WO2021084989A1 - Battery pack and electrical device - Google Patents

Battery pack and electrical device Download PDF

Info

Publication number
WO2021084989A1
WO2021084989A1 PCT/JP2020/036445 JP2020036445W WO2021084989A1 WO 2021084989 A1 WO2021084989 A1 WO 2021084989A1 JP 2020036445 W JP2020036445 W JP 2020036445W WO 2021084989 A1 WO2021084989 A1 WO 2021084989A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
unit
cell
cell unit
terminal
Prior art date
Application number
PCT/JP2020/036445
Other languages
French (fr)
Japanese (ja)
Inventor
聡史 山口
聡明 増森
浩之 塙
Original Assignee
工機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工機ホールディングス株式会社 filed Critical 工機ホールディングス株式会社
Priority to JP2021554186A priority Critical patent/JP7259983B2/en
Publication of WO2021084989A1 publication Critical patent/WO2021084989A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack and an electric device that operates a load such as a motor and lighting by using the battery pack.
  • a battery pack using a secondary battery such as a lithium ion battery is widely used.
  • the battery pack is detachably attached to the main body of the electric device, and when the voltage drops due to discharge, the battery pack is removed from the main body of the electric device and charged using an external charging device.
  • the output voltage of the battery pack is fixed, but in Patent Document 1, a plurality of cell units are provided in the housing accommodating the battery, and whether they are output as a series connection or a parallel connection is determined by the connection means.
  • a battery pack that can be used with devices of different voltages has been realized. By using this battery pack, it is not necessary to prepare different types of battery packs when using a plurality of electric devices.
  • the battery pack of Patent Document 1 does not require a special operation when switching the voltage, and there is no risk of an operation error occurring. Further, the battery pack of Patent Document 1 has a first cell unit and a second cell unit built-in, a microcomputer and a power supply are provided on one cell unit side, and a discharge circuit is provided on the other cell unit side. Is configured to operate in conjunction with the startup of the microcomputer.
  • the present invention has been made in view of the above background, and an object of the present invention is a battery cell protection circuit provided for each of a plurality of cell units in a battery pack capable of switching the connection form of the plurality of cell units. It is an object of the present invention to provide a battery pack and electrical equipment in which a monitoring microcomputer (hereinafter referred to as "microcomputer") is provided and the imbalance of voltage balance between cell units can be adjusted by the microcomputer. Another object of the present invention is to finely adjust the power consumption on the other cell unit side by a microcomputer driven by the power on one cell unit side in a battery pack capable of switching the connection form of a plurality of cell units. Then, the present invention provides a battery pack in which the power consumption of both cell units is equalized, and an electric device using the battery pack.
  • a monitoring microcomputer hereinafter referred to as "microcomputer”
  • a plurality of battery cells have at least first and second cell units as cell units connected in series, and the first cell unit is higher than the second cell unit.
  • the first and first cells are used. Connected to one of the two cell units (for example, the second cell unit), the state of the battery cells constituting at least one cell unit can be monitored, and a discharge control signal for controlling the discharge of the battery pack can be output.
  • a configured control unit including a microcomputer
  • an adjusting unit which is connected to the other of the first and second cell units (for example, the first cell unit) and finely adjusts the power consumption of the other cell unit side by the control signal from the control unit is provided.
  • the battery pack is connected to the control unit and includes a power supply unit that supplies a power supply voltage to the control unit, the power supply unit is connected to one cell unit, and the control unit is connected to the power supply unit and the negative electrode of one cell unit.
  • the power supply unit is configured to generate a power supply voltage from the voltage input from one of the cell units and supply it to the control unit.
  • the power supply unit is connected to the second cell unit, and the power supply voltage is supplied from the second cell unit to the control unit via the power supply unit.
  • the control unit controls the adjustment unit according to its own state or the state of the connecting element connected to one of the cell units.
  • the adjusting unit is a discharge circuit including a resistance unit connected in parallel with the other cell unit and a switch unit connected in series with the resistance unit, and the control unit controls the switch unit.
  • the control unit includes at least a plurality of operation modes including a normal mode and a sleep mode, and in the normal mode, the control unit is the other cell unit than in the sleep mode. Control the adjustment unit so that the power consumption of the Further, a wireless communication mode is provided as an operation mode, and the control unit controls the adjustment unit so that the power consumption of the other cell unit is larger in the wireless communication mode than in the sleep mode.
  • a wireless communication mode is provided as an operation mode
  • the control unit controls the adjustment unit so that the power consumption of the other cell unit is larger in the wireless communication mode than in the sleep mode.
  • the electric device has a battery pack and at least the first electric device main body as an electric device main body that can be connected to the battery pack, and the battery pack is connected to the first electric device main body. If this is the case, the first and second cell units are connected in series with each other, and if the battery pack is not connected to the first electrical device body, the first and second cell units are connected to each other. It becomes electrically independent and disconnected. Further, the battery pack is in a parallel connection state in which the first and second cell units are connected in parallel to each other when the battery pack is connected to the second electric device main body, and the battery pack is in the second electric device main body. When removed from, the first and second cell units are configured to be electrically independent of each other in a disconnected state (the first and second cell units are electrically disconnected).
  • the adjusting unit for adjusting the power consumption of the other cell unit by the control signal from the control unit since the adjusting unit for adjusting the power consumption of the other cell unit by the control signal from the control unit is provided, the balance of the power consumption between the plurality of cell units can be adjusted with high accuracy. Therefore, even if a load device (wireless communication circuit, indicator lamp, etc.) that consumes power is provided on one of the cell units, the balance of power consumption between the cell units can be finely adjusted according to the actual usage conditions. It will be possible. Further, since the operation or stop of the adjustment unit for adjusting the power consumption can be controlled by the control unit, the power balance between the cell units can be easily adjusted even if the microcomputer included in the control unit is put to sleep.
  • FIG. 1 It is a figure for demonstrating the mounting state of the battery pack 100 which concerns on this invention to the power tool main body 1, 51. It is a perspective view which shows the appearance of the battery pack 100 which concerns on embodiment of this invention.
  • (A) is a partial perspective view showing the shapes of the positive electrode terminals (162 and 172) and the negative electrode terminals (167 and 177), and a diagram showing a connection circuit at the time of high voltage output, and
  • (B) is a terminal of a high voltage electric device. It is a partial perspective view for showing the connection state of the part 30 and the terminal on the battery pack 100 side.
  • (A) is a partial perspective view showing the shapes of the positive electrode terminals (162 and 172) and the negative electrode terminals (167 and 177), and a diagram showing a connection circuit at the time of low voltage output
  • (B) is a terminal of a low voltage electric device. It is a partial perspective view for showing the connection state of the part 80 and the terminal on the battery pack 100 side. It is a block diagram which shows the basic internal circuit of a battery pack 100. It is a circuit diagram of the electric equipment (power tool main body 1) for high voltage to which the battery pack 100 of this Example is connected. It is a figure which shows the example of the operation mode of the current consumption control means 195.
  • FIG. 1 is a diagram for explaining a state in which the battery pack according to the present embodiment is attached to the power tool.
  • power tools which are a form of electric equipment.
  • the battery pack 100 with a rating of 36V that can obtain higher output. Power tools using the above are commercially available.
  • a battery pack that can be attached to either the power tool main body 51 having a rating of 18 V or the power tool main body 1 having a rating of 36 V is commercially available depending on the applicant.
  • the power tool bodies 1 and 51 shown in FIG. 1 are both called impact tools.
  • the power tool bodies 1 and 51 are tools in which tip tools such as bits (not shown) are attached to output shafts 9 and 59, and tightening work is performed by applying a rotational force or a striking force in the axial direction to the tip tools.
  • hexagonal holes (not shown) having a hexagonal cross section are formed on the output shafts 9 and 59, and one-touch mounting mechanisms 8 and 58 are provided.
  • the power tool bodies 1 and 51 include housings 2 and 52 which are outer frames forming an outer shape.
  • the housings 2 and 52 are formed with substantially tubular body portions 2a and 52a and handle portions 2b and 52b extending in the orthogonal direction (downward) from the vicinity of the axial center of the body portions 2a and 52a.
  • Trigger-shaped operation switches 4 and 54 are provided in the vicinity of the handle portions 2b and 52b where the index finger hits when the operator grips the handle portions 2b and 52b.
  • forward / reverse switching levers 5 and 55 for switching the rotation directions of the output shafts 9 and 59 are provided.
  • Battery pack mounting portions 2c and 52c for mounting the battery pack 100 are formed below the handle portions 2b and 52b.
  • the power tool main body 51 is an electric device that uses a battery pack having a rated voltage of 18 V.
  • the power tool main body 1 is an electric device main body that uses a battery pack having a rated voltage of 36 V.
  • the conventional battery pack dedicated to 36V contains only one set of cell units in which 10 cells of a lithium-ion battery rated at 3.6V are connected in series.
  • the battery pack 100 of this embodiment two sets of cell units formed by connecting five cells of a lithium ion battery rated at 3.6V in series are accommodated, and these two cell units are connected in series.
  • the rated output of 36V was obtained, and the rated output of 18V was obtained by connecting in parallel other than the series connection state.
  • the voltage of 18V is referred to as "low voltage” in the sense that the voltage is lower than the voltage of 36V, and 36V is referred to as "high voltage”.
  • the power tool body 51 can also be the power tool body. I made it possible to attach it to 1. Further, when the battery pack 100 is attached to the power tool body 51 for 18V as shown by arrow a1, the output of the battery pack 100 is automatically set to 18V, and when it is attached to the power tool body 1 for 36V as shown by arrow a2, the battery pack 100 is automatically attached. The output of 100 automatically becomes 36V. That is, by mounting the battery pack 100 on either the power tool main body 1 or 51, the output voltage is switched to match the mounted power tool main body.
  • FIG. 2 is a perspective view of the battery pack 100 according to the embodiment of the present invention.
  • the battery pack 100 can be mounted and removed from the battery pack mounting portions 2c and 52c (see FIG. 1). Further, in order to have compatibility with the conventional battery pack for rating 18V in terms of mounting, the shape of the mounting portion of the battery pack 100 is the same as that of the conventional battery pack.
  • the housing of the battery pack 100 is formed by a lower case 101 and an upper case 110 that can be divided in the vertical direction.
  • the upper case 110 is formed with a mounting mechanism in which two rail grooves 138a and 138b are formed for mounting on the battery pack mounting portion 2c.
  • the rail grooves 138a and 138b are formed so as to extend in a direction parallel to the mounting direction of the battery pack 100 and to project to the left and right side surfaces of the upper case 110.
  • the rail grooves 138a and 138b are formed in a shape corresponding to a rail (not shown) formed in the battery pack mounting portion 2c of the power tool main body 1, and the rail grooves 138a and 138b are fitted with the rail on the electric device main body side.
  • the battery pack 100 is fixed to the power tool bodies 1 and 51 by locking with the locking portion 142 which is the claw of the latch 141.
  • the lower surface 111 and the upper surface 115 of the upper case 110 are formed in a stepped shape, and a plurality of slots 121 to 128 extending rearward from the connecting portion thereof are formed. Slots 121 to 128 are notched portions so as to have a predetermined length in the battery pack mounting direction, and inside the notched portions, the power tool main bodies 1, 51 or an external charging device ( A plurality of connection terminals that can be fitted with the device-side terminals (not shown) are arranged. In slots 121 to 128, the slot 121 on the right side of the battery pack 100 near the rail groove 138a serves as an insertion port for the positive electrode terminal (C + terminal) for charging, and the slot 122 serves as an insertion port for the positive electrode terminal (+ terminal) for discharging.
  • the slot 127 on the side closer to the rail groove 138b on the left side serves as an insertion port for the negative electrode terminal (-terminal).
  • a plurality of signal terminals for transmitting signals to the battery pack 100 and the power tool bodies 1 and 51 and an external charging device (not shown) are arranged, and here, for signal terminals.
  • Four slots 123-126 are provided between the power terminals.
  • the slot 123 is a spare terminal insertion slot, and no terminal is provided in this embodiment.
  • the slot 124 is an insertion port for a T terminal for outputting a signal serving as identification information of the battery pack 100 to the power tool main body or the charging device.
  • Slot 125 is an insertion slot for a V terminal for inputting a control signal from an external charging device (not shown).
  • the slot 126 is an insertion port for an LS terminal for outputting battery temperature information by a thermistor (temperature sensitive element) (not shown) provided in contact with the cell.
  • a slot 128 for the LD terminal which outputs an abnormal stop signal by the battery protection circuit (not shown) included in the battery pack 100 is further provided. ..
  • a raised portion 132 formed so as to be raised is formed on the rear side of the upper surface 115.
  • a recessed stopper 131 is formed near the center of the raised 132.
  • the stopper portion 131 becomes a contact surface when the battery pack 100 is mounted on the battery pack mounting portions 2c and 52c.
  • FIG. 3A is a partial perspective view showing the shapes of the positive electrode terminals (162 and 172) and the negative electrode terminals (167 and 177) of this embodiment
  • FIG. 3B is a diagram showing a connection circuit at the time of high voltage output. It is a partial perspective view for showing the connection state of the terminal part 30 of the electric apparatus for high voltage, and the terminal of a battery pack 100 side.
  • the positive electrode terminal is composed of an upper positive electrode terminal 162 and a lower positive electrode terminal 172, and is arranged in the slot 122 shown in FIG.
  • the negative electrode terminal is composed of an upper negative electrode terminal 167 and a lower negative electrode terminal 177, and is arranged in the slot 127 shown in FIG.
  • the number of connection terminals other than the positive electrode terminal and the negative electrode terminal, that is, the T terminal, V terminal, LS terminal, and LD terminal (none of which are shown) of slots 124 to 126 and 128 is one.
  • the upper positive electrode terminal 162 and the lower positive electrode terminal 172 are arranged side by side at the upper limit.
  • the upper positive electrode terminal 162 and the lower positive electrode terminal 172 are formed by pressing a metal plate, and the legs are firmly fixed to the circuit board 150 by soldering or the like.
  • the upper positive electrode terminal 162 and the lower positive electrode terminal 172 are arranged at a distance from each other and are in an electrically non-conducting state.
  • the upper negative electrode terminal 167 and the lower negative electrode terminal 177 are arranged side by side in the inner space where the slot 127 is provided.
  • the upper positive electrode terminal 162 and the upper negative electrode terminal 167, and the lower positive electrode terminal 172 and the lower negative electrode terminal 177 are the same metal parts.
  • an upper cell unit (first cell unit) 146 and a lower cell unit (second cell unit) 147 in which five lithium ion battery cells are connected in series are housed, and the upper cell unit is accommodated.
  • the positive electrode of 146 is connected to the upper positive electrode terminal 162 corresponding to the first positive electrode terminal
  • the negative electrode of the upper cell unit 146 is connected to the lower negative electrode terminal 177 corresponding to the first negative electrode terminal.
  • the positive electrode of the lower cell unit 147 is connected to the lower positive electrode terminal 172 corresponding to the second positive electrode terminal
  • the negative electrode of the lower cell unit 147 is connected to the upper negative electrode terminal 167 corresponding to the second negative electrode terminal.
  • the positive electrode input terminal on the power tool body 1 side is connected to the upper positive electrode terminal 162, the negative electrode input terminal is connected to the upper negative electrode terminal 167, and the lower side is shown by the dotted line 39.
  • the output of the series connection of the upper cell unit 146 and the lower cell unit 147 is from the battery pack 100 to the load device 40 of the power tool body 1. Will be output to.
  • the upper cell unit 146 is referred to as a high voltage side (high potential side) cell unit
  • the lower cell unit 147 is referred to as a low voltage side (ground side) cell unit.
  • FIG. 3B is a diagram showing a connection relationship between the terminal portion 30 of the power tool main body 1 having a rating of 36 V and the connection terminals (162, 167, 172, 177) on the battery pack 100 side.
  • the terminal portion 30 is provided in the battery pack mounting portion 2c of the power tool main body 1.
  • the terminal unit 30 is provided with device-side terminals (32, 39a, 34 to 36, 37, 39b, 38) corresponding to slots 121 to 128 (see FIG. 2) of the battery pack 100, and is made of a synthetic resin base. It is fixed so as to be cast in 31.
  • the short-circuit circuit 39 can be composed of a short-circuit element made of a metal plate, and as shown in FIG.
  • the short-circuit circuit 39 is U-shaped on a synthetic resin base 31 together with other device-side terminals such as the positive electrode input terminal 32 and the negative electrode input terminal 37. It can be constructed by casting a metal plate bent into a shape. One end of the U-shaped bent metal plate serves as a short-circuit terminal 39a, and the other end serves as a short-circuit terminal 39b.
  • the upper connection terminal portion of the base 31 and the lower plate-shaped terminal portion having the same reference numeral are composed of an electrically conductive metal plate.
  • the device-side terminal is not provided at the position corresponding to the slot 123 (see FIG. 2).
  • the positive electrode input terminal 32 and the negative electrode input terminal 37 for receiving power are configured in a small size, and are provided above the short-circuit terminals 39a and 39b, respectively.
  • the positive electrode input terminal 32 and the short-circuit terminal 39a are not conducting with each other.
  • the negative electrode input terminal 37 and the short-circuit terminal 39b are not conducting with each other.
  • the positive electrode input terminal 32 is fitted only to the upper positive electrode terminal 162, and the negative electrode input terminal 37 is fitted only to the upper negative electrode terminal 167. Further, since the terminal portion 30 of the power tool main body 1 is provided with small terminals 39a and 39b for short-circuiting the lower positive electrode terminal 172 and the lower negative electrode terminal 177, the lower positive electrode terminal 172 and the lower terminal 172 are provided when the battery pack 100 is attached. The side negative electrode terminal 177 is electrically connected by the short circuit 39.
  • the positive electrode input terminal 32 is a portion that fits with the upper positive electrode terminal 162 and connects the terminal portion formed in a flat plate shape to the circuit board side of the power tool main body 1 side, and is a base 31. It is composed of terminals protruding upward.
  • the positive electrode input terminal 32 is cast into a base 31 made of synthetic resin.
  • the negative electrode input terminal 37 is the same as the positive electrode input terminal 32, and the height of the terminal plate is set to be slightly smaller than half that of the other terminal (34 to 36, 38) plates.
  • the other terminals (34 to 36, 38) are terminals for signal transmission.
  • Recesses 31a and 31b for being sandwiched by the housing 2 are provided on the front side and the rear side of the synthetic resin base 31 of the terminal portion 30.
  • the positive electrode input terminal 32 and the short-circuit terminal 39a are the same. It is inserted all the way through the slot 122 (see FIG. 3) and fitted into the upper positive electrode terminal 162 and the lower positive electrode terminal 172, respectively. At this time, the positive electrode input terminal 32 is press-fitted between the arms 162a and 162b of the upper positive electrode terminal 162 so as to spread between the fitting portions of the upper positive electrode terminal 162, and the short-circuit terminal 39a is the lower positive electrode terminal 172. It is press-fitted so as to spread between the arms 172a and 172b.
  • the negative electrode input terminal 37 and the short-circuit terminal 39b are inserted into the inside through the same slot 127 (see FIG. 2), and are fitted into the upper negative electrode terminal 167 and the lower negative electrode terminal 177, respectively.
  • the negative electrode input terminal 37 is press-fitted between the arm portions 167a and 167b of the upper negative electrode terminal 167 so as to spread between the fitting portions.
  • the short-circuit terminal 39b is press-fitted so as to spread between the arm portions 177a and 177b of the lower negative electrode terminal 177.
  • the output of the series connection of the upper cell unit 146 and the lower cell unit 147 that is, the rated value of 36V is output from the battery pack 100.
  • FIG. 4 (A) and 4 (B) are diagrams showing a connection state when the battery pack 100 of this embodiment is attached to the conventional power tool main body 51 for 18V (see FIG. 1).
  • the positive electrode input terminal 82 and the negative electrode input terminal 87 have the same shape as the other connection terminals, and have the same height in the vertical direction.
  • the terminal portion of the positive electrode input terminal 82 is fitted and press-fitted so as to spread both the upper positive electrode terminal 162 and the open end portion of the lower positive electrode terminal 172.
  • a part of the upper side of the terminal portion of the positive electrode input terminal 82 comes into contact with the upper positive electrode terminal 162, and a part of the lower side comes into contact with the lower positive electrode terminal 172.
  • the two positive electrode terminals (162 and 172) are fitted. Is short-circuited.
  • the terminal portion of the negative electrode input terminal 87 is fitted and press-fitted so as to push out both the upper negative electrode terminal 167 and the open end portion of the lower negative electrode terminal 177, and the upper portion of the terminal portion of the negative electrode input terminal 87. Region is in contact with the upper negative electrode terminal 167, and a part of the lower region is in contact with the lower negative electrode terminal 177.
  • the two negative electrode terminals (167 and 177) are fitted. Is short-circuited, and the output of the parallel connection of the upper cell unit 146 and the lower cell unit 147 to the power tool main body 51, that is, the rated 18V is output from the battery pack 100 to the load device 90 of the power tool main body 51. ..
  • the output of the battery pack 100 is automatically switched by mounting the battery pack 100 of the present embodiment on either the power tool main body 51 for 18V or the power tool main body 1 for 36V. Since this voltage switching is not performed on the battery pack 100 side but automatically depending on the shape of the terminal portion on the power tool main bodies 1 and 51 side, there is no possibility that a voltage setting error will occur. Further, since it is not necessary to provide a dedicated voltage switching mechanism such as a mechanical switch on the battery pack 100 side, the structure is simple, the risk of failure is low, and a long-life battery pack can be realized.
  • the battery pack 100 When the battery pack 100 is charged using an external charging device (not shown), it can be charged with the same charging device as the conventional 18V battery pack. Since the slot 121 of the battery pack 100 is provided with a positive electrode terminal for charging having the same shape as the upper positive electrode terminal 162 and the lower positive electrode terminal 172, it is used for charging instead of the positive electrode terminals for discharging (162, 172).
  • the positive electrode terminal (not shown) of the above may be connected to the positive electrode terminal of the external charging device (not shown).
  • the battery pack 100 is charged by using the charging device for 18V with the upper cell unit 146 and the lower cell unit 147 connected in parallel. Therefore, when charging the battery pack 100 of the present embodiment, the battery pack 100 is charged. It has the advantage of not having to prepare a new charging device.
  • FIG. 5 is a block diagram showing an internal circuit of the battery pack 100 of this embodiment.
  • the battery pack 100 includes an upper positive electrode terminal (upper +) 162, a lower positive electrode terminal (lower +) 172, an upper negative electrode terminal (upper-) 167, and a lower negative electrode terminal (lower). +) 177 and LD terminal 168 are included.
  • the battery pack 100 is provided with an upper positive electrode terminal (upper +) for charging, a lower positive electrode terminal 172, and other signal terminal groups (T terminal, V terminal, LS terminal). The illustrations thereof are omitted.
  • the output of the upper cell unit 146 is connected to the upper positive electrode terminal 162 and the lower negative electrode terminal 177. That is, the positive electrode (+ output) of the upper cell unit 146 is connected to the upper positive electrode terminal 162, and the negative electrode ( ⁇ output) of the upper cell unit 146 is connected to the lower negative electrode terminal 177.
  • the positive electrode (+ output) of the lower cell unit 147 is connected to the lower positive electrode terminal 172, and the negative electrode ( ⁇ output) of the lower cell unit 147 is connected to the upper negative electrode terminal 167.
  • Protection ICs 151 and 181 for monitoring the voltage of the battery cell are connected to the upper cell unit 146 and the lower cell unit 147, respectively, and the microcomputer 190 is connected to these protection ICs 151 and 181.
  • the protection IC 151 executes a cell balance function, a cascade connection function, and a disconnection detection function in addition to an overcharge protection function and an overdischarge protection function by inputting a voltage across each battery cell of the upper cell unit 146. It is an integrated circuit commercially available as a "protection IC for a lithium ion battery".
  • the protection IC 151 when the voltage of the battery cell of the upper cell unit 146 drops below a predetermined value and becomes an over-discharged state, the protection IC 151 outputs a signal (high signal) 156 indicating over-discharge to the microcomputer 190 to output the upper side.
  • a signal (high signal) 155 indicating overcharge is output to the microcomputer 190.
  • a protective IC 181 is connected to the lower cell unit 147.
  • the microcomputer 190 is further provided in the circuit of the lower cell unit 147, that is, in the circuit between the lower positive electrode terminal 172 and the upper negative electrode terminal 167. That is, the protection IC 151 is arranged in the circuit provided in parallel with the upper cell unit 146, whereas the protection IC 181 and the microcomputer (MicroControllerUnit) 190 are arranged in the circuit provided in parallel with the lower cell unit 147. Be placed.
  • the output from the protection IC 151 overdischarge signal 156, overcharge signal 155) and the output from the protection IC 181 (overdischarge signal 186, overcharge signal 185) are input to the microcomputer 190.
  • the microcomputer 190 includes, for example, a voltage detection circuit called an analog front end (AFE), and measures the current value flowing from the output voltage of the current detection circuit 183 to the lower cell unit 147.
  • AFE analog front end
  • the voltage adjustment of each battery cell included in the upper cell unit 146 and the lower cell unit 147 is performed by the respective protection ICs (151, 181).
  • the microcomputer 190 adjusts the voltage balance between the upper cell unit 146 and the lower cell unit 147 in which the voltage of each battery cell is adjusted.
  • the power supply for driving the microcomputer 190 is generated by the power supply circuit (power supply unit) 187 connected to the lower cell unit 147, and the reference voltage (VDD1) is supplied to the microcomputer 190.
  • a shunt resistor 182 for measuring the current value is provided on the ground side of the lower cell unit 147.
  • the microcomputer 190 monitors the current value and the cell temperature, and also monitors the states of the upper cell unit 146 and the lower cell unit 147 to integrate and control the operating status of both. Further, when the power tool main body 1 needs to be stopped urgently, the discharge prohibition signal 188 is transmitted to the electric device main body side via the LD terminal 168.
  • the protection IC 181 monitors the voltage of the battery cell in the lower cell unit 147, and sends an over-discharge signal 186 to the microcomputer 190 when it detects a state in which the voltage drops to a predetermined lower limit value (over-discharge state).
  • the protection IC 181 detects that the voltage of the battery cell exceeds a predetermined upper limit value, and is overcharged.
  • the overcharge signal 185 indicating the state is sent to the microcomputer 190.
  • the microcomputer 190 sends a charge stop signal to a charging device (not shown) via an LS terminal (not shown).
  • the microcomputer 190 is provided with a wireless communication means 192 using Bluetooth (Bluetooth: Bluetooth SIG, Inc. USA registered trademark).
  • the wireless communication means 192 performs wireless communication with an external device registered for pairing under the control of the microcomputer 190, and includes an antenna unit (not shown).
  • a storage unit 191 is connected to the microcomputer 190 to appropriately store information transmitted / received after pairing with an external device and pairing.
  • the battery pack 100 is provided with a pairing switch (not shown), and when an operator presses the pairing switch, the microcomputer 190 executes a pairing registration process with an external device.
  • the battery pack 100 can perform bidirectional communication with an external device using wireless communication means. Through this communication, the external device can obtain management information from the battery pack 100 and analyze the state of the battery pack 100 using a predetermined algorithm.
  • the cell temperature detecting means 193 is connected to the microcomputer 190. Outputs of a plurality of temperature sensors (not shown) are connected to the cell temperature detecting means 193. As the temperature sensor, a thermistor can be used, and one or more thermistors are provided at a location in contact with or close to the upper cell unit 146, and another thermistor is provided at a location in contact with or close to the lower cell unit 147. ..
  • the cell temperature detecting means 193 measures the temperatures of the upper cell unit 146 and the lower cell unit 147 by utilizing the change in the electric resistance of the thermistor with respect to the temperature change, and outputs the temperature to the microcomputer 190.
  • the power supply circuit 187 uses the electric power of the lower cell unit 147 to generate a power supply for operating the microcomputer 190. Since the battery pack 100 of this embodiment is a voltage switching type of 18V and 36V, if a microcomputer is mounted on the protection circuit on the upper cell unit 146 side, the ground of the microcomputer 190 is used when the two cell units are connected in series and in parallel. The potential changes. On the other hand, if the power supply circuit 187 is provided on the lower stage side, the ground potential of the power supply circuit 187 does not change. Therefore, in this embodiment, the microcomputer 190 is provided not in the circuit of the upper cell unit 146 but in the circuit of the lower cell unit 147.
  • the microcomputer 190 can be operated stably even if the output voltage is switched between the rated voltage of 18V and 36V.
  • the microcomputer 190 can switch between holding and releasing the power supply voltage (VDD 1 ) applied to itself, and can switch between a normal operation state (normal mode), an operation function limited state (so-called sleep mode), and an operation stop state (so-called shutdown).
  • VDD 1 power supply voltage
  • the output of the upper voltage detection circuit 189 connected to the upper positive electrode terminal 162 is input to the microcomputer 190.
  • This output indicates the potential of the upper cell unit 146 when the battery pack 100 is not mounted on the power tool bodies 1, 51 or an external charging device (not shown).
  • the upper positive electrode terminal 162 and the lower positive electrode terminal 172 are connected, so that the positive electrodes of the upper cell unit 146 and the lower cell unit 147 are connected to each other.
  • the potentials are the same, and each negative electrode has the same potential.
  • the microcomputer 190 compares the potential of the upper positive electrode terminal 162 with the potential of the lower positive electrode terminal 172 to determine whether the battery pack 100 is not mounted or is mounted on the low voltage device main body. It is possible to determine whether or not it is attached to a high-voltage device. In order to detect the potential of the lower positive electrode terminal 172, it is preferable that the microcomputer 190 can acquire the positive electrode potential of the uppermost battery cell 147a among the battery cells in the lower cell unit 147. When the power supply from the battery pack 100 must be stopped, for example, when an excessive current during discharge, a decrease in cell voltage during discharge (overdischarge), an abnormal rise in cell temperature (overtemperature), etc. occur.
  • the discharge prohibition signal 188 is transmitted by dropping the LD terminal 168 to the ground potential by making the switching element 184 conductive by outputting a high signal from the I / O port of the microcomputer 190.
  • the battery pack 100 capable of automatically switching the output voltage (connection form of the cell unit) can be realized.
  • the lower cell unit 147 supplies the power consumption of the microcomputer 190, the power consumption of the wireless communication means 192, and the power consumption of the cell temperature detecting means 193.
  • the total power consumption of 147 becomes larger than the total power consumption of the upper cell unit 146. It is not preferable that the unbalanced state of power consumption continues for a long time because the potential on the lower cell unit 147 side becomes lower than that on the upper cell unit.
  • the current consumption control means 195 for adjusting the amount of current consumption with the lower cell unit 147 is provided in the circuit of the upper cell unit 146 with low power consumption.
  • the current consumption control means 195 is interposed in parallel with the lower power consumption side of the two cell units, here the upper cell unit 146, and is configured as a load circuit different from the integrated protection IC 151.
  • the current consumption control means 195 operates according to an instruction from the microcomputer 190.
  • the microcomputer 190 can switch between holding and releasing the power supply voltage (reference voltage VDD 1 ) applied to itself, and is in a normal operating state (normal mode), an operating function limited state (so-called sleep mode), and an operation stopped state (so-called shutdown). ). Since the power supply circuit 187 of the microcomputer 190 is shared with the protection IC 181, when the microcomputer starts up, the protection IC 181 also starts up at the same time. Further, when the reference voltage VDD 1 becomes high, the source and drain of the switching element 154 become conductive, so that the power ON / OFF port of the protection IC 151 is grounded and the protection IC 151 is activated.
  • the current consumption control means 195 is an electric circuit (discharge circuit) composed of a resistance portion by a resistor and a switch portion by a switching element 197.
  • the resistance portion the resistance value of the resistor 196 is about several hundred ⁇ .
  • a resistor 196 that serves as a pseudo load is connected between both terminals of the upper cell unit 146, and its circuit is turned on or off by a switching element 197 that is a switch unit.
  • the gate terminal of the switching element 197 is connected to the I / O terminal of the microcomputer 190.
  • One end of the resistor 196 is connected to the positive electrode output of the upper cell unit 146, and the other end is connected to the drain terminal of the switching element 197.
  • the source terminal of the switching element 197 is connected to the ground line of the upper cell unit 146.
  • the switching element 197 is turned on or off by the control signal 194 from the microcomputer 190.
  • the gate potential of the switching element 197 is 0 V when the instruction from the microcomputer 190 is off. Then, the switching element 197 is turned off.
  • the switching element 197 is in the OFF state, the current path to the resistor 196 is cut off, so that the power consumption by the current consumption control means 195 is zero.
  • the current consumption control means 195 by providing the current consumption control means 195, the surplus power consumption on the lower cell unit 147 side can be similarly consumed in the circuit of the upper cell unit 146. Further, since the switching between the movable and stopped current consumption control means 195 can be arbitrarily controlled from the microcomputer 190, the microcomputer 190 can perform highly accurate power balance adjustment between the cell units.
  • Normal is a state in which the microcomputer 190 is always running.
  • Sleep is a mode in which the operation of the functions of the external circuit and the microcomputer 190 itself is restricted to the minimum, and the microcomputer 190 starts up intermittently by itself. For example, the operation of stopping for 240 milliseconds after starting for 10 milliseconds is repeated. .. Shutdown is a state in which the reference voltage VDD 1 is not supplied at all, and the microcomputer 190 is completely stopped.
  • the microcomputer 190 can operate not only when the battery pack 100 is attached to the power tool main body 1 but also when it is not attached.
  • the microcomputer 190 goes to sleep.
  • the microcomputer 190 detects an increase in the current value detected by the current detection circuit 183 and returns to the normal state.
  • the microcomputer 190 when the microcomputer 190 is included in only one of the protection circuits of the plurality of cell units, the potential difference between the plurality of cell units is increased by leaving the battery pack for a long period of time.
  • the problem was solved by adding the current consumption control means 195 to the protection circuit of another cell unit in which the microcomputer 190 is not provided. Further, the operation or stop of the current consumption control means 195 can be arbitrarily controlled by the discharge control signal 194 from the microcomputer 190.
  • the microcomputer 190 compares its own operation mode and peripheral circuits (wireless communication means) using the lower cell unit 147 as a power source while comparing the actual voltage of the upper cell unit 146 with the voltage of the lower cell unit 147.
  • the current consumption control means 195 is operated according to the power consumption of the cell temperature detection means 193, etc.).
  • the microcomputer 190 can satisfactorily adjust the balance of the current consumption of each of the plurality of cell units (146, 147), and the voltage balance of each cell unit can be adjusted even after long-term use (especially after storage). We were able to realize a battery pack that does not deteriorate.
  • FIG. 6 is a circuit diagram of a power tool main body 1 (electric device for high voltage) on which the battery pack 100 is mounted.
  • the right side is the battery pack 100, and the specific circuit configuration is the same as that shown in FIG.
  • the terminal portion 30 of the power tool main body 1 having a rating of 36 V includes a short-circuit circuit 39 for short-circuiting the lower positive electrode terminal 172 and the lower negative electrode terminal 177.
  • the power tool main body 1 is provided with a terminal portion 30 (see FIG. 3) having a short-circuit circuit 39, thereby having two positive electrode terminals (162, 172) and two negative electrode terminals (167, 177).
  • the power tool main body 1 includes a microcomputer 20 for controlling the rotation of the motor 3.
  • the driving voltage (5V or 3.3V) of the microcomputer 20 is supplied by the power supply circuit 21 that inputs the voltages across the positive electrode input terminal 32 and the negative electrode input terminal 37.
  • the microcomputer 20 includes, for example, a voltage detection circuit called an analog front end (AFE), and the voltage (V +) of the positive input terminal 32 is input from the battery voltage detection circuit 22 to the input port of the microcomputer 20.
  • the microcomputer 20 outputs a signal for turning on the switching element 25 via the output port (A / D output terminal).
  • the switching element 25 is a switch for stopping the motor 3 under the control of the microcomputer 20 when the discharge prohibition signal is received.
  • the switch (SW) state detection circuit 23 is a circuit that detects whether the state of the operation switch 4 is on or off, and outputs an on signal to the microcomputer 20 when the lever of the operation switch 4 is pulled even a little.
  • the microcomputer 20 inputs / outputs various signals such as various control signals, input signals from sensors, and control signals to the battery pack 100.
  • the current detection circuit 24 outputs the magnitude of the current value to the microcomputer 20 by measuring the voltage across the shunt resistor 26.
  • the LD terminal 38 is connected to the input / output port of the microcomputer 20 via the resistor 28.
  • the resistor 28 and the microcomputer 20 are connected to the reference voltage VDD 2 via the resistor 27.
  • the switching element 184 conducts, so that the LD terminals 146 and 38 are dropped to the ground potential.
  • the input potential of the microcomputer 20 connected to the resistor 28 changes to the voltage dividing potential of the resistors 27 and 28, so that the microcomputer 20 can detect that the discharge is prohibited.
  • FIG. 7 is a diagram showing an example of an operation mode of the current consumption control means 195.
  • the vertical axis represents the potential of the control signal 194 input as a gate signal to the switching element 197 of the current consumption control means 195, and the horizontal axis represents the passage of time (unit: seconds).
  • Time T is the unit time to be managed.
  • FIG. 7A shows the operating status of the current consumption control means 195 when the microcomputer 190 is operating normally (normal mode).
  • the control signal 201 is a signal pattern of the control signal 194 in the normal mode, and only the section of the time B, which is about half of the first half of the time T of one cycle, is turned on (gate voltage of the switching element 197 of the current consumption control means 195).
  • the switching element 197 is conductive and power is consumed by the resistor 196), and the remaining section is turned off of the switching element 197 (the gate voltage of the switching element 197 is a cutoff state of zero).
  • the resistor 196 is in a state where power is not consumed.
  • the operation of the current consumption control means 195 according to the pattern of the time T of one cycle is intermittently repeated.
  • FIG. 7B shows the operating status of the current consumption control means 195 when the microcomputer 190 is in the sleep state, and shows the sleep mode.
  • the control signal 202 operates the current consumption control means 195 with only the first short time C of the time T of one cycle turned on, and most of the remaining power is generated by the non-operating state, that is, the resistor 196. It is in a state where it is not consumed.
  • the power consumption by the current consumption control means 195 is reduced to about 1/40 of that of FIG. 7A.
  • the microcomputer 190 operates for about the same time as the first short time C, or for a time slightly longer than the time C, and is inactive at other times.
  • FIG. 7C shows an operating status of the current consumption control means 195 in a state in which the microcomputer 190 is operating normally and the wireless communication means 192 (see FIG. 5) is being operated (wireless). Communication mode).
  • This time A is about 70% of the time T of one cycle. In this way, under the control of the microcomputer 190, the electric power consumed for the operation of the control unit in the lower cell unit 147 can be discharged from the upper cell unit 146 by the current consumption control means 195.
  • FIG. 7D shows a state in which the current consumption control means 195 is continuously operated.
  • the switching element 197 of the current consumption control means 195 is continuously turned on in the entire section of the time T of one cycle, and the current consumption control means 195 is continuously operated.
  • the current consumption control flow is a control in which the microcomputer 190 operates the current consumption control means 195 to consume the power of the upper cell unit 146 to match the voltage of the lower cell unit 147.
  • the microcomputer 190 executes the program of the procedure of FIG. 8 stored in a storage means (not shown) (step 220).
  • the microcomputer 190 compares the voltages of the cell units 146 and 147, and determines whether or not the voltage of the upper cell unit 146 is higher than the voltage of the lower cell unit 147 by a predetermined value or more (step 221). If it is higher than a predetermined value, it means that the voltage of the upper cell unit 146 and the voltage of the lower cell unit 147 have a large deviation.
  • the current consumption control is performed so as to obtain the discharge pattern shown in FIG. 7 (D).
  • a parameter indicating the time for turning on the means 195, that is, the discharge time X is set to T (step 225), and the process proceeds to step 228.
  • T is the “managed unit time” shown in FIG. 7, for example, in units of several hundred mm seconds.
  • step 222 it is determined whether or not the wireless communication mode is being executed by the microcomputer 190 (step 222).
  • the discharge time X is set to A (step 226), and the process proceeds to step 228. If the wireless communication mode is not being executed, the process proceeds to step 223.
  • step 223 it is determined whether or not the operation mode of the microcomputer 190 is in the normal mode, and in the case of the normal mode, the discharge time X is set to B (step 227), and the process proceeds to step 228. If the mode is not the normal mode in step 223, that is, in the sleep mode, the discharge time X is set to C (step 224).
  • step 228) it is determined whether or not the value of the time counter t of the microcomputer 190 has not reached the management target unit time T (step 228).
  • t 0, so t ⁇ T becomes true (YES), and “1” is incremented to t in step 229.
  • “1” is a count unit of the time counter t, for example, in mm seconds. If the time counter t becomes equal to T in step 228, the determination in step 228 becomes NO, so the process proceeds to step 230 and the time counter t is cleared to 0.
  • step 231 it is determined whether or not the value of the time counter t of the microcomputer 190 has reached the discharge time X at which the discharge time ends (step 231).
  • the current consumption control means 195 is turned on or kept on (step 232), and the process returns to step 221.
  • the current consumption control means 195 is turned off, and the process returns to step 221.
  • the microcomputer 190 operates the current consumption control means 195 during the first half of the managed unit time T, and the current consumption control means 195 is stopped during the second half after the time X.
  • the current consumption control means 195 is finely operated by the microcomputer 190, it is possible to accurately adjust the voltage between the cell units and to increase the degree of freedom in power management of the battery pack. It got higher.
  • the operation and stop of the current consumption control means 195 are controlled by software by the microcomputer 190, highly accurate control is possible.
  • the upper cell unit 146 and the lower cell unit 147 are provided, and the upper cell unit 146 and the lower cell unit 147 are electrically connected for the first time when they are mounted on the main body of the electric device. As long as the battery pack is such that the battery voltage is fixed, the same can be applied to the battery pack.
  • the discharge time X setting method of the first embodiment is set in detail according to the state of the peripheral devices (for example, circuits A to C) connected to the microcomputer 190. is there.
  • steps 250 to 255 in the latter half shown by the dotted line are the same as steps 228 to 233 in the flowchart of FIG.
  • This flowchart is executed when the microcomputer 190 is running, and is executed until the microcomputer 190 is stopped (shut down). In the sleep mode, this flowchart is executed only while the microcomputer 190 is running.
  • “a” is set as the initial value of the discharge time X (step 241).
  • “A” is the minimum power consumed by the microcomputer 190, that is, the time required for the current consumption control means 195 to consume the power consumed by the microcomputer 190 during sleep. This is a control for eliminating the imbalance because the microcomputer 190 consumes only the power of the lower cell unit 147 and not the power of the upper cell unit 146.
  • the circuit A for example, the wireless communication means 192 using the lower cell unit 147 as the power source is operating
  • the microcomputer 190 consumes the power consumed by the circuit A by the current consumption control means 195. It is added as the time D required for (steps 242 and 243).
  • the process proceeds to step 244 (step 242).
  • the microcomputer 190 consumes the power consumed by the circuit B by the current consumption controlling means 195. It is added as the time E required for (steps 244 and 245).
  • the process proceeds to step 246 (step 244).
  • the circuit C for example, a battery level indicator lamp (not shown)
  • the microcomputer 190 uses the current consumption control means 195 to measure the power consumed by the circuit C. The time F required for consumption is added (steps 246 and 247).
  • the process proceeds to step 248 (step 246).
  • the microcomputer 190 compares the cell voltages of the cell units 146 and 147, and determines whether or not the voltage of the upper cell unit 146 is higher than the voltage of the lower cell unit 147 by a predetermined value or more (step 248). If it is higher than a predetermined value, it means that the voltage of the upper cell unit 146 and the voltage of the lower cell unit 147 have a large deviation. Therefore, the current consumption control is performed so as to obtain the discharge pattern shown in FIG. 7 (D).
  • the discharge time X which is a parameter indicating the time for turning on the means 195, is set to T (step 249).
  • the current consumption control means 195 is operated or stopped by executing steps 250 to 255 based on the discharge time X of the current consumption control means 195 determined by the procedure of steps 240 to 249. Since the processes of steps 250 to 255 are the same as the processes of steps 228 to 233 shown in FIG. 8, the repeated description will be omitted. Following steps 254 and 255, the process returns to step 241.
  • the optimum current consumption control means 195 According to the consumption amount thereof. The operation becomes possible, and the power balance of the upper cell unit 146 and the lower cell unit 147 can be satisfactorily adjusted.
  • the battery pack 100 of this embodiment is not limited to the one of the voltage switching type, and can be similarly applied as long as it has a plurality of cell units.
  • the present invention is used for adjusting the voltage balance between cell units in a battery pack of a fixed voltage type battery pack in which the outputs of the upper cell unit and the lower cell unit are connected in parallel in the battery pack and output. Can be used. That is, the invention of the present application may have various voltages, various types of secondary batteries, and various housings as long as the battery pack has a plurality of cell units.
  • the type of the electric device main body to which the battery pack 100 is mounted is not limited to the impact tool described in the above embodiment, and the battery pack 100 can be mounted, and the battery pack 100 is used as the main power source. Alternatively, it may be an arbitrary electric device main body that operates as an auxiliary power source.
  • Protection IC 182 ... shunt resistance, 183 ... current detection circuit, 184 ... switching element, 185 ... overcharge signal, 186 ... overdischarge signal, 187 ... power supply circuit (power supply unit), 188 ... discharge prohibition signal, 189 ... upper voltage Detection circuit, 190 ... Microcomputer, 191 ... Storage unit, 192 ... Wireless communication means, 193 ... Cell temperature detection means, 194 ... (Discharge) control signal, 195 ... Current consumption control means (adjustment unit), 196 ... Resistor, 197. ... Switching element, 201-204 ... Control signal, A ... Reference potential, VDD 1 ... Reference voltage (of battery pack 100), VDD 2 ... Reference voltage (of power tool body 1)

Abstract

Provided is a battery pack which can switch connection states of a plurality of cell units, wherein control is carried out such that the power consumption of two cell units is equal. A battery pack 100 has a first cell unit 146 and a second cell unit 147 each having a plurality of battery cells, and is configured so as to be able to switch between a parallel connection state and a series connection state in which the first and second cell units are connected in series to each other while the first cell unit is connected to a higher voltage side than the second cell unit, wherein a current consumption control means 195 that consumes power is provided on the first cell unit 146 side so that ON/OFF of the current consumption control means 195 can be controlled by a control signal 194 from a control unit 190. Due to this configuration, it is possible to maintain an equal power balance between the first and second cell units 146, 147.

Description

電池パック及び電気機器Battery pack and electrical equipment
本発明は電池パック及び、電池パックを用いてモータ、照明等の負荷を稼働させる電気機器に関するものである。 The present invention relates to a battery pack and an electric device that operates a load such as a motor and lighting by using the battery pack.
電動工具等の電気機器の電源として、リチウムイオン電池等の二次電池を用いた電池パックが広く用いられている。電池パックは電気機器本体に着脱可能に構成され、放電によって電圧が低下したら電池パックを電気機器本体から取り外して、外部充電装置を用いて充電される。通常、電池パックの出力電圧は固定であるが、特許文献1では電池を収容するハウジング内に複数のセルユニットを設け、それらを直列接続として出力するか、並列接続として出力するかを接続手段により選択可能として、異なる電圧の機器に対応可能とした電池パックが実現されている。この電池パックを用いると、複数の電気機器を使用する際に、それぞれ別種類の電池パックを準備する必要がなくなる。また、特許文献1の電池パックは、電圧の切り替えに際して特別な操作が不要であって、操作ミス発生の虞がない。さらに、特許文献1の電池パックは、第1のセルユニットと第2のセルユニットを内蔵し、一方のセルユニット側にマイコン及び電源を設け、他方のセルユニット側に放電回路を設け、放電回路は、マイコンの起動と連動して動作するように構成している。 As a power source for electric devices such as electric tools, a battery pack using a secondary battery such as a lithium ion battery is widely used. The battery pack is detachably attached to the main body of the electric device, and when the voltage drops due to discharge, the battery pack is removed from the main body of the electric device and charged using an external charging device. Normally, the output voltage of the battery pack is fixed, but in Patent Document 1, a plurality of cell units are provided in the housing accommodating the battery, and whether they are output as a series connection or a parallel connection is determined by the connection means. As selectable, a battery pack that can be used with devices of different voltages has been realized. By using this battery pack, it is not necessary to prepare different types of battery packs when using a plurality of electric devices. Further, the battery pack of Patent Document 1 does not require a special operation when switching the voltage, and there is no risk of an operation error occurring. Further, the battery pack of Patent Document 1 has a first cell unit and a second cell unit built-in, a microcomputer and a power supply are provided on one cell unit side, and a discharge circuit is provided on the other cell unit side. Is configured to operate in conjunction with the startup of the microcomputer.
特開2019-004631号公報Japanese Unexamined Patent Publication No. 2019-004631
特許文献1の電池パックでは、マイコンが起動すると、マイコンの動作状況(スリープモード等)によらずに常に放電回路が動作しているため、細かい電圧バランスの調整が不十分であった。また、特許文献1の電池パックにおいて第2のセルユニット側(他方のセルユニット側)に新たな電力消費回路を追加すると、電圧バランスが崩れる要因となってしまい、その対策が必要であることが発明者らの検証によって判明した。 In the battery pack of Patent Document 1, when the microcomputer is started, the discharge circuit is always operating regardless of the operating status (sleep mode, etc.) of the microcomputer, so that fine adjustment of the voltage balance is insufficient. Further, if a new power consumption circuit is added to the second cell unit side (the other cell unit side) in the battery pack of Patent Document 1, it may cause the voltage balance to be lost, and it is necessary to take measures against it. It was found by the verification of the inventors.
本発明は上記背景に鑑みてなされたものであって、その目的は、複数のセルユニットの接続形態を切り替え可能とした電池パックにおいて、複数のセルユニット毎に設けられる電池セル保護回路とこれらの監視をするマイクロコンピュータ(以下、「マイコン」と称する)を設け、セルユニット間の電圧バランスの不均衡をマイコンによって調整できるようにした電池パック及び電気機器を提供することにある。本発明の他の目的は、複数のセルユニットの接続形態を切り替え可能とした電池パックにおいて、一方のセルユニット側の電力で駆動されるマイコンによって、他方のセルユニット側の電力消費量を微調整して、双方のセルユニットの電力消費が均等になるようにした電池パック及びそれを用いた電気機器を提供することにある。 The present invention has been made in view of the above background, and an object of the present invention is a battery cell protection circuit provided for each of a plurality of cell units in a battery pack capable of switching the connection form of the plurality of cell units. It is an object of the present invention to provide a battery pack and electrical equipment in which a monitoring microcomputer (hereinafter referred to as "microcomputer") is provided and the imbalance of voltage balance between cell units can be adjusted by the microcomputer. Another object of the present invention is to finely adjust the power consumption on the other cell unit side by a microcomputer driven by the power on one cell unit side in a battery pack capable of switching the connection form of a plurality of cell units. Then, the present invention provides a battery pack in which the power consumption of both cell units is equalized, and an electric device using the battery pack.
本願において開示される発明のうち代表的な特徴を説明すれば次のとおりである。本発明の一つの特徴によれば、複数の電池セルが直列に接続されたセルユニットとして少なくとも第1及び第2のセルユニットを有し、第1のセルユニットは第2のセルユニットよりも高電圧側に接続された状態で第1及び第2のセルユニットが互いに直列に接続される直列接続状態と、直列接続状態以外の接続状態に切り替えられるよう構成された電池パックにおいて、第1及び第2のセルユニットの一方(例えば第2のセルユニット)に接続され、少なくとも一方のセルユニットを構成する電池セルの状態を監視し、電池パックの放電を制御するための放電制御信号を出力できるよう構成された制御部(マイコンを含む)を設けた。また、第1及び第2のセルユニットの他方(例えば第1のセルユニット)に接続され、制御部からの制御信号によって他方のセルユニット側の消費電力を微調整する調整部を設けた。さらに電池パックは、制御部に接続され、制御部に電源電圧を供給する電源部を備え、電源部は一方のセルユニットに接続され、制御部は電源部と一方のセルユニットの負極に接続され、電源部は一方のセルユニットから入力された電圧から電源電圧を生成して制御部に供給するように構成した。 The typical features of the invention disclosed in the present application will be described as follows. According to one feature of the present invention, a plurality of battery cells have at least first and second cell units as cell units connected in series, and the first cell unit is higher than the second cell unit. In the battery pack configured to switch between a series connection state in which the first and second cell units are connected in series with each other while connected to the voltage side and a connection state other than the series connection state, the first and first cells are used. Connected to one of the two cell units (for example, the second cell unit), the state of the battery cells constituting at least one cell unit can be monitored, and a discharge control signal for controlling the discharge of the battery pack can be output. A configured control unit (including a microcomputer) was provided. Further, an adjusting unit which is connected to the other of the first and second cell units (for example, the first cell unit) and finely adjusts the power consumption of the other cell unit side by the control signal from the control unit is provided. Further, the battery pack is connected to the control unit and includes a power supply unit that supplies a power supply voltage to the control unit, the power supply unit is connected to one cell unit, and the control unit is connected to the power supply unit and the negative electrode of one cell unit. , The power supply unit is configured to generate a power supply voltage from the voltage input from one of the cell units and supply it to the control unit.
本発明の他の特徴によれば、第2のセルユニットに電源部が接続され、第2のセルユニットから電源部を介して制御部に電源電圧が供給される。また、制御部は、自身の状態又は一方のセルユニットに接続された接続素子の状態に応じて調整部を制御するようにした。さらに、調整部は、他方のセルユニットと並列に接続された抵抗部と、抵抗部と直列接続されたスイッチ部を備えた放電回路であり、制御部はスイッチ部を制御する。 According to another feature of the present invention, the power supply unit is connected to the second cell unit, and the power supply voltage is supplied from the second cell unit to the control unit via the power supply unit. Further, the control unit controls the adjustment unit according to its own state or the state of the connecting element connected to one of the cell units. Further, the adjusting unit is a discharge circuit including a resistance unit connected in parallel with the other cell unit and a switch unit connected in series with the resistance unit, and the control unit controls the switch unit.
本発明のさらに他の特徴によれば、制御部は、少なくともノーマルモード、スリープモードを含む複数の動作モードを備え、ノーマルモードの場合には、制御部はスリープモードの場合よりも他方のセルユニットの消費電力が大きくなるように調整部を制御する。また、動作モードとして無線通信モードを備え、制御部は、前記無線通信モードの場合には、スリープモードの場合よりも他方のセルユニットの消費電力が大きくなるように調整部を制御する。ここで、第1及び第2のセルユニットの電圧差が所定値以上の場合、制御部は電圧差が所定値未満になるまで調整部を常に動作(オン)させる。第1及び第2のセルユニットの電圧差が所定値未満の場合、制御部は動作モードに応じて調整部を制御する。 According to still another feature of the present invention, the control unit includes at least a plurality of operation modes including a normal mode and a sleep mode, and in the normal mode, the control unit is the other cell unit than in the sleep mode. Control the adjustment unit so that the power consumption of the Further, a wireless communication mode is provided as an operation mode, and the control unit controls the adjustment unit so that the power consumption of the other cell unit is larger in the wireless communication mode than in the sleep mode. Here, when the voltage difference between the first and second cell units is equal to or greater than a predetermined value, the control unit always operates (on) the adjusting unit until the voltage difference becomes less than the predetermined value. When the voltage difference between the first and second cell units is less than a predetermined value, the control unit controls the adjustment unit according to the operation mode.
本発明のさらに他の特徴によれば、電池パックと、電池パックに接続できる電気機器本体として少なくとも第1の電気機器本体を有する電気機器であって、電池パックが第1の電気機器本体に接続された場合は、第1及び第2のセルユニットが互いに直列に接続される直列接続状態となり、電池パックが第1の電気機器本体に接続されない場合は、第1及び第2のセルユニットが互いに電気的に独立した非接続状態となる。また、電池パックは、電池パックが第2の電気機器本体に接続された場合は第1及び第2のセルユニットが互いに並列に接続される並列接続状態となり、電池パックが第2の電気機器本体から取り外された場合は、第1及び第2のセルユニットが互いに電気的に独立した非接続状態(電気的に第1及び第2のセルユニットが切り離された状態)となるように構成した。 According to still another feature of the present invention, the electric device has a battery pack and at least the first electric device main body as an electric device main body that can be connected to the battery pack, and the battery pack is connected to the first electric device main body. If this is the case, the first and second cell units are connected in series with each other, and if the battery pack is not connected to the first electrical device body, the first and second cell units are connected to each other. It becomes electrically independent and disconnected. Further, the battery pack is in a parallel connection state in which the first and second cell units are connected in parallel to each other when the battery pack is connected to the second electric device main body, and the battery pack is in the second electric device main body. When removed from, the first and second cell units are configured to be electrically independent of each other in a disconnected state (the first and second cell units are electrically disconnected).
本発明によれば、制御部からの制御信号によって他方のセルユニットの消費電力を調整する調整部を設けたので、複数のセルユニット間の消費電力のバランスを精度良く調整できる。このため、一方のセルユニット側に、電力を消費する負荷装置(無線通信回路や表示ランプ等)を設けたとしても、実際の使用状況に応じて細かにセルユニット間の消費電力のバランス調整が可能となる。さらに、消費電力を調整する調整部の稼働又は停止は制御部によって制御できるので、制御部に含まれるマイコンのスリープなどを行っても、セルユニット間の電力バランスの調整が容易に対応できる。 According to the present invention, since the adjusting unit for adjusting the power consumption of the other cell unit by the control signal from the control unit is provided, the balance of the power consumption between the plurality of cell units can be adjusted with high accuracy. Therefore, even if a load device (wireless communication circuit, indicator lamp, etc.) that consumes power is provided on one of the cell units, the balance of power consumption between the cell units can be finely adjusted according to the actual usage conditions. It will be possible. Further, since the operation or stop of the adjustment unit for adjusting the power consumption can be controlled by the control unit, the power balance between the cell units can be easily adjusted even if the microcomputer included in the control unit is put to sleep.
本発明に係る電池パック100の電動工具本体1、51への装着状況を説明するための図である。It is a figure for demonstrating the mounting state of the battery pack 100 which concerns on this invention to the power tool main body 1, 51. 本発明の実施例に係る電池パック100の外観を示す斜視図である。It is a perspective view which shows the appearance of the battery pack 100 which concerns on embodiment of this invention. (A)は正極端子(162と172)、負極端子(167と177)の形状を示す部分斜視図と高電圧出力時の接続回路を示す図であり、(B)は高電圧電気機器のターミナル部30と、電池パック100側の端子との接続状況を示すための部分斜視図である。(A) is a partial perspective view showing the shapes of the positive electrode terminals (162 and 172) and the negative electrode terminals (167 and 177), and a diagram showing a connection circuit at the time of high voltage output, and (B) is a terminal of a high voltage electric device. It is a partial perspective view for showing the connection state of the part 30 and the terminal on the battery pack 100 side. (A)は正極端子(162と172)、負極端子(167と177)の形状を示す部分斜視図と低電圧出力時の接続回路を示す図であり、(B)は低電圧電気機器のターミナル部80と、電池パック100側の端子との接続状況を示すための部分斜視図である。(A) is a partial perspective view showing the shapes of the positive electrode terminals (162 and 172) and the negative electrode terminals (167 and 177), and a diagram showing a connection circuit at the time of low voltage output, and (B) is a terminal of a low voltage electric device. It is a partial perspective view for showing the connection state of the part 80 and the terminal on the battery pack 100 side. 電池パック100の基本的な内部回路を示すブロック図である。It is a block diagram which shows the basic internal circuit of a battery pack 100. 本実施例の電池パック100を接続した高電圧用の電気機器(電動工具本体1)の回路図である。It is a circuit diagram of the electric equipment (power tool main body 1) for high voltage to which the battery pack 100 of this Example is connected. 消費電流制御手段195の動作モードの例を示す図である。It is a figure which shows the example of the operation mode of the current consumption control means 195. 本実施例に係る電池パック100の電圧バランスを調整するための電流消費制御を示すフローチャートである。It is a flowchart which shows the current consumption control for adjusting the voltage balance of the battery pack 100 which concerns on this Example. 第2の実施例に係る電池パック100の電圧バランスを調整するための電流消費制御を示すフローチャートである。It is a flowchart which shows the current consumption control for adjusting the voltage balance of the battery pack 100 which concerns on 2nd Embodiment.
以下、本発明の実施例を図面に基づいて説明する。以下の図において、同一の部分には同一の符号を付し、繰り返しの説明は省略する。本明細書においては、電気機器の一例として電池パックにて動作する電動工具を用いて説明するものとする。 Hereinafter, examples of the present invention will be described with reference to the drawings. In the following figures, the same parts are designated by the same reference numerals, and the repeated description will be omitted. In this specification, an electric tool operated by a battery pack will be used as an example of an electric device.
図1は本実施例に係る電池パックの電動工具への装着状況を説明するための図である。電気機器の一形態である電動工具には様々な種類のものがあり、現在広く用いられている定格18Vの電池パックを用いる電動工具に加えて、より高出力が得られる定格36Vの電池パック100を用いる電動工具が市販されている。また、出願人によって定格18Vの電動工具本体51又は定格36Vの電動工具本体1のいずれにも装着可能な電池パックが市販されている。 FIG. 1 is a diagram for explaining a state in which the battery pack according to the present embodiment is attached to the power tool. There are various types of power tools, which are a form of electric equipment. In addition to the power tools that use the currently widely used battery pack with a rating of 18V, the battery pack 100 with a rating of 36V that can obtain higher output. Power tools using the above are commercially available. Further, a battery pack that can be attached to either the power tool main body 51 having a rating of 18 V or the power tool main body 1 having a rating of 36 V is commercially available depending on the applicant.
図1で示す電動工具本体1、51はいずれもインパクト工具と呼ばれるものである。電動工具本体1、51は、図示しないビット等の先端工具を出力軸9、59に装着し、先端工具に回転力や軸方向の打撃力を加えることにより締め付け作業を行う工具である。ここでは出力軸9、59に断面形状が六角形状の六角穴(図示せず)が形成され、ワンタッチ式の装着機構8、58が設けられる。電動工具本体1、51は、外形を形成する外枠たるハウジング2、52を備える。ハウジング2、52は、略筒状の胴体部2a、52aと、胴体部2a、52aの軸方向中央付近から直交方向(下方)に延在するハンドル部2b、52bが形成される。ハンドル部2b、52bの一部であって作業者が把持した際に人差し指があたる付近には、トリガ状の動作スイッチ4、54が設けられる。動作スイッチ4、54の近傍には、出力軸9、59の回転方向を切り換える為の正逆切替レバー5、55が設けられる。ハンドル部2b、52bの下方には電池パック100を装着するための電池パック装着部2c、52cが形成される。 The power tool bodies 1 and 51 shown in FIG. 1 are both called impact tools. The power tool bodies 1 and 51 are tools in which tip tools such as bits (not shown) are attached to output shafts 9 and 59, and tightening work is performed by applying a rotational force or a striking force in the axial direction to the tip tools. Here, hexagonal holes (not shown) having a hexagonal cross section are formed on the output shafts 9 and 59, and one- touch mounting mechanisms 8 and 58 are provided. The power tool bodies 1 and 51 include housings 2 and 52 which are outer frames forming an outer shape. The housings 2 and 52 are formed with substantially tubular body portions 2a and 52a and handle portions 2b and 52b extending in the orthogonal direction (downward) from the vicinity of the axial center of the body portions 2a and 52a. Trigger-shaped operation switches 4 and 54 are provided in the vicinity of the handle portions 2b and 52b where the index finger hits when the operator grips the handle portions 2b and 52b. In the vicinity of the operation switches 4 and 54, forward / reverse switching levers 5 and 55 for switching the rotation directions of the output shafts 9 and 59 are provided. Battery pack mounting portions 2c and 52c for mounting the battery pack 100 are formed below the handle portions 2b and 52b.
電動工具本体51は定格電圧18Vの電池パックを用いる電気機器である。電動工具本体1は定格電圧36Vの電池パックを用いる電気機器本体である。従来の36V専用の電池パックは、定格3.6Vのリチウムイオン電池のセル10本を直列接続したセルユニットが1組だけ収容されていた。本実施例の電池パック100においては、定格3.6Vのリチウムイオン電池のセル5本を直列接続してなるセルユニットが2組収容され、これら2つのセルユニットを直列接続した状態とすることで36Vの定格出力が得られるようにし、直列接続状態以外の並列接続した状態とすることで18Vの定格出力が得られるように構成した。尚、本明細書では、電圧18Vを、電圧36Vに比べて低い電圧であるという意味で「低電圧」と呼び、36Vを「高電圧」と呼ぶ。 The power tool main body 51 is an electric device that uses a battery pack having a rated voltage of 18 V. The power tool main body 1 is an electric device main body that uses a battery pack having a rated voltage of 36 V. The conventional battery pack dedicated to 36V contains only one set of cell units in which 10 cells of a lithium-ion battery rated at 3.6V are connected in series. In the battery pack 100 of this embodiment, two sets of cell units formed by connecting five cells of a lithium ion battery rated at 3.6V in series are accommodated, and these two cell units are connected in series. The rated output of 36V was obtained, and the rated output of 18V was obtained by connecting in parallel other than the series connection state. In the present specification, the voltage of 18V is referred to as "low voltage" in the sense that the voltage is lower than the voltage of 36V, and 36V is referred to as "high voltage".
本実施例の電池パック100は、電池パック100側の端子構成と、36V用の電動工具本体1の機器側のターミナル部30の端子構成を工夫することにより、電動工具本体51にも電動工具本体1にも装着できるようにした。また、電池パック100を矢印a1のように18V用の電動工具本体51に装着すると電池パック100の出力が自動的に18Vとなり、矢印a2のように36V用の電動工具本体1に装着すると電池パック100の出力が自動的に36Vとなる。つまり、電池パック100を電動工具本体1又は51のいずれかに装着することによって、装着された電動工具本体に合わせた出力電圧に切り替わるものである。 In the battery pack 100 of this embodiment, by devising the terminal configuration on the battery pack 100 side and the terminal configuration on the terminal portion 30 on the device side of the power tool body 1 for 36V, the power tool body 51 can also be the power tool body. I made it possible to attach it to 1. Further, when the battery pack 100 is attached to the power tool body 51 for 18V as shown by arrow a1, the output of the battery pack 100 is automatically set to 18V, and when it is attached to the power tool body 1 for 36V as shown by arrow a2, the battery pack 100 is automatically attached. The output of 100 automatically becomes 36V. That is, by mounting the battery pack 100 on either the power tool main body 1 or 51, the output voltage is switched to match the mounted power tool main body.
図2は本発明の実施例に係る電池パック100の斜視図である。電池パック100は電池パック装着部2c、52c(図1参照)に対して装着及び取り外しが可能である。また、従来の定格18V用の電池パックと取り付け上の互換性を持たせるために、電池パック100の装着部分の形状は従来の電池パックと同じとしている。電池パック100の筐体は、上下方向に分割可能な下ケース101と上ケース110により形成される。上ケース110は、電池パック装着部2cに取り付けるために2本のレール溝138a、138bが形成された装着機構が形成される。レール溝138a、138bは、電池パック100の装着方向と平行な方向に延びるように、且つ、上ケース110の左右側面に突出するように形成される。レール溝138a、138bは、電動工具本体1の電池パック装着部2cに形成されたレール(図示せず)と対応した形状に形成され、レール溝138a、138bが電気機器本体側のレールと嵌合した状態で、ラッチ141の爪となる係止部142にて係止することにより電池パック100が電動工具本体1、51に固定される。電池パック100を電動工具本体1、51から取り外すときは、左右両側にあるラッチ141を押すことにより、係止部142が内側に移動して係止状態が解除されるので、その状態で電池パック100を装着方向と反対側に移動させる。 FIG. 2 is a perspective view of the battery pack 100 according to the embodiment of the present invention. The battery pack 100 can be mounted and removed from the battery pack mounting portions 2c and 52c (see FIG. 1). Further, in order to have compatibility with the conventional battery pack for rating 18V in terms of mounting, the shape of the mounting portion of the battery pack 100 is the same as that of the conventional battery pack. The housing of the battery pack 100 is formed by a lower case 101 and an upper case 110 that can be divided in the vertical direction. The upper case 110 is formed with a mounting mechanism in which two rail grooves 138a and 138b are formed for mounting on the battery pack mounting portion 2c. The rail grooves 138a and 138b are formed so as to extend in a direction parallel to the mounting direction of the battery pack 100 and to project to the left and right side surfaces of the upper case 110. The rail grooves 138a and 138b are formed in a shape corresponding to a rail (not shown) formed in the battery pack mounting portion 2c of the power tool main body 1, and the rail grooves 138a and 138b are fitted with the rail on the electric device main body side. In this state, the battery pack 100 is fixed to the power tool bodies 1 and 51 by locking with the locking portion 142 which is the claw of the latch 141. When removing the battery pack 100 from the power tool bodies 1 and 51, by pushing the latches 141 on both the left and right sides, the locking portion 142 moves inward and the locked state is released. Therefore, the battery pack 100 is released in that state. Move 100 to the side opposite to the mounting direction.
上ケース110の下段面111と上段面115は階段状に形成され、それらの接続部分から後方側に延びる複数のスロット121~128が形成される。スロット121~128は電池パック装着方向に所定の長さを有するように切り欠かれた部分であって、この切り欠かれた部分の内部には、電動工具本体1、51又は外部の充電装置(図示せず)の機器側端子と嵌合可能な複数の接続端子が配設される。スロット121~128は、電池パック100の右側のレール溝138aに近い側のスロット121が充電用正極端子(C+端子)の挿入口となり、スロット122が放電用正極端子(+端子)の挿入口となる。また、左側のレール溝138bに近い側のスロット127が負極端子(-端子)の挿入口となる。正極端子と負極端子の間には、電池パック100と電動工具本体1、51や外部の充電装置(図示せず)への信号伝達用の複数の信号端子が配置され、ここでは信号端子用の4つのスロット123~126が電力端子群の間に設けられる。尚、スロット123は予備の端子挿入口であり、本実施例では端子は設けられない。スロット124は電池パック100の識別情報となる信号を電動工具本体又は充電装置に出力するためのT端子用の挿入口である。スロット125は外部の充電装置(図示せず)からの制御信号が入力されるためのV端子用の挿入口である。スロット126はセルに接触して設けられた図示しないサーミスタ(感温素子)による電池の温度情報を出力するためのLS端子用の挿入口である。負極端子(-端子)の挿入口となるスロット127の左側には、さらに電池パック100内に含まれる電池保護回路(図示せず)による異常停止信号を出力するLD端子用のスロット128が設けられる。 The lower surface 111 and the upper surface 115 of the upper case 110 are formed in a stepped shape, and a plurality of slots 121 to 128 extending rearward from the connecting portion thereof are formed. Slots 121 to 128 are notched portions so as to have a predetermined length in the battery pack mounting direction, and inside the notched portions, the power tool main bodies 1, 51 or an external charging device ( A plurality of connection terminals that can be fitted with the device-side terminals (not shown) are arranged. In slots 121 to 128, the slot 121 on the right side of the battery pack 100 near the rail groove 138a serves as an insertion port for the positive electrode terminal (C + terminal) for charging, and the slot 122 serves as an insertion port for the positive electrode terminal (+ terminal) for discharging. Become. Further, the slot 127 on the side closer to the rail groove 138b on the left side serves as an insertion port for the negative electrode terminal (-terminal). Between the positive electrode terminal and the negative electrode terminal, a plurality of signal terminals for transmitting signals to the battery pack 100 and the power tool bodies 1 and 51 and an external charging device (not shown) are arranged, and here, for signal terminals. Four slots 123-126 are provided between the power terminals. The slot 123 is a spare terminal insertion slot, and no terminal is provided in this embodiment. The slot 124 is an insertion port for a T terminal for outputting a signal serving as identification information of the battery pack 100 to the power tool main body or the charging device. Slot 125 is an insertion slot for a V terminal for inputting a control signal from an external charging device (not shown). The slot 126 is an insertion port for an LS terminal for outputting battery temperature information by a thermistor (temperature sensitive element) (not shown) provided in contact with the cell. On the left side of the slot 127 which is the insertion port of the negative electrode terminal (-terminal), a slot 128 for the LD terminal which outputs an abnormal stop signal by the battery protection circuit (not shown) included in the battery pack 100 is further provided. ..
上段面115の後方側には、隆起するように形成された隆起部132が形成される。隆起部132の中央付近に窪み状のストッパ部131が形成される。ストッパ部131は、電池パック100を、電池パック装着部2c、52cに装着した際に突き当て面となる。電池パック100が電動工具本体1、51の所定の位置に装着されると電動工具本体1、51に配設された複数の端子(機器側端子)と電池パック100に配設された複数の接続端子が接触して導通状態となる。 On the rear side of the upper surface 115, a raised portion 132 formed so as to be raised is formed. A recessed stopper 131 is formed near the center of the raised 132. The stopper portion 131 becomes a contact surface when the battery pack 100 is mounted on the battery pack mounting portions 2c and 52c. When the battery pack 100 is mounted at a predetermined position on the power tool bodies 1 and 51, a plurality of terminals (device side terminals) arranged on the power tool bodies 1 and 51 and a plurality of connections arranged on the battery pack 100. The terminals come into contact and become conductive.
図3(A)は本実施例の正極端子(162と172)、負極端子(167と177)の形状を示す部分斜視図と高電圧出力時の接続回路を示す図であり、(B)は高電圧用電気機器のターミナル部30と、電池パック100側の端子との接続状況を示すための部分斜視図である。図3(A)に示すように、本実施例の電池パック100の正極端子と負極端子は、電圧可変電池パックを実現するために2つずつ設けられる。正極端子は、上側正極端子162と下側正極端子172より構成され、図2に示したスロット122内に配置される。同様に、負極端子は、上側負極端子167と下側負極端子177より構成され、図3に示したスロット127内に配置される。正極端子及び負極端子以外の接続端子、即ち、スロット124~126、128のT端子、V端子、LS端子、LD端子(いずれも図示せず)の端子数は1つずつである。 FIG. 3A is a partial perspective view showing the shapes of the positive electrode terminals (162 and 172) and the negative electrode terminals (167 and 177) of this embodiment, and FIG. 3B is a diagram showing a connection circuit at the time of high voltage output. It is a partial perspective view for showing the connection state of the terminal part 30 of the electric apparatus for high voltage, and the terminal of a battery pack 100 side. As shown in FIG. 3A, two positive electrode terminals and two negative electrode terminals of the battery pack 100 of this embodiment are provided in order to realize the voltage variable battery pack. The positive electrode terminal is composed of an upper positive electrode terminal 162 and a lower positive electrode terminal 172, and is arranged in the slot 122 shown in FIG. Similarly, the negative electrode terminal is composed of an upper negative electrode terminal 167 and a lower negative electrode terminal 177, and is arranged in the slot 127 shown in FIG. The number of connection terminals other than the positive electrode terminal and the negative electrode terminal, that is, the T terminal, V terminal, LS terminal, and LD terminal (none of which are shown) of slots 124 to 126 and 128 is one.
スロット122が設けられる位置の内側空間には、上側正極端子162と下側正極端子172が上限に並んで配置される。上側正極端子162と下側正極端子172は金属板のプレス加工によって形成され、脚部を回路基板150に半田付け等により強固に固定したものである。上側正極端子162と下側正極端子172は距離を隔てて配置され、電気的に非導通状態にある。同様にしてスロット127が設けられる位置の内側空間には、上側負極端子167と下側負極端子177が並んで配置される。上側正極端子162と上側負極端子167、下側正極端子172と下側負極端子177は同じ金属部品である。 In the inner space where the slot 122 is provided, the upper positive electrode terminal 162 and the lower positive electrode terminal 172 are arranged side by side at the upper limit. The upper positive electrode terminal 162 and the lower positive electrode terminal 172 are formed by pressing a metal plate, and the legs are firmly fixed to the circuit board 150 by soldering or the like. The upper positive electrode terminal 162 and the lower positive electrode terminal 172 are arranged at a distance from each other and are in an electrically non-conducting state. Similarly, the upper negative electrode terminal 167 and the lower negative electrode terminal 177 are arranged side by side in the inner space where the slot 127 is provided. The upper positive electrode terminal 162 and the upper negative electrode terminal 167, and the lower positive electrode terminal 172 and the lower negative electrode terminal 177 are the same metal parts.
電池パック100の内部には、5本のリチウムイオン電池セルが直列に接続された上側セルユニット(第一セルユニット)146と下側セルユニット(第二セルユニット)147が収容され、上側セルユニット146の正極が第一正極端子に相当する上側正極端子162に接続され、上側セルユニット146の負極が第一負極端子に相当する下側負極端子177に接続される。同様にして、下側セルユニット147の正極が第二正極端子に相当する下側正極端子172に接続され、下側セルユニット147の負極が第二負極端子に相当する上側負極端子167に接続される。このような電池パック100の形態において、電動工具本体1側の正極用入力端子を上側正極端子162に接続し、負極用入力端子を上側負極端子167に接続するとともに、点線39で示すように下側正極端子172と下側負極端子177を電気的に接続すれば、上側セルユニット146と下側セルユニット147の直列接続の出力、即ち定格36Vが電池パック100から電動工具本体1の負荷装置40に出力されることになる。ここで上側セルユニット146を高電圧側(高電位側)のセルユニットと呼び、下側セルユニット147を低電圧側(グランド側)のセルユニットと呼ぶ。 Inside the battery pack 100, an upper cell unit (first cell unit) 146 and a lower cell unit (second cell unit) 147 in which five lithium ion battery cells are connected in series are housed, and the upper cell unit is accommodated. The positive electrode of 146 is connected to the upper positive electrode terminal 162 corresponding to the first positive electrode terminal, and the negative electrode of the upper cell unit 146 is connected to the lower negative electrode terminal 177 corresponding to the first negative electrode terminal. Similarly, the positive electrode of the lower cell unit 147 is connected to the lower positive electrode terminal 172 corresponding to the second positive electrode terminal, and the negative electrode of the lower cell unit 147 is connected to the upper negative electrode terminal 167 corresponding to the second negative electrode terminal. To. In such a form of the battery pack 100, the positive electrode input terminal on the power tool body 1 side is connected to the upper positive electrode terminal 162, the negative electrode input terminal is connected to the upper negative electrode terminal 167, and the lower side is shown by the dotted line 39. If the side positive electrode terminal 172 and the lower negative electrode terminal 177 are electrically connected, the output of the series connection of the upper cell unit 146 and the lower cell unit 147, that is, the rated value of 36 V, is from the battery pack 100 to the load device 40 of the power tool body 1. Will be output to. Here, the upper cell unit 146 is referred to as a high voltage side (high potential side) cell unit, and the lower cell unit 147 is referred to as a low voltage side (ground side) cell unit.
図3(B)は定格36Vの電動工具本体1のターミナル部30と、電池パック100側の接続端子(162、167、172,177)との接続関係を示す図である。ターミナル部30は、電動工具本体1の電池パック装着部2cに設けられる。ターミナル部30には、電池パック100のスロット121~128(図2参照)に対応する機器側端子(32、39a、34~36、37、39b、38)が設けられ、合成樹脂製の基台31に鋳込まれるようにして固定される。短絡回路39は金属板でできた短絡子で構成でき、図3で示したように正極入力端子32や負極入力端子37等の他の機器側端子と共に、合成樹脂製の基台31にU字状に折り曲げた金属板を鋳込むことで構成できる。U字状に折り曲げた金属板の一方側の端部が短絡用端子39aとなり、他方側の端部が短絡用端子39bとなる。基台31の上側の接続端子部と、下側の板状の端子部であって同じ参照符号の部分は電気的に導通されている金属板により構成される。ここではスロット123(図2参照)に対応する位置には機器側端子は設けられない。電力用の入力端子として、受電用の正極入力端子32と負極入力端子37は小さいサイズで構成され、短絡用端子39a、39bの上側にそれぞれ設けられる。正極入力端子32と短絡用端子39aは導通していない。また、負極入力端子37と短絡用端子39bは導通していない。 FIG. 3B is a diagram showing a connection relationship between the terminal portion 30 of the power tool main body 1 having a rating of 36 V and the connection terminals (162, 167, 172, 177) on the battery pack 100 side. The terminal portion 30 is provided in the battery pack mounting portion 2c of the power tool main body 1. The terminal unit 30 is provided with device-side terminals (32, 39a, 34 to 36, 37, 39b, 38) corresponding to slots 121 to 128 (see FIG. 2) of the battery pack 100, and is made of a synthetic resin base. It is fixed so as to be cast in 31. The short-circuit circuit 39 can be composed of a short-circuit element made of a metal plate, and as shown in FIG. 3, the short-circuit circuit 39 is U-shaped on a synthetic resin base 31 together with other device-side terminals such as the positive electrode input terminal 32 and the negative electrode input terminal 37. It can be constructed by casting a metal plate bent into a shape. One end of the U-shaped bent metal plate serves as a short-circuit terminal 39a, and the other end serves as a short-circuit terminal 39b. The upper connection terminal portion of the base 31 and the lower plate-shaped terminal portion having the same reference numeral are composed of an electrically conductive metal plate. Here, the device-side terminal is not provided at the position corresponding to the slot 123 (see FIG. 2). As input terminals for electric power, the positive electrode input terminal 32 and the negative electrode input terminal 37 for receiving power are configured in a small size, and are provided above the short- circuit terminals 39a and 39b, respectively. The positive electrode input terminal 32 and the short-circuit terminal 39a are not conducting with each other. Further, the negative electrode input terminal 37 and the short-circuit terminal 39b are not conducting with each other.
電池パック100の装着時において、正極入力端子32は上側正極端子162だけに嵌合し、負極入力端子37は上側負極端子167だけに嵌合する。また、電動工具本体1のターミナル部30には、下側正極端子172と下側負極端子177を短絡させる小さい端子39a、39bが設けられるので、電池パック100の装着時には下側正極端子172と下側負極端子177が短絡回路39によって電気的に接続される。 When the battery pack 100 is attached, the positive electrode input terminal 32 is fitted only to the upper positive electrode terminal 162, and the negative electrode input terminal 37 is fitted only to the upper negative electrode terminal 167. Further, since the terminal portion 30 of the power tool main body 1 is provided with small terminals 39a and 39b for short-circuiting the lower positive electrode terminal 172 and the lower negative electrode terminal 177, the lower positive electrode terminal 172 and the lower terminal 172 are provided when the battery pack 100 is attached. The side negative electrode terminal 177 is electrically connected by the short circuit 39.
正極入力端子32は、上側正極端子162と嵌合する部分であって平板状に形成された端子部と、電動工具本体1側の回路基板側との結線を行うものであって基台31の上方に突出する端子部により構成される。正極入力端子32は合成樹脂製の基台31に鋳込まれる。負極入力端子37も正極入力端子32と同様であって、端子板の高さが、他の端子(34~36、38)板に比べて半分よりやや小さい程度の高さとされる。他の端子(34~36、38)は信号伝達用の端子である。ターミナル部30の合成樹脂製の基台31の前側と後側には、ハウジング2によって挟持されるための凹部31aと31bが設けられる。 The positive electrode input terminal 32 is a portion that fits with the upper positive electrode terminal 162 and connects the terminal portion formed in a flat plate shape to the circuit board side of the power tool main body 1 side, and is a base 31. It is composed of terminals protruding upward. The positive electrode input terminal 32 is cast into a base 31 made of synthetic resin. The negative electrode input terminal 37 is the same as the positive electrode input terminal 32, and the height of the terminal plate is set to be slightly smaller than half that of the other terminal (34 to 36, 38) plates. The other terminals (34 to 36, 38) are terminals for signal transmission. Recesses 31a and 31b for being sandwiched by the housing 2 are provided on the front side and the rear side of the synthetic resin base 31 of the terminal portion 30.
図3(B)において、電池パック100を装着する際には、電池パック100を電動工具本体1に対して差し込み方向に沿って相対移動させると、正極入力端子32と短絡用端子39aが同一のスロット122(図3参照)を通って内部まで挿入され、上側正極端子162と下側正極端子172にそれぞれ嵌合される。このとき、正極入力端子32が上側正極端子162の嵌合部間を押し広げるようにして上側正極端子162の腕部162aと162bの間に圧入され、短絡用端子39aが下側正極端子172の腕部172aと172bの間を押し広げるようにして圧入される。同様にして、負極入力端子37と短絡用端子39bが同一のスロット127(図2参照)を通って内部まで挿入され、それぞれ上側負極端子167と下側負極端子177に嵌合される。この際、負極入力端子37が嵌合部間を押し広げるようにして上側負極端子167の腕部167aと167bの間に圧入される。さらに、短絡用端子39bが下側負極端子177の腕部177aと177bの間を押し広げるようにして圧入される。このように図3(B)の接続形態の実現によって、上側セルユニット146と下側セルユニット147の直列接続の出力、即ち定格36Vが電池パック100から出力されることになる。 In FIG. 3B, when the battery pack 100 is mounted, when the battery pack 100 is relatively moved with respect to the power tool main body 1 along the insertion direction, the positive electrode input terminal 32 and the short-circuit terminal 39a are the same. It is inserted all the way through the slot 122 (see FIG. 3) and fitted into the upper positive electrode terminal 162 and the lower positive electrode terminal 172, respectively. At this time, the positive electrode input terminal 32 is press-fitted between the arms 162a and 162b of the upper positive electrode terminal 162 so as to spread between the fitting portions of the upper positive electrode terminal 162, and the short-circuit terminal 39a is the lower positive electrode terminal 172. It is press-fitted so as to spread between the arms 172a and 172b. Similarly, the negative electrode input terminal 37 and the short-circuit terminal 39b are inserted into the inside through the same slot 127 (see FIG. 2), and are fitted into the upper negative electrode terminal 167 and the lower negative electrode terminal 177, respectively. At this time, the negative electrode input terminal 37 is press-fitted between the arm portions 167a and 167b of the upper negative electrode terminal 167 so as to spread between the fitting portions. Further, the short-circuit terminal 39b is press-fitted so as to spread between the arm portions 177a and 177b of the lower negative electrode terminal 177. As described above, by realizing the connection form of FIG. 3B, the output of the series connection of the upper cell unit 146 and the lower cell unit 147, that is, the rated value of 36V is output from the battery pack 100.
図4(A)及び(B)は、従来の18V用の電動工具本体51(図1参照)に本実施例の電池パック100を装着した際の接続状態を示す図である。正極入力端子82と負極入力端子87は、他の接続端子と同じ形状であり、上下方向の高さも同じである。電池パック100が電動工具本体51に取り付けられるときは、正極入力端子82の端子部は、上側正極端子162と下側正極端子172の開口端部の双方を押し広げるように嵌合圧入されて、正極入力端子82の端子部の上側一部の領域が上側正極端子162と接触し、下側一部の領域が下側正極端子172と接触する。このように正極入力端子82の端子部を上側正極端子162の腕部162a、162bと下側正極端子172の腕部172a、172bに同時に嵌合させることによって、2つの正極端子(162と172)が短絡状態となる。同様にして負極入力端子87の端子部は、上側負極端子167と下側負極端子177の開口端部の双方を押し広げるように嵌合圧入されて、負極入力端子87の端子部の上側一部の領域が上側負極端子167と接触し、下側一部の領域が下側負極端子177と接触する。このように負極入力端子87の端子部を上側負極端子167の腕部167a、167bと下側負極端子177の腕部177a、177bに同時に嵌合させることによって、2つの負極端子(167と177)が短絡状態となり、電動工具本体51には上側セルユニット146と下側セルユニット147の並列接続の出力、即ち定格18Vが電池パック100から電動工具本体51の負荷装置90に出力されることになる。 4 (A) and 4 (B) are diagrams showing a connection state when the battery pack 100 of this embodiment is attached to the conventional power tool main body 51 for 18V (see FIG. 1). The positive electrode input terminal 82 and the negative electrode input terminal 87 have the same shape as the other connection terminals, and have the same height in the vertical direction. When the battery pack 100 is attached to the power tool main body 51, the terminal portion of the positive electrode input terminal 82 is fitted and press-fitted so as to spread both the upper positive electrode terminal 162 and the open end portion of the lower positive electrode terminal 172. A part of the upper side of the terminal portion of the positive electrode input terminal 82 comes into contact with the upper positive electrode terminal 162, and a part of the lower side comes into contact with the lower positive electrode terminal 172. By simultaneously fitting the terminal portion of the positive electrode input terminal 82 to the arm portions 162a and 162b of the upper positive electrode terminal 162 and the arm portions 172a and 172b of the lower positive electrode terminal 172, the two positive electrode terminals (162 and 172) are fitted. Is short-circuited. Similarly, the terminal portion of the negative electrode input terminal 87 is fitted and press-fitted so as to push out both the upper negative electrode terminal 167 and the open end portion of the lower negative electrode terminal 177, and the upper portion of the terminal portion of the negative electrode input terminal 87. Region is in contact with the upper negative electrode terminal 167, and a part of the lower region is in contact with the lower negative electrode terminal 177. By simultaneously fitting the terminal portion of the negative electrode input terminal 87 to the arm portions 167a and 167b of the upper negative electrode terminal 167 and the arm portions 177a and 177b of the lower negative electrode terminal 177, the two negative electrode terminals (167 and 177) are fitted. Is short-circuited, and the output of the parallel connection of the upper cell unit 146 and the lower cell unit 147 to the power tool main body 51, that is, the rated 18V is output from the battery pack 100 to the load device 90 of the power tool main body 51. ..
以上のように本実施例の電池パック100は、18V用の電動工具本体51か36V用の電動工具本体1のいずれかに装着することにより、電池パック100の出力が自動的に切り替わる。この電圧切替えは電池パック100側にて行うのではなくて、電動工具本体1、51側のターミナル部の形状によって自動的に行われるので、電圧設定ミスが生ずる虞が全くない。また、電池パック100側には、機械的なスイッチのような専用の電圧切替機構を設ける必要が無いので、構造が単純で故障の虞が低く、長寿命の電池パックを実現できる。 As described above, the output of the battery pack 100 is automatically switched by mounting the battery pack 100 of the present embodiment on either the power tool main body 51 for 18V or the power tool main body 1 for 36V. Since this voltage switching is not performed on the battery pack 100 side but automatically depending on the shape of the terminal portion on the power tool main bodies 1 and 51 side, there is no possibility that a voltage setting error will occur. Further, since it is not necessary to provide a dedicated voltage switching mechanism such as a mechanical switch on the battery pack 100 side, the structure is simple, the risk of failure is low, and a long-life battery pack can be realized.
電池パック100を外部充電装置(図示せず)を用いて充電する場合は、従来の18V用電池パックと同じ充電装置にて充電が可能である。電池パック100のスロット121には、上側正極端子162と下側正極端子172と同等の形状の充電用の正極端子が設けられるので、放電用の正極端子(162、172)の代わりに、充電用の正極端子(図示せず)を外部充電装置(図示せず)の正極端子に接続するようにすれば良い。このように電池パック100は、上側セルユニット146と下側セルユニット147を並列接続させた状態として18V用の充電装置を用いて充電を行うので、本実施例の電池パック100を充電するにあたって、新しい充電装置を準備しなくて済むという利点がある。 When the battery pack 100 is charged using an external charging device (not shown), it can be charged with the same charging device as the conventional 18V battery pack. Since the slot 121 of the battery pack 100 is provided with a positive electrode terminal for charging having the same shape as the upper positive electrode terminal 162 and the lower positive electrode terminal 172, it is used for charging instead of the positive electrode terminals for discharging (162, 172). The positive electrode terminal (not shown) of the above may be connected to the positive electrode terminal of the external charging device (not shown). As described above, the battery pack 100 is charged by using the charging device for 18V with the upper cell unit 146 and the lower cell unit 147 connected in parallel. Therefore, when charging the battery pack 100 of the present embodiment, the battery pack 100 is charged. It has the advantage of not having to prepare a new charging device.
図5は本実施例の電池パック100の内部回路を示すブロック図である。ここでは上側セルユニット146及び下側セルユニット147に対する、マイコン190と保護IC151、181の接続状況を説明するための基本的な構成部分だけを図示しており、その他の関連する回路、特に、本体機器側の信号端子とのやりとりを行うための回路等の図示を省略している。電池パック100は、図3にて示したように上側正極端子(上+)162と、下側正極端子(下+)172と、上側負極端子(上-)167と、下側負極端子(下+)177と、LD端子168を有して構成される。電池パック100にはこれら以外に、充電用の上側正極端子(上+)と、下側正極端子172と、その他の信号端子群(T端子、V端子、LS端子)が設けられるが、ここではそれらの図示を省略している。上側正極端子162と下側負極端子177には、上側セルユニット146の出力が接続される。即ち、上側セルユニット146の正極(+出力)が上側正極端子162に接続され、上側セルユニット146の負極(-出力)が下側負極端子177に接続される。同様にして、下側セルユニット147の正極(+出力)が下側正極端子172に接続され、下側セルユニット147の負極(-出力)が上側負極端子167に接続される。 FIG. 5 is a block diagram showing an internal circuit of the battery pack 100 of this embodiment. Here, only the basic components for explaining the connection status of the microcomputer 190 and the protection ICs 151 and 181 to the upper cell unit 146 and the lower cell unit 147 are shown, and other related circuits, particularly the main body, are shown. The illustration of the circuit for communicating with the signal terminal on the device side is omitted. As shown in FIG. 3, the battery pack 100 includes an upper positive electrode terminal (upper +) 162, a lower positive electrode terminal (lower +) 172, an upper negative electrode terminal (upper-) 167, and a lower negative electrode terminal (lower). +) 177 and LD terminal 168 are included. In addition to these, the battery pack 100 is provided with an upper positive electrode terminal (upper +) for charging, a lower positive electrode terminal 172, and other signal terminal groups (T terminal, V terminal, LS terminal). The illustrations thereof are omitted. The output of the upper cell unit 146 is connected to the upper positive electrode terminal 162 and the lower negative electrode terminal 177. That is, the positive electrode (+ output) of the upper cell unit 146 is connected to the upper positive electrode terminal 162, and the negative electrode (− output) of the upper cell unit 146 is connected to the lower negative electrode terminal 177. Similarly, the positive electrode (+ output) of the lower cell unit 147 is connected to the lower positive electrode terminal 172, and the negative electrode (− output) of the lower cell unit 147 is connected to the upper negative electrode terminal 167.
上側セルユニット146と下側セルユニット147にはそれぞれ、電池セルの電圧を監視するための保護IC151、181が接続され、これら保護IC151、181にはマイコン190が接続される。保護IC151は、上側セルユニット146の各電池セルの両端電圧を入力することにより、過充電保護機能、過放電保護機能の他、セルバランス機能、カスケード接続機能、断線検出機能を実行するもので、“リチウムイオン電池用保護IC”として市販されている集積回路である。また、保護IC151は、上側セルユニット146の電池セルの電圧が所定値未満に低下して過放電状態になった場合は、過放電を示す信号(ハイ信号)156をマイコン190に出力し、上側セルユニット146の電池セルの電圧が充電時に所定値以上に到達して過充電状態でなった場合は、過充電を示す信号(ハイ信号)155をマイコン190に出力する。 Protection ICs 151 and 181 for monitoring the voltage of the battery cell are connected to the upper cell unit 146 and the lower cell unit 147, respectively, and the microcomputer 190 is connected to these protection ICs 151 and 181. The protection IC 151 executes a cell balance function, a cascade connection function, and a disconnection detection function in addition to an overcharge protection function and an overdischarge protection function by inputting a voltage across each battery cell of the upper cell unit 146. It is an integrated circuit commercially available as a "protection IC for a lithium ion battery". Further, when the voltage of the battery cell of the upper cell unit 146 drops below a predetermined value and becomes an over-discharged state, the protection IC 151 outputs a signal (high signal) 156 indicating over-discharge to the microcomputer 190 to output the upper side. When the voltage of the battery cell of the cell unit 146 reaches a predetermined value or more at the time of charging and becomes an overcharged state, a signal (high signal) 155 indicating overcharge is output to the microcomputer 190.
下側セルユニット147には保護IC181が接続される。ここでは、下側セルユニット147の回路中、即ち下側正極端子172と上側負極端子167の間の回路中には、マイコン190がさらに設けられる。つまり、上側セルユニット146と並列に設けられる回路には保護IC151が配置されるのに対して、下側セルユニット147と並列に設けられる回路には、保護IC181とマイコン(Micro Controller Unit)190が配置される。マイコン190には、保護IC151からの出力(過放電信号156、過充電信号155)と、保護IC181からの出力(過放電信号186、過充電信号185)が入力される。マイコン190には、例えばアナログ・フロント・エンド(AFE)と呼ばれる電圧検出回路を含み、電流検出回路183の出力電圧から下側セルユニット147に流れる電流値を測定する。上側セルユニット146と下側セルユニット147に含まれる各電池セルの電圧調整は、それぞれの保護IC(151、181)が行う。マイコン190は、各電池セルの電圧調整がされた上側セルユニット146と下側セルユニット147間の電圧バランスの調整を行うようにしたものである。 A protective IC 181 is connected to the lower cell unit 147. Here, the microcomputer 190 is further provided in the circuit of the lower cell unit 147, that is, in the circuit between the lower positive electrode terminal 172 and the upper negative electrode terminal 167. That is, the protection IC 151 is arranged in the circuit provided in parallel with the upper cell unit 146, whereas the protection IC 181 and the microcomputer (MicroControllerUnit) 190 are arranged in the circuit provided in parallel with the lower cell unit 147. Be placed. The output from the protection IC 151 (overdischarge signal 156, overcharge signal 155) and the output from the protection IC 181 (overdischarge signal 186, overcharge signal 185) are input to the microcomputer 190. The microcomputer 190 includes, for example, a voltage detection circuit called an analog front end (AFE), and measures the current value flowing from the output voltage of the current detection circuit 183 to the lower cell unit 147. The voltage adjustment of each battery cell included in the upper cell unit 146 and the lower cell unit 147 is performed by the respective protection ICs (151, 181). The microcomputer 190 adjusts the voltage balance between the upper cell unit 146 and the lower cell unit 147 in which the voltage of each battery cell is adjusted.
マイコン190の駆動用の電源は、下側セルユニット147に接続される電源回路(電源部)187によって生成され、基準電圧(VDD1)がマイコン190に供給される。下側セルユニット147のグランド側には電流値を測定するためのシャント抵抗182が設けられる。 The power supply for driving the microcomputer 190 is generated by the power supply circuit (power supply unit) 187 connected to the lower cell unit 147, and the reference voltage (VDD1) is supplied to the microcomputer 190. A shunt resistor 182 for measuring the current value is provided on the ground side of the lower cell unit 147.
マイコン190は、電流値やセル温度の監視を行うと共に、上側セルユニット146と下側セルユニット147の状態を監視して双方の動作状況を統合して制御する。また、電動工具本体1の緊急的な停止が必要となった場合には、LD端子168を介して放電禁止信号188を電気機器本体側に伝達する。保護IC181は下側セルユニット147内の電池セルの電圧を監視し、電圧が所定の下限値まで低下した状態(過放電状態)を検出した場合に過放電信号186をマイコン190に送出する。また、図示しない外部の充電装置に電池パック100が装着されて、充電が行われている際に、保護IC181は電池セルの電圧が所定の上限値を越えたことを検出した場合に、過充電状態を示す過充電信号185をマイコン190に送出する。マイコン190は図示しないLS端子を介して図示しない充電装置に充電停止信号を送出する。 The microcomputer 190 monitors the current value and the cell temperature, and also monitors the states of the upper cell unit 146 and the lower cell unit 147 to integrate and control the operating status of both. Further, when the power tool main body 1 needs to be stopped urgently, the discharge prohibition signal 188 is transmitted to the electric device main body side via the LD terminal 168. The protection IC 181 monitors the voltage of the battery cell in the lower cell unit 147, and sends an over-discharge signal 186 to the microcomputer 190 when it detects a state in which the voltage drops to a predetermined lower limit value (over-discharge state). Further, when the battery pack 100 is attached to an external charging device (not shown) and charging is performed, the protection IC 181 detects that the voltage of the battery cell exceeds a predetermined upper limit value, and is overcharged. The overcharge signal 185 indicating the state is sent to the microcomputer 190. The microcomputer 190 sends a charge stop signal to a charging device (not shown) via an LS terminal (not shown).
マイコン190には、ブルートゥース(Bluetooth: Bluetooth SIG, Inc. USAの登録商標)を用いた無線通信手段192が設けられる。無線通信手段192は、マイコン190の制御によってペアリング登録された外部機器との無線通信を行うもので、図示しないアンテナ部が含まれる。マイコン190には記憶部191が接続され、外部機器とのペアリング、ペアリング後に送受信される情報を適宜記憶する。電池パック100には、図示しないペアリングスイッチが設けられ、作業者がペアリングスイッチを押すことによってマイコン190による外部機器とのペアリング登録処理が実行される。以上の構成によって、電池パック100は、無線通信手段を用いて外部の機器と双方向の通信が可能となる。この通信によって外部機器は電池パック100から管理情報を入手して、所定のアルゴリズムを用いて電池パック100の状態を分析することが可能となる。 The microcomputer 190 is provided with a wireless communication means 192 using Bluetooth (Bluetooth: Bluetooth SIG, Inc. USA registered trademark). The wireless communication means 192 performs wireless communication with an external device registered for pairing under the control of the microcomputer 190, and includes an antenna unit (not shown). A storage unit 191 is connected to the microcomputer 190 to appropriately store information transmitted / received after pairing with an external device and pairing. The battery pack 100 is provided with a pairing switch (not shown), and when an operator presses the pairing switch, the microcomputer 190 executes a pairing registration process with an external device. With the above configuration, the battery pack 100 can perform bidirectional communication with an external device using wireless communication means. Through this communication, the external device can obtain management information from the battery pack 100 and analyze the state of the battery pack 100 using a predetermined algorithm.
マイコン190には、セル温度検出手段193が接続される。セル温度検出手段193には図示しない複数の温度センサの出力が接続される。温度センサとしては、サーミスタを用いることができ、サーミスタの一つ以上を上側セルユニット146に接する又は近接する箇所に設け、別のサーミスタを下側セルユニット147に接する又は近接する箇所に設けている。セル温度検出手段193は、温度変化に対するサーミスタの電気抵抗の変化を利用して、上側セルユニット146と下側セルユニット147のそれぞれの温度を測定し、マイコン190に出力する。 The cell temperature detecting means 193 is connected to the microcomputer 190. Outputs of a plurality of temperature sensors (not shown) are connected to the cell temperature detecting means 193. As the temperature sensor, a thermistor can be used, and one or more thermistors are provided at a location in contact with or close to the upper cell unit 146, and another thermistor is provided at a location in contact with or close to the lower cell unit 147. .. The cell temperature detecting means 193 measures the temperatures of the upper cell unit 146 and the lower cell unit 147 by utilizing the change in the electric resistance of the thermistor with respect to the temperature change, and outputs the temperature to the microcomputer 190.
電源回路187は、下側セルユニット147の電力によってマイコン190の動作用の電源を生成するものである。本実施例の電池パック100は、18Vと36Vの電圧切替式なので、上側セルユニット146側の保護回路にマイコンを搭載すると、2つのセルユニットの直列接続時と並列接続時において、マイコン190のグランド電位が変わってしまう。一方、下段側に電源回路187を設けるのであれば電源回路187のグランド電位は変化しない。そこで、本実施例ではマイコン190を上側セルユニット146の回路中では無くて、下側セルユニット147の回路中に設けた。このマイコン190の配置により、出力電圧を定格18Vと36Vの切替式としてもマイコン190を安定して稼働できる。マイコン190は、自身にかかる電源電圧(VDD)の保持と、解除を切り替えることができ、通常動作状態(ノーマルモード)と動作機能制限状態(いわゆるスリープモード)と動作停止状態(いわゆるシャットダウン)を有する。 The power supply circuit 187 uses the electric power of the lower cell unit 147 to generate a power supply for operating the microcomputer 190. Since the battery pack 100 of this embodiment is a voltage switching type of 18V and 36V, if a microcomputer is mounted on the protection circuit on the upper cell unit 146 side, the ground of the microcomputer 190 is used when the two cell units are connected in series and in parallel. The potential changes. On the other hand, if the power supply circuit 187 is provided on the lower stage side, the ground potential of the power supply circuit 187 does not change. Therefore, in this embodiment, the microcomputer 190 is provided not in the circuit of the upper cell unit 146 but in the circuit of the lower cell unit 147. By arranging the microcomputer 190, the microcomputer 190 can be operated stably even if the output voltage is switched between the rated voltage of 18V and 36V. The microcomputer 190 can switch between holding and releasing the power supply voltage (VDD 1 ) applied to itself, and can switch between a normal operation state (normal mode), an operation function limited state (so-called sleep mode), and an operation stop state (so-called shutdown). Have.
マイコン190には、上側正極端子162に接続される上側電圧検出回路189の出力が入力される。この出力は、電池パック100が電動工具本体1、51や外部充電装置(図示せず)に装着されていない場合は、上側セルユニット146の電位を示す。一方、低電圧(18V)用の電動工具本体1に装着された場合、上側正極端子162と下側正極端子172が接続されるため、上側セルユニット146と下側セルユニット147の各々の正極が同電位となり、各々の負極が同電位となる。このことからマイコン190は、上側正極端子162の電位と、下側正極端子172の電位を比較することによって、電池パック100が非装着の状態であるか、低電圧機器本体に装着されているか、高電圧機器に装着されているかを判別できる。尚、下側正極端子172の電位検出のためには、下側セルユニット147内の電池セルのうち最上位の電池セル147aの正極電位をマイコン190が取得できるように構成すると良い。電池パック100からの電力供給を止めなければならない状況、例えば、放電時の過大電流、放電時のセル電圧の低下(過放電)、セル温度の異常上昇(過温度)等が生じた際には、マイコン190を介して電動工具本体側に放電禁止信号188を伝達することで、電動工具本体1、51の動作を素早く停止できる。放電禁止信号188の伝達は、マイコン190のI/Oポートからハイ信号を出力することによりスイッチング素子184を導通させることによってLD端子168をグランド電位に落とすことによって行われる。 The output of the upper voltage detection circuit 189 connected to the upper positive electrode terminal 162 is input to the microcomputer 190. This output indicates the potential of the upper cell unit 146 when the battery pack 100 is not mounted on the power tool bodies 1, 51 or an external charging device (not shown). On the other hand, when mounted on the power tool body 1 for low voltage (18V), the upper positive electrode terminal 162 and the lower positive electrode terminal 172 are connected, so that the positive electrodes of the upper cell unit 146 and the lower cell unit 147 are connected to each other. The potentials are the same, and each negative electrode has the same potential. From this, the microcomputer 190 compares the potential of the upper positive electrode terminal 162 with the potential of the lower positive electrode terminal 172 to determine whether the battery pack 100 is not mounted or is mounted on the low voltage device main body. It is possible to determine whether or not it is attached to a high-voltage device. In order to detect the potential of the lower positive electrode terminal 172, it is preferable that the microcomputer 190 can acquire the positive electrode potential of the uppermost battery cell 147a among the battery cells in the lower cell unit 147. When the power supply from the battery pack 100 must be stopped, for example, when an excessive current during discharge, a decrease in cell voltage during discharge (overdischarge), an abnormal rise in cell temperature (overtemperature), etc. occur. By transmitting the discharge prohibition signal 188 to the power tool main body side via the microcomputer 190, the operations of the power tool main bodies 1 and 51 can be stopped quickly. The discharge prohibition signal 188 is transmitted by dropping the LD terminal 168 to the ground potential by making the switching element 184 conductive by outputting a high signal from the I / O port of the microcomputer 190.
以上の構成によって、出力電圧(セルユニットの接続形態)を自動で切り替え可能な電池パック100を実現できる。しかしながら、本実施例の基本構成では、下側セルユニット147が、マイコン190の消費電力、無線通信手段192の消費電力、セル温度検出手段193の消費電力を供給するため、そのままでは下側セルユニット147の総消費電力が、上側セルユニット146の総消費電力よりも大きくなってしまう。消費電力のアンバランス状態が長く続くことは、下側セルユニット147側の電位が上側セルユニットに対して低くなるので好ましくない。上側セルユニット146と下側セルユニット147を並列接続させて定格18Vの出力をする際に、並列接続状態になった直後にセルユニット間の電圧不均衡により循環電流が流れるためである。そこで本実施例では、消費電力が少ない上側セルユニット146の回路中に下側セルユニット147との消費電流量を調整する消費電流制御手段195を設けた。消費電流制御手段195は、2つのセルユニットのうち消費電力の少ない側、ここでは上側セルユニット146と並列に介在させるものであって、集積化された保護IC151とは別の負荷回路として構成される。 With the above configuration, the battery pack 100 capable of automatically switching the output voltage (connection form of the cell unit) can be realized. However, in the basic configuration of this embodiment, the lower cell unit 147 supplies the power consumption of the microcomputer 190, the power consumption of the wireless communication means 192, and the power consumption of the cell temperature detecting means 193. The total power consumption of 147 becomes larger than the total power consumption of the upper cell unit 146. It is not preferable that the unbalanced state of power consumption continues for a long time because the potential on the lower cell unit 147 side becomes lower than that on the upper cell unit. This is because when the upper cell unit 146 and the lower cell unit 147 are connected in parallel to output a rated value of 18 V, a circulating current flows due to a voltage imbalance between the cell units immediately after the parallel connection state is established. Therefore, in this embodiment, the current consumption control means 195 for adjusting the amount of current consumption with the lower cell unit 147 is provided in the circuit of the upper cell unit 146 with low power consumption. The current consumption control means 195 is interposed in parallel with the lower power consumption side of the two cell units, here the upper cell unit 146, and is configured as a load circuit different from the integrated protection IC 151. To.
消費電流制御手段195はマイコン190からの指示によって動作する。マイコン190は、自身にかかる電源電圧(基準電圧VDD)の保持と、解除を切替えることができ、通常動作状態(ノーマルモード)と動作機能制限状態(いわゆるスリープモード)と動作停止状態(いわゆるシャットダウン)を有する。マイコン190の電源回路187は保護IC181と共用であるため、マイコンが起動すると保護IC181も同時に起動する。また、基準電圧VDDがハイになると、スイッチング素子154のソース-ドレイン間が導通するので、保護IC151の電源ON/OFFポートが接地され、保護IC151が起動する。 The current consumption control means 195 operates according to an instruction from the microcomputer 190. The microcomputer 190 can switch between holding and releasing the power supply voltage (reference voltage VDD 1 ) applied to itself, and is in a normal operating state (normal mode), an operating function limited state (so-called sleep mode), and an operation stopped state (so-called shutdown). ). Since the power supply circuit 187 of the microcomputer 190 is shared with the protection IC 181, when the microcomputer starts up, the protection IC 181 also starts up at the same time. Further, when the reference voltage VDD 1 becomes high, the source and drain of the switching element 154 become conductive, so that the power ON / OFF port of the protection IC 151 is grounded and the protection IC 151 is activated.
消費電流制御手段195は、抵抗器による抵抗部と、スイッチング素子197によるスイッチ部によって構成される電気回路(放電回路)である。抵抗部は抵抗器196の抵抗値は数百Ω程度である。ここでは疑似負荷となる抵抗器196が上側セルユニット146の両端子間に接続されており、その回路をスイッチ部たるスイッチング素子197によってオン又はオフする。スイッチング素子197のゲート端子はマイコン190のI/O端子に接続される。抵抗器196の一端は上側セルユニット146の正極出力に接続され、他端はスイッチング素子197のドレイン端子に接続される。スイッチング素子197のソース端子は上側セルユニット146のグランドラインに接続される。スイッチング素子197は、マイコン190からの制御信号194によってオン又はオフされる。この消費電流制御手段195は、マイコン190からの指示がオフの時は、スイッチング素子197のゲート電位が0Vである。するとスイッチング素子197はOFF状態になる。スイッチング素子197はOFF状態にあると、抵抗器196への電流経路が遮断されため、消費電流制御手段195による電力消費はゼロである。尚、本回路図では消費電流制御手段195の基本原理を示すために簡単に図示したが、スイッチング動作を安定させるためにスイッチング素子を複数設けた回路としたりスイッチング素子197をNチャンネルでなくPチャンネルとしたり、抵抗の大きさや設置位置を変えたりして種々の変更をしても、目的とされる電力消費ができるならば良い。 The current consumption control means 195 is an electric circuit (discharge circuit) composed of a resistance portion by a resistor and a switch portion by a switching element 197. As for the resistance portion, the resistance value of the resistor 196 is about several hundred Ω. Here, a resistor 196 that serves as a pseudo load is connected between both terminals of the upper cell unit 146, and its circuit is turned on or off by a switching element 197 that is a switch unit. The gate terminal of the switching element 197 is connected to the I / O terminal of the microcomputer 190. One end of the resistor 196 is connected to the positive electrode output of the upper cell unit 146, and the other end is connected to the drain terminal of the switching element 197. The source terminal of the switching element 197 is connected to the ground line of the upper cell unit 146. The switching element 197 is turned on or off by the control signal 194 from the microcomputer 190. In the current consumption control means 195, the gate potential of the switching element 197 is 0 V when the instruction from the microcomputer 190 is off. Then, the switching element 197 is turned off. When the switching element 197 is in the OFF state, the current path to the resistor 196 is cut off, so that the power consumption by the current consumption control means 195 is zero. In this circuit diagram, although it is briefly shown to show the basic principle of the current consumption control means 195, a circuit in which a plurality of switching elements are provided to stabilize the switching operation or the switching element 197 is a P channel instead of an N channel. It is sufficient if the desired power consumption can be achieved even if various changes are made by changing the size of the resistor and the installation position.
以上のように、消費電流制御手段195を設けたことによって、下側セルユニット147側で余剰消費された電力消費分を上側セルユニット146の回路内でも同様に消費できる。さらに、消費電流制御手段195の可動、停止の切り替えをマイコン190から任意に制御できるので、マイコン190によってセルユニット間の高精度な電力バランス調整が実行できるようになった。 As described above, by providing the current consumption control means 195, the surplus power consumption on the lower cell unit 147 side can be similarly consumed in the circuit of the upper cell unit 146. Further, since the switching between the movable and stopped current consumption control means 195 can be arbitrarily controlled from the microcomputer 190, the microcomputer 190 can perform highly accurate power balance adjustment between the cell units.
マイコン190の状態には、ノーマル、スリープ、シャットダウンの3段階がある。ノーマルはマイコン190が常時起動している状態である。スリープは外部回路やマイコン190自身の機能の動作を最小限に制限し、マイコン190が自ら間欠的に起動するモードであり、例えば10ミリ秒の起動後に240ミリ秒停止するというような動作を繰り返す。シャットダウンは、基準電圧VDDが全く供給されない状態であって、マイコン190が完全に停止している状態である。マイコン190は、電池パック100が電動工具本体1に装着されている時だけでなく、装着されていないときも動作可能である。但し、電池パック100が装着されていない時や、装着時であっても電動工具が一定時間以上使用されていない時、例えば、電気機器本体のトリガ操作が終了してから2時間程度トリガ操作が行われなかった場合は、マイコン190はスリープ状態に移行する。電動工具本体1の動作スイッチ4が再び引かれてモータ3に電流が流れると、マイコン190は、電流検出回路183によって検出される電流値の増加を検知してノーマル状態に復帰する。 There are three stages of the state of the microcomputer 190: normal, sleep, and shutdown. Normal is a state in which the microcomputer 190 is always running. Sleep is a mode in which the operation of the functions of the external circuit and the microcomputer 190 itself is restricted to the minimum, and the microcomputer 190 starts up intermittently by itself. For example, the operation of stopping for 240 milliseconds after starting for 10 milliseconds is repeated. .. Shutdown is a state in which the reference voltage VDD 1 is not supplied at all, and the microcomputer 190 is completely stopped. The microcomputer 190 can operate not only when the battery pack 100 is attached to the power tool main body 1 but also when it is not attached. However, when the battery pack 100 is not installed, or when the power tool has not been used for a certain period of time even when it is installed, for example, the trigger operation is performed for about 2 hours after the trigger operation of the electric device main body is completed. If this is not done, the microcomputer 190 goes to sleep. When the operation switch 4 of the power tool main body 1 is pulled again and a current flows through the motor 3, the microcomputer 190 detects an increase in the current value detected by the current detection circuit 183 and returns to the normal state.
本実施例では、複数設けたセルユニットのうち一つの保護回路中にだけマイコン190を含めた構成にした場合に、電池パックを長期間放置することによる複数のセルユニット間の電位差の拡大を、マイコン190が設けられない他のセルユニットの保護回路に消費電流制御手段195を付加して解決した。また、消費電流制御手段195の動作又は停止を、マイコン190からの放電の制御信号194によって任意に制御できるようにした。この構成において、マイコン190は実際の上側セルユニット146の電圧と、下側セルユニット147の電圧を比較しながら、自らの動作モードや、下側セルユニット147を電源とする周辺回路(無線通信手段192、セル温度検出手段193等)の電力消費に応じて、消費電流制御手段195を動作させる。この結果、マイコン190は複数のセルユニット(146、147)毎の消費電流のバランスを良好に調整することができ、長期にわたる使用後(特に保管後)であってもセルユニット毎の電圧バランスが悪化しない電池パックを実現できた。 In this embodiment, when the microcomputer 190 is included in only one of the protection circuits of the plurality of cell units, the potential difference between the plurality of cell units is increased by leaving the battery pack for a long period of time. The problem was solved by adding the current consumption control means 195 to the protection circuit of another cell unit in which the microcomputer 190 is not provided. Further, the operation or stop of the current consumption control means 195 can be arbitrarily controlled by the discharge control signal 194 from the microcomputer 190. In this configuration, the microcomputer 190 compares its own operation mode and peripheral circuits (wireless communication means) using the lower cell unit 147 as a power source while comparing the actual voltage of the upper cell unit 146 with the voltage of the lower cell unit 147. The current consumption control means 195 is operated according to the power consumption of the cell temperature detection means 193, etc.). As a result, the microcomputer 190 can satisfactorily adjust the balance of the current consumption of each of the plurality of cell units (146, 147), and the voltage balance of each cell unit can be adjusted even after long-term use (especially after storage). We were able to realize a battery pack that does not deteriorate.
図6は電池パック100が装着される電動工具本体1(高電圧用電気機器)の回路図である。右側が電池パック100であり、具体的な回路構成は図5で示したものと同じである。図3で示したように定格36Vの電動工具本体1のターミナル部30には、下側正極端子172と下側負極端子177を短絡させる短絡回路39が含まれる。このように電動工具本体1に短絡回路39を有するターミナル部30(図3参照)を設けることによって、2つの正極端子(162、172)と2つの負極端子(167、177)を有する本実施例の電池パック100を装着するだけで、上側セルユニット146と下側セルユニット147の直列接続回路を確立することができる。電動工具本体1には、モータ3の回転制御を行うためのマイコン20が含まれる。マイコン20の駆動用の電圧(5V又は3.3V)は、正極入力端子32と負極入力端子37の両端電圧を入力とする電源回路21により供給される。 FIG. 6 is a circuit diagram of a power tool main body 1 (electric device for high voltage) on which the battery pack 100 is mounted. The right side is the battery pack 100, and the specific circuit configuration is the same as that shown in FIG. As shown in FIG. 3, the terminal portion 30 of the power tool main body 1 having a rating of 36 V includes a short-circuit circuit 39 for short-circuiting the lower positive electrode terminal 172 and the lower negative electrode terminal 177. In this embodiment, the power tool main body 1 is provided with a terminal portion 30 (see FIG. 3) having a short-circuit circuit 39, thereby having two positive electrode terminals (162, 172) and two negative electrode terminals (167, 177). A series connection circuit of the upper cell unit 146 and the lower cell unit 147 can be established only by mounting the battery pack 100 of the above. The power tool main body 1 includes a microcomputer 20 for controlling the rotation of the motor 3. The driving voltage (5V or 3.3V) of the microcomputer 20 is supplied by the power supply circuit 21 that inputs the voltages across the positive electrode input terminal 32 and the negative electrode input terminal 37.
マイコン20は、例えばアナログ・フロント・エンド(AFE)と呼ばれる電圧検出回路を含み、マイコン20の入力ポートには電池電圧検出回路22から正極入力端子32の電圧(V+)が入力される。マイコン20は、出力ポート(A/D出力端子)を介してスイッチング素子25をオンにするための信号を出力する。スイッチング素子25は、放電禁止信号を受信した際に、マイコン20の制御によってモータ3を停止する際のスイッチである。スイッチ(SW)状態検出回路23は、動作スイッチ4の状態がオンかオフかを検出する回路であり、動作スイッチ4のレバーが少しでも引かれるとオン信号をマイコン20に出力する。マイコン20は各種の制御用の信号や、センサ類からの入力信号、電池パック100への制御信号等の様々な信号の入出力が行われる。電流検出回路24は、シャント抵抗26の両端電圧を測定することによって電流値の大きさをマイコン20に出力する。 The microcomputer 20 includes, for example, a voltage detection circuit called an analog front end (AFE), and the voltage (V +) of the positive input terminal 32 is input from the battery voltage detection circuit 22 to the input port of the microcomputer 20. The microcomputer 20 outputs a signal for turning on the switching element 25 via the output port (A / D output terminal). The switching element 25 is a switch for stopping the motor 3 under the control of the microcomputer 20 when the discharge prohibition signal is received. The switch (SW) state detection circuit 23 is a circuit that detects whether the state of the operation switch 4 is on or off, and outputs an on signal to the microcomputer 20 when the lever of the operation switch 4 is pulled even a little. The microcomputer 20 inputs / outputs various signals such as various control signals, input signals from sensors, and control signals to the battery pack 100. The current detection circuit 24 outputs the magnitude of the current value to the microcomputer 20 by measuring the voltage across the shunt resistor 26.
LD端子38は、抵抗器28を介してマイコン20の入出力ポートに接続される。抵抗器28とマイコン20の間は、抵抗器27を介して基準電圧VDDに接続される。電池パック100側のマイコン190が放電禁止信号188を送出する(ハイにする)と、スイッチング素子184が導通することによって、LD端子146、38がグランド電位に落とされる。この結果、抵抗器28に接続されるマイコン20の入力電位が、抵抗器27と28の分圧電位に変化するので、マイコン20は、放電禁止状態になったことを検出できる。 The LD terminal 38 is connected to the input / output port of the microcomputer 20 via the resistor 28. The resistor 28 and the microcomputer 20 are connected to the reference voltage VDD 2 via the resistor 27. When the microcomputer 190 on the battery pack 100 side sends (sets high) the discharge prohibition signal 188, the switching element 184 conducts, so that the LD terminals 146 and 38 are dropped to the ground potential. As a result, the input potential of the microcomputer 20 connected to the resistor 28 changes to the voltage dividing potential of the resistors 27 and 28, so that the microcomputer 20 can detect that the discharge is prohibited.
図7は消費電流制御手段195の動作モードの例を示す図である。縦軸は消費電流制御手段195のスイッチング素子197へのゲート信号として入力される制御信号194の電位を示し、横軸は時間の経過(単位:秒)である。時間Tが管理対象の単位時間である。図7(A)は、マイコン190が通常の動作をしている状態(ノーマルモード)の際の、消費電流制御手段195の稼働状況を示す。ここでは制御信号201は、ノーマルモードにおける制御信号194の信号パターンであり、1サイクルの時間Tのうち前半約半分の時間Bの区間だけをON(消費電流制御手段195のスイッチング素子197のゲート電圧がハイであり、スイッチング素子197が導通して抵抗器196により電力消費が行われている状態)とし、残りの区間をスイッチング素子197のOFF(スイッチング素子197のゲート電圧がゼロの遮断状態)にして抵抗器196により電力が消費されない状態とする。ノーマルモードにおいては、1サイクルの時間Tのパターンによる消費電流制御手段195の動作を間欠的に繰り返す。 FIG. 7 is a diagram showing an example of an operation mode of the current consumption control means 195. The vertical axis represents the potential of the control signal 194 input as a gate signal to the switching element 197 of the current consumption control means 195, and the horizontal axis represents the passage of time (unit: seconds). Time T is the unit time to be managed. FIG. 7A shows the operating status of the current consumption control means 195 when the microcomputer 190 is operating normally (normal mode). Here, the control signal 201 is a signal pattern of the control signal 194 in the normal mode, and only the section of the time B, which is about half of the first half of the time T of one cycle, is turned on (gate voltage of the switching element 197 of the current consumption control means 195). Is high, the switching element 197 is conductive and power is consumed by the resistor 196), and the remaining section is turned off of the switching element 197 (the gate voltage of the switching element 197 is a cutoff state of zero). The resistor 196 is in a state where power is not consumed. In the normal mode, the operation of the current consumption control means 195 according to the pattern of the time T of one cycle is intermittently repeated.
図7(B)はマイコン190がスリープ状態にある時の消費電流制御手段195の稼働状況であり、スリープモードを示す。この際の制御信号202は、1サイクルの時間Tのうち最初の短い時間CだけをONとして消費電流制御手段195を稼働させ、残りの大部分を非稼働状態、即ち、抵抗器196により電力が消費されない状態とする。図7(B)の動作モードでは、消費電流制御手段195による消費電力が、図7(A)より約1/40程度に低減される。尚、スリープ状態では、最初の短い時間Cとほぼ同じ時間、又は時間Cよりわずかに長い時間だけマイコン190が動作し、それ以外の時間は休止している。 FIG. 7B shows the operating status of the current consumption control means 195 when the microcomputer 190 is in the sleep state, and shows the sleep mode. At this time, the control signal 202 operates the current consumption control means 195 with only the first short time C of the time T of one cycle turned on, and most of the remaining power is generated by the non-operating state, that is, the resistor 196. It is in a state where it is not consumed. In the operation mode of FIG. 7B, the power consumption by the current consumption control means 195 is reduced to about 1/40 of that of FIG. 7A. In the sleep state, the microcomputer 190 operates for about the same time as the first short time C, or for a time slightly longer than the time C, and is inactive at other times.
図7(C)はマイコン190が通常の動作をしている状態であって、さらに無線通信手段192(図5参照)を稼働させている状態の消費電流制御手段195の稼働状況である(無線通信モード)。ここでは、ノーマルモードで消費させるマイコン190の消費電力(図7(A)の時間B分)に加えて、無線通信手段192によって増加する分の消費電力を加算した合計時間(=時間A)とする。この時間Aは、1サイクルの時間Tの約7割程度となる。このように、マイコン190の制御によって、下側セルユニット147にて制御部の動作のために消費される分の電力を、消費電流制御手段195によって上側セルユニット146から放電させることができる。 FIG. 7C shows an operating status of the current consumption control means 195 in a state in which the microcomputer 190 is operating normally and the wireless communication means 192 (see FIG. 5) is being operated (wireless). Communication mode). Here, the total time (= time A) is obtained by adding the power consumption of the microcomputer 190 consumed in the normal mode (time B minutes in FIG. 7A) and the power consumption increased by the wireless communication means 192. To do. This time A is about 70% of the time T of one cycle. In this way, under the control of the microcomputer 190, the electric power consumed for the operation of the control unit in the lower cell unit 147 can be discharged from the upper cell unit 146 by the current consumption control means 195.
図7(D)は消費電流制御手段195を連続稼働させている状態である。ここでは1サイクルの時間Tの全区間において、消費電流制御手段195のスイッチング素子197をオンにし続けて消費電流制御手段195を連続稼働させる。 FIG. 7D shows a state in which the current consumption control means 195 is continuously operated. Here, the switching element 197 of the current consumption control means 195 is continuously turned on in the entire section of the time T of one cycle, and the current consumption control means 195 is continuously operated.
次に図8のフローチャートを用いて、本実施例に係る電池パック100の電圧バランスを調整するための電流消費制御フローを説明する。本フローチャートの手順は、マイコン190が起動している時に実行され、マイコン190が停止(シャットダウン)するまで実行される。マイコン190がスリープモードで動作する時には、マイコン190が起動している間だけ本フローチャートが実行される。 Next, the current consumption control flow for adjusting the voltage balance of the battery pack 100 according to the present embodiment will be described with reference to the flowchart of FIG. The procedure of this flowchart is executed when the microcomputer 190 is running, and is executed until the microcomputer 190 is stopped (shut down). When the microcomputer 190 operates in the sleep mode, this flowchart is executed only while the microcomputer 190 is running.
消費電流制御フローは、マイコン190が消費電流制御手段195を稼働させて、上側セルユニット146の電力を消費させることにより、下側セルユニット147の電圧と合わせる制御である。マイコン190が起動されたら、マイコン190は図示しない記憶手段内に格納されている図8の手順のプログラムを実行する(ステップ220)。最初にマイコン190は、セルユニット146と147の電圧を比較し、上側セルユニット146の電圧が下側セルユニット147の電圧よりも所定値以上高いか否かを判定する(ステップ221)。所定値以上高いということは、上側セルユニット146の電圧と下側セルユニット147の電圧との乖離が大きいことを意味するので、図7(D)に示した放電パターンとすべく、消費電流制御手段195をONにする時間を示すパラメータ、即ち放電時間XをTにセットし(ステップ225)、ステップ228に進む。ここでTは、図7で示す“管理対象単位時間”であり、例えば、数百mm秒単位である。 The current consumption control flow is a control in which the microcomputer 190 operates the current consumption control means 195 to consume the power of the upper cell unit 146 to match the voltage of the lower cell unit 147. When the microcomputer 190 is started, the microcomputer 190 executes the program of the procedure of FIG. 8 stored in a storage means (not shown) (step 220). First, the microcomputer 190 compares the voltages of the cell units 146 and 147, and determines whether or not the voltage of the upper cell unit 146 is higher than the voltage of the lower cell unit 147 by a predetermined value or more (step 221). If it is higher than a predetermined value, it means that the voltage of the upper cell unit 146 and the voltage of the lower cell unit 147 have a large deviation. Therefore, the current consumption control is performed so as to obtain the discharge pattern shown in FIG. 7 (D). A parameter indicating the time for turning on the means 195, that is, the discharge time X is set to T (step 225), and the process proceeds to step 228. Here, T is the “managed unit time” shown in FIG. 7, for example, in units of several hundred mm seconds.
上側セルユニット146の電圧と下側セルユニット147の電圧の差が所定値未満の場合は、マイコン190によって無線通信モードが実行されているか否かを判定する(ステップ222)。無線通信モードが実行中の場合は、放電時間XをAにセットし(ステップ226)、ステップ228に進む。無線通信モードが実行中でない場合は、ステップ223へ進む。ステップ223では、マイコン190の動作モードがノーマルモードにあるかを判定し、ノーマルモードの場合は放電時間XをBにセットし(ステップ227)、ステップ228に進む。ステップ223でノーマルモードではない場合、即ち、スリープモードの場合は、放電時間XをCにセットする(ステップ224)。 When the difference between the voltage of the upper cell unit 146 and the voltage of the lower cell unit 147 is less than a predetermined value, it is determined whether or not the wireless communication mode is being executed by the microcomputer 190 (step 222). When the wireless communication mode is being executed, the discharge time X is set to A (step 226), and the process proceeds to step 228. If the wireless communication mode is not being executed, the process proceeds to step 223. In step 223, it is determined whether or not the operation mode of the microcomputer 190 is in the normal mode, and in the case of the normal mode, the discharge time X is set to B (step 227), and the process proceeds to step 228. If the mode is not the normal mode in step 223, that is, in the sleep mode, the discharge time X is set to C (step 224).
次に、マイコン190の時間カウンタtの値が、管理対象単位時間Tに未到達か否かを判定する(ステップ228)。マイコン190が起動して、最初にステップ221~224が実行された直後は、t=0であるため、t<Tが真(YES)になり、ステップ229にてtに“1”をインクリメントする(ステップ229)。“1”は時間カウンタtのカウント単位であり、例えばmm秒単位である。ステップ228にて時間カウンタtがTと等しくなった場合は、ステップ228の判断がNOとなるので、ステップ230に進んで時間カウンタtを0にクリアする。 Next, it is determined whether or not the value of the time counter t of the microcomputer 190 has not reached the management target unit time T (step 228). Immediately after the microcomputer 190 is started and steps 221 to 224 are first executed, t = 0, so t <T becomes true (YES), and “1” is incremented to t in step 229. (Step 229). “1” is a count unit of the time counter t, for example, in mm seconds. If the time counter t becomes equal to T in step 228, the determination in step 228 becomes NO, so the process proceeds to step 230 and the time counter t is cleared to 0.
次に、マイコン190の時間カウンタtの値が、放電時間を終了させる放電時間Xに到達したか否かを判定する(ステップ231)。放電時間Xに到達していないときは、消費電流制御手段195をオンにして、又は、オンの状態を維持して(ステップ232)、ステップ221に戻る。放電時間Xに到達した後は、消費電流制御手段195をオフにして、ステップ221に戻る。 Next, it is determined whether or not the value of the time counter t of the microcomputer 190 has reached the discharge time X at which the discharge time ends (step 231). When the discharge time X has not been reached, the current consumption control means 195 is turned on or kept on (step 232), and the process returns to step 221. After reaching the discharge time X, the current consumption control means 195 is turned off, and the process returns to step 221.
以上の制御を繰り返すことによって、管理対象単位時間Tのうち前半の時間Xは、マイコン190が消費電流制御手段195を動作させ、時間X以降の後半部分は、消費電流制御手段195を停止させる。本実施例によれば、マイコン190によって消費電流制御手段195を細かく動作させるようにしたので、セルユニット間の電圧調整を精度良く行うことが可能になると共に、電池パックの電力管理の自由度が高くなった。特に、消費電流制御手段195の稼働と停止を、マイコン190によってソフトウェアにより制御するので、精度の高い制御が可能となった。尚、本実施例の制御は、上側セルユニット146と下側セルユニット147を有して、電気機器本体に装着された際に初めて上側セルユニット146と下側セルユニット147が電気的に接続されるような電池パックであれば、電池電圧が固定の電池パックにおいても同様に適用できる。 By repeating the above control, the microcomputer 190 operates the current consumption control means 195 during the first half of the managed unit time T, and the current consumption control means 195 is stopped during the second half after the time X. According to this embodiment, since the current consumption control means 195 is finely operated by the microcomputer 190, it is possible to accurately adjust the voltage between the cell units and to increase the degree of freedom in power management of the battery pack. It got higher. In particular, since the operation and stop of the current consumption control means 195 are controlled by software by the microcomputer 190, highly accurate control is possible. In the control of this embodiment, the upper cell unit 146 and the lower cell unit 147 are provided, and the upper cell unit 146 and the lower cell unit 147 are electrically connected for the first time when they are mounted on the main body of the electric device. As long as the battery pack is such that the battery voltage is fixed, the same can be applied to the battery pack.
次に、図9を用いて本発明の第2の実施例に係る電池パック100の電圧バランス調整手順を説明する。第2の実施例では、第1の実施例の放電時間Xの設定方法を、マイコン190に接続された周辺機器(例えば回路A~回路C)の状態に応じてきめ細かく設定するようにしたものである。ここでは、点線で示す後半部分のステップ250~255は、図8のフローチャートのステップ228~233と同じである。本フローチャートはマイコン190が起動している時に実行され、マイコン190が停止(シャットダウン)するまで実行される。スリープモード時には、マイコン190が起動している間だけ本フローチャートが実行される。 Next, the voltage balance adjusting procedure of the battery pack 100 according to the second embodiment of the present invention will be described with reference to FIG. In the second embodiment, the discharge time X setting method of the first embodiment is set in detail according to the state of the peripheral devices (for example, circuits A to C) connected to the microcomputer 190. is there. Here, steps 250 to 255 in the latter half shown by the dotted line are the same as steps 228 to 233 in the flowchart of FIG. This flowchart is executed when the microcomputer 190 is running, and is executed until the microcomputer 190 is stopped (shut down). In the sleep mode, this flowchart is executed only while the microcomputer 190 is running.
最初に、放電時間Xの初期値として“a”をセットする(ステップ241)。“a”はマイコン190が消費する最小の電力、即ち、スリープ時のマイコン190の消費電力を消費電流制御手段195で消費するのに要する時間である。これは、マイコン190が下側セルユニット147の電力だけを消費して、上側セルユニット146の電力を消費しないので、そのアンバランスを解消するための制御である。次に、マイコン190は、下側セルユニット147を電源とする回路A(例えば、無線通信手段192)が動作中の場合は、回路Aが消費する電力分を消費電流制御手段195で消費するのに要する時間Dとして加算する(ステップ242、243)。回路Aが稼働していない時、即ち停止中の場合はステップ244に進む(ステップ242)。 First, “a” is set as the initial value of the discharge time X (step 241). “A” is the minimum power consumed by the microcomputer 190, that is, the time required for the current consumption control means 195 to consume the power consumed by the microcomputer 190 during sleep. This is a control for eliminating the imbalance because the microcomputer 190 consumes only the power of the lower cell unit 147 and not the power of the upper cell unit 146. Next, when the circuit A (for example, the wireless communication means 192) using the lower cell unit 147 as the power source is operating, the microcomputer 190 consumes the power consumed by the circuit A by the current consumption control means 195. It is added as the time D required for (steps 242 and 243). When the circuit A is not operating, that is, when it is stopped, the process proceeds to step 244 (step 242).
次に、マイコン190は、下側セルユニット147を電源とする回路B(例えば、セル温度検出手段193)が動作中の場合は、回路Bが消費する電力分を消費電流制御手段195で消費するのに要する時間Eとして加算する(ステップ244、245)。回路Bが稼働していない時、即ち停止中の場合はステップ246に進む(ステップ244)。次に、マイコン190は、下側セルユニット147を電源とする回路C(例えば、図示しない電池残量表示ランプ)が動作中の場合は、回路Cが消費する電力分を消費電流制御手段195で消費するのに要する時間Fを加算する(ステップ246、247)。回路Cが稼働していない時、即ち停止中の場合はステップ248に進む(ステップ246)。 Next, when the circuit B (for example, the cell temperature detecting means 193) using the lower cell unit 147 as a power source is operating, the microcomputer 190 consumes the power consumed by the circuit B by the current consumption controlling means 195. It is added as the time E required for (steps 244 and 245). When the circuit B is not operating, that is, when it is stopped, the process proceeds to step 246 (step 244). Next, when the circuit C (for example, a battery level indicator lamp (not shown)) using the lower cell unit 147 as a power source is operating, the microcomputer 190 uses the current consumption control means 195 to measure the power consumed by the circuit C. The time F required for consumption is added (steps 246 and 247). When the circuit C is not operating, that is, when it is stopped, the process proceeds to step 248 (step 246).
次に、マイコン190は、セルユニット146と147のセル電圧を比較し、上側セルユニット146の電圧が下側セルユニット147の電圧よりも所定値以上高いか否かを判定する(ステップ248)。所定値以上高いということは、上側セルユニット146の電圧と下側セルユニット147の電圧との乖離が大きいことを意味するので、図7(D)に示した放電パターンとすべく、消費電流制御手段195をONにする時間を示すパラメータ、放電時間XをTにセットする(ステップ249)。放電時間X=Tは、消費電流制御手段195を用いた上側セルユニット146の電力消費を最大に行うということであるので、ステップ243、245、247で設定した値よりも大きくなる関係、即ち、T>a+D+E+Fとなる。 Next, the microcomputer 190 compares the cell voltages of the cell units 146 and 147, and determines whether or not the voltage of the upper cell unit 146 is higher than the voltage of the lower cell unit 147 by a predetermined value or more (step 248). If it is higher than a predetermined value, it means that the voltage of the upper cell unit 146 and the voltage of the lower cell unit 147 have a large deviation. Therefore, the current consumption control is performed so as to obtain the discharge pattern shown in FIG. 7 (D). The discharge time X, which is a parameter indicating the time for turning on the means 195, is set to T (step 249). Since the discharge time X = T means that the power consumption of the upper cell unit 146 using the current consumption control means 195 is maximized, the relationship becomes larger than the value set in steps 243, 245, and 247, that is, T> a + D + E + F.
次に、ステップ240~249の手順によって決定された消費電流制御手段195の放電時間Xに基づいて、ステップ250~255を実行することにより消費電流制御手段195を動作又は停止させる。ステップ250~255の処理は、図8で示したステップ228~233の処理と同一であるので、繰り返しの説明は省略する。ステップ254、255の次には、ステップ241に戻る。 Next, the current consumption control means 195 is operated or stopped by executing steps 250 to 255 based on the discharge time X of the current consumption control means 195 determined by the procedure of steps 240 to 249. Since the processes of steps 250 to 255 are the same as the processes of steps 228 to 233 shown in FIG. 8, the repeated description will be omitted. Following steps 254 and 255, the process returns to step 241.
第2の実施例を用いることによって、下側セルユニット147側に、回路A~C以外の更なる電力消費回路が加わったとしても、それらの消費量に合わせた最適な消費電流制御手段195の稼働が可能となり、上側セルユニット146と下側セルユニット147の電力バランス調整を良好に行うことできる。 By using the second embodiment, even if additional power consumption circuits other than the circuits A to C are added to the lower cell unit 147 side, the optimum current consumption control means 195 according to the consumption amount thereof. The operation becomes possible, and the power balance of the upper cell unit 146 and the lower cell unit 147 can be satisfactorily adjusted.
以上、本発明を実施例に基づいて説明したが、本発明は上述の実施例に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の変更が可能である。本実施例の電池パック100は、電圧切替え方式の物に限定されずに、複数のセルユニットを有するものならば、同様に適用できる。例えば、電圧固定式の電池パックであって、上側セルユニットと下側セルユニットの出力を電池パック内で並列接続して出力するような電池パックにおけるセルユニット間の電圧バランス調整用に本発明を用いることができる。つまり、本願請求項の発明は、複数のセルユニットを有する電池パックであれば、様々な電圧、様々な二次電池の種類、様々な筐体であっても良い。また、電池パック100が装着される電気機器本体の種類は、上述の実施例で説明したインパクト工具だけに限定されずに、電池パック100が装着可能であって、電池パック100を主電源として、又は、副電源として動作する任意の電気機器本体であっても良い。 Although the present invention has been described above based on Examples, the present invention is not limited to the above-mentioned Examples, and various modifications can be made without departing from the spirit of the present invention. The battery pack 100 of this embodiment is not limited to the one of the voltage switching type, and can be similarly applied as long as it has a plurality of cell units. For example, the present invention is used for adjusting the voltage balance between cell units in a battery pack of a fixed voltage type battery pack in which the outputs of the upper cell unit and the lower cell unit are connected in parallel in the battery pack and output. Can be used. That is, the invention of the present application may have various voltages, various types of secondary batteries, and various housings as long as the battery pack has a plurality of cell units. Further, the type of the electric device main body to which the battery pack 100 is mounted is not limited to the impact tool described in the above embodiment, and the battery pack 100 can be mounted, and the battery pack 100 is used as the main power source. Alternatively, it may be an arbitrary electric device main body that operates as an auxiliary power source.
1…電動工具本体、2…ハウジング、2a…胴体部、2b…ハンドル部、2c…電池パック装着部、3…モータ、4…動作スイッチ、5…正逆切替レバー、8…装着機構、9…出力軸、20…マイコン、21…電源回路、22…電池電圧検出回路、23…状態検出回路、24…電流検出回路、25…スイッチング素子、26…シャント抵抗、27,28…抵抗器、30…ターミナル部、31…基台、31a…凹部、32…正極入力端子、34…T端子、35…V端子、36…LS端子、37…負極入力端子、38…LD端子、39…短絡回路、39a,39b…短絡用端子、40…負荷装置、51…電動工具本体、52…ハウジング、52a…胴体部、52b…ハンドル部、52c…電池パック装着部、80…ターミナル部、81…基台、82…正極入力端子、84…T端子、85…V端子、86…LS端子、87…負極入力端子、88…LD端子、90…負荷装置、100…電池パック、101…下ケース、110…上ケース、111…下段面、115…上段面、121~128…スロット、131…ストッパ部、132…隆起部、138a,138b…レール溝、141…ラッチ、142…係止部、146…上側セルユニット、147…下側セルユニット、147a…電池セル、150…回路基板、151…保護IC、154…スイッチング素子、155…過充電信号、156…過放電信号、162…上側正極端子、162a,162b…腕部、167…上側負極端子、167a,167b…腕部、168…LD端子、172…下側正極端子、172a,172b…腕部、177…下側負極端子、177a,177b…腕部、181…保護IC、182…シャント抵抗、183…電流検出回路、184…スイッチング素子、185…過充電信号、186…過放電信号、187…電源回路(電源部)、188…放電禁止信号、189…上側電圧検出回路、190…マイコン、191…記憶部、192…無線通信手段、193…セル温度検出手段、194…(放電)制御信号、195…消費電流制御手段(調整部)、196…抵抗器、197…スイッチング素子、201~204…制御信号、A…基準電位、VDD…(電池パック100の)基準電圧、VDD…(電動工具本体1の)基準電圧 1 ... Power tool body, 2 ... Housing, 2a ... Body part, 2b ... Handle part, 2c ... Battery pack mounting part, 3 ... Motor, 4 ... Operation switch, 5 ... Forward / reverse switching lever, 8 ... Mounting mechanism, 9 ... Output shaft, 20 ... microcomputer, 21 ... power supply circuit, 22 ... battery voltage detection circuit, 23 ... state detection circuit, 24 ... current detection circuit, 25 ... switching element, 26 ... shunt resistance, 27, 28 ... resistor, 30 ... Terminal unit, 31 ... base, 31a ... concave, 32 ... positive electrode input terminal, 34 ... T terminal, 35 ... V terminal, 36 ... LS terminal, 37 ... negative electrode input terminal, 38 ... LD terminal, 39 ... short circuit, 39a , 39b ... Short-circuit terminal, 40 ... Load device, 51 ... Power tool body, 52 ... Housing, 52a ... Body part, 52b ... Handle part, 52c ... Battery pack mounting part, 80 ... Terminal part, 81 ... Base, 82 ... Positive electrode input terminal, 84 ... T terminal, 85 ... V terminal, 86 ... LS terminal, 87 ... Negative electrode input terminal, 88 ... LD terminal, 90 ... Load device, 100 ... Battery pack, 101 ... Lower case, 110 ... Upper case , 111 ... Lower surface, 115 ... Upper surface, 121-128 ... Slot, 131 ... Stopper, 132 ... Raised part, 138a, 138b ... Rail groove, 141 ... Latch, 142 ... Locking part, 146 ... Upper cell unit, 147 ... Lower cell unit, 147a ... Battery cell, 150 ... Circuit board, 151 ... Protection IC, 154 ... Switching element, 155 ... Overcharge signal, 156 ... Overdischarge signal, 162 ... Upper positive electrode terminal, 162a, 162b ... Arm Unit, 167 ... Upper negative electrode terminal, 167a, 167b ... Arm, 168 ... LD terminal, 172 ... Lower positive electrode terminal, 172a, 172b ... Arm, 177 ... Lower negative electrode terminal, 177a, 177b ... Arm, 181 ... Protection IC, 182 ... shunt resistance, 183 ... current detection circuit, 184 ... switching element, 185 ... overcharge signal, 186 ... overdischarge signal, 187 ... power supply circuit (power supply unit), 188 ... discharge prohibition signal, 189 ... upper voltage Detection circuit, 190 ... Microcomputer, 191 ... Storage unit, 192 ... Wireless communication means, 193 ... Cell temperature detection means, 194 ... (Discharge) control signal, 195 ... Current consumption control means (adjustment unit), 196 ... Resistor, 197. ... Switching element, 201-204 ... Control signal, A ... Reference potential, VDD 1 ... Reference voltage (of battery pack 100), VDD 2 ... Reference voltage (of power tool body 1)

Claims (11)

  1. 複数の電池セルが直列に接続されたセルユニットとして少なくとも第1及び第2のセルユニットを有し、前記第1のセルユニットが前記第2のセルユニットよりも高電圧側に接続された状態で前記第1及び第2のセルユニットが互いに直列に接続される直列接続状態と、前記直列接続状態以外の接続状態に切り替えられるよう構成された電池パックであって、
    前記第1及び第2のセルユニットの一方に接続され、少なくとも前記一方のセルユニットを構成する前記電池セルの状態を監視し、前記電池パックの放電を制御するための放電制御信号を出力できるよう構成された制御部と、
    前記第1及び第2のセルユニットの他方に接続され、前記制御部からの制御信号によって前記他方のセルユニットの消費電力を調整する調整部と、を備えることを特徴とする電池パック。
    A state in which at least the first and second cell units are provided as cell units in which a plurality of battery cells are connected in series, and the first cell unit is connected to a higher voltage side than the second cell unit. A battery pack configured to switch between a series connection state in which the first and second cell units are connected in series with each other and a connection state other than the series connection state.
    A discharge control signal for controlling the discharge of the battery pack can be output by monitoring the state of the battery cells connected to one of the first and second cell units and constituting at least one of the cell units. The configured control unit and
    A battery pack including an adjusting unit connected to the other of the first and second cell units and adjusting the power consumption of the other cell unit by a control signal from the control unit.
  2. 前記制御部に接続され、前記制御部に電源電圧を供給する電源部を備え、
    前記電源部は、前記一方のセルユニットに接続され、
    前記制御部は、前記電源部と前記一方のセルユニットの負極に接続され、前記電源部は、前記一方のセルユニットから入力された電圧から前記電源電圧を生成して前記制御部に供給することを特徴とする請求項1に記載の電池パック。
    A power supply unit connected to the control unit and supplying a power supply voltage to the control unit is provided.
    The power supply unit is connected to the one cell unit.
    The control unit is connected to the power supply unit and the negative electrode of the one cell unit, and the power supply unit generates the power supply voltage from the voltage input from the one cell unit and supplies the power supply voltage to the control unit. The battery pack according to claim 1.
  3. 前記第2のセルユニットに前記電源部が接続され、前記第2のセルユニットから前記電源部を介して前記制御部に前記電源電圧が供給されることを特徴とする請求項2に記載の電池パック。 The battery according to claim 2, wherein the power supply unit is connected to the second cell unit, and the power supply voltage is supplied from the second cell unit to the control unit via the power supply unit. pack.
  4. 前記制御部は、自身の状態又は前記一方のセルユニットに接続された接続素子の状態に応じて前記調整部を制御することを特徴とする請求項1乃至3のいずれか一項に記載の電池パック。 The battery according to any one of claims 1 to 3, wherein the control unit controls the adjustment unit according to its own state or the state of a connecting element connected to the one cell unit. pack.
  5. 前記調整部は、前記他方のセルユニットと並列に接続された抵抗部と、前記抵抗部と直列接続されたスイッチ部と、を備えた放電回路であり、
    前記制御部は、前記スイッチ部を制御することを特徴とする請求項4に記載の電池パック。
    The adjusting unit is a discharge circuit including a resistance unit connected in parallel with the other cell unit and a switch unit connected in series with the resistance unit.
    The battery pack according to claim 4, wherein the control unit controls the switch unit.
  6. 前記制御部は、少なくともノーマルモード、スリープモードを含む動作モードを備え、
    前記制御部は、前記ノーマルモードの場合には、前記スリープモードの場合よりも前記他方のセルユニットの消費電力が大きくなるように制御することを特徴とする請求項1乃至5のいずれか一項に記載の電池パック。
    The control unit includes at least a normal mode and an operation mode including a sleep mode.
    Any one of claims 1 to 5, wherein the control unit controls the power consumption of the other cell unit in the normal mode so as to be larger than in the sleep mode. Battery pack described in.
  7. 制御部は、前記動作モードとして無線通信モードを備え、
    前記制御部は、前記無線通信モードの場合には、前記スリープモードの場合よりも前記他方のセルユニットの消費電力が大きくなるように制御することを特徴とする請求項6に記載の電池パック
    The control unit includes a wireless communication mode as the operation mode.
    The battery pack according to claim 6, wherein the control unit controls the wireless communication mode so that the power consumption of the other cell unit is larger than that in the sleep mode.
  8. 前記第1及び第2のセルユニットの電圧差が所定値以上の場合、前記制御部は、前記電圧差が所定値未満になるまで前記調整部を常に動作させることを特徴とする請求項1乃至7のいずれか一項に記載の電池パック。 Claims 1 to 1, wherein when the voltage difference between the first and second cell units is equal to or greater than a predetermined value, the control unit always operates the adjusting unit until the voltage difference becomes less than a predetermined value. The battery pack according to any one of 7.
  9. 前記第1及び第2のセルユニットの電圧差が所定値未満の場合、前記制御部は、前記動作モードに応じて前記調整部を制御することを特徴とする請求項6又は7に記載の電池パック。 The battery according to claim 6 or 7, wherein when the voltage difference between the first and second cell units is less than a predetermined value, the control unit controls the adjustment unit according to the operation mode. pack.
  10. 請求項1から請求項9のいずれかに記載された前記電池パックと、前記電池パックに接続できる電気機器本体として少なくとも第1の電気機器本体と、を有する電気機器であって、
    前記電池パックが前記第1の電気機器本体に接続された場合は、前記第1及び第2のセルユニットが互いに直列に接続される直列接続状態となり、
    前記電池パックが前記第1の電気機器本体に接続されない場合は、前記第1及び第2のセルユニットが互いに電気的に独立した非接続状態となることを特徴とする電気機器。
    An electric device having the battery pack according to any one of claims 1 to 9 and at least a first electric device main body as an electric device main body that can be connected to the battery pack.
    When the battery pack is connected to the first electric device main body, the first and second cell units are connected in series to each other in a series connection state.
    An electric device characterized in that when the battery pack is not connected to the first electric device main body, the first and second cell units are electrically independent and disconnected from each other.
  11. 請求項1から請求項10のいずれかに記載された前記電池パックと、前記電池パックに接続できる電気機器本体として少なくとも第2の電気機器本体と、を有する電気機器であって、
    前記電池パックが前記第2の電気機器本体に接続された場合は、前記第1及び第2のセルユニットが互いに並列に接続される並列接続状態となり、
    前記電池パックが前記第2の電気機器本体に接続されない場合は、前記第1及び第2のセルユニットが互いに電気的に独立した非接続状態となることを特徴とする電気機器。
    An electric device having the battery pack according to any one of claims 1 to 10 and at least a second electric device main body as an electric device main body that can be connected to the battery pack.
    When the battery pack is connected to the second electric device main body, the first and second cell units are connected in parallel to each other in a parallel connection state.
    An electric device characterized in that when the battery pack is not connected to the second electric device main body, the first and second cell units are electrically independent and disconnected from each other.
PCT/JP2020/036445 2019-10-28 2020-09-25 Battery pack and electrical device WO2021084989A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021554186A JP7259983B2 (en) 2019-10-28 2020-09-25 Battery packs and electrical equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-195235 2019-10-28
JP2019195235 2019-10-28

Publications (1)

Publication Number Publication Date
WO2021084989A1 true WO2021084989A1 (en) 2021-05-06

Family

ID=75715107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036445 WO2021084989A1 (en) 2019-10-28 2020-09-25 Battery pack and electrical device

Country Status (2)

Country Link
JP (1) JP7259983B2 (en)
WO (1) WO2021084989A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029050A (en) * 2008-07-24 2010-02-04 Toshiba Corp Battery system
JP2010540258A (en) * 2007-09-06 2010-12-24 プラーン Multipurpose portable appliance
WO2014119184A1 (en) * 2013-02-01 2014-08-07 株式会社マキタ Motor-driven appliance and main body thereof
JP2016046917A (en) * 2014-08-22 2016-04-04 株式会社マキタ Battery pack for electrically-driven machine tool
WO2019022071A1 (en) * 2017-07-24 2019-01-31 工機ホールディングス株式会社 Battery pack and electrical device using battery pack

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6977324B2 (en) * 2017-06-16 2021-12-08 工機ホールディングス株式会社 Battery packs and electrical equipment using battery packs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540258A (en) * 2007-09-06 2010-12-24 プラーン Multipurpose portable appliance
JP2010029050A (en) * 2008-07-24 2010-02-04 Toshiba Corp Battery system
WO2014119184A1 (en) * 2013-02-01 2014-08-07 株式会社マキタ Motor-driven appliance and main body thereof
JP2016046917A (en) * 2014-08-22 2016-04-04 株式会社マキタ Battery pack for electrically-driven machine tool
WO2019022071A1 (en) * 2017-07-24 2019-01-31 工機ホールディングス株式会社 Battery pack and electrical device using battery pack

Also Published As

Publication number Publication date
JP7259983B2 (en) 2023-04-18
JPWO2021084989A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
US9859548B2 (en) Shared control of thermistor and dual purpose thermistor line
JP6962370B2 (en) Battery packs and electrical equipment using battery packs
JP4011563B2 (en) Method and system for battery protection
JP4936227B2 (en) Battery pack and electric tool using the battery pack
JP5126251B2 (en) Battery voltage monitoring device
US20080272760A1 (en) Rechargeable Battery for Connection to a Load
KR20060106901A (en) Cordless power tool with overcurrent protection circuit
US8872451B2 (en) Motor device and power tool
WO2021199817A1 (en) Battery pack and electrical apparatus using same
KR20190050637A (en) Apparatus for managing battery, battery pack including the same and vehicle including the same
JP7375897B2 (en) electrical equipment
TWI326146B (en) Lithium battery pack
US11811250B2 (en) Removable battery pack and/or electrical consumer with an electromechanical interface for supplying energy
WO2019022071A1 (en) Battery pack and electrical device using battery pack
WO2021084989A1 (en) Battery pack and electrical device
KR102222119B1 (en) battery pack
JP2016103937A (en) Battery pack
KR102035680B1 (en) Apparatus and method for conforming the battery connection
JP2021099925A (en) Battery pack and electrical equipment
JP2022129280A (en) Battery pack and power tool
JP5033035B2 (en) Battery pack
JP2014176919A (en) Electric power tool
JP2010129468A (en) Battery pack and electric tool using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883196

Country of ref document: EP

Kind code of ref document: A1