plane (step S1).
  • the acquired data is stored in the storage unit 17.
  • the data for example, non-linear process data measured by a device such as a sensor can be used.
  • the section designation unit 11 designates an approximate section R to be approximated in the acquired data (step S2).
  • the break point setting unit 12 sets the break point of the approximate section R specified in step S2 (step S3).
  • the approximate value calculation unit 40 calculates the approximate value of the data at an arbitrary x value using the break point of the approximate section R specified in step S2 (step S4).
  • the approximate curve generation unit 16 generates an approximate curve from the approximate value of the approximate interval R calculated by the approximate value calculation unit 40 (step S5).
  • the presentation unit 18 presents the approximate curve generated in step S5. For example, the presentation unit 18 can display the approximate curve shown in FIG. 2 on the display device 108.
  • the break point setting unit 12 provides the first break point (x 1 , y 1 ) at the end point other than the end point (x 0 , y 0 ) of the approximate section R in the section acquired in step S30. (Step S31).
  • the point indicated by the break point “1” is the first break point set in step S31.
  • the break point setting unit 12 has a permissible error of a certain value y n from the end point (x n + 1 , y n + 1 ) on the side where the value in the X coordinate of the approximate section R specified in step S2 is large.
  • the section represented within the range is acquired (step S32).
  • the break point setting unit 12 provides the last break point (x n , y n ) at the end point other than the end point (x n + 1 , y n + 1 ) of the approximate section R in the section acquired in step S32 (x n, y n). Step S33).
  • the point indicated by the break point “n” is the last break point set in step S33.
  • the break point setting unit 12 sets a break point in the data between the first break point (x 1 , y 1 ) and the last break point (x n , y n ) (step S34).
  • the break point setting unit 12 can provide a break point by using a known method such as the Ramer-Douglas-Pucker algorithm. Further, the break point setting unit 12 can provide a plurality of break points in step S34.
  • the break points set by the break point setting unit 12 are stored in the storage unit 17 (step S35).
  • the first break point "1" is set by the break point setting unit 12. However, since there is no section within the permissible error range from an arbitrary value y n , a break point is set at the end point (x n + 1 , y n + 1) of the approximate section R.
  • the final break point "n" is set by the break point setting unit 12.
  • the end point (x 0 , y 0 ) side of the approximate interval R there was no section within the permissible error range with any y 1 , so the end point (x 0 , y 0 ) of the approximate interval R was broken. The point is set.
  • the approximate value calculation unit 40 reads out the break point recorded in the storage unit 17 (step S40).
  • the approximate value calculation unit 40 acquires the value of the X coordinate in the approximate section R for which the approximate value is to be obtained (step S41).
  • the approximate value calculation unit 40 can acquire an arbitrary x value of the X coordinate received by the input device 107.
  • a preset X-coordinate value can be acquired.
  • the determination unit 13 determines whether or not the value of the X coordinate for which the approximate value obtained in step S41 is to be obtained is smaller than x 1 of the X coordinate of the first break point, and if it is smaller, (Ste S42: YES), the first approximation unit 14 returns the y value of the first break point as an approximation value (step S43).
  • step S42 NO
  • step S44 NO
  • the first approximation unit 14 returns the y value of the last break point as an approximation value (step S45).
  • step S42 when the value of the X coordinate for which the determination unit 13 wants to obtain the approximate value obtained in step S41 is larger than x 0 of the X coordinate of the first break point (step S42: NO, step S44: YES). ),
  • the second approximation unit 15 uses the X-coordinate value x i of the break point "i" and the X-coordinate value x i + 1 of the break point "i + 1" to table x as x i ⁇ x ⁇ x i + 1. Find the i to be done (step S46).
  • the second approximation unit 15 returns the value obtained by linearly interpolating (internally dividing) the y values of the break point “i” and the break point “i + 1” as approximate values (step S47). More specifically, the second approximation unit 15 obtains the data between the break points calculated using the following equation (1) as an approximation value.
  • i 0, 1, .
  • FIG. 9 shows a part of the approximated interval R in which the data between the break points is linearly interpolated by the second approximated portion 15.
  • FIG. 10 shows a part of the approximation section R in which the value of the first break point is used as it is by the first approximation unit 14.
  • the break point "n + 1" is not set on the upper limit side of the approximate section R, and the data of the section along the x-axis outside the break point "n" of the approximate section R is y.
  • the value is inherited as it is.
  • FIG. 11 shows a part of the approximation section R in which the value of the last break point is used as it is by the first approximation unit 14.
  • the number of break points in the designated approximate section can be reduced, so that the memory usage can be reduced, the device can be downsized, and the power consumption can be reduced. Can contribute.
  • the value of the nearest break point is used as it is, and by inputting a value outside the range, the approximate value by the polygonal line approximation is used. It is possible to avoid an error that makes it unsolicited. Further, since the value of the nearest neighbor break point is used outside the approximate interval, the obtained approximate value is the value of the nearest neighbor break point and is not usually an extremely different value, so that the subsequent calculation process is more appropriate. Can be done.
  • the approximate data creation device 1 includes the data acquisition unit 10, the section designation unit 11, and the break point setting unit 12 has been illustrated, but these configurations are based on the approximate data creation device 1. It may be provided externally. In this case, the data of the approximation target stored in advance in the storage unit 17 of the approximation data creation device 1, the approximation interval specified in the data, and the information about the break point set in the data are read, and the approximation data creation device 1 reads the information. The above-mentioned approximation data creation process is executed.
  • the approximate data creation device 1 can be applied to, for example, the generation of an approximate curve when calculating the flow rate correction coefficient as a function of the Reynolds number in an ultrasonic flow meter. Further, the approximate data creation device 1 can be applied to an integrated calorimeter that calculates the amount of heat using the flow rate measured by such an ultrasonic flow meter.
  • the flow rate correction coefficient can be theoretically obtained for a flow path having a special shape or surface condition.
  • the flow rate correction coefficient is measured for each Reynolds number by an experiment, and this is approximated by a fold line, and at the time of measurement, the flow rate correction coefficient for the Reynolds number is often calculated by this fold line approximation.
  • the flow rate correction coefficient changes as a function of the Reynolds number, but when the flow rate increases (the Reynolds number increases), the flow velocity of the entire flow path becomes uniform and the flow rate correction coefficient becomes 1. Get closer. If the measurement range of the flow meter is set up to a large flow rate and it can be regarded as a constant flow rate correction coefficient above a certain Reynolds number in consideration of the accuracy of the flow meter, the flow rate is large (the Reynolds number is large).
  • the flow rate correction coefficient can be a constant value.
  • the number of break points can be reduced by one or two depending on the flow rate measurement range of the flow meter.
  • 1 ... Approximate data creation device 10 ... Data acquisition unit, 11 ... Section designation unit, 12 ... Break point setting unit, 13 ... Judgment unit, 14 ... 1st approximation unit, 15 ... Second approximation unit, 16 ... Approximate curve generation Unit, 17 ... storage unit, 18 ... presentation unit, 101 ... bus, 102 ... processor, 103 ... main storage device, 104 ... communication interface, 105 ... auxiliary storage device, 106 ... input / output I / O, 107 ... input device, 108 ... Display device, NW ... Communication network.

Abstract

An approximate data generation device (1) according to the present invention is provided with: a break point setting unit (12) that, in an approximation section R designated along the X coordinate axis of the data represented by a graph on an XY coordinate plane, generates approximate data of the data, and sets first and last break points at points where the Y value in the data in the approximate section R is in a predetermined value range respectively from an end point (x0, y0) and the other end point (xn+1, yn+1) having an X value greater than the X value of the end point (x0, y0), which are both ends of the approximation section R; and an approximate value calculation unit (40) that, on the basis of comparison between an optional X value in the approximation section R and the X values of the first and last break points, calculates an approximate value of the Y value of the data corresponding to the optional X value. This can provide an approximate data generation feature that enables further reduction in a memory use amount and in a calculation amount in performing polygonal line approximation.

Description

近似データ作成装置および近似データ作成方法Approximate data creation device and approximate data creation method
 本発明は、近似データ作成装置および近似データ作成方法に関し、特に測定データを近似する技術に関する。 The present invention relates to an approximate data creation device and an approximate data creation method, and particularly to a technique for approximating measurement data.
 従来から、データの折れ線近似では、しばしば折れ点間の内挿や直線近似などによる補間処理が行われていた。そのため、折れ線近似の計算対象となるデータの近似範囲を補間処理ですべてカバーできるようにする折れ点が必要となっていた(例えば、特許文献1参照)。このため、例えば、図12に示すように、近似範囲の境界もしくは近似範囲の外側に折れ点を設けておく必要があった(図12の折れ点「0」、「n+1」(n=0,1,・・・))。 Conventionally, in data polygonal line approximation, interpolation processing such as interpolation between polygonal points and straight line approximation has often been performed. Therefore, there is a need for a break point that allows the interpolation process to cover the entire approximation range of the data to be calculated for the break line approximation (see, for example, Patent Document 1). Therefore, for example, as shown in FIG. 12, it is necessary to provide a break point at the boundary of the approximate range or outside the approximate range (break points “0”, “n + 1” (n = 0, n = 0, in FIG. 12). 1, ...)).
 従来の折れ線近似によれば、図12に示される折れ点「0」の値と、折れ点「1」の値とが許容誤差範囲で同じ値であったとしても近似範囲である近似区間Rを内挿や直線近似などの補間処理でカバーできるようにするために近似区間Rの端点において折れ点を設定する必要があった。同様に、図12の折れ点「n+1」の値と折れ点「n」の値とが許容誤差の範囲で同じ値であったとしても近似範囲の近似区間Rを補間処理でカバーできるようにするために近似区間Rの他方の端点においても、折れ点を設定する必要があった。そのため、従来の折れ線近似を採用する場合、折れ点の数を削減することができず、メモリ使用量や計算量を削減することが困難であった。 According to the conventional polygonal line approximation, even if the value of the polygonal point “0” and the value of the polygonal point “1” shown in FIG. 12 are the same within the allowable error range, the approximation interval R which is the approximation range is set. It was necessary to set a break point at the end point of the approximation interval R so that it could be covered by interpolation processing such as interpolation and straight line approximation. Similarly, even if the value of the break point “n + 1” and the value of the break point “n” in FIG. 12 are the same value within the tolerance range, the approximate interval R of the approximate range can be covered by the interpolation process. Therefore, it is necessary to set a break point at the other end point of the approximate interval R as well. Therefore, when the conventional polygonal line approximation is adopted, the number of polygonal points cannot be reduced, and it is difficult to reduce the memory usage amount and the calculation amount.
特開平11-072691号公報Japanese Unexamined Patent Publication No. 11-072691
 本発明は、上述した課題を解決するためになされたものであり、折れ線近似を行う際のメモリ使用量および計算量をより削減することができる近似データ作成技術を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an approximation data creation technique capable of further reducing the amount of memory used and the amount of calculation when performing polygonal line approximation.
 上述した課題を解決するために、本発明に係る近似データ作成装置は、XY座標平面上のグラフで表されるデータのX座標軸に沿って指定された近似区間において前記データの近似データを作成する近似データ作成装置であって、前記近似区間の両端である第1端点および前記第1端点のX値よりも大きいX値を有する第2端点のそれぞれから、前記近似区間内の前記データのY値が予め設定された値の範囲内である点に第1折れ点および第2折れ点を設定するように構成された折れ点設定部と、前記近似区間内の任意のX値と前記第1折れ点および前記第2折れ点のX値との比較に基づいて、前記任意のX値に対応する前記データのY値の近似値を算出するように構成された近似値算出部とを備える。 In order to solve the above-mentioned problems, the approximate data creation device according to the present invention creates approximate data of the data in a designated approximate interval along the X coordinate axis of the data represented by the graph on the XY coordinate plane. The Y value of the data in the approximate section from each of the first end point which is both ends of the approximate section and the second end point which has an X value larger than the X value of the first end point in the approximate data creation device. A fold point setting unit configured to set a first fold point and a second fold point at a point within the range of preset values, an arbitrary X value in the approximate section, and the first fold. It is provided with an approximate value calculation unit configured to calculate an approximate value of the Y value of the data corresponding to the arbitrary X value based on the comparison between the point and the X value of the second break point.
 また、本発明に係る近似データ作成装置において、前記折れ点設定部は、前記第1折れ点と前記第2折れ点との間の前記近似区間内の前記データに離散的な第3折れ点を設定し、前記近似値算出部は、前記任意のX値が、前記折れ点設定部によって設定された前記第1折れ点、前記第2折れ点、および前記第3折れ点を含む折れ点のうち、X座標軸方向において互いに隣接する折れ点に挟まれていない場合には、最近傍の折れ点のY値を前記任意のX値に対応するY値の近似値として算出するように構成された第1近似部を備えていてもよい。 Further, in the approximate data creation device according to the present invention, the break point setting unit sets a discrete third break point in the data in the approximate section between the first break point and the second break point. The approximate value calculation unit sets the approximate value, and the arbitrary X value is among the break points including the first break point, the second break point, and the third break point set by the break point setting unit. , When not sandwiched between the folding points adjacent to each other in the X coordinate axis direction, the Y value of the nearest bending point is calculated as an approximate value of the Y value corresponding to the arbitrary X value. 1 Approximate portion may be provided.
 また、本発明に係る近似データ作成装置において、前記近似値算出部は、前記任意のX値が、前記折れ点設定部によって設定された前記第1折れ点、前記第2折れ点、および前記第3折れ点を含む折れ点のうち、X座標軸方向において互いに隣接する折れ点に挟まれている場合には、前記互いに隣接する折れ点を直線補間して算出される、前記任意のX値に対応するY値を近似値として求めるように構成された第2近似部を備えていてもよい。 Further, in the approximate data creation device according to the present invention, in the approximate value calculation unit, the arbitrary X value is set by the break point setting unit, the first break point, the second break point, and the first break point. Of the fold points including the three fold points, when they are sandwiched between the fold points adjacent to each other in the X coordinate axis direction, the fold points adjacent to each other are linearly interpolated and calculated, corresponding to the arbitrary X value. A second approximation unit configured to obtain the Y value to be used as an approximation value may be provided.
 また、本発明に係る近似データ作成装置において、前記近似値算出部によって算出された近似値に基づいて、前記近似区間の近似曲線を生成するように構成された近似曲線生成部をさらに備えていてもよい。 Further, the approximate data creation device according to the present invention further includes an approximate curve generation unit configured to generate an approximate curve of the approximate section based on the approximate value calculated by the approximate value calculation unit. May be good.
 また、本発明に係る近似データ作成装置において、前記近似曲線生成部によって生成された前記近似区間の近似曲線を表示するように構成された表示装置をさらに備えていてもよい。 Further, the approximate data creation device according to the present invention may further include a display device configured to display the approximate curve of the approximate section generated by the approximate curve generation unit.
 上述した課題を解決するために、本発明に係る近似データ作成方法は、XY座標平面上のグラフで表されるデータのX座標軸に沿って指定された近似区間において前記データの近似データを作成する近似データ作成装置によって実行される近似データ作成方法であって、折れ点設定部が、前記近似区間の両端である第1端点および前記第1端点のX値よりも大きいX値を有する第2端点のそれぞれから、前記近似区間内の前記データのY値が予め設定された値の範囲内である点に第1折れ点および第2折れ点を設定する第1ステップと、近似値算出部が、前記近似区間内の任意のX値と前記第1折れ点および前記第2折れ点のX値との比較に基づいて、前記任意のX値に対応する前記データのY値の近似値を算出する第2ステップとを備える。 In order to solve the above-mentioned problems, the approximate data creation method according to the present invention creates approximate data of the data in a designated approximate interval along the X coordinate axis of the data represented by the graph on the XY coordinate plane. A method for creating approximate data executed by an approximate data creation device, wherein the break point setting unit has an X value larger than the X values of the first end points at both ends of the approximate section and the first end point. From each of the above, the first step of setting the first break point and the second break point at the point where the Y value of the data in the approximate section is within the range of the preset value, and the approximate value calculation unit Based on the comparison between the arbitrary X value in the approximate section and the X value of the first break point and the second break point, an approximate value of the Y value of the data corresponding to the arbitrary X value is calculated. It includes a second step.
 本発明によれば、近似区間の両端である第1端点および第2端点のそれぞれから、近似区間内のデータのY値が予め設定された値の範囲内である点に第1折れ点および第2折れ点を設定し、近似区間内の任意のX値と第1折れ点および第2折れ点のX値との比較に基づいて、任意のX値に対応するデータのY値の近似値を算出するので、折れ線近似を行う際のメモリ使用量および計算量をより削減することができる。 According to the present invention, the first break point and the first break point and the first point from each of the first end point and the second end point, which are both ends of the approximate section, are the points where the Y value of the data in the approximate section is within the preset value range. Two break points are set, and the approximate value of the Y value of the data corresponding to the arbitrary X value is calculated based on the comparison between the arbitrary X value in the approximate interval and the X value of the first break point and the second break point. Since the calculation is performed, the memory usage amount and the calculation amount when performing the polygonal line approximation can be further reduced.
図1は、本発明の実施の形態に係る近似データ作成装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an approximate data creation device according to an embodiment of the present invention. 図2は、本実施の形態に係る近似データ作成装置の動作を説明するための図である。FIG. 2 is a diagram for explaining the operation of the approximate data creation device according to the present embodiment. 図3は、本実施の形態に係る近似データ作成装置のハードウェア構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of the hardware configuration of the approximate data creation device according to the present embodiment. 図4は、本実施の形態に係る近似データ作成装置の動作を説明するフローチャートである。FIG. 4 is a flowchart illustrating the operation of the approximate data creation device according to the present embodiment. 図5は、本実施の形態に係る折れ点の設定処理を説明するための図である。FIG. 5 is a diagram for explaining a break point setting process according to the present embodiment. 図6は、本実施の形態に係る近似値算出処理を説明するための図である。FIG. 6 is a diagram for explaining an approximate value calculation process according to the present embodiment. 図7は、本実施の形態に係る近似データ作成装置の動作を説明するための図である。FIG. 7 is a diagram for explaining the operation of the approximate data creation device according to the present embodiment. 図8は、本実施の形態に係る近似データ作成装置の動作を説明するための図である。FIG. 8 is a diagram for explaining the operation of the approximate data creation device according to the present embodiment. 図9は、本実施の形態に係る近似データ作成装置の動作を説明するための図である。FIG. 9 is a diagram for explaining the operation of the approximate data creation device according to the present embodiment. 図10は、本実施の形態に係る近似データ作成装置の動作を説明するための図である。FIG. 10 is a diagram for explaining the operation of the approximate data creation device according to the present embodiment. 図11は、本実施の形態に係る近似データ作成装置の動作を説明するための図である。FIG. 11 is a diagram for explaining the operation of the approximate data creation device according to the present embodiment. 図12は、従来の折れ線近似を説明するための図である。FIG. 12 is a diagram for explaining a conventional polygonal line approximation.
 以下、本発明の好適な実施の形態について、図1から図11を参照して詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 11.
 [近似データ作成装置の機能ブロック]
 近似データ作成装置1は、外部で測定された非線形のデータなどを、設定された近似範囲で折れ線近似する。本実施の形態に係る近似データ作成装置1は、前述した従来の折れ線近似を拡張したものであり、折れ点で囲まれていない近似範囲のデータについては最近傍の折れ点の値を使い近似データを作成することをその特徴のひとつとする。
[Functional block of approximate data creation device]
The approximation data creating device 1 approximates a non-linear data measured externally to a polygonal line within a set approximation range. The approximation data creation device 1 according to the present embodiment is an extension of the above-mentioned conventional polygonal line approximation, and for the data in the approximation range not surrounded by the polygonal points, the approximate data using the value of the nearest polygonal point is used. One of its features is to create.
 近似データ作成装置1は、図1に示すように、例えば、データ取得部10、区間指定部11、折れ点設定部12、判定部13、第1近似部14、第2近似部15、近似曲線生成部16、記憶部17、および提示部18を備える。判定部13、第1近似部14、および第2近似部15は、近似値算出部40を構成する。 As shown in FIG. 1, the approximation data creation device 1 includes, for example, a data acquisition unit 10, a section designation unit 11, a break point setting unit 12, a determination unit 13, a first approximation unit 14, a second approximation unit 15, and an approximation curve. A generation unit 16, a storage unit 17, and a presentation unit 18 are provided. The determination unit 13, the first approximation unit 14, and the second approximation unit 15 constitute an approximation value calculation unit 40.
 データ取得部10は、近似対象のデータを取得する。例えば、データ取得部10は、外部のセンサや機器によって測定されたデータなど非線形なプロセスデータを通信ネットワークNWを介して取得することができる。あるいは、データ取得部10は、予め記憶部17に記憶されている近似対象のデータを読み込むことができる。図2は、データ取得部10によって取得されたデータの一例を示している(図2の「近似対象」の曲線y=f(x))。 The data acquisition unit 10 acquires the data to be approximated. For example, the data acquisition unit 10 can acquire non-linear process data such as data measured by an external sensor or device via the communication network NW. Alternatively, the data acquisition unit 10 can read the data of the approximation target stored in the storage unit 17 in advance. FIG. 2 shows an example of the data acquired by the data acquisition unit 10 (curve y = f (x) of the “approximate object” in FIG. 2).
 本実施の形態では、データは、(x,y)からなる2変量のデータあり、図2に示すように、XYの2次元平面状の点集合で表現することができる。例えば、データがある物理量の測定値の時系列データであるとすると、xとyとは、それぞれ時間を表す量とその物理量の測定値となる。 In the present embodiment, the data is bivariate data consisting of (x, y), and can be represented by a two-dimensional planar point set of XY as shown in FIG. For example, if the data is time-series data of a measured value of a physical quantity, x and y are a quantity representing time and a measured value of the physical quantity, respectively.
 区間指定部11は、データ取得部10によって取得されたデータにおいて近似区間を指定する。本実施の形態においては、この近似区間は、XY平面のX軸に対して定義される。例えば、図2において、近似区間R[x,xn+1]が指定される。近似区間Rの下限値はxであり、上限値がxn+1で示され、データは近似区間R内で連続である。区間指定部11は、後述の入力装置107が外部から受け付けた操作入力に応じて近似区間Rを指定することができる。 The section designation unit 11 designates an approximate section in the data acquired by the data acquisition unit 10. In this embodiment, this approximation interval is defined with respect to the X axis of the XY plane. For example, in FIG. 2, the approximate interval R [x 0 , x n + 1 ] is specified. The lower limit of the approximate interval R is x 0 , the upper limit is indicated by x n + 1 , and the data is continuous within the approximate interval R. The section designation unit 11 can designate the approximate section R according to the operation input received from the outside by the input device 107 described later.
 折れ点設定部12は、区間指定部11によって指定された近似区間Rに折れ点を設定する。折れ点設定部12は、近似区間R[x,xn+1]の両端のデータの端点(第1端点)(x,y)および値xよりも大きい値xn+1を有する他方の端点(第2端点)(xn+1,yn+1)のそれぞれから、近似区間R内のデータのy値が予め設定された値の範囲内である点に、最初の折れ点(第1折れ点)(x,y)および最後の折れ点(第2折れ点)(x,y)を設定する。最初の折れ点および最後の折れ点は、近似区間Rの境界線上あるいは近似区間R内の両端側に設けられる近似区間Rの内側方向のみに隣接する折れ点を有する折れ点である。 The break point setting unit 12 sets the break point in the approximate section R designated by the section designation unit 11. The break point setting unit 12 has an end point (first end point) (x 0 , y 0 ) of data at both ends of the approximate interval R [x 0 , x n + 1 ] and the other end point having a value x n + 1 larger than the value x 0. From each of (second end point) (x n + 1 , y n + 1 ), the first break point (first break point) (1st break point) is set to a point where the y value of the data in the approximate interval R is within the preset value range. x 1 , y 1 ) and the last break point (second break point) (x n , y n ) are set. The first break point and the last break point are break points having break points adjacent only in the inner direction of the approximate section R provided on the boundary line of the approximate section R or on both ends in the approximate section R.
 折れ点設定部12は、例えば、任意のy値であるyと誤差範囲内のy値を有する区間を取得する。折れ点設定部12は、その区間における近似区間Rの端点(x,y)ではない方の端点を最初の折れ点(x,y)として設定することができる。 The break point setting unit 12 acquires, for example, a section having an arbitrary y value y 1 and a y value within an error range. The break point setting unit 12 can set the end point of the approximate section R in the section that is not the end point (x 0 , y 0 ) as the first break point (x 1 , y 1 ).
 同様に、折れ点設定部12は、例えば、あるy値としてyと誤差範囲内のy値を有する区間を取得し、その区間における近似区間Rの端点(xn+1,yn+1)ではない方の端点を最後の折れ点(x,y)として設定することができる。 Similarly, the break point setting unit 12 acquires, for example, a section having y n as a certain y value and a y value within the error range, and is not the end point (x n + 1 , y n + 1 ) of the approximate section R in the section. The end point of can be set as the last break point (x n , y n).
 図2の例に示すように、折れ点設定部12は、近似区間Rの両端(x,y)、(xn+1,yn+1)には折れ点を設定していない。すなわち、近似区間Rの端点(x,y)から最初の折れ点(x,y)までのy値は、誤差範囲内である。また、近似区間Rの他方の端点(xn+1,yn+1)から最後の折れ点(x,y)までのy値についても誤差範囲である。 As shown in the example of FIG. 2, the break point setting unit 12 does not set break points at both ends (x 0 , y 0 ) and (x n + 1 , y n + 1 ) of the approximated section R. That is, the y value from the end point (x 0 , y 0) of the approximate interval R to the first break point (x 1 , y 1 ) is within the error range. Further, the y value from the other end point (x n + 1 , y n + 1 ) of the approximate interval R to the last break point (x n , y n ) is also within the error range.
 また、折れ点設定部12は、最初の折れ点(x,y)と最後の折れ点(x,y)との間のデータに離散的な折れ点(第3折れ点)(x,y)を設定する(i=2,・・・,n-1)。折れ点設定部12は、例えば、複数の折れ点を最初の折れ点(x,y)と最後の折れ点(x,y)との間に設定する。折れ点設定部12は、Ramer-Douglas-Peuckerアルゴリズムなどの公知の手法を用いて最初の折れ点(x,y)と最後の折れ点(x,y)との間に折れ点を設けることができる。折れ点設定部12によって設定された折れ点は、記憶部17に保存される。なお、折れ点設定部12は、1つの折れ点を最初の折れ点(x,y)と最後の折れ点(x,y)との間に設定することも可能である。 Further, the break point setting unit 12 has a break point (third break point) (third break point) discrete with respect to the data between the first break point (x 1 , y 1 ) and the last break point (x n , y n). Set x i , y i ) (i = 2, ..., n-1). The break point setting unit 12 sets, for example, a plurality of break points between the first break point (x 1 , y 1 ) and the last break point (x n , y n ). The break point setting unit 12 uses a known method such as the Ramer-Douglas-Pucker algorithm to make a break point between the first break point (x 1 , y 1 ) and the last break point (x n , y n ). Can be provided. The break points set by the break point setting unit 12 are stored in the storage unit 17. The break point setting unit 12 can also set one break point between the first break point (x 1 , y 1 ) and the last break point (x n , y n ).
 例えば、図2の「折れ点」に示すように、近似区間R[x,xn+1]内には、データを折れ線近似するために、最初の折れ点(x,y)と最後の折れ点(x,y)との間に複数の折れ点が設定されている。折れ点は、図2に示すように、例えば、X軸に沿って等間隔で設定されることができる。また、折れ点の数は、データ(y=f(x))の特性や指定された近似区間Rにおいて要求される近似精度やメモリ容量などに応じて適宜に設定することができる。 For example, as shown in the “break point” in FIG. 2 , the first break point (x 1 , y 1 ) and the last break point (x 1, y 1) are included in the approximate interval R [x 0 , x n + 1 ] in order to approximate the data to a polygonal line. A plurality of break points are set between the break points (x n , y n). As shown in FIG. 2, the break points can be set at equal intervals along the X-axis, for example. Further, the number of break points can be appropriately set according to the characteristics of the data (y = f (x)), the approximation accuracy required in the specified approximation interval R, the memory capacity, and the like.
 近似値算出部40は、近似区間R内の近似値を求めたい任意のx値と、最初の折れ点(x,y)のx値との比較、および最後の折れ点(x,y)のx値との比較に基づいて、近似値を求めたいx値に対応するデータのy値の近似値を算出する。 The approximate value calculation unit 40 compares an arbitrary x value for which an approximate value in the approximate interval R is to be obtained with the x value of the first break point (x 1 , y 1 ), and the last break point (x n ,). Based on the comparison with the x value of y n ), the approximate value of the y value of the data corresponding to the x value for which the approximate value is to be obtained is calculated.
 近似値算出部40は、図1に示すように、判定部13、第1近似部14、および第2近似部15を備える。
 判定部13は、近似値を求めたい任意のx値が最初の折れ点(x,y)のX座標の値xよりも小さいか否かを判定する。また、判定部13は、近似値を求めたいx値が最後の折れ点(x,y)のX座標の値xよりも大きいか否かを判定する。
As shown in FIG. 1, the approximation unit 40 includes a determination unit 13, a first approximation unit 14, and a second approximation unit 15.
The determination unit 13 determines whether or not an arbitrary x value for which an approximate value is to be obtained is smaller than the X coordinate value x 1 of the first break point (x 1 , y 1). Further, the determination unit 13 determines whether or not the x value for which the approximate value is to be obtained is larger than the X coordinate value x n of the last break point (x n , y n).
 第1近似部14は、判定部13によって、近似値を求めたいx値が最初の折れ点の値xよりも小さいと判定した場合に、最初の折れ点のy値であるyを近似値として返す。また、第1近似部14は、判定部13によって近似値を求めたいx値が最後の折れ点の値xよりも大きいと判定された場合に、最後の折れ点のy値であるyを近似値として返す。 The first approximation unit 14 approximates y 1 , which is the y value of the first break point, when the determination unit 13 determines that the x value for which the approximate value is to be obtained is smaller than the value x 1 of the first break point. Returns as a value. Further, the first approximation unit 14 is y n, which is the y value of the last break point when the determination unit 13 determines that the x value for which the approximation value is to be obtained is larger than the value x n of the last break point. Is returned as an approximate value.
 すなわち、第1近似部14は、近似値を求めたいx値が、折れ点設定部12によって設定された折れ点のうち、X軸上において互いに隣接する折れ点に挟まれていない場合には、最近傍の折れ点のy値をそのまま用いて近似値として算出する。 That is, when the x value for which the approximate value is to be obtained is not sandwiched between the break points set by the break point setting unit 12 and adjacent to each other on the X-axis, the first approximation unit 14 has a break point setting unit 12. The y value of the nearest break point is used as it is and calculated as an approximate value.
 第2近似部15は、近似値を求めたいx値が、折れ点設定部12によって設定された折れ点のうち、X軸上において互いに隣接する折れ点に挟まれている場合には、その互いに隣接する折れ点を線形補間して、近似値を求めたいx値に対応するy値を算出し、近似値として求める。例えば、近似値を求めたいx値が互いに隣接する折れ点(x,y)、(xi+1,yi+1)のx値に挟まれる場合(x≦x<xi+1)、折れ点「i」と折れ点「i+1」のy値を線形補間(あるいは「内分」とも呼ぶ。)した値を、y値の近似値として算出する。 In the second approximation unit 15, when the x value for which the approximation value is to be obtained is sandwiched between the break points set by the break point setting unit 12 that are adjacent to each other on the X axis, the second approximation unit 15 is located between the break points. The adjacent break points are linearly interpolated, the y value corresponding to the x value for which the approximate value is to be obtained is calculated, and the approximate value is obtained. For example, when the x-values for which an approximate value is to be obtained are sandwiched between the x-values of adjacent break points (x i , y i ) and (x i + 1 , y i + 1 ) (x i ≤ x <x i + 1 ), the break point " The value obtained by linearly interpolating (or also referred to as "internal division") the y value of "i" and the break point "i + 1" is calculated as an approximate value of the y value.
 図2の例では、近似区間Rの「線形補間」で示した部分が、第2近似部15によって近似値が算出されるデータ部分である。また、図2の「引継ぎ部分」で示される近似区間Rの両端部分が、第1近似部14によって最近傍の折れ点のy値がそのまま使用され近似値として算出されるデータ部分である。 In the example of FIG. 2, the portion indicated by "linear interpolation" of the approximation interval R is the data portion for which the approximation value is calculated by the second approximation unit 15. Further, both end portions of the approximated section R shown by the “takeover portion” in FIG. 2 are data portions calculated as approximate values by using the y value of the nearest bending point as it is by the first approximated portion 14.
 近似曲線生成部16は、第1近似部14によって算出された近似値と、第2近似部15によって算出された近似値とに基づいて、近似区間Rの近似曲線を生成する。生成された近似曲線は記憶部17に記憶される。 The approximate curve generation unit 16 generates an approximate curve of the approximate interval R based on the approximate value calculated by the first approximate unit 14 and the approximate value calculated by the second approximate unit 15. The generated approximate curve is stored in the storage unit 17.
 記憶部17は、データ取得部10によって取得された近似対象のデータを記憶する。また、記憶部17は、折れ点設定部12によって設定された折れ点の情報を記憶する。記憶部17は、近似曲線生成部16によって生成されたデータの近似曲線を記憶する。 The storage unit 17 stores the data to be approximated acquired by the data acquisition unit 10. Further, the storage unit 17 stores the information of the break point set by the break point setting unit 12. The storage unit 17 stores the approximate curve of the data generated by the approximate curve generation unit 16.
 提示部18は、近似曲線生成部16によって生成されたデータの近似曲線を提示する。例えば、提示部18は、後述の表示装置108の表示画面に近似曲線を表示することができる。提示部18は、例えば、図2に示す近似曲線を表示画面に表示することができる。あるいは、提示部18は、図示されない外部の演算装置に、生成された近似曲線を送出することができる。 The presentation unit 18 presents an approximate curve of the data generated by the approximate curve generation unit 16. For example, the presentation unit 18 can display an approximate curve on the display screen of the display device 108 described later. The presentation unit 18 can display, for example, the approximate curve shown in FIG. 2 on the display screen. Alternatively, the presentation unit 18 can send the generated approximate curve to an external arithmetic unit (not shown).
 [近似データ作成装置のハードウェア構成]
 次に、上記の機能を有する近似データ作成装置1を実現するハードウェア構成について、図3のブロック図を参照して説明する。
[Hardware configuration of approximate data creation device]
Next, the hardware configuration for realizing the approximate data creation device 1 having the above functions will be described with reference to the block diagram of FIG.
 図3に示すように、近似データ作成装置1は、例えば、バス101を介して接続されるプロセッサ102、主記憶装置103、通信インターフェース104、補助記憶装置105、入出力I/O106、入力装置107、および表示装置108を備えるコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。プロセッサ102は、CPUやGPUなどによって構成される。 As shown in FIG. 3, the approximate data creation device 1 includes, for example, a processor 102, a main storage device 103, a communication interface 104, an auxiliary storage device 105, an input / output I / O 106, and an input device 107 connected via a bus 101. , And a computer equipped with a display device 108, and a program that controls these hardware resources. The processor 102 is composed of a CPU, a GPU, and the like.
 主記憶装置103には、プロセッサ102が各種制御や演算を行うためのプログラムが予め格納されている。プロセッサ102と主記憶装置103とによって、図1に示した区間指定部11、折れ点設定部12、判定部13、第1近似部14、第2近似部15、近似曲線生成部16など、近似データ作成装置1の各機能が実現される。 The main storage device 103 stores in advance programs for the processor 102 to perform various controls and calculations. The processor 102 and the main storage device 103 approximate the section designation unit 11, the break point setting unit 12, the determination unit 13, the first approximation unit 14, the second approximation unit 15, the approximation curve generation unit 16, and the like shown in FIG. Each function of the data creation device 1 is realized.
 通信インターフェース104は、近似データ作成装置1と各種外部電子機器との間をネットワーク接続するためのインターフェース回路である。例えば、データ取得部10は、通信インターフェース104から通信ネットワークNWを介して外部の図示されない機器や端末装置などから解析対象のデータを受信することができる。 The communication interface 104 is an interface circuit for connecting a network between the approximate data creation device 1 and various external electronic devices. For example, the data acquisition unit 10 can receive data to be analyzed from an external device or terminal device (not shown) via the communication network NW from the communication interface 104.
 補助記憶装置105は、読み書き可能な記憶媒体と、その記憶媒体に対してプログラムやデータなどの各種情報を読み書きするための駆動装置とで構成されている。補助記憶装置105には、記憶媒体としてハードディスクやフラッシュメモリなどの半導体メモリを使用することができる。 The auxiliary storage device 105 is composed of a readable and writable storage medium and a drive device for reading and writing various information such as programs and data to the storage medium. A semiconductor memory such as a hard disk or a flash memory can be used as the storage medium in the auxiliary storage device 105.
 補助記憶装置105は、近似データ作成装置1が折れ点の設定処理、近似処理、および近似曲線の作成処理を実行するためのプログラムを格納するプログラム格納領域を有する。補助記憶装置105によって、図1で説明した記憶部17が実現される。さらには、例えば、上述したデータやプログラムやなどをバックアップするためのバックアップ領域などを有していてもよい。 The auxiliary storage device 105 has a program storage area for storing a program for the approximate data creation device 1 to execute a break point setting process, an approximate process, and an approximate curve creation process. The auxiliary storage device 105 realizes the storage unit 17 described with reference to FIG. Further, for example, it may have a backup area for backing up the above-mentioned data, programs, and the like.
 入出力I/O106は、外部機器からの信号を入力したり、外部機器へ信号を出力したりするI/O端子により構成される。 The input / output I / O 106 is composed of I / O terminals that input signals from external devices and output signals to external devices.
 入力装置107は、物理キーやタッチパネルなどで構成され、外部からの操作入力に応じた信号を出力する。 The input device 107 is composed of physical keys, a touch panel, and the like, and outputs a signal corresponding to an operation input from the outside.
 表示装置108は、液晶ディスプレイなどによって構成される。表示装置108は、図1で説明した提示部18を実現する。 The display device 108 is composed of a liquid crystal display or the like. The display device 108 realizes the presentation unit 18 described with reference to FIG.
 [近似データ作成方法]
 次に、上述した構成を有する近似データ作成装置1の動作について、図4から図6のフローチャートを用いて説明する。
[Approximate data creation method]
Next, the operation of the approximate data creation device 1 having the above-described configuration will be described with reference to the flowcharts of FIGS. 4 to 6.
 まず、図4を用いて近似データ作成方法の概要を説明する。図4に示すように、データ取得部10は、XY座標平面上のグラフで表される近似対象のデータを取得する(ステップS1)。取得されたデータは記憶部17に蓄積される。データは、例えば、センサなどの機器で測定された非線形プロセスデータ等を用いることができる。次に、区間指定部11は、取得されたデータにおいて近似を行う近似区間Rを指定する(ステップS2)。次に、折れ点設定部12は、ステップS2で指定された近似区間Rの折れ点を設定する(ステップS3)。 First, the outline of the approximate data creation method will be described with reference to FIG. As shown in FIG. 4, the data acquisition unit 10 acquires the data of the approximation target represented by the graph on the XY coordinate plane (step S1). The acquired data is stored in the storage unit 17. As the data, for example, non-linear process data measured by a device such as a sensor can be used. Next, the section designation unit 11 designates an approximate section R to be approximated in the acquired data (step S2). Next, the break point setting unit 12 sets the break point of the approximate section R specified in step S2 (step S3).
 その後、近似値算出部40は、ステップS2で指定された近似区間Rの折れ点を用いて任意のx値におけるデータの近似値を算出する(ステップS4)。次に、近似曲線生成部16は、近似値算出部40によって算出された近似区間Rの近似値から近似曲線を生成する(ステップS5)。その後、提示部18は、ステップS5で生成された近似曲線を提示する。例えば、提示部18は、図2に示す近似曲線を表示装置108に表示させることができる。 After that, the approximate value calculation unit 40 calculates the approximate value of the data at an arbitrary x value using the break point of the approximate section R specified in step S2 (step S4). Next, the approximate curve generation unit 16 generates an approximate curve from the approximate value of the approximate interval R calculated by the approximate value calculation unit 40 (step S5). After that, the presentation unit 18 presents the approximate curve generated in step S5. For example, the presentation unit 18 can display the approximate curve shown in FIG. 2 on the display device 108.
 [折れ点の設定処理]
 ここで、折れ点設定部12による折れ点の設定処理(図4のステップS3)について、図5のフローチャートを用いて説明する。
[Break point setting process]
Here, the break point setting process (step S3 in FIG. 4) by the break point setting unit 12 will be described with reference to the flowchart of FIG.
 まず、折れ点設定部12は、近似区間RのX座標における値が小さい側の端点(x、y)から、データの値が、ある値yの許容誤差の範囲内で表される区間を取得する(ステップS30)。次に、折れ点設定部12は、ステップS30で取得された区間において、近似区間Rの端点(x、y)でない方の端点に、最初の折れ点(x、y)を設ける(ステップS31)。図2の例では、折れ点「1」で示されている点が、ステップS31で設定された最初の折れ点である。 First, in the break point setting unit 12, the data value is expressed within the margin of error of a certain value y 1 from the end point (x 0 , y 0 ) on the side where the value in the X coordinate of the approximate section R is small. Acquire the section (step S30). Next, the break point setting unit 12 provides the first break point (x 1 , y 1 ) at the end point other than the end point (x 0 , y 0 ) of the approximate section R in the section acquired in step S30. (Step S31). In the example of FIG. 2, the point indicated by the break point “1” is the first break point set in step S31.
 次に、折れ点設定部12は、ステップS2で指定された近似区間RのX座標における値が大きい側の端点(xn+1、yn+1)から、データの値が、ある値yの許容誤差範囲内で表される区間を取得する(ステップS32)。次に、折れ点設定部12は、ステップS32で取得された区間において、近似区間Rの端点(xn+1、yn+1)でない方の端点に最後の折れ点(x、y)を設ける(ステップS33)。図2の例では、折れ点「n」で示されている点が、ステップS33で設定された最後の折れ点である。 Next, the break point setting unit 12 has a permissible error of a certain value y n from the end point (x n + 1 , y n + 1 ) on the side where the value in the X coordinate of the approximate section R specified in step S2 is large. The section represented within the range is acquired (step S32). Next, the break point setting unit 12 provides the last break point (x n , y n ) at the end point other than the end point (x n + 1 , y n + 1 ) of the approximate section R in the section acquired in step S32 (x n, y n). Step S33). In the example of FIG. 2, the point indicated by the break point “n” is the last break point set in step S33.
 次に、折れ点設定部12は、最初の折れ点(x、y)と最後の折れ点(x、y)との間のデータに、折れ点を設ける(ステップS34)。折れ点設定部12は、例えば、Ramer-Douglas-Peuckerアルゴリズムなどの公知の手法を用いて折れ点を設けることができる。また、折れ点設定部12は、ステップS34において複数の折れ点を設けることができる。折れ点設定部12によって設定された折れ点は、記憶部17に保存される(ステップS35)。 Next, the break point setting unit 12 sets a break point in the data between the first break point (x 1 , y 1 ) and the last break point (x n , y n ) (step S34). The break point setting unit 12 can provide a break point by using a known method such as the Ramer-Douglas-Pucker algorithm. Further, the break point setting unit 12 can provide a plurality of break points in step S34. The break points set by the break point setting unit 12 are stored in the storage unit 17 (step S35).
 また、図7の例では、折れ点設定部12による最初の折れ点「1」が設定されている。しかし、任意の値yから許容誤差範囲となる区間が存在しなかったため、近似区間Rの端点(xn+1、yn+1)には、折れ点が設定されている。 Further, in the example of FIG. 7, the first break point "1" is set by the break point setting unit 12. However, since there is no section within the permissible error range from an arbitrary value y n , a break point is set at the end point (x n + 1 , y n + 1) of the approximate section R.
 一方、図8の例では、折れ点設定部12により最後の折れ点「n」が設定されている。しかし、近似区間Rの他方の端点(x、y)側において、任意のyと許容誤差範囲となる区間が存在しなかったため、近似区間Rの端点(x、y)に折れ点が設定されている。 On the other hand, in the example of FIG. 8, the final break point "n" is set by the break point setting unit 12. However, on the other end point (x 0 , y 0 ) side of the approximate interval R, there was no section within the permissible error range with any y 1 , so the end point (x 0 , y 0 ) of the approximate interval R was broken. The point is set.
 [近似値算出処理]
 次に、近似値算出部40によって実行される近似値算出処理(図4のステップS4)について図6のフローチャートを用いて説明する。
[Approximate value calculation process]
Next, the approximate value calculation process (step S4 in FIG. 4) executed by the approximate value calculation unit 40 will be described with reference to the flowchart of FIG.
 まず、近似値算出部40は、記憶部17に記録されている折れ点を読み出す(ステップS40)。次に、近似値算出部40は、近似値を求めたい近似区間R内のX座標の値を取得する(ステップS41)。例えば、近似値算出部40は、入力装置107で受け付けられたX座標の任意のx値を取得することができる。あるいは、予め設定されたX座標の値を取得することができる。 First, the approximate value calculation unit 40 reads out the break point recorded in the storage unit 17 (step S40). Next, the approximate value calculation unit 40 acquires the value of the X coordinate in the approximate section R for which the approximate value is to be obtained (step S41). For example, the approximate value calculation unit 40 can acquire an arbitrary x value of the X coordinate received by the input device 107. Alternatively, a preset X-coordinate value can be acquired.
 次に、判定部13は、ステップS41で取得された近似値を求めたいX座標の値が、最初の折れ点のX座標のxよりも小さいか否かを判定し、小さい場合には(ステップS42:YES)、第1近似部14は、最初の折れ点のy値を近似値として返す(ステップS43)。 Next, the determination unit 13 determines whether or not the value of the X coordinate for which the approximate value obtained in step S41 is to be obtained is smaller than x 1 of the X coordinate of the first break point, and if it is smaller, ( Step S42: YES), the first approximation unit 14 returns the y value of the first break point as an approximation value (step S43).
 一方、判定部13が、ステップS41で取得された近似値を求めたいX座標の値が、最初の折れ点のX座標のxと同じ値の場合(ステップS42:NO,ステップS44:NO)、第1近似部14は、最後の折れ点のy値を近似値として返す(ステップS45)。 On the other hand, when the value of the X coordinate for which the determination unit 13 wants to obtain the approximate value obtained in step S41 is the same as x n of the X coordinate of the first break point (step S42: NO, step S44: NO). , The first approximation unit 14 returns the y value of the last break point as an approximation value (step S45).
 一方において、判定部13が、ステップS41で取得された近似値を求めたいX座標の値が最初の折れ点のX座標のxよりも大きい場合には(ステップS42:NO、ステップS44:YES)、第2近似部15は、折れ点「i」のX座標の値xと折れ点「i+1」のX座標の値xi+1とを使って、xがx≦x<xi+1と表されるiを見つける(ステップS46)。 On the other hand, when the value of the X coordinate for which the determination unit 13 wants to obtain the approximate value obtained in step S41 is larger than x 0 of the X coordinate of the first break point (step S42: NO, step S44: YES). ), The second approximation unit 15 uses the X-coordinate value x i of the break point "i" and the X-coordinate value x i + 1 of the break point "i + 1" to table x as x i ≤ x <x i + 1. Find the i to be done (step S46).
 その後、第2近似部15は、折れ点「i」および折れ点「i+1」のy値を線形補間(内分)した値を近似値として返す(ステップS47)。より詳細には、第2近似部15は、次の式(1)を用いて算出される折れ点間のデータを、近似値として求める。 After that, the second approximation unit 15 returns the value obtained by linearly interpolating (internally dividing) the y values of the break point “i” and the break point “i + 1” as approximate values (step S47). More specifically, the second approximation unit 15 obtains the data between the break points calculated using the following equation (1) as an approximation value.
Figure JPOXMLDOC01-appb-M000001
 ただし、iは折れ点を示している(i=0,1,・・・)。
Figure JPOXMLDOC01-appb-M000001
However, i indicates a break point (i = 0, 1, ...).
 図9は、第2近似部15によって折れ点間のデータが線形補間された近似区間Rの一部を示している。 FIG. 9 shows a part of the approximated interval R in which the data between the break points is linearly interpolated by the second approximated portion 15.
 また、図10は、第1近似部14によって最初の折れ点の値をそのまま使用する近似区間Rの一部を示している。第1近似部14は、近似区間Rの最初の折れ点「1」(x,y)の値yに基づいて、次式(2)を用いて近似区間Rの近似値を算出する。
 y=y                       ・・・(2)
Further, FIG. 10 shows a part of the approximation section R in which the value of the first break point is used as it is by the first approximation unit 14. The first approximation unit 14 calculates an approximation value of the approximation section R using the following equation (2) based on the value y 1 of the first break point “1” (x 1 , y 1) of the approximation interval R. ..
y = y 1 ... (2)
 一方、図11の例では、近似区間Rの上限値側において、折れ点「n+1」は設定されず、近似区間Rの折れ点「n」よりも外側のx軸に沿った区間のデータはy値がそのまま引き継がれている。 On the other hand, in the example of FIG. 11, the break point "n + 1" is not set on the upper limit side of the approximate section R, and the data of the section along the x-axis outside the break point "n" of the approximate section R is y. The value is inherited as it is.
 図11は、第1近似部14によって最後の折れ点の値をそのまま使用する近似区間Rの一部を示している。第1近似部14は、最後の折れ点「n」(x,y)の値yに基づいて、次式(3)を用いて近似区間Rの近似値を算出する。
 y=y                       ・・・(3)
FIG. 11 shows a part of the approximation section R in which the value of the last break point is used as it is by the first approximation unit 14. The first approximation unit 14 calculates an approximate value of the approximate interval R using the following equation (3) based on the value y n of the last break point “n” (x n , y n).
y = y n ... (3)
 以上説明したように、本実施の形態によれば、指定された近似区間の折れ点の数を削減すことができるので、メモリ使用量を削減し、装置の小型化、および低消費電力化に寄与することができる。 As described above, according to the present embodiment, the number of break points in the designated approximate section can be reduced, so that the memory usage can be reduced, the device can be downsized, and the power consumption can be reduced. Can contribute.
 また、本実施の形態によれば、指定された近似区間の折れ点の数を減らすことが可能であるため、工数の削減に寄与することができる。 Further, according to the present embodiment, it is possible to reduce the number of break points in the designated approximate section, which can contribute to the reduction of man-hours.
 また、本実施の形態によれば、折れ点が設定されている近似区間の外側では、最近傍の折れ点の値をそのまま使うこととなり、範囲外の値を入力することにより折れ線近似による近似値が求められなくなるようなエラーを回避することができる。また、近似区間の外側において最近傍の折れ点の値を用いるので、得られる近似値は最近傍の折れ点の値であり、極端に異なる値とは通常ならないため、その後の計算処理をより適切に行うことができる。 Further, according to the present embodiment, outside the approximate section in which the break point is set, the value of the nearest break point is used as it is, and by inputting a value outside the range, the approximate value by the polygonal line approximation is used. It is possible to avoid an error that makes it unsolicited. Further, since the value of the nearest neighbor break point is used outside the approximate interval, the obtained approximate value is the value of the nearest neighbor break point and is not usually an extremely different value, so that the subsequent calculation process is more appropriate. Can be done.
 なお、説明した実施の形態では、近似データ作成装置1がデータ取得部10、区間指定部11、および折れ点設定部12を備える場合を例示したが、これらの構成は、近似データ作成装置1の外部に設けられていてもよい。この場合、近似データ作成装置1の記憶部17において予め格納されている近似対象のデータ、データに指定された近似区間、およびデータに設定された折れ点に関する情報を読み込み、近似データ作成装置1は上述した近似データ作成処理を実行する。 In the embodiment described, the case where the approximate data creation device 1 includes the data acquisition unit 10, the section designation unit 11, and the break point setting unit 12 has been illustrated, but these configurations are based on the approximate data creation device 1. It may be provided externally. In this case, the data of the approximation target stored in advance in the storage unit 17 of the approximation data creation device 1, the approximation interval specified in the data, and the information about the break point set in the data are read, and the approximation data creation device 1 reads the information. The above-mentioned approximation data creation process is executed.
 [具体例]
 次に、上述した本実施の形態に係る近似データ作成装置1が適用される具体例について説明する。前述したように、近似データ作成装置1が近似対象とするデータは、例えば、非線形のプロセスデータなどである場合について説明した。近似データ作成装置1は、例えば、超音波流量計において流量補正係数をレイノルズ数の関数として算出する際の近似曲線の生成に適用することができる。また、近似データ作成装置1は、このような超音波流量計によって計測された流量を用いて熱量を算出する積算熱量計に応用することができる。
[Concrete example]
Next, a specific example to which the approximate data creation device 1 according to the above-described embodiment is applied will be described. As described above, the case where the data to be approximated by the approximation data creation device 1 is, for example, non-linear process data has been described. The approximate data creation device 1 can be applied to, for example, the generation of an approximate curve when calculating the flow rate correction coefficient as a function of the Reynolds number in an ultrasonic flow meter. Further, the approximate data creation device 1 can be applied to an integrated calorimeter that calculates the amount of heat using the flow rate measured by such an ultrasonic flow meter.
 例えば、特別な形状や表面状態の流路では理論的に流量補正係数を求めることができる。しかし、一般には、実験により流量補正係数を各レイノルズ数に対して測定しておき、これを折れ線で近似し、計測時にはこの折れ線近似でレイノルズ数に対する流量補正係数を算出することが多い。 For example, the flow rate correction coefficient can be theoretically obtained for a flow path having a special shape or surface condition. However, in general, the flow rate correction coefficient is measured for each Reynolds number by an experiment, and this is approximated by a fold line, and at the time of measurement, the flow rate correction coefficient for the Reynolds number is often calculated by this fold line approximation.
 流体が層流となって流れているときには流量補正係数は流速によらず一定の値となる。一般にレイノルズ数が約2000以下の時には層流となるとされているため、流量が少ない(レイノルズ数が小さい)ところでは流量補正係数は一定の値となる。例えば円筒流路の場合、層流時の流量補正係数は4/3(=1.333…)となる。 When the fluid is flowing as a laminar flow, the flow rate correction coefficient is a constant value regardless of the flow velocity. Generally, when the Reynolds number is about 2000 or less, it is considered to be a laminar flow, so the flow rate correction coefficient becomes a constant value where the flow rate is small (the Reynolds number is small). For example, in the case of a cylindrical flow path, the flow rate correction coefficient at the time of laminar flow is 4/3 (= 1.333 ...).
 流体が乱流となっているときには流量補正係数はレイノルズ数の関数として変化するが、流量が多く(レイノルズ数が大きく)なってくると流路全体の流速が一様となり流量補正係数は1に近づく。流量計の計測範囲が大流量まで設定されており、流量計の精度との兼ね合いで、あるレイノルズ数以上で一定の流量補正係数とみなすことができれば、流量が多い(レイノルズ数が大きい)ところでは流量補正係数を一定の値とすることができる。 When the fluid is turbulent, the flow rate correction coefficient changes as a function of the Reynolds number, but when the flow rate increases (the Reynolds number increases), the flow velocity of the entire flow path becomes uniform and the flow rate correction coefficient becomes 1. Get closer. If the measurement range of the flow meter is set up to a large flow rate and it can be regarded as a constant flow rate correction coefficient above a certain Reynolds number in consideration of the accuracy of the flow meter, the flow rate is large (the Reynolds number is large). The flow rate correction coefficient can be a constant value.
 本実施の形態に係る近似データ作成装置1を流量補正係数の折れ線近似に適用する場合、流量計の流量計測範囲によっては折れ点の数を1個または2個減らすことが可能である。 When the approximation data creation device 1 according to the present embodiment is applied to the polygonal line approximation of the flow rate correction coefficient, the number of break points can be reduced by one or two depending on the flow rate measurement range of the flow meter.
 本発明の近似データ作成装置および近似データ作成方法における実施の形態について説明したが、本発明は説明した実施の形態に限定されるものではなく、請求項に記載した発明の範囲において当業者が想定し得る各種の変形を行うことが可能である。 Although the embodiments of the approximate data creation device and the approximate data creation method of the present invention have been described, the present invention is not limited to the described embodiments and is assumed by those skilled in the art within the scope of the invention described in the claims. It is possible to make various possible modifications.
 1…近似データ作成装置、10…データ取得部、11…区間指定部、12…折れ点設定部、13…判定部、14…第1近似部、15…第2近似部、16…近似曲線生成部、17…記憶部、18…提示部、101…バス、102…プロセッサ、103…主記憶装置、104…通信インターフェース、105…補助記憶装置、106…入出力I/O、107…入力装置、108…表示装置、NW…通信ネットワーク。 1 ... Approximate data creation device, 10 ... Data acquisition unit, 11 ... Section designation unit, 12 ... Break point setting unit, 13 ... Judgment unit, 14 ... 1st approximation unit, 15 ... Second approximation unit, 16 ... Approximate curve generation Unit, 17 ... storage unit, 18 ... presentation unit, 101 ... bus, 102 ... processor, 103 ... main storage device, 104 ... communication interface, 105 ... auxiliary storage device, 106 ... input / output I / O, 107 ... input device, 108 ... Display device, NW ... Communication network.

Claims (6)

  1.  XY座標平面上のグラフで表されるデータのX座標軸に沿って指定された近似区間において前記データの近似データを作成する近似データ作成装置であって、
     前記近似区間の両端である第1端点および前記第1端点のX値よりも大きいX値を有する第2端点のそれぞれから、前記近似区間内の前記データのY値が予め設定された値の範囲内である点に第1折れ点および第2折れ点を設定するように構成された折れ点設定部と、
     前記近似区間内の任意のX値と前記第1折れ点および前記第2折れ点のX値との比較に基づいて、前記任意のX値に対応する前記データのY値の近似値を算出するように構成された近似値算出部と
     を備える近似データ作成装置。
    It is an approximation data creation device that creates approximation data of the data in the approximation section specified along the X coordinate axis of the data represented by the graph on the XY coordinate plane.
    A range of preset values for the Y value of the data in the approximated section from each of the first end point which is both ends of the approximated section and the second end point which has an X value larger than the X value of the first end point. A break point setting unit configured to set a first break point and a second break point at a point inside, and a break point setting unit.
    Based on the comparison between the arbitrary X value in the approximate section and the X value of the first break point and the second break point, the approximate value of the Y value of the data corresponding to the arbitrary X value is calculated. An approximate data creation device including an approximate value calculation unit configured as described above.
  2.  請求項1に記載の近似データ作成装置において、
     前記折れ点設定部は、前記第1折れ点と前記第2折れ点との間の前記近似区間内の前記データに離散的な第3折れ点を設定し、
     前記近似値算出部は、前記任意のX値が、前記折れ点設定部によって設定された前記第1折れ点、前記第2折れ点、および前記第3折れ点を含む折れ点のうち、X座標軸方向において互いに隣接する折れ点に挟まれていない場合には、最近傍の折れ点のY値を前記任意のX値に対応するY値の近似値として算出するように構成された第1近似部を備える
     ことを特徴とする近似データ作成装置。
    In the approximate data creation device according to claim 1,
    The break point setting unit sets a discrete third break point in the data in the approximate section between the first break point and the second break point.
    In the approximate value calculation unit, the X coordinate axis of the arbitrary X value among the break points including the first break point, the second break point, and the third break point set by the break point setting unit. A first approximation unit configured to calculate the Y value of the nearest break point as an approximation of the Y value corresponding to the arbitrary X value when it is not sandwiched between the break points adjacent to each other in the direction. An approximate data creation device characterized by being equipped with.
  3.  請求項2に記載の近似データ作成装置において、
     前記近似値算出部は、前記任意のX値が、前記折れ点設定部によって設定された前記第1折れ点、前記第2折れ点、および前記第3折れ点を含む折れ点のうち、X座標軸方向において互いに隣接する折れ点に挟まれている場合には、前記互いに隣接する折れ点を直線補間して算出される、前記任意のX値に対応するY値を近似値として求めるように構成された第2近似部を備える
     ことを特徴とする近似データ作成装置。
    In the approximate data creation device according to claim 2.
    In the approximate value calculation unit, the X coordinate axis of the break points including the first break point, the second break point, and the third break point whose arbitrary X value is set by the break point setting unit. When sandwiched between fold points adjacent to each other in the direction, the Y value corresponding to the arbitrary X value, which is calculated by linearly interpolating the fold points adjacent to each other, is configured to be obtained as an approximate value. An approximation data creation device including a second approximation unit.
  4.  請求項1から3のいずれか1項に記載の近似データ作成装置において、
     前記近似値算出部によって算出された近似値に基づいて、前記近似区間の近似曲線を生成するように構成された近似曲線生成部をさらに備える
     ことを特徴とする近似データ作成装置。
    In the approximate data creation device according to any one of claims 1 to 3.
    An approximation data creating apparatus, further comprising an approximation curve generation unit configured to generate an approximation curve for the approximation section based on the approximation value calculated by the approximation value calculation unit.
  5.  請求項4に記載の近似データ作成装置において、
     前記近似曲線生成部によって生成された前記近似区間の近似曲線を表示するように構成された表示装置をさらに備える
     ことを特徴とする近似データ作成装置。
    In the approximate data creation device according to claim 4,
    An approximate data creation device further comprising a display device configured to display an approximate curve of the approximate section generated by the approximate curve generation unit.
  6.  XY座標平面上のグラフで表されるデータのX座標軸に沿って指定された近似区間において前記データの近似データを作成する近似データ作成装置によって実行される近似データ作成方法であって、
     折れ点設定部が、前記近似区間の両端である第1端点および前記第1端点のX値よりも大きいX値を有する第2端点のそれぞれから、前記近似区間内の前記データのY値が予め設定された値の範囲内である点に第1折れ点および第2折れ点を設定する第1ステップと、
     近似値算出部が、前記近似区間内の任意のX値と前記第1折れ点および前記第2折れ点のX値との比較に基づいて、前記任意のX値に対応する前記データのY値の近似値を算出する第2ステップと
     を備える近似データ作成方法。
    An approximation data creation method executed by an approximation data creation device that creates approximation data for the data in a specified approximation interval along the X coordinate axis of the data represented by the graph on the XY coordinate plane.
    From each of the first end point which is both ends of the approximate section and the second end point which has an X value larger than the X value of the first end point, the break point setting unit sets the Y value of the data in the approximate section in advance. The first step of setting the first and second break points at points within the set value range, and
    The approximation value calculation unit compares an arbitrary X value in the approximation section with the X values of the first break point and the second break point, and the Y value of the data corresponding to the arbitrary X value. Approximate data creation method including a second step of calculating an approximate value of.
PCT/JP2020/038258 2019-10-28 2020-10-09 Approximate data generation device and approximate data generation method WO2021085081A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-195087 2019-10-28
JP2019195087A JP7328119B2 (en) 2019-10-28 2019-10-28 APPROXIMATE DATA CREATION DEVICE AND APPROXIMATE DATA CREATION METHOD

Publications (1)

Publication Number Publication Date
WO2021085081A1 true WO2021085081A1 (en) 2021-05-06

Family

ID=75638712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038258 WO2021085081A1 (en) 2019-10-28 2020-10-09 Approximate data generation device and approximate data generation method

Country Status (2)

Country Link
JP (1) JP7328119B2 (en)
WO (1) WO2021085081A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092294A (en) * 2016-12-01 2018-06-14 ソニーセミコンダクタソリューションズ株式会社 Computing device, computing method and computer program
JP2018163396A (en) * 2017-03-24 2018-10-18 アズビル株式会社 Piecewise linear approximation function generation apparatus and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092294A (en) * 2016-12-01 2018-06-14 ソニーセミコンダクタソリューションズ株式会社 Computing device, computing method and computer program
JP2018163396A (en) * 2017-03-24 2018-10-18 アズビル株式会社 Piecewise linear approximation function generation apparatus and method

Also Published As

Publication number Publication date
JP2021068360A (en) 2021-04-30
JP7328119B2 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
US10410317B1 (en) Digital image transformation environment using spline handles
Verfürth Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition II
CN107180117B (en) Chart recommendation method and device and computer equipment
Speleers A normalized basis for reduced Clough–Tocher splines
Wahab Interpolation and extrapolation
Carstensen et al. A priori and a posteriori error control of discontinuous Galerkin finite element methods for the von Kármán equations
Meyer et al. A posteriori error analysis for random scalar conservation laws using the stochastic Galerkin method
Hofer et al. Discontinuous Galerkin isogeometric analysis of elliptic problems on segmentations with non-matching interfaces
US9715741B2 (en) Method for evaluating spline parameters for smooth curve sampling
WO2021085081A1 (en) Approximate data generation device and approximate data generation method
US11423587B2 (en) Freeform gradient style blending
Chau et al. On the wavelet-based SWIFT method for backward stochastic differential equations
Sinha et al. An unfitted finite-element method for elliptic and parabolic interface problems
Heuer et al. Discontinuous Galerkin-BEM with quasi-uniform meshes
Xu et al. Geometric Hermite interpolation for space curves
US8606835B2 (en) Efficient kernel calculation for interpolation
CN113808011A (en) Feature fusion based style migration method and device and related components thereof
Faustmann et al. Local convergence of the boundary element method on polyhedral domains
Franz et al. A unified framework for time-dependent singularly perturbed problems with discontinuous Galerkin methods in time
Jansson et al. Adaptive error control in finite element methods using the error representation as error indicator
John et al. Approximating local averages of fluid velocities: The Stokes problem
Wang et al. A Posteriori Error Control and Adaptivity for the IMEX BDF2 Method for PIDEs with Application to Options Pricing Models
Rottmann-Matthes An IMEX-RK scheme for capturing similarity solutions in the multidimensional Burgers’s equation
US9286654B2 (en) Image scaling processor and image scaling processing method
CN117665414B (en) Near field measurement method, device, terminal and readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880437

Country of ref document: EP

Kind code of ref document: A1