WO2021084648A1 - Terminal and wireless base station - Google Patents

Terminal and wireless base station Download PDF

Info

Publication number
WO2021084648A1
WO2021084648A1 PCT/JP2019/042559 JP2019042559W WO2021084648A1 WO 2021084648 A1 WO2021084648 A1 WO 2021084648A1 JP 2019042559 W JP2019042559 W JP 2019042559W WO 2021084648 A1 WO2021084648 A1 WO 2021084648A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
terminal
tsn
gnb
propagation
Prior art date
Application number
PCT/JP2019/042559
Other languages
French (fr)
Japanese (ja)
Inventor
天楊 閔
リフェ ワン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201980101578.7A priority Critical patent/CN114586421A/en
Priority to PCT/JP2019/042559 priority patent/WO2021084648A1/en
Publication of WO2021084648A1 publication Critical patent/WO2021084648A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to a terminal and a wireless base station that transmit and receive time information.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • 5G New Radio
  • TSN Time-Sensitive Networking
  • the radio base station in a configuration in which the control source is connected to the core network and the end station is connected to the terminal (UE), the radio base station (gNB) provides time information including the TSN time. It is being discussed to provide it to the UE.
  • the UE provides time information including the TSN time to gNB in the configuration where the control source is connected to the UE and the end station is connected to the core network in the NR system.
  • the TSN time received by the gNB is delayed from the TSN time on the UE side due to the propagation time between the UE and the gNB.
  • the TSN time on the UE side and the TSN time on the gNB side do not completely match, and the accuracy of time synchronization between the UE and gNB may decrease.
  • An object of the present invention is to provide a terminal and a radio base station capable of maintaining highly accurate time synchronization with a base station.
  • the terminal (terminal 100) is a receiving unit (terminal 100) that receives a downlink signal from a radio base station (gNB210) including information for determining a propagation time between the terminal and the radio base station. A new time in which the time used in a specific network is changed based on the radio receiving unit 103), the control unit (for example, the control unit 111) that acquires the propagation time using the downlink signal, and the propagation time. It is provided with a transmission unit (for example, a radio transmission unit 101) that transmits time information including the above to the radio base station.
  • a radio base station gNB210
  • the radio base station (gNB210) includes an uplink signal from a terminal (terminal 100) that includes information for determining a propagation time between the terminal and the radio base station, and a specific network.
  • the propagation time is acquired by using the receiving unit (wireless receiving unit 213) that receives the time information including the time to be used and the uplink signal, and the propagation time is used in the specific network based on the propagation time.
  • It includes a control unit (for example, control unit 221) that acquires a new time at which the time has been changed.
  • FIG. 1 is an overall schematic configuration diagram of the control system 10.
  • FIG. 2 is a functional block configuration diagram of the terminal 100.
  • FIG. 3 is a functional block configuration diagram of the gNB 210.
  • FIG. 4 is a diagram illustrating adjustment of transmission timing between the terminal 100 and the gNB 210.
  • FIG. 5 is a diagram showing a sequence of time distribution procedures (operation example 1).
  • FIG. 6 is a diagram illustrating a TimeReferenceInfo information element.
  • FIG. 7 is a diagram illustrating each parameter in the information element shown in FIG.
  • FIG. 8 is a diagram showing a sequence of time distribution procedures (operation example 2).
  • FIG. 9 is a diagram illustrating the measurement of the propagation time by the terminal 100 or the gNB 210.
  • FIG. 10 is a diagram illustrating an example of a message including time change information.
  • FIG. 11 is an overall schematic configuration diagram of the control system 10a.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the terminal 100.
  • FIG. 1 is an overall schematic configuration diagram of the control system 10 according to the embodiment.
  • the control system 10 includes a TSN grand master (TSNGM) 20, an NR system 30, and a TSN end station 40.
  • TSN control source (not shown) controls the TSN end station 40 in real time via the NR system 30.
  • the specific configuration of the control system 10 including the number of TSN GM 20 and TSN end station 40 is not limited to the example shown in FIG.
  • the TSN GM20 oscillates the clock that is the operation timing of the TSN.
  • the time generated based on the clock oscillated by the TSN GM20 is referred to as the TSN time.
  • the TSN time is the reference time applied within the TSN.
  • the TSN time is used to achieve highly accurate time synchronization between the TSN control source and the TSN end station 40. Therefore, the TSN control source and the TSN end station 40 need to be synchronized with the TSN time.
  • the TSN may be referred to as a specific network or a network other than a wireless network.
  • the TSN time is referred to as the time used in a particular network or the time used in a network other than the wireless network.
  • TSN may be referred to as a network in which all nodes included in the network share the same time.
  • the TSN may be referred to as a network that supports deterministic communication or a network that supports isochronous communication.
  • the NR system 30 includes an NR grandmaster (NR GM) 31, a terminal 100, a Next Generation-Radio Access Network 200 (hereinafter, NG-RAN200), and a core network 300.
  • the terminal is also referred to as a user device (UE).
  • UE user device
  • the specific configuration of the NR system 30 including the number of terminals and the number of radio base stations described later is not limited to the example shown in FIG.
  • the NR GM31 oscillates the clock that is the operation timing of the NR system 30.
  • the time generated based on the clock oscillated by the NR GM31 is referred to as the NR time.
  • the NR time is the reference time applied within the NR system 30.
  • the NR time is used to realize highly accurate time synchronization within the NR system 30. Therefore, the terminal 100, the NG-RAN200, and the core network 300 need to be synchronized with the NR time.
  • the terminal 100 executes wireless communication according to NR between the terminal 100, the NG-RAN200, and the core network 300.
  • Terminal 100 is connected to TSN GM20 and NR GM31.
  • the NG-RAN200 includes a plurality of NG-RANNodes, specifically, a radio base station (hereinafter referred to as gNB) 210, and is connected to a core network (5GC) 300 according to NR.
  • the NG-RAN200 and the core network 300 may be simply expressed as an NR network.
  • Terminal 100 is connected to the NR network.
  • the NR network may be referred to as a specific network or a wireless network.
  • the NR time is referred to as the time used in a specific network or the time used in a wireless network.
  • Terminal 100 and gNB210 have Massive MIMO that generates a more directional beam by controlling radio signals transmitted from multiple antenna elements, carrier aggregation (CA) that uses multiple component carriers (CC), and carrier aggregation (CA) that uses multiple component carriers (CC). It can support dual connectivity (DC), which simultaneously transmits CC between multiple NG-RAN Nodes and terminals.
  • CC is also called a carrier.
  • the terminal 100 When the terminal 100 is used for the TSN communication service, the terminal 100 acquires the TSN time from the TSN GM20 and provides the time information including the TSN time to the gNB 210.
  • the terminal 100 When the terminal 100 is used for the NR communication service, the terminal 100 acquires the NR time from the NR GM31 and provides the time information including the NR time to the gNB 210.
  • the gNB210 When the gNB210 receives the time information including the TSN time or the NR time, it acquires the TSN time or the NR time from the time information and transmits it to the core network 300.
  • Core network 300 includes User Plane Function (UPF) 310.
  • UPF310 provides functions specialized for user plane processing.
  • the core network 300 is connected to the TSN end station 40 via the UPF310.
  • the core network 300 receives the TSN time from the gNB 210, it transmits the TSN time to the TSN end station 40.
  • the TSN end station 40 is, for example, a machine installed in a production factory.
  • the TSN end station 40 updates the TSN time held by the TSN end station 40 at any time based on the TSN time received from the core network 300.
  • the TSN end station 40 receives a command from the TSN control source via the NR system 30.
  • the control source of the TSN performs real-time control in the control system 10 by performing time scheduling for operating the TSN end station 40 based on the TSN time.
  • FIG. 2 is a functional block configuration diagram of the terminal 100.
  • the terminal 100 includes a wireless transmission unit 101, a wireless reception unit 103, a propagation time acquisition unit 105, a time processing unit 107, an RRC message transmission unit 109, and a control unit 111.
  • the wireless transmission unit 101 transmits an uplink signal (UL signal) according to NR.
  • the radio receiving unit 103 receives the downlink signal (DL signal) according to the NR.
  • the wireless transmitter 101 and the wireless receiver 103 include a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical downlink shared channel (PDSCH). ), Physical random access channel (PRACH), etc., to execute wireless communication between terminal 100 and gNB210.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • PRACH Physical random access channel
  • the wireless transmitter 101 transmits an RRC message to the gNB 210.
  • the wireless transmission unit 101 transmits time information including the TSN time to the gNB 210.
  • the wireless transmission unit 101 transmits time information including the NR time to the gNB 210.
  • the wireless transmission unit 101 transmits a random access preamble (Msg.1) to the gNB 210 in the random access (RA) procedure.
  • the radio transmission unit 101 transmits a reference signal such as a sounding reference signal (SRS) and a demodulation reference signal (DMRS) to the gNB 210.
  • the wireless transmission unit 101 transmits the measurement signal on the terminal side to the gNB 210.
  • the wireless receiver 103 receives a random access response (Msg.2) from the gNB 210 in the RA procedure.
  • the random access response is a response signal to the above-mentioned random access preamble and includes a timing advance (TA) command.
  • the TA command contains a TA value used to adjust the transmission timing of the terminal 100.
  • the wireless receiver 103 receives a control message (TAMACCE) in the medium access control (MAC) layer from the gNB210.
  • TAMACCE is a response signal to the above-mentioned reference signal, and includes a TA command used to adjust the transmission timing of the terminal 100.
  • the wireless receiver 103 receives the measurement response signal on the terminal side from the gNB 210.
  • the measurement response signal on the terminal side is a response signal to the above-mentioned measurement signal on the terminal side.
  • the propagation time acquisition unit 105 acquires the propagation time between the terminal 100 and the gNB 210 by using downlink signals such as the TA command included in the random access response and the TA command included in the TA MAC CE. To do.
  • the propagation time acquisition unit 105 is based on the time difference between the time when the wireless transmission unit 101 transmits the measurement signal on the terminal side and the time when the wireless reception unit 103 receives the measurement response signal on the terminal side. Get the propagation time between terminal 100 and gNB210.
  • the time processing unit 107 receives the TSN time from the TSN GM20.
  • the time processing unit 107 receives the NR time from the NR GM31.
  • the time processing unit 107 changes the TSN time and acquires a new TSN time based on the propagation time acquired by the propagation time acquisition unit 105. For example, the time processing unit 107 adds the propagation time to the TSN time to acquire a new TSN time.
  • the terminal 100 can transmit to the gNB 210 a new TSN time in which the propagation time between the terminal 100 and the gNB 210 is compensated for the TSN time.
  • the time processing unit 107 changes the NR time and acquires a new NR time based on the propagation time acquired by the propagation time acquisition unit 105. For example, the time processing unit 107 adds the propagation time to the NR time to acquire a new NR time.
  • the terminal 100 can transmit to the gNB 210 a new NR time in which the propagation time between the terminal 100 and the gNB 210 is compensated for the NR time.
  • the RRC message transmission unit 109 includes the new TSN time acquired by the time processing unit 107 in the time information, and provides the time information to the gNB 210 using the RRC message.
  • the RRC message is, for example, UL Information Transfer.
  • the RRC message transmission unit 109 includes the new NR time acquired by the time processing unit 107 in the time information, and provides the time information to the gNB 210 using the RRC message.
  • the RRC message is, for example, UL Information Transfer.
  • the RRC message transmission unit 109 uses the RRC message to cause the terminal 100 to use the TSN time or the TSN time. Sends information to gNB210 indicating whether or not the NR time has been changed.
  • the control unit 111 controls each functional block constituting the terminal 100.
  • the control unit 111 determines which time to acquire, the TSN time or the NR time.
  • control unit 111 decides to acquire the TSN time, it instructs the time processing unit 107 to acquire the TSN time from the TSN GM20.
  • control unit 111 determines to acquire the NR time, the control unit 111 instructs the time processing unit 107 to acquire the NR time from the NR GM31.
  • the control unit 111 executes a random access procedure between the terminal 100 and the gNB 210. As will be described later, the control unit 111 receives the random access response from the gNB 210 and adjusts the transmission timing of the terminal 100 by using the TA value included in the TA command in the random access response.
  • control unit 111 receives the TAMACCE from the gNB210 and adjusts the transmission timing of the terminal 100 by using the TA value included in the TA command in the TAMACCE.
  • the control unit 111 controls the operations of the propagation time acquisition unit 105 and the time processing unit 107 described above when the terminal 100 compensates for the propagation time between the terminal 100 and the gNB 210 with respect to the TSN time or the NR time. To do.
  • FIG. 3 is a functional block configuration diagram of gNB210.
  • the hardware configuration of gNB210 will be described later.
  • the gNB 210 includes a wireless transmission unit 211, a wireless reception unit 213, a propagation time acquisition unit 215, a time processing unit 217, a TA command transmission unit 219, and a control unit 221.
  • the wireless transmission unit 211 transmits a downlink signal (DL signal) according to NR.
  • the wireless receiver 213 receives the uplink signal (UL signal) according to the NR.
  • the radio transmission unit 211 and the radio reception unit 213 include a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical downlink shared channel (PDSCH). ), Physical random access channel (PRACH), etc., to execute wireless communication between terminal 100 and gNB210.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • PRACH Physical random access channel
  • the wireless transmission unit 211 transmits a random access response (Msg.2) including a TA command to the terminal 100 in the RA procedure.
  • the wireless transmission unit 211 transmits the TA MAC CE including the TA command to the terminal 100.
  • the radio transmission unit 211 transmits the measurement signal on the radio base station side to the terminal 100.
  • the wireless receiver 213 receives the RRC message from the terminal 100.
  • the wireless receiver 213 receives time information including the TSN time from the terminal 100.
  • the wireless receiver 213 receives time information including the NR time from the terminal 100.
  • the wireless receiver 213 receives the random access preamble (Msg.1) from the terminal 100 in the RA procedure.
  • the wireless receiver 213 receives a reference signal such as SRS or DMRS from the terminal 100.
  • the radio receiving unit 213 receives the measurement response signal on the radio base station side from the terminal 100.
  • the measurement response signal on the radio base station side is a response signal to the measurement signal on the radio base station side described above.
  • the propagation time acquisition unit 215 acquires the propagation time between the terminal 100 and the gNB 210 by using an uplink signal such as a random access preamble or a reference signal, as will be described later.
  • the propagation time acquisition unit 215 is between the time when the radio transmission unit 211 transmits the measurement signal on the radio base station side and the time when the radio reception unit 213 receives the measurement response signal on the radio base station side. From the time difference, the propagation time between the terminal 100 and the gNB 210 is acquired.
  • the time processing unit 217 changes the TSN time and acquires a new TSN time based on the propagation time acquired by the propagation time acquisition unit 215. For example, the time processing unit 217 adds the propagation time to the TSN time to acquire a new TSN time.
  • the gNB 210 can acquire a new TSN time in which the propagation time between the terminal 100 and the gNB 210 is compensated for the TSN time.
  • the time processing unit 217 changes the NR time and acquires a new NR time based on the propagation time acquired by the propagation time acquisition unit 215. For example, the time processing unit 217 adds the propagation time to the NR time to acquire a new NR time.
  • the gNB 210 can acquire a new NR time that compensates for the propagation time between the terminal 100 and the gNB 210 with respect to the NR time.
  • the TA command transmission unit 219 determines the TA value based on the propagation time acquired by the propagation time acquisition unit 215, and uses a random access response or TAMACCE to issue a TA command including the determined TA value to the terminal 100. Send to.
  • the control unit 221 controls each functional block constituting the gNB 210.
  • the control unit 221 executes a random access procedure between the terminal 100 and the gNB 210.
  • the control unit 221 controls the operation of the TA command transmission unit 219, transmits a TA command to the terminal 100 using a random access response, and causes the terminal 100 to adjust the transmission timing of the terminal 100, as will be described later.
  • the control unit 221 controls the operation of the TA command transmission unit 219, transmits a TA command to the terminal 100 using TAMACCE, and causes the terminal 100 to adjust the transmission timing of the terminal 100, as will be described later.
  • the control unit 221 controls the operations of the propagation time acquisition unit 215 and the time processing unit 217 described above when the gNB 210 compensates for the propagation time between the terminal 100 and the gNB 210 with respect to the TSN time or the NR time. ..
  • Operation example 1 in the time distribution procedure, the terminal 100 acquires the propagation time between the terminal 100 and the gNB 210 by using the TA command including the TA value used for adjusting the transmission timing, and obtains the TSN time or the NR time. On the other hand, the propagation time between the terminal 100 and the gNB 210 is compensated.
  • FIG. 4 is a diagram illustrating adjustment of transmission timing between the terminal 100 and the gNB 210.
  • the terminal 100 executes the RA procedure using PRACH when starting the initial access to the gNB 210.
  • terminal 100 transmits a random access preamble (Msg.1) to gNB210 (S1).
  • Msg.1 contains the information that gNB210 uses to determine the propagation time.
  • gNB210 When gNB210 receives Msg.1 from terminal 100, for example, using Msg.1, it estimates the propagation time between terminal 100 and gNB210 from the deviation of the reception timing of Msg.1 with respect to the reference timing. Determine the deviation of the transmission timing of the terminal 100.
  • the propagation time is also referred to as a propagation delay between the terminal 100 and the gNB 210, or a propagation delay time.
  • the gNB210 determines the TA value used to adjust the transmission timing of the terminal 100 based on the deviation of the transmission timing of the terminal 100.
  • gNB210 receives one random access preamble selected from a plurality of (for example, 64) random access preambles from the terminal 100.
  • the gNB210 performs a convolution calculation of the received random access preamble with each of the plurality of random access preambles. Since the random access preamble is an orthogonal sequence, the convolution calculation gives a delay profile in which the peak appears.
  • gNB210 determines the TA value from the delay profile. This allows the gNB 210 to identify how far the terminal 100 is from the center of the cell.
  • the gNB210 uses a random access response (Msg.2) to send a TA command including the TA value to the terminal 100 (S3).
  • Msg.2 random access response
  • the TA value contains information used by the terminal 100 to determine the propagation time.
  • the terminal 100 When the terminal 100 receives Msg.2 from the gNB210, it activates the TA timer and adjusts the transmission timing using the TA value included in the TA command (S5).
  • the terminal 100 can acquire the propagation time between the terminal 100 and the gNB 210 based on the TA value.
  • the terminal 100 When the terminal 100 initially accesses the gNB210, it transmits a reference signal such as SRS or DMRS to the gNB210 (S7).
  • the SRS is a reference signal used to estimate the uplink radio quality and is transmitted to the gNB 210 at defined intervals.
  • the gNB210 receives the SRS, it uses the SRS to perform uplink scheduling.
  • the SRS contains the information that gNB210 uses to determine the propagation time.
  • DMRS is a reference signal used to estimate the wireless quality of the uplink, and is transmitted to gNB210 when user data is transmitted.
  • the gNB210 receives the DMRS, it demodulates the user data using the DMRS.
  • the DMRS contains the information that gNB210 uses to determine the propagation time.
  • the gNB210 uses, for example, a reference signal such as SRS or DMRS to estimate the propagation time between the terminal 100 and the gNB 210 from the deviation of the reception timing of the reference signal with respect to the reference timing, and the deviation of the transmission timing at the terminal 100. To determine.
  • the gNB 210 determines the TA value used to adjust the transmission timing of the terminal 100 based on the deviation of the transmission timing.
  • the gNB210 uses TAMACCE to send a TA command including the TA value to the terminal 100 (S9).
  • the TA value contains information used by the terminal 100 to acquire the propagation time.
  • the terminal 100 When the terminal 100 receives TAMACCE from gNB210, it restarts the TA timer and adjusts the transmission timing using the TA value included in the TA command (S11). The terminal 100 can acquire the propagation time between the terminal 100 and the gNB 210 based on the TA value.
  • the terminal 100 If the terminal 100 does not receive the TA command by the time the TA timer expires, the terminal 100 re-executes the RA procedure between the terminal 100 and the gNB 210 to adjust the transmission timing.
  • the terminal 100 can acquire the propagation time between the terminal 100 and the gNB 210 based on the TA value included in the TA command. Further, the gNB 210 can acquire the propagation time between the terminal 100 and the gNB 210 based on Msg.1, SRS, DMRS and the like.
  • FIG. 5 is a diagram showing a sequence of time distribution procedures in operation example 1.
  • the terminal 100 acquires the TSN time (or NR time) from the TSN GM 20 (or NR GM 31) (S31).
  • Terminal 100 receives a TA command from the NR network (specifically, gNB210) (S33).
  • the TA command is included in the random access response (Msg.2) or TA MAC CE.
  • the terminal 100 When the terminal 100 receives the TA command from the NR network, the terminal 100 acquires the propagation time between the terminal 100 and the gNB 210 using the TA value included in the TA command (S35). When the terminal 100 acquires the propagation time, the terminal 100 changes the TSN time (or NR time) acquired in S31 based on the acquired propagation time (S37).
  • the terminal 100 adds the propagation time acquired in S33 to the TSN time (or NR time) acquired in S31.
  • the terminal 100 can acquire a new TSN time (or a new NR time) in which the propagation time between the terminal 100 and the gNB 210 is compensated for the TSN time (or NR time).
  • the new TSN time (or new NR time) is the time obtained by adding the propagation time to the TSN time (or NR time).
  • the new TSN time is also referred to as the changed TSN time, the compensated TSN time, or the corrected TSN time.
  • the new NR time is also referred to as the changed NR time, the compensated NR time, or the corrected NR time.
  • the terminal 100 classifies the propagation time into a plurality of groups (for example, a long-time group, a medium-time group, and a short-time group) according to the length of the propagation time, and sets an offset value for each group in advance. It may be associated. In this case, the terminal 100 adds an offset value associated with the group to which the propagation time acquired in S33 belongs to the TSN time (or NR time) acquired in S31.
  • groups for example, a long-time group, a medium-time group, and a short-time group
  • the terminal 100 When the terminal 100 acquires a new TSN time (or new NR time) in which the TSN time (or NR time) is changed based on the propagation time, the terminal 100 includes the new TSN time (or new NR time) in the time information and makes an RRC message. Is used to transmit the time information to the NR network (specifically, gNB210) (S39).
  • the NR network specifically, gNB210
  • the terminal 100 uses the RRC message to transmit information indicating which of the TSN time and the NR time is included in the time information to the NR network.
  • the terminal 100 may transmit the information to the NR network by using a message different from the RRC message.
  • the RRC message is, for example, UL Information Transfer.
  • ULInformationTransfer defines a TimeReferenceInfo information element (time information).
  • FIG. 6 is a diagram illustrating a TimeReferenceInfo information element. As shown in FIG. 6, the TimeReferenceInfo information element has four parameters (time, uncertainty, timeInfoType and referenceSFN).
  • FIG. 7 is a diagram for explaining each parameter in the information element shown in FIG. As shown in FIG. 8, a time (for example, TSN time or NR time) is specified as time. In time, the time ticking accuracy is 32.576ns.
  • Uncertainty specifies the tolerance of the error at the time specified by time.
  • timeInfoType whether or not the time specified by time is set based on the local clock (for example, TSN clock or NR clock) is specified.
  • the TimeReferenceInfo information element may have a time identifier used to identify the TSN time and the NR time.
  • the NR network when the NR network receives the time information from the terminal 100, it acquires a new TSN time (or a new NR time) from the time information. When the NR network acquires a new TSN time, it sends the TSN time to the TSN end station 40 (S41).
  • the terminal 100 may receive a TA command from the NR network (S33) before acquiring the TSN time (or NR time) from the TSN GM20 (or NR GM31) (S31).
  • the terminal 100 may hold the TA value included in the TA command each time it receives the TA command from the NR network in the specified period. In this case, the terminal 100 performs statistical processing on the held plurality of TA values in S35 to acquire the propagation time. For example, the terminal 100 acquires the average of a plurality of TA values held in S35, and uses the average to acquire the propagation time between the terminal 100 and the gNB 210.
  • the terminal 100 may acquire the propagation time using the TA value included in the TA command each time it receives the TA command from the NR network in the specified period, and hold the acquired propagation time. In this case, the terminal 100 performs statistical processing on the held plurality of propagation times in S35. For example, the terminal 100 acquires the average of the retained propagation times in S35. Subsequently, the terminal 100 changes the TSN time or NR time acquired in S31 based on the average of the propagation times acquired in S37.
  • gNB210 acquires the propagation time between the terminal 100 and gNB210 by using the random access preamble (Msg.1) shown in FIG. 4 or the reference signal such as SRS or DMRS. , TSN time or NR time, compensates for the propagation time between terminal 100 and gNB210.
  • Msg.1 the random access preamble shown in FIG. 4
  • the reference signal such as SRS or DMRS.
  • TSN time or NR time compensates for the propagation time between terminal 100 and gNB210.
  • FIG. 8 is a diagram showing a sequence of time distribution procedures in operation example 2.
  • the terminal 100 transmits a reference signal such as a random access preamble (Msg.1) or SRS, DMRS, etc. to the NR network (specifically, gNB210) (S51).
  • Msg.1 or SRS a random access preamble
  • DMRS DMRS
  • S51 the NR network
  • the NR network uses the Msg.1 or the reference signal to acquire the propagation time between the terminal 100 and the gNB 210 (S53).
  • the terminal 100 acquires the TSN time (or NR time) from the TSN GM20 (or NRGM31) (S55).
  • the terminal 100 includes the TSN time (or NR time) in the time information and transmits the time information to the NR network using the RRC message (S57).
  • the terminal 100 transmits information indicating which of the TSN time and the NR time is included in the time information to the NR network.
  • the terminal 100 may transmit the information to the NR network by using a message different from the RRC message.
  • the RRC message is, for example, UL Information Transfer.
  • the ULInformationTransfer defines the TimeReferenceInfo information element (time information) described above.
  • the NR network When the NR network receives the time information from the terminal 100, it acquires the TSN time (or NR time) from the time information.
  • the NR network (specifically, gNB210) changes the TSN time (or NR time) based on the propagation time acquired in S53 (S59).
  • the NR network adds the propagation time acquired in S53 to the TSN time (or NR time).
  • the NR network can acquire a new TSN time (or NR time) in which the propagation time between the terminal 100 and the gNB 210 is compensated for the TSN time (or NR time).
  • the NR network classifies the propagation time into a plurality of groups (for example, a long-time group, a medium-time group, and a short-time group) according to the length of the propagation time, and sets an offset value for each group in advance. It may be associated. In this case, the NR network adds the offset value associated with the group to which the propagation time acquired in S53 belongs to the TSN time (or NR time).
  • groups for example, a long-time group, a medium-time group, and a short-time group
  • the NR network adds the offset value associated with the group to which the propagation time acquired in S53 belongs to the TSN time (or NR time).
  • the NR network When the NR network acquires a new TSN time, it sends the TSN time to the TSN end station 40 (S61).
  • the terminal 100 may acquire the TSN time (or NR time) from the TSN GM20 (or NR GM31) before transmitting the Msg.1 or the reference signal to the NR network (S51) (S55). In this case, when the terminal 100 is connected to the NR network, the terminal 100 transmits the time information including the TSN time (or NR time) to the NR network before transmitting the reference signal to the NR network (S51). May be (S57).
  • the NR network Even if the NR network acquires the propagation time using the Msg.1 or the reference signal each time it receives the Msg.1 or the reference signal from the terminal 100 in the specified period and holds the acquired propagation time. Good. In this case, the NR network performs statistical processing on the plurality of propagation times held in S53. For example, the NR network gets the average of the retained propagation times at S53. Subsequently, the NR network changes the TSN time or the NR time at S59 based on the average of the acquired propagation times.
  • Operation example 3 in the time distribution procedure, the terminal 100 acquires the propagation time between the terminal 100 and the gNB 210 by using the measurement signal and the measurement response signal on the terminal side, and with respect to the TSN time or the NR time. Compensate for the propagation time between terminal 100 and gNB210.
  • FIG. 9 is a diagram illustrating the measurement of the propagation time by the terminal 100 or the gNB 210.
  • the terminal 100 transmits the measurement signal on the terminal side to the gNB 210 (S71).
  • the measurement signal on the terminal side is received by the gNB 210 after the time ⁇ has elapsed from the reference timing at which the terminal 100 transmits the measurement signal on the terminal side (S73).
  • the gNB210 receives the measurement signal on the terminal side and at the same time transmits the measurement response signal on the terminal side to the terminal 100 (S75).
  • the measurement response signal on the terminal side is received by the terminal 100 after a lapse of time 2 ⁇ from the reference timing at which the terminal 100 transmits the measurement signal on the terminal side (S77).
  • the terminal 100 can acquire the propagation time ⁇ between the terminal 100 and the gNB 210 from the time difference 2 ⁇ between the transmission timing (reference timing) of the measurement signal on the terminal side and the reception timing of the measurement response signal on the terminal side. ..
  • the measurement response signal on the terminal side includes the information used by the terminal 100 to determine the propagation time.
  • the gNB210 transmits the measurement signal on the radio base station side to the terminal 100 (S71).
  • the measurement signal on the radio base station side is received by the terminal 100 after the time ⁇ has elapsed from the reference timing at which the gNB 210 transmitted the measurement signal on the radio base station side (S73).
  • the terminal 100 receives the measurement signal on the radio base station side and at the same time transmits the measurement response signal on the radio base station side to the gNB 210 (S75).
  • the measurement response signal on the radio base station side is received by the gNB 210 after a lapse of time 2 ⁇ from the reference timing at which the gNB 210 transmits the measurement signal on the radio base station side (S77).
  • the gNB 210 acquires the propagation time ⁇ between the terminal 100 and the gNB 210 from the time difference 2 ⁇ between the transmission timing (reference timing) of the measurement signal on the radio base station side and the reception timing of the measurement response signal on the radio base station side. be able to.
  • the measurement response signal on the radio base station side includes the information used by the gNB 210 to determine the propagation time.
  • the terminal 100 uses the TA command in S35 of FIG. 5 to acquire the propagation time between the terminal 100 and the gNB 210, as described above.
  • the propagation time ⁇ is obtained by measuring the propagation time.
  • the terminal 100 acquires the propagation time ⁇ by measuring the propagation time at S35.
  • the terminal 100 changes the TSN time (or NR time) acquired in S31 based on the propagation time ⁇ in S37.
  • Operation example 4 in the time distribution procedure, gNB210 acquires the propagation time between the terminal 100 and gNB210 using the measurement signal and measurement response signal on the radio base station side shown in FIG. 9, and obtains the TSN time or NR. The time is compensated for the propagation time between the terminal 100 and the gNB 210.
  • the NR network acquires the propagation time ⁇ by measuring the propagation time at S53.
  • the NR network changes the TSN time (or NR time) acquired in S57 based on the propagation time ⁇ in S59.
  • the terminal 100 changes the TSN time (or NR time) acquired in S31 based on the propagation time acquired in S35 in S37, but is not limited to this.
  • the terminal 100 uses an RRC message to transmit the time information including the TSN time (or NR time) acquired in S31 and the propagation time acquired in S35 to the NR network (specifically, gNB210). You may.
  • the NR network changes the received TSN time (or NR time) based on the received propagation time.
  • the NR network (specifically, gNB210) can compensate the TSN time (or NR time) for the propagation time between the terminal 100 and the gNB210.
  • the terminal 100 uses the RRC message to transmit the time change information indicating whether or not the terminal 100 has changed the TSN time or the NR time to the NR network.
  • FIG. 10 is a diagram illustrating an example of a message including time change information. As shown in FIG. 10, the RRC message includes time information and time change information.
  • the time change information is composed of 1 bit ("0" or "1").
  • the terminal 100 changes the TSN time (or NR time) acquired in S31 based on the propagation time acquired in S35 in S37, the value of the time change information is set to "1".
  • the terminal When the NR network identifies that the value of the time change information included in the RRC message is set to "1", the terminal with respect to the TSN time (or NR time) acquired from the time information included in the RRC message. Does not perform an operation that compensates for the propagation time between 100 and gNB210.
  • the terminal 100 may transmit the time change information to the NR network using a message different from the RRC message.
  • the terminal 100 when the terminal 100 can compensate the TSN time (or NR time) for the propagation time between the terminal 100 and the gNB 210, the NR network is determined.
  • the time change information indicating whether or not the NR network has changed the TSN time or the NR time may be transmitted to the terminal 100.
  • the terminal 100 acquires the propagation time between the terminal 100 and the gNB 210 by using a downlink signal such as a TA command or a measurement response signal on the terminal side.
  • the terminal 100 transmits the time information including the new TSN time (or new NR time) in which the TSN time (or NR time) is changed based on the propagation time to the gNB 210.
  • the terminal 100 transmits to the gNB 210 a new TSN time (or a new NR time) in which the propagation time between the terminal 100 and the gNB 210 is compensated for the TSN time (or NR time). be able to.
  • the new TSN time (or new NR time) is the time obtained by adding the propagation time to the TSN time (or NR time).
  • the terminal 100 can reliably compensate for the propagation time between the terminal 100 and the gNB 210 with respect to the TSN time (or NR time).
  • the gNB210 sets the TSN time (or NR time) based on the propagation time acquired by using the uplink signal such as the random access preamble, the reference signal, and the measurement response signal on the radio base station side. If it can be changed, the terminal 100 transmits time change information indicating whether or not the terminal 100 has changed the TSN time (or NR time) to the gNB 210.
  • both the terminal 100 and the gNB 210 can compensate for the propagation time between the terminal 100 and the gNB 210 with respect to the TSN time (or NR time), the terminal 100 and the gNB 210 Both can be avoided to compensate or not compensate for the propagation time between the terminal 100 and the gNB 210.
  • the gNB 210 acquires the propagation time between the terminal 100 and the gNB 210 using an uplink signal such as a random access preamble or a reference signal, and based on the propagation time, the TSN time. Get the new TSN time (or new NR time) that changed (or NR time).
  • the gNB 210 can acquire a new TSN time (or a new NR time) in which the propagation time between the terminal 100 and the gNB 210 is compensated for the TSN time (or NR time).
  • the gNB 210 acquires a new TSN time (or new NR time) by adding the propagation time to the TSN time (or NR time).
  • the gNB 210 can reliably compensate for the propagation time between the terminal 100 and the gNB 210 with respect to the TSN time (or NR time).
  • the control system 10 may include an LTE system instead of the NR system 30.
  • the LTE system includes Evolved Universal Terrestrial Radio Access Network (E-UTRAN) instead of NG-RAN200.
  • E-UTRAN includes a plurality of E-UTRAN Nodes, specifically eNB (or en-gNB), and is connected to an LTE-compliant core network (EPC).
  • EPC LTE-compliant core network
  • the LTE system includes LTE GM that oscillates the clock that is the operation timing of the LTE system instead of NRGM31.
  • the terminal 100 is connected to the LTE GM and acquires the LTE time generated based on the clock oscillated by the LTE GM.
  • the NR GM31 is connected to the terminal 100, but the present invention is not limited to this.
  • FIG. 11 is an overall schematic configuration diagram of the control system 10a. As shown in FIG. 11, in the control system 10a, the NR GM31 is connected to the gNB 210. The other configurations of the control system 10a are the same as the configurations of the control system 10.
  • the terminal 100 when the terminal 100 compensates for the propagation time between the terminal 100 and the gNB 210 with respect to the NR time, when the terminal 100 receives the NR time from the gNB 210 by broadcasting or unicast, the TA command is sent.
  • the propagation time is acquired using the included TA value, and the new NR time is acquired by changing the NR time based on the acquired propagation time.
  • the gNB210 compensates for the propagation time between the terminal 100 and the gNB210 with respect to the NR time
  • the gNB210 receives the NR time from the NR GM31
  • the gNB210 receives a reference signal such as Msg.1 or SRS, DMRS.
  • a reference signal such as Msg.1 or SRS, DMRS.
  • each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, deemed, and notification ( Broadcast, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but not limited to these. ..
  • a functional block that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the method of realizing each of them is not particularly limited.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device is realized by any hardware element of the computer device or a combination of the hardware elements.
  • the processor 1001 performs the calculation, controls the communication by the communication device 1004, and the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node.
  • various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to inter-terminal communication (for example, "side").
  • an uplink channel, a downlink channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain.
  • the mini-slot may also be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. Good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Control system 20 TSN GM 30 NR system 31 NR GM 40 TSN end station 100 terminals 101 Wireless transmitter 103 Wireless receiver 105 Propagation time acquisition section 107 Time processing unit 109 RRC message transmitter 111 Control unit 200 NG-RAN 210 gNB 211 Wireless transmitter 213 Wireless receiver 215 Propagation time acquisition section 217 Time processing unit 219 TA command transmitter 221 Control unit 300 core network 310 UPF 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Abstract

A terminal 100 comprises: a wireless reception unit 103 that receives, from a gNB210, a downlink signal that includes information for determining a propagation time between the terminal 100 and the gNB210; a control unit 111that acquires the propagation time using the downlink signal; and a wireless transmission unit 101 that transmits, to the gNB210, timing information that includes a new TSN timing (or NR timing) which results from changing a TSN timing (or NR timing) on the basis of the propagation time.

Description

端末及び無線基地局Terminals and wireless base stations
 本発明は、時刻情報の送受信を行う端末及び無線基地局に関する。 The present invention relates to a terminal and a wireless base station that transmit and receive time information.
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)を仕様化している。また、3GPPでは、さらに、5G, New Radio(NR)などと呼ばれるLTEの後継システムの仕様が検討されている。 The 3rd Generation Partnership Project (3GPP) has specified Long Term Evolution (LTE), and has specified LTE-Advanced (hereinafter referred to as LTE including LTE-Advanced) for the purpose of further speeding up LTE. In addition, 3GPP is also considering the specifications of LTE successor systems called 5G, New Radio (NR), etc.
 3GPPでは、制御元とエンドステーションとの間で高精度な時刻同期を可能とするTime-Sensitive Networking(TSN)において、制御元が、NRシステムを経由して、TSNで用いられる時刻(以下、TSN時刻と呼ぶ)を、エンドステーションに配信することが議論されている(非特許文献1参照)。 In 3GPP, in Time-Sensitive Networking (TSN), which enables highly accurate time synchronization between the control source and the end station, the control source uses the TSN via the NR system (hereinafter, TSN). It is being discussed to deliver the time) to the end station (see Non-Patent Document 1).
 具体的には、NRシステム内で、制御元がコアネットワークに接続され、かつ、エンドステーションが端末(UE)に接続された構成において、無線基地局(gNB)が、TSN時刻を含む時刻情報をUEに提供することが議論されている。 Specifically, in the NR system, in a configuration in which the control source is connected to the core network and the end station is connected to the terminal (UE), the radio base station (gNB) provides time information including the TSN time. It is being discussed to provide it to the UE.
 さらに、NRシステム内で、制御元がUEに接続され、かつ、エンドステーションがコアネットワークに接続された構成において、UEが、TSN時刻を含む時刻情報をgNBに提供することが議論されている。 Furthermore, it is being discussed that the UE provides time information including the TSN time to gNB in the configuration where the control source is connected to the UE and the end station is connected to the core network in the NR system.
 しかしながら、UEが、TSN時刻をgNBに提供する場合、UEとgNBとの間における伝搬時間により、gNBが受信するTSN時刻は、UE側のTSN時刻よりも遅れてしまう。 However, when the UE provides the TSN time to the gNB, the TSN time received by the gNB is delayed from the TSN time on the UE side due to the propagation time between the UE and the gNB.
 このため、UE側のTSN時刻と、gNB側のTSN時刻とは完全には一致せず、UEとgNBとの間において、時刻同期の精度が低下する可能性がある。 Therefore, the TSN time on the UE side and the TSN time on the gNB side do not completely match, and the accuracy of time synchronization between the UE and gNB may decrease.
 TSNにおける高精度な時刻同期の実現を考慮すると、UEとgNBとの間において、高精度な時刻同期を維持することが望ましい。 Considering the realization of high-precision time synchronization in TSN, it is desirable to maintain high-precision time synchronization between UE and gNB.
 そこで、本発明は、このような状況に鑑みてなされたものであり、端末が、TSNなどを含む特定のネットワークにおいて用いられる時刻を含む時刻情報を無線基地局に提供する場合に、端末と無線基地局との間において高精度な時刻同期を維持し得る端末及び無線基地局を提供することを目的とする。 Therefore, the present invention has been made in view of such a situation, and when the terminal provides the radio base station with time information including the time used in a specific network including TSN and the like, the terminal and the radio are used. An object of the present invention is to provide a terminal and a radio base station capable of maintaining highly accurate time synchronization with a base station.
 本発明の一態様に係る端末(端末100)は、無線基地局(gNB210)から、前記端末と前記無線基地局との間における伝搬時間を判定する情報を含む下りリンク信号を受信する受信部(無線受信部103)と、前記下りリンク信号を用いて、前記伝搬時間を取得する制御部(例えば、制御部111)と、前記伝搬時間に基づいて特定のネットワークにおいて用いられる時刻を変更した新しい時刻を含む時刻情報を、前記無線基地局に送信する送信部(例えば、無線送信部101)とを備える。 The terminal (terminal 100) according to one aspect of the present invention is a receiving unit (terminal 100) that receives a downlink signal from a radio base station (gNB210) including information for determining a propagation time between the terminal and the radio base station. A new time in which the time used in a specific network is changed based on the radio receiving unit 103), the control unit (for example, the control unit 111) that acquires the propagation time using the downlink signal, and the propagation time. It is provided with a transmission unit (for example, a radio transmission unit 101) that transmits time information including the above to the radio base station.
 本発明の一態様に係る無線基地局(gNB210)は、端末(端末100)から、前記端末と前記無線基地局との間における伝搬時間を判定する情報を含む上りリンク信号と、特定のネットワークにおいて用いられる時刻を含む時刻情報とを受信する受信部(無線受信部213)と、前記上りリンク信号を用いて、前記伝搬時間を取得し、前記伝搬時間に基づいて、前記特定のネットワークにおいて用いられる時刻を変更した新しい時刻を取得する制御部(例えば、制御部221)と、を備える。 The radio base station (gNB210) according to one aspect of the present invention includes an uplink signal from a terminal (terminal 100) that includes information for determining a propagation time between the terminal and the radio base station, and a specific network. The propagation time is acquired by using the receiving unit (wireless receiving unit 213) that receives the time information including the time to be used and the uplink signal, and the propagation time is used in the specific network based on the propagation time. It includes a control unit (for example, control unit 221) that acquires a new time at which the time has been changed.
図1は、制御システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the control system 10. 図2は、端末100の機能ブロック構成図である。FIG. 2 is a functional block configuration diagram of the terminal 100. 図3は、gNB210の機能ブロック構成図である。FIG. 3 is a functional block configuration diagram of the gNB 210. 図4は、端末100とgNB210との間における送信タイミングの調整を説明する図である。FIG. 4 is a diagram illustrating adjustment of transmission timing between the terminal 100 and the gNB 210. 図5は、時刻配信手順のシーケンス(動作例1)を示す図である。FIG. 5 is a diagram showing a sequence of time distribution procedures (operation example 1). 図6は、TimeReferenceInfo情報要素を説明する図である。FIG. 6 is a diagram illustrating a TimeReferenceInfo information element. 図7は、図6に示す情報要素内の各パラメータを説明する図である。FIG. 7 is a diagram illustrating each parameter in the information element shown in FIG. 図8は、時刻配信手順のシーケンス(動作例2)を示す図である。FIG. 8 is a diagram showing a sequence of time distribution procedures (operation example 2). 図9は、端末100又はgNB210による伝搬時間の測定を説明する図である。FIG. 9 is a diagram illustrating the measurement of the propagation time by the terminal 100 or the gNB 210. 図10は、時刻変更情報を含むメッセージの一例を説明する図である。FIG. 10 is a diagram illustrating an example of a message including time change information. 図11は、制御システム10aの全体概略構成図である。FIG. 11 is an overall schematic configuration diagram of the control system 10a. 図12は、端末100のハードウェア構成の一例を示す図である。FIG. 12 is a diagram showing an example of the hardware configuration of the terminal 100.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 (1)制御システムの全体概略構成
 図1は、実施形態に係る制御システム10の全体概略構成図である。
(1) Overall Schematic Configuration of Control System FIG. 1 is an overall schematic configuration diagram of the control system 10 according to the embodiment.
 制御システム10は、TSNグランドマスター(TSN GM)20と、NRシステム30と、TSNエンドステーション40とを含む。制御システム10では、TSNの制御元(図示略)が、NRシステム30を経由して、TSNエンドステーション40をリアルタイムで制御する。なお、TSN GM 20及びTSNエンドステーション40の数を含む制御システム10の具体的な構成は、図1に示した例に限定されない。 The control system 10 includes a TSN grand master (TSNGM) 20, an NR system 30, and a TSN end station 40. In the control system 10, the TSN control source (not shown) controls the TSN end station 40 in real time via the NR system 30. The specific configuration of the control system 10 including the number of TSN GM 20 and TSN end station 40 is not limited to the example shown in FIG.
 TSN GM20は、TSNの動作タイミングとなるクロックを発振する。以後、TSN GM20が発振するクロックに基づいて生成される時刻をTSN時刻と呼ぶ。TSN時刻は、TSN内で適用される基準時刻である。 The TSN GM20 oscillates the clock that is the operation timing of the TSN. Hereinafter, the time generated based on the clock oscillated by the TSN GM20 is referred to as the TSN time. The TSN time is the reference time applied within the TSN.
 TSN時刻は、TSNの制御元とTSNエンドステーション40との間で高精度な時刻同期を実現するために用いられる。このため、TSNの制御元及びTSNエンドステーション40は、TSN時刻に同期する必要がある。 The TSN time is used to achieve highly accurate time synchronization between the TSN control source and the TSN end station 40. Therefore, the TSN control source and the TSN end station 40 need to be synchronized with the TSN time.
 なお、TSNは、特定のネットワーク、又は無線ネットワーク以外の他のネットワークと呼称されてもよい。この場合、TSN時刻は、特定のネットワークにおいて用いられる時刻、又は無線ネットワーク以外の他のネットワークにおいて用いられる時刻と呼称される。また、TSNは、ネットワークに含まれる全てのノードが同じ時刻を共有するネットワークと呼称されてもよい。さらに、TSNは、決定論的な通信をサポートするネットワーク、又は等時的な通信をサポートするネットワークと呼称されてもよい。 Note that the TSN may be referred to as a specific network or a network other than a wireless network. In this case, the TSN time is referred to as the time used in a particular network or the time used in a network other than the wireless network. In addition, TSN may be referred to as a network in which all nodes included in the network share the same time. Further, the TSN may be referred to as a network that supports deterministic communication or a network that supports isochronous communication.
 NRシステム30は、NRグランドマスター(NR GM)31と、端末100と、Next Generation-Radio Access Network 200(以下、NG-RAN200)と、コアネットワーク300とを含む。なお、端末は、ユーザ装置(UE)とも呼称される。また、端末の数及び後述する無線基地局の数を含むNRシステム30の具体的な構成は、図1に示した例に限定されない。 The NR system 30 includes an NR grandmaster (NR GM) 31, a terminal 100, a Next Generation-Radio Access Network 200 (hereinafter, NG-RAN200), and a core network 300. The terminal is also referred to as a user device (UE). Further, the specific configuration of the NR system 30 including the number of terminals and the number of radio base stations described later is not limited to the example shown in FIG.
 NR GM31は、NRシステム30の動作タイミングとなるクロックを発振する。以後、NR GM31が発振するクロックに基づいて生成される時刻をNR時刻と呼ぶ。NR時刻は、NRシステム30内で適用される基準時刻である。 The NR GM31 oscillates the clock that is the operation timing of the NR system 30. Hereinafter, the time generated based on the clock oscillated by the NR GM31 is referred to as the NR time. The NR time is the reference time applied within the NR system 30.
 NR時刻は、NRシステム30内で高精度な時刻同期を実現するために用いられる。このため、端末100、NG-RAN200及びコアネットワーク300は、NR時刻に同期する必要がある。 The NR time is used to realize highly accurate time synchronization within the NR system 30. Therefore, the terminal 100, the NG-RAN200, and the core network 300 need to be synchronized with the NR time.
 端末100は、端末100とNG-RAN200及びコアネットワーク300との間においてNRに従った無線通信を実行する。端末100は、TSN GM20及びNR GM31に接続される。 The terminal 100 executes wireless communication according to NR between the terminal 100, the NG-RAN200, and the core network 300. Terminal 100 is connected to TSN GM20 and NR GM31.
 NG-RAN200は、複数のNG-RAN Node、具体的には、無線基地局(以後、gNBと呼ぶ)210を含み、NRに従ったコアネットワーク(5GC)300と接続される。なお、NG-RAN200及びコアネットワーク300は、単に、NRネットワークと表現されてもよい。端末100は、NRネットワークに接続されている。 The NG-RAN200 includes a plurality of NG-RANNodes, specifically, a radio base station (hereinafter referred to as gNB) 210, and is connected to a core network (5GC) 300 according to NR. The NG-RAN200 and the core network 300 may be simply expressed as an NR network. Terminal 100 is connected to the NR network.
 なお、NRネットワークは、特定のネットワーク、又は無線ネットワークと呼称されてもよい。この場合、NR時刻は、特定のネットワークにおいて用いられる時刻、又は無線ネットワークにおいて用いられる時刻と呼称される。 The NR network may be referred to as a specific network or a wireless network. In this case, the NR time is referred to as the time used in a specific network or the time used in a wireless network.
 端末100及びgNB210は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を用いるキャリアアグリゲーション(CA)、及び複数のNG-RAN Nodeと端末との間においてCCを同時送信するデュアルコネクティビティ(DC)などに対応することができる。なお、CCはキャリアとも呼称される。 Terminal 100 and gNB210 have Massive MIMO that generates a more directional beam by controlling radio signals transmitted from multiple antenna elements, carrier aggregation (CA) that uses multiple component carriers (CC), and carrier aggregation (CA) that uses multiple component carriers (CC). It can support dual connectivity (DC), which simultaneously transmits CC between multiple NG-RAN Nodes and terminals. CC is also called a carrier.
 端末100は、TSNの通信サービスに利用される場合、TSN時刻をTSN GM20から取得して、TSN時刻を含む時刻情報をgNB210に提供する。 When the terminal 100 is used for the TSN communication service, the terminal 100 acquires the TSN time from the TSN GM20 and provides the time information including the TSN time to the gNB 210.
 端末100は、NRの通信サービスに利用される場合、NR時刻をNR GM31から取得して、NR時刻を含む時刻情報をgNB210に提供する。 When the terminal 100 is used for the NR communication service, the terminal 100 acquires the NR time from the NR GM31 and provides the time information including the NR time to the gNB 210.
 gNB210は、TSN時刻又はNR時刻を含む時刻情報を受信すると、時刻情報からTSN時刻又はNR時刻を取得して、コアネットワーク300に送信する。 When the gNB210 receives the time information including the TSN time or the NR time, it acquires the TSN time or the NR time from the time information and transmits it to the core network 300.
 コアネットワーク300は、User Plane Function(UPF)310を含む。UPF310は、ユーザプレーン処理に特化した機能を提供する。 Core network 300 includes User Plane Function (UPF) 310. UPF310 provides functions specialized for user plane processing.
 コアネットワーク300は、UPF310を介して、TSNエンドステーション40に接続されている。コアネットワーク300は、gNB210からTSN時刻を受信すると、TSN時刻をTSNエンドステーション40に送信する。 The core network 300 is connected to the TSN end station 40 via the UPF310. When the core network 300 receives the TSN time from the gNB 210, it transmits the TSN time to the TSN end station 40.
 TSNエンドステーション40は、例えば、生産工場内に設けられる機械である。TSNエンドステーション40は、コアネットワーク300から受信したTSN時刻に基づいて、TSNエンドステーション40が保持するTSN時刻を随時更新する。 The TSN end station 40 is, for example, a machine installed in a production factory. The TSN end station 40 updates the TSN time held by the TSN end station 40 at any time based on the TSN time received from the core network 300.
 TSNエンドステーション40は、NRシステム30を介して、TSNの制御元からの指令を受信する。TSNの制御元は、TSN時刻に基づいて、TSNエンドステーション40を動作させるための時間スケジューリングを行うことにより、制御システム10において、リアルタイムな制御が実行される。 The TSN end station 40 receives a command from the TSN control source via the NR system 30. The control source of the TSN performs real-time control in the control system 10 by performing time scheduling for operating the TSN end station 40 based on the TSN time.
 (2)制御システムの機能ブロック構成
 次に、制御システム10の機能ブロック構成について説明する。具体的には、NRシステム30内の端末100及びgNB210の機能ブロック構成について説明する。以下、本実施形態における特徴に関連する部分についてのみ説明する。したがって、端末100及びgNB210は、本実施形態における特徴に直接関係しない他の機能ブロックを備えることは勿論である。
(2) Functional block configuration of the control system Next, the functional block configuration of the control system 10 will be described. Specifically, the functional block configuration of the terminal 100 and the gNB 210 in the NR system 30 will be described. Hereinafter, only the parts related to the features in the present embodiment will be described. Therefore, it goes without saying that the terminal 100 and the gNB 210 include other functional blocks that are not directly related to the features in the present embodiment.
 図2は、端末100の機能ブロック構成図である。なお、端末100のハードウェア構成については後述する。図2に示すように、端末100は、無線送信部101と、無線受信部103と、伝搬時間取得部105と、時刻処理部107と、RRCメッセージ送信部109と、制御部111とを備える。 FIG. 2 is a functional block configuration diagram of the terminal 100. The hardware configuration of the terminal 100 will be described later. As shown in FIG. 2, the terminal 100 includes a wireless transmission unit 101, a wireless reception unit 103, a propagation time acquisition unit 105, a time processing unit 107, an RRC message transmission unit 109, and a control unit 111.
 無線送信部101は、NRに従った上りリンク信号(UL信号)を送信する。無線受信部103は、NRに従った下りリンク信号(DL信号)を受信する。具体的には、無線送信部101及び無線受信部103は、物理上りリンク制御チャネル(PUCCH)、物理上りリンク共有チャネル(PUSCH)、物理下りリンク制御チャネル(PDCCH)、物理下りリンク共有チャネル(PDSCH)、物理ランダムアクセスチャネル(PRACH)などを介して、端末100とgNB210との間における無線通信を実行する。 The wireless transmission unit 101 transmits an uplink signal (UL signal) according to NR. The radio receiving unit 103 receives the downlink signal (DL signal) according to the NR. Specifically, the wireless transmitter 101 and the wireless receiver 103 include a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical downlink shared channel (PDSCH). ), Physical random access channel (PRACH), etc., to execute wireless communication between terminal 100 and gNB210.
 無線送信部101は、RRCメッセージをgNB210に送信する。無線送信部101は、TSN時刻を含む時刻情報をgNB210に送信する。無線送信部101は、NR時刻を含む時刻情報をgNB210に送信する。 The wireless transmitter 101 transmits an RRC message to the gNB 210. The wireless transmission unit 101 transmits time information including the TSN time to the gNB 210. The wireless transmission unit 101 transmits time information including the NR time to the gNB 210.
 無線送信部101は、ランダムアクセス(RA)手順において、ランダムアクセスプリアンブル(Msg.1)をgNB210に送信する。無線送信部101は、サウンディング参照信号(SRS)、復調用参照信号(DMRS)などの参照信号をgNB210に送信する。無線送信部101は、端末側の測定信号をgNB210に送信する。 The wireless transmission unit 101 transmits a random access preamble (Msg.1) to the gNB 210 in the random access (RA) procedure. The radio transmission unit 101 transmits a reference signal such as a sounding reference signal (SRS) and a demodulation reference signal (DMRS) to the gNB 210. The wireless transmission unit 101 transmits the measurement signal on the terminal side to the gNB 210.
 無線受信部103は、RA手順において、ランダムアクセス応答(Msg.2)をgNB210から受信する。ランダムアクセス応答は、上述したランダムアクセスプリアンブルに対する応答信号であり、タイミングアドバンス(TA)コマンドを含む。TAコマンドは、端末100の送信タイミングを調整するのに用いられるTA値を含む。 The wireless receiver 103 receives a random access response (Msg.2) from the gNB 210 in the RA procedure. The random access response is a response signal to the above-mentioned random access preamble and includes a timing advance (TA) command. The TA command contains a TA value used to adjust the transmission timing of the terminal 100.
 無線受信部103は、媒体アクセス制御(MAC)レイヤにおける制御メッセージ(TA MAC CE)をgNB210から受信する。TA MAC CEは、上述した参照信号に対する応答信号であり、端末100の送信タイミングを調整するのに用いられるTAコマンドを含む。 The wireless receiver 103 receives a control message (TAMACCE) in the medium access control (MAC) layer from the gNB210. TAMACCE is a response signal to the above-mentioned reference signal, and includes a TA command used to adjust the transmission timing of the terminal 100.
 無線受信部103は、端末側の測定応答信号をgNB210から受信する。端末側の測定応答信号は、上述した端末側の測定信号に対する応答信号である。 The wireless receiver 103 receives the measurement response signal on the terminal side from the gNB 210. The measurement response signal on the terminal side is a response signal to the above-mentioned measurement signal on the terminal side.
 伝搬時間取得部105は、後述するように、ランダムアクセス応答に含まれるTAコマンド、TA MAC CEに含まれるTAコマンドなどの下りリンク信号を用いて、端末100とgNB210との間における伝搬時間を取得する。 As will be described later, the propagation time acquisition unit 105 acquires the propagation time between the terminal 100 and the gNB 210 by using downlink signals such as the TA command included in the random access response and the TA command included in the TA MAC CE. To do.
 伝搬時間取得部105は、後述するように、無線送信部101が端末側の測定信号を送信した時間と、無線受信部103が端末側の測定応答信号を受信した時間との間における時間差から、端末100とgNB210との間における伝搬時間を取得する。 As will be described later, the propagation time acquisition unit 105 is based on the time difference between the time when the wireless transmission unit 101 transmits the measurement signal on the terminal side and the time when the wireless reception unit 103 receives the measurement response signal on the terminal side. Get the propagation time between terminal 100 and gNB210.
 時刻処理部107は、TSN GM20からTSN時刻を受信する。時刻処理部107は、NR GM31からNR時刻を受信する。 The time processing unit 107 receives the TSN time from the TSN GM20. The time processing unit 107 receives the NR time from the NR GM31.
 時刻処理部107は、伝搬時間取得部105により取得された伝搬時間に基づいて、TSN時刻を変更して新しいTSN時刻を取得する。例えば、時刻処理部107は、TSN時刻に伝搬時間を加えて、新しいTSN時刻を取得する。 The time processing unit 107 changes the TSN time and acquires a new TSN time based on the propagation time acquired by the propagation time acquisition unit 105. For example, the time processing unit 107 adds the propagation time to the TSN time to acquire a new TSN time.
 これにより、端末100は、TSN時刻に対して、端末100とgNB210との間における伝搬時間分を補償した新しいTSN時刻を、gNB210に送信することができる。 As a result, the terminal 100 can transmit to the gNB 210 a new TSN time in which the propagation time between the terminal 100 and the gNB 210 is compensated for the TSN time.
 時刻処理部107は、伝搬時間取得部105により取得された伝搬時間に基づいて、NR時刻を変更して新しいNR時刻を取得する。例えば、時刻処理部107は、NR時刻に伝搬時間を加えて、新しいNR時刻を取得する。 The time processing unit 107 changes the NR time and acquires a new NR time based on the propagation time acquired by the propagation time acquisition unit 105. For example, the time processing unit 107 adds the propagation time to the NR time to acquire a new NR time.
 これにより、端末100は、NR時刻に対して、端末100とgNB210との間における伝搬時間分を補償した新しいNR時刻を、gNB210に送信することができる。 As a result, the terminal 100 can transmit to the gNB 210 a new NR time in which the propagation time between the terminal 100 and the gNB 210 is compensated for the NR time.
 RRCメッセージ送信部109は、時刻処理部107により取得された新しいTSN時刻を時刻情報に含めて、RRCメッセージを用いて、当該時刻情報をgNB210に提供する。RRCメッセージは、例えば、ULInformationTransferである。 The RRC message transmission unit 109 includes the new TSN time acquired by the time processing unit 107 in the time information, and provides the time information to the gNB 210 using the RRC message. The RRC message is, for example, UL Information Transfer.
 RRCメッセージ送信部109は、時刻処理部107により取得された新しいNR時刻を時刻情報に含めて、RRCメッセージを用いて、当該時刻情報をgNB210に提供する。RRCメッセージは、例えば、ULInformationTransferである。 The RRC message transmission unit 109 includes the new NR time acquired by the time processing unit 107 in the time information, and provides the time information to the gNB 210 using the RRC message. The RRC message is, for example, UL Information Transfer.
 RRCメッセージ送信部109は、gNB210が、TSN時刻又はNR時刻に対して、端末100とgNB210との間における伝搬時間分を補償することができる場合、RRCメッセージを用いて、端末100がTSN時刻又はNR時刻を変更したか否かを示す情報をgNB210に送信する。 When the gNB 210 can compensate for the propagation time between the terminal 100 and the gNB 210 with respect to the TSN time or the NR time, the RRC message transmission unit 109 uses the RRC message to cause the terminal 100 to use the TSN time or the TSN time. Sends information to gNB210 indicating whether or not the NR time has been changed.
 制御部111は、端末100を構成する各機能ブロックを制御する。 The control unit 111 controls each functional block constituting the terminal 100.
 制御部111は、TSN時刻及びNR時刻のうち、どちらの時刻を取得するかを決定する。 The control unit 111 determines which time to acquire, the TSN time or the NR time.
 制御部111は、TSN時刻の取得を決定すると、TSN GM20からTSN時刻を取得するように、時刻処理部107に指示する。制御部111は、NR時刻の取得を決定すると、NR GM31からNR時刻を取得するように、時刻処理部107に指示する。 When the control unit 111 decides to acquire the TSN time, it instructs the time processing unit 107 to acquire the TSN time from the TSN GM20. When the control unit 111 determines to acquire the NR time, the control unit 111 instructs the time processing unit 107 to acquire the NR time from the NR GM31.
 制御部111は、端末100とgNB210との間において、ランダムアクセス手順を実行する。制御部111は、後述するように、ランダムアクセス応答をgNB210から受信して、ランダムアクセス応答内のTAコマンドに含まれるTA値を用いて、端末100の送信タイミングを調整する。 The control unit 111 executes a random access procedure between the terminal 100 and the gNB 210. As will be described later, the control unit 111 receives the random access response from the gNB 210 and adjusts the transmission timing of the terminal 100 by using the TA value included in the TA command in the random access response.
 制御部111は、後述するように、TA MAC CEをgNB210から受信して、TA MAC CE内のTAコマンドに含まれるTA値を用いて、端末100の送信タイミングを調整する。 As will be described later, the control unit 111 receives the TAMACCE from the gNB210 and adjusts the transmission timing of the terminal 100 by using the TA value included in the TA command in the TAMACCE.
 制御部111は、端末100が、TSN時刻又はNR時刻に対して、端末100とgNB210との間における伝搬時間分を補償する場合、上述した伝搬時間取得部105及び時刻処理部107の動作を制御する。 The control unit 111 controls the operations of the propagation time acquisition unit 105 and the time processing unit 107 described above when the terminal 100 compensates for the propagation time between the terminal 100 and the gNB 210 with respect to the TSN time or the NR time. To do.
 図3は、gNB210の機能ブロック構成図である。なお、gNB210のハードウェア構成については後述する。図3に示すように、gNB210は、無線送信部211と、無線受信部213と、伝搬時間取得部215と、時刻処理部217と、TAコマンド送信部219と、制御部221とを備える。 FIG. 3 is a functional block configuration diagram of gNB210. The hardware configuration of gNB210 will be described later. As shown in FIG. 3, the gNB 210 includes a wireless transmission unit 211, a wireless reception unit 213, a propagation time acquisition unit 215, a time processing unit 217, a TA command transmission unit 219, and a control unit 221.
 無線送信部211は、NRに従った下りリンク信号(DL信号)を送信する。無線受信部213は、NRに従った上りリンク信号(UL信号)を受信する。具体的には、無線送信部211及び無線受信部213は、物理上りリンク制御チャネル(PUCCH)、物理上りリンク共有チャネル(PUSCH)、物理下りリンク制御チャネル(PDCCH)、物理下りリンク共有チャネル(PDSCH)、物理ランダムアクセスチャネル(PRACH)などを介して、端末100とgNB210との間における無線通信を実行する。 The wireless transmission unit 211 transmits a downlink signal (DL signal) according to NR. The wireless receiver 213 receives the uplink signal (UL signal) according to the NR. Specifically, the radio transmission unit 211 and the radio reception unit 213 include a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical downlink shared channel (PDSCH). ), Physical random access channel (PRACH), etc., to execute wireless communication between terminal 100 and gNB210.
 無線送信部211は、RA手順において、TAコマンドを含むランダムアクセス応答(Msg.2)を端末100に送信する。無線送信部211は、TAコマンドを含むTA MAC CEを端末100に送信する。無線送信部211は、無線基地局側の測定信号を端末100に送信する。 The wireless transmission unit 211 transmits a random access response (Msg.2) including a TA command to the terminal 100 in the RA procedure. The wireless transmission unit 211 transmits the TA MAC CE including the TA command to the terminal 100. The radio transmission unit 211 transmits the measurement signal on the radio base station side to the terminal 100.
 無線受信部213は、RRCメッセージを端末100から受信する。無線受信部213は、TSN時刻を含む時刻情報を端末100から受信する。無線受信部213は、NR時刻を含む時刻情報を端末100から受信する。 The wireless receiver 213 receives the RRC message from the terminal 100. The wireless receiver 213 receives time information including the TSN time from the terminal 100. The wireless receiver 213 receives time information including the NR time from the terminal 100.
 無線受信部213は、RA手順において、ランダムアクセスプリアンブル(Msg.1)を端末100から受信する。無線受信部213は、SRS、DMRSなどの参照信号を端末100から受信する。無線受信部213は、無線基地局側の測定応答信号を端末100から受信する。無線基地局側の測定応答信号は、上述した無線基地局側の測定信号に対する応答信号である。 The wireless receiver 213 receives the random access preamble (Msg.1) from the terminal 100 in the RA procedure. The wireless receiver 213 receives a reference signal such as SRS or DMRS from the terminal 100. The radio receiving unit 213 receives the measurement response signal on the radio base station side from the terminal 100. The measurement response signal on the radio base station side is a response signal to the measurement signal on the radio base station side described above.
 伝搬時間取得部215は、後述するように、ランダムアクセスプリアンブル、参照信号などの上りリンク信号用いて、端末100とgNB210との間における伝搬時間を取得する。 The propagation time acquisition unit 215 acquires the propagation time between the terminal 100 and the gNB 210 by using an uplink signal such as a random access preamble or a reference signal, as will be described later.
 伝搬時間取得部215は、後述するように、無線送信部211が無線基地局側の測定信号を送信した時間と無線受信部213が無線基地局側の測定応答信号を受信した時間との間における時間差から、端末100とgNB210との間における伝搬時間を取得する。 As will be described later, the propagation time acquisition unit 215 is between the time when the radio transmission unit 211 transmits the measurement signal on the radio base station side and the time when the radio reception unit 213 receives the measurement response signal on the radio base station side. From the time difference, the propagation time between the terminal 100 and the gNB 210 is acquired.
 時刻処理部217は、伝搬時間取得部215により取得された伝搬時間に基づいて、TSN時刻を変更して新しいTSN時刻を取得する。例えば、時刻処理部217は、TSN時刻に伝搬時間を加えて、新しいTSN時刻を取得する。 The time processing unit 217 changes the TSN time and acquires a new TSN time based on the propagation time acquired by the propagation time acquisition unit 215. For example, the time processing unit 217 adds the propagation time to the TSN time to acquire a new TSN time.
 これにより、gNB210は、TSN時刻に対して、端末100とgNB210との間における伝搬時間分を補償した新しいTSN時刻を取得することができる。 As a result, the gNB 210 can acquire a new TSN time in which the propagation time between the terminal 100 and the gNB 210 is compensated for the TSN time.
 時刻処理部217は、伝搬時間取得部215により取得された伝搬時間に基づいて、NR時刻を変更して新しいNR時刻を取得する。例えば、時刻処理部217は、NR時刻に伝搬時間を加えて、新しいNR時刻を取得する。 The time processing unit 217 changes the NR time and acquires a new NR time based on the propagation time acquired by the propagation time acquisition unit 215. For example, the time processing unit 217 adds the propagation time to the NR time to acquire a new NR time.
 これにより、gNB210は、NR時刻に対して、端末100とgNB210との間における伝搬時間分を補償した新しいNR時刻を取得することができる。 As a result, the gNB 210 can acquire a new NR time that compensates for the propagation time between the terminal 100 and the gNB 210 with respect to the NR time.
 TAコマンド送信部219は、伝搬時間取得部215により取得された伝搬時間に基づいてTA値を決定し、ランダムアクセス応答又はTA MAC CEを用いて、決定されたTA値を含むTAコマンドを端末100に送信する。 The TA command transmission unit 219 determines the TA value based on the propagation time acquired by the propagation time acquisition unit 215, and uses a random access response or TAMACCE to issue a TA command including the determined TA value to the terminal 100. Send to.
 制御部221は、gNB210を構成する各機能ブロックを制御する。 The control unit 221 controls each functional block constituting the gNB 210.
 制御部221は、端末100とgNB210との間において、ランダムアクセス手順を実行する。制御部221は、TAコマンド送信部219の動作を制御して、後述するように、ランダムアクセス応答を用いてTAコマンドを端末100に送信し、端末100の送信タイミングを端末100に調整させる。 The control unit 221 executes a random access procedure between the terminal 100 and the gNB 210. The control unit 221 controls the operation of the TA command transmission unit 219, transmits a TA command to the terminal 100 using a random access response, and causes the terminal 100 to adjust the transmission timing of the terminal 100, as will be described later.
 制御部221は、TAコマンド送信部219の動作を制御して、後述するように、TA MAC CEを用いてTAコマンドを端末100に送信し、端末100の送信タイミングを端末100に調整させる。 The control unit 221 controls the operation of the TA command transmission unit 219, transmits a TA command to the terminal 100 using TAMACCE, and causes the terminal 100 to adjust the transmission timing of the terminal 100, as will be described later.
 制御部221は、gNB210が、TSN時刻又はNR時刻に対して、端末100とgNB210との間における伝搬時間分を補償する場合、上述した伝搬時間取得部215及び時刻処理部217の動作を制御する。 The control unit 221 controls the operations of the propagation time acquisition unit 215 and the time processing unit 217 described above when the gNB 210 compensates for the propagation time between the terminal 100 and the gNB 210 with respect to the TSN time or the NR time. ..
 (3)制御システムの動作
 次に、制御システム10の動作について説明する。具体的には、端末100が、TSN時刻を含む時刻情報、又はNR時刻を含む時刻情報をgNB210に提供する時刻配信手順を説明する。
(3) Operation of the control system Next, the operation of the control system 10 will be described. Specifically, the time distribution procedure in which the terminal 100 provides the time information including the TSN time or the time information including the NR time to the gNB 210 will be described.
 (3.1)動作例1
 動作例1では、時刻配信手順において、端末100が、送信タイミングの調整に用いられるTA値を含むTAコマンドを用いて、端末100とgNB210との間における伝搬時間を取得し、TSN時刻又はNR時刻に対して、端末100とgNB210との間における伝搬時間分を補償する。
(3.1) Operation example 1
In operation example 1, in the time distribution procedure, the terminal 100 acquires the propagation time between the terminal 100 and the gNB 210 by using the TA command including the TA value used for adjusting the transmission timing, and obtains the TSN time or the NR time. On the other hand, the propagation time between the terminal 100 and the gNB 210 is compensated.
 (3.1.1)送信タイミングの調整
 最初に、送信タイミングの調整について説明する。図4は、端末100とgNB210との間における送信タイミングの調整を説明する図である。図4に示すように、端末100は、gNB210への初期アクセスを開始する場合、PRACHを用いてRA手順を実行する。RA手順において、端末100は、ランダムアクセスプリアンブル(Msg.1)をgNB210に送信する(S1)。Msg.1は、gNB210が伝搬時間を判定するのに用いられる情報を含む。
(3.1.1) Adjustment of transmission timing First, adjustment of transmission timing will be described. FIG. 4 is a diagram illustrating adjustment of transmission timing between the terminal 100 and the gNB 210. As shown in FIG. 4, the terminal 100 executes the RA procedure using PRACH when starting the initial access to the gNB 210. In the RA procedure, terminal 100 transmits a random access preamble (Msg.1) to gNB210 (S1). Msg.1 contains the information that gNB210 uses to determine the propagation time.
 gNB210は、Msg.1を端末100から受信すると、例えば、Msg.1を用いて、基準タイミングに対する、Msg.1の受信タイミングのずれから、端末100とgNB210との間における伝搬時間を推定し、端末100の送信タイミングのずれを決定する。なお、伝搬時間は、端末100とgNB210との間における伝搬遅延、又は伝搬遅延時間とも呼称される。 When gNB210 receives Msg.1 from terminal 100, for example, using Msg.1, it estimates the propagation time between terminal 100 and gNB210 from the deviation of the reception timing of Msg.1 with respect to the reference timing. Determine the deviation of the transmission timing of the terminal 100. The propagation time is also referred to as a propagation delay between the terminal 100 and the gNB 210, or a propagation delay time.
 gNB210は、端末100の送信タイミングのずれに基づいて、端末100の送信タイミングを調整するのに用いられるTA値を決定する。 The gNB210 determines the TA value used to adjust the transmission timing of the terminal 100 based on the deviation of the transmission timing of the terminal 100.
 例えば、gNB210は、複数(例えば64個)のランダムアクセスプリアンブルの中から選択された1つのランダムアクセスプリアンブルを端末100から受信する。gNB210は、受信したランダムアクセスプリアンブルを、複数のランダムアクセスプリアンブルの各々と畳み込み計算を行う。ランダムアクセスプリアンブルは直交数列であるため、当該畳み込み計算により、ピークが現れる遅延プロファイルが得られる。gNB210は、当該遅延プロファイルからTA値を決定する。これにより、gNB210は、端末100がセル中心からどれくらい離れているのかを識別することができる。 For example, gNB210 receives one random access preamble selected from a plurality of (for example, 64) random access preambles from the terminal 100. The gNB210 performs a convolution calculation of the received random access preamble with each of the plurality of random access preambles. Since the random access preamble is an orthogonal sequence, the convolution calculation gives a delay profile in which the peak appears. gNB210 determines the TA value from the delay profile. This allows the gNB 210 to identify how far the terminal 100 is from the center of the cell.
 gNB210は、TA値を決定すると、ランダムアクセス応答(Msg.2)を用いて、TA値を含むTAコマンドを端末100に送信する(S3)。TA値は、端末100が伝搬時間を判定するのに用いられる情報を含む。 When the gNB210 determines the TA value, it uses a random access response (Msg.2) to send a TA command including the TA value to the terminal 100 (S3). The TA value contains information used by the terminal 100 to determine the propagation time.
 端末100は、Msg.2をgNB210から受信すると、TAタイマを起動して、TAコマンドに含まれるTA値を用いて、送信タイミングを調整する(S5)。なお、端末100は、TA値に基づいて、端末100とgNB210との間における伝搬時間を取得することができる。 When the terminal 100 receives Msg.2 from the gNB210, it activates the TA timer and adjusts the transmission timing using the TA value included in the TA command (S5). The terminal 100 can acquire the propagation time between the terminal 100 and the gNB 210 based on the TA value.
 端末100は、gNB210に初期アクセスすると、SRS, DMRSなどの参照信号をgNB210に送信する(S7)。SRSは、上りリンクの無線品質を推定するのに用いられる参照信号であり、規定された周期でgNB210に送信される。gNB210は、SRSを受信すると、SRSを用いて、上りリンクのスケジューリングを行う。SRSは、gNB210が伝搬時間を判定するのに用いられる情報を含む。 When the terminal 100 initially accesses the gNB210, it transmits a reference signal such as SRS or DMRS to the gNB210 (S7). The SRS is a reference signal used to estimate the uplink radio quality and is transmitted to the gNB 210 at defined intervals. When the gNB210 receives the SRS, it uses the SRS to perform uplink scheduling. The SRS contains the information that gNB210 uses to determine the propagation time.
 DMRSは、上りリンクの無線品質を推定するのに用いられる参照信号であり、ユーザデータが送信される場合にgNB210に送信される。gNB210は、DMRSを受信すると、DMRSを用いて、ユーザデータを復調する。DMRSは、gNB210が伝搬時間を判定するのに用いられる情報を含む。 DMRS is a reference signal used to estimate the wireless quality of the uplink, and is transmitted to gNB210 when user data is transmitted. When the gNB210 receives the DMRS, it demodulates the user data using the DMRS. The DMRS contains the information that gNB210 uses to determine the propagation time.
 gNB210は、例えば、SRS, DMRSなどの参照信号を用いて、基準タイミングに対する、参照信号の受信タイミングのずれから、端末100とgNB210との間における伝搬時間を推定し、端末100における送信タイミングのずれを決定する。gNB210は、当該送信タイミングのずれに基づいて、端末100の送信タイミングを調整するのに用いられるTA値を決定する。gNB210は、TA値を決定すると、TA MAC CEを用いて、TA値を含むTAコマンドを端末100に送信する(S9)。TA値は、端末100が伝搬時間を取得するのに用いられる情報を含む。 The gNB210 uses, for example, a reference signal such as SRS or DMRS to estimate the propagation time between the terminal 100 and the gNB 210 from the deviation of the reception timing of the reference signal with respect to the reference timing, and the deviation of the transmission timing at the terminal 100. To determine. The gNB 210 determines the TA value used to adjust the transmission timing of the terminal 100 based on the deviation of the transmission timing. When the gNB210 determines the TA value, it uses TAMACCE to send a TA command including the TA value to the terminal 100 (S9). The TA value contains information used by the terminal 100 to acquire the propagation time.
 端末100は、TA MAC CEをgNB210から受信すると、TAタイマを再起動して、TAコマンドに含まれるTA値を用いて、送信タイミングを調整する(S11)。なお、端末100は、TA値に基づいて、端末100とgNB210との間における伝搬時間を取得することができる。 When the terminal 100 receives TAMACCE from gNB210, it restarts the TA timer and adjusts the transmission timing using the TA value included in the TA command (S11). The terminal 100 can acquire the propagation time between the terminal 100 and the gNB 210 based on the TA value.
 端末100は、TAタイマが満了するまでに、TAコマンドを受信しない場合、端末100とgNB210との間でRA手順を再度実行して、送信タイミングを調整する。 If the terminal 100 does not receive the TA command by the time the TA timer expires, the terminal 100 re-executes the RA procedure between the terminal 100 and the gNB 210 to adjust the transmission timing.
 このように、端末100は、TAコマンドに含まれるTA値に基づいて、端末100とgNB210との間における伝搬時間を取得することができる。また、gNB210は、Msg.1, SRS, DMRSなどに基づいて、端末100とgNB210との間における伝搬時間を取得することができる。 In this way, the terminal 100 can acquire the propagation time between the terminal 100 and the gNB 210 based on the TA value included in the TA command. Further, the gNB 210 can acquire the propagation time between the terminal 100 and the gNB 210 based on Msg.1, SRS, DMRS and the like.
 (3.1.2)時刻配信手順
 図5は、動作例1における時刻配信手順のシーケンスを示す図である。図5に示すように、端末100は、TSN時刻(又はNR時刻)をTSN GM20(又はNR GM 31)から取得する(S31)。端末100は、TAコマンドをNRネットワーク(具体的にはgNB210)から受信する(S33)。TAコマンドは、ランダムアクセス応答(Msg.2)又はTA MAC CEに含まれる。
(3.1.2) Time distribution procedure FIG. 5 is a diagram showing a sequence of time distribution procedures in operation example 1. As shown in FIG. 5, the terminal 100 acquires the TSN time (or NR time) from the TSN GM 20 (or NR GM 31) (S31). Terminal 100 receives a TA command from the NR network (specifically, gNB210) (S33). The TA command is included in the random access response (Msg.2) or TA MAC CE.
 端末100は、TAコマンドをNRネットワークから受信すると、TAコマンドに含まれるTA値を用いて、端末100とgNB210との間における伝搬時間を取得する(S35)。端末100は、伝搬時間を取得すると、取得した伝搬時間に基づいて、S31で取得したTSN時刻(又はNR時刻)を変更する(S37)。 When the terminal 100 receives the TA command from the NR network, the terminal 100 acquires the propagation time between the terminal 100 and the gNB 210 using the TA value included in the TA command (S35). When the terminal 100 acquires the propagation time, the terminal 100 changes the TSN time (or NR time) acquired in S31 based on the acquired propagation time (S37).
 例えば、端末100は、S31で取得したTSN時刻(又はNR時刻)に対して、S33で取得した伝搬時間を加える。これにより、端末100は、TSN時刻(又はNR時刻)に対して、端末100とgNB210との間における伝搬時間分を補償した新しいTSN時刻(又は新しいNR時刻)を取得することができる。 For example, the terminal 100 adds the propagation time acquired in S33 to the TSN time (or NR time) acquired in S31. As a result, the terminal 100 can acquire a new TSN time (or a new NR time) in which the propagation time between the terminal 100 and the gNB 210 is compensated for the TSN time (or NR time).
 このように、新しいTSN時刻(又は新しいNR時刻)は、TSN時刻(又はNR時刻)に伝搬時間を加えた時刻である。なお、新しいTSN時刻は、変更後のTSN時刻、補償後のTSN時刻又は補正後のTSN時刻とも呼称される。新しいNR時刻は、変更後のNR時刻、補償後のNR時刻又は補正後のNR時刻とも呼称される。 Thus, the new TSN time (or new NR time) is the time obtained by adding the propagation time to the TSN time (or NR time). The new TSN time is also referred to as the changed TSN time, the compensated TSN time, or the corrected TSN time. The new NR time is also referred to as the changed NR time, the compensated NR time, or the corrected NR time.
 なお、端末100は、伝搬時間の長さに応じて、伝搬時間を複数のグループ(例えば、長時間グループ、中時間グループ及び短時間グループ)に分類し、各グループに対して、オフセット値を予め対応付けてもよい。この場合、端末100は、S31で取得したTSN時刻(又はNR時刻)に対して、S33で取得した伝搬時間が属するグループに対応付けられたオフセット値を加える。 The terminal 100 classifies the propagation time into a plurality of groups (for example, a long-time group, a medium-time group, and a short-time group) according to the length of the propagation time, and sets an offset value for each group in advance. It may be associated. In this case, the terminal 100 adds an offset value associated with the group to which the propagation time acquired in S33 belongs to the TSN time (or NR time) acquired in S31.
 端末100は、伝搬時間に基づいてTSN時刻(又はNR時刻)を変更した新しいTSN時刻(又は新しいNR時刻)を取得すると、新しいTSN時刻(又は新しいNR時刻)を時刻情報に含めて、RRCメッセージを用いて、当該時刻情報をNRネットワーク(具体的には、gNB210)に送信する(S39)。 When the terminal 100 acquires a new TSN time (or new NR time) in which the TSN time (or NR time) is changed based on the propagation time, the terminal 100 includes the new TSN time (or new NR time) in the time information and makes an RRC message. Is used to transmit the time information to the NR network (specifically, gNB210) (S39).
 S39において、端末100は、RRCメッセージを用いて、TSN時刻及びNR時刻のうち、どちらの時刻が時刻情報に含まれるのかを示す情報をNRネットワークに送信する。なお、端末100は、RRCメッセージとは別のメッセージを用いて、当該情報をNRネットワークに送信してもよい。 In S39, the terminal 100 uses the RRC message to transmit information indicating which of the TSN time and the NR time is included in the time information to the NR network. The terminal 100 may transmit the information to the NR network by using a message different from the RRC message.
 RRCメッセージは、例えば、ULInformationTransferである。この場合、ULInformationTransferには、TimeReferenceInfo情報要素(時刻情報)が規定されている。 The RRC message is, for example, UL Information Transfer. In this case, ULInformationTransfer defines a TimeReferenceInfo information element (time information).
 図6は、TimeReferenceInfo情報要素を説明する図である。図6に示すように、TimeReferenceInfo情報要素は、4つのパラメータ(time, uncertainty, timeInfoType及びreferenceSFN)を有している。 FIG. 6 is a diagram illustrating a TimeReferenceInfo information element. As shown in FIG. 6, the TimeReferenceInfo information element has four parameters (time, uncertainty, timeInfoType and referenceSFN).
 図7は、図6に示す情報要素内の各パラメータを説明する図である。図8に示すように、timeには、時刻(例えば、TSN時刻又はNR時刻)が指定される。timeにおいて、時刻の刻み精度は、32.576nsである。 FIG. 7 is a diagram for explaining each parameter in the information element shown in FIG. As shown in FIG. 8, a time (for example, TSN time or NR time) is specified as time. In time, the time ticking accuracy is 32.576ns.
 uncertaintyは、timeで指定される時刻におけるエラーの許容度が指定される。 Uncertainty specifies the tolerance of the error at the time specified by time.
 timeInfoTypeには、timeで指定される時刻がローカル・クロック(例えば、TSNクロック又はNRクロック)に基づいて設定されているか否かが指定される。 In timeInfoType, whether or not the time specified by time is set based on the local clock (for example, TSN clock or NR clock) is specified.
 referenceSFNには、timeで指定される時刻を読み取るサブフレーム番号が指定される。 In referenceSFN, the subframe number that reads the time specified by time is specified.
 なお、TimeReferenceInfo情報要素は、TSN時刻とNR時刻とを識別するのに用いられる時刻識別子を有してもよい。 The TimeReferenceInfo information element may have a time identifier used to identify the TSN time and the NR time.
 図5に戻り、NRネットワークは、時刻情報を端末100から受信すると、新しいTSN時刻(又は新しいNR時刻)を時刻情報から取得する。NRネットワークは、新しいTSN時刻を取得する場合、当該TSN時刻をTSNエンドステーション40に送信する(S41)。 Returning to FIG. 5, when the NR network receives the time information from the terminal 100, it acquires a new TSN time (or a new NR time) from the time information. When the NR network acquires a new TSN time, it sends the TSN time to the TSN end station 40 (S41).
 なお、端末100は、TSN時刻(又はNR時刻)をTSN GM20(又はNR GM31)から取得する(S31)前に、TAコマンドをNRネットワークから受信してもよい(S33)。 Note that the terminal 100 may receive a TA command from the NR network (S33) before acquiring the TSN time (or NR time) from the TSN GM20 (or NR GM31) (S31).
 端末100は、規定された期間において、NRネットワークからTAコマンドを受信する毎に、当該TAコマンドに含まれるTA値を保持してもよい。この場合、端末100は、S35にて、保持した複数のTA値に統計処理を施して、伝搬時間を取得する。例えば、端末100は、S35にて、保持した複数のTA値の平均を取得し、当該平均を用いて、端末100とgNB210との間における伝搬時間を取得する。 The terminal 100 may hold the TA value included in the TA command each time it receives the TA command from the NR network in the specified period. In this case, the terminal 100 performs statistical processing on the held plurality of TA values in S35 to acquire the propagation time. For example, the terminal 100 acquires the average of a plurality of TA values held in S35, and uses the average to acquire the propagation time between the terminal 100 and the gNB 210.
 端末100は、規定された期間において、NRネットワークからTAコマンドを受信する毎に、当該TAコマンドに含まれるTA値を用いて伝搬時間を取得し、取得した伝搬時間を保持してもよい。この場合、端末100は、S35にて、保持した複数の伝搬時間に統計処理を施す。例えば、端末100は、S35にて、保持した伝搬時間の平均を取得する。続いて、端末100は、S37にて、取得した伝搬時間の平均に基づいて、S31で取得したTSN時刻又はNR時刻を変更する。 The terminal 100 may acquire the propagation time using the TA value included in the TA command each time it receives the TA command from the NR network in the specified period, and hold the acquired propagation time. In this case, the terminal 100 performs statistical processing on the held plurality of propagation times in S35. For example, the terminal 100 acquires the average of the retained propagation times in S35. Subsequently, the terminal 100 changes the TSN time or NR time acquired in S31 based on the average of the propagation times acquired in S37.
 (3.2)動作例2
 動作例2では、時刻配信手順において、gNB210が、図4に示すランダムアクセスプリアンブル(Msg.1)又はSRS, DMRSなどの参照信号を用いて、端末100とgNB210との間における伝搬時間を取得し、TSN時刻又はNR時刻に対して、端末100とgNB210との間における伝搬時間分を補償する。
(3.2) Operation example 2
In operation example 2, in the time distribution procedure, gNB210 acquires the propagation time between the terminal 100 and gNB210 by using the random access preamble (Msg.1) shown in FIG. 4 or the reference signal such as SRS or DMRS. , TSN time or NR time, compensates for the propagation time between terminal 100 and gNB210.
 (3.2.1)時刻配信手順
 図8は、動作例2における時刻配信手順のシーケンスを示す図である。図8に示すように、端末100は、ランダムアクセスプリアンブル(Msg.1)又はSRS, DMRSなどの参照信号をNRネットワーク(具体的にはgNB210)に送信する(S51)。NRネットワークは、Msg.1又は参照信号を端末100から受信すると、Msg.1又は参照信号を用いて、端末100とgNB210との間における伝搬時間を取得する(S53)。
(3.2.1) Time distribution procedure FIG. 8 is a diagram showing a sequence of time distribution procedures in operation example 2. As shown in FIG. 8, the terminal 100 transmits a reference signal such as a random access preamble (Msg.1) or SRS, DMRS, etc. to the NR network (specifically, gNB210) (S51). When the NR network receives the Msg.1 or reference signal from the terminal 100, the NR network uses the Msg.1 or the reference signal to acquire the propagation time between the terminal 100 and the gNB 210 (S53).
 端末100は、TSN時刻(又はNR時刻)をTSN GM20(又はNR GM 31)から取得する(S55)。端末100は、TSN時刻(又はNR時刻)を取得すると、TSN時刻(又はNR時刻)を時刻情報に含めて、RRCメッセージを用いて、当該時刻情報をNRネットワークに送信する(S57)。 The terminal 100 acquires the TSN time (or NR time) from the TSN GM20 (or NRGM31) (S55). When the terminal 100 acquires the TSN time (or NR time), the terminal 100 includes the TSN time (or NR time) in the time information and transmits the time information to the NR network using the RRC message (S57).
 S57において、端末100は、TSN時刻及びNR時刻のうち、どちらの時刻が時刻情報に含まれるのかを示す情報をNRネットワークに送信する。なお、端末100は、RRCメッセージとは別のメッセージを用いて、当該情報をNRネットワークに送信してもよい。 In S57, the terminal 100 transmits information indicating which of the TSN time and the NR time is included in the time information to the NR network. The terminal 100 may transmit the information to the NR network by using a message different from the RRC message.
 RRCメッセージは、例えば、ULInformationTransferである。この場合、ULInformationTransferには、上述したTimeReferenceInfo情報要素(時刻情報)が規定されている。 The RRC message is, for example, UL Information Transfer. In this case, the ULInformationTransfer defines the TimeReferenceInfo information element (time information) described above.
 NRネットワークは、時刻情報を端末100から受信すると、当該時刻情報からTSN時刻(又はNR時刻)を取得する。NRネットワーク(具体的には、gNB210)は、S53で取得した伝搬時間に基づいて、TSN時刻(又はNR時刻)を変更する(S59)。 When the NR network receives the time information from the terminal 100, it acquires the TSN time (or NR time) from the time information. The NR network (specifically, gNB210) changes the TSN time (or NR time) based on the propagation time acquired in S53 (S59).
 例えば、NRネットワークは、TSN時刻(又はNR時刻)に対して、S53で取得した伝搬時間を加える。これにより、NRネットワークは、TSN時刻(又はNR時刻)に対して、端末100とgNB210との間における伝搬時間分を補償した新しいTSN時刻(又はNR時刻)を取得することができる。 For example, the NR network adds the propagation time acquired in S53 to the TSN time (or NR time). As a result, the NR network can acquire a new TSN time (or NR time) in which the propagation time between the terminal 100 and the gNB 210 is compensated for the TSN time (or NR time).
 なお、NRネットワークは、伝搬時間の長さに応じて、伝搬時間を複数のグループ(例えば、長時間グループ、中時間グループ及び短時間グループ)に分類し、各グループに対して、オフセット値を予め対応付けてもよい。この場合、NRネットワークは、TSN時刻(又はNR時刻)に対して、S53で取得した伝搬時間が属するグループに対応付けられたオフセット値を加える。 The NR network classifies the propagation time into a plurality of groups (for example, a long-time group, a medium-time group, and a short-time group) according to the length of the propagation time, and sets an offset value for each group in advance. It may be associated. In this case, the NR network adds the offset value associated with the group to which the propagation time acquired in S53 belongs to the TSN time (or NR time).
 NRネットワークは、新しいTSN時刻を取得する場合、当該TSN時刻をTSNエンドステーション40に送信する(S61)。 When the NR network acquires a new TSN time, it sends the TSN time to the TSN end station 40 (S61).
 なお、端末100は、Msg.1又は参照信号をNRネットワークに送信する(S51)前に、TSN時刻(又はNR時刻)をTSN GM20(又はNR GM31)から取得してもよい(S55)。この場合、端末100がNRネットワークに接続している状態において、端末100は、参照信号をNRネットワークに送信する(S51)前に、TSN時刻(又はNR時刻)を含む時刻情報をNRネットワークに送信してもよい(S57)。 Note that the terminal 100 may acquire the TSN time (or NR time) from the TSN GM20 (or NR GM31) before transmitting the Msg.1 or the reference signal to the NR network (S51) (S55). In this case, when the terminal 100 is connected to the NR network, the terminal 100 transmits the time information including the TSN time (or NR time) to the NR network before transmitting the reference signal to the NR network (S51). May be (S57).
 NRネットワークは、規定された期間において、端末100からMsg.1又は参照信号を受信する毎に、当該Msg.1又は参照信号を用いて伝搬時間を取得し、取得した伝搬時間を保持してもよい。この場合、NRネットワークは、S53にて、保持した複数の伝搬時間に統計処理を施す。例えば、NRネットワークは、S53にて、保持した伝搬時間の平均を取得する。続いて、NRネットワークは、S59にて、取得した伝搬時間の平均に基づいて、TSN時刻又はNR時刻を変更する。 Even if the NR network acquires the propagation time using the Msg.1 or the reference signal each time it receives the Msg.1 or the reference signal from the terminal 100 in the specified period and holds the acquired propagation time. Good. In this case, the NR network performs statistical processing on the plurality of propagation times held in S53. For example, the NR network gets the average of the retained propagation times at S53. Subsequently, the NR network changes the TSN time or the NR time at S59 based on the average of the acquired propagation times.
 (3.3)動作例3
 動作例3では、時刻配信手順において、端末100が、端末側の測定信号及び測定応答信号を用いて、端末100とgNB210との間における伝搬時間を取得し、TSN時刻又はNR時刻に対して、端末100とgNB210との間における伝搬時間分を補償する。
(3.3) Operation example 3
In operation example 3, in the time distribution procedure, the terminal 100 acquires the propagation time between the terminal 100 and the gNB 210 by using the measurement signal and the measurement response signal on the terminal side, and with respect to the TSN time or the NR time. Compensate for the propagation time between terminal 100 and gNB210.
 (3.3.1)伝搬時間の測定
 最初に、伝搬時間の測定について説明する。図9は、端末100又はgNB210による伝搬時間の測定を説明する図である。図9に示すように、端末100は、端末側の測定信号をgNB210に送信する(S71)。端末側の測定信号は、端末100が端末側の測定信号を送信した基準タイミングから時間τが経過した後に、gNB210に受信される(S73)。
(3.3.1) Measurement of Propagation Time First, the measurement of propagation time will be described. FIG. 9 is a diagram illustrating the measurement of the propagation time by the terminal 100 or the gNB 210. As shown in FIG. 9, the terminal 100 transmits the measurement signal on the terminal side to the gNB 210 (S71). The measurement signal on the terminal side is received by the gNB 210 after the time τ has elapsed from the reference timing at which the terminal 100 transmits the measurement signal on the terminal side (S73).
 gNB210は、端末側の測定信号を受信すると同時に、端末側の測定応答信号を端末100に送信する(S75)。端末側の測定応答信号は、端末100が端末側の測定信号を送信した基準タイミングから時間2τが経過した後に、端末100に受信される(S77)。 The gNB210 receives the measurement signal on the terminal side and at the same time transmits the measurement response signal on the terminal side to the terminal 100 (S75). The measurement response signal on the terminal side is received by the terminal 100 after a lapse of time 2τ from the reference timing at which the terminal 100 transmits the measurement signal on the terminal side (S77).
 端末100は、端末側の測定信号の送信タイミング(基準タイミング)と、端末側の測定応答信号の受信タイミングとの時間差2τから、端末100とgNB210との間における伝搬時間τを取得することができる。このように、端末側の測定応答信号は、端末100が伝搬時間を判定するのに用いられる情報を含む。 The terminal 100 can acquire the propagation time τ between the terminal 100 and the gNB 210 from the time difference 2τ between the transmission timing (reference timing) of the measurement signal on the terminal side and the reception timing of the measurement response signal on the terminal side. .. As described above, the measurement response signal on the terminal side includes the information used by the terminal 100 to determine the propagation time.
 同様に、gNB210は、無線基地局側の測定信号を端末100に送信する(S71)。無線基地局側の測定信号は、gNB210が無線基地局側の測定信号を送信した基準タイミングから時間τが経過した後に、端末100に受信される(S73)。 Similarly, the gNB210 transmits the measurement signal on the radio base station side to the terminal 100 (S71). The measurement signal on the radio base station side is received by the terminal 100 after the time τ has elapsed from the reference timing at which the gNB 210 transmitted the measurement signal on the radio base station side (S73).
 端末100は、無線基地局側の測定信号を受信すると同時に、無線基地局側の測定応答信号をgNB210に送信する(S75)。無線基地局側の測定応答信号は、gNB210が無線基地局側の測定信号を送信した基準タイミングから時間2τが経過した後に、gNB210に受信される(S77)。 The terminal 100 receives the measurement signal on the radio base station side and at the same time transmits the measurement response signal on the radio base station side to the gNB 210 (S75). The measurement response signal on the radio base station side is received by the gNB 210 after a lapse of time 2τ from the reference timing at which the gNB 210 transmits the measurement signal on the radio base station side (S77).
 gNB210は、無線基地局側の測定信号の送信タイミング(基準タイミング)と、無線基地局側の測定応答信号の受信タイミングとの時間差2τから、端末100とgNB210との間における伝搬時間τを取得することができる。このように、無線基地局側の測定応答信号は、gNB210が伝搬時間を判定するのに用いられる情報を含む。 The gNB 210 acquires the propagation time τ between the terminal 100 and the gNB 210 from the time difference 2τ between the transmission timing (reference timing) of the measurement signal on the radio base station side and the reception timing of the measurement response signal on the radio base station side. be able to. As described above, the measurement response signal on the radio base station side includes the information used by the gNB 210 to determine the propagation time.
 (3.3.2)時刻配信手順
 動作例3では、端末100は、図5のS35にて、TAコマンドを用いて、端末100とgNB210との間における伝搬時間を取得する代わりに、上述した伝搬時間の測定により伝搬時間τを取得する。
(3.3.2) Time distribution procedure In operation example 3, the terminal 100 uses the TA command in S35 of FIG. 5 to acquire the propagation time between the terminal 100 and the gNB 210, as described above. The propagation time τ is obtained by measuring the propagation time.
 具体的には、端末100は、S35にて、伝搬時間の測定により伝搬時間τを取得する。端末100は、S37にて、伝搬時間τに基づいて、S31で取得したTSN時刻(又はNR時刻)を変更する。 Specifically, the terminal 100 acquires the propagation time τ by measuring the propagation time at S35. The terminal 100 changes the TSN time (or NR time) acquired in S31 based on the propagation time τ in S37.
 その他の動作は、図5のS31, S39, S41と同じである。 Other operations are the same as S31, S39, and S41 in FIG.
 (3.4)動作例4
 動作例4では、時刻配信手順において、gNB210が、図9に示す無線基地局側の測定信号及び測定応答信号を用いて、端末100とgNB210との間における伝搬時間を取得し、TSN時刻又はNR時刻に対して、端末100とgNB210との間における伝搬時間分を補償する。
(3.4) Operation example 4
In operation example 4, in the time distribution procedure, gNB210 acquires the propagation time between the terminal 100 and gNB210 using the measurement signal and measurement response signal on the radio base station side shown in FIG. 9, and obtains the TSN time or NR. The time is compensated for the propagation time between the terminal 100 and the gNB 210.
 (3.4.1)時刻配信手順
 動作例2では、NRネットワークは、図8のS53にて、Msg.1又は参照信号を用いて、端末100とgNB210との間における伝搬時間を取得する代わりに、上述した伝搬時間の測定により伝搬時間τを取得する。
(3.4.1) Time distribution procedure In operation example 2, the NR network uses Msg.1 or a reference signal in S53 of FIG. 8 instead of acquiring the propagation time between the terminal 100 and the gNB 210. In addition, the propagation time τ is obtained by measuring the propagation time described above.
 具体的には、NRネットワークは、S53にて、伝搬時間の測定により伝搬時間τを取得する。NRネットワークは、S59にて、伝搬時間τに基づいて、S57で取得したTSN時刻(又はNR時刻)を変更する。 Specifically, the NR network acquires the propagation time τ by measuring the propagation time at S53. The NR network changes the TSN time (or NR time) acquired in S57 based on the propagation time τ in S59.
 その他の動作は、図8のS55, S61と同じである。 Other operations are the same as S55 and S61 in FIG.
 (3.5)その他
 動作例1において、端末100は、S37にて、S35で取得した伝搬時間に基づいて、S31で取得したTSN時刻(又はNR時刻)を変更したが、これに限定されない。例えば、端末100は、RRCメッセージを用いて、S31で取得したTSN時刻(又はNR時刻)を含む時刻情報と、S35で取得した伝搬時間とをNRネットワーク(具体的には、gNB210)に送信してもよい。この場合、NRネットワークが、受信した伝搬時間に基づいて、受信したTSN時刻(又はNR時刻)を変更する。
(3.5) Others In Operation Example 1, the terminal 100 changes the TSN time (or NR time) acquired in S31 based on the propagation time acquired in S35 in S37, but is not limited to this. For example, the terminal 100 uses an RRC message to transmit the time information including the TSN time (or NR time) acquired in S31 and the propagation time acquired in S35 to the NR network (specifically, gNB210). You may. In this case, the NR network changes the received TSN time (or NR time) based on the received propagation time.
 動作例1又は動作例3において、NRネットワーク(具体的には、gNB210)が、TSN時刻(又はNR時刻)に対して、端末100とgNB210との間における伝搬時間分を補償することができる場合、端末100は、RRCメッセージを用いて、端末100がTSN時刻又はNR時刻を変更したか否かを示す時刻変更情報をNRネットワークに送信する。 In the operation example 1 or the operation example 3, when the NR network (specifically, gNB210) can compensate the TSN time (or NR time) for the propagation time between the terminal 100 and the gNB210. , The terminal 100 uses the RRC message to transmit the time change information indicating whether or not the terminal 100 has changed the TSN time or the NR time to the NR network.
 図10は、時刻変更情報を含むメッセージの一例を説明する図である。図10に示すように、RRCメッセージは、時刻情報と時刻変更情報とを含んでいる。 FIG. 10 is a diagram illustrating an example of a message including time change information. As shown in FIG. 10, the RRC message includes time information and time change information.
 例えば、時刻変更情報は、1ビット(「0」又は「1」)で構成される。例えば、端末100は、S37にて、S35で取得した伝搬時間に基づいて、S31で取得したTSN時刻(又はNR時刻)を変更した場合、時刻変更情報の値を「1」に設定する。 For example, the time change information is composed of 1 bit ("0" or "1"). For example, when the terminal 100 changes the TSN time (or NR time) acquired in S31 based on the propagation time acquired in S35 in S37, the value of the time change information is set to "1".
 NRネットワークは、RRCメッセージに含まれる時刻変更情報の値が「1」に設定されていることを識別すると、RRCメッセージに含まれる時刻情報から取得したTSN時刻(又はNR時刻)に対して、端末100とgNB210との間における伝搬時間分を補償する動作を実行しない。 When the NR network identifies that the value of the time change information included in the RRC message is set to "1", the terminal with respect to the TSN time (or NR time) acquired from the time information included in the RRC message. Does not perform an operation that compensates for the propagation time between 100 and gNB210.
 なお、端末100は、RRCメッセージとは異なるメッセージを用いて、時刻変更情報をNRネットワークに送信してもよい。 Note that the terminal 100 may transmit the time change information to the NR network using a message different from the RRC message.
 同様に、動作例2又は動作例4において、端末100が、TSN時刻(又はNR時刻)に対して、端末100とgNB210との間における伝搬時間分を補償することができる場合、NRネットワークは、NRネットワークがTSN時刻又はNR時刻を変更したか否かを示す時刻変更情報を端末100に送信してもよい。 Similarly, in operation example 2 or operation example 4, when the terminal 100 can compensate the TSN time (or NR time) for the propagation time between the terminal 100 and the gNB 210, the NR network is determined. The time change information indicating whether or not the NR network has changed the TSN time or the NR time may be transmitted to the terminal 100.
 (4)作用・効果
 上述した実施形態によれば、端末100は、TAコマンド、端末側の測定応答信号などの下りリンク信号を用いて、端末100とgNB210との間における伝搬時間を取得する。端末100は、当該伝搬時間に基づいて、TSN時刻(又はNR時刻)を変更した新しいTSN時刻(又は新しいNR時刻)を含む時刻情報を、gNB210に送信する。
(4) Action / Effect According to the above-described embodiment, the terminal 100 acquires the propagation time between the terminal 100 and the gNB 210 by using a downlink signal such as a TA command or a measurement response signal on the terminal side. The terminal 100 transmits the time information including the new TSN time (or new NR time) in which the TSN time (or NR time) is changed based on the propagation time to the gNB 210.
 このような構成により、端末100は、TSN時刻(又はNR時刻)に対して、端末100とgNB210との間における伝搬時間分を補償した新しいTSN時刻(又は新しいNR時刻)を、gNB210に送信することができる。 With such a configuration, the terminal 100 transmits to the gNB 210 a new TSN time (or a new NR time) in which the propagation time between the terminal 100 and the gNB 210 is compensated for the TSN time (or NR time). be able to.
 このため、端末100とgNB210との間において、高精度な時刻同期を維持することができる。 Therefore, highly accurate time synchronization can be maintained between the terminal 100 and the gNB 210.
 従って、TSN GM20(又はNR GM31)を端末100側に設定するという要求がある場合でも、TSNにおける高精度な時刻同期を実現することができる。 Therefore, even if there is a request to set the TSN GM20 (or NR GM31) on the terminal 100 side, highly accurate time synchronization in the TSN can be realized.
 上述した実施形態によれば、新しいTSN時刻(又は新しいNR時刻)は、TSN時刻(又はNR時刻)に伝搬時間を加えた時刻である。 According to the above-described embodiment, the new TSN time (or new NR time) is the time obtained by adding the propagation time to the TSN time (or NR time).
 このような構成により、端末100は、TSN時刻(又はNR時刻)に対して、端末100とgNB210との間における伝搬時間分を確実に補償することができる。 With such a configuration, the terminal 100 can reliably compensate for the propagation time between the terminal 100 and the gNB 210 with respect to the TSN time (or NR time).
 上述した実施形態によれば、gNB210が、ランダムアクセスプリアンブル、参照信号、無線基地局側の測定応答信号などの上りリンク信号を用いて取得した伝搬時間に基づいて、TSN時刻(又はNR時刻)を変更することができる場合に、端末100は、端末100がTSN時刻(又はNR時刻)を変更したか否かを示す時刻変更情報を、gNB210に送信する。 According to the above-described embodiment, the gNB210 sets the TSN time (or NR time) based on the propagation time acquired by using the uplink signal such as the random access preamble, the reference signal, and the measurement response signal on the radio base station side. If it can be changed, the terminal 100 transmits time change information indicating whether or not the terminal 100 has changed the TSN time (or NR time) to the gNB 210.
 このような構成により、端末100とgNB210との両方が、TSN時刻(又はNR時刻)に対して、端末100とgNB210との間における伝搬時間分を補償することができる場合に、端末100とgNB210との両方が、端末100とgNB210との間における伝搬時間分を補償する又は補償しないことを回避することができる。 With such a configuration, when both the terminal 100 and the gNB 210 can compensate for the propagation time between the terminal 100 and the gNB 210 with respect to the TSN time (or NR time), the terminal 100 and the gNB 210 Both can be avoided to compensate or not compensate for the propagation time between the terminal 100 and the gNB 210.
 上述した実施形態によれば、gNB210は、ランダムアクセスプリアンブル、参照信号などの上りリンク信号を用いて、端末100とgNB210との間における伝搬時間を取得して、当該伝搬時間に基づいて、TSN時刻(又はNR時刻)を変更した新しいTSN時刻(又は新しいNR時刻)を取得する。 According to the above-described embodiment, the gNB 210 acquires the propagation time between the terminal 100 and the gNB 210 using an uplink signal such as a random access preamble or a reference signal, and based on the propagation time, the TSN time. Get the new TSN time (or new NR time) that changed (or NR time).
 このような構成により、gNB210は、TSN時刻(又はNR時刻)に対して、端末100とgNB210との間における伝搬時間分を補償した新しいTSN時刻(又は新しいNR時刻を取得することができる。 With such a configuration, the gNB 210 can acquire a new TSN time (or a new NR time) in which the propagation time between the terminal 100 and the gNB 210 is compensated for the TSN time (or NR time).
 このため、端末100とgNB210との間において、高精度な時刻同期を維持することができる。 Therefore, highly accurate time synchronization can be maintained between the terminal 100 and the gNB 210.
 従って、TSN GM20(又はNR GM31)を端末100側に設定するという要求がある場合でも、TSNにおける高精度な時刻同期を実現することができる。 Therefore, even if there is a request to set the TSN GM20 (or NR GM31) on the terminal 100 side, highly accurate time synchronization in the TSN can be realized.
 上述した実施形態によれば、gNB210は、TSN時刻(又はNR時刻)に伝搬時間を加えて、新しいTSN時刻(又は新しいNR時刻)を取得する。 According to the above-described embodiment, the gNB 210 acquires a new TSN time (or new NR time) by adding the propagation time to the TSN time (or NR time).
 このような構成により、gNB210は、TSN時刻(又はNR時刻)に対して、端末100とgNB210との間における伝搬時間分を確実に補償することができる。 With such a configuration, the gNB 210 can reliably compensate for the propagation time between the terminal 100 and the gNB 210 with respect to the TSN time (or NR time).
 (5)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the contents of the present invention have been described above according to the embodiments, the present invention is not limited to these descriptions, and various modifications and improvements are possible. It is self-evident to the trader.
 制御システム10は、NRシステム30の代わりに、LTEシステムを含んでもよい。 The control system 10 may include an LTE system instead of the NR system 30.
 この場合、LTEシステムは、NG-RAN200の代わりに、Evolved Universal Terrestrial Radio Access Network(E-UTRAN)を含む。E-UTRANは、複数のE-UTRAN Node、具体的には、eNB(又はen-gNB)を含み、LTEに従ったコアネットワーク(EPC)と接続される。 In this case, the LTE system includes Evolved Universal Terrestrial Radio Access Network (E-UTRAN) instead of NG-RAN200. E-UTRAN includes a plurality of E-UTRAN Nodes, specifically eNB (or en-gNB), and is connected to an LTE-compliant core network (EPC).
 また、LTEシステムは、NR GM31の代わりに、LTEシステムの動作タイミングとなるクロックを発振するLTE GMを含む。端末100は、LTE GMに接続されて、LTE GMが発振するクロックに基づいて生成されるLTE時刻を取得する。 In addition, the LTE system includes LTE GM that oscillates the clock that is the operation timing of the LTE system instead of NRGM31. The terminal 100 is connected to the LTE GM and acquires the LTE time generated based on the clock oscillated by the LTE GM.
 上述した実施形態では、図1に示すように、制御システム10において、NR GM31は、端末100に接続されているが、これに限定されない。 In the above-described embodiment, as shown in FIG. 1, in the control system 10, the NR GM31 is connected to the terminal 100, but the present invention is not limited to this.
 図11は、制御システム10aの全体概略構成図である。図11に示すように、制御システム10aにおいて、NR GM31は、gNB210に接続されている。なお、制御システム10aの他の構成は、制御システム10の構成と同じである。 FIG. 11 is an overall schematic configuration diagram of the control system 10a. As shown in FIG. 11, in the control system 10a, the NR GM31 is connected to the gNB 210. The other configurations of the control system 10a are the same as the configurations of the control system 10.
 この構成において、端末100が、NR時刻に対して、端末100とgNB210との間における伝搬時間分を補償する場合、端末100は、ブロードキャスト又はユニキャストによりNR時刻をgNB210から受信すると、TAコマンドに含まれるTA値を用いて伝搬時間を取得し、取得した伝搬時間に基づいてNR時刻を変更した新しいNR時刻を取得する。 In this configuration, when the terminal 100 compensates for the propagation time between the terminal 100 and the gNB 210 with respect to the NR time, when the terminal 100 receives the NR time from the gNB 210 by broadcasting or unicast, the TA command is sent. The propagation time is acquired using the included TA value, and the new NR time is acquired by changing the NR time based on the acquired propagation time.
 一方、gNB210が、NR時刻に対して、端末100とgNB210との間における伝搬時間分を補償する場合、gNB210は、NR GM31からNR時刻を受信すると、Msg.1又はSRS, DMRSなどの参照信号を用いて伝搬時間を取得し、取得した伝搬時間に基づいてNR時刻を変更した新しいNR時刻を取得する。gNB210は、ユニキャストにより、伝搬時間分を補償した新しいNR時刻を端末100に送信する。 On the other hand, when the gNB210 compensates for the propagation time between the terminal 100 and the gNB210 with respect to the NR time, when the gNB210 receives the NR time from the NR GM31, the gNB210 receives a reference signal such as Msg.1 or SRS, DMRS. Acquires the propagation time using, and acquires a new NR time in which the NR time is changed based on the acquired propagation time. The gNB210 transmits a new NR time compensated for the propagation time to the terminal 100 by unicast.
 上述した実施形態の説明に用いたブロック構成図(図2及び図3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block configuration diagrams (FIGS. 2 and 3) used in the description of the above-described embodiment show blocks for functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, deemed, and notification ( Broadcast, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but not limited to these. .. For example, a functional block (constituent unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). As described above, the method of realizing each of them is not particularly limited.
 さらに、上述した端末100及びgNB210は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、当該装置のハードウェア構成の一例を示す図である。図12に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the terminal 100 and the gNB 210 described above may function as a computer that processes the wireless communication method of the present disclosure. FIG. 12 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 12, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
 当該装置の各機能ブロックは、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Further, for each function in the device, by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, the processor 1001 performs the calculation, controls the communication by the communication device 1004, and the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間毎に異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof. RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobile Broadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in the present disclosure may be performed by its upper node. In a network consisting of one or more network nodes having a base station, various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not it.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group" Terms such as "carrier" and "component carrier" can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the functions of the base station. In addition, words such as "up" and "down" may be read as words corresponding to inter-terminal communication (for example, "side"). For example, an uplink channel, a downlink channel, and the like may be read as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
 無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。 The wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
 サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The subframe may be further composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. The mini-slot may also be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. Good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. , Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc., can be considered to be "connected" or "coupled" to each other.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as "judgment" or "decision". In addition, "judgment" and "decision" mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification without departing from the purpose and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of the present disclosure is for the purpose of exemplary explanation and does not have any limiting meaning to the present disclosure.
10, 10a 制御システム
20 TSN GM
30 NRシステム
31 NR GM
40 TSNエンドステーション
100 端末
101 無線送信部
103 無線受信部
105 伝搬時間取得部
107 時刻処理部
109 RRCメッセージ送信部
111 制御部
200 NG-RAN
210 gNB
211 無線送信部
213 無線受信部
215 伝搬時間取得部
217 時刻処理部
219 TAコマンド送信部
221 制御部
300 コアネットワーク
310 UPF
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス
10, 10a Control system
20 TSN GM
30 NR system
31 NR GM
40 TSN end station
100 terminals
101 Wireless transmitter
103 Wireless receiver
105 Propagation time acquisition section
107 Time processing unit
109 RRC message transmitter
111 Control unit
200 NG-RAN
210 gNB
211 Wireless transmitter
213 Wireless receiver
215 Propagation time acquisition section
217 Time processing unit
219 TA command transmitter
221 Control unit
300 core network
310 UPF
1001 processor
1002 memory
1003 storage
1004 communication device
1005 input device
1006 output device
1007 bus

Claims (5)

  1.  端末であって、
     無線基地局から、前記端末と前記無線基地局との間における伝搬時間を判定する情報を含む下りリンク信号を受信する受信部と、
     前記下りリンク信号を用いて、前記伝搬時間を取得する制御部と、
     前記伝搬時間に基づいて特定のネットワークにおいて用いられる時刻を変更した新しい時刻を含む時刻情報を、前記無線基地局に送信する送信部と
    を備える端末。
    It ’s a terminal,
    A receiving unit that receives a downlink signal from the radio base station, which includes information for determining the propagation time between the terminal and the radio base station.
    A control unit that acquires the propagation time using the downlink signal, and
    A terminal including a transmission unit that transmits time information including a new time in which a time used in a specific network is changed based on the propagation time to the radio base station.
  2.  前記新しい時刻は、前記特定のネットワークにおいて用いられる時刻に前記伝搬時間を加えた時刻である請求項1に記載の端末。 The terminal according to claim 1, wherein the new time is a time obtained by adding the propagation time to the time used in the specific network.
  3.  前記無線基地局が、上りリンク信号を用いて取得した伝搬時間に基づいて、前記特定のネットワークにおいて用いられる時刻を変更することができる場合に、前記送信部は、前記端末が前記特定のネットワークにおいて用いられる時刻を変更したか否かを示す情報を、前記無線基地局に送信する請求項1に記載の端末。 When the radio base station can change the time used in the specific network based on the propagation time acquired by using the uplink signal, the transmitter can be used by the terminal in the specific network. The terminal according to claim 1, wherein information indicating whether or not the time used has been changed is transmitted to the radio base station.
  4.  無線基地局であって、
     端末から、前記端末と前記無線基地局との間における伝搬時間を判定する情報を含む上りリンク信号と、特定のネットワークにおいて用いられる時刻を含む時刻情報とを受信する受信部と、
     前記上りリンク信号を用いて、前記伝搬時間を取得し、前記伝搬時間に基づいて、前記特定のネットワークにおいて用いられる時刻を変更した新しい時刻を取得する制御部と、
    を備える無線基地局。
    It ’s a wireless base station,
    A receiving unit that receives from a terminal an uplink signal including information for determining a propagation time between the terminal and the radio base station, and time information including a time used in a specific network.
    A control unit that acquires the propagation time using the uplink signal and acquires a new time obtained by changing the time used in the specific network based on the propagation time.
    A wireless base station equipped with.
  5.  前記制御部は、前記特定のネットワークにおいて用いられる時刻に前記伝搬時間を加えて、前記新しい時刻を取得する請求項4に記載の無線基地局。 The radio base station according to claim 4, wherein the control unit adds the propagation time to the time used in the specific network to acquire the new time.
PCT/JP2019/042559 2019-10-30 2019-10-30 Terminal and wireless base station WO2021084648A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980101578.7A CN114586421A (en) 2019-10-30 2019-10-30 Terminal and radio base station
PCT/JP2019/042559 WO2021084648A1 (en) 2019-10-30 2019-10-30 Terminal and wireless base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042559 WO2021084648A1 (en) 2019-10-30 2019-10-30 Terminal and wireless base station

Publications (1)

Publication Number Publication Date
WO2021084648A1 true WO2021084648A1 (en) 2021-05-06

Family

ID=75714976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042559 WO2021084648A1 (en) 2019-10-30 2019-10-30 Terminal and wireless base station

Country Status (2)

Country Link
CN (1) CN114586421A (en)
WO (1) WO2021084648A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101593056B1 (en) * 2007-09-28 2016-02-11 시그널 트러스트 포 와이어리스 이노베이션 Method and apparatus for terminating transmission of a message in an enhanced random access channel
CN108886708B (en) * 2016-03-25 2022-07-05 株式会社Ntt都科摩 User terminal, radio base station, and radio communication method
WO2018025908A1 (en) * 2016-08-03 2018-02-08 株式会社Nttドコモ User terminal and wireless communication method
US20180160424A1 (en) * 2016-12-01 2018-06-07 Intel Corporation Methods to enable time sensitive applications in secondary channels in a mmwave ieee 802.11 wlan
US20180184450A1 (en) * 2016-12-27 2018-06-28 Dave A. Cavalcanti System and methods to configure contention-based access periods transmission rules to enable time sensitive applications in an ieee 802.11 wlan
US20180184438A1 (en) * 2016-12-28 2018-06-28 Intel Corporation Persistent scheduling and forwarding while receiving in wireless time sensitive networks
US11456845B2 (en) * 2017-10-02 2022-09-27 Lg Electronics Inc. Method and device for signal transmission or reception on basis of LTE and NR in wireless communication system
CN112042159B (en) * 2018-02-28 2024-01-16 诺基亚技术有限公司 Transparent integration of 3GPP networks into TSN industrial networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "IIoT WI: Resource conflicts between UL grants, HARQ-ACK Enhancements for SPS and TSN time synchronization", 3GPP TSG RAN WG1 #98BIS R1-1910870, 7 October 2019 (2019-10-07), XP051789652, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1TSGR1_98b/Docs/R1-1910870.zip> [retrieved on 20200601] *

Also Published As

Publication number Publication date
CN114586421A (en) 2022-06-03

Similar Documents

Publication Publication Date Title
JP7307746B2 (en) Terminal, base station, communication system, and communication method
WO2020079760A1 (en) Terminal and communication method
WO2020144783A1 (en) Terminal and communication method
WO2020079763A1 (en) Terminal and communication method
WO2021171721A1 (en) Terminal, wireless base station, and wireless communication method
WO2021149110A1 (en) Terminal and communication method
WO2021199415A1 (en) Terminal, and communication method
WO2021048904A1 (en) Session management device, user plane device, and access handover management device
KR20220129004A (en) communication device
JP7275169B2 (en) Terminal and communication method
WO2021161481A1 (en) Terminal
JP7274566B2 (en) Terminal, communication method and wireless communication system
JP7343591B2 (en) Terminal and communication method
JP7273859B2 (en) User equipment and base station equipment
JP7170842B2 (en) User equipment and base station equipment
KR20220146439A (en) Terminal and communication method
WO2021084648A1 (en) Terminal and wireless base station
WO2021070397A1 (en) Terminal and communication method
US20230328721A1 (en) Terminal
WO2020090095A1 (en) User equipment
JP2022065209A (en) User device and base station device
KR20210118814A (en) User equipment and base station equipment
WO2022070391A1 (en) Radio base station
US20230300917A1 (en) Terminal
JP7445673B2 (en) terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP