WO2021084633A1 - Transmitter and transmitter/receiver - Google Patents

Transmitter and transmitter/receiver Download PDF

Info

Publication number
WO2021084633A1
WO2021084633A1 PCT/JP2019/042484 JP2019042484W WO2021084633A1 WO 2021084633 A1 WO2021084633 A1 WO 2021084633A1 JP 2019042484 W JP2019042484 W JP 2019042484W WO 2021084633 A1 WO2021084633 A1 WO 2021084633A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
signal
unit
chirp rate
chirp
Prior art date
Application number
PCT/JP2019/042484
Other languages
French (fr)
Japanese (ja)
Inventor
赳寛 星野
芳岳 市川
啓 諏訪
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/042484 priority Critical patent/WO2021084633A1/en
Priority to JP2020514764A priority patent/JPWO2021084633A1/en
Publication of WO2021084633A1 publication Critical patent/WO2021084633A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques

Definitions

  • the present invention relates to a transmission device that transmits a transmission signal and a transmission / reception device that transmits a transmission signal and generates a reception signal.
  • transmission power density When the transmission power per unit frequency of the transmission signal transmitted from the transmission device (hereinafter referred to as "transmission power density”) becomes large, the transmission device causes radio wave interference to the communication device existing in the vicinity of the transmission device. May give.
  • some countries have set a regulation value for the transmission power density of the transmission signal transmitted from the transmission device.
  • the Radio Law of Japan stipulates the upper limit of electric field strength as equivalent to the regulation value of transmission power density (hereinafter, simply referred to as “regulation value”).
  • regulation value stipulates the upper limit of the electric field strength at a point 3 m from the weak radio station, for example, when a weak radio station is installed as a transmitting device, according to the frequency of the transmitted signal. ing.
  • the transmission power density of the transmission signal may be larger than the regulation value.
  • a transmission device in which the transmission power density of a transmission signal becomes larger than the regulation value cannot be used in an environment where the transmission power density is regulated.
  • the present invention has been made to solve the above problems, and an object of the present invention is to obtain a transmission device and a transmission / reception device that can be used even in an environment where the transmission power density is regulated.
  • the frequency changes depending on the chirp rate setting unit that sets the chirp rate of the transmission signal and the chirp rate set by the chirp rate setting unit based on the regulation value of the transmission power density in the transmission signal. It is provided with a signal generation unit that generates a transmission signal and a transmission unit that transmits a transmission signal generated by the signal generation unit.
  • the transmission device is configured to include a chirp rate setting unit that sets the chirp rate of the transmission signal based on the regulation value of the transmission power density in the transmission signal. Therefore, the transmitter according to the present invention can be used even in an environment where the transmission power density is regulated.
  • FIG. 1 It is a block diagram which shows the hardware of the transmission / reception device which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the function of the transmission / reception device which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the process of the transmission device 1 which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows the chirp signal which is a transmission signal. It is explanatory drawing which shows the transmission power density of the transmission signal when the transmission signal is a chirp signal. It is explanatory drawing which shows the transmission power density of a chirp signal when the chirp rate ⁇ of a chirp signal is larger than the chirp rate ⁇ of the chirp signal shown in FIG.
  • FIG. 5 It is a block diagram which shows the function of the transmission / reception device which concerns on Embodiment 2.
  • FIG. It is explanatory drawing which shows an example of the transmission power density SP which is larger than the regulation value EIRP.
  • the transmission gain G Tx is an explanatory diagram showing a state of lowering the high transmission power density SP to the restriction value EIRP. It is explanatory drawing which shows an example of the transmission power density SP which is smaller than a regulation value EIRP.
  • the transmission gain G Tx is an explanatory diagram showing a state of raising the low transmission power density SP to the restriction value EIRP.
  • FIG. 1 is a configuration diagram showing the hardware of the transmission / reception device according to the first embodiment.
  • the transmission / reception device shown in FIG. 1 includes a transmission device 1 and a reception device 2.
  • FIG. 2 is a configuration diagram showing the functions of the transmission / reception device according to the first embodiment.
  • an EEPROM (Electrically Erasable Program Read-Only Memory) 11 stores a program or the like showing a processing procedure of an FPGA (Field Programmable Gate Array) 12, which will be described later.
  • the FPGA 12 reads the program stored in the EEPROM 11 and operates according to the processing procedure indicated by the program in synchronization with the clock signals of the frequencies f CLK and FGPA output from the clock 13 described later.
  • the FPGA 12 sets the chirp rate ⁇ of the transmission signal by operating according to the processing procedure indicated by the program, and outputs the chirp rate ⁇ to the DDS (Direct Digital Synthesizer) 14, which will be described later.
  • DDS Direct Digital Synthesizer
  • the FPGA 12 sets the transmission gain G Tx of the transmission signal by operating according to the processing procedure indicated by the program, and sets the transmission gain G Tx to the transmission variable attenuator (hereinafter, referred to as “ATT”) 17 described later. Output.
  • ATT transmission variable attenuator
  • FPGA 12 is, the gain is assumed to set the transmission gain G Tx "1".
  • the EEPROM 11 and the FPGA 12 execute the function of the chirp rate setting unit 51 shown in FIG.
  • the chirp rate setting unit 51 sets the chirp rate ⁇ of the transmission signal based on the regulation value EIRP of the transmission power density in the transmission signal.
  • the chirp rate setting unit 51 outputs the chirp rate ⁇ to the signal generation unit 52, which will be described later.
  • the clock 13 oscillates a clock signal having a frequency of f CLK.
  • the clock 13 is the clock signal of frequency f CLK, as the system clock of DDS14, frequency f CLK, and generates a DDS clock signal, and outputs the frequency f CLK, the DDS clock signal DDS14.
  • the clock 13 is the clock signal of frequency f CLK, as the operation clock of the FPGA 12, the frequency f CLK, and generates a clock signal of FGPA, and outputs the frequency f CLK, a clock signal of FGPA the FPGA 12.
  • the clock 13 is the clock signal of frequency f CLK, as a sampling clock described later ADC 26, the frequency f CLK, and generates a clock signal of the ADC, and outputs the frequency f CLK, the clock signal of the ADC to the ADC 26.
  • the clock 13 is the clock signal of frequency f CLK, as the operation clock of the processor 27 to be described later, the frequency f CLK, and generates a clock signal of Pro, and outputs the frequency f CLK, a clock signal of Pro processor 27.
  • the DDS 14 is a device capable of very high-speed frequency sweeping from low frequency to high frequency, and operates in synchronization with the clock signals of frequencies f CLK and DDS output from the clock 13 to generate a chirp signal. Generate.
  • the DDS 14 outputs the generated chirp signal to a bandpass filter (hereinafter, referred to as “BPF”) 15 described later.
  • BPF bandpass filter
  • the signal generation unit 52 generates a transmission signal whose frequency changes according to the chirp rate ⁇ set by the chirp rate setting unit 51, and outputs the transmission signal to each of the transmission unit 53 and the reception unit 54.
  • the BPF 15 includes a frequency component whose frequency is lower than the lower limit frequency of the chirp signal which is the transmission signal (hereinafter, referred to as “start frequency”) and the chirp. It blocks passage with frequency components whose frequency is higher than the upper limit frequency of the signal (hereinafter referred to as “end frequency”). Therefore, the BPF 15 passes only the frequency components included in the frequency band between the start frequency and the end frequency among the frequency components included in the transmission signal output from the DDS 14.
  • the distributor (hereinafter referred to as “div”) 16 distributes the transmission signal that has passed through the BPF 15 into two.
  • the div 16 outputs one transmitted signal after distribution to the ATT 17, and outputs the other transmitted signal after distribution to a mixer (hereinafter, referred to as “MIX”) 24 described later.
  • ATT17 is the transmission gain G Tx outputted from the FPGA 12, and multiplies the transmission signal output from the Div16, and outputs to the transmitting antenna 18 to be described later transmission signal after transmission gain multiplication.
  • the FPGA 12 the gain is set the transmission gain G Tx of "1”
  • ATT17 also amplifies the transmission signal and does not even attenuation of the transmitted signal .. Therefore, the transmission / reception device shown in FIG. 1 corresponds to the fact that the ATT 17 is not provided.
  • BPF15, div16 and ATT17 execute the function of the transmission unit 53 shown in FIG.
  • the transmission unit 53 outputs the transmission signal generated by the signal generation unit 52 to the transmission antenna 18, so that the transmission signal is transmitted from the transmission antenna 18.
  • the transmitting antenna 18 transmits the transmission signal output from the ATT 17 toward the receiving device 2.
  • the receiving antenna 21 receives the transmission signal or the like transmitted from the transmission device 1 and outputs the received signal to the BPF 22 described later.
  • the BPF 22 has a frequency component lower than the start frequency of the chirp signal and a frequency component higher than the end frequency of the chirp signal, similar to the BPF 15. Blocks passage with frequency components. Therefore, the BPF 22 passes only the frequency components included in the frequency band between the start frequency and the end frequency among the frequency components included in the signal output from the receiving antenna 21.
  • the low noise amplifier (hereinafter referred to as “LNA”) 23 amplifies the signal that has passed through the BPF 22, and outputs the amplified signal to the MIX 24.
  • the MIX 24 generates a beat signal by mixing the amplified signal output from the LNA 23 and the transmission signal output from the div 16, and the beat signal is referred to as a low-pass filter (hereinafter, referred to as “LPF”) described later. ) Output to 25.
  • the LPF 25 passes the beat signal output from the MIX 24 and blocks the passage of noise such as harmonics output from the MIX 24.
  • the ADC 26 samples the beat signal that has passed through the LPF 25 according to the clock signals of frequencies f CLK and ADC output from the clock 13, and converts the sampled beat signal from an analog signal to a digital signal.
  • the ADC 26 outputs a digital signal to the processor 27 as a reception signal of the receiving device 2.
  • the BPF22, LNA23, MIX24, LPF25 and ADC26 perform the function of the receiver 54 shown in FIG.
  • the receiving unit 54 generates a received signal from the signal received by the receiving antenna 21 and the transmission signal generated by the signal generating unit 52.
  • the processor 27 Each time the processor 27 receives a received signal from the ADC 26, the processor 27 stores the received signal in the memory 28 described later. Further, the processor 27 performs a process of demodulating the data included in the received signal output from the ADC 26 in synchronization with the clock signals of the frequencies f CLK and Pro output from the clock 13, or sets a target from the received signal. Perform detection processing, etc. The processor 27 outputs the demodulation processing result, the target detection processing result, and the like to each of the data storage 29 and the display unit 30 described later.
  • the processor 27 executes the function of the signal processing unit 55 shown in FIG.
  • the signal processing unit 55 performs a process of demodulating the data included in the received signal, a process of detecting a target from the received signal, and the like.
  • the memory 28 is a recording medium for recording a received signal.
  • the data storage 29 is realized by, for example, a magnetic storage medium or a semiconductor element memory.
  • the data storage 29 is a recording medium for recording the demodulation processing result or the target detection processing result output from the processor 27.
  • the display unit 30 displays the demodulation processing result or the target detection processing result output from the processor 27.
  • FIG. 3 is a flowchart showing the processing of the transmission device 1 according to the first embodiment.
  • the chirp rate setting unit 51 sets the chirp rate ⁇ of the transmission signal based on the regulation value EIRP of the transmission power density in the transmission signal (step ST1 in FIG. 3).
  • the chirp rate ⁇ setting process by the chirp rate setting unit 51 will be specifically described.
  • the chirp rate ⁇ is represented by the ratio of the frequency step width ⁇ f to the time step width ⁇ t of the chirp signal, as shown in the following equation (1).
  • the time step width ⁇ t is the length of the time zone in which the frequency is constant in the chirp signal, and corresponds to the time width of the clock signals of the frequencies f CLK and FPGA generated by the clock 13.
  • the frequency step width ⁇ f is the frequency change width per time in the chirp signal.
  • FIG. 4 is an explanatory diagram showing a chirp signal which is a transmission signal.
  • the time step width ⁇ t of the chirp signal is constant, the chirp ratio ⁇ increases as the frequency step width ⁇ f increases, and the chirp ratio ⁇ decreases as the frequency step width ⁇ f decreases.
  • FIG. 5 is an explanatory diagram showing the transmission power density of the transmission signal when the transmission signal is a chirp signal.
  • SP 1 is the transmission power density of the transmission signal when the transmission signal is a chirp signal.
  • the transmission power density SP 1 has the same value as the transmission power density of a transmission signal having a constant frequency when the chirp ratio ⁇ and f RBW satisfy the relationship of the following equation (2).
  • f RBW is the filter width of the IF (Intermediate Frequency) filter mounted by the measuring device for measuring the electric field strength at a point of, for example, 3 m from the transmitting antenna 18 of the transmitting device 1.
  • FIG. 1 is the transmission power density of the transmission signal when the transmission signal is a chirp signal.
  • the transmission power density SP 1 has the same value as the transmission power density of a transmission signal having a constant frequency when the chirp ratio ⁇ and f RBW satisfy the relationship of the following equation (2).
  • f RBW is the filter width of the
  • FIG. 6 is an explanatory diagram showing the transmission power density of the chirp signal when the chirp rate ⁇ of the chirp signal is larger than the chirp rate ⁇ of the chirp signal shown in FIG. 5 and does not satisfy the relationship of the equation (2). is there.
  • SP 2 is the transmission power density of the chirp signal when the chirp ratio ⁇ of the chirp signal is larger than the chirp ratio ⁇ of the chirp signal shown in FIG. 5 and does not satisfy the relationship of the equation (2). is there.
  • the frequency of the transmission signal shown in FIG. 4 is spread spectrum of each chirp signal. It is a thing. Since the chirp signal shown in FIG. 6 has a larger spectral diffusion rate than the chirp signal shown in FIG. 5, the transmission power density SP 2 of the chirp signal shown in FIG. 6 is the transmission power density SP of the chirp signal shown in FIG. Less than 1.
  • the relationship between the attenuation rate L rop of the transmission power density SP due to spectral diffusion and the chirp rate ⁇ of the chirp signal is expressed by the following equation (3).
  • the attenuation factor L rop is the attenuation rate of the transmission power density SP of the chirp signal from the transmission power density of the transmission signal from which the chirp signal is generated.
  • L rop 1.
  • the measuring device receives the transmission signal transmitted from the transmission antenna 18 of the transmission device 1, and measures the electric field strength in a desired frequency band from the received signal that has passed through the IF filter.
  • the IF filter is realized by, for example, BPF.
  • the filter width f RBW of the IF filter has, for example, a width corresponding to the pass band of the BPF 15 shown in FIG.
  • the filter width f RBW of the IF filter is an existing value and is stored in the internal memory of the chirp rate setting unit 51.
  • the filter width f RBW may be given to the chirp rate setting unit 51 from the outside of the transmission / reception device shown in FIG.
  • the attenuation rate L rop of the transmission power density SP due to spectral diffusion increases as the chirp rate ⁇ of the chirp signal increases, and the transmission power density SP becomes the attenuation rate L of the transmission power density SP.
  • the larger the probe the smaller it becomes. Therefore, the transmission power density SP 2 of the chirp signal shown in FIG. 6 is smaller than the transmission power density SP 1 of the chirp signal shown in FIG. 5, as described above.
  • the condition that the transmission power density SP of the chirp signal, which is the transmission signal, becomes equal to or less than the regulation value EIRP is shown in the following equation (4).
  • P 0 is the transmission power of the transmission signal from which the chirp signal is generated, that is, the transmission power of the transmission signal having a constant frequency.
  • Each of the regulated value EIRP and the transmission power P 0 is an existing value and is stored in the internal memory of the chirp rate setting unit 51. However, each of the regulated value EIRP and the transmission power P 0 may be given to the chirp rate setting unit 51 from the outside of the transmission / reception device shown in FIG.
  • the chirp rate setting unit 51 calculates the attenuation rate L rop of the transmission power density SP by substituting the transmission power P 0 of the transmission signal having a constant frequency and the regulation value EIRP into the following equation (5). Next, the chirp rate setting unit 51 calculates the chirp rate ⁇ by substituting the attenuation factor L rop and the filter width f RBW into the equation (3). The chirp rate setting unit 51 outputs the calculated chirp rate ⁇ to the signal generation unit 52.
  • the signal generation unit 52 When the signal generation unit 52 receives the chirp rate ⁇ from the chirp rate setting unit 51, the signal generation unit 52 generates a chirp signal having a chirp rate ⁇ , that is, a transmission signal whose frequency changes depending on the chirp rate ⁇ (step ST2 in FIG. 3). .. Since the process of generating a transmission signal whose frequency changes depending on the chirp rate ⁇ is a known technique, detailed description thereof will be omitted.
  • the start frequency of the chirp signal and the end frequency of the chirp signal are already values and are stored in the internal memory of the chirp rate setting unit 51. However, each of the start frequency and the end frequency may be given to the chirp rate setting unit 51 from the outside of the transmission / reception device shown in FIG.
  • the signal generation unit 52 outputs the generated transmission signal to each of the transmission unit 53 and the reception unit 54.
  • the transmission unit 53 When the transmission unit 53 receives the transmission signal from the signal generation unit 52, the transmission unit 53 outputs the transmission signal to the transmission antenna 18 (step ST3 in FIG. 3).
  • the transmitting antenna 18 transmits the transmission signal output from the transmitting unit 53 toward the receiving device 2 (step ST4 in FIG. 3).
  • the receiving antenna 21 receives a transmission signal or the like transmitted from the transmitting device 1, and outputs the received signal to the receiving unit 54.
  • the receiving unit 54 generates a received signal from the signal received by the receiving antenna 21 and the transmission signal generated by the signal generating unit 52, and outputs the received signal to the signal processing unit 55.
  • the signal processing unit 55 When the signal processing unit 55 receives the received signal from the receiving unit 54, the signal processing unit 55 performs a process of demodulating the data contained in the received signal, a process of detecting a target from the received signal, and the like.
  • the signal processing unit 55 outputs the demodulation processing result, the target detection processing result, and the like to the display unit 30.
  • the display unit 30 displays the demodulation processing result or the target detection processing result output from the signal processing unit 55.
  • the chirp rate setting unit 51 that sets the chirp rate ⁇ of the transmission signal and the chirp rate set by the chirp rate setting unit 51 based on the regulation value EIRP of the transmission power density SP in the transmission signal.
  • the transmission device 1 is configured to include a signal generation unit 52 that generates a transmission signal whose frequency changes depending on ⁇ , and a transmission unit 53 that transmits a transmission signal generated by the signal generation unit 52. Therefore, the transmission device 1 can be used even in an environment where the transmission power density SP is regulated.
  • the signal processing unit 55 performs a process of demodulating the data contained in the received signal output from the receiving unit 54, a process of detecting a target from the received signal, and the like. There is. For example, when the signal processing unit 55 executes a process of detecting a target, each time the receiving unit 54 generates a received signal, the signal processing unit 55 integrates the received signals, so that a plurality of signals repeatedly generated by the receiving unit 54 The received signals of may be added. When the signal processing unit 55 adds a plurality of received signals repeatedly generated by the receiving unit 54, the power of the received signal is increased, so that the target detection accuracy is improved. The signal processing unit 55 also adds a plurality of received signals repeatedly generated by the receiving unit 54 when performing a process of demodulating the data included in the received signal output from the receiving unit 54. It may be.
  • the signal processing unit 55 may calculate the correlation between the transmission signal generated by the signal generation unit 52 and the reception signal generated by the reception unit 54. Since the process itself for calculating the correlation between the transmitted signal and the received signal is a known technique, detailed description thereof will be omitted. For example, if the correlation value, which is the result of the correlation calculation, is equal to or greater than the threshold value, the signal processing unit 55 determines that the received signal is a signal that has received the transmission signal transmitted from the transmission device 1. Further, if the correlation value is smaller than the threshold value, the signal processing unit 55 determines that the received signal is not a signal that has received the transmission signal transmitted from the transmission device 1.
  • the signal processing unit 55 determines that the transmission signal transmitted from the transmission device 1 is a received signal, the signal processing unit 55 demodulates the data contained in the reception signal output from the reception unit 54, or the reception signal. Perform processing to detect the target from. If the signal processing unit 55 determines that the transmission signal transmitted from the transmission device 1 is not a received signal, the signal processing unit 55 discards the received signal output from the receiving unit 54, demodulates the data, and uses the received signal. Do not perform processing to detect the target.
  • the chirp rate setting unit 51 calculates a chirp rate ⁇ that matches the multiplication value of the attenuation rate L rop of the transmission power density SP and the square value of the filter width f RBW. There is. However, this is only an example, and the chirp rate setting unit 51 may calculate the chirp rate ⁇ so as to be larger than the multiplication value. If the chirp rate ⁇ is larger than the multiplication value, the transmission device 1 can be used even in an environment where the transmission power density SP is regulated.
  • the chirp rate setting unit 51 calculate the chirp rate ⁇ that is close to the multiplication value.
  • the EEPROM 11 executes the function of the chirp rate setting unit 51 shown in FIG.
  • the transmission device 1 may be provided with hardware other than the EEPROM 11. Therefore, the transmission device 1 is provided with, for example, a CPU (Central Processing Unit), a central processing unit, a processing device, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor) instead of the EEPROM 11. You may.
  • a CPU Central Processing Unit
  • a central processing unit a central processing unit
  • a processing device an arithmetic unit
  • a microprocessor a microcomputer
  • a processor or a DSP (Digital Signal Processor)
  • the DDS 14 executes the function of the signal generation unit 52 shown in FIG.
  • the transmission device 1 may be provided with hardware other than the DDS 14. Therefore, the transmission device 1 may include, for example, a PLL (Phase Locked Loop) instead of the DDS 14.
  • PLL Phase Locked Loop
  • the processor 27 executes the function of the signal processing unit 55 shown in FIG.
  • the receiving device 2 may include hardware other than the processor 27 as long as the function of the signal processing unit 55 shown in FIG. 2 can be executed. Therefore, the receiving device 2 may include, for example, a CPU, a central processing unit, a processing device, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP instead of the processor 27.
  • Embodiment 2 the transmission device 1 including the transmission gain setting unit 62 for setting the transmission gain GTx of the transmission signal will be described.
  • FIG. 7 is a configuration diagram showing the functions of the transmission / reception device according to the second embodiment.
  • the same reference numerals as those in FIG. 2 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • the EEPROM 11 and the FPGA 12 shown in FIG. 1 execute the respective functions of the chirp rate setting unit 61 and the transmission gain setting unit 62 shown in FIG. 7.
  • the chirp rate setting unit 61 sets the chirp rate ⁇ 'of the transmission signal.
  • the chirp rate setting unit 61 outputs the chirp rate ⁇ 'to each of the transmission gain setting unit 62 and the signal generation unit 52.
  • Transmission gain setting unit 62 based on the set chirp rate alpha 'as the regulated value EIRP and chirp rate setting unit 61 of the transmission power density SP in a transmission signal, to set the transmission gain G Tx of the transmitted signal.
  • the transmission gain setting unit 62 outputs the transmission gain GTx to the transmission unit 63, which will be described later.
  • the BPF15, the div16 and the ATT17 shown in FIG. 1 execute the function of the transmission unit 63 shown in FIG. Transmission unit 63, by multiplying the transmission signal generated by the signal generating unit 52 to transmit gain G Tx that is set, and outputs the transmission signal after transmission gain multiplication to the transmission antenna 18 by the transmission gain setting unit 62, A transmission signal is transmitted from the transmission antenna 18.
  • the chirp rate setting unit 61 sets the chirp rate ⁇ 'of the transmission signal.
  • the chirp rate ⁇ 'set by the chirp rate setting unit 61 may be larger or smaller than the chirp rate ⁇ set by the chirp rate setting unit 51 shown in FIG. Further, the chirp rate ⁇ 'may be the same as the chirp rate ⁇ .
  • the chirp rate setting unit 61 outputs the chirp rate ⁇ 'to each of the signal generation unit 52 and the transmission gain setting unit 62.
  • the signal generation unit 52 When the signal generation unit 52 receives the chirp rate ⁇ 'from the chirp rate setting unit 61, the signal generation unit 52 generates a chirp signal having the chirp rate ⁇ ', that is, a transmission signal whose frequency changes according to the chirp rate ⁇ '. The signal generation unit 52 outputs the generated transmission signal to each of the transmission unit 63 and the reception unit 54.
  • Transmission gain setting unit 62 'receives the regulation value EIRP and chirp rate alpha' chirp rate alpha chirp rate setting unit 61 based on the sets the transmission gain G Tx of the transmitted signal.
  • the transmission gain setting unit 62 outputs the set transmission gain GTx to the transmission unit 63.
  • the transmission gain GTx setting process by the transmission gain setting unit 62 will be specifically described.
  • the transmission gain setting unit 62, the transmission power P 0 of the frequency constant transmission signal, the regulation values EIRP and attenuation factor L prop ' by substituting the following equation (7), the transmission gain G Tx calculate.
  • the transmission gain setting unit 62 outputs the calculated transmission gain GTx to the transmission unit 63.
  • the transmission power density SP of the transmission signal generated by the signal generation unit 52 may be larger than the regulated value EIRP, as shown in FIG.
  • FIG. 8 is an explanatory diagram showing an example of a transmission power density SP larger than the regulation value EIRP.
  • transmission gain G Tx calculated by the transmission gain setting unit 62, as shown in FIG. 9, by lowering the transmission power density SP, the transmission power density SP It is a gain that matches the regulation value EIRP. At this time, the transmission gain G Tx becomes smaller than 1.
  • the transmission gain G Tx is an explanatory diagram showing a state of lowering the high transmission power density SP to the restriction value EIRP.
  • the transmission power density SP of the transmission signal generated by the signal generation unit 52 may be smaller than the regulated value EIRP, as shown in FIG.
  • FIG. 10 is an explanatory diagram showing an example of a transmission power density SP smaller than the regulation value EIRP.
  • transmission gain G Tx calculated by the transmission gain setting unit 62, as shown in FIG. 11, by increasing the transmission power density SP, the transmission power density SP It is a gain that matches the regulation value EIRP. At this time, the transmission gain G Tx becomes larger than 1.
  • the transmission gain G Tx is an explanatory diagram showing a state of raising the low transmission power density SP to the restriction value EIRP.
  • the transmission power density SP of the transmission signal generated by the signal generation unit 52 may be the same as the regulation value EIRP.
  • transmission gain G Tx calculated by the transmission gain setting unit 62, a gain does not change the transmission power density SP. At this time, the transmission gain G Tx becomes 1.
  • the transmission unit 63 When the transmission unit 63 receives the transmission gain G Tx from the transmission gain setting unit 62, the transmission unit 63 multiplies the transmission gain G Tx by the transmission signal generated by the signal generation unit 52. The transmission unit 63 outputs the transmission signal after the transmission gain multiplication to the transmission antenna 18, so that the transmission signal is transmitted from the transmission antenna 18.
  • the chirp rate setting unit 61 that sets the chirp rate ⁇ 'of the transmission signal, and the chirp rate ⁇ 'set by the regulation value EIRP of the transmission power density SP in the transmission signal and the chirp rate setting unit 61.
  • the transmission gain setting unit 62 for setting a transmission gain G Tx of the transmitted signal
  • a signal generator 52 for generating a transmission signal whose frequency varies by the chirp rate alpha 'set by the chirp rate setting unit 61 , to include a transmitting unit 63 that multiplies the transmission signal generated transmission gain G Tx set by transmitting the gain setting unit 62 by the signal generation unit 52 transmits the transmission signal after transmission gain multiplication, the transmission device 1 was configured. Therefore, the transmission device 1 can be used even in an environment where the transmission power density SP is regulated.
  • the transmission gain setting unit 62, transmission power density SP of the transmission signal to be transmitted is calculated transmission gain G Tx as to match the regulated value EIRP by transmitter 63.
  • transmission gain setting unit 62, transmission power density SP of the transmission signal transmitted by the transmission unit 63 may calculate the transmission gain G Tx smaller than the regulated value EIRP .. If the transmission power density SP of the transmission signal transmitted by the transmission unit 63 is smaller than the regulated value EIRP, the transmission device 1 can be used even in an environment where the transmission power density SP is regulated.
  • the transmission gain setting unit 62 has a transmission gain in which the transmission power density SP is close to the regulation value EIRP. It is desirable to calculate G Tx.
  • the present invention is suitable for a transmission device that transmits a transmission signal and a transmission / reception device that transmits a transmission signal and generates a reception signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Transmitters (AREA)

Abstract

A transmitter (1) is configured so as to comprise: a chirp rate setting unit (51) that sets a chirp rate α of a signal to be transmitted on the basis of a regulatory value EIRP of a transmitted power density SP in the signal to be transmitted; a signal generating unit (52) that generates the signal to be transmitted, varying in frequency according to the chirp rate α set by the chirp rate setting unit (51); and a transmitting unit (53) that transmits the signal to be transmitted, the signal being generated by the signal generating unit (52).

Description

送信装置及び送受信装置Transmitter and transmitter / receiver
 この発明は、送信信号を送信する送信装置と、送信信号の送信と受信信号の生成とを行う送受信装置とに関するものである。 The present invention relates to a transmission device that transmits a transmission signal and a transmission / reception device that transmits a transmission signal and generates a reception signal.
 送信装置から送信される送信信号の単位周波数当りの送信電力(以下、「送信電力密度」と称する)が大きくなると、送信装置は、当該送信装置と近隣に存在している通信機器に電波干渉を与えることがある。電波干渉を防止するために、送信装置から送信される送信信号の送信電力密度に対して、規制値を設けている国がある。
 例えば、日本国の電波法は、送信電力密度の規制値(以下、単に「規制値」と称する)に相当するものとして、電界強度の上限値を規定している。具体的には、日本国の電波法は、送信装置として、例えば、微弱無線局を設置する場合、微弱無線局から3mの地点における電界強度の上限値を、送信信号の周波数に応じて規定している。
When the transmission power per unit frequency of the transmission signal transmitted from the transmission device (hereinafter referred to as "transmission power density") becomes large, the transmission device causes radio wave interference to the communication device existing in the vicinity of the transmission device. May give. In order to prevent radio wave interference, some countries have set a regulation value for the transmission power density of the transmission signal transmitted from the transmission device.
For example, the Radio Law of Japan stipulates the upper limit of electric field strength as equivalent to the regulation value of transmission power density (hereinafter, simply referred to as "regulation value"). Specifically, the Radio Law of Japan stipulates the upper limit of the electric field strength at a point 3 m from the weak radio station, for example, when a weak radio station is installed as a transmitting device, according to the frequency of the transmitted signal. ing.
 ところで、送信装置には、送信電力密度を低下させる目的で、キャリア周波数をランダム符号系列によってスペクトラム拡散させるものがある(例えば、特許文献1参照)。 By the way, some transmitters spread the carrier frequency by a random code sequence for the purpose of lowering the transmission power density (see, for example, Patent Document 1).
特開平1-66585号公報Japanese Unexamined Patent Publication No. 1-66585
 送信装置から送信される送信信号が、キャリア周波数をランダム符号系列によってスペクトラム拡散された信号である場合、送信信号の送信電力密度が、規制値よりも大きくなることがある。
 送信信号の送信電力密度が、規制値よりも大きくなる送信装置は、送信電力密度の規制がある環境下では使用することができないという課題があった。
When the transmission signal transmitted from the transmission device is a signal whose carrier frequency is spread spectrum by a random code sequence, the transmission power density of the transmission signal may be larger than the regulation value.
There is a problem that a transmission device in which the transmission power density of a transmission signal becomes larger than the regulation value cannot be used in an environment where the transmission power density is regulated.
 この発明は上記のような課題を解決するためになされたもので、送信電力密度の規制がある環境下でも使用することができる送信装置及び送受信装置を得ることを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to obtain a transmission device and a transmission / reception device that can be used even in an environment where the transmission power density is regulated.
 この発明に係る送信装置は、送信信号における送信電力密度の規制値に基づいて、送信信号のチャープ率を設定するチャープ率設定部と、チャープ率設定部により設定されたチャープ率によって周波数が変化する送信信号を生成する信号生成部と、信号生成部により生成された送信信号を送信する送信部とを備えるようにしたものである。 In the transmission device according to the present invention, the frequency changes depending on the chirp rate setting unit that sets the chirp rate of the transmission signal and the chirp rate set by the chirp rate setting unit based on the regulation value of the transmission power density in the transmission signal. It is provided with a signal generation unit that generates a transmission signal and a transmission unit that transmits a transmission signal generated by the signal generation unit.
 この発明によれば、送信信号における送信電力密度の規制値に基づいて、送信信号のチャープ率を設定するチャープ率設定部を備えるように、送信装置を構成した。したがって、この発明に係る送信装置は、送信電力密度の規制がある環境下でも使用することができる。 According to the present invention, the transmission device is configured to include a chirp rate setting unit that sets the chirp rate of the transmission signal based on the regulation value of the transmission power density in the transmission signal. Therefore, the transmitter according to the present invention can be used even in an environment where the transmission power density is regulated.
実施の形態1に係る送受信装置のハードウェアを示す構成図である。It is a block diagram which shows the hardware of the transmission / reception device which concerns on Embodiment 1. FIG. 実施の形態1に係る送受信装置の機能を示す構成図である。It is a block diagram which shows the function of the transmission / reception device which concerns on Embodiment 1. FIG. 実施の形態1に係る送信装置1の処理を示すフローチャートである。It is a flowchart which shows the process of the transmission device 1 which concerns on Embodiment 1. FIG. 送信信号であるチャープ信号を示す説明図である。It is explanatory drawing which shows the chirp signal which is a transmission signal. 送信信号がチャープ信号であるときの送信信号の送信電力密度を示す説明図である。It is explanatory drawing which shows the transmission power density of the transmission signal when the transmission signal is a chirp signal. チャープ信号のチャープ率αが、図5に示すチャープ信号のチャープ率αよりも大きく、かつ、式(2)の関係を満足しない場合のチャープ信号の送信電力密度を示す説明図である。It is explanatory drawing which shows the transmission power density of a chirp signal when the chirp rate α of a chirp signal is larger than the chirp rate α of the chirp signal shown in FIG. 5 and does not satisfy the relation of the equation (2). 実施の形態2に係る送受信装置の機能を示す構成図である。It is a block diagram which shows the function of the transmission / reception device which concerns on Embodiment 2. FIG. 規制値EIRPよりも大きい送信電力密度SPの一例を示す説明図である。It is explanatory drawing which shows an example of the transmission power density SP which is larger than the regulation value EIRP. 送信ゲインGTxによって、規制値EIRPよりも大きい送信電力密度SPを下げている様子を示す説明図である。The transmission gain G Tx, is an explanatory diagram showing a state of lowering the high transmission power density SP to the restriction value EIRP. 規制値EIRPよりも小さい送信電力密度SPの一例を示す説明図である。It is explanatory drawing which shows an example of the transmission power density SP which is smaller than a regulation value EIRP. 送信ゲインGTxによって、規制値EIRPよりも小さい送信電力密度SPを上げている様子を示す説明図である。The transmission gain G Tx, is an explanatory diagram showing a state of raising the low transmission power density SP to the restriction value EIRP.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1に係る送受信装置のハードウェアを示す構成図である。図1に示す送受信装置は、送信装置1と受信装置2とを備えている。
 図2は、実施の形態1に係る送受信装置の機能を示す構成図である。
Embodiment 1.
FIG. 1 is a configuration diagram showing the hardware of the transmission / reception device according to the first embodiment. The transmission / reception device shown in FIG. 1 includes a transmission device 1 and a reception device 2.
FIG. 2 is a configuration diagram showing the functions of the transmission / reception device according to the first embodiment.
 図1において、EEPROM(Electrically Erasable Programmable Read-Only Memory)11は、後述するFPGA(Field Programmable Gate Array)12の処理手順を示すプログラム等を格納している。
 FPGA12は、EEPROM11に格納されているプログラムを読み込み、後述するクロック13から出力された周波数fCLK,FGPAのクロック信号に同期して、当該プログラムが示す処理手順に従って動作する。
 FPGA12は、当該プログラムが示す処理手順に従って動作することにより、送信信号のチャープ率αを設定し、チャープ率αを後述するDDS(Direct Digital Synthesizer)14に出力する。
 また、FPGA12は、当該プログラムが示す処理手順に従って動作することにより、送信信号の送信ゲインGTxを設定し、送信ゲインGTxを後述する送信用可変アッテネータ(以下、「ATT」と称する)17に出力する。
 ただし、図1に示す送受信装置では、説明の便宜上、FPGA12が、ゲインが“1”の送信ゲインGTxを設定するものとする。
In FIG. 1, an EEPROM (Electrically Erasable Program Read-Only Memory) 11 stores a program or the like showing a processing procedure of an FPGA (Field Programmable Gate Array) 12, which will be described later.
The FPGA 12 reads the program stored in the EEPROM 11 and operates according to the processing procedure indicated by the program in synchronization with the clock signals of the frequencies f CLK and FGPA output from the clock 13 described later.
The FPGA 12 sets the chirp rate α of the transmission signal by operating according to the processing procedure indicated by the program, and outputs the chirp rate α to the DDS (Direct Digital Synthesizer) 14, which will be described later.
Further, the FPGA 12 sets the transmission gain G Tx of the transmission signal by operating according to the processing procedure indicated by the program, and sets the transmission gain G Tx to the transmission variable attenuator (hereinafter, referred to as “ATT”) 17 described later. Output.
However, in transmission and reception apparatus shown in FIG. 1, for convenience of explanation, FPGA 12 is, the gain is assumed to set the transmission gain G Tx "1".
 EEPROM11及びFPGA12は、図2に示すチャープ率設定部51の機能を実行する。
 チャープ率設定部51は、送信信号における送信電力密度の規制値EIRPに基づいて、送信信号のチャープ率αを設定する。
 チャープ率設定部51は、チャープ率αを後述する信号生成部52に出力する。
The EEPROM 11 and the FPGA 12 execute the function of the chirp rate setting unit 51 shown in FIG.
The chirp rate setting unit 51 sets the chirp rate α of the transmission signal based on the regulation value EIRP of the transmission power density in the transmission signal.
The chirp rate setting unit 51 outputs the chirp rate α to the signal generation unit 52, which will be described later.
 クロック13は、周波数fCLKのクロック信号を発振する。
 クロック13は、周波数fCLKのクロック信号から、DDS14のシステムクロックとして、周波数fCLK,DDSのクロック信号を生成し、周波数fCLK,DDSのクロック信号をDDS14に出力する。
 クロック13は、周波数fCLKのクロック信号から、FPGA12の動作クロックとして、周波数fCLK,FGPAのクロック信号を生成し、周波数fCLK,FGPAのクロック信号をFPGA12に出力する。
 クロック13は、周波数fCLKのクロック信号から、後述するADC26のサンプリングクロックとして、周波数fCLK,ADCのクロック信号を生成し、周波数fCLK,ADCのクロック信号をADC26に出力する。
 クロック13は、周波数fCLKのクロック信号から、後述するプロセッサ27の動作クロックとして、周波数fCLK,Proのクロック信号を生成し、周波数fCLK,Proのクロック信号をプロセッサ27に出力する。
The clock 13 oscillates a clock signal having a frequency of f CLK.
The clock 13 is the clock signal of frequency f CLK, as the system clock of DDS14, frequency f CLK, and generates a DDS clock signal, and outputs the frequency f CLK, the DDS clock signal DDS14.
The clock 13 is the clock signal of frequency f CLK, as the operation clock of the FPGA 12, the frequency f CLK, and generates a clock signal of FGPA, and outputs the frequency f CLK, a clock signal of FGPA the FPGA 12.
The clock 13 is the clock signal of frequency f CLK, as a sampling clock described later ADC 26, the frequency f CLK, and generates a clock signal of the ADC, and outputs the frequency f CLK, the clock signal of the ADC to the ADC 26.
The clock 13 is the clock signal of frequency f CLK, as the operation clock of the processor 27 to be described later, the frequency f CLK, and generates a clock signal of Pro, and outputs the frequency f CLK, a clock signal of Pro processor 27.
 DDS14は、低周波から高周波に亘って、非常に高速な周波数掃引が可能な装置であり、クロック13から出力された周波数fCLK,DDSのクロック信号に同期して動作することによって、チャープ信号を生成する。
 DDS14は、生成したチャープ信号を後述するバンドパスフィルタ(以下、「BPF」と称する)15に出力する。
 クロック13及びDDS14は、図2に示す信号生成部52の機能を実行する。
The DDS 14 is a device capable of very high-speed frequency sweeping from low frequency to high frequency, and operates in synchronization with the clock signals of frequencies f CLK and DDS output from the clock 13 to generate a chirp signal. Generate.
The DDS 14 outputs the generated chirp signal to a bandpass filter (hereinafter, referred to as “BPF”) 15 described later.
The clock 13 and the DDS 14 execute the function of the signal generation unit 52 shown in FIG.
 信号生成部52は、チャープ率設定部51により設定されたチャープ率αによって周波数が変化する送信信号を生成し、送信信号を送信部53及び受信部54のそれぞれに出力する。 The signal generation unit 52 generates a transmission signal whose frequency changes according to the chirp rate α set by the chirp rate setting unit 51, and outputs the transmission signal to each of the transmission unit 53 and the reception unit 54.
 BPF15は、DDS14から出力された送信信号に含まれている周波数成分のうち、送信信号であるチャープ信号の下限の周波数(以下、「開始周波数」と称する)よりも周波数が低い周波数成分と、チャープ信号の上限の周波数(以下、「終了周波数」と称する)よりも周波数が高い周波数成分との通過を阻止する。
 したがって、BPF15は、DDS14から出力された送信信号に含まれている周波数成分のうち、開始周波数と終了周波数との間の周波数帯域に含まれている周波数成分のみを通過させる。
Among the frequency components included in the transmission signal output from the DDS 14, the BPF 15 includes a frequency component whose frequency is lower than the lower limit frequency of the chirp signal which is the transmission signal (hereinafter, referred to as “start frequency”) and the chirp. It blocks passage with frequency components whose frequency is higher than the upper limit frequency of the signal (hereinafter referred to as "end frequency").
Therefore, the BPF 15 passes only the frequency components included in the frequency band between the start frequency and the end frequency among the frequency components included in the transmission signal output from the DDS 14.
 分配器(以下、「div」と称する)16は、BPF15を通過してきた送信信号を2分配する。
 div16は、分配後の一方の送信信号をATT17に出力し、分配後の他方の送信信号を後述する混合器(以下、「MIX」と称する)24に出力する。
 ATT17は、FPGA12から出力された送信ゲインGTxを、div16から出力された送信信号に乗算し、送信ゲイン乗算後の送信信号を後述する送信アンテナ18に出力する。
 ただし、図1に示す送受信装置では、説明の便宜上、FPGA12が、ゲインが“1”の送信ゲインGTxを設定しているため、ATT17は、送信信号の増幅も、送信信号の減衰も行わない。したがって、図1に示す送受信装置は、ATT17を設けていないことに相当する。
The distributor (hereinafter referred to as “div”) 16 distributes the transmission signal that has passed through the BPF 15 into two.
The div 16 outputs one transmitted signal after distribution to the ATT 17, and outputs the other transmitted signal after distribution to a mixer (hereinafter, referred to as “MIX”) 24 described later.
ATT17 is the transmission gain G Tx outputted from the FPGA 12, and multiplies the transmission signal output from the Div16, and outputs to the transmitting antenna 18 to be described later transmission signal after transmission gain multiplication.
However, in transmission and reception apparatus shown in FIG. 1, for convenience of explanation, the FPGA 12, the gain is set the transmission gain G Tx of "1", ATT17 also amplifies the transmission signal and does not even attenuation of the transmitted signal .. Therefore, the transmission / reception device shown in FIG. 1 corresponds to the fact that the ATT 17 is not provided.
 BPF15、div16及びATT17は、図2に示す送信部53の機能を実行する。
 送信部53は、信号生成部52により生成された送信信号を送信アンテナ18に出力することによって、送信アンテナ18から送信信号を送信させる。
BPF15, div16 and ATT17 execute the function of the transmission unit 53 shown in FIG.
The transmission unit 53 outputs the transmission signal generated by the signal generation unit 52 to the transmission antenna 18, so that the transmission signal is transmitted from the transmission antenna 18.
 送信アンテナ18は、ATT17から出力された送信信号を、受信装置2に向けて送信する。
 受信アンテナ21は、送信装置1から送信された送信信号等を受信し、受信した信号を後述するBPF22に出力する。
The transmitting antenna 18 transmits the transmission signal output from the ATT 17 toward the receiving device 2.
The receiving antenna 21 receives the transmission signal or the like transmitted from the transmission device 1 and outputs the received signal to the BPF 22 described later.
 BPF22は、受信アンテナ21から出力された信号に含まれている周波数成分のうち、BPF15と同様に、チャープ信号の開始周波数よりも周波数が低い周波数成分と、チャープ信号の終了周波数よりも周波数が高い周波数成分との通過を阻止する。
 したがって、BPF22は、受信アンテナ21から出力された信号に含まれている周波数成分のうち、開始周波数と終了周波数との間の周波数帯域に含まれている周波数成分のみを通過させる。
 低雑音増幅器(以下、「LNA」と称する)23は、BPF22を通過してきた信号を増幅し、増幅後の信号をMIX24に出力する。
Of the frequency components contained in the signal output from the receiving antenna 21, the BPF 22 has a frequency component lower than the start frequency of the chirp signal and a frequency component higher than the end frequency of the chirp signal, similar to the BPF 15. Blocks passage with frequency components.
Therefore, the BPF 22 passes only the frequency components included in the frequency band between the start frequency and the end frequency among the frequency components included in the signal output from the receiving antenna 21.
The low noise amplifier (hereinafter referred to as “LNA”) 23 amplifies the signal that has passed through the BPF 22, and outputs the amplified signal to the MIX 24.
 MIX24は、LNA23から出力された増幅後の信号と、div16から出力された送信信号とを混合することによってビート信号を生成し、ビート信号を後述する低域通過フィルタ(以下、「LPF」と称する)25に出力する。
 LPF25は、MIX24から出力されたビート信号を通過させて、MIX24から出力された高調波等のノイズの通過を阻止する。
The MIX 24 generates a beat signal by mixing the amplified signal output from the LNA 23 and the transmission signal output from the div 16, and the beat signal is referred to as a low-pass filter (hereinafter, referred to as “LPF”) described later. ) Output to 25.
The LPF 25 passes the beat signal output from the MIX 24 and blocks the passage of noise such as harmonics output from the MIX 24.
 ADC26は、クロック13から出力された周波数fCLK,ADCのクロック信号に従って、LPF25を通過してきたビート信号をサンプリングし、サンプリングしたビート信号をアナログ信号からデジタル信号に変換する。
 ADC26は、受信装置2の受信信号として、デジタル信号をプロセッサ27に出力する。
The ADC 26 samples the beat signal that has passed through the LPF 25 according to the clock signals of frequencies f CLK and ADC output from the clock 13, and converts the sampled beat signal from an analog signal to a digital signal.
The ADC 26 outputs a digital signal to the processor 27 as a reception signal of the receiving device 2.
 BPF22、LNA23、MIX24、LPF25及びADC26は、図2に示す受信部54の機能を実行する。
 受信部54は、受信アンテナ21により受信された信号と、信号生成部52により生成された送信信号とから受信信号を生成する。
The BPF22, LNA23, MIX24, LPF25 and ADC26 perform the function of the receiver 54 shown in FIG.
The receiving unit 54 generates a received signal from the signal received by the receiving antenna 21 and the transmission signal generated by the signal generating unit 52.
 プロセッサ27は、ADC26から受信信号を受ける毎に、受信信号を後述するメモリ28に格納する。
 また、プロセッサ27は、クロック13から出力された周波数fCLK,Proのクロック信号に同期して、ADC26から出力された受信信号に含まれているデータを復調する処理、あるいは、受信信号から目標を検出する処理等を実施する。プロセッサ27は、復調の処理結果、あるいは、目標の検出処理結果等を後述するデータストレージ29及び後述する表示部30のそれぞれに出力する。
Each time the processor 27 receives a received signal from the ADC 26, the processor 27 stores the received signal in the memory 28 described later.
Further, the processor 27 performs a process of demodulating the data included in the received signal output from the ADC 26 in synchronization with the clock signals of the frequencies f CLK and Pro output from the clock 13, or sets a target from the received signal. Perform detection processing, etc. The processor 27 outputs the demodulation processing result, the target detection processing result, and the like to each of the data storage 29 and the display unit 30 described later.
 プロセッサ27は、図2に示す信号処理部55の機能を実行する。
 信号処理部55は、受信信号に含まれているデータを復調する処理、あるいは、受信信号から目標を検出する処理等を実施する。
The processor 27 executes the function of the signal processing unit 55 shown in FIG.
The signal processing unit 55 performs a process of demodulating the data included in the received signal, a process of detecting a target from the received signal, and the like.
 メモリ28は、受信信号を記録するための記録媒体である。
 データストレージ29は、例えば、磁気記憶媒体又は半導体素子メモリによって実現される。
 データストレージ29は、プロセッサ27から出力された復調の処理結果又は目標の検出処理結果等を記録するための記録媒体である。
 表示部30は、プロセッサ27から出力された復調の処理結果又は目標の検出処理結果等を表示する。
The memory 28 is a recording medium for recording a received signal.
The data storage 29 is realized by, for example, a magnetic storage medium or a semiconductor element memory.
The data storage 29 is a recording medium for recording the demodulation processing result or the target detection processing result output from the processor 27.
The display unit 30 displays the demodulation processing result or the target detection processing result output from the processor 27.
 次に、図1及び図2に示す送受信装置の動作について説明する。
 図3は、実施の形態1に係る送信装置1の処理を示すフローチャートである。
 まず、チャープ率設定部51は、送信信号における送信電力密度の規制値EIRPに基づいて、送信信号のチャープ率αを設定する(図3のステップST1)。
 以下、チャープ率設定部51によるチャープ率αの設定処理を具体的に説明する。
Next, the operation of the transmission / reception device shown in FIGS. 1 and 2 will be described.
FIG. 3 is a flowchart showing the processing of the transmission device 1 according to the first embodiment.
First, the chirp rate setting unit 51 sets the chirp rate α of the transmission signal based on the regulation value EIRP of the transmission power density in the transmission signal (step ST1 in FIG. 3).
Hereinafter, the chirp rate α setting process by the chirp rate setting unit 51 will be specifically described.
 チャープ率αは、以下の式(1)に示すように、チャープ信号の時間ステップ幅Δtに対する周波数ステップ幅Δfの比で表される。時間ステップ幅Δtは、チャープ信号において、周波数が一定の時間帯の長さであり、クロック13により生成される周波数fCLK,FGPAのクロック信号の時間幅に相当する。周波数ステップ幅Δfは、チャープ信号における1回当りの周波数変化幅である。
Figure JPOXMLDOC01-appb-I000001
The chirp rate α is represented by the ratio of the frequency step width Δf to the time step width Δt of the chirp signal, as shown in the following equation (1). The time step width Δt is the length of the time zone in which the frequency is constant in the chirp signal, and corresponds to the time width of the clock signals of the frequencies f CLK and FPGA generated by the clock 13. The frequency step width Δf is the frequency change width per time in the chirp signal.
Figure JPOXMLDOC01-appb-I000001
 図4は、送信信号であるチャープ信号を示す説明図である。
 例えば、チャープ信号の時間ステップ幅Δtが一定である場合、周波数ステップ幅Δfが大きくなれば、チャープ率αが大きくなり、周波数ステップ幅Δfが小さくなれば、チャープ率αが小さくなる。
FIG. 4 is an explanatory diagram showing a chirp signal which is a transmission signal.
For example, when the time step width Δt of the chirp signal is constant, the chirp ratio α increases as the frequency step width Δf increases, and the chirp ratio α decreases as the frequency step width Δf decreases.
 図5は、送信信号がチャープ信号であるときの送信信号の送信電力密度を示す説明図である。図5において、SPは、送信信号がチャープ信号であるときの送信信号の送信電力密度である。送信電力密度SPは、チャープ率αとfRBWとが以下の式(2)の関係を満足する場合、周波数が一定の送信信号の送信電力密度と同じ値となる。

Figure JPOXMLDOC01-appb-I000002
 式(2)において、fRBWは、送信装置1の送信アンテナ18から、例えば、3mの地点における電界強度を計測する計測装置が実装しているIF(Intermediate Frequency)フィルタのフィルタ幅である。
 図6は、チャープ信号のチャープ率αが、図5に示すチャープ信号のチャープ率αよりも大きく、かつ、式(2)の関係を満足しない場合のチャープ信号の送信電力密度を示す説明図である。図6において、SPは、チャープ信号のチャープ率αが、図5に示すチャープ信号のチャープ率αよりも大きく、かつ、式(2)の関係を満足しない場合のチャープ信号の送信電力密度である。
FIG. 5 is an explanatory diagram showing the transmission power density of the transmission signal when the transmission signal is a chirp signal. In FIG. 5, SP 1 is the transmission power density of the transmission signal when the transmission signal is a chirp signal. The transmission power density SP 1 has the same value as the transmission power density of a transmission signal having a constant frequency when the chirp ratio α and f RBW satisfy the relationship of the following equation (2).

Figure JPOXMLDOC01-appb-I000002
In the formula (2), f RBW is the filter width of the IF (Intermediate Frequency) filter mounted by the measuring device for measuring the electric field strength at a point of, for example, 3 m from the transmitting antenna 18 of the transmitting device 1.
FIG. 6 is an explanatory diagram showing the transmission power density of the chirp signal when the chirp rate α of the chirp signal is larger than the chirp rate α of the chirp signal shown in FIG. 5 and does not satisfy the relationship of the equation (2). is there. In FIG. 6, SP 2 is the transmission power density of the chirp signal when the chirp ratio α of the chirp signal is larger than the chirp ratio α of the chirp signal shown in FIG. 5 and does not satisfy the relationship of the equation (2). is there.
 図5に示すチャープ信号及び図6に示すチャープ信号のそれぞれが、図4に示す送信信号から生成されたものである場合、それぞれのチャープ信号は、図4に示す送信信号の周波数がスペクトル拡散されたものである。図5に示すチャープ信号よりも図6に示すチャープ信号の方が、スペクトル拡散率が大きいため、図6に示すチャープ信号の送信電力密度SPは、図5に示すチャープ信号の送信電力密度SPよりも小さい。 When each of the chirp signal shown in FIG. 5 and the chirp signal shown in FIG. 6 is generated from the transmission signal shown in FIG. 4, the frequency of the transmission signal shown in FIG. 4 is spread spectrum of each chirp signal. It is a thing. Since the chirp signal shown in FIG. 6 has a larger spectral diffusion rate than the chirp signal shown in FIG. 5, the transmission power density SP 2 of the chirp signal shown in FIG. 6 is the transmission power density SP of the chirp signal shown in FIG. Less than 1.
 スペクトル拡散による送信電力密度SPの減衰率Lpropと、チャープ信号のチャープ率αとの関係は、以下の式(3)で表される。減衰率Lpropは、チャープ信号の生成元の送信信号の送信電力密度からの、チャープ信号の送信電力密度SPの減衰率である。
Figure JPOXMLDOC01-appb-I000003
 ただし、チャープ率αがフィルタ幅fRBWの2乗値以下であるときは(式(2)を参照)、Lprop=1である。
 計測装置は、送信装置1の送信アンテナ18から送信された送信信号を受信し、受信した信号のうち、IFフィルタを通過してきた信号から、所望の周波数帯域の電界強度を計測するものである。
 IFフィルタは、例えば、BPFによって実現される。IFフィルタのフィルタ幅fRBWは、例えば、図1に示すBPF15の通過帯域に相当する幅を有している。
 なお、IFフィルタのフィルタ幅fRBWは、既値であり、チャープ率設定部51の内部メモリに格納されている。ただし、フィルタ幅fRBWは、図1に示す送受信装置の外部からチャープ率設定部51に与えられるものであってもよい。
 スペクトル拡散による送信電力密度SPの減衰率Lpropは、式(3)に示すように、チャープ信号のチャープ率αが大きい程、大きくなり、送信電力密度SPは、送信電力密度SPの減衰率Lpropが大きい程、小さくなる。したがって、図6に示すチャープ信号の送信電力密度SPは、上述したように、図5に示すチャープ信号の送信電力密度SPよりも小さくなる。
The relationship between the attenuation rate L rop of the transmission power density SP due to spectral diffusion and the chirp rate α of the chirp signal is expressed by the following equation (3). The attenuation factor L rop is the attenuation rate of the transmission power density SP of the chirp signal from the transmission power density of the transmission signal from which the chirp signal is generated.
Figure JPOXMLDOC01-appb-I000003
However, when the chirp ratio α is equal to or less than the square value of the filter width f RBW (see equation (2)), L rop = 1.
The measuring device receives the transmission signal transmitted from the transmission antenna 18 of the transmission device 1, and measures the electric field strength in a desired frequency band from the received signal that has passed through the IF filter.
The IF filter is realized by, for example, BPF. The filter width f RBW of the IF filter has, for example, a width corresponding to the pass band of the BPF 15 shown in FIG.
The filter width f RBW of the IF filter is an existing value and is stored in the internal memory of the chirp rate setting unit 51. However, the filter width f RBW may be given to the chirp rate setting unit 51 from the outside of the transmission / reception device shown in FIG.
As shown in Eq. (3), the attenuation rate L rop of the transmission power density SP due to spectral diffusion increases as the chirp rate α of the chirp signal increases, and the transmission power density SP becomes the attenuation rate L of the transmission power density SP. The larger the probe, the smaller it becomes. Therefore, the transmission power density SP 2 of the chirp signal shown in FIG. 6 is smaller than the transmission power density SP 1 of the chirp signal shown in FIG. 5, as described above.
 送信信号であるチャープ信号の送信電力密度SPが、規制値EIRP以下になる条件は、以下の式(4)に示される。
Figure JPOXMLDOC01-appb-I000004
 式(4)において、Pは、チャープ信号の生成元の送信信号の送信電力、即ち、周波数が一定の送信信号の送信電力である。規制値EIRP及び送信電力Pのそれぞれは、既値であり、チャープ率設定部51の内部メモリに格納されている。ただし、規制値EIRP及び送信電力Pのそれぞれは、図1に示す送受信装置の外部からチャープ率設定部51に与えられるものであってもよい。
The condition that the transmission power density SP of the chirp signal, which is the transmission signal, becomes equal to or less than the regulation value EIRP is shown in the following equation (4).
Figure JPOXMLDOC01-appb-I000004
In the formula (4), P 0 is the transmission power of the transmission signal from which the chirp signal is generated, that is, the transmission power of the transmission signal having a constant frequency. Each of the regulated value EIRP and the transmission power P 0 is an existing value and is stored in the internal memory of the chirp rate setting unit 51. However, each of the regulated value EIRP and the transmission power P 0 may be given to the chirp rate setting unit 51 from the outside of the transmission / reception device shown in FIG.
 チャープ率設定部51は、周波数が一定の送信信号の送信電力Pと規制値EIRPとを、以下の式(5)に代入することによって、送信電力密度SPの減衰率Lpropを算出する。
Figure JPOXMLDOC01-appb-I000005
 次に、チャープ率設定部51は、減衰率Lpropとフィルタ幅fRBWとを式(3)に代入することによって、チャープ率αを算出する。
 チャープ率設定部51は、算出したチャープ率αを信号生成部52に出力する。
The chirp rate setting unit 51 calculates the attenuation rate L rop of the transmission power density SP by substituting the transmission power P 0 of the transmission signal having a constant frequency and the regulation value EIRP into the following equation (5).
Figure JPOXMLDOC01-appb-I000005
Next, the chirp rate setting unit 51 calculates the chirp rate α by substituting the attenuation factor L rop and the filter width f RBW into the equation (3).
The chirp rate setting unit 51 outputs the calculated chirp rate α to the signal generation unit 52.
 信号生成部52は、チャープ率設定部51からチャープ率αを受けると、チャープ率がαであるチャープ信号、即ち、チャープ率αによって周波数が変化する送信信号を生成する(図3のステップST2)。
 チャープ率αによって周波数が変化する送信信号の生成処理自体は、公知の技術であるため詳細な説明を省略する。
 なお、チャープ信号の開始周波数及びチャープ信号の終了周波数のそれぞれは、既値であり、チャープ率設定部51の内部メモリに格納されている。ただし、開始周波数及び終了周波数のそれぞれは、図1に示す送受信装置の外部からチャープ率設定部51に与えられるものであってもよい。
 信号生成部52は、生成した送信信号を送信部53及び受信部54のそれぞれに出力する。
When the signal generation unit 52 receives the chirp rate α from the chirp rate setting unit 51, the signal generation unit 52 generates a chirp signal having a chirp rate α, that is, a transmission signal whose frequency changes depending on the chirp rate α (step ST2 in FIG. 3). ..
Since the process of generating a transmission signal whose frequency changes depending on the chirp rate α is a known technique, detailed description thereof will be omitted.
The start frequency of the chirp signal and the end frequency of the chirp signal are already values and are stored in the internal memory of the chirp rate setting unit 51. However, each of the start frequency and the end frequency may be given to the chirp rate setting unit 51 from the outside of the transmission / reception device shown in FIG.
The signal generation unit 52 outputs the generated transmission signal to each of the transmission unit 53 and the reception unit 54.
 送信部53は、信号生成部52から送信信号を受けると、送信信号を送信アンテナ18に出力する(図3のステップST3)。
 送信アンテナ18は、送信部53から出力された送信信号を、受信装置2に向けて送信する(図3のステップST4)。
When the transmission unit 53 receives the transmission signal from the signal generation unit 52, the transmission unit 53 outputs the transmission signal to the transmission antenna 18 (step ST3 in FIG. 3).
The transmitting antenna 18 transmits the transmission signal output from the transmitting unit 53 toward the receiving device 2 (step ST4 in FIG. 3).
 受信アンテナ21は、送信装置1から送信された送信信号等を受信し、受信した信号を受信部54に出力する。
 受信部54は、受信アンテナ21により受信された信号と、信号生成部52により生成された送信信号とから受信信号を生成し、受信信号を信号処理部55に出力する。
The receiving antenna 21 receives a transmission signal or the like transmitted from the transmitting device 1, and outputs the received signal to the receiving unit 54.
The receiving unit 54 generates a received signal from the signal received by the receiving antenna 21 and the transmission signal generated by the signal generating unit 52, and outputs the received signal to the signal processing unit 55.
 信号処理部55は、受信部54から受信信号を受けると、受信信号に含まれているデータを復調する処理、あるいは、受信信号から目標を検出する処理等を実施する。
 信号処理部55は、復調の処理結果又は目標の検出処理結果等を表示部30に出力する。
 表示部30は、信号処理部55から出力された復調の処理結果又は目標の検出処理結果等を表示する。
When the signal processing unit 55 receives the received signal from the receiving unit 54, the signal processing unit 55 performs a process of demodulating the data contained in the received signal, a process of detecting a target from the received signal, and the like.
The signal processing unit 55 outputs the demodulation processing result, the target detection processing result, and the like to the display unit 30.
The display unit 30 displays the demodulation processing result or the target detection processing result output from the signal processing unit 55.
 以上の実施の形態1では、送信信号における送信電力密度SPの規制値EIRPに基づいて、送信信号のチャープ率αを設定するチャープ率設定部51と、チャープ率設定部51により設定されたチャープ率αによって周波数が変化する送信信号を生成する信号生成部52と、信号生成部52により生成された送信信号を送信する送信部53とを備えるように、送信装置1を構成した。したがって、送信装置1は、送信電力密度SPの規制がある環境下でも使用することができる。 In the first embodiment described above, the chirp rate setting unit 51 that sets the chirp rate α of the transmission signal and the chirp rate set by the chirp rate setting unit 51 based on the regulation value EIRP of the transmission power density SP in the transmission signal. The transmission device 1 is configured to include a signal generation unit 52 that generates a transmission signal whose frequency changes depending on α, and a transmission unit 53 that transmits a transmission signal generated by the signal generation unit 52. Therefore, the transmission device 1 can be used even in an environment where the transmission power density SP is regulated.
 図1に示す受信装置2では、信号処理部55が、受信部54から出力された受信信号に含まれているデータを復調する処理、あるいは、受信信号から目標を検出する処理等を実施している。
 信号処理部55が、例えば、目標を検出する処理を実施する際には、受信部54が受信信号を生成する毎に、当該受信信号を積算することによって、受信部54により繰り返し生成された複数の受信信号を加算するようにしてもよい。
 信号処理部55が、受信部54により繰り返し生成された複数の受信信号を加算することによって、受信信号の電力が増加するため、目標の検出精度が向上する。
 なお、信号処理部55が、受信部54から出力された受信信号に含まれているデータを復調する処理を実施する際にも、受信部54により繰り返し生成された複数の受信信号を加算するようにしてもよい。
In the receiving device 2 shown in FIG. 1, the signal processing unit 55 performs a process of demodulating the data contained in the received signal output from the receiving unit 54, a process of detecting a target from the received signal, and the like. There is.
For example, when the signal processing unit 55 executes a process of detecting a target, each time the receiving unit 54 generates a received signal, the signal processing unit 55 integrates the received signals, so that a plurality of signals repeatedly generated by the receiving unit 54 The received signals of may be added.
When the signal processing unit 55 adds a plurality of received signals repeatedly generated by the receiving unit 54, the power of the received signal is increased, so that the target detection accuracy is improved.
The signal processing unit 55 also adds a plurality of received signals repeatedly generated by the receiving unit 54 when performing a process of demodulating the data included in the received signal output from the receiving unit 54. It may be.
 図1に示す受信装置2では、信号処理部55が、信号生成部52により生成された送信信号と、受信部54により生成された受信信号との相関を演算するようにしてもよい。
 送信信号と受信信号との相関を演算する処理自体は、公知の技術であるため詳細な説明を省略する。
 信号処理部55は、例えば、相関の演算結果である相関値が閾値以上であれば、当該受信信号が、送信装置1から送信された送信信号を受信した信号であると判定する。
 また、信号処理部55は、相関値が閾値よりも小さければ、当該受信信号が、送信装置1から送信された送信信号を受信した信号ではないと判定する。
 信号処理部55は、送信装置1から送信された送信信号を受信した信号であると判定すれば、受信部54から出力された受信信号に含まれているデータを復調する処理、あるいは、受信信号から目標を検出する処理等を実施する。
 信号処理部55は、送信装置1から送信された送信信号を受信した信号ではないと判定すれば、受信部54から出力された受信信号を破棄し、データを復調する処理、及び、受信信号から目標を検出する処理等を実施しない。
In the receiving device 2 shown in FIG. 1, the signal processing unit 55 may calculate the correlation between the transmission signal generated by the signal generation unit 52 and the reception signal generated by the reception unit 54.
Since the process itself for calculating the correlation between the transmitted signal and the received signal is a known technique, detailed description thereof will be omitted.
For example, if the correlation value, which is the result of the correlation calculation, is equal to or greater than the threshold value, the signal processing unit 55 determines that the received signal is a signal that has received the transmission signal transmitted from the transmission device 1.
Further, if the correlation value is smaller than the threshold value, the signal processing unit 55 determines that the received signal is not a signal that has received the transmission signal transmitted from the transmission device 1.
If the signal processing unit 55 determines that the transmission signal transmitted from the transmission device 1 is a received signal, the signal processing unit 55 demodulates the data contained in the reception signal output from the reception unit 54, or the reception signal. Perform processing to detect the target from.
If the signal processing unit 55 determines that the transmission signal transmitted from the transmission device 1 is not a received signal, the signal processing unit 55 discards the received signal output from the receiving unit 54, demodulates the data, and uses the received signal. Do not perform processing to detect the target.
 図1に示す送信装置1では、チャープ率設定部51が、送信電力密度SPの減衰率Lpropとフィルタ幅fRBWの2乗値との乗算値と一致するようなチャープ率αを算出している。
 しかし、これは一例に過ぎず、チャープ率設定部51は、当該乗算値よりも大きくなるようなチャープ率αを算出するようにしてもよい。チャープ率αが、当該乗算値よりも大きければ、送信電力密度SPの規制がある環境下でも、送信装置1を使用することができる。ただし、チャープ率αが、当該乗算値よりも大きくなり過ぎると、送信信号の送信電力密度SPが小さくなり、受信装置2が、送信装置1から送信された送信信号の受信が困難になることがある。したがって、チャープ率αが、当該乗算値よりも大きくなる場合でもあっても、チャープ率設定部51は、当該乗算値に近くなるチャープ率αを算出することが望ましい。
In the transmission device 1 shown in FIG. 1, the chirp rate setting unit 51 calculates a chirp rate α that matches the multiplication value of the attenuation rate L rop of the transmission power density SP and the square value of the filter width f RBW. There is.
However, this is only an example, and the chirp rate setting unit 51 may calculate the chirp rate α so as to be larger than the multiplication value. If the chirp rate α is larger than the multiplication value, the transmission device 1 can be used even in an environment where the transmission power density SP is regulated. However, if the chirp rate α becomes too large than the multiplication value, the transmission power density SP of the transmission signal becomes small, and it becomes difficult for the receiving device 2 to receive the transmission signal transmitted from the transmitting device 1. is there. Therefore, even if the chirp rate α is larger than the multiplication value, it is desirable that the chirp rate setting unit 51 calculate the chirp rate α that is close to the multiplication value.
 図1に示す送信装置1では、EEPROM11が、図2に示すチャープ率設定部51の機能を実行している。しかし、図2に示すチャープ率設定部51の機能を実行することができれば、送信装置1が、EEPROM11以外のハードウェアを備えていてもよい。したがって、送信装置1が、EEPROM11の代わりに、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)を備えていてもよい。 In the transmission device 1 shown in FIG. 1, the EEPROM 11 executes the function of the chirp rate setting unit 51 shown in FIG. However, if the function of the chirp rate setting unit 51 shown in FIG. 2 can be executed, the transmission device 1 may be provided with hardware other than the EEPROM 11. Therefore, the transmission device 1 is provided with, for example, a CPU (Central Processing Unit), a central processing unit, a processing device, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor) instead of the EEPROM 11. You may.
 図1に示す送信装置1では、DDS14が、図2に示す信号生成部52の機能を実行している。しかし、図2に示す信号生成部52の機能を実行することができれば、送信装置1が、DDS14以外のハードウェアを備えていてもよい。したがって、送信装置1が、DDS14の代わりに、例えば、PLL(Phase Locked Loop)を備えていてもよい。 In the transmission device 1 shown in FIG. 1, the DDS 14 executes the function of the signal generation unit 52 shown in FIG. However, if the function of the signal generation unit 52 shown in FIG. 2 can be executed, the transmission device 1 may be provided with hardware other than the DDS 14. Therefore, the transmission device 1 may include, for example, a PLL (Phase Locked Loop) instead of the DDS 14.
 図1に示す受信装置2では、プロセッサ27は、図2に示す信号処理部55の機能を実行している。しかし、図2に示す信号処理部55の機能を実行することができれば、受信装置2が、プロセッサ27以外のハードウェアを備えていてもよい。したがって、受信装置2が、プロセッサ27の代わりに、例えば、CPU、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSPを備えていてもよい。 In the receiving device 2 shown in FIG. 1, the processor 27 executes the function of the signal processing unit 55 shown in FIG. However, the receiving device 2 may include hardware other than the processor 27 as long as the function of the signal processing unit 55 shown in FIG. 2 can be executed. Therefore, the receiving device 2 may include, for example, a CPU, a central processing unit, a processing device, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP instead of the processor 27.
実施の形態2.
 実施の形態2では、送信信号の送信ゲインGTxを設定する送信ゲイン設定部62を含む送信装置1について説明する。
Embodiment 2.
In the second embodiment, the transmission device 1 including the transmission gain setting unit 62 for setting the transmission gain GTx of the transmission signal will be described.
 図7は、実施の形態2に係る送受信装置の機能を示す構成図である。図7において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
 実施の形態2では、図1に示すEEPROM11及びFPGA12が、図7に示すチャープ率設定部61及び送信ゲイン設定部62におけるそれぞれの機能を実行する。
 チャープ率設定部61は、送信信号のチャープ率α’を設定する。
 チャープ率設定部61は、チャープ率α’を送信ゲイン設定部62及び信号生成部52のそれぞれに出力する。
 送信ゲイン設定部62は、送信信号における送信電力密度SPの規制値EIRPとチャープ率設定部61により設定されたチャープ率α’とに基づいて、送信信号の送信ゲインGTxを設定する。
 送信ゲイン設定部62は、送信ゲインGTxを後述する送信部63に出力する。
FIG. 7 is a configuration diagram showing the functions of the transmission / reception device according to the second embodiment. In FIG. 7, the same reference numerals as those in FIG. 2 indicate the same or corresponding parts, and thus the description thereof will be omitted.
In the second embodiment, the EEPROM 11 and the FPGA 12 shown in FIG. 1 execute the respective functions of the chirp rate setting unit 61 and the transmission gain setting unit 62 shown in FIG. 7.
The chirp rate setting unit 61 sets the chirp rate α'of the transmission signal.
The chirp rate setting unit 61 outputs the chirp rate α'to each of the transmission gain setting unit 62 and the signal generation unit 52.
Transmission gain setting unit 62, based on the set chirp rate alpha 'as the regulated value EIRP and chirp rate setting unit 61 of the transmission power density SP in a transmission signal, to set the transmission gain G Tx of the transmitted signal.
The transmission gain setting unit 62 outputs the transmission gain GTx to the transmission unit 63, which will be described later.
 実施の形態2では、図1に示すBPF15、div16及びATT17が、図7に示す送信部63の機能を実行する。
 送信部63は、送信ゲイン設定部62により設定された送信ゲインGTxを信号生成部52により生成された送信信号に乗算し、送信ゲイン乗算後の送信信号を送信アンテナ18に出力することによって、送信アンテナ18から送信信号を送信させる。
In the second embodiment, the BPF15, the div16 and the ATT17 shown in FIG. 1 execute the function of the transmission unit 63 shown in FIG.
Transmission unit 63, by multiplying the transmission signal generated by the signal generating unit 52 to transmit gain G Tx that is set, and outputs the transmission signal after transmission gain multiplication to the transmission antenna 18 by the transmission gain setting unit 62, A transmission signal is transmitted from the transmission antenna 18.
 次に、図7に示す送受信装置の動作について説明する。
 チャープ率設定部61は、送信信号のチャープ率α’を設定する。
 チャープ率設定部61により設定されるチャープ率α’は、図2に示すチャープ率設定部51により設定されるチャープ率αよりも大きくてもよいし、小さくてもよい。また、チャープ率α’は、チャープ率αと同じであってもよい。
 チャープ率設定部61は、チャープ率α’を信号生成部52及び送信ゲイン設定部62のそれぞれに出力する。
Next, the operation of the transmission / reception device shown in FIG. 7 will be described.
The chirp rate setting unit 61 sets the chirp rate α'of the transmission signal.
The chirp rate α'set by the chirp rate setting unit 61 may be larger or smaller than the chirp rate α set by the chirp rate setting unit 51 shown in FIG. Further, the chirp rate α'may be the same as the chirp rate α.
The chirp rate setting unit 61 outputs the chirp rate α'to each of the signal generation unit 52 and the transmission gain setting unit 62.
 信号生成部52は、チャープ率設定部61からチャープ率α’を受けると、チャープ率がα’であるチャープ信号、即ち、チャープ率α’によって周波数が変化する送信信号を生成する。
 信号生成部52は、生成した送信信号を送信部63及び受信部54のそれぞれに出力する。
When the signal generation unit 52 receives the chirp rate α'from the chirp rate setting unit 61, the signal generation unit 52 generates a chirp signal having the chirp rate α', that is, a transmission signal whose frequency changes according to the chirp rate α'.
The signal generation unit 52 outputs the generated transmission signal to each of the transmission unit 63 and the reception unit 54.
 送信ゲイン設定部62は、チャープ率設定部61からチャープ率α’を受けると、規制値EIRPとチャープ率α’とに基づいて、送信信号の送信ゲインGTxを設定する。
 送信ゲイン設定部62は、設定した送信ゲインGTxを送信部63に出力する。
 以下、送信ゲイン設定部62による送信ゲインGTxの設定処理を具体的に説明する。
Transmission gain setting unit 62, 'receives the regulation value EIRP and chirp rate alpha' chirp rate alpha chirp rate setting unit 61 based on the sets the transmission gain G Tx of the transmitted signal.
The transmission gain setting unit 62 outputs the set transmission gain GTx to the transmission unit 63.
Hereinafter, the transmission gain GTx setting process by the transmission gain setting unit 62 will be specifically described.
 まず、送信ゲイン設定部62は、チャープ率α’を、以下の式(6)に代入することによって、送信電力密度SPの減衰率Lprop’を算出する。

Figure JPOXMLDOC01-appb-I000006
 ただし、チャープ率α’がフィルタ幅fRBWの2乗値以下であるときは、Lprop’=1である。
 次に、送信ゲイン設定部62は、周波数が一定の送信信号の送信電力P、規制値EIRP及び減衰率Lprop’を、以下の式(7)に代入することによって、送信ゲインGTxを算出する。

Figure JPOXMLDOC01-appb-I000007
 送信ゲイン設定部62は、算出した送信ゲインGTxを送信部63に出力する。
First, the transmission gain setting unit 62 calculates the attenuation rate L rop'of the transmission power density SP by substituting the chirp rate α'into the following equation (6).

Figure JPOXMLDOC01-appb-I000006
However, when the chirp ratio α'is equal to or less than the square value of the filter width f RBW , L rop '= 1.
Next, the transmission gain setting unit 62, the transmission power P 0 of the frequency constant transmission signal, the regulation values EIRP and attenuation factor L prop ', by substituting the following equation (7), the transmission gain G Tx calculate.

Figure JPOXMLDOC01-appb-I000007
The transmission gain setting unit 62 outputs the calculated transmission gain GTx to the transmission unit 63.
 チャープ率設定部61により設定されたチャープ率α’によっては、図8に示すように、信号生成部52により生成された送信信号の送信電力密度SPが規制値EIRPよりも大きくなることがある。図8は、規制値EIRPよりも大きい送信電力密度SPの一例を示す説明図である。
 送信電力密度SPが規制値EIRPよりも大きくなる場合、送信ゲイン設定部62により算出される送信ゲインGTxは、図9に示すように、送信電力密度SPを下げて、当該送信電力密度SPを規制値EIRPと一致させるゲインとなる。このとき、送信ゲインGTxは、1よりも小さくなる。図9は、送信ゲインGTxによって、規制値EIRPよりも大きい送信電力密度SPを下げている様子を示す説明図である。
Depending on the chirp rate α'set by the chirp rate setting unit 61, the transmission power density SP of the transmission signal generated by the signal generation unit 52 may be larger than the regulated value EIRP, as shown in FIG. FIG. 8 is an explanatory diagram showing an example of a transmission power density SP larger than the regulation value EIRP.
When the transmission power density SP is larger than the regulated value EIRP, transmission gain G Tx calculated by the transmission gain setting unit 62, as shown in FIG. 9, by lowering the transmission power density SP, the transmission power density SP It is a gain that matches the regulation value EIRP. At this time, the transmission gain G Tx becomes smaller than 1. 9, the transmission gain G Tx, is an explanatory diagram showing a state of lowering the high transmission power density SP to the restriction value EIRP.
 チャープ率設定部61により設定されたチャープ率α’によっては、図10に示すように、信号生成部52により生成された送信信号の送信電力密度SPが規制値EIRPよりも小さくなることがある。図10は、規制値EIRPよりも小さい送信電力密度SPの一例を示す説明図である。
 送信電力密度SPが規制値EIRPよりも小さくなる場合、送信ゲイン設定部62により算出される送信ゲインGTxは、図11に示すように、送信電力密度SPを上げて、当該送信電力密度SPを規制値EIRPと一致させるゲインとなる。このとき、送信ゲインGTxは、1よりも大きくなる。図11は、送信ゲインGTxによって、規制値EIRPよりも小さい送信電力密度SPを上げている様子を示す説明図である。
 また、チャープ率設定部61により設定されたチャープ率α’によっては、信号生成部52により生成された送信信号の送信電力密度SPが規制値EIRPと同じになることがある。
 送信電力密度SPが規制値EIRPと同じになる場合、送信ゲイン設定部62により算出される送信ゲインGTxは、送信電力密度SPを変化させないゲインとなる。このとき、送信ゲインGTxは、1になる。
Depending on the chirp rate α'set by the chirp rate setting unit 61, the transmission power density SP of the transmission signal generated by the signal generation unit 52 may be smaller than the regulated value EIRP, as shown in FIG. FIG. 10 is an explanatory diagram showing an example of a transmission power density SP smaller than the regulation value EIRP.
When the transmission power density SP is smaller than the regulated value EIRP, transmission gain G Tx calculated by the transmission gain setting unit 62, as shown in FIG. 11, by increasing the transmission power density SP, the transmission power density SP It is a gain that matches the regulation value EIRP. At this time, the transmission gain G Tx becomes larger than 1. 11, the transmission gain G Tx, is an explanatory diagram showing a state of raising the low transmission power density SP to the restriction value EIRP.
Further, depending on the chirp rate α'set by the chirp rate setting unit 61, the transmission power density SP of the transmission signal generated by the signal generation unit 52 may be the same as the regulation value EIRP.
When the transmission power density SP is the same as the regulated value EIRP, transmission gain G Tx calculated by the transmission gain setting unit 62, a gain does not change the transmission power density SP. At this time, the transmission gain G Tx becomes 1.
 送信部63は、送信ゲイン設定部62から送信ゲインGTxを受けると、送信ゲインGTxを信号生成部52により生成された送信信号に乗算する。
 送信部63は、送信ゲイン乗算後の送信信号を送信アンテナ18に出力することによって、送信アンテナ18から送信信号を送信させる。
When the transmission unit 63 receives the transmission gain G Tx from the transmission gain setting unit 62, the transmission unit 63 multiplies the transmission gain G Tx by the transmission signal generated by the signal generation unit 52.
The transmission unit 63 outputs the transmission signal after the transmission gain multiplication to the transmission antenna 18, so that the transmission signal is transmitted from the transmission antenna 18.
 以上の実施の形態2では、送信信号のチャープ率α’を設定するチャープ率設定部61と、送信信号における送信電力密度SPの規制値EIRPとチャープ率設定部61により設定されたチャープ率α’とに基づいて、送信信号の送信ゲインGTxを設定する送信ゲイン設定部62と、チャープ率設定部61により設定されたチャープ率α’によって周波数が変化する送信信号を生成する信号生成部52と、送信ゲイン設定部62により設定された送信ゲインGTxを信号生成部52により生成された送信信号に乗算し、送信ゲイン乗算後の送信信号を送信する送信部63とを備えるように、送信装置1を構成した。したがって、送信装置1は、送信電力密度SPの規制がある環境下でも使用することができる。 In the above second embodiment, the chirp rate setting unit 61 that sets the chirp rate α'of the transmission signal, and the chirp rate α'set by the regulation value EIRP of the transmission power density SP in the transmission signal and the chirp rate setting unit 61. based on the bets, the transmission gain setting unit 62 for setting a transmission gain G Tx of the transmitted signal, a signal generator 52 for generating a transmission signal whose frequency varies by the chirp rate alpha 'set by the chirp rate setting unit 61 , to include a transmitting unit 63 that multiplies the transmission signal generated transmission gain G Tx set by transmitting the gain setting unit 62 by the signal generation unit 52 transmits the transmission signal after transmission gain multiplication, the transmission device 1 was configured. Therefore, the transmission device 1 can be used even in an environment where the transmission power density SP is regulated.
 図7に示す送信装置1では、送信ゲイン設定部62が、送信部63により送信される送信信号の送信電力密度SPが規制値EIRPと一致するような送信ゲインGTxを算出している。
 しかし、これは一例に過ぎず、送信ゲイン設定部62は、送信部63により送信される送信信号の送信電力密度SPが規制値EIRPよりも小さくなる送信ゲインGTxを算出するようにしてもよい。送信部63により送信される送信信号の送信電力密度SPが規制値EIRPよりも小さければ、送信電力密度SPの規制がある環境下でも、送信装置1を使用することができる。ただし、送信部63により送信される送信信号の送信電力密度SPが規制値EIRPよりも小さくなり過ぎると、受信装置2が、送信装置1から送信された送信信号の受信が困難になることがある。したがって、送信部63により送信される送信信号の送信電力密度SPが規制値EIRPよりも小さくなる場合でもあっても、送信ゲイン設定部62は、送信電力密度SPが規制値EIRPに近くなる送信ゲインGTxを算出することが望ましい。
In the transmission apparatus 1 shown in FIG. 7, the transmission gain setting unit 62, transmission power density SP of the transmission signal to be transmitted is calculated transmission gain G Tx as to match the regulated value EIRP by transmitter 63.
However, this is only an example, transmission gain setting unit 62, transmission power density SP of the transmission signal transmitted by the transmission unit 63 may calculate the transmission gain G Tx smaller than the regulated value EIRP .. If the transmission power density SP of the transmission signal transmitted by the transmission unit 63 is smaller than the regulated value EIRP, the transmission device 1 can be used even in an environment where the transmission power density SP is regulated. However, if the transmission power density SP of the transmission signal transmitted by the transmission unit 63 becomes too smaller than the regulation value EIRP, it may be difficult for the receiving device 2 to receive the transmission signal transmitted from the transmission device 1. .. Therefore, even if the transmission power density SP of the transmission signal transmitted by the transmission unit 63 is smaller than the regulation value EIRP, the transmission gain setting unit 62 has a transmission gain in which the transmission power density SP is close to the regulation value EIRP. It is desirable to calculate G Tx.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment. ..
 この発明は、送信信号を送信する送信装置と、送信信号の送信と受信信号の生成とを行う送受信装置とに適している。 The present invention is suitable for a transmission device that transmits a transmission signal and a transmission / reception device that transmits a transmission signal and generates a reception signal.
 1 送信装置、2 受信装置、11 EEPROM、12 FPGA、13 クロック、14 DDS、15 BPF、16 div、17 ATT、18 送信アンテナ、21 受信アンテナ、22 BPF、23 LNA、24 MIX、25 LPF、26 ADC、27 プロセッサ、28 メモリ、29 データストレージ、30 表示部、51 チャープ率設定部、52 信号生成部、53 送信部、54 受信部、55 信号処理部、61 チャープ率設定部、62 送信ゲイン設定部、63 送信部。 1 Transmitter, 2 Receiver, 11 EEPROM, 12 FPGA, 13 Clock, 14 DDS, 15 BPF, 16 div, 17 ATT, 18 Transmit Antenna, 21 Receive Antenna, 22 BPF, 23 LNA, 24 MIX, 25 LPF, 26 ADC, 27 processor, 28 memory, 29 data storage, 30 display unit, 51 charp rate setting unit, 52 signal generation unit, 53 transmitter unit, 54 receiver unit, 55 signal processing unit, 61 charp rate setting unit, 62 transmission gain setting Department, 63 Transmission part.

Claims (6)

  1.  送信信号における送信電力密度の規制値に基づいて、前記送信信号のチャープ率を設定するチャープ率設定部と、
     前記チャープ率設定部により設定されたチャープ率によって周波数が変化する送信信号を生成する信号生成部と、
     前記信号生成部により生成された送信信号を送信する送信部と
     を備えた送信装置。
    A chirp rate setting unit that sets the chirp rate of the transmission signal based on the regulation value of the transmission power density in the transmission signal, and a chirp rate setting unit.
    A signal generation unit that generates a transmission signal whose frequency changes according to the chirp rate set by the chirp rate setting unit, and a signal generation unit.
    A transmission device including a transmission unit that transmits a transmission signal generated by the signal generation unit.
  2.  送信信号のチャープ率を設定するチャープ率設定部と、
     前記送信信号における送信電力密度の規制値と前記チャープ率設定部により設定されたチャープ率とに基づいて、前記送信信号の送信ゲインを設定する送信ゲイン設定部と、
     前記チャープ率設定部により設定されたチャープ率によって周波数が変化する送信信号を生成する信号生成部と、
     前記送信ゲイン設定部により設定された送信ゲインを前記信号生成部により生成された送信信号に乗算し、送信ゲイン乗算後の送信信号を送信する送信部と
     を備えた送信装置。
    A chirp rate setting unit that sets the chirp rate of the transmitted signal,
    A transmission gain setting unit that sets the transmission gain of the transmission signal based on the regulation value of the transmission power density in the transmission signal and the chirp rate set by the chirp rate setting unit.
    A signal generation unit that generates a transmission signal whose frequency changes according to the chirp rate set by the chirp rate setting unit, and a signal generation unit.
    A transmission device including a transmission unit that multiplies the transmission gain set by the transmission gain setting unit by the transmission signal generated by the signal generation unit and transmits the transmission signal after the transmission gain multiplication.
  3.  前記送信ゲイン設定部は、前記信号生成部により生成された送信信号の送信電力密度が前記規制値よりも大きい、又は、前記信号生成部により生成された送信信号の送信電力密度が前記規制値よりも小さければ、前記送信信号の送信電力密度を前記規制値と一致させるための、前記送信信号の送信ゲインを設定することを特徴とする請求項2記載の送信装置。 In the transmission gain setting unit, the transmission power density of the transmission signal generated by the signal generation unit is larger than the regulation value, or the transmission power density of the transmission signal generated by the signal generation unit is higher than the regulation value. The transmission device according to claim 2, wherein if the value is small, the transmission gain of the transmission signal is set in order to match the transmission power density of the transmission signal with the regulation value.
  4.  請求項1から請求項3のうちのいずれか1項記載の送信装置と、
     受信アンテナにより受信された信号と、前記信号生成部により生成された送信信号とから受信信号を生成する受信部を有する受信装置と
     を備えた送受信装置。
    The transmitter according to any one of claims 1 to 3,
    A transmitting / receiving device including a receiving device having a receiving unit that generates a received signal from a signal received by a receiving antenna and a transmitting signal generated by the signal generating unit.
  5.  前記受信装置は、前記受信部により繰り返し生成された複数の受信信号を加算する信号処理部を備えていることを特徴とする請求項4記載の送受信装置。 The transmission / reception device according to claim 4, wherein the reception device includes a signal processing unit that adds a plurality of reception signals repeatedly generated by the reception unit.
  6.  前記受信装置は、前記信号生成部により生成された送信信号と、前記受信部により生成された受信信号との相関を演算する信号処理部を備えていることを特徴とする請求項4記載の送受信装置。 The transmission / reception according to claim 4, wherein the receiving device includes a signal processing unit that calculates a correlation between a transmission signal generated by the signal generation unit and a reception signal generated by the reception unit. apparatus.
PCT/JP2019/042484 2019-10-30 2019-10-30 Transmitter and transmitter/receiver WO2021084633A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/042484 WO2021084633A1 (en) 2019-10-30 2019-10-30 Transmitter and transmitter/receiver
JP2020514764A JPWO2021084633A1 (en) 2019-10-30 2019-10-30 Transmitter and transmitter / receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042484 WO2021084633A1 (en) 2019-10-30 2019-10-30 Transmitter and transmitter/receiver

Publications (1)

Publication Number Publication Date
WO2021084633A1 true WO2021084633A1 (en) 2021-05-06

Family

ID=75714950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042484 WO2021084633A1 (en) 2019-10-30 2019-10-30 Transmitter and transmitter/receiver

Country Status (2)

Country Link
JP (1) JPWO2021084633A1 (en)
WO (1) WO2021084633A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070239002A1 (en) * 2005-12-28 2007-10-11 Alam Sheikh K Superfast, High-Resolution Ultrasonic Imaging Using Coded Excitation
JP2011038948A (en) * 2009-08-14 2011-02-24 Tokyo Keiki Inc Transmission waveform generation method in pulse compression, transmission waveform generation program, and pulse compression device manufactured by the transmission waveform generation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221259A (en) * 1999-02-03 2000-08-11 Mitsubishi Electric Corp Range finder
US7305057B1 (en) * 2003-07-07 2007-12-04 Miao George J Multichannel filter-based handheld ultra wideband communications
JP2009180538A (en) * 2008-01-29 2009-08-13 Mitsubishi Electric Corp Radar system
US9225396B2 (en) * 2013-02-15 2015-12-29 Intel Corporation Apparatus, system and method of transmit power control for wireless communication
JP6011746B1 (en) * 2015-12-03 2016-10-19 三菱電機株式会社 Synthetic aperture radar apparatus and signal processing apparatus
JP6858523B2 (en) * 2016-10-06 2021-04-14 京セラ株式会社 Distance measuring device, distance measuring method and vehicle
JP6615405B2 (en) * 2017-10-13 2019-12-04 三菱電機株式会社 Radar equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070239002A1 (en) * 2005-12-28 2007-10-11 Alam Sheikh K Superfast, High-Resolution Ultrasonic Imaging Using Coded Excitation
JP2011038948A (en) * 2009-08-14 2011-02-24 Tokyo Keiki Inc Transmission waveform generation method in pulse compression, transmission waveform generation program, and pulse compression device manufactured by the transmission waveform generation method

Also Published As

Publication number Publication date
JPWO2021084633A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
KR101685284B1 (en) Apparatus and method for measuring precipitation in the atmosphere using frequency-modulated continuous wave weather radar system
KR101043882B1 (en) Method of obtaining information concerning rf receiver and system
CN105024770B (en) Quantitative testing for sensitivity of a non-coherent FMCW autodyne receiver
RU2441319C2 (en) Receiver
CN106569046B (en) Improved phase noise test device and method based on IF delay line frequency-discrimination method
JP5117999B2 (en) Distance measuring device
WO2021084633A1 (en) Transmitter and transmitter/receiver
RU2584970C1 (en) Method of monitoring changes in integral gas medium composition
JP5776495B2 (en) Gain measuring circuit, gain measuring method and communication apparatus
US9052370B2 (en) Detection processing for NQR system
US7224717B1 (en) System and method for cross correlation receiver
CN1996759A (en) Frequency synthesizer
KR101298621B1 (en) Fmcw synthesizer and control method thereof
RU2623718C1 (en) Time transmission signals modem through the satellite communication duplex channel
US9921296B2 (en) System and method for testing frequency synthesizer
KR20150102854A (en) System and Method for Ku-band Long Range Radar using Frequency-modulated Continuous Wave
KR20150034470A (en) Apparatus and method for measuring phase in microwave tomography system
US20080113638A1 (en) Controlled signal-to-noise ratio generator circuit
KR102501279B1 (en) Broadband Electronic Warfare Digital Receiver and Broadband Electronic Warfare Receiving Apparatus
US20220229171A1 (en) System and method for microwave imaging
CN110476057B (en) Flow measurement system
WO2014184511A1 (en) Detection of an electrical device by an unintentionally radiated rf signal
Egawa A microwave Doppler radar velocity meter for construction machinery
SU1553933A1 (en) Apparatus for radiographic test
JPWO2014129071A1 (en) Physical quantity measuring device, physical quantity measuring system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020514764

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951062

Country of ref document: EP

Kind code of ref document: A1