WO2021084570A1 - Nuclear power battery system and nuclear power conversion method - Google Patents

Nuclear power battery system and nuclear power conversion method Download PDF

Info

Publication number
WO2021084570A1
WO2021084570A1 PCT/JP2019/042114 JP2019042114W WO2021084570A1 WO 2021084570 A1 WO2021084570 A1 WO 2021084570A1 JP 2019042114 W JP2019042114 W JP 2019042114W WO 2021084570 A1 WO2021084570 A1 WO 2021084570A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation source
radiation
amount
electron
output body
Prior art date
Application number
PCT/JP2019/042114
Other languages
French (fr)
Japanese (ja)
Inventor
スターリ デニン
Original Assignee
齋藤 紘治
ピーティービンタンセメスタインドネシア
飯田 克也
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 齋藤 紘治, ピーティービンタンセメスタインドネシア, 飯田 克也 filed Critical 齋藤 紘治
Priority to JP2021553894A priority Critical patent/JPWO2021084570A1/ja
Priority to PCT/JP2019/042114 priority patent/WO2021084570A1/en
Publication of WO2021084570A1 publication Critical patent/WO2021084570A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • G21H1/02Cells charged directly by beta radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • G21H1/04Cells using secondary emission induced by alpha radiation, beta radiation, or gamma radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • G21H1/06Cells wherein radiation is applied to the junction of different semiconductor materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • G21H1/10Cells in which radiation heats a thermoelectric junction or a thermionic converter

Definitions

  • the present invention relates to a nuclear battery system and a nuclear conversion method for converting the decay energy of a radionuclide into electrical energy with a thermoelectric conversion element.
  • a conventional atomic battery is a primary battery that converts the decay energy of radionuclides into electrical energy with a thermoelectric conversion element.
  • 238Pu and 210Po are used as radionuclides, and alpha rays generated when these nuclides cause alpha decay are absorbed by a substance to generate electricity.
  • Atomic batteries can supply power virtually semi-permanently because they continue to emit heat and radiation based on their lifespan according to the half-life of the radiation source. Therefore, for example, it is mounted on an artificial satellite or a search machine, and becomes an energy supply source in deep space where solar radiation cannot be used and solar cells cannot be used.
  • the present invention solves the above-mentioned problems, and provides a nuclear battery system and a nuclear conversion method capable of semi-permanently supplying electric power while improving safety by using a radionuclide having a low radiation amount.
  • the purpose is.
  • the nuclear battery system of the present invention includes a radiation source that irradiates radiation or heat by radioactive decay, and an electron output body that outputs electrons in response to the radiation or heat emitted from the radiation source. It includes a current output unit that sends out electrons output from an electronic output body as a current, and a transformer that converts the voltage of the current output from the current output unit into an arbitrary voltage.
  • the nuclear conversion method of the present invention includes an electron output step in which an electron output body outputs electrons in response to radiation or heat emitted from a radiation source that irradiates radiation or heat due to radioactive decay, and an electron output body that outputs electrons. It includes an output transformer step in which the generated electrons are sent out as an electric current and the transformer converts the voltage of the electric current into an arbitrary voltage.
  • control means that is interposed between the radiation source and the electron output body and regulates the amount of reaction in the electron output body according to the amount of radiation or heat emitted from the radiation source.
  • the control means has a control material for changing the distance between the radiation source and the electron output body according to the amount of radiation or heat emitted from the radiation source, and controlling the reactivity of the radiation source. It is preferable to regulate the amount of reaction by changing the amount of contact between the control material and the radiation source according to the amount of radiation or heat emitted from the source.
  • a substance containing thorium as the radiation source.
  • the required power can be obtained even with a radiation source having a weak output, it is possible to output power using a radionuclide having a low radiation amount.
  • the present invention since radiation at a level that affects the human body is not generated, there is no need for strict radiation shielding, the device is made smaller and lighter, safety is improved, and power is supplied semipermanently. it can.
  • FIG. 1 is a circuit diagram showing the overall configuration of the nuclear battery system according to the present embodiment.
  • the battery BT1 for power supply and the battery BT2 for charging are connected to the low voltage coil side terminal 11a of the transformer 11.
  • the charging battery BT2 is connected to the low voltage coil side terminal 11a via a rectifier diode 12a.
  • the high-voltage coil side terminal 11b of the transformer 11 is connected to the NPN 14 through a variable resistor 15 and a rectifier diode 12b.
  • the component 13 is connected between the battery BT1 for power supply and the battery BT2 for charging.
  • the battery BT1 for power supply and the electronic power battery 20 as shown in FIGS. 2 to 5 are used as the battery BT2 for charging.
  • the electronic power battery 20 has a configuration in which a radiation source 5 or the like is housed in a main body container 2b made of a material containing a substance that shields radiation such as lead, and is filled with an insulator 20 and sealed by a lid 2a. ing. Inside the main body container 2b, a radiation source 5 that irradiates radiation or heat due to radioactive decay, an electron output body 2 that outputs electrons in response to the radiation or heat emitted from the radiation source 5, and an electron output body 2 A current output unit 3 that sends out the electrons output from the source as a current is housed.
  • the radioactive source 5 is a substance containing a radioactive isotope (radioactive isotope, radioisotope), and in this embodiment, a substance containing thorium is used.
  • the radiation source 5 is held in a dish-shaped container 51 that shields radiation.
  • plutonium-238, curium-244, and strontium-90 are most often used, but polonium-210, promethium-147, cesium-137, cerium-144, ruthenium-106, cobalt-60, and curium-242. , Isotopes of curium.
  • the electron output body 2 is a portion containing a substance that outputs electrons in response to radiation or heat emitted from the radiation source 5, and each electron output body 2 in the present embodiment includes a collector electrode 23, polystyrene, or the like.
  • the atomic transmissive portion 22 and the secondary electron radiator 21 are laminated, and a plurality of electron output bodies 2 are arranged in series in a cascade.
  • electrons ionized by ⁇ rays are applied to an atomic transmission portion 22 such as polystyrene to amplify the current, and the electrons are emitted from the secondary electron radiator 21 to the next electron output body 2.
  • the configuration is adopted.
  • a material that converts charged particles such as ⁇ and ⁇ rays into electrons a semiconductor, and the like can be used.
  • this semiconductor for example, electrons generated by irradiating a pn junction of silicon or germanium with radiation are raised in the conduction band, holes are left in the filling band (valence band) and moved to the p side to be positive. Examples include those that utilize the collection of electrons on the holes and n-sides.
  • a thermocouple that converts heat from a radioactive substance into electricity can be used, and the materials thereof are silicon-germanium alloy, lead telluride, and antimony-germanium-silver alloy. TAGS) etc.
  • the current output unit 3 is a member that sends out the output electrons as an electric current, and the electric wire 2c for outputting the flow of electrons is connected via the conductive unit 3a.
  • the electric wire 2c is an electric wire that serves as a positive pole of the electronic power battery 20, and is led out to the outside of the electronic power battery 20 through the lid 2a.
  • the electric wire 2d is an electrode for generating a ground voltage, is connected to the insulator 20, and is led out to the outside of the main body container 2b.
  • a control means 4 is interposed between the radiation source 5 and the electron output body 2.
  • the control means 4 is a member that regulates the amount of reaction in the electron output body 2 according to the amount of radiation or heat emitted from the radiation source 5.
  • the control means 4 regulates the amount of reaction by changing the distance between the radiation source and the electron output body according to the amount of radiation or heat emitted from the radiation source 5.
  • the container 51 is formed of an annular member having a shape that matches the peripheral edge of the container 51, and the container 51 moves back and forth with respect to the collecting electrode 23 of the electron output body 2 in response to a volume change due to thermal expansion of the annular member. It has become like.
  • the control means 4 expands to increase the thickness due to the amount of heat, and the distance between the radiation source 5 and the collecting electrode 23 increases. It has become.
  • the control means 4 contracts and the distance between the radiation source 5 and the collecting electrode 23 becomes narrower.
  • the amount of electrons output from the electron output body 2 is controlled to be flattened according to the change in the reaction amount of the radiation source 5.
  • this control means can be configured to include a control material that controls the reactivity of the radiation source.
  • the amount of reaction is regulated by changing the amount of contact between the control material and the radiation source 5 according to the amount of radiation or heat emitted from the radiation source 5.
  • the method of the present invention can be carried out by operating the nuclear battery system described above.
  • the processing procedure according to the present embodiment is only an example, and each processing may be changed as much as possible. Further, with respect to the processing procedure described below, steps can be omitted, replaced and added as appropriate according to the embodiment.
  • an electron output step is executed in which the electron output body 2 outputs electrons in response to the radiation or heat emitted from the radiation source 5 that irradiates radiation or heat due to radioactive decay.
  • the amount of reaction in the electron output body 2 is determined according to the amount of radiation or heat emitted from the radiation source 5 by using the control means 4 interposed between the radiation source 5 and the electron output body 2. To regulate.
  • the control means 4 may regulate the amount of reaction by changing the distance between the radiation source 5 and the electron output body 2 according to the amount of radiation or heat emitted from the radiation source 5.
  • the amount of reaction is regulated by changing the amount of contact between the control material and the radiation source 5 according to the amount of radiation or heat emitted from the radiation source 5. You may. Then, the electrons output from the electronic output body are sent out as an electric current, and the transformer executes an output transformation step of converting the voltage of the electric current into an arbitrary voltage.

Abstract

[Problem] To supply electric power semi-permanently while improving safety by using a radionuclide having a low radiation amount. [Solution] A nuclear power battery system comprises: a radiation source 5 such as thorium that emits radiation or heat by radioactive decay; an electron output body 2 that outputs electrons in response to radiation or heat emitted from the radiation source 5; a current output unit 3 that sends out the electrons outputted from the electron output body 2 as a current; a converter 11 that converts the voltage of the current outputted from the current output unit 3 into an arbitrary voltage; and a control means 4 interposed between the radiation source 5 and the electron output body 2 for regulating the amount of reaction in the electron output body 2 according to the amount of radiation or heat emitted from the radiation source 5.

Description

原子力電池システム及び原子力変換方法Atomic battery system and nuclear conversion method
 本発明は、放射性核種の崩壊エネルギーを熱電変換素子で電気エネルギーに変換する原子力電池システム及び原子力変換方法に関する。 The present invention relates to a nuclear battery system and a nuclear conversion method for converting the decay energy of a radionuclide into electrical energy with a thermoelectric conversion element.
 従来の原子力電池は、放射性核種の崩壊エネルギーを熱電変換素子で電気エネルギーに変換する一次電池である。実用化されている原子力電池では、放射性核種として238Puや210Poが用いられ、これらの核種がアルファ崩壊を起こす際に発生するアルファ線が物質に吸収されて生じた熱を利用し発電している。原子力電池は、その放射線源の半減期に応じた寿命に基づいて熱や放射線を放出し続けることから事実上半永久的に電力を供給することができる。このため、例えば人工衛星や探索機に搭載され、太陽放射が利用できず太陽電池が使用できない深宇宙におけるエネルギー供給源となる。 A conventional atomic battery is a primary battery that converts the decay energy of radionuclides into electrical energy with a thermoelectric conversion element. In the atomic batteries that have been put into practical use, 238Pu and 210Po are used as radionuclides, and alpha rays generated when these nuclides cause alpha decay are absorbed by a substance to generate electricity. Atomic batteries can supply power virtually semi-permanently because they continue to emit heat and radiation based on their lifespan according to the half-life of the radiation source. Therefore, for example, it is mounted on an artificial satellite or a search machine, and becomes an energy supply source in deep space where solar radiation cannot be used and solar cells cannot be used.
特開2002-202392号公報JP-A-2002-202392
 しかしながら、従来の原子力電池は上述したような強い放射線源となる放射性核種を使用しているために、厳重な管理下で使用する必要があり、特殊用途に限定されるとともに、使用後の放射性廃棄物の処理にも問題がある。上述したような人工衛星や探索機に搭載される場合は、墜落などにより放射性物質を大気中に撒き散らすリスク等が問題視されている。 However, since conventional atomic batteries use radionuclides that are strong radiation sources as described above, they must be used under strict control, and are limited to special applications and radioactive waste after use. There is also a problem with the processing of things. When mounted on an artificial satellite or a searcher as described above, the risk of scattering radioactive substances into the atmosphere due to a crash or the like is regarded as a problem.
 そこで、本発明は、上記のような問題を解決するものであり、放射線量の低い放射性核種を使用して安全性を高めつつ半永久的に電力を供給できる原子力電池システム及び原子力変換方法を提供することを目的とする。 Therefore, the present invention solves the above-mentioned problems, and provides a nuclear battery system and a nuclear conversion method capable of semi-permanently supplying electric power while improving safety by using a radionuclide having a low radiation amount. The purpose is.
 上記課題を解決するために、本発明の原子力電池システムは、放射性崩壊により放射線又は熱を照射する放射線源と、放射線源から照射される放射線又は熱に反応して電子を出力する電子出力体と、電子出力体から出力された電子を電流として送出する電流出力部と、電流出力部から出力された電流の電圧を任意の電圧に変換する変圧器とを備える。 In order to solve the above problems, the nuclear battery system of the present invention includes a radiation source that irradiates radiation or heat by radioactive decay, and an electron output body that outputs electrons in response to the radiation or heat emitted from the radiation source. It includes a current output unit that sends out electrons output from an electronic output body as a current, and a transformer that converts the voltage of the current output from the current output unit into an arbitrary voltage.
 また、本発明の原子力変換方法は、放射性崩壊により放射線又は熱を照射する放射線源から照射される放射線又は熱に反応して電子出力体が電子を出力する電子出力ステップと、電子出力体から出力された電子を電流として送出するとともに変圧器が電流の電圧を任意の電圧に変換する出力変圧ステップとを含む。 Further, the nuclear conversion method of the present invention includes an electron output step in which an electron output body outputs electrons in response to radiation or heat emitted from a radiation source that irradiates radiation or heat due to radioactive decay, and an electron output body that outputs electrons. It includes an output transformer step in which the generated electrons are sent out as an electric current and the transformer converts the voltage of the electric current into an arbitrary voltage.
 上記発明では、放射線源と電子出力体との間に介在され、放射線源から照射される放射線又は熱の量に従って、電子出力体における反応の量を規制する制御手段をさらに備えることが好ましい。上記発明においてこの制御手段は、放射線源から照射される放射線又は熱の量に従って放射線源と電子出力体との距離を変化させたり、放射線源の反応度を制御する制御材を有し、放射線源から照射される放射線又は熱の量に従い、制御材と放射線源との接触量を変化させることによって、反応の量を規制することが好ましい。 In the above invention, it is preferable to further provide a control means that is interposed between the radiation source and the electron output body and regulates the amount of reaction in the electron output body according to the amount of radiation or heat emitted from the radiation source. In the above invention, the control means has a control material for changing the distance between the radiation source and the electron output body according to the amount of radiation or heat emitted from the radiation source, and controlling the reactivity of the radiation source. It is preferable to regulate the amount of reaction by changing the amount of contact between the control material and the radiation source according to the amount of radiation or heat emitted from the source.
 なお、本発明において放射線源としては、トリウムを含有する物質を用いることが好ましい。 In the present invention, it is preferable to use a substance containing thorium as the radiation source.
 以上述べたように、これらの発明によれば、弱い出力の放射線源であっても必要な電力を得ることができることから、放射線量の低い放射性核種を使用して電力を出力することができる。この結果、本発明によれば人体に影響を与えるレベルの放射線が発生しないため、厳重な放射線遮蔽の必要がなく、装置の小型・軽量化を図りつつ安全性を高め、半永久的に電力を供給できる。 As described above, according to these inventions, since the required power can be obtained even with a radiation source having a weak output, it is possible to output power using a radionuclide having a low radiation amount. As a result, according to the present invention, since radiation at a level that affects the human body is not generated, there is no need for strict radiation shielding, the device is made smaller and lighter, safety is improved, and power is supplied semipermanently. it can.
実施形態に係る原子力電池システムの全体構成を示す回路図である。It is a circuit diagram which shows the whole structure of the nuclear battery system which concerns on embodiment. 実施形態に係る原子力電池の外観を示す斜視図である。It is a perspective view which shows the appearance of the nuclear battery which concerns on embodiment. 実施形態に係る原子力電池の内部構成を透過して示す透過斜視図である。It is a transmission perspective view which shows the internal structure of the nuclear battery which concerns on embodiment transparently. 実施形態に係る原子力電池内の構成を示す斜視図である。It is a perspective view which shows the structure in the nuclear battery which concerns on embodiment. 実施形態に係る原子力電池内の構成を一部分解して示す斜視図である。It is a perspective view which shows the structure in the nuclear battery which concerns on embodiment partially disassembled. 実施形態に係る原子力電池内における作用を示す説明図である。It is explanatory drawing which shows the operation in the nuclear battery which concerns on embodiment.
(原子力電池システムの全体構成)
 以下に添付図面を参照して、本発明に係る原子力電池システムの実施形態を詳細に説明する。図1は、本実施形態に係る原子力電池システムの全体構成を示す回路図である。
(Overall configuration of nuclear battery system)
Hereinafter, embodiments of the atomic battery system according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a circuit diagram showing the overall configuration of the nuclear battery system according to the present embodiment.
 図1に示すように、本実施形態にかかる原子力電池システム1では電源用のバッテリーBT1と、チャージ用のバッテリーBT2とが、変圧器11の低圧コイル側端子11aに接続されている。チャージ用バッテリーBT2はこの低圧コイル側端子11aに対して整流ダイオード12aを介して接続されている。変圧器11の高圧コイル側端子11bには、可変抵抗15及び整流ダイオード12bを通じて、NPN14に接続されている。また、電源用のバッテリーBT1と、チャージ用のバッテリーBT2間には部品13が接続されている。 As shown in FIG. 1, in the nuclear battery system 1 according to the present embodiment, the battery BT1 for power supply and the battery BT2 for charging are connected to the low voltage coil side terminal 11a of the transformer 11. The charging battery BT2 is connected to the low voltage coil side terminal 11a via a rectifier diode 12a. The high-voltage coil side terminal 11b of the transformer 11 is connected to the NPN 14 through a variable resistor 15 and a rectifier diode 12b. Further, the component 13 is connected between the battery BT1 for power supply and the battery BT2 for charging.
(原子力電池の構成)
 そして、本実施形態にかかる原子力電池システム1では電源用のバッテリーBT1と、チャージ用のバッテリーBT2として図2~図5に示すような電子力電池20を用いている。
(Composition of nuclear battery)
In the nuclear power battery system 1 according to the present embodiment, the battery BT1 for power supply and the electronic power battery 20 as shown in FIGS. 2 to 5 are used as the battery BT2 for charging.
 電子力電池20は、鉛等の放射線を遮蔽する物質を含有する素材で形成された本体容器2b内に放射線源5等を収納するとともに絶縁体20で満たして蓋体2aにより密封した構成を備えている。この本体容器2b内には、放射性崩壊により放射線又は熱を照射する放射線源5と、放射線源5から照射される放射線又は熱に反応して電子を出力する電子出力体2と、電子出力体2から出力された電子を電流として送出する電流出力部3とが収納されている。 The electronic power battery 20 has a configuration in which a radiation source 5 or the like is housed in a main body container 2b made of a material containing a substance that shields radiation such as lead, and is filled with an insulator 20 and sealed by a lid 2a. ing. Inside the main body container 2b, a radiation source 5 that irradiates radiation or heat due to radioactive decay, an electron output body 2 that outputs electrons in response to the radiation or heat emitted from the radiation source 5, and an electron output body 2 A current output unit 3 that sends out the electrons output from the source as a current is housed.
 放射線源5は、放射性同位元素(放射性同位体、ラジオアイソトープ)を含有する物質であり、本実施形態ではトリウムを含有する物質を用いている。この放射線源5は、放射線を遮蔽する皿状の容器51内に保持されている。 The radioactive source 5 is a substance containing a radioactive isotope (radioactive isotope, radioisotope), and in this embodiment, a substance containing thorium is used. The radiation source 5 is held in a dish-shaped container 51 that shields radiation.
 なお、放射線源5として利用可能な他の物質としては、プルトニウム238、キュリウム244、ストロンチウム90が最も良く用いられるが、ポロニウム210、プロメチウム147、セシウム137、セリウム144、ルテニウム106、コバルト60、キュリウム242、ツリウムの同位体が挙げられる。 As other substances that can be used as the radiation source 5, plutonium-238, curium-244, and strontium-90 are most often used, but polonium-210, promethium-147, cesium-137, cerium-144, ruthenium-106, cobalt-60, and curium-242. , Isotopes of curium.
 電子出力体2は、放射線源5から照射される放射線又は熱に反応して電子を出力する物質を含む部分であり、本実施形態における各電子出力体2は、集電極23と、ポリスチレン等の原子透過部22と二次電子放射体21とを積層した構成となっており、複数の電子出力体2が直列にカスケード状に配列されている。本実施形態では、また、β線によって電離した電子をポリスチレン等の原子透過部22に電場をかけて電流増幅を行わせて、二次電子放射体21から次の電子出力体2に対して射出する構成を採用している。 The electron output body 2 is a portion containing a substance that outputs electrons in response to radiation or heat emitted from the radiation source 5, and each electron output body 2 in the present embodiment includes a collector electrode 23, polystyrene, or the like. The atomic transmissive portion 22 and the secondary electron radiator 21 are laminated, and a plurality of electron output bodies 2 are arranged in series in a cascade. In the present embodiment, electrons ionized by β rays are applied to an atomic transmission portion 22 such as polystyrene to amplify the current, and the electrons are emitted from the secondary electron radiator 21 to the next electron output body 2. The configuration is adopted.
 なお、電流出力部3の素材としては、α、β線などの荷電粒子を電子に変換する素材や、半導体などを用いることができる。この半導体としては、例えばケイ素やゲルマニウムのp-n接合に放射線を照射して生じた電子を伝導帯に上昇させ、正孔を充満帯(価電子帯)に残留させてp側に移動させ正孔、n側に電子が集まることを利用したものが挙げられる。また、電流出力部3の素材としては、放射性物質からの熱を電気に変換する熱電対を用いることができ、その材料はケイ素-ゲルマニウム合金、テルル化鉛、テルル化アンチモン-ゲルマニウム-銀合金 (TAGS) 等である。さらには、熱光起電力を利用して熱い表面から出る赤外線を電気に変換する方法を採用することもできる。 As the material of the current output unit 3, a material that converts charged particles such as α and β rays into electrons, a semiconductor, and the like can be used. As this semiconductor, for example, electrons generated by irradiating a pn junction of silicon or germanium with radiation are raised in the conduction band, holes are left in the filling band (valence band) and moved to the p side to be positive. Examples include those that utilize the collection of electrons on the holes and n-sides. Further, as the material of the current output unit 3, a thermocouple that converts heat from a radioactive substance into electricity can be used, and the materials thereof are silicon-germanium alloy, lead telluride, and antimony-germanium-silver alloy. TAGS) etc. Furthermore, it is also possible to adopt a method of converting infrared rays emitted from a hot surface into electricity by using thermophotovoltaic power.
 電流出力部3は、出力された電子を電流として送出する部材であり、電子の流を出力するための電線2cが導電部3aを介して接続されている。電線2cは電子力電池20の+極となる電線であり、蓋体2aを貫通されて電子力電池20の外部へ導出されている。一方、電線2dは接地電圧発生させる電極であり絶縁体20に接続され、本体容器2bの外部に導出されている。 The current output unit 3 is a member that sends out the output electrons as an electric current, and the electric wire 2c for outputting the flow of electrons is connected via the conductive unit 3a. The electric wire 2c is an electric wire that serves as a positive pole of the electronic power battery 20, and is led out to the outside of the electronic power battery 20 through the lid 2a. On the other hand, the electric wire 2d is an electrode for generating a ground voltage, is connected to the insulator 20, and is led out to the outside of the main body container 2b.
 また、放射線源5と電子出力体2との間には制御手段4が介在されている。この制御手段4は、放射線源5から照射される放射線又は熱の量に従って、電子出力体2における反応の量を規制する部材である。本実施形態において制御手段4は、放射線源5から照射される放射線又は熱の量に従って放射線源と電子出力体との距離を変化させて反応の量を規制する。本実施形態では、容器51の周縁に合致された形状の環状部材で形成されており、容器51は環状部材の熱膨張による体積変化に応じて電子出力体2の集電極23に対して進退するようになっている。 Further, a control means 4 is interposed between the radiation source 5 and the electron output body 2. The control means 4 is a member that regulates the amount of reaction in the electron output body 2 according to the amount of radiation or heat emitted from the radiation source 5. In the present embodiment, the control means 4 regulates the amount of reaction by changing the distance between the radiation source and the electron output body according to the amount of radiation or heat emitted from the radiation source 5. In the present embodiment, the container 51 is formed of an annular member having a shape that matches the peripheral edge of the container 51, and the container 51 moves back and forth with respect to the collecting electrode 23 of the electron output body 2 in response to a volume change due to thermal expansion of the annular member. It has become like.
 すなわち、放射線源5の反応が大きくなりすぎて発生する熱量が多くなったときには、その熱量によって制御手段4が膨張して厚みが大きくなり、放射線源5と集電極23との距離が拡がるようになっている。逆に、放射線源5から発生する熱量が少なくなると制御手段4が収縮して放射線源5と集電極23との距離が狭くなるようになっている。これにより、放射線源5の反応量の変化に応じて電子出力体2から出力される電子の量が平坦化されるように制御している。 That is, when the reaction of the radiation source 5 becomes too large and the amount of heat generated increases, the control means 4 expands to increase the thickness due to the amount of heat, and the distance between the radiation source 5 and the collecting electrode 23 increases. It has become. On the contrary, when the amount of heat generated from the radiation source 5 decreases, the control means 4 contracts and the distance between the radiation source 5 and the collecting electrode 23 becomes narrower. As a result, the amount of electrons output from the electron output body 2 is controlled to be flattened according to the change in the reaction amount of the radiation source 5.
 なお、この制御手段としては、放射線源の反応度を制御する制御材を有する構成とすることができる。この場合、放射線源5から照射される放射線又は熱の量に従い制御材と放射線源5との接触量を変化させることによって、反応の量を規制する。 Note that this control means can be configured to include a control material that controls the reactivity of the radiation source. In this case, the amount of reaction is regulated by changing the amount of contact between the control material and the radiation source 5 according to the amount of radiation or heat emitted from the radiation source 5.
(原子力変換方法)
 以上説明した原子力電池システムを動作させることによって、本発明の方法を実施することができる。なお、本実施形態に係る処理手順は一例に過ぎず、各処理は可能な限り変更されてもよい。また、以下で説明する処理手順について、実施の形態に応じて、適宜、ステップの省略、置換及び追加が可能である。
(Nuclear conversion method)
The method of the present invention can be carried out by operating the nuclear battery system described above. The processing procedure according to the present embodiment is only an example, and each processing may be changed as much as possible. Further, with respect to the processing procedure described below, steps can be omitted, replaced and added as appropriate according to the embodiment.
 先ず、放射性崩壊により放射線又は熱を照射する放射線源5から照射される放射線又は熱に反応して、電子出力体2が電子を出力する電子出力ステップを実行する。この電子出力ステップでは、放射線源5と電子出力体2との間に介在された制御手段4を用いて、放射線源5から照射される放射線又は熱の量に従って、電子出力体2における反応の量を規制する。 First, an electron output step is executed in which the electron output body 2 outputs electrons in response to the radiation or heat emitted from the radiation source 5 that irradiates radiation or heat due to radioactive decay. In this electron output step, the amount of reaction in the electron output body 2 is determined according to the amount of radiation or heat emitted from the radiation source 5 by using the control means 4 interposed between the radiation source 5 and the electron output body 2. To regulate.
 この制御手段4としては、放射線源5から照射される放射線又は熱の量に従って、放射線源5と電子出力体2との距離を変化させて反応の量を規制するようにしてもよく、放射線源5の反応度を制御する制御材を用いて、放射線源5から照射される放射線又は熱の量に従い、制御材と放射線源5との接触量を変化させることによって反応の量を規制するようにしてもよい。
 そして、電子出力体から出力された電子を電流として送出するとともに、変圧器が、電流の電圧を任意の電圧に変換する出力変圧ステップを実行する。
The control means 4 may regulate the amount of reaction by changing the distance between the radiation source 5 and the electron output body 2 according to the amount of radiation or heat emitted from the radiation source 5. Using the control material that controls the degree of reaction of 5, the amount of reaction is regulated by changing the amount of contact between the control material and the radiation source 5 according to the amount of radiation or heat emitted from the radiation source 5. You may.
Then, the electrons output from the electronic output body are sent out as an electric current, and the transformer executes an output transformation step of converting the voltage of the electric current into an arbitrary voltage.
 (作用・効果)
 以上説明した実施形態によれば、放射線量の低い放射性核種を使用して安全性を高めつつ半永久的に電力を供給できる。
 なお、上述した実施形態の説明は、本発明の一例である。このため、本発明は上述した実施形態に限定されることなく、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
(Action / effect)
According to the embodiment described above, it is possible to supply electric power semi-permanently while improving safety by using a radionuclide having a low radiation amount.
The above description of the embodiment is an example of the present invention. Therefore, the present invention is not limited to the above-described embodiment, and various modifications can be made according to the design and the like as long as the technical idea of the present invention is not deviated.
 1…原子力電池システム
 2…電子出力体
 2a…蓋体
 2b…本体容器
 2c…電線
 2d…電線
 3…電流出力部
 3a…導電部
 4…制御手段
 5…放射線源
 11…変圧器
 11a…低圧コイル側端子
 11b…高圧コイル側端子
 12a…整流ダイオード
 12b…整流ダイオード
 13…部品
 14…NPN
 15…可変抵抗
 20…原子力電池
 20a…絶縁体
 21…二次電子放射体
 22…原子透過部
 23…集電極
 51…容器
 60…コバルト
1 ... Nuclear battery system 2 ... Electronic output body 2a ... Lid body 2b ... Main body container 2c ... Electric wire 2d ... Electric wire 3 ... Current output unit 3a ... Conductive part 4 ... Control means 5 ... Radiation source 11 ... Transformer 11a ... Low voltage coil side Terminal 11b ... High-voltage coil side terminal 12a ... Rectifier diode 12b ... Rectifier diode 13 ... Parts 14 ... NPN
15 ... Variable resistance 20 ... Atomic battery 20a ... Insulator 21 ... Secondary electron radiator 22 ... Atomic transmission 23 ... Collector electrode 51 ... Container 60 ... Cobalt

Claims (10)

  1.  放射性崩壊により放射線又は熱を照射する放射線源と、
     前記放射線源から照射される放射線又は熱に反応して電子を出力する電子出力体と、
     前記電子出力体から出力された電子を電流として送出する電流出力部と、
     前記電流出力部から出力された電流の電圧を任意の電圧に変換する変圧器と
    を備えることを特徴とする原子力電池システム。
    With a radiation source that irradiates radiation or heat by radioactive decay,
    An electron output body that outputs electrons in response to radiation or heat emitted from the radiation source, and
    A current output unit that sends out the electrons output from the electronic output body as an electric current, and
    A nuclear battery system including a transformer that converts the voltage of the current output from the current output unit into an arbitrary voltage.
  2.  前記放射線源と前記電子出力体との間に介在され、前記放射線源から照射される放射線又は熱の量に従って、前記電子出力体における前記反応の量を規制する制御手段をさらに備えることを特徴とする請求項1に記載の原子力電池システム。 It is further provided with a control means that is interposed between the radiation source and the electron output body and regulates the amount of the reaction in the electron output body according to the amount of radiation or heat emitted from the radiation source. The nuclear battery system according to claim 1.
  3.  前記制御手段は、前記放射線源から照射される放射線又は熱の量に従って、前記放射線源と前記電子出力体との距離を変化させて、前記反応の量を規制することを特徴とする請求項1又は2に記載の原子力電池システム。 The control means is characterized in that the amount of the reaction is regulated by changing the distance between the radiation source and the electron output body according to the amount of radiation or heat emitted from the radiation source. Or the nuclear battery system according to 2.
  4.  前記制御手段は、
     前記放射線源の反応度を制御する制御材を有し、
     前記放射線源から照射される放射線又は熱の量に従い、前記制御材と前記放射線源との接触量を変化させることによって、前記反応の量を規制することを特徴とする請求項1又は2に記載の原子力電池システム。
    The control means
    It has a control material that controls the reactivity of the radiation source, and has
    The first or second claim, wherein the amount of the reaction is regulated by changing the amount of contact between the control material and the radiation source according to the amount of radiation or heat emitted from the radiation source. Atomic battery system.
  5.  前記放射線源はトリウムを含有する物質であることを特徴とする請求項1乃至3のいずれかに記載の原子力電池システム。 The nuclear battery system according to any one of claims 1 to 3, wherein the radiation source is a substance containing thorium.
  6.  放射性崩壊により放射線又は熱を照射する放射線源から照射される放射線又は熱に反応して、電子出力体が電子を出力する電子出力ステップと、
     前記電子出力体から出力された電子を電流として送出するとともに、変圧器が、前記電流の電圧を任意の電圧に変換する出力変圧ステップと
    を含むことを特徴とする原子力変換方法。
    An electron output step in which an electron output body outputs electrons in response to radiation or heat emitted from a radiation source that irradiates radiation or heat due to radioactive decay.
    A nuclear power conversion method comprising transmitting an electron output from the electronic output body as an electric current and an output transformer step in which a transformer converts the voltage of the electric current into an arbitrary voltage.
  7.  前記電子出力ステップにおいて、前記放射線源と前記電子出力体との間に介在された制御手段が、前記放射線源から照射される放射線又は熱の量に従って、前記電子出力体における前記反応の量を規制することを特徴とする請求項6に記載の原子力変換方法。 In the electron output step, a control means interposed between the radiation source and the electron output body regulates the amount of the reaction in the electron output body according to the amount of radiation or heat emitted from the radiation source. The nuclear conversion method according to claim 6, wherein the nuclear power conversion method is performed.
  8.  前記制御手段は、前記放射線源から照射される放射線又は熱の量に従って、前記放射線源と前記電子出力体との距離を変化させて、前記反応の量を規制することを特徴とする請求項6又は7に記載の原子力変換方法。 6. The control means is characterized in that the amount of the reaction is regulated by changing the distance between the radiation source and the electron output body according to the amount of radiation or heat emitted from the radiation source. Or the nuclear conversion method according to 7.
  9.  前記制御手段は、
     前記放射線源の反応度を制御する制御材を有し、
     前記放射線源から照射される放射線又は熱の量に従い、前記制御材と前記放射線源との接触量を変化させることによって、前記反応の量を規制することを特徴とする請求項6又は7に記載の原子力変換方法。
    The control means
    It has a control material that controls the reactivity of the radiation source, and has
    The sixth or seven claim, wherein the amount of the reaction is regulated by changing the amount of contact between the control material and the radiation source according to the amount of radiation or heat emitted from the radiation source. Nuclear conversion method.
  10.  前記放射線源はトリウムを含有する物質であることを特徴とする請求項6乃至8のいずれかに記載の原子力変換方法。 The nuclear conversion method according to any one of claims 6 to 8, wherein the radiation source is a substance containing thorium.
PCT/JP2019/042114 2019-10-28 2019-10-28 Nuclear power battery system and nuclear power conversion method WO2021084570A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021553894A JPWO2021084570A1 (en) 2019-10-28 2019-10-28
PCT/JP2019/042114 WO2021084570A1 (en) 2019-10-28 2019-10-28 Nuclear power battery system and nuclear power conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042114 WO2021084570A1 (en) 2019-10-28 2019-10-28 Nuclear power battery system and nuclear power conversion method

Publications (1)

Publication Number Publication Date
WO2021084570A1 true WO2021084570A1 (en) 2021-05-06

Family

ID=75715875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042114 WO2021084570A1 (en) 2019-10-28 2019-10-28 Nuclear power battery system and nuclear power conversion method

Country Status (2)

Country Link
JP (1) JPWO2021084570A1 (en)
WO (1) WO2021084570A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257100A (en) * 1986-04-23 1987-11-09 ニユ−セル,インコ−ポレ−テツド Device for converting radioactive energy into electrical energy
US20150357067A1 (en) * 2013-12-23 2015-12-10 Aai Corporation Generating electricity on demand from a neutron-activated fuel sample
WO2018122445A1 (en) * 2016-12-30 2018-07-05 Andras Kovacs Method and apparatus for producing energy from metal alloys

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257100A (en) * 1986-04-23 1987-11-09 ニユ−セル,インコ−ポレ−テツド Device for converting radioactive energy into electrical energy
US20150357067A1 (en) * 2013-12-23 2015-12-10 Aai Corporation Generating electricity on demand from a neutron-activated fuel sample
WO2018122445A1 (en) * 2016-12-30 2018-07-05 Andras Kovacs Method and apparatus for producing energy from metal alloys

Also Published As

Publication number Publication date
JPWO2021084570A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
US7800286B2 (en) Alpha fusion electrical energy valve
US20130154438A1 (en) Power-Scalable Betavoltaic Battery
US11670432B2 (en) Multi-layered radio-isotope for enhanced photoelectron avalanche process
US20230207148A1 (en) Chargeable atomic battery with pre-activation encapsulation manufacturing
Wang et al. Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator
JP6541661B2 (en) Solid-state power generator and nuclear power plant having the solid-power generator
Terranova Nuclear batteries: Current context and near‐term expectations
Cheon et al. Design and performance analysis of a 500‐W heat source for radioisotope thermophotovoltaic converters
WO2021084570A1 (en) Nuclear power battery system and nuclear power conversion method
Kim et al. Enhancement of energy performance in betavoltaic cells by optimizing self‐absorption of beta particles
US9881709B2 (en) Generating electricity on demand from a neutron-activated fuel sample
US20210257122A1 (en) Generator and method for using same
RU2726199C1 (en) Device based on supercapacitor for producing electric energy from intra-atomic
Mane et al. Atomic batteries: a compact and long life power source
GB2484028A (en) Power-Scalable Betavoltaic Battery
Davydov et al. Basic principles of betavoltaic elements and prospects of their development
Matheson The betavoltaic pacemaker power source
US20220223301A1 (en) Radioactive power generator reactivation system
US20230197306A1 (en) Fully ceramic encapsulated radioactive heat source
de Souza et al. How does radioisotope thermoelectric generator (RTG) work
WO2010033927A1 (en) Radioisotope thermal generator
Khan Development of Gallium Nitride and Indium Gallium Phosphide Betavoltaic and Alphavoltaic Devices for Continuous Power Generation
Cooper Recent Developments in the Design of Diamond Betavoltaic Cells
EP0313073A2 (en) Electrostatic voltage excitation process and apparatus
Bennun et al. Advances in the efficiency of beta-scintillator batteries and its adapting to support electric vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553894

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950381

Country of ref document: EP

Kind code of ref document: A1