WO2021082976A1 - 透镜结构、透镜天线及电子设备 - Google Patents

透镜结构、透镜天线及电子设备 Download PDF

Info

Publication number
WO2021082976A1
WO2021082976A1 PCT/CN2020/122035 CN2020122035W WO2021082976A1 WO 2021082976 A1 WO2021082976 A1 WO 2021082976A1 CN 2020122035 W CN2020122035 W CN 2020122035W WO 2021082976 A1 WO2021082976 A1 WO 2021082976A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
connection area
conductive sheet
lens structure
lens
Prior art date
Application number
PCT/CN2020/122035
Other languages
English (en)
French (fr)
Inventor
杨帆
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021082976A1 publication Critical patent/WO2021082976A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens

Definitions

  • This application relates to the field of antenna technology, in particular to a lens structure, lens antenna and electronic equipment.
  • a lens antenna is an antenna composed of a lens and a feed source. Using the convergence characteristics of the lens, it can ensure that the electromagnetic waves emitted from the feed source are emitted in parallel through the lens, or it can ensure that the parallel incident electromagnetic waves are converged to the feed source after passing through the lens. Since electromagnetic waves generally need to pass through multiple dielectric layers when entering the lens, the introduction of the medium will cause the loss of electromagnetic waves, thereby reducing the efficiency of the lens antenna.
  • a lens structure a lens antenna, and an electronic device are provided.
  • a lens structure including:
  • At least one waveguide layer, the waveguide layer and the dielectric layer are alternately stacked in a first direction, and the waveguide layer includes:
  • At least one waveguide structure when a plurality of the waveguide structures are included, the plurality of the waveguide structures are spaced apart and arranged in parallel;
  • the waveguide structure includes a first conductive sheet and at least a pair of second conductive sheets, each pair of the second conductive sheet The conductive sheets are respectively arranged on both sides of the first conductive sheet in the axial direction;
  • the multiple waveguide structures on the same axis have a first gradual law of the number of the second conductive plates; the axis is through any of the waveguide layers and A straight line parallel to the first direction.
  • a lens structure including:
  • At least one waveguide layer, the waveguide layer and the dielectric layer are alternately stacked in a first direction, and the waveguide layer includes:
  • At least three waveguide structures a plurality of the waveguide structures are arranged in parallel and spaced apart;
  • the waveguide structure includes a first conductive sheet and at least a pair of second conductive sheets, each pair of the second conductive sheet is respectively arranged on the first On both sides of the conductive sheet in the axial direction;
  • a lens antenna including:
  • the above-mentioned lens structure is arranged in parallel with the feed source array.
  • An electronic device includes the above-mentioned lens antenna.
  • an artificial surface plasmon waveguide can be produced by using a symmetrical second conductive sheet.
  • the phase delay distribution law can be obtained.
  • the beam converging function, and the medium loss of the electromagnetic wave along the waveguide is low, so in practical applications, a lens antenna with smaller loss, higher efficiency, and wider bandwidth can be realized.
  • the assembly and preparation of low-cost lenses can also be realized.
  • the above-mentioned lens antenna includes a feed array and a lens structure.
  • a lens antenna with smaller loss, higher efficiency, wider bandwidth and lower cost can be realized ; Multi-beam emission and beam scanning can be achieved through the setting of the feeder array.
  • the above-mentioned electronic equipment includes the lens antenna described above. Because the lens antenna has smaller loss, higher efficiency, larger bandwidth and lower cost, and can realize multi-beam emission and beam scanning, the electronic device can achieve high efficiency, High-gain, low-cost beam scanning.
  • FIG. 1 is a schematic structural diagram of a lens structure in an embodiment
  • Fig. 2 is a schematic structural diagram of a waveguide structure in an embodiment
  • Fig. 3 is a schematic structural diagram of a waveguide structure in another embodiment
  • FIG. 4 is a schematic structural diagram of multiple waveguide structures when the first gradual change rule is in an embodiment
  • FIG. 5 is a schematic structural diagram of a plurality of waveguide structures when the second gradual change rule is in an embodiment
  • FIG. 6 is a schematic structural diagram of the lens structure in the first alternative embodiment
  • FIG. 7 is a schematic structural diagram of the lens structure in the second alternative embodiment
  • FIG. 8 is a schematic structural diagram of a lens structure in optional embodiment three;
  • FIG. 9 is a schematic structural diagram of a lens structure in optional embodiment four;
  • FIG. 10 is a schematic diagram of the lens structure in the fifth alternative embodiment
  • FIG. 11 is a schematic structural diagram of a waveguide structure in another embodiment
  • FIG. 12 is a schematic structural diagram of a waveguide structure in another embodiment
  • FIG. 13 is a schematic structural diagram of a waveguide structure in another embodiment
  • FIG. 14 is a schematic diagram of the structure of a lens antenna in an embodiment
  • 15 is a schematic diagram of the structure of the feed array in an embodiment
  • 16 is a schematic diagram of the structure of a lens antenna in another embodiment
  • FIG. 17 is a schematic structural diagram of a lens antenna in another embodiment
  • 18 is a schematic diagram of the structure of an electronic device in an embodiment
  • Figure 19 is a beam scanning pattern in an embodiment
  • 20 is a schematic diagram of a middle frame structure of an electronic device in an embodiment
  • FIG. 21 is a schematic diagram of the structure of an electronic device in an embodiment.
  • first, second, etc. used in this application can be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish the first element from another element, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.
  • FIG. 1 is a schematic structural diagram of a lens structure in an embodiment.
  • the lens structure 10 is applied to a lens antenna.
  • the lens structure 10 is provided with different phase delay distribution rules, so as to realize the function of converging electromagnetic waves.
  • the lens structure 10 can work in a microwave frequency band, and can be adapted to different frequency bands such as millimeter waves and terahertz waves through adjustment of structural parameters.
  • millimeter waves refer to electromagnetic waves with wavelengths on the order of millimeters, and their frequencies are approximately between 20 GHz and 300 GHz.
  • 3GP has designated a list of frequency bands supported by 5G NR.
  • the 5G NR spectrum range can reach 100 GHz. It has specified two frequency ranges: Frequency range 1 (FR1), which is the frequency band below 6 GHz, and Frequency range 2 (FR2), which is millimeter wave frequency band.
  • FR1 Frequency range 1
  • FR2 Frequency range 2
  • Frequency range 1 frequency range 450MHz-6.0GHz, of which the maximum channel bandwidth is 100MHz.
  • the frequency range of Frequency range2 is 24.25GHz-52.6GHz, and the maximum channel bandwidth is 400MHz.
  • Nearly 11GHz spectrum used for 5G mobile broadband includes: 3.85GHz licensed spectrum, for example: 28GHz (24.25-29.5GHz), 37GHz (37.0-38.6GHz), 39GHz (38.6-40GHz) and 14GHz unlicensed spectrum (57-71GHz) .
  • the working frequency band of 5G communication system has three frequency bands: 28GHz, 39GHz and 60GHz.
  • the lens structure 10 includes a multilayer dielectric layer 100 and a multilayer waveguide layer 200; the waveguide layer 200 and the dielectric layer 100 are alternately stacked in a first direction.
  • the number of layers of the dielectric layer 100 and the waveguide layer 200 is not limited ( Figure 1 takes the five-layer dielectric layer 100 and the four-layer waveguide layer 200 as an example).
  • the relative area between the dielectric layer 100 and the waveguide layer 200 is different. Limited, can be adjusted according to actual application.
  • the dielectric layer 100 is a non-conductive functional layer that can be used to support the fixed waveguide layer 200.
  • the interval distribution of the multilayer waveguide layer 200 can be realized; at the same time, the dielectric layer 100
  • the lens structure 10 can be divided into multiple regions with non-continuous refractive index, so that the size of the waveguide layer 200 in the first direction only needs to be changed within a small range to achieve the convergence effect and realize the assembly and preparation of low-cost lenses.
  • the thicknesses of the plurality of dielectric layers 100 in the direction of alternate stacking are equal, the plurality of waveguide layers 200 are distributed at equal intervals.
  • the material of the dielectric layer 100 is an electrically insulating material.
  • the waveguide layer 200 is a functional layer that can be used to transmit electromagnetic waves.
  • the multiple waveguide layers 200 can emit incident electromagnetic waves in parallel, or converge parallel incident electromagnetic waves to a focal point, or diverge parallel incident electromagnetic waves.
  • the waveguide layer 200 includes one or more waveguide structures 300. When there are multiple waveguide structures 300, the multiple waveguide structures 300 are spaced apart and arranged in parallel. Optionally, a plurality of waveguide structures 300 are arranged side by side at equal intervals.
  • the material of the waveguide layer 200 may be a conductive material, such as a metal material, an alloy material, a conductive silicone material, a graphite material, etc., and the material of the waveguide layer 200 may also be a material with a high dielectric constant.
  • the waveguide structure 300 includes a first conductive sheet 301 and at least a pair of second conductive sheets 302, each pair of second conductive sheets 302 are respectively arranged on both sides of the first conductive sheet 301 in the axial direction, and electromagnetic waves along the first conductive sheet 301 ⁇ axial direction incident to the lens structure 10.
  • each pair of second conductive sheets 302 are axially and mirror-symmetrically arranged on both sides of the first conductive sheet 301.
  • mirror symmetry means that each pair of second conductive sheets 302 is symmetrical with respect to the axis of the first conductive sheet 301.
  • each pair of second conductive sheets 302 are symmetrically arranged on both sides of the first conductive sheet 301 for axial sliding movement.
  • sliding symmetry means that the two second conductive sheets 302 originally symmetrical about the axis slide relative to each other for a certain distance along the axial direction of the first conductive sheet 301; the multiple waveguide structures 300 are independent of each other and have similar shapes.
  • the length direction of the second conductive sheet 302 is substantially perpendicular to the axial direction of the first conductive sheet 301.
  • the edge of each second conductive sheet 302 can produce artificial surface plasmon waveguides (subsequent abbreviations) Is a waveguide)
  • multiple pairs of mirror-symmetric second conductive sheets 302 can produce mirror-symmetric waveguide pairs
  • each waveguide structure is composed of multiple waveguides in a linear arrangement
  • multiple pairs of slip-symmetric second conductive sheets 302 can produce slip Symmetrical waveguide pairs
  • each waveguide structure consists of multiple waveguides arranged in a linear arrangement.
  • each waveguide structure 300 a plurality of second conductive sheets 302 located on the same side of the first conductive sheet 301 are arranged in parallel with the same center distance p, and the plurality of second conductive sheets 302 have the same length h, so that In the waveguide structure 300, the edges in the length direction of each second conductive sheet 302 can generate the same waveguide.
  • the center distance p can be understood as the distance between the geometric centers of two adjacent second conductive sheets 302.
  • the electromagnetic wave When the electromagnetic wave is incident on the lens structure along the axial direction, the electromagnetic wave can continue to propagate along the waveguide, and the propagation constant is larger than the free space, that is, the equivalent refractive index greater than 1 is realized, and the convergence function is realized. Since most of the energy of the electromagnetic wave is concentrated on the longitudinal edge of the second conductive sheet 302 of the waveguide structure 300, only a small amount enters the medium, so it is hardly affected by the medium loss, so in practical applications, a lens with smaller loss and higher efficiency can be realized antenna. Wherein, when each pair of second conductive sheets 302 slide symmetrically in the axial direction, the equivalent refractive index changes little with frequency, so a lens antenna with a larger bandwidth can be realized in practical applications.
  • the plurality of waveguide structures 300 on the same axis in the plurality of waveguide layers 200 have a first gradual law of the number of second conductive sheets 302, and/or, the plurality of waveguides of the waveguide layer 200 There is a second gradual law of the number of second conductive sheets 302 between the structures 300.
  • the axis is a straight line passing through any waveguide layer 200 and parallel to the first direction.
  • the lens structure 10 with the first gradual law can realize the convergence of the electromagnetic wave beam in the first direction
  • the lens structure 10 with the second gradual law It can realize the converging effect of the electromagnetic wave beam in the second direction.
  • the second direction is substantially perpendicular to the first direction and the axial direction of the first conductive sheet 301 at the same time, that is, parallel to the length direction of the second conductive sheet 302.
  • the first gradual law is that the number of second conductive sheets 302 decreases symmetrically from the central position of the same axis to the waveguide structures 300 on both sides, that is, from the waveguide structures of the central layers of the multiple waveguide layers 200
  • the waveguide structure 300 on both sides of the layer 300 decreases symmetrically
  • Figure 4 takes the slip-symmetric second conductive sheet 302 as an example, and only shows a schematic diagram of the waveguide structure 300 in each waveguide layer 200 that is on the axis A at the same time.
  • the second gradual law is that the number of second conductive sheets 302 decreases symmetrically from the center of the arrangement of the plurality of waveguide structures 300 of the waveguide layer 200 to both sides, that is, from the waveguide structure 300 at the center of the layer to both sides of the layer
  • the waveguide structure 300 is symmetrically decreasing ( Figure 5 takes the slip-symmetric second conductive sheet 302 as an example, and only shows multiple waveguide structures 300 of a certain waveguide layer 200.
  • the decrease can be a linear gradual decrease or a non-linear gradual decrease.
  • a linear gradual decrease can be understood as a decrease according to the gradient of a geometric sequence or an arithmetic sequence or according to a specific rule.
  • the plurality of waveguide structures 300 on the same axis in the plurality of waveguide layers 200 have a first gradual law of the number of second conductive plates 302; and /Or, when the number of waveguide structures 300 of the waveguide layer 200 is at least three, the plurality of waveguide structures 300 of the waveguide layer 200 have a second gradual law of the number of the second conductive sheets 302 between them.
  • the waveguide layer includes at least three waveguide structures 300, and there is a second gradual law of the number of second conductive sheets 302 between the multiple waveguide structures 300 of the waveguide layer 200 .
  • the multiple waveguide structures 300 are set as: There is a first gradual law of the number of second conductive sheets 302 between the plurality of waveguide structures 300; at this time, if the number of second conductive sheets 302 of the plurality of waveguide structures 300 in the waveguide layer 200 is the same (see optional implementation Example 1 and Alternative Example 2), the lens structure 10 only realizes the electromagnetic wave convergence in the first direction; if there is a second gradual change of the number of the second conductive plates 302 between the multiple waveguide structures 300 in the same waveguide layer 200 According to the law (see optional third embodiment), the lens structure 10 can simultaneously realize the convergence of electromagnetic waves in the first direction and the second direction. specifically:
  • FIG. 6 uses the sliding symmetrical arrangement of each pair of second conductive sheets 302, five waveguide layers 200 and each waveguide layer 200 has only one waveguide structure 300 as an example (in the nth The number of second conductive sheets 302 of the waveguide structure 300 of the multi-layer waveguide layer 200 is marked as Tn).
  • the value of T decreases from the waveguide structure 300 of the waveguide layer 200 at the center to the waveguide structure 300 of the two side layers, so that the phase retardation value of the lens structure 10 decreases from the middle layer to the two side layers, and the lens structure 10 To achieve the first direction (y direction in the figure) electromagnetic wave convergence.
  • FIG. 7 takes the sliding symmetrical arrangement of each pair of second conductive sheets 302, five waveguide layers 200 and two waveguide structures 300 in each waveguide layer 200 as an example.
  • FIG. 8 takes the sliding symmetrical arrangement of each pair of second conductive sheets 302, five waveguide layers 200 and three waveguide structures 300 in each waveguide layer 200 as an example.
  • the plurality of waveguide structures 300 on the same axis in the five-layer waveguide layer 200 has a first gradual law of the number of second conductive sheets 302, and the plurality of waveguide structures 300 in the same waveguide layer 200 has a second conductive pattern.
  • the number of the second conductive sheets 302 of the waveguide structure 300 located in the A region of the waveguide layer 200 corresponding to the A region of the waveguide layer 200 of the different waveguide layer 200 is marked as TnA)
  • TnA the number of the second conductive plates 302 between the two waveguide structures 300
  • the number of second conductive sheets 302 of the waveguide structure 300 in the B region of the n-layer waveguide layer 200 is marked as TnB
  • TnB the number mark of the second conductive sheet 302 of the waveguide structure 300 in the C region of the waveguide layer 200 corresponding to the axis C of the different waveguide layer
  • the phase retardation value of the lens structure 10 decreases from the middle layer to the two side layers, and decreases from the center position in the layer to the two sides.
  • the lens structure 10 can simultaneously realize the first direction and the second direction (that is, the x direction in the figure). ) Electromagnetic waves converge.
  • the multiple waveguide structures 300 are set as: between the multiple waveguide structures 300 in the waveguide layer 200 There is a second gradual law of the number of second conductive sheets 302; at this time, if the number of second conductive sheets 302 of the multiple waveguide structures 300 on the same axis in different waveguide layers 200 is the same (see optional embodiment 4), the lens structure 10 only realizes the concentration of electromagnetic waves in the second direction; if there is a first gradual law of the number of second conductive plates 302 between the multiple waveguide structures 300 on the same axis in different waveguide layers 200 (see Optional embodiment 5), the lens structure 10 can realize the electromagnetic wave convergence in the second direction and the first direction at the same time. specifically:
  • FIG. 9 uses the sliding symmetrical arrangement of each pair of second conductive sheets 302, three waveguide layers 200 and five waveguide structures 300 in each waveguide layer 200 as an example. At this time, There is a second gradual law of the number of second conductive sheets 302 between the multiple waveguide structures 300 in the waveguide layer 200, and the number of multiple waveguide structures 300 on the same axis in different waveguide layers 200 is the same.
  • FIG. 10 uses the sliding symmetrical arrangement of each pair of second conductive sheets 302, three waveguide layers 200 and five waveguide structures 300 in each waveguide layer 200 as an example. At this time, There is a second gradual law of the number of second conductive sheets 302 between the multiple waveguide structures 300 in the waveguide layer 200, and there are second conductive sheets 302 between the multiple waveguide structures 300 on the same axis in different waveguide layers 200 The first gradual law of the number of.
  • the equivalent refractive index of the lens structure 10 decreases from the center of the layer to the positions on both sides, and at the same time, decreases from the middle layer to the two side layers, and the lens structure 10 realizes the convergence of electromagnetic waves in the second direction and the first direction.
  • the first conductive sheet 301 is provided with a first connection area 301A and a second connection area 301B in the axial direction, and the second conductive sheet 302 is arranged on the second connection area 301B, wherein the second connection area 301B It can be the incident area of the waveguide structure 300 or the exit area of the waveguide structure 300.
  • the waveguide structure 300 further includes at least one pair of matching sections 303 (FIG. 11 takes two pairs of matching sections 303 as an example).
  • At least one pair of matching sections 303 are arranged on the first connection area 301A, each pair of matching sections 303 are respectively arranged on both sides of the first conductive sheet 301, and the length direction of the matching section 303 is parallel to the length direction of the second conductive sheet 302 The length direction is perpendicular to the axial direction of the first conductive sheet 301; in the length direction, the length of the matching section 303 of the same waveguide structure 300 is less than the length of the second conductive sheet 302.
  • each pair of matching sections 303 is arranged on both sides of the first conductive sheet 301 axially and mirror-symmetrically; optionally, each pair of matching sections The 303 axial sliding movement is symmetrically arranged on both sides of the first conductive sheet 301.
  • the matching section 303 has conductivity.
  • the material of the matching section 303 is the same as the material of the second conductive sheet 302.
  • the length of the matching section 303 is less than the length of the second conductive sheet 302, when electromagnetic waves enter the matching section 303 through the second conductive sheet 302, the refractive index gradually decreases; when the first connection region is the incident region of the waveguide structure 300, the matching section 303 The impedance matching between the electromagnetic wave incident area and the free space of the lens structure 10 can be realized, and the energy loss of electromagnetic waves can be reduced; when the first connection area is the exit area of the waveguide structure 300, the matching section 303 can realize the electromagnetic wave exit area and the free space of the lens structure 10 respectively. The impedance matching between them reduces the energy loss of electromagnetic waves, thereby increasing the transmission distance of electromagnetic waves and improving the efficiency of the lens antenna.
  • the first conductive sheet 301 is further provided with a third connection area 301C in the axial direction, and the first connection area 301A, the second connection area 301B, and the third connection area 301C are arranged along the axial direction; the waveguide
  • the structure 300 includes a plurality of pairs of matching sections 303, which are respectively disposed in the first connection region 301A and the third connection region 301C, that is, the plurality of pairs of matching sections 303 are respectively located in the entrance area and the exit area of the lens structure 10.
  • the third gradual change rule is that the lengths of the multiple pairs of matching segments 303 extend from the side of the first connection area 301A of the first conductive sheet 301 close to the second connection area 301B to the first connection
  • the side of the area 301A away from the second connection area 301B decreases gradually, and/or from the side of the third connection area 301C of the first conductive sheet 301 close to the second connection area 301B to the third connection area 301C away from the second connection area 301B Decrease on one side.
  • the number of pairs of matching segments in the first connection area 301A and the third connection area 301C may be the same or different. In FIG.
  • each pair of matching sections 303 are provided in each connection area of each waveguide structure 300, and each pair of second conductive sheets 302 and each pair of matching sections 303 are slidingly symmetrically arranged as an example, and the lengths of the matching sections 303 are respectively h1 And h2, h1 and h2 are gradually reduced relative to h (h is the length of the second conductive sheet 302), that is, h>h1>h2, p (p is the distance between the geometric centers of two adjacent matching segments 303) constant.
  • the lengths of the multiple pairs of matching sections 303 decrease from the side of the first connection area 301A of the first conductive sheet 301 close to the second connection area 301B to the side of the first connection area 301A away from the second connection area 301B, and/or from The side of the third connection area 301C of the first conductive sheet 301 close to the second connection area 301B decreases toward the side of the third connection area 301C away from the second connection area 301B, which can gradually reduce the refractive index at both ends of the waveguide and further reduce the lens structure
  • the impedance mismatch between 10 and free space can more effectively reduce the energy loss of electromagnetic waves, and more effectively improve the efficiency of the lens antenna.
  • the distance between two adjacent second conductive sheets 302 on the waveguide structure is equal to the distance between two adjacent matching sections 303, so that the impedance matching is more evenly distributed in space.
  • the lens structure provided in this embodiment uses multiple pairs of symmetrical second conductive plates to generate artificial surface plasmon waveguides.
  • the phase delay is obtained to realize the beam convergence function.
  • the medium loss of the electromagnetic wave along the waveguide is low, so in practical applications, a lens antenna with smaller loss, higher efficiency, and wider bandwidth can be realized.
  • the impedance mismatch between the lens structure and the free space can be reduced, the energy loss of electromagnetic waves can be reduced more effectively, and the efficiency of the lens antenna in practical applications can be improved.
  • the assembly and preparation of low-cost lenses can also be realized.
  • FIG. 14 is a schematic diagram of the structure of the lens antenna 1 in an embodiment.
  • the lens antenna 1 includes the lens structure 10 and the feed array 20 as described in the above embodiment.
  • the feed source array 20 and the lens structure 10 are arranged in parallel.
  • the feed array 20 includes a plurality of feed units.
  • the plurality of feed units 20a are arranged in a linear fashion, and the center of the linear arrangement is located at the focal point of the lens structure 10, so that the feed array 20 Multi-beam emission can be realized; by feeding different feed units of the feed array 20, different beam directions can be obtained, thereby realizing beam scanning, which is suitable for the application of millimeter wave lens antennas.
  • the feed array 20 in this embodiment may be an array of radiating elements arranged on a millimeter-wave integrated module, and the feed unit 20a may be a radiating element of various forms, for example, rectangular, ring-shaped, cross-shaped, etc. Different forms of radiation patches.
  • the lens antenna provided in this embodiment includes a feed array and a lens structure. Through the symmetric structure of the second conductive sheet in the lens structure and the gradual change of the number, it is possible to achieve smaller loss, higher efficiency, larger bandwidth, and cost. Lower lens antenna; multi-beam emission and beam scanning can be achieved through the setting of the feed array.
  • FIGS. 16 and 17, 16 and FIG. 17 are schematic diagrams of the structure of the lens antenna 1 in another embodiment.
  • the lens antenna 1 includes the lens structure 10 and the feed array 20 as described in the above embodiment, the first metal plate 30 and the second metal plate 40 arranged at an interval 20 from the first metal plate.
  • the lens structure 10 and the feed array 20 are respectively arranged between the first metal plate 30 and the second metal plate 40.
  • the lens structure 10 and the feed array 20 please refer to the relevant description of the above-mentioned embodiment, which will not be repeated here.
  • the lens structure 10 can be applied to application scenarios with different polarization directions through different settings of the waveguide layer 200 and the dielectric layer 100 in the first direction.
  • the first directions of the waveguide layer 200 and the dielectric layer 100 are parallel to the first metal plate 30 and the second metal plate 40 respectively (with the waveguide layer 200 as a waveguide structure 300 and each pair of second
  • the conductive sheet 302 is set to slide symmetrically, and the first direction in the drawing is perpendicular to the surface of the paper), so that the lens structure 10 can be suitable for vertical polarization application scenarios, and the polarization directions of the lens antenna 1 are respectively perpendicular to the first metal plate 30 And a second metal plate 40.
  • the first direction of the waveguide layer 200 and the dielectric layer 100 are perpendicular to the first metal plate 30 and the second metal plate 40 respectively (the first direction in the drawing is parallel to the paper surface), so that the lens structure 10 can be applied to horizontal polarization application scenarios, and the polarization direction of the lens antenna 1 is parallel to the first metal plate 30 and the second metal plate 40, respectively.
  • both the first metal plate 30 and the second metal plate 40 can be used to reflect internal electromagnetic waves and shield external interference. Placing the lens structure 10 and the feed array 20 between the first metal plate 30 and the second metal plate 40 can reduce the leakage of electromagnetic waves radiated by the feed, thereby improving the efficiency of the lens antenna 1 and the structural strength of the lens antenna 1 .
  • the first flat metal plate 30 and the second flat metal plate 40 are made of super-hard aluminum plates, of course, they can also be made of other metal materials such as stainless steel.
  • the lens antenna provided by this embodiment includes a first metal plate, a second metal plate, a feed array, and a lens structure.
  • the loss can be achieved through the symmetric structure and the number of second conductive plates in the lens structure.
  • the structural strength of the antenna; in addition, multi-beam emission and beam scanning can be realized through the setting of the feeder array.
  • the present application also provides an electronic device 2.
  • the electronic device 2 includes the lens antenna 1 as in the above-mentioned embodiment. Because the lens antenna 1 has smaller loss, higher efficiency, larger bandwidth and lower cost, and can realize multi-beam Outgoing and beam scanning, so the electronic device 2 can achieve high efficiency, high gain, low cost beam scanning, which can be suitable for the transmission and reception of 5G communication millimeter wave signals.
  • the lens antenna 1 has a short focal length, a small size, and is easy to integrate in electronics. In the device 2, the space occupied by the lens antenna 1 in the electronic device 2 can be reduced at the same time.
  • the electronic device 2 further includes a detection module 160, a switch module 161 and a control module 162.
  • the detection module 160 is used to obtain the beam signal strength of the electromagnetic wave radiated by the lens antenna 1 when the feed unit 20a is in the working state, and can also be used to detect and obtain the electromagnetic wave power and the electromagnetic wave absorption ratio of the lens antenna 1 when the feed unit 20a is in the working state. Or specific absorption rate (Specific Absorption Rate, SAR) and other parameters.
  • SAR Specific Absorption Rate
  • the switch module 161 is connected to the switch module 161 and is used to select a connection path with any one of the feed units 20a.
  • the switch module 161 may include an input terminal and multiple output terminals, the input terminal is connected to the control module 162, and the multiple output terminals are respectively connected to the multiple feed units 20a in a one-to-one correspondence.
  • the switch module 161 may be used to receive a switching instruction issued by the control module 162 to control the on and off of each switch in the switch module 161, so as to control the conduction and connection between the switch module 161 and any feed unit 20a. Put any one of the feed units 20a in an operating (conducting) state.
  • the control module 162 is respectively connected to the detection module 160 and the switch module 161, and controls the switch module 161 according to the beam signal strength to make the feed unit 20a corresponding to the strongest beam signal strength work.
  • any one of the feed units 20a can be operated to obtain different beam directions, thereby achieving beam scanning, which can be applied to the application of millimeter wave lens antennas; and, beam scanning
  • the process does not require a shifter and attenuator, which greatly reduces the cost.
  • the detection module 160 can correspondingly obtain five beam signal strengths, and filter out the strongest beam signal strength from them, and compare the strongest beam signal strength to the feed source
  • the unit 20a serves as the target feed unit, and the switching instruction issued by the control module 162 controls the conduction connection between the switch module 161 and the target feed unit, so that the target feed unit is in a working (conducting) state.
  • the simulation obtains the beam scanning pattern as shown in FIG. 19. According to the simulation results, it can be seen that the mobile phone can realize the 6G millimeter wave high-efficiency, high-gain, and low-cost beam scanning of the mobile phone through the arrangement of the two lens antennas 1.
  • the electronic device 2 includes multiple lens antennas 1, and the multiple lens antennas 1 are distributed on different sides of the middle frame of the electronic device 2.
  • the middle frame of the electronic device 2 includes a first side 181 and a third side 183 arranged opposite to each other, and a second side 182 and a fourth side 184 arranged opposite to each other.
  • the two sides 182 are connected to one end of the first side 181 and the third side 183, and the fourth side 184 is connected to the other end of the first side 181 and the third side 183.
  • At least two sides of the first side 181, the second side 182, the third side 183, and the fourth side 184 are respectively provided with a lens antenna 1.
  • the two lens antennas 1 are arranged on the two long sides of the mobile phone (for example, the first side 181 and the third side 183). ) To cover the space on both sides of the phone.
  • the electronic device 2 in the foregoing embodiment includes, but is not limited to, any products and components that have antenna transceiver functions, such as mobile phones, tablet computers, displays, smart watches, and so on.
  • the division of the units in the above electronic device 2 is only for illustration. In other embodiments, the electronic device 2 can be divided into different modules as needed to complete all or part of the functions of the above electronic device 2.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种透镜结构,其特征在于,包括:多层介质层(100);至少一层波导层(200),所述波导层(200)与所述介质层(100)沿第一方向交替叠层设置,所述波导层(200)包括:至少一个波导结构(300),当包括多个所述波导结构(300)时,多个所述波导结构(300)间隔且平行排列;所述波导结构(300)包括第一导电片和至少一对第二导电片,每对所述第二导电片分别设置在所述第一导电片轴向的两侧上;其中,多个所述波导层(200)中处于同一轴线上的多个所述波导结构(300)之间具有所述第二导电片的个数的第一渐变规律;所述轴线为穿过任意所述波导层(200)且平行于所述第一方向的直线。

Description

透镜结构、透镜天线及电子设备
相关申请的交叉引用
本申请要求于2019年10月31日提交中国专利局、申请号为2019110545572、发明名称为“透镜结构、透镜天线及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别是涉及一种透镜结构、透镜天线及电子设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
透镜天线是由透镜和馈源组成的天线,利用透镜的汇聚特性,能够保证馈源处发出的电磁波经过透镜平行出射,或者,能够保证平行入射的电磁波通过透镜后汇聚到馈源处。由于电磁波入射透镜时一般需要经过多层介质层,介质的引入将会造成电磁波的损耗,从而降低透镜天线效率。
发明内容
根据本申请的各种实施例,提供一种透镜结构、透镜天线及电子设备。
一种透镜结构,包括:
多层介质层;
至少一层波导层,所述波导层与所述介质层沿第一方向交替叠层设置,所述波导层包括:
至少一个波导结构,当包括多个所述波导结构时,多个所述波导结构间隔且平行排列;所述波导结构包括第一导电片和至少一对第二导电片,每对所述第二导电片分别设置在所述第一导电片轴向的两侧上;
其中,多个所述波导层中处于同一轴线上的多个所述波导结构之间具有所述第二导电片的个数的第一渐变规律;所述轴线为穿过任意所述波导层且平行于所述第一方向的直线。
一种透镜结构,包括:
多层介质层;
至少一层波导层,所述波导层与所述介质层沿第一方向交替叠层设置,所述波导层包括:
至少三个波导结构,多个所述波导结构间隔且平行排列;所述波导结构包括第一导电片和至少一对第二导电片,每对所述第二导电片分别设置在所述第一导电片轴向的两侧上;
其中,同一所述波导层的多个所述波导结构之间具有所述第二导电片的个数的第二渐变规律。
一种透镜天线,包括:
馈源阵列;及
与所述馈源阵列平行设置的如上所述的透镜结构。
一种电子设备,包括如上所述的透镜天线。
上述透镜结构,利用对称的第二导电片可产生人工表面等离激元波导,通过设置层间或层内波导结构的第二导电片的个数的渐变规律,从而获得相位延迟分布规律以实现波束汇聚功能,且电磁波沿波导传输过程介质损耗低,故在实际应用中可以实现损耗更小、效率更高、宽带更大的透镜天线。此外,通过交替叠层设置的介质层和波导层,还可以实现低成本透镜的组装制备。
上述透镜天线,包括馈源阵列及透镜结构,通过透镜结构中第二导电片的对称结构及个数的渐变规律,可以实现损耗更小、效率更高、宽带更大且成本更低的透镜天线;通过馈源阵列的设置可以实现多波束出射和波束扫描。
上述电子设备,包括如上所述的透镜天线,由于透镜天线的损耗更小、效率更高、宽带更大且成本更低,且能实现多波束出射和波束扫描,因而电子设备能够实现高效率、高增益、低成本波束扫描。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例中的透镜结构的结构示意图;
图2为一实施例中的波导结构的结构示意图;
图3为另一实施例中的波导结构的结构示意图;
图4为一实施例中第一渐变规律时多个波导结构的结构示意图;
图5为一实施例中第二渐变规律时多个波导结构的结构示意图;
图6为可选实施例一中透镜结构的结构示意图;
图7为可选实施例二中透镜结构的结构示意图;
图8为可选实施例三中透镜结构的结构示意图;
图9为可选实施例四中透镜结构的结构示意图;
图10为可选实施例五中透镜结构的结构示意图;
图11为另一实施例中的波导结构的结构示意图;
图12为另一实施例中的波导结构的结构示意图;
图13为另一实施例中的波导结构的结构示意图;
图14为一实施例中的透镜天线的结构示意图;
图15为一实施例中的馈源阵列的结构示意图;
图16为另一实施例中的透镜天线的结构示意图;
图17为另一实施例中的透镜天线的结构示意图;
图18为一实施例中的电子设备的结构示意图;
图19为一实施例中的波束扫描方向图;
图20为一实施例中的电子设备中框结构示意图;
图21为一实施例中的电子设备的结构示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体地实施例的目的,不是旨在于限制本申请。
参见图1,图1为一实施例中的透镜结构的结构示意图。
在本实施例中,透镜结构10应用于透镜天线。根据透镜天线的具体应用场景,透镜结构10设置有不同的相位延迟分布规律,从而实现对电磁波的汇聚功能。可选地,透镜结构10可以工作于微波频段,并可以通过结构参数的调节,适用于毫米波和太赫兹波等不同频段。
其中,毫米波是指波长在毫米数量级的电磁波,其频率大约在20GHz~300GHz之间。3GP已指定5G NR支持的频段列表,5G NR频谱范围可达100GHz,指定了两大频率范围:Frequency range 1(FR1),即6GHz以下频段和Frequency range 2(FR2),即毫米波频段。Frequency range 1的频率范围:450MHz-6.0GHz,其中,最大信道带宽100MHz。Frequency range2的频率范围为24.25GHz-52.6GHz,最大信道带宽400MHz。用于5G移动宽带的近11GHz频谱包括:3.85GHz许可频谱,例如:28GHz(24.25-29.5GHz)、37GHz(37.0-38.6GHz)、39GHz(38.6-40GHz)和14GHz未许可频谱(57-71GHz)。5G通信系统的工作频段有28GHz,39GHz,60GHz三个频段。
请参见图1,透镜结构10包括多层介质层100和多层波导层200;波导层200和介质层100沿第一方向交替叠层设置。其中,介质层100和波导层200的层数不受限定(图1以五层介质层100和四层波导层200为例),同时, 介质层100和波导层200之间的相对面积大小不受限定,可以根据实际应用情况进行调整。
其中,介质层100是能用于支撑固定波导层200的非导电功能层,通过介质层100与波导层200的交替叠层,可以实现多层波导层200的间隔分布;同时,通过介质层100可以将透镜结构10划分为折射率非连续的多个区域,使得波导层200在第一方向上的尺寸只需要较小的范围内变化即可实现汇聚的效果,实现低成本透镜的组装制备。可选地,当多个介质层100在交替叠层的方向上的厚度相等时,多个波导层200等间距分布。可选地,介质层100的材料为电绝缘性材料。
其中,波导层200是能用于传输电磁波的功能层,多个波导层200可以将入射的电磁波平行出射,或者将平行入射的电磁波汇聚到焦点处,或者将平行入射的电磁波发散出射。波导层200包括一个或多个波导结构300,当波导结构300为多个时,多个波导结构300间隔且平行设置。可选地,多个波导结构300等间距且并排设置。可选地,波导层200的材料可以为导电材料,例如金属材料、合金材料、导电硅胶材料、石墨材料等,波导层200的材料还可以为具有高介电常数的材料。
其中,波导结构300包括第一导电片301和至少一对第二导电片302,每对第二导电片302分别设置在第一导电片301轴向的两侧上,电磁波沿第一导电片301的轴向入射至透镜结构10。
可选地,请辅助参见图2,每对第二导电片302轴向镜像对称设置在第一导电片301的两侧上。其中,镜像对称是指每对第二导电片302关于第一导电片301的轴对称。可选地,请辅助参见图3,每对第二导电片302轴向滑移对称设置在第一导电片301的两侧上。其中,滑移对称是指原本关于轴对称的两个第二导电片302沿第一导电片301的轴向相对滑移一定距离;多个波导结构300之间彼此独立且形状相似。
其中,第二导电片302的长度方向大致垂直于第一导电片301的轴向。当电磁波沿第一导电片301的轴向入射至透镜结构10时,在第二导电片302的长度方向上,每一个第二导电片302的边缘可产生人工表面等离激元波导(后续简写为波导),多对镜像对称的第二导电片302可产生镜像对称的波导对,每个波导结构由多个波导成线性排列组成;多对滑移对称的第二导电片302可产生滑移对称的波导对,每个波导结构由多个波导成线性排列组成。可选地,每个波导结构300中,位于第一导电片301同一侧上的多个第二导电片302平行设置且中心距离p相等,多个第二导电片302长度h相同,从而多个波导结构300中,每个第二导电片302长度方向上的边缘可产生相同的波导。其中,中心距离p可以理解为两个相邻第二导电片302的几何中心之间的距离。
当电磁波沿轴向入射至透镜结构时,电磁波可延波导继续传播,且传播常数比自由空间大,即实现大于1的等效折射率,实现汇聚功能。由于电磁波的大部分能量集中波导结构300的第二导电片302的长度方向边缘,只有 少量进入介质,故几乎不受介质损耗影响,故在实际应用中可以实现损耗更小、效率更高的透镜天线。其中,当每对第二导电片302轴向滑移对称时,等效折射率随频率变化较小,故在实际应用中可以实现更大带宽的透镜天线。
在一些实施方式中,多个波导层200中处于同一轴线上的多个波导结构300之间具有第二导电片302的个数的第一渐变规律,和/或,波导层200的多个波导结构300之间具有第二导电片302的个数的第二渐变规律。其中,轴线为穿过任意波导层200且平行于第一方向的直线。
当电磁波沿第一导电片301的轴向入射至透镜结构10时,具有第一渐变规律的透镜结构10可以实现对电磁波波束在第一方向上的汇聚作用,具有第二渐变规律的透镜结构10可以实现对电磁波波束在第二方向上的汇聚作用。其中,第二方向同时大致垂直于第一方向和第一导电片301的轴向,即平行于第二导电片302的长度方向。
具体地,请辅助参见图4,第一渐变规律为第二导电片302的个数从同一轴线的中心位置往两侧的波导结构300对称递减,即从多个波导层200中心层的波导结构300往两侧层的波导结构300对称递减(图4以滑移对称的第二导电片302为例,且仅显示每个波导层200中同时处于轴线A的波导结构300的示意图,中间层波导结构300的第二导电片302个数标记为T3A,一侧的两层分别标记为T2A和T1A,另一侧的两层分别标记为T4A和T5A,T3A>T4A=T2A>T1A=T5A);参见图5,第二渐变规律为第二导电片302的个数从波导层200的多个波导结构300的排列中心向两侧对称递减,即从层中心位置的波导结构300往层两侧的波导结构300对称递减(图5以滑移对称的第二导电片302为例,且仅显示某一波导层200的多个波导结构300,层中心位置的成对第二导电片302的个数标记为TC,层中心的一侧分别标记为TB和TA,层中心的另一侧分别标记为TD和TE,TC>TB=TD>TA=TE)。当多个波导结构300的第二导电片302的结构尺寸相同时,T越大,则相位延迟值越大。
需要说明的是,递减可以为线性逐渐减小或非线性逐渐减小,例如,线性逐渐减小可以理解为按等比数列、等差数列的梯度或根据特定规律进行减小。
具体地,当波导层200的层数为至少三层时,多个波导层200中处于同一轴线上的多个波导结构300之间具有第二导电片302的个数的第一渐变规律;和/或,当波导层200的波导结构300为至少三个时,波导层200的多个波导结构300之间具有第二导电片302的个数的第二渐变规律。当波导层200的层数为一层或两层时,波导层包括至少三个波导结构300,波导层200的多个波导结构300之间具有第二导电片302的个数的第二渐变规律。
可选地,当波导层200与介质层100的第一方向垂直于实际应用场景中透镜天线的极化方向时,多个波导结构300被设置为:多个波导层200中处于同一轴线上的多个波导结构300之间具有第二导电片302的个数的第一渐变规律;此时,若波导层200中多个波导结构300的第二导电片302的个数 相同(参见可选实施例一和可选实施例二),则透镜结构10仅实现该第一方向的电磁波汇聚;若同一波导层200中多个波导结构300之间具有第二导电片302的个数的第二渐变规律(参见可选实施例三),则透镜结构10可以同时实现第一方向及第二方向的电磁波汇聚。具体地:
可选实施例一:请辅助参见图6,图6以每对第二导电片302滑移对称设置,五层波导层200且每层波导层200仅有一个波导结构300为例(处于第n层波导层200的波导结构300的第二导电片302的个数标记为Tn),此时,五个波导结构300之间具有第二导电片302的个数的第一渐变规律:T3>T4=T2>T5=T1,即T值从位于中心的波导层200的波导结构300往两边层的波导结构300递减,从而,透镜结构10的相位延迟值从中间层往两边层递减,透镜结构10实现第一方向(图中的y方向)电磁波的汇聚。
可选实施例二:请辅助参见图7,图7以每对第二导电片302滑移对称设置,五层波导层200且每层波导层200为两个波导结构300为例,此时,五层波导层200中处于同一轴线上的多个波导结构300之间具有第二导电片302的个数的第一渐变规律,且波导层200中两个波导结构300的第二导电片302的个数相同。具体地:个数的渐变情况为:T3A=T3B>T4A=T4B=T2A=T2B>T5A=T5B=T1A=T1B(其中,处于A轴线的多个波导结构300分别位于波导层200的A区域,处于第n层波导层200的A区域的波导结构300的第二导电片302的个数标记为TnA;处于B轴线的多个波导结构300分别位于波导层200的B区域,处于第n层波导层200的B区域的波导结构300的第二导电片302的个数标记为TnB),即T值从中间层往两边层递减,从而,透镜结构10的相位延迟值从中间层往两边层递减,透镜结构10实现第一方向电磁波的汇聚。
可选实施例三:请辅助参见图8,图8以每对第二导电片302滑移对称设置,五层波导层200且每层波导层200为三个波导结构300为例,此时,五层波导层200中处于同一轴线上的多个波导结构300之间具有第二导电片302的个数的第一渐变规律,且同一波导层200中多个波导结构300之间具有第二导电片302的个数的第二渐变规律。具体地:处于不同波导层200轴线A(对应于波导层200的A区域,处于第n层波导层200的A区域的波导结构300的第二导电片302的个数标记为TnA)上的五个波导结构300之间具有第二导电片302的个数的第一渐变规律:T3A>T4A=T2A>T5A=T1A,处于不同波导层200轴线B(对应于波导层200的B区域,处于第n层波导层200的B区域的波导结构300的第二导电片302的个数标记为TnB)上的五个波导结构300之间具有第二导电片302的个数的第一渐变规律:T3B>T4B=T2B>T5B=T1B,处于不同波导层200轴线C(对应于波导层200的C区域,处于第n层波导层200的C区域的波导结构300的第二导电片302的个数标记为TnC)上的五个波导结构300之间具有第二导电片302的个数的第一渐变规律:T3C>T4C=T2C>T5C=T1C,并且,每一波导层200中的个数呈第二渐变规律:TA=TC<TB。从而,透镜结构10的相位延迟值从中间层往两边层递减,且在 层中的中心位置往两侧位置递减,透镜结构10可以同时实现第一方向及第二方向(即图中的x方向)的电磁波汇聚。
可选地,当波导层200与介质层100的第一方向平行于实际应用场景中透镜天线的极化方向时,多个波导结构300被设置为:波导层200中多个波导结构300之间具有第二导电片302的个数的第二渐变规律;此时,若不同波导层200中处于同一轴线上的多个波导结构300的第二导电片302的个数相同(参见可选实施例四),则透镜结构10仅实现第二方向的电磁波汇聚;若不同波导层200中处于同一轴线上的多个波导结构300之间具有第二导电片302的个数的第一渐变规律(参见可选实施例五),则透镜结构10可以同时实现第二方向及第一方向的电磁波汇聚。具体地:
可选实施例四:请辅助参见图9,图9以每对第二导电片302滑移对称设置,三层波导层200且每层波导层200为五个波导结构300为例,此时,波导层200中多个波导结构300之间具有第二导电片302的个数的第二渐变规律,且不同波导层200中处于同一轴线上的多个波导结构300的个数相同。具体地:同一波导层200的五个波导结构300之间具有第二导电片302的个数的第一渐变规律:TC>TB=TD>TA=TE,即T值从层中心位置的波导结构300往两侧波导结构300递减,从而,透镜结构10的相位延迟值从层中心位置往两侧递减,透镜结构10实现第二方向电磁波的汇聚。
可选实施例五:请辅助参见图10,图10以每对第二导电片302滑移对称设置,三层波导层200且每层波导层200为五个波导结构300为例,此时,波导层200中多个波导结构300之间具有第二导电片302的个数的第二渐变规律,且不同波导层200中处于同一轴线上的多个波导结构300之间具有第二导电片302的个数的第一渐变规律。具体地:同一波导层200的五个波导结构300之间具有第二导电片302的个数的第一渐变规律:TC>TB=TD>TA=TE,即T值从层中心位置的波导结构300往两侧波导结构300递减,并且,处于不同波导层200中A区域的三个波导结构300之间具有第二导电片302的个数的第一渐变规律:T2A>T1A=T3A,处于不同波导层200中B区域的三个波导结构300之间具有个数的第一渐变规律:T2B>T1B=T3B,处于不同波导层200中C区域的三个波导结构300之间具有第二导电片302的个数的第一渐变规律:T2C>T1C=T3C。从而,透镜结构10的等效折射率从层中心位置往两侧位置递减,同时,从中间层往两边层递减,透镜结构10实现第二方向及第一方向电磁波的汇聚。
进一步地,参见图11,第一导电片301轴向上设有第一连接区301A和第二连接区301B,第二导电片302设置在第二连接区301B上,其中,第二连接区301B可以是波导结构300的入射区,也可以是波导结构300的出射区。波导结构300还包括至少一对匹配段303(图11以两对匹配段303为例)。
至少一对匹配段303,设置在第一连接区301A上,每对匹配段303分别设置在第一导电片301的两侧上,匹配段303的长度方向平行于第二导电片302的长度方向;长度方向垂直于第一导电片301的轴向;在长度方向上, 同一波导结构300的匹配段303的长度小于第二导电片302的长度。
其中,匹配段303的结构与第二导电片302的结构相似,可选地,每对匹配段303轴向镜像对称设置在第一导电片301的两侧上;可选地,每对匹配段303轴向滑移对称设置在第一导电片301的两侧上。匹配段303具有导电性,可选地,匹配段303的材料与第二导电片302的材料相同。
由于匹配段303的长度小于第二导电片302的长度,电磁波经过第二导电片302入射至匹配段303时,折射率逐渐降低;当第一连接区为波导结构300入射区时,匹配段303可以实现透镜结构10电磁波入射区与自由空间之间阻抗匹配,降低电磁波的能量损耗;当第一连接区为波导结构300出射区时,匹配段303可以分别实现透镜结构10电磁波出射区与自由空间之间阻抗匹配,降低电磁波的能量损耗,从而增大电磁波的传输距离,提高透镜天线效率。
可选地,请辅助参见图12,第一导电片301轴向上还设有第三连接区301C,第一连接区301A、第二连接区301B以及第三连接区301C沿轴向设置;波导结构300包括多对匹配段303,分别设置在第一连接区301A和第三连接区301C,即多对匹配段303分别位于透镜结构10的入射区和出射区。多对匹配段303之间具有第三渐变规律,第三渐变规律为多对匹配段303的长度从第一导电片301的第一连接区301A靠近第二连接区301B的一侧向第一连接区301A远离第二连接区301B的一侧递减,和/或从第一导电片301的第三连接区301C靠近第二连接区301B的一侧向第三连接区301C远离第二连接区301B的一侧递减。第一连接区301A和第三连接区301C的匹配段的对数可以相同也可以不同。图13以每个波导结构300的每一连接区设置有两对匹配段303,且每对第二导电片302及每对匹配段303滑移对称设置为例,匹配段303的长度分别为h1和h2,h1和h2相对于h(h为第二导电片302的长度)逐渐减小,即h>h1>h2,p(p为两个相邻匹配段303的几何中心之间的距离)保持不变。
由于多对匹配段303的长度从第一导电片301的第一连接区301A靠近第二连接区301B的一侧向第一连接区301A远离第二连接区301B的一侧递减,和/或从第一导电片301的第三连接区301C靠近第二连接区301B的一侧向第三连接区301C远离第二连接区301B的一侧递减,可以逐渐降低波导两端的折射率,进一步减少透镜结构10与自由空间之间阻抗失配的情况,更有效地降低电磁波的能量损耗,更有效地提高透镜天线效率。
可选地,波导结构上相邻两个第二导电片302之间的间距等于相邻两个匹配段303之间的间距,从而阻抗匹配在空间上的分布更加均匀。
本实施例提供的透镜结构,利用多对对称的第二导电片可产生人工表面等离激元波导,通过设置层间或层内波导结构个数的渐变规律,获得相位延迟以实现波束汇聚功能,且电磁波沿波导传输过程介质损耗低,故在实际应用中可以实现损耗更小、效率更高、宽带更大的透镜天线。进一步地,通过在每个波导结构两端设置多对匹配段,可以减少透镜结构与自由空间之间阻 抗失配的情况,更有效地降低电磁波的能量损耗,提高实际应用中透镜天线的效率。此外,通过交替叠层设置的介质层和波导层,还可以实现低成本透镜的组装制备。
参见图14,图14为一实施例中的透镜天线1的结构示意图。
在本实施例中,透镜天线1包括如上述实施例所述的透镜结构10及馈源阵列20。
其中,透镜结构10参见上述实施例的相关描述,在此不再赘述。
其中,馈源阵列20与透镜结构10平行设置。馈源阵列20包括多个馈源单元。可选地,请辅助参见图15(图中以5个馈源单元为例)多个馈源单元20a呈线型排列,线型排列的中心位于透镜结构10的焦点处,从而馈源阵列20可以实现多波束出射;通过对馈源阵列20不同馈源单元进行馈电,可获取不同的波束指向,从而实现波束扫描,适用于毫米波透镜天线的应用。可以理解,本实施例中的馈源阵列20可以为设置在毫米波集成模组上的辐射元件阵列,馈源单元20a可以为多种形态的辐射元件,例如可以为矩形、环形、十字形等不同形态的辐射贴片。
在本实施例提供的透镜天线,包括馈源阵列及透镜结构,通过透镜结构中第二导电片的对称结构及个数的渐变规律,可以实现损耗更小、效率更高、宽带更大且成本更低的透镜天线;通过馈源阵列的设置可以实现多波束出射和波束扫描。
参见图16和图17,16和图17为另一实施例中的透镜天线1的结构示意图。
在本实施例中,透镜天线1包括如上述实施例所述的透镜结构10及馈源阵列20、第一金属平板30以及与第一金属平板间隔20设置的第二金属平板40。透镜结构10和馈源阵列20分别设置在第一金属平板30和第二金属平板40之间。
其中,透镜结构10和馈源阵列20参见上述实施例的相关描述,在此不再赘述。并且,根据上述实施例,透镜结构10通过波导层200和介质层100的第一方向的不同设置情况可适用于不同极化方向的应用场景。
可选地,请辅助参见图16,波导层200和介质层100的第一方向分别平行于第一金属平板30和第二金属平板40(以波导层200为一波导结构300且每对第二导电片302滑移对称设置为例,附图中第一方向垂直纸面),从而透镜结构10可以适用于垂直极化的应用场景,透镜天线1的极化方向分别垂直于第一金属平板30和第二金属平板40。
可选地,请辅助参见图17,波导层200和介质层100的第一方向分别垂直于第一金属平板30和第二金属平板40(附图中第一方向平行纸面),从而透镜结构10可以适用于水平极化的应用场景,透镜天线1的极化方向分别平行于第一金属平板30和第二金属平板40。
其中,第一金属平板30和第二金属平板40均能用于反射内部电磁波以及屏蔽外界干扰。将透镜结构10和馈源阵列20置于第一金属平板30和第二 金属平板40之间,可以减少馈源辐射电磁波的泄露,从而提高透镜天线1的效率,同时提高透镜天线1的结构强度。可选地,第一金属平板30和第二金属平板40由超硬铝板制成,当然也可以由其它不锈钢等金属材料制成。
本实施例提供的透镜天线,包括第一金属平板、第二金属平板、馈源阵列以及透镜结构,一方面,通过透镜结构中第二导电片的对称结构及个数的渐变规律,可以实现损耗更小、效率更高、宽带更大且成本更低的透镜天线;另一方面,通过第一金属平板和第二金属平板的设置可以减少馈源辐射电磁波的泄露,从而提高天线效率,同时提高天线的结构强度;再者,通过馈源阵列的设置可以实现多波束出射和波束扫描。
本申请还提供了一种电子设备2,电子设备2包括如上述实施例的透镜天线1,由于透镜天线1的损耗更小、效率更高、宽带更大且成本更低,且能实现多波束出射和波束扫描,因而电子设备2能够实现高效率、高增益、低成本波束扫描,可以适用于5G通信毫米波信号的收发,同时,该透镜天线1的焦距短,尺寸小,易于集成于电子设备2中,同时可以缩小透镜天线1在电子设备2内的占用空间。
可选地,参见图16,电子设备2还包括检测模块160、开关模块161和控制模块162。
检测模块160,用于获取馈源单元20a处于工作状态时透镜天线1辐射电磁波的波束信号强度,还可用于检测获取馈源单元20a处于工作状态时透镜天线1的接收电磁波的功率、电磁波吸收比值或比吸收率(Specific Absorption Rate,SAR)等参数。
开关模块161,与开关模块161连接,用于选择导通与任一所述馈源单元20a的连接通路。可选地,开关模块161可包括输入端和多个输出端,输入端与控制模块162连接,多个输出端分别与多个馈源单元20a一一对应连接。开关模块161可以用于接收控制模块162发出的切换指令,以控制开关模块161中各开关自身的导通与断开,从而控制该开关模块161与任意一个馈源单元20a的导通连接,以使任意一个馈源单元20a处于工作(导通)状态。
控制模块162,分别与检测模块160、开关模块161连接,根据波束信号强度控制开关模块161,使最强波束信号强度对应的馈源单元20a处于工作状态。
从而,通过检测模块160、开关模块161和控制模块162可以使任意一个馈源单元20a工作,以获取不同的波束指向,从而实现波束扫描,可以适用于毫米波透镜天线的应用;并且,波束扫描过程不需要移向器和衰减器,大大降低了成本。
以馈源阵列20包括五个馈源单元为例,检测模块160可以对应获取五个波束信号强度,并从中筛选出最强的波束信号强度,并将该最强的波束信号强度对应的馈源单元20a作为目标馈源单元,控制模块162发出的切换指令以控制该开关模块161与目标馈源单元的导通连接,以使目标馈源单元处于 工作(导通)状态。仿真得到如图19所示的波束扫描方向图。根据仿真结果可以看出,手机通过两个透镜天线1的设置,可以实现手机6G毫米波高效率、高增益、低成本的波束扫描。
可选地,电子设备2包括多个透镜天线1,多个透镜天线1分布于电子设备2中框的不同侧边。可选地,请辅助参见图20,电子设备2中框包括相背设置的第一侧边181、第三侧边183,以及相背设置的第二侧边182和第四侧边184,第二侧边182连接第一侧边181、第三侧边183的一端,第四侧边184连接第一侧边181、第三侧边183的另一端。第一侧边181、第二侧边182、第三侧边183以及第四侧边184中的至少两侧边分别设有透镜天线1。
以电子设备2包括两个透镜天线1为例,可选地,请辅助参见图21,两个透镜天线1设置在手机的两个长边(例如为第一侧边181和第三侧边183),即可覆盖手机两侧的空间。
需要说明的是,上述实施例中的电子设备2,包括但不限于手机、平板电脑、显示器、智能手表等任何具有天线收发功能的产品和部件。上述电子设备2中各个单元的划分仅用于举例说明,在其他实施例中,可将电子设备2按照需要划分为不同的模块,以完成上述电子设备2的全部或部分功能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (36)

  1. 一种透镜结构,包括:
    多层介质层;
    至少一层波导层,所述波导层与所述介质层沿第一方向交替叠层设置,所述波导层包括:
    至少一个波导结构,当包括多个所述波导结构时,多个所述波导结构间隔且平行排列;所述波导结构包括第一导电片和至少一对第二导电片,每对所述第二导电片分别设置在所述第一导电片轴向的两侧上;
    其中,多个所述波导层中处于同一轴线上的多个所述波导结构之间具有所述第二导电片的个数的第一渐变规律;所述轴线为穿过任意所述波导层且平行于所述第一方向的直线。
  2. 根据权利要求1所述的透镜结构,其特征在于,所述第一渐变规律为所述个数从所述轴线的中心位置往两侧的所述波导结构对称递减;
    其中,所述波导层的层数为至少三层。
  3. 根据权利要求1所述的透镜结构,其特征在于,每对所述第二导电片轴向镜像对称设置在所述第一导电片的两侧上。
  4. 根据权利要求1所述的透镜结构,其特征在于,每对所述第二导电片轴向滑移对称设置在所述第一导电片的两侧上。
  5. 根据权利要求1所述的透镜结构,其特征在于,所述波导结构中,位于所述第一导电片同一侧上的多个所述第二导电片等间距且平行设置,多个所述第二导电片长度相同。
  6. 根据权利要求1所述的透镜结构,其特征在于,所述波导层中的多个所述波导结构之间等间距设置。
  7. 根据权利要求1-6任一项所述的透镜结构,其特征在于,所述波导层中多个所述波导结构的所述个数相同。
  8. 根据权利要求1-6任一项所述的透镜结构,其特征在于,当所述波导层的所述波导结构为至少三个时,所述波导层的多个所述波导结构之间具有第二渐变规律。
  9. 根据权利要求8所述的透镜结构,其特征在于,所述第二渐变规律为所述个数从所述波导层的多个所述波导结构的排列中心向两侧对称递减。
  10. 根据权利要求8所述的透镜结构,其特征在于,所述第一导电片轴向上设有第一连接区和第二连接区,所述第二导电片设置在所述第二连接区上,所述波导结构还包括:
    至少一对匹配段,设置在所述第一连接区上,每对所述匹配段分别设置在所述第一导电片的两侧上,所述匹配段的长度方向平行于所述第二导电片的长度方向,所述长度方向垂直于所述轴向;
    在所述长度方向上,同一所述波导结构的所述匹配段的长度小于所述第二导电片的长度。
  11. 根据权利要求10所述的透镜结构,其特征在于,每对所述匹配段轴 向镜像对称设置在所述第一导电片的两侧上。
  12. 根据权利要求10所述的透镜结构,其特征在于,每对所述匹配段轴向滑移对称设置在所述第一导电片的两侧上。
  13. 根据权利要求10所述的透镜结构,其特征在于,所述第一导电片轴向上还设有第三连接区,所述第一连接区、所述第二连接区以及所述第三连接区沿所述轴向设置;所述波导结构包括:
    多对所述匹配段,分别设置在所述第一连接区和所述第三连接区,多对所述匹配段之间具有第三渐变规律。
  14. 根据权利要求13所述的透镜结构,其特征在于,所述第三渐变规律为多对所述匹配段的长度从所述第一连接区靠近所述第二连接区的一侧向所述第一连接区远离所述第二连接区的一侧递减。
  15. 根据权利要求13所述的透镜结构,其特征在于,从所述第三连接区靠近所述第二连接区的一侧向所述第三连接区远离所述第二连接区的一侧递减。
  16. 根据权利要求13所述的透镜结构,其特征在于,所述第三渐变规律为多对所述匹配段的长度从所述第一连接区靠近所述第二连接区的一侧向所述第一连接区远离所述第二连接区的一侧递减,且从所述第三连接区靠近所述第二连接区的一侧向所述第三连接区远离所述第二连接区的一侧递减。
  17. 根据权利要求10所述的透镜结构,其特征在于,所述波导结构上,相邻两个所述第二导电片之间的间距等于相邻两个所述匹配段之间的间距。
  18. 一种透镜结构,包括:
    多层介质层;
    至少一层波导层,所述波导层与所述介质层沿第一方向交替叠层设置,所述波导层包括:
    至少三个波导结构,多个所述波导结构间隔且平行排列;所述波导结构包括第一导电片和至少一对第二导电片,每对所述第二导电片分别设置在所述第一导电片轴向的两侧上;
    其中,同一所述波导层的多个所述波导结构之间具有所述第二导电片的个数的第二渐变规律。
  19. 根据权利要求18所述的透镜结构,其特征在于,所述第二渐变规律为所述个数从所述波导层的多个所述波导结构的排列中心向两侧对称递减。
  20. 根据权利要求18所述的透镜结构,其特征在于,多个所述波导层中处于同一轴线上的多个所述波导结构的所述个数相同,所述轴线为穿过任意所述波导层且平行于所述第一方向的直线。
  21. 根据权利要求18至20任一项所述的透镜结构,其特征在于,所述第一导电片轴向上设有第一连接区和第二连接区,所述第二导电片设置在所述第二连接区上,所述波导结构还包括:
    至少一对匹配段,设置在所述第一连接区上,每对所述匹配段分别设置在所述第一导电片的两侧上,所述匹配段的长度方向平行于所述第二导电片 的长度方向,所述长度方向垂直于所述轴向;
    在所述长度方向上,同一所述波导结构的所述匹配段的长度小于所述第二导电片的长度。
  22. 根据权利要求21所述的透镜结构,其特征在于,每对所述匹配段轴向镜像对称设置在所述第一导电片的两侧上。
  23. 根据权利要求21所述的透镜结构,其特征在于,每对所述匹配段轴向滑移对称设置在所述第一导电片的两侧上。
  24. 根据权利要求21所述的透镜结构,其特征在于,所述第一导电片轴向上还设有第三连接区,所述第一连接区、所述第二连接区以及所述第三连接区沿所述轴向设置;所述波导结构包括:
    多对所述匹配段,分别设置在所述第一连接区和所述第三连接区,多对所述匹配段之间具有第三渐变规律。
  25. 根据权利要求24所述的透镜结构,其特征在于,所述第三渐变规律为多对所述匹配段的长度从所述第一连接区靠近所述第二连接区的一侧向所述第一连接区远离所述第二连接区的一侧递减。
  26. 根据权利要求24所述的透镜结构,其特征在于,所述第三渐变规律为多对所述匹配段的长度从所述第三连接区靠近所述第二连接区的一侧向所述第三连接区远离所述第二连接区的一侧递减。
  27. 根据权利要求24所述的透镜结构,其特征在于,所述第三渐变规律为多对所述匹配段的长度从所述第一连接区靠近所述第二连接区的一侧向所述第一连接区远离所述第二连接区的一侧递减,且从所述第三连接区靠近所述第二连接区的一侧向所述第三连接区远离所述第二连接区的一侧递减。
  28. 根据权利要求21所述的透镜结构,其特征在于,所述波导结构上,相邻两个所述第二导电片之间的间距等于相邻两个所述匹配段之间的间距。
  29. 一种透镜天线,其特征在于,包括:
    馈源阵列;及
    与所述馈源阵列平行设置的如权利要求1-28任一项所述的透镜结构。
  30. 根据权利要求29所述的透镜天线,其特征在于,还包括:
    第一金属平板;
    与所述第一金属平板平行且间隔设置的第二金属平板;
    其中,所述透镜结构和所述馈源阵列分别设置在所述第一金属平板和所述第二金属平板之间。
  31. 根据权利要求30所述的透镜天线,其特征在于,所述第一方向分别平行于所述第一金属平板和所述第二金属平板。
  32. 根据权利要求31所述的透镜天线,其特征在于,所述透镜天线的极化方向分别垂直于所述第一金属平板和所述第二金属平板。
  33. 根据权利要求30所述的透镜天线,其特征在于,所述第一方向分别垂直于所述第一金属平板和所述第二金属平板。
  34. 根据权利要求33所述的透镜天线,其特征在于,所述透镜天线的极 化方向分别平行于所述第一金属平板和所述第二金属平板。
  35. 一种电子设备,其特征在于,包括如权利要求29-34任一项所述的透镜天线。
  36. 根据权利要求35所述的电子设备,其特征在于,所述馈源阵列包括多个馈源单元,所述电子设备还包括:
    检测模块,用于获取所述馈源单元处于工作状态时所述透镜天线的波束信号强度;
    开关模块,与所述馈源阵列连接,用于选择导通与任一所述馈源单元的连接通路;
    控制模块,分别与所述检测模块、所述开关模块连接,用于根据所述波束信号强度控制所述开关模块,使最强波束信号强度对应的所述馈源单元处于工作状态。
PCT/CN2020/122035 2019-10-31 2020-10-20 透镜结构、透镜天线及电子设备 WO2021082976A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911054557.2A CN110768021B (zh) 2019-10-31 2019-10-31 透镜结构、透镜天线及电子设备
CN201911054557.2 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021082976A1 true WO2021082976A1 (zh) 2021-05-06

Family

ID=69335094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122035 WO2021082976A1 (zh) 2019-10-31 2020-10-20 透镜结构、透镜天线及电子设备

Country Status (2)

Country Link
CN (1) CN110768021B (zh)
WO (1) WO2021082976A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115764294A (zh) * 2022-12-21 2023-03-07 中国矿业大学 一种基于人工表面等离激元的全角度高速率波束扫描天线

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768021B (zh) * 2019-10-31 2022-01-11 Oppo广东移动通信有限公司 透镜结构、透镜天线及电子设备
CN117154416B (zh) * 2023-10-30 2024-01-26 广东福顺天际通信有限公司 一种可收纳电磁波透镜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180175507A1 (en) * 2016-12-20 2018-06-21 Rodolfo E. Diaz Broadband quad-ridge horn antennas
CN110380230A (zh) * 2019-07-25 2019-10-25 东南大学 一种基于三维阻抗匹配透镜的超宽带高增益透镜天线及其设计方法
CN110768021A (zh) * 2019-10-31 2020-02-07 Oppo广东移动通信有限公司 透镜结构、透镜天线及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780096A (zh) * 2011-05-11 2012-11-14 深圳光启高等理工研究院 超材料透镜天线
US10381738B2 (en) * 2017-06-12 2019-08-13 Fractal Antenna Systems, Inc. Parasitic antenna arrays incorporating fractal metamaterials
CN110034396A (zh) * 2019-03-29 2019-07-19 上海交通大学 基于人工表面等离激元结构的垂直极化全向天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180175507A1 (en) * 2016-12-20 2018-06-21 Rodolfo E. Diaz Broadband quad-ridge horn antennas
CN110380230A (zh) * 2019-07-25 2019-10-25 东南大学 一种基于三维阻抗匹配透镜的超宽带高增益透镜天线及其设计方法
CN110768021A (zh) * 2019-10-31 2020-02-07 Oppo广东移动通信有限公司 透镜结构、透镜天线及电子设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANG FAN: "Beam Scanning Antennas Based on Dispersion Characteristics of Waveguides", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 10 July 2018 (2018-07-10), XP055809390 *
YANG JIE; WANG JIAFU; FENG MINGDE; LI YONGFENG; WANG XINHUA; ZHOU XIAOYANG; CUI TIEJUN; QU SHAOBO: "Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons", APPLIED PHYSICS LETTERS, A I P PUBLISHING LLC, US, vol. 110, no. 20, 18 May 2017 (2017-05-18), US, XP012219022, ISSN: 0003-6951, DOI: 10.1063/1.4983831 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115764294A (zh) * 2022-12-21 2023-03-07 中国矿业大学 一种基于人工表面等离激元的全角度高速率波束扫描天线
CN115764294B (zh) * 2022-12-21 2023-11-21 中国矿业大学 一种基于人工表面等离激元的全角度高速率波束扫描天线

Also Published As

Publication number Publication date
CN110768021B (zh) 2022-01-11
CN110768021A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2021082976A1 (zh) 透镜结构、透镜天线及电子设备
Quevedo-Teruel et al. Glide-symmetric fully metallic luneburg lens for 5G communications at K a-band
CN104733853B (zh) 一种多层基片集成波导阵列天线
EP3336965B1 (en) Space-fed active phased antenna array
WO2021082980A1 (zh) 透镜结构、透镜天线及电子设备
CN109742538A (zh) 一种移动终端毫米波相控阵磁偶极子天线及其天线阵列
Akbari et al. Highly efficient 30 GHz 2x2 beamformer based on rectangular air-filled coaxial line
CN109066063A (zh) 一种低剖面ltcc毫米波双极化阵列天线
CN111052507B (zh) 一种天线及无线设备
Vilas Boas et al. Dual‐band switched‐beam antenna array for MIMO systems
EP3108586B1 (en) Reflective-type antenna band and polarization selectable transceiver using a rotatable quarter-wave plate
Dharmarajan et al. A high gain UWB human face shaped MIMO microstrip printed antenna with high isolation
WO2021082977A1 (zh) 透镜结构、透镜天线及电子设备
WO2021082975A1 (zh) 透镜结构、透镜天线及电子设备
WO2014141993A1 (ja) 移相器及びアンテナシステム
CN209169390U (zh) 一种移动终端毫米波相控阵磁偶极子天线及其天线阵列
Zarifi et al. A D-band center-feed linear slot array antenna based on gap waveguide
CN112751207B (zh) 透镜结构、透镜天线及电子设备
CN112751206B (zh) 透镜结构、透镜天线及电子设备
KR20210065153A (ko) 고정 피드 안테나를 갖는 위상 어레이 안테나 시스템
Manzillo Wideband and flat multibeam antenna solutions for ultrafast communications in millimeter band
Tudosie et al. An LTCC-based folded Rotman lens for phased array applications
Madany et al. Design and analysis of miniaturized conformal paraboloid smart antenna system using 1× 8 switched butler matrix for wireless applications
Wang et al. Novel antenna using substrate integrated waveguide for passive millimeter-wave focal plane array imaging
Morioka et al. Design of Microstrip-Line-Fed Rotman-lens Beamforming Network at 274 GHz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883184

Country of ref document: EP

Kind code of ref document: A1