WO2021082900A1 - 频域资源的指示方法及设备 - Google Patents

频域资源的指示方法及设备 Download PDF

Info

Publication number
WO2021082900A1
WO2021082900A1 PCT/CN2020/120553 CN2020120553W WO2021082900A1 WO 2021082900 A1 WO2021082900 A1 WO 2021082900A1 CN 2020120553 W CN2020120553 W CN 2020120553W WO 2021082900 A1 WO2021082900 A1 WO 2021082900A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
pdsch
bit group
bit
length
Prior art date
Application number
PCT/CN2020/120553
Other languages
English (en)
French (fr)
Inventor
李岩
金婧
王飞
郑毅
王菡凝
王启星
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2021082900A1 publication Critical patent/WO2021082900A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of mobile communication technology, and in particular to a method and device for indicating frequency domain resources.
  • 5G's new air interface will support three major application scenarios, namely enhanced mobile broadband (eMBB), massive machine communication (mMTC) and ultra-high reliability and low-latency communication (URLLC).
  • eMBB enhanced mobile broadband
  • mMTC massive machine communication
  • URLLC ultra-high reliability and low-latency communication
  • the main applications of URLLC include: industrial applications and control, traffic safety and control, remote manufacturing, remote training, remote surgery, etc.
  • the Internet of Vehicles is one of the main applications of URLLC, and there is a high demand for the reliability of information transmission.
  • the frequency domain resources of the physical downlink shared channel (PDSCH) can be non-continuously distributed (corresponding to PDSCH resource allocation type 0, ie Resource Type 0) or continuously distributed (Corresponding to PDSCH resource allocation type 1, namely Resource Type 1).
  • the frequency domain resource indication mode of the physical downlink shared channel (PDSCH) sent by the transmission point is indicated according to different PDSCH resource allocation types, specifically:
  • N_RBG bits can be used to indicate in the form of a bitmap, such as 10010011;
  • the PDSCH resource allocation type is Resource Type 1
  • the frequency domain resources of the PDSCH are continuously distributed. Bit indication.
  • N_RBG represents the total number of RBGs allocated by the network to the terminal, Represents the total number of RBs allocated to the terminal on the network side.
  • Multi-TRP multi-transmission point
  • the same transmission block (TB) can be sent from at least 2 different transmission points (TRP), as shown in Figure 1.
  • TRP transmission points
  • different redundancy versions can be used for these repeated transmission blocks.
  • these repeated transmission blocks may be scheduled by repeated physical downlink control channels.
  • At least one embodiment of the present disclosure provides a method for indicating frequency domain resources, a terminal, and a network device, which implements frequency domain resource indication of PDSCH in a Multi-TRP scenario.
  • At least one embodiment provides a method for indicating frequency domain resources, which is applied to a network device, and includes:
  • the downlink control information carries L PDSCH frequency domain resource indication information, where L is an integer greater than or equal to 1.
  • the frequency domain resource indication information includes L first bit groups with a length of N_RBG, where the L first bit groups correspond to L PDSCHs in a one-to-one correspondence.
  • the L PDSCH frequency domain resources are indicated, where the N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • the frequency domain resource indication information includes a second bit group with a length of N_RBG, and the second bit group includes L sub-bit groups, and the L sub-bit groups
  • the bit group has a one-to-one correspondence with the L PDSCHs, and is used to indicate the L PDSCH frequency domain resources, where the N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • the L sub-bit groups are used to indicate L PDSCH frequency domain resources in a bitmap manner, and each bit corresponds to L RBGs;
  • each bit in the second bit group corresponds to an RBG one-to-one, and the number of bits contained in each sub-bit group is
  • the N_RBG is the total number of RBGs allocated to the terminal by the network side
  • each bit in the second bit group has a one-to-one correspondence with an RBG, wherein the length of each sub-bit group is determined according to the first resource allocation information, and different values of the first resource allocation information The corresponding relationship with the length allocation ratio of the sub-bit group is pre-arranged;
  • each bit in the second bit group has a one-to-one correspondence with an RBG, wherein the length of each sub-bit group is determined according to second resource allocation information, and different values of the second resource allocation information
  • the correspondence relationship with the length allocation ratio of the sub-bit group is pre-configured.
  • the method further includes: sending the first resource allocation information to the terminal through RRC signaling or downlink control information;
  • the method further includes: sending different values of the second resource allocation information to the terminal through RRC signaling; and, through downlink Control information, sending the second resource allocation information to the terminal.
  • the frequency domain resource indication information includes:
  • the third bit groups have a one-to-one correspondence with the L PDSCHs, and the L third bit groups correspond to L PDSCH frequency domain resources;
  • the length of each third bit group is:
  • the length of the third bit group corresponding to the xth PDSCH is:
  • the length of the third bit group corresponding to the xth PDSCH is: Where x is an integer greater than or equal to 1;
  • the downlink control information also carries TCI status indication information used to indicate the L TCI statuses corresponding to the L PDSCHs, where:
  • the L TCI states indicated by the TCI state indication information correspond to the L PDSCHs indicated by the frequency domain resource indication information in a one-to-one correspondence according to a preset order;
  • the frequency domain resource indication information further includes correspondence indication information of the correspondence between the L PDSCH frequency domain resources and the L TCI states, and different values of the correspondence indication information are used for Indicates different pre-configured or pre-appointed correspondences.
  • At least one embodiment provides a method for indicating frequency domain resources, which is applied to a terminal, and includes:
  • the frequency domain resource indication information includes L first bit groups with a length of N_RBG, where the L first bit groups correspond to L PDSCHs in a one-to-one correspondence.
  • the L PDSCH frequency domain resources are indicated, where the N_RBG is the total number of RBGs allocated by the network side to the terminal. .
  • the frequency domain resource indication information includes a second bit group with a length of N_RBG, and the second bit group includes L sub-bit groups, and the L sub-bit groups
  • the bit group has a one-to-one correspondence with the L PDSCHs, and is used to indicate the L PDSCH frequency domain resources, where the N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • the L sub-bit groups are used to indicate L PDSCH frequency domain resources in a bitmap manner, and each bit corresponds to L RBGs;
  • each bit in the second bit group corresponds to an RBG one-to-one, and the number of bits contained in each sub-bit group is
  • the N_RBG is the total number of RBGs allocated to the terminal by the network side
  • each bit in the second bit group has a one-to-one correspondence with an RBG, wherein the length of each sub-bit group is determined according to the first resource allocation information, and different values of the first resource allocation information The corresponding relationship with the length allocation ratio of the sub-bit group is pre-arranged;
  • each bit in the second bit group has a one-to-one correspondence with an RBG, wherein the length of each sub-bit group is determined according to second resource allocation information, and different values of the second resource allocation information
  • the correspondence relationship with the length allocation ratio of the sub-bit group is pre-configured.
  • the method further includes: receiving the first resource allocation information sent by the network device through RRC signaling or downlink control information Determining the length of each sub-bit group in the second bit group and the frequency domain resource position of the PDSCH of each transmission point according to the first resource allocation information;
  • the method further includes: receiving different values of the second resource allocation information sent by the network device through RRC signaling; and, receiving The second resource allocation information sent by the network device through downlink control information; and, according to the value of the second resource allocation information, determine the length and the length of each sub-bit group in the second bit group The frequency domain resource location of the PDSCH of the transmission point.
  • the frequency domain resource indication information includes:
  • the third bit groups have a one-to-one correspondence with the L PDSCHs, and the L third bit groups correspond to L PDSCH frequency domain resources;
  • the length of each third bit group is:
  • the length of the third bit group corresponding to the xth PDSCH is:
  • the length of the third bit group corresponding to the xth PDSCH is: Where x is an integer greater than or equal to 1;
  • the downlink control information also carries TCI status indication information used to indicate the L TCI statuses corresponding to the L PDSCHs, where:
  • the L TCI states indicated by the TCI state indication information correspond to the L PDSCHs indicated by the frequency domain resource indication information in a one-to-one correspondence according to a preset order;
  • the frequency domain resource indication information further includes correspondence indication information of the correspondence between the L PDSCH frequency domain resources and the L TCI states, and different values of the correspondence indication information are used for Indicate different pre-configured or pre-agreed correspondences;
  • the method also includes:
  • the receive beam of the PDSCH of each transmission point is determined.
  • At least one embodiment provides a network device, including:
  • the downlink control information sending module is configured to send downlink control information to the terminal.
  • the downlink control information carries L PDSCH frequency domain resource indication information, where L is an integer greater than or equal to 1.
  • At least one embodiment provides a network device including a transceiver and a processor, wherein,
  • the transceiver is configured to send downlink control information to a terminal, and the downlink control information carries L PDSCH frequency domain resource indication information, where L is an integer greater than or equal to 1.
  • At least one embodiment provides a terminal, including:
  • a downlink control information receiving module configured to receive downlink control information sent by a network device, the downlink control information carries L PDSCH frequency domain resource indication information, where L is an integer greater than or equal to 1;
  • the PDSCH receiving module is configured to receive the L PDSCHs according to the frequency domain resource indication information.
  • At least one embodiment provides a terminal including a transceiver and a processor, wherein:
  • the transceiver is configured to receive downlink control information sent by a network device, where the downlink control information carries L PDSCH frequency domain resource indication information, where L is an integer greater than or equal to 1;
  • the processor is configured to receive the L PDSCHs according to the frequency domain resource indication information.
  • At least one embodiment provides a communication device including: a processor, a memory, and a program stored on the memory and capable of running on the processor, the program being The processor implements the steps of the frequency domain resource indication method as described above when executed.
  • At least one embodiment provides a computer-readable storage medium with a program stored on the computer-readable storage medium, and when the program is executed by a processor, it implements the method described above. step.
  • the frequency domain resource indication method and device implement the frequency domain resource indication information of L PDSCHs in the downlink control information to realize the frequency of the PDSCH in the Multi-TRP scenario. Domain resource indication.
  • the embodiments of the present disclosure also realize the mapping relationship between multiple TCI states activated by downlink control information and PDSCHs sent by multiple TRPs to be indicated to the terminal.
  • FIG. 1 is a schematic diagram of a Multi-TRP application scenario according to an embodiment of the disclosure
  • FIG. 2 is a flowchart when the frequency domain resource indication method according to an embodiment of the disclosure is applied to a network device
  • FIG. 3 is a flowchart when the method for indicating frequency domain resources according to an embodiment of the disclosure is applied to the terminal side;
  • FIG. 4 is a schematic diagram of a structure of a network device provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of another structure of a network device provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of a structure of a terminal provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of another structure of a terminal provided by an embodiment of the disclosure.
  • the technology described in this article is not limited to NR systems and Long Time Evolution (LTE)/LTE-Advanced (LTE-A) systems, and can also be used in various wireless communication systems, such as code division multiple access.
  • Code Division Multiple Access CDMA
  • Time Division Multiple Access TDMA
  • Frequency Division Multiple Access FDMA
  • Orthogonal Frequency Division Multiple Access OFDMA
  • Single-carrier Frequency-Division Multiple Access SC-FDMA
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • the terms “system” and “network” are often used interchangeably.
  • the CDMA system can implement radio technologies such as CDMA2000 and Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • the TDMA system can implement radio technologies such as the Global System for Mobile Communication (GSM).
  • GSM Global System for Mobile Communication
  • the OFDMA system can implement radios such as UltraMobile Broadband (UMB), Evolved UTRA (Evolution-UTRA, E-UTRA), IEEE802.21 (Wi-Fi), IEEE802.16 (WiMAX), IEEE802.20, Flash-OFDM, etc. technology.
  • UMB UltraMobile Broadband
  • Evolved UTRA Evolved UTRA
  • E-UTRA Evolved UTRA
  • IEEE802.21 Wi-Fi
  • WiMAX IEEE802.16
  • IEEE802.20 Flash-OFDM
  • Flash-OFDM Flash-OFDM
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2" (3GPP2).
  • the techniques described in this article can be used for the systems and radio technologies mentioned above, as well as other systems and radio technologies.
  • the following description describes the NR system for exemplary purposes, and NR terminology is used in most of the following description, although these techniques can also be applied to applications other than NR system applications.
  • FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present disclosure can be applied.
  • the wireless communication system includes a terminal 11 and two network devices, TRP 12 and TRP 13, respectively.
  • the terminal 11 may also be called a user terminal or a user equipment (UE, User Equipment), and the terminal 11 may be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), or a personal digital assistant (Personal Digital Assistant).
  • PDA mobile Internet device
  • MID mobile Internet Device
  • Wearable Device wearable device
  • vehicle-mounted device it should be noted that the specific type of terminal 11 is not limited in the embodiments of the present disclosure .
  • the above TRP can be a base station of 5G and later versions (for example: gNB, 5G NR NB, etc.), or a base station in other communication systems (for example: eNB, WLAN access point, or other access point, etc.), where the base station can be Known as Node B, Evolved Node B, Access Point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver, Basic Service Set (BSS), Extended Service Set (Extended Service) Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node or some other appropriate term in the field, as long as the same technology is achieved Effect, the base station is not limited to specific technical vocabulary. It should be noted that in the embodiments of the present disclosure, only the TRP in the NR system is taken as an example, but the specific type of network equipment is not limited.
  • a frequency domain resource indication method provided by an embodiment of the present disclosure when applied to a network device includes:
  • Step 21 The network device sends downlink control information (DCI) to the terminal.
  • DCI downlink control information
  • the downlink control information carries L PDSCH frequency domain resource indication information, where L is an integer greater than or equal to 1.
  • the terminal works in a Multi-TRP scenario and communicates with at least two TRPs.
  • the network device may be one of the TRPs or other network side devices, which is not specifically limited in the embodiments of the present disclosure.
  • the network equipment indicates the frequency domain resources of the PDSCH of each transmission point through the DCI, so that the terminal can obtain the frequency domain resource location of each PDSCH from the DCI, and then receive these PDSCHs, realizing the PDSCH in the Multi-TRP scenario Frequency domain resource indication.
  • the L PDSCHs are PDSCHs sent by L transmission points.
  • the embodiments of the present disclosure may adopt the corresponding PDSCH frequency domain resource indication mode, specifically:
  • the following indication methods can be used:
  • the frequency domain resource indication information includes L first bit groups with a length of N_RBG, where the L first bit groups have a one-to-one correspondence with L PDSCHs, and are used to indicate the L PDSCHs in a bitmap manner.
  • the N_RBG is the total number of RBGs allocated by the network to the terminal.
  • the frequency domain resource indication information includes L first bit groups with a length of N_RBG, and each first bit group corresponds to a PDSCH, and is used to indicate the position of the frequency domain resource of the PDSCH through a bitmap.
  • each bit in the first bit group has a one-to-one correspondence with the RBG allocated to the terminal by the network side.
  • the embodiment of the present disclosure may also indicate the frequency domain resources of L PDSCHs through a second bit group with a length of N_RBG.
  • the frequency domain resource indication information includes a second bit group with a length of N_RBG, and the second bit group includes L sub-bit groups, and the L sub-bit groups have a one-to-one correspondence with L PDSCHs.
  • the N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • Each bit in the second bit group has a one-to-one correspondence with the RBG, and the number of bits contained in each sub-bit group is Wherein, the N_RBG is the total number of RBGs allocated to the terminal by the network side.
  • the bits in the second bit group correspond to the RBG allocated to the terminal by the network side, and each sub-bit group is used to indicate the frequency domain resource corresponding to the PDSCH, so that each sub-bit group corresponds to the RBG allocated to the terminal by the network side.
  • Part of the RBG in the RBG may indicate the frequency domain resources corresponding to the PDSCH in the part of the RBG in a bitmap manner.
  • N_RBG can be divided into 2 sub-bit groups, and each group includes Bits, the first sub-bit group is used in the front Indicated in one RBG, and the second sub-bit group is used to Indicated in each RBG.
  • N_RBG may not be an integral multiple of L
  • the length of the first L-1 sub-bit group can be set to The length of the last sub-bit group is
  • the L sub-bit groups in the second bit group are used to indicate L PDSCH frequency domain resources in a bitmap manner, and each bit corresponds to L RBGs.
  • each sub-bit group can be indicated in all RGB or part of RBG allocated to the terminal.
  • the N_RBG RBGs allocated to the terminal can be sorted according to the order of frequency, and the sorted RBG sequence can be divided into groups of L to obtain Group RBG, each group of RBG includes L RBGs.
  • each group of RBG includes L RBGs.
  • the last group of RBG can also Including L RBGs.
  • Set the length of the first L-1 sub-bit group to The length of the last sub-bit group is
  • Each bit in each sub-bit group corresponds to a group of RGB in the above-mentioned RBG sequence in turn.
  • the bit length in the sub-bit group is greater than , Where the length exceeds
  • the RBGs corresponding to the remaining bits of are all empty.
  • the DCI uses N_RBG bits to indicate the frequency domain resources of TRP1 and TRP2 in the form of bitmaps.
  • the first N_RBG/2bits represents the frequency domain resources of TRP1
  • the last N_RBG/2bits represents the frequency domain resources of TRP2.
  • One bit represents two consecutive RBGs allocated by the terminal, and the foregoing consecutive refers to adjacent positions in the foregoing RBG sequence.
  • N_RBG is an integer multiple of 2.
  • Each bit in the second bit group has a one-to-one correspondence with the RBG, wherein the length of each sub-bit group is determined according to the first resource allocation information, and the different values of the first resource allocation information are different from each other.
  • the corresponding relationship between the length allocation ratios of the bit groups is predetermined.
  • the bits in the second bit group have a one-to-one correspondence with the RBG allocated to the terminal by the network side, and each sub-bit group is determined by additional first resource allocation information.
  • the network device may also send the first resource allocation information to the terminal through RRC signaling or downlink control information.
  • a 2-bit first resource allocation information is agreed in advance.
  • a value of 00 in the first resource allocation information indicates that the first 1/5 bits in the second bit group belong to TRP1, and a value of 01 indicates the first 2/ 5 bits belong to TRP1.
  • the length of each sub-bit group can be determined according to the value of the first resource allocation information, and then the resource location of each PDSCH can be determined.
  • Each bit in the second bit group has a one-to-one correspondence with the RBG, wherein the length of each sub-bit group is determined according to the second resource allocation information, and the different values of the second resource allocation information are different from each other.
  • the corresponding relationship between the length allocation ratios of the bit groups is pre-configured.
  • the network device may also send different values of the second resource allocation information and the corresponding length allocation ratio to the terminal through RRC signaling; and, through downlink control information, The terminal sends the second resource allocation information.
  • the above describes the specific indication method of the frequency domain resource indication information when the PDSCH resource allocation type is type 0.
  • the following further introduces the specific form of the frequency domain resource indication information when the PDSCH resource allocation type is Type 1:
  • the frequency domain resource indication information includes:
  • the L third bit groups have a one-to-one correspondence with the L PDSCHs, and the L third bit groups correspond to L PDSCH frequency domain resources;
  • the length of each third bit group is:
  • the length of the third bit group corresponding to the xth PDSCH is:
  • the length of the third bit group corresponding to the xth PDSCH is: Where x is an integer greater than or equal to 1;
  • the above respectively introduces the frequency domain resource indication of the PDSCH when the PDSCH resource allocation type is type 0 and 1.
  • the embodiment of the present disclosure can realize the frequency domain resource indication of the PDSCH in the Multi-TRP scenario.
  • the related technology does not provide an indication solution for the transmission configuration index (TCI, Transmission Configuration Index) state (TCI State) in the Multi-TRP scenario.
  • TCI Transmission Configuration Index
  • TCI State Transmission Configuration Index
  • BeamIndication BeamIndication
  • the new air interface (NR) system uses the Transmission Configuration Index (TCI) field in the downlink control information (DCI) to indicate the beam for downlink transmission.
  • TCI Transmission Configuration Index
  • DCI downlink control information
  • the DCI received by the terminal includes a TCI state, and each TCI state usually includes a reference signal identifier (RSID) and a QCL type (QCL Type).
  • RSID reference signal identifier
  • QCL Type QCL type
  • the terminal finds the corresponding reference signal (RS) according to the RSID in the TCI state.
  • the RS can be the RS measured in the beam management process. Through the beam management measurement process, the terminal has learned that the RS (that is, the corresponding beam) should be received. The receiving beam used, so that the terminal can use the RS receiving beam to receive the PDSCH.
  • the TCI state indication method for PDSCH transmission in the related technology includes 3 steps: RRC configures up to 128 TCI states, MAC CE activates 8 pairs, and 3bit indication in DCI indicates 1 of them. This pair represents the TCI state corresponding to the 2 PDSCHs of the 2 TRPs.
  • the downlink control information of the network device in step 21 also carries TCI status indication information for indicating the L TCI statuses corresponding to the L PDSCHs. Specifically, Use any of the following methods:
  • the L TCI states indicated by the TCI state indication information correspond to the L PDSCHs indicated by the frequency domain resource indication information in a one-to-one correspondence according to a preset order. For example, according to the sequence of each TCI state in the aforementioned downlink control information and the sequence of each PDSCH in the aforementioned downlink control information, each TCI state and PDSCH are in a one-to-one correspondence.
  • the frequency domain resource indication information also includes correspondence indication information of the correspondence between the L PDSCH frequency domain resources and the L TCI states, and different values of the correspondence indication information are used for Indicates different pre-configured or pre-appointed correspondences. For example, still taking 2 TRPs as an example, add 1 bit to the PDSCH frequency domain resource indication field of DCI to indicate the corresponding TCI state information, for example, 0 means that the first TCI state corresponds to the first PDSCH frequency domain resource, and the second TCI state corresponds to the second PDSCH frequency domain resource; 1 means that the second TCI state corresponds to the first PDSCH frequency domain resource, and the first TCI state corresponds to the second PDSCH frequency domain resource.
  • the embodiment of the present disclosure can indicate to the terminal the mapping relationship between multiple TCI states activated by downlink control information and PDSCHs sent by multiple TRPs.
  • the method for indicating frequency domain resources provided by an embodiment of the present disclosure, when applied to a terminal, includes:
  • Step 31 Receive downlink control information sent by a network device, where the downlink control information carries L PDSCH frequency domain resource indication information, where L is an integer greater than or equal to 1.
  • Step 32 Receive the L PDSCHs according to the frequency domain resource indication information.
  • the embodiment of the present disclosure realizes the frequency domain resource indication of the PDSCH in the Multi-TRP scenario, so that the terminal can receive the PDSCH sent by each transmission point.
  • the frequency domain resource indication information has multiple indication modes:
  • the frequency domain resource indication information includes L first bit groups with a length of N_RBG, where the L first bit groups have a one-to-one correspondence with L PDSCHs, and are used to indicate the L PDSCHs in a bitmap manner.
  • Frequency domain resources where the N_RBG is the total number of RBGs allocated by the network side to the terminal. .
  • the frequency domain resource indication information includes a second bit group with a length of N_RBG, and the second bit group includes L sub-bit groups, and the L sub-bit groups have a one-to-one correspondence with L PDSCHs and are used to indicate L PDSCH frequency domain resources, where the N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • each bit in the second bit group has a one-to-one correspondence with RBG
  • the number of bits contained in each sub-bit group is
  • the N_RBG is the total number of RBGs allocated to the terminal by the network side.
  • the frequency domain resource indication information includes a second bit group with a length of N_RBG, and the second bit group includes L sub-bit groups, and the L sub-bit groups have a one-to-one correspondence with L PDSCHs and are used to indicate L PDSCH frequency domain resources, where the N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • the L sub-bit groups are used to indicate L PDSCH frequency domain resources in a bitmap manner, and each bit corresponds to L RBGs.
  • the frequency domain resource indication information includes a second bit group with a length of N_RBG, and the second bit group includes L sub-bit groups, and the L sub-bit groups have a one-to-one correspondence with L PDSCHs and are used to indicate L PDSCH frequency domain resources, where the N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • each bit in the second bit group has a one-to-one correspondence with an RBG, wherein the length of each sub-bit group is determined according to the first resource allocation information, and different values of the first resource allocation information
  • the correspondence relationship with the length allocation ratio of the sub-bit group is predetermined.
  • the terminal may also receive the first resource allocation information sent by the network device through RRC signaling or downlink control information; determine each of the second bit groups according to the first resource allocation information The length of each sub-bit group and the frequency domain resource location of the PDSCH of each transmission point.
  • the frequency domain resource indication information includes a second bit group with a length of N_RBG, and the second bit group includes L sub-bit groups, and the L sub-bit groups have a one-to-one correspondence with L PDSCHs and are used to indicate L PDSCH frequency domain resources, where the N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • each bit in the second bit group has a one-to-one correspondence with an RBG, wherein the length of each sub-bit group is determined according to the second resource allocation information, and different values of the second resource allocation information
  • the correspondence relationship with the length allocation ratio of the sub-bit group is pre-configured.
  • the terminal may also receive different values of the second resource allocation information sent by the network equipment through RRC signaling; and, receive the second resource allocation sent by the network equipment through downlink control information Information; according to the value of the second resource allocation information, determine the length of each sub-bit group in the second bit group and the frequency domain resource location of the PDSCH of each transmission point.
  • the frequency domain resource indication information may include:
  • the third bit groups have a one-to-one correspondence with the L PDSCHs, and the L third bit groups correspond to L PDSCH frequency domain resources;
  • the length of each third bit group is:
  • the length of the third bit group corresponding to the xth PDSCH is:
  • the length of the third bit group corresponding to the xth PDSCH is: Where x is an integer greater than or equal to 1;
  • the downlink control information may also carry TCI status indication information used to indicate the L TCI statuses corresponding to the L PDSCHs, where:
  • the L TCI states indicated by the TCI state indication information correspond to the L PDSCHs indicated by the frequency domain resource indication information in a one-to-one correspondence according to a preset order; or, the frequency domain resource indication information further includes the L Correspondence indication information of the correspondence between each PDSCH frequency domain resource and the L TCI states, and different values of the correspondence indication information are used to indicate different pre-configured or pre-agreed correspondences.
  • the terminal can determine the TCI status corresponding to the PDSCH of each transmission point according to the TCI status indication information; determine the reception of the PDSCH of each transmission point according to the TCI status corresponding to the PDSCH of each transmission point Beam, and then use the determined receiving beam to receive the corresponding PDSCH.
  • the embodiment of the present disclosure provides a network device as shown in FIG. 4. Please refer to FIG. 4, the network device 40 provided by the embodiment of the present disclosure includes:
  • the downlink control information sending module 41 is configured to send downlink control information to the terminal.
  • the downlink control information carries L PDSCH frequency domain resource indication information, where L is an integer greater than or equal to 1.
  • the frequency domain resource indication information includes L first bit groups with a length of N_RBG, where L first bit groups and L PDSCHs are one One correspondence is used to indicate the L PDSCH frequency domain resources in a bitmap manner, where the N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • the frequency domain resource indication information includes a second bit group with a length of N_RBG, and the second bit group includes L sub-bit groups
  • the L sub-bit groups have a one-to-one correspondence with the L PDSCHs, and are used to indicate the L PDSCH frequency domain resources, where the N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • the L sub-bit groups are used to indicate L PDSCH frequency domain resources in a bitmap manner, and each bit corresponds to L RBGs.
  • the frequency domain resource indication information includes a second bit group with a length of N_RBG, and the second bit group includes L sub-bit groups
  • the L sub-bit groups have a one-to-one correspondence with the L PDSCHs, and are used to indicate L PDSCH frequency domain resources, where the N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • Each bit in the second bit group has a one-to-one correspondence with the RBG, and the number of bits contained in each sub-bit group is Wherein, the N_RBG is the total number of RBGs allocated to the terminal by the network side.
  • the frequency domain resource indication information includes a second bit group with a length of N_RBG, and the second bit group includes L sub-bit groups
  • the L sub-bit groups have a one-to-one correspondence with the L PDSCHs, and are used to indicate the L PDSCH frequency domain resources, where the N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • Each bit in the second bit group has a one-to-one correspondence with the RBG, wherein the length of each sub-bit group is determined according to the first resource allocation information, and the different values of the first resource allocation information are different from each other.
  • the corresponding relationship between the length allocation ratios of the bit groups is predetermined.
  • the network device may also include:
  • the first allocation information sending module is configured to send the first resource allocation information to the terminal through RRC signaling or downlink control information.
  • the frequency domain resource indication information includes a second bit group with a length of N_RBG, and the second bit group includes L sub-bit groups
  • the L sub-bit groups have a one-to-one correspondence with the L PDSCHs, and are used to indicate the L PDSCH frequency domain resources, where the N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • Each bit in the second bit group has a one-to-one correspondence with the RBG, wherein the length of each sub-bit group is determined according to the second resource allocation information, and the different values of the second resource allocation information are different from each other.
  • the corresponding relationship between the length allocation ratios of the bit groups is pre-configured.
  • the network device may also include:
  • the second allocation information sending module is configured to send different values of the second resource allocation information to the terminal through RRC signaling; and send the second resource allocation information to the terminal through downlink control information.
  • the frequency domain resource indication information includes:
  • the third bit groups have a one-to-one correspondence with the L PDSCHs, and the L third bit groups correspond to L PDSCH frequency domain resources;
  • the length of each third bit group is:
  • the length of the third bit group corresponding to the xth PDSCH is:
  • the length of the third bit group corresponding to the xth PDSCH is: Where x is an integer greater than or equal to 1;
  • the downlink control information also carries TCI status indication information used to indicate the L TCI statuses corresponding to the L PDSCHs, where:
  • the L TCI states indicated by the TCI state indication information correspond to the L PDSCHs indicated by the frequency domain resource indication information in a one-to-one correspondence according to a preset order;
  • the frequency domain resource indication information further includes correspondence indication information of the correspondence between the L PDSCH frequency domain resources and the L TCI states, and different values of the correspondence indication information are used for Indicates different pre-configured or pre-appointed correspondences.
  • an embodiment of the present disclosure provides a schematic structural diagram of a network device 500, including: a processor 501, a transceiver 502, a memory 503, and a bus interface, where:
  • the network device 500 further includes: a program stored in the memory 503 and capable of running on the processor 501.
  • the program is executed by the processor 501, the following steps are implemented: sending downlink control information to the terminal, so
  • the downlink control information carries L PDSCH frequency domain resource indication information, where L is an integer greater than or equal to 1.
  • each process of the frequency domain resource indication method embodiment shown in FIG. 2 can be realized, and the same technical effect can be achieved. In order to avoid Repeat, I won’t repeat it here.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 501 and various circuits of the memory represented by the memory 503 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 502 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the processor 501 is responsible for managing the bus architecture and general processing, and the memory 503 can store data used by the processor 501 when performing operations.
  • a computer-readable storage medium with a program stored thereon.
  • the program When the program is executed by a processor, the following steps are implemented: sending downlink control information to the terminal, where the downlink control information Carry L PDSCH frequency domain resource indication information, where L is an integer greater than or equal to 1.
  • an embodiment of the present disclosure provides a terminal 60, including:
  • the downlink control information receiving module 61 is configured to receive downlink control information sent by a network device, where the downlink control information carries L PDSCH frequency domain resource indication information, where L is an integer greater than or equal to 1;
  • the PDSCH receiving module 62 is configured to receive the L PDSCHs according to the frequency domain resource indication information.
  • the frequency domain resource indication information includes L first bit groups with a length of N_RBG, where L first bit groups and L PDSCHs are one One correspondence is used to indicate the L PDSCH frequency domain resources in a bitmap manner, where the N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • the frequency domain resource indication information includes a second bit group with a length of N_RBG, and the second bit group includes L sub-bit groups
  • the L sub-bit groups have a one-to-one correspondence with the L PDSCHs, and are used to indicate the L PDSCH frequency domain resources, where the N_RBG is the total number of RBGs allocated by the network side to the terminal.
  • the L sub-bit groups are used to indicate L PDSCH frequency domain resources in a bitmap manner, and each bit corresponds to L RBGs.
  • the frequency domain resource indication information includes a second bit group with a length of N_RBG, and the second bit group includes L sub-bit groups ,
  • the L sub-bit groups have a one-to-one correspondence with the L PDSCHs, and are used to indicate L PDSCH frequency domain resources, wherein each bit in the second bit group corresponds to an RBG one-to-one, and each sub-bit group
  • the number of bits included is
  • the N_RBG is the total number of RBGs allocated to the terminal by the network side.
  • the frequency domain resource indication information includes a second bit group with a length of N_RBG, and the second bit group includes L sub-bit groups .
  • the L sub-bit groups have a one-to-one correspondence with the L PDSCHs, and are used to indicate L PDSCH frequency domain resources, where each bit in the second bit group corresponds to an RBG one-to-one, and each sub-bit group
  • the length of is determined according to the first resource allocation information, and the corresponding relationship between the different values of the first resource allocation information and the length allocation ratio of the sub-bit group is predetermined.
  • the terminal further includes:
  • the first allocation information receiving module is configured to receive the first resource allocation information sent by the network device through RRC signaling or downlink control information; and, according to the first resource allocation information, determine the second bit group The length of each sub-bit group in and the frequency domain resource location of the PDSCH of each transmission point.
  • the frequency domain resource indication information includes a second bit group with a length of N_RBG, and the second bit group includes L sub-bit groups .
  • the L sub-bit groups have a one-to-one correspondence with the L PDSCHs, and are used to indicate L PDSCH frequency domain resources, where each bit in the second bit group corresponds to an RBG one-to-one, and each sub-bit group
  • the length of is determined according to the second resource allocation information, and the correspondence between different values of the second resource allocation information and the length allocation ratio of the sub-bit group is pre-configured.
  • the terminal further includes:
  • the second allocation information receiving module is configured to receive different values of the second resource allocation information sent by the network device through RRC signaling; and, receive the second resource sent by the network device through downlink control information Allocation information; according to the value of the second resource allocation information, determine the length of each sub-bit group in the second bit group and the frequency domain resource location of the PDSCH of each transmission point.
  • the frequency domain resource indication information includes:
  • the third bit groups have a one-to-one correspondence with the L PDSCHs, and the L third bit groups correspond to L PDSCH frequency domain resources;
  • the length of each third bit group is:
  • the length of the third bit group corresponding to the xth PDSCH is:
  • the length of the third bit group corresponding to the xth PDSCH is: Where x is an integer greater than or equal to 1;
  • the downlink control information also carries TCI status indication information used to indicate the L TCI statuses corresponding to the L PDSCHs, where:
  • the L TCI states indicated by the TCI state indication information correspond to the L PDSCHs indicated by the frequency domain resource indication information in a one-to-one correspondence according to a preset order;
  • the frequency domain resource indication information further includes correspondence indication information of the correspondence between the L PDSCH frequency domain resources and the L TCI states, and different values of the correspondence indication information are used for Indicate different pre-configured or pre-agreed correspondences;
  • the terminal further includes:
  • the TCI status determination module is used to determine the TCI status corresponding to the PDSCH of each transmission point according to the TCI status indication information; determine the reception of the PDSCH of each transmission point according to the TCI status corresponding to the PDSCH of each transmission point Beam.
  • the terminal 700 includes a processor 701, a transceiver 702, a memory 703, a user interface 704, and a bus interface.
  • the terminal 700 further includes: a program that is stored in the memory 703 and can be run on the processor 701.
  • the processor 701 implements the following steps when executing the program:
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 701 and various circuits of the memory represented by the memory 703 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 702 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 704 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 703 can store data used by the processor 701 when performing operations.
  • a computer-readable storage medium on which a program is stored, and the program is executed by a processor to implement the following steps:
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present disclosure.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the units, modules, sub-units and sub-modules can be implemented in one or more application specific integrated circuits (ASIC), digital signal processors (Digital Signal Processing, DSP), and digital signal processing equipment (DSP Device).
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • DSPD Digital Signal Processing
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • general-purpose processors controllers, microcontrollers, microprocessors, and Disclosure of the described functions in other electronic units or combinations thereof.
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种频域资源的指示方法及设备,该方法包括:向终端发送下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数。

Description

频域资源的指示方法及设备
相关申请的交叉引用
本申请主张在2019年10月28日在中国提交的中国专利申请No.201911030392.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及移动通信技术领域,具体涉及一种频域资源的指示方法及设备。
背景技术
5G的新空口将支持三大应用场景,分别是增强移动宽带(eMBB)、海量机器类通信(mMTC)和超高可靠低时延通信(URLLC)。对于URLLC,其特点是高可靠和低时延,通常可靠性可高达99.999%,时延可低至在1ms以内。URLLC的主要应用包括:工业应用和控制、交通安全和控制、远程制造、远程培训、远程手术等。例如,车联网是URLLC的主要应用之一,对信息传输的可靠性有很高的需求。
在相关技术中,在单个传输点(Single-TRP)工作模式下,物理下行共享信道(PDSCH)的频域资源可以是非连续分布(对应于PDSCH资源分配类型0,即Resource Type 0)或连续分布(对应于PDSCH资源分配类型1,即Resource Type 1)。传输点所发送的物理下行共享信道(PDSCH)的频域资源指示方式,按照不同的PDSCH资源分配类型进行指示,具体的:
在PDSCH资源分配类型为类型0(Resource Type 0)时,PDSCH频域资源非连续分布,此时可以通过N_RBG个比特(bits)以比特位图(bitmap)形式指示,例如10010011;
在PDSCH资源分配类型为类型1(Resource Type 1)时,PDSCH频域资源连续分布,此时可以通过
Figure PCTCN2020120553-appb-000001
个比特指示。
以上,N_RBG表示网络侧为终端分配的RBG的总数,
Figure PCTCN2020120553-appb-000002
表示网络侧为终端分配的RB的总数。
为了增强传输的可靠性和鲁棒性,相关技术提出了多传输点(Multi-TRP)的传输技术。对于Multi-TRP的传输,可以从至少2个不同的传输点(TRP)发送相同的传输块(TB),如图1所示。为了在接收端支持软合并,可以对这些重复的传输块使用不同的冗余版本。另外,为了进一步增强传输的可靠性,这些重复的传输块可以被重复的物理下行控制信道调度。
针对Multi-TRP场景的各个PDSCH的频域资源指示方式还没有提供具体的解决方案。
发明内容
本公开的至少一个实施例提供了一种频域资源的指示方法、终端及网络设备,实现了Multi-TRP场景下的PDSCH的频域资源指示。
根据本公开的一个方面,至少一个实施例提供了一种频域资源的指示方法,应用于网络设备,包括:
向终端发送下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数。
可选地,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括L个长度为N_RBG的第一比特组,其中,L个第一比特组与L个PDSCH一一对应,用于以比特位图的方式,指示所述L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。
可选地,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。
可选地,所述L个子比特组用于以比特位图的方式,指示L个PDSCH频域资源,且每个比特对应于L个RBG;
或者,所述第二比特组中的每个比特与RBG一一对应,且,每个子比特组包含的比特数为
Figure PCTCN2020120553-appb-000003
其中,所述N_RBG为网络侧为终端分配的RBG总数;
或者,所述第二比特组中的每个比特与RBG一一对应,其中,每个子比 特组的长度是根据第一资源分配信息来确定的,且所述第一资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先约定的;
或者,所述第二比特组中的每个比特与RBG一一对应,其中,每个子比特组的长度是根据第二资源分配信息来确定的,且所述第二资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先配置的。
可选地,在每个子比特组的长度是根据第一资源分配信息来确定时,所述方法还包括:通过RRC信令或下行控制信息,向终端发送所述第一资源分配信息;
在每个子比特组的长度是根据第二资源分配信息来确定时,所述方法还包括:通过RRC信令,向所述终端发送所述第二资源分配信息的不同取值;以及,通过下行控制信息,向终端发送所述第二资源分配信息。
可选地,在PDSCH资源分配类型为类型1时,所述频域资源指示信息包括:
L个第三比特组,所述第三比特组与所述L个PDSCH一一对应,且所述L个第三比特组对应于L个PDSCH的频域资源;其中,
每个第三比特组的长度均为:
Figure PCTCN2020120553-appb-000004
或者,
第x个PDSCH对应的第三比特组的长度为:
Figure PCTCN2020120553-appb-000005
或者,
第x个PDSCH对应的第三比特组的长度为:
Figure PCTCN2020120553-appb-000006
其中x为大于或等于1的整数;
其中,
Figure PCTCN2020120553-appb-000007
表示网络侧为终端分配的RB的总数。
可选地,所述下行控制信息还携带有用于指示所述L个PDSCH所对应的L个TCI状态的TCI状态指示信息,其中,
所述TCI状态指示信息指示的L个TCI状态,与所述频域资源指示信息指示的L个PDSCH,按照预设顺序一一对应;
或者,所述频域资源指示信息还包括有所述L个PDSCH频域资源与所述L个TCI状态之间的对应关系的对应关系指示信息,所述对应关系指示信 息的不同取值用于指示预先配置或预先约定的不同对应关系。
根据本公开的另一方面,至少一个实施例提供了一种频域资源的指示方法,应用于终端,包括:
接收网络设备发送的下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数;
根据所述频域资源指示信息,接收所述L个PDSCH。
可选地,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括L个长度为N_RBG的第一比特组,其中,L个第一比特组与L个PDSCH一一对应,用于以比特位图的方式,指示所述L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。。
可选地,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。
可选地,所述L个子比特组用于以比特位图的方式,指示L个PDSCH频域资源,且每个比特对应于L个RBG;
或者,所述第二比特组中的每个比特与RBG一一对应,且,每个子比特组包含的比特数为
Figure PCTCN2020120553-appb-000008
其中,所述N_RBG为网络侧为终端分配的RBG总数;
或者,所述第二比特组中的每个比特与RBG一一对应,其中,每个子比特组的长度是根据第一资源分配信息来确定的,且所述第一资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先约定的;
或者,所述第二比特组中的每个比特与RBG一一对应,其中,每个子比特组的长度是根据第二资源分配信息来确定的,且所述第二资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先配置的。
可选地,在每个子比特组的长度是根据第一资源分配信息来确定时,所述方法还包括:接收所述网络设备通过RRC信令或下行控制信息发送的所述第一资源分配信息;根据所述第一资源分配信息,确定所述第二比特组中的每个子比特组的长度以及每个传输点的PDSCH的频域资源位置;
在每个子比特组的长度是根据第二资源分配信息来确定时,所述方法还包括:接收所述网络设备通过RRC信令发送的所述第二资源分配信息的不同取值;以及,接收所述网络设备通过下行控制信息发送的所述第二资源分配信息;以及,根据所述第二资源分配信息的取值,确定所述第二比特组中的每个子比特组的长度以及每个传输点的PDSCH的频域资源位置。
可选地,在PDSCH资源分配类型为类型1时,所述频域资源指示信息包括:
L个第三比特组,所述第三比特组与所述L个PDSCH一一对应,且所述L个第三比特组对应于L个PDSCH的频域资源;其中,
每个第三比特组的长度均为:
Figure PCTCN2020120553-appb-000009
或者,
第x个PDSCH对应的第三比特组的长度为:
Figure PCTCN2020120553-appb-000010
或者,
第x个PDSCH对应的第三比特组的长度为:
Figure PCTCN2020120553-appb-000011
其中x为大于或等于1的整数;
其中,
Figure PCTCN2020120553-appb-000012
表示网络侧为终端分配的RB的总数。
可选地,所述下行控制信息还携带有用于指示所述L个PDSCH所对应的L个TCI状态的TCI状态指示信息,其中,
所述TCI状态指示信息指示的L个TCI状态,与所述频域资源指示信息指示的L个PDSCH,按照预设顺序一一对应;
或者,所述频域资源指示信息还包括有所述L个PDSCH频域资源与所述L个TCI状态之间的对应关系的对应关系指示信息,所述对应关系指示信息的不同取值用于指示预先配置或预先约定的不同对应关系;
所述方法还包括:
根据所述TCI状态指示信息,确定每个传输点的PDSCH所对应的TCI状态;
根据每个传输点的PDSCH所对应的TCI状态,确定每个传输点的PDSCH的接收波束。
根据本公开的另一方面,至少一个实施例提供了一种网络设备,包括:
下行控制信息发送模块,用于向终端发送下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数。
根据本公开的另一方面,至少一个实施例提供了一种网络设备,包括收发机和处理器,其中,
所述收发机,用于向终端发送下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数。
根据本公开的另一方面,至少一个实施例提供了一种终端,包括:
下行控制信息接收模块,用于接收网络设备发送的下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数;
PDSCH接收模块,用于根据所述频域资源指示信息,接收所述L个PDSCH。
根据本公开的另一方面,至少一个实施例提供了一种终端,包括收发机和处理器,其中,
所述收发机,用于接收网络设备发送的下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数;
所述处理器,用于根据所述频域资源指示信息,接收所述L个PDSCH。
根据本公开的另一方面,至少一个实施例提供了一种通信设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如上所述的频域资源的指示方法的步骤。
根据本公开的另一方面,至少一个实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时,实现如上所述的方法的步骤。
与相关技术相比,本公开实施例提供的频域资源的指示方法及设备,通过在下行控制信息中携带有L个PDSCH的频域资源指示信息,实现了Multi-TRP场景下的PDSCH的频域资源指示。另外,本公开实施例还实现了 向终端指示下行控制信息所激活的多个TCI state与多个个TRP所发送的PDSCH的映射关系。
附图说明
通过阅读下文可选的实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选的实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本公开实施例的一种Multi-TRP应用场景示意图;
图2为本公开实施例的频域资源的指示方法应用于网络设备时的流程图;
图3为本公开实施例的频域资源的指示方法应用于终端侧时的流程图;
图4为本公开实施例提供的网络设备的一种结构示意图;
图5为本公开实施例提供的网络设备的另一种结构示意图;
图6为本公开实施例提供的终端的一种结构示意图;
图7为本公开实施例提供的终端的另一种结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的 至少其中之一。
本文所描述的技术不限于NR系统以及长期演进型(Long Time Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(UltraMobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE 802.21(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本公开实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和两个网络设备,分别为TRP 12和TRP 13。其中,终端11也可以称作用户终端或用户设备(UE,User Equipment),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。上述TRP可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR系统中的TRP为例,但是并不限定网络设备的具体类型。
如背景技术中所述的,相关技术尚未提供Multi-TRP场景下的PDSCH的频域资源指示方案,为解决以上问题中的至少一个,本公开实施例提供了一种频域资源的指示方法,解决了Multi-TRP场景下PDSCH的频域资源如何指示的问题,请参照图2,本公开实施例提供的一种频域资源的指示方法,在应用于网络设备时,包括:
步骤21,网络设备向终端发送下行控制信息(DCI),所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数。
这里,所述终端工作在Multi-TRP场景下,与至少两个TRP进行通信。所述网络设备可以是其中的一个TRP,也可以是其他的网络侧设备,本公开实施例对此不做具体限定。
通过以上步骤,网络设备通过DCI对各个传输点的PDSCH的频域资源进行了指示,从而终端可以从DCI中获得各个PDSCH的频域资源位置,进而接收这些PDSCH,实现了Multi-TRP场景下PDSCH的频域资源的指示。
可选地,所述L个PDSCH为L个传输点发送的PDSCH。
针对不同的PDSCH资源分配类型,本公开实施例可以采用对应的PDSCH的频域资源的指示方式,具体的:
在PDSCH资源分配类型为类型0时,可以采用以下指示方式:
方式1:频域资源指示信息的长度至少为L*N_RBG比特
所述频域资源指示信息包括L个长度为N_RBG的第一比特组,其中,L个第一比特组与L个PDSCH一一对应,用于以比特位图的方式,指示所述L个PDSCH频域资源。这里,所述N_RBG为网络侧为终端分配的RBG总数。
也就是说,所述频域资源指示信息包含有L个长度为N_RBG的第一比特组,每个第一比特组对应于一个PDSCH,用于通过bitmap方式指示该PDSCH的频域资源的位置,此时,第一比特组中的每个比特与网络侧为终端分配的RBG一一对应。
为了缩减频域指示信息的长度,本公开实施例还可以通过一个长度为N_RBG的第二比特组来指示L个PDSCH的频域资源。此时,所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。
具体地,在采用上述第二比特组进行指示时,又可以包括以下多种方式:
方式2:
所述第二比特组中的每个比特与RBG一一对应,且,每个子比特组包含的比特数为
Figure PCTCN2020120553-appb-000013
其中,所述N_RBG为网络侧为终端分配的RBG总数。
也就是说,第二比特组中的比特与网络侧为终端分配的RBG一一对应,每个子比特组用于指示对应PDSCH的频域资源,这样每个子比特组对应于网络侧为终端分配的RBG中的部分RBG,可以在该部分RBG中通过比特位图方式指示对应PDSCH的频域资源。
例如,以2个TRP为例,可以将N_RBG划分成2个子比特组,每组包括有
Figure PCTCN2020120553-appb-000014
个比特,第一个子比特组用于在终端所分配到的前
Figure PCTCN2020120553-appb-000015
个RBG中进行指示,第二个子比特组用于在终端所分配到的后
Figure PCTCN2020120553-appb-000016
个RBG中进行指示。
考虑到N_RBG可能并不是L的整数倍,为了充分利用终端分配到的RBG,可以设置前L-1个子比特组的长度为
Figure PCTCN2020120553-appb-000017
最后一个子比特组的长度为
Figure PCTCN2020120553-appb-000018
方式3:
所述第二比特组中的L个子比特组用于以比特位图的方式,指示L个PDSCH频域资源,且每个比特对应于L个RBG。
这样,每个子比特组可以在终端所分配到的所有RGB或部分RBG中进行指示。例如,可以将终端分配到的N_RBG个RBG按照频率的高低顺序进行排序,将排序后得到的RBG序列按照L个一组进行划分,得到
Figure PCTCN2020120553-appb-000019
组RBG,每组RBG都包括有L个RBG,在上述N_RBG不是L的整数倍时,可以在RBG序列的尾部补零,使其长度为L的整数倍,这样,可以使最后一组RBG也包括有L个RBG。设置前L-1个子比特组的长度为
Figure PCTCN2020120553-appb-000020
最后一个子比特组的长度为
Figure PCTCN2020120553-appb-000021
每个子比特组中的各个比特依次对应于上述RBG序列中的一组RGB。在子比特组中的比特长度大于
Figure PCTCN2020120553-appb-000022
时,其中长度超出
Figure PCTCN2020120553-appb-000023
的剩余比特所对应的RBG均为空。
仍然以2个TRP为例,DCI中通过N_RBG bits以bitmap形式指示TRP1和TRP2的频域资源,其中前N_RBG/2bits表示TRP1的频域资源,后N_RBG/2bits表示TRP2的频域资源,且每1个bit代表终端所分配到的2个连续的RBG,上述连续是指在上述RBG序列中位置相邻。这里,假设N_RBG为2的整数倍。
方式4:
所述第二比特组中的每个比特与RBG一一对应,其中,每个子比特组的长度是根据第一资源分配信息来确定的,且所述第一资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先约定的。
这里,第二比特组中的比特与网络侧为终端分配的RBG一一对应,每个子比特组是通过另外的第一资源分配信息来确定的。在采用该方式4进行指示时,网络设备还可以通过RRC信令或下行控制信息,向终端发送所述第一资源分配信息。
仍然以2个TRP为例,预先约定2比特的第一资源分配信息,在第一资 源分配信息取值00表示第二比特组中的前1/5比特属于TRP1,取值01表示前2/5比特属于TRP1……,这样,可以根据第一资源分配信息的取值,确定各个子比特组的长度,进而确定各个PDSCH的资源位置。
方式5:
所述第二比特组中的每个比特与RBG一一对应,其中,每个子比特组的长度是根据第二资源分配信息来确定的,且所述第二资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先配置的。
在采用该方式5进行指示时,网络设备还可以通过RRC信令,向所述终端发送所述第二资源分配信息的不同取值及其对应的长度分配比例;以及,通过下行控制信息,向终端发送所述第二资源分配信息。
以上介绍了在PDSCH资源分配类型为类型0时,所述频域资源指示信息的具体指示方式。下面进一步介绍PDSCH资源分配类型为类型1时,所述频域资源指示信息的具体形式:
在PDSCH资源分配类型为类型1时,即终端所分配到的PDSCH频域资源连续分布时,所述频域资源指示信息包括:
L个第三比特组,所述L个第三比特组与所述L个PDSCH一一对应,且所述L个第三比特组对应于L个PDSCH的频域资源;其中,
每个第三比特组的长度均为:
Figure PCTCN2020120553-appb-000024
或者,
第x个PDSCH对应的第三比特组的长度为:
Figure PCTCN2020120553-appb-000025
或者,
第x个PDSCH对应的第三比特组的长度为:
Figure PCTCN2020120553-appb-000026
其中x为大于或等于1的整数;
其中,
Figure PCTCN2020120553-appb-000027
表示网络侧为终端分配的RB的总数。
以上分别介绍了在PDSCH资源分配类型为类型0和1时的PDSCH的频域资源指示。通过以上步骤,本公开实施例可以实现Multi-TRP场景下的PDSCH的频域资源指示。
另外,相关技术也没有提供对Multi-TRP场景下的传输配置指示(TCI, Transmission Configuration Index)状态(TCI State)的指示方案。下面先介绍一下相关背景:模拟波束赋形的特性导致网络侧需要将下行传输使用的波束通过控制信令指示给终端,以便终端设置合适的接收波束,这个过程称之为波束指示(BeamIndication)。对于PDSCH,新空口(NR)系统通过下行控制信息(DCI)中的传输配置指示(TCI,Transmission Configuration Index)域来指示下行传输的波束。终端接收到的DCI中包含TCI状态,每个TCI状态通常包括参考信号标识(RSID)和QCL类型(QCL Type)。终端根据TCI状态中的RSID找到对应的参考信号(RS),该RS可以是波束管理过程中测量过的RS,通过波束管理的测量过程,终端已经获知接收该RS(即对应的波束)所应使用的接收波束,这样终端可以使用该RS的接收波束接收PDSCH。
对于Multi-TRP通信场景,以2个TRP为例,相关技术中PDSCH传输的TCI state指示方式包括3步:RRC配置最多128种TCI states,MAC CE激活8对,DCI中3bit指示其中1对,这1对表示了2个TRP的2个PDSCH所对应的TCI state。终端收到DCI中3bit指示的2个TCI state={TCI state0,TCI state1}时,并不能确定这两个TCI state和所收到的2个TRP发送的2个PDSCH的对应关系。为解决上述问题,本公开实施例中,网络设备在步骤21中的所述下行控制信息还携带有用于指示所述L个PDSCH所对应的L个TCI状态的TCI状态指示信息,具体地,可以采用以下任一方式:
1)所述TCI状态指示信息指示的L个TCI状态,与所述频域资源指示信息指示的L个PDSCH,按照预设顺序一一对应。例如,按照各个TCI状态在上述下行控制信息中的先后顺序,以及各个PDSCH在上述下行控制信息中的先后顺序,将各个TCI状态和PDSCH一一对应。
2)所述频域资源指示信息还包括有所述L个PDSCH频域资源与所述L个TCI状态之间的对应关系的对应关系指示信息,所述对应关系指示信息的不同取值用于指示预先配置或预先约定的不同对应关系。例如,仍然以2个TRP为例,在DCI的PDSCH频域资源指示域中增加1bit指示对应的TCI state信息,例如0表示第一个TCI state对应第一个PDSCH频域资源,第二个TCI state对应第二个PDSCH频域资源;1表示第二个TCI state对应第一个PDSCH频域资源,第一个TCI state对应第二个PDSCH频域资源。
通过以上步骤,本公开实施例可以向终端指示下行控制信息所激活的多个TCI state与多个个TRP所发送的PDSCH的映射关系。
以上从网络设备侧介绍了本公开的各个实施例,下面进一步从终端侧进行说明。
请参照图3,本公开实施例提供的频域资源的指示方法,应用于终端时包括:
步骤31,接收网络设备发送的下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数。
步骤32,根据所述频域资源指示信息,接收所述L个PDSCH。
通过以上步骤,本公开实施例实现了Multi-TRP场景下的PDSCH的频域资源指示,使得终端可以接收各个传输点发送的PDSCH。
具体地,在PDSCH资源分配类型为类型0时,所述频域资源指示信息有多种指示方式:
方式1:
所述频域资源指示信息包括L个长度为N_RBG的第一比特组,其中,L个第一比特组与L个PDSCH一一对应,用于以比特位图的方式,指示所述L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。。
方式2:
所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。其中,所述第二比特组中的每个比特与RBG一一对应,且,每个子比特组包含的比特数为
Figure PCTCN2020120553-appb-000028
其中,所述N_RBG为网络侧为终端分配的RBG总数。
方式3:
所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。其中,所述L个子比特组用于以比特位图的方式,指示L个PDSCH 频域资源,且每个比特对应于L个RBG。
方式4:
所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。其中,所述第二比特组中的每个比特与RBG一一对应,其中,每个子比特组的长度是根据第一资源分配信息来确定的,且所述第一资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先约定的。
此时,所述终端还可以接收所述网络设备通过RRC信令或下行控制信息发送的所述第一资源分配信息;根据所述第一资源分配信息,确定所述第二比特组中的每个子比特组的长度以及每个传输点的PDSCH的频域资源位置。
方式5:
所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。其中,所述第二比特组中的每个比特与RBG一一对应,其中,每个子比特组的长度是根据第二资源分配信息来确定的,且所述第二资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先配置的。
此时,所述终端还可以接收所述网络设备通过RRC信令发送的所述第二资源分配信息的不同取值;以及,接收所述网络设备通过下行控制信息发送的所述第二资源分配信息;根据所述第二资源分配信息的取值,确定所述第二比特组中的每个子比特组的长度以及每个传输点的PDSCH的频域资源位置。
在PDSCH资源分配类型为类型1时,所述频域资源指示信息可以包括:
L个第三比特组,所述第三比特组与所述L个PDSCH一一对应,且所述L个第三比特组对应于L个PDSCH的频域资源;其中,
每个第三比特组的长度均为:
Figure PCTCN2020120553-appb-000029
或者,
第x个PDSCH对应的第三比特组的长度为:
Figure PCTCN2020120553-appb-000030
或者,
第x个PDSCH对应的第三比特组的长度为:
Figure PCTCN2020120553-appb-000031
其中x为大于或等于1的整数;
其中,
Figure PCTCN2020120553-appb-000032
表示网络侧为终端分配的RB的总数。
另外,本公开实施例中,所述下行控制信息还可以携带有用于指示所述L个PDSCH所对应的L个TCI状态的TCI状态指示信息,其中,
所述TCI状态指示信息指示的L个TCI状态,与所述频域资源指示信息指示的L个PDSCH,按照预设顺序一一对应;或者,所述频域资源指示信息还包括有所述L个PDSCH频域资源与所述L个TCI状态之间的对应关系的对应关系指示信息,所述对应关系指示信息的不同取值用于指示预先配置或预先约定的不同对应关系。
此时,所述终端可以根据所述TCI状态指示信息,确定每个传输点的PDSCH所对应的TCI状态;根据每个传输点的PDSCH所对应的TCI状态,确定每个传输点的PDSCH的接收波束,进而利用所确定的接收波束,接收对应的PDSCH。
以上介绍了本公开实施例的各种方法。下面将进一步提供实施上述方法的装置。
本公开实施例提供了图4所示的一种网络设备。请参考图4,本公开实施例提供的网络设备40,包括:
下行控制信息发送模块41,用于向终端发送下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数。
这里,作为一种实现方式,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括L个长度为N_RBG的第一比特组,其中,L个第一比特组与L个PDSCH一一对应,用于以比特位图的方式,指示所述L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。
这里,作为另一种实现方式,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比 特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。所述L个子比特组用于以比特位图的方式,指示L个PDSCH频域资源,且每个比特对应于L个RBG。
这里,作为又一种实现方式,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。所述第二比特组中的每个比特与RBG一一对应,且,每个子比特组包含的比特数为
Figure PCTCN2020120553-appb-000033
其中,所述N_RBG为网络侧为终端分配的RBG总数。
这里,作为又一种实现方式,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。所述第二比特组中的每个比特与RBG一一对应,其中,每个子比特组的长度是根据第一资源分配信息来确定的,且所述第一资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先约定的。
此时,所述网络设备还可以包括:
第一分配信息发送模块,用于通过RRC信令或下行控制信息,向终端发送所述第一资源分配信息。
这里,作为又一种实现方式,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。所述第二比特组中的每个比特与RBG一一对应,其中,每个子比特组的长度是根据第二资源分配信息来确定的,且所述第二资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先配置的。
此时,所述网络设备还可以包括:
第二分配信息发送模块,用于通过RRC信令,向所述终端发送所述第二资源分配信息的不同取值;以及,通过下行控制信息,向终端发送所述第二资源分配信息。
这里,作为又一种实现方式,在PDSCH资源分配类型为类型1时,所述频域资源指示信息包括:
L个第三比特组,所述第三比特组与所述L个PDSCH一一对应,且所述L个第三比特组对应于L个PDSCH的频域资源;其中,
每个第三比特组的长度均为:
Figure PCTCN2020120553-appb-000034
或者,
第x个PDSCH对应的第三比特组的长度为:
Figure PCTCN2020120553-appb-000035
或者,
第x个PDSCH对应的第三比特组的长度为:
Figure PCTCN2020120553-appb-000036
其中x为大于或等于1的整数;
其中,
Figure PCTCN2020120553-appb-000037
表示网络侧为终端分配的RB的总数。
可选地,所述下行控制信息还携带有用于指示所述L个PDSCH所对应的L个TCI状态的TCI状态指示信息,其中,
所述TCI状态指示信息指示的L个TCI状态,与所述频域资源指示信息指示的L个PDSCH,按照预设顺序一一对应;
或者,所述频域资源指示信息还包括有所述L个PDSCH频域资源与所述L个TCI状态之间的对应关系的对应关系指示信息,所述对应关系指示信息的不同取值用于指示预先配置或预先约定的不同对应关系。
请参考图5,本公开实施例提供了网络设备500的一结构示意图,包括:处理器501、收发机502、存储器503和总线接口,其中:
在本公开实施例中,网络设备500还包括:存储在存储器上503并可在处理器501上运行的程序,所述程序被处理器501执行时实现如下步骤:向终端发送下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数。
可理解的,本公开实施例中,所述计算机程序被处理器501执行时可实 现上述图2所示的频域资源的指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器501代表的一个或多个处理器和存储器503代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机502可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器501负责管理总线架构和通常的处理,存储器503可以存储处理器501在执行操作时所使用的数据。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有程序,该程序被处理器执行时实现以下步骤:向终端发送下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数。
该程序被处理器执行时能实现上述应用于网络设备的频域资源的指示方法中的所有实现方式,且能达到相同的技术效果,为避免重复,此处不再赘述。
请参照图6,本公开实施例提供了一种终端60,包括:
下行控制信息接收模块61,用于接收网络设备发送的下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数;
PDSCH接收模块62,用于根据所述频域资源指示信息,接收所述L个PDSCH。
这里,作为一种实现方式,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括L个长度为N_RBG的第一比特组,其中,L个第一比特组与L个PDSCH一一对应,用于以比特位图的方式,指示所述L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。
这里,作为另一种实现方式,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比 特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。所述L个子比特组用于以比特位图的方式,指示L个PDSCH频域资源,且每个比特对应于L个RBG。
这里,作为又一种实现方式,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述第二比特组中的每个比特与RBG一一对应,且,每个子比特组包含的比特数为
Figure PCTCN2020120553-appb-000038
其中,所述N_RBG为网络侧为终端分配的RBG总数。
这里,作为又一种实现方式,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述第二比特组中的每个比特与RBG一一对应,其中,每个子比特组的长度是根据第一资源分配信息来确定的,且所述第一资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先约定的。
此时,所述终端还包括:
第一分配信息接收模块,用于接收所述网络设备通过RRC信令或下行控制信息发送的所述第一资源分配信息;以及,根据所述第一资源分配信息,确定所述第二比特组中的每个子比特组的长度以及每个传输点的PDSCH的频域资源位置。
这里,作为又一种实现方式,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述第二比特组中的每个比特与RBG一一对应,其中,每个子比特组的长度是根据第二资源分配信息来确定的,且所述第二资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先配置的。
此时,所述终端还包括:
第二分配信息接收模块,用于接收所述网络设备通过RRC信令发送的所述第二资源分配信息的不同取值;以及,接收所述网络设备通过下行控制信息发送的所述第二资源分配信息;根据所述第二资源分配信息的取值,确定所述第二比特组中的每个子比特组的长度以及每个传输点的PDSCH的频域资源位置。
这里,作为又一种实现方式,在PDSCH资源分配类型为类型1时,所述频域资源指示信息包括:
L个第三比特组,所述第三比特组与所述L个PDSCH一一对应,且所述L个第三比特组对应于L个PDSCH的频域资源;其中,
每个第三比特组的长度均为:
Figure PCTCN2020120553-appb-000039
或者,
第x个PDSCH对应的第三比特组的长度为:
Figure PCTCN2020120553-appb-000040
或者,
第x个PDSCH对应的第三比特组的长度为:
Figure PCTCN2020120553-appb-000041
其中x为大于或等于1的整数;
其中,
Figure PCTCN2020120553-appb-000042
表示网络侧为终端分配的RB的总数。
可选地,所述下行控制信息还携带有用于指示所述L个PDSCH所对应的L个TCI状态的TCI状态指示信息,其中,
所述TCI状态指示信息指示的L个TCI状态,与所述频域资源指示信息指示的L个PDSCH,按照预设顺序一一对应;
或者,所述频域资源指示信息还包括有所述L个PDSCH频域资源与所述L个TCI状态之间的对应关系的对应关系指示信息,所述对应关系指示信息的不同取值用于指示预先配置或预先约定的不同对应关系;
此时,所述终端还包括:
TCI状态确定模块,用于根据所述TCI状态指示信息,确定每个传输点的PDSCH所对应的TCI状态;根据每个传输点的PDSCH所对应的TCI状态,确定每个传输点的PDSCH的接收波束。
请参照图7,本公开实施例提供的终端的一种结构示意图,该终端700包括:处理器701、收发机702、存储器703、用户接口704和总线接口。
在本公开实施例中,终端700还包括:存储在存储器上703并可在处理器701上运行的程序。
所述处理器701执行所述程序时实现以下步骤:
接收网络设备发送的下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数;
根据所述频域资源指示信息,接收所述L个PDSCH。
可理解地,本公开实施例中,所述计算机程序被处理器701执行时可实现上述图3所示的频域资源的指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口704还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器701负责管理总线架构和通常的处理,存储器703可以存储处理器701在执行操作时所使用的数据。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有程序,该程序被处理器执行时实现以下步骤:
接收网络设备发送的下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数;
根据所述频域资源指示信息,接收所述L个PDSCH。
该程序被处理器执行时能实现上述应用于终端侧的频域资源的指示方法中的所有实现方式,且能达到相同的技术效果,为避免重复,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各 示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本公开实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,单元、模块、子单元和子模块可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种频域资源的指示方法,应用于网络设备,包括:
    向终端发送下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数。
  2. 如权利要求1所述的方法,其中,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括L个长度为N_RBG的第一比特组,其中,L个第一比特组与L个PDSCH一一对应,用于以比特位图的方式,指示所述L个PDSCH的频域资源,所述N_RBG为网络侧为终端分配的RBG总数。
  3. 如权利要求1所述的方法,其中,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。
  4. 如权利要求3所述的方法,其中,
    所述L个子比特组用于以比特位图的方式,指示L个PDSCH频域资源,且每个比特对应于L个RBG;
    或者,所述第二比特组中的每个比特与RBG一一对应,且,每个子比特组包含的比特数为
    Figure PCTCN2020120553-appb-100001
    其中,所述N_RBG为网络侧为终端分配的RBG总数;
    或者,所述第二比特组中的每个比特与RBG一一对应,其中,每个子比特组的长度是根据第一资源分配信息来确定的,且所述第一资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先约定的;
    或者,所述第二比特组中的每个比特与RBG一一对应,其中,每个子比特组的长度是根据第二资源分配信息来确定的,且所述第二资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先配置的。
  5. 如权利要求4所述的方法,其中,
    在每个子比特组的长度是根据第一资源分配信息来确定时,所述方法还包括:通过RRC信令或下行控制信息,向终端发送所述第一资源分配信息;
    在每个子比特组的长度是根据第二资源分配信息来确定时,所述方法还包括:通过RRC信令,向所述终端发送所述第二资源分配信息的不同取值;以及,通过下行控制信息,向终端发送所述第二资源分配信息。
  6. 如权利要求1至5中任一项所述的方法,其中,在PDSCH资源分配类型为类型1时,所述频域资源指示信息包括:
    L个第三比特组,所述第三比特组与所述L个PDSCH一一对应,且所述L个第三比特组对应于L个PDSCH的频域资源;其中,
    每个第三比特组的长度均为:
    Figure PCTCN2020120553-appb-100002
    或者,
    第x个PDSCH对应的第三比特组的长度为:
    Figure PCTCN2020120553-appb-100003
    或者,
    第x个PDSCH对应的第三比特组的长度为:
    Figure PCTCN2020120553-appb-100004
    其中x为大于或等于1的整数;
    其中,
    Figure PCTCN2020120553-appb-100005
    表示网络侧为终端分配的RB的总数。
  7. 如权利要求1至5中任一项所述的方法,其中,
    所述下行控制信息还携带有用于指示所述L个PDSCH所对应的L个TCI状态的TCI状态指示信息,其中,
    所述TCI状态指示信息指示的L个TCI状态,与所述频域资源指示信息指示的L个PDSCH,按照预设顺序一一对应;
    或者,所述频域资源指示信息还包括有所述L个PDSCH的频域资源与所述L个TCI状态之间的对应关系的对应关系指示信息,所述对应关系指示信息的不同取值用于指示预先配置或预先约定的不同对应关系。
  8. 一种频域资源的指示方法,应用于终端,包括:
    接收网络设备发送的下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数;
    根据所述频域资源指示信息,接收所述L个PDSCH。
  9. 如权利要求8所述的方法,其中,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括L个长度为N_RBG的第一比特组,其中,L 个第一比特组与L个PDSCH一一对应,用于以比特位图的方式,指示所述L个PDSCH的频域资源,所述N_RBG为网络侧为终端分配的RBG总数。。
  10. 如权利要求8所述的方法,其中,在PDSCH资源分配类型为类型0时,所述频域资源指示信息包括1个长度为N_RBG的第二比特组,且所述第二比特组包括L个子比特组,所述L个子比特组与L个PDSCH一一对应,用于指示L个PDSCH频域资源,其中,所述N_RBG为网络侧为终端分配的RBG总数。
  11. 如权利要求10所述的方法,其中,
    所述L个子比特组用于以比特位图的方式,指示L个PDSCH频域资源,且每个比特对应于L个RBG;
    或者,所述第二比特组中的每个比特与RBG一一对应,且,每个子比特组包含的比特数为
    Figure PCTCN2020120553-appb-100006
    其中,所述N_RBG为网络侧为终端分配的RBG总数;
    或者,所述第二比特组中的每个比特与RBG一一对应,其中,每个子比特组的长度是根据第一资源分配信息来确定的,且所述第一资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先约定的;
    或者,所述第二比特组中的每个比特与RBG一一对应,其中,每个子比特组的长度是根据第二资源分配信息来确定的,且所述第二资源分配信息的不同取值与子比特组的长度分配比例之间的对应关系是预先配置的。
  12. 如权利要求11所述的方法,其中,
    在每个子比特组的长度是根据第一资源分配信息来确定时,所述方法还包括:接收所述网络设备通过RRC信令或下行控制信息发送的所述第一资源分配信息;根据所述第一资源分配信息,确定所述第二比特组中的每个子比特组的长度以及每个传输点的PDSCH的频域资源位置;
    在每个子比特组的长度是根据第二资源分配信息来确定时,所述方法还包括:接收所述网络设备通过RRC信令发送的所述第二资源分配信息的不同取值;以及,接收所述网络设备通过下行控制信息发送的所述第二资源分配信息;以及,根据所述第二资源分配信息的取值,确定所述第二比特组中的每个子比特组的长度以及每个传输点的PDSCH的频域资源位置。
  13. 如权利要求8至12中任一项所述的方法,其中,在PDSCH资源分配类型为类型1时,所述频域资源指示信息包括:
    L个第三比特组,所述第三比特组与所述L个PDSCH一一对应,且所述L个第三比特组对应于L个PDSCH的频域资源;其中,
    每个第三比特组的长度均为:
    Figure PCTCN2020120553-appb-100007
    或者,
    第x个PDSCH对应的第三比特组的长度为:
    Figure PCTCN2020120553-appb-100008
    或者,
    第x个PDSCH对应的第三比特组的长度为:
    Figure PCTCN2020120553-appb-100009
    其中x为大于或等于1的整数;
    其中,
    Figure PCTCN2020120553-appb-100010
    表示网络侧为终端分配的RB的总数。
  14. 如权利要求8至12中任一项所述的方法,其中,
    所述下行控制信息还携带有用于指示所述L个PDSCH所对应的L个TCI状态的TCI状态指示信息,其中,
    所述TCI状态指示信息指示的L个TCI状态,与所述频域资源指示信息指示的L个PDSCH,按照预设顺序一一对应;
    或者,所述频域资源指示信息还包括有所述L个PDSCH频域资源与所述L个TCI状态之间的对应关系的对应关系指示信息,所述对应关系指示信息的不同取值用于指示预先配置或预先约定的不同对应关系;
    所述方法还包括:
    根据所述TCI状态指示信息,确定每个传输点的PDSCH所对应的TCI状态;
    根据每个传输点的PDSCH所对应的TCI状态,确定每个传输点的PDSCH的接收波束。
  15. 一种网络设备,包括:
    下行控制信息发送模块,用于向终端发送下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数。
  16. 一种网络设备,包括收发机和处理器,其中,
    所述收发机,用于向终端发送下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数。
  17. 一种终端,包括:
    下行控制信息接收模块,用于接收网络设备发送的下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数;
    PDSCH接收模块,用于根据所述频域资源指示信息,接收所述L个PDSCH。
  18. 一种终端,其中,包括收发机和处理器,其中,
    所述收发机,用于接收网络设备发送的下行控制信息,所述下行控制信息中携带有L个PDSCH的频域资源指示信息,其中,L为大于或等于1的整数;
    所述处理器,用于根据所述频域资源指示信息,接收所述L个PDSCH。
  19. 一种通信设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至14中任一项所述的频域资源的指示方法的步骤。
  20. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至14中任一项所述的频域资源的指示方法的步骤。
PCT/CN2020/120553 2019-10-28 2020-10-13 频域资源的指示方法及设备 WO2021082900A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911030392.5 2019-10-28
CN201911030392.5A CN112738889B (zh) 2019-10-28 2019-10-28 一种频域资源的指示方法及设备

Publications (1)

Publication Number Publication Date
WO2021082900A1 true WO2021082900A1 (zh) 2021-05-06

Family

ID=75588787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120553 WO2021082900A1 (zh) 2019-10-28 2020-10-13 频域资源的指示方法及设备

Country Status (2)

Country Link
CN (1) CN112738889B (zh)
WO (1) WO2021082900A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312547A (zh) * 2019-07-26 2021-02-02 大唐移动通信设备有限公司 资源分配、确定方法及装置
CN115669158A (zh) * 2022-09-02 2023-01-31 北京小米移动软件有限公司 信息指示方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018169320A1 (en) * 2017-03-15 2018-09-20 Samsung Electronics Co., Ltd. Method and apparatus for downlink control information design for network coordination
US20190045490A1 (en) * 2018-09-10 2019-02-07 Intel IP Corporation Downlink control channel design in new radio systems
WO2019051242A2 (en) * 2017-09-08 2019-03-14 Convida Wireless, Llc COMMUNICATION MANAGEMENT USING DOWNLINK COMMAND INFORMATION
CN110249581A (zh) * 2017-02-03 2019-09-17 Idac控股公司 广播信道传输和解调

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110249581A (zh) * 2017-02-03 2019-09-17 Idac控股公司 广播信道传输和解调
WO2018169320A1 (en) * 2017-03-15 2018-09-20 Samsung Electronics Co., Ltd. Method and apparatus for downlink control information design for network coordination
WO2019051242A2 (en) * 2017-09-08 2019-03-14 Convida Wireless, Llc COMMUNICATION MANAGEMENT USING DOWNLINK COMMAND INFORMATION
US20190045490A1 (en) * 2018-09-10 2019-02-07 Intel IP Corporation Downlink control channel design in new radio systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INC.: "Multi-TRP Enhancements", 3GPP TSG-RAN WG1 MEETING #95 R1-1813442, 16 November 2018 (2018-11-16), XP051479764 *
ZTE: "Enhancements on Multi-TRP and Multi-Panel Transmission", 3GPP TSG RAN WG1 #96BIS R1-1904013, 12 April 2019 (2019-04-12), XP051691227 *

Also Published As

Publication number Publication date
CN112738889A (zh) 2021-04-30
CN112738889B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
US11665697B2 (en) Method for transmitting downlink control information, terminal device and network device
WO2018202181A1 (zh) 信道状态信息处理方法及其装置
US11539483B2 (en) Wireless communication method and apparatus
WO2019029684A1 (zh) 数据传输方法、基站和终端
US11722286B2 (en) Control channel resource configuration method, base station, and terminal device
WO2021164482A1 (zh) 信息接收方法、信息发送方法及设备
WO2021082900A1 (zh) 频域资源的指示方法及设备
EP3965441A1 (en) Direct link transmission method and terminal
WO2021129768A1 (zh) 指示消息传输方法和通信设备
WO2019023876A1 (zh) 数据传输的方法和终端设备
WO2021013088A1 (zh) 传输方式确定、信息配置方法和设备
US9907102B2 (en) Method for transmitting information, base station, and user equipment
US20170294939A1 (en) D2D Signal Frequency Hopping Method and Base Station
WO2020221130A1 (zh) 节能参数的发送方法、接收方法及设备
US11706786B2 (en) Wireless communication method, terminal device, and network device
WO2019029547A1 (zh) 传输上行控制信息的方法、终端设备和网络设备
WO2021164477A1 (zh) 传输方法、装置、设备及计算机可读存储介质
TWI741025B (zh) 信息傳輸方法和裝置
US20180070375A1 (en) Method and Device for Transmitting Channel State Information Reference Signal
US11711823B2 (en) Wireless communication method, network device, and terminal device
WO2021197383A1 (zh) 频域资源指示的方法及设备
WO2020143605A1 (zh) 数据传输方法、终端和网络侧设备
EP3531771A1 (en) Data transmission method and apparatus
US11984991B2 (en) System information receiving method, system information sending method, and device
US20220132327A1 (en) Method for pucch transmission, method for information configuration, and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883266

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20883266

Country of ref document: EP

Kind code of ref document: A1