WO2021082873A1 - 可应用于多流态的智能控制吸气式电推进系统 - Google Patents

可应用于多流态的智能控制吸气式电推进系统 Download PDF

Info

Publication number
WO2021082873A1
WO2021082873A1 PCT/CN2020/119594 CN2020119594W WO2021082873A1 WO 2021082873 A1 WO2021082873 A1 WO 2021082873A1 CN 2020119594 W CN2020119594 W CN 2020119594W WO 2021082873 A1 WO2021082873 A1 WO 2021082873A1
Authority
WO
WIPO (PCT)
Prior art keywords
thruster
flow
magnetic plasma
thrusters
air
Prior art date
Application number
PCT/CN2020/119594
Other languages
English (en)
French (fr)
Inventor
吴建军
张宇
吴必琦
程玉强
李健
谭胜
欧阳�
郑鹏
赵元政
王昊义
Original Assignee
国防科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国防科技大学 filed Critical 国防科技大学
Priority to US17/605,568 priority Critical patent/US11754058B2/en
Publication of WO2021082873A1 publication Critical patent/WO2021082873A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0012Means for supplying the propellant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0081Electromagnetic plasma thrusters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0087Electro-dynamic thrusters, e.g. pulsed plasma thrusters

Definitions

  • the invention belongs to the technical field of aerospace electric propulsion, and in particular relates to an intelligent control air-breathing electric propulsion system capable of maneuvering orbit change and applicable to continuous flow and free molecular flow.
  • the ultra-low orbit space area with a height of 50km-250km has a high development potential for satellite work.
  • the lower orbital height will greatly improve the efficiency of spaceborne equipment in this orbit.
  • the fields of earth electric field monitoring and earth remote sensing have great development value.
  • the aircraft due to the existence of the thin atmosphere in the ultra-low orbit, compared with the vacuum environment of the high orbit, the aircraft will produce aerodynamic drag that attenuates the orbital height when operating in the ultra-low orbit, which limits the working life of the satellite. In a state of not fully developed.
  • the atmospheric environment changes significantly in the range of 50km-250km. As the orbital height increases, the atmospheric density continuously decreases, and the orbital atmosphere transitions from a continuous flow state to a free molecular flow state.
  • the special working environment has special working requirements for the aircraft.
  • Electric propulsion has the characteristics of stable performance, high specific impulse, adjustable thrust, and low cost. It is currently a hot research direction in the field of space propulsion. Due to its characteristics, electric propulsion has good effects and performance in resistance compensation.
  • ESA Earth’s Gravity Field and Ocean Circulation Exploration Satellite Project (GOCE) satellite carries 40kg xenon gas and uses an electric propulsion system for resistance compensation. It has achieved a mission life of more than 4 years on a 220km orbit, and verified the use of air-breathing The feasibility of electric propulsion for resistance compensation.
  • GOCE Gravity Field and Ocean Circulation Exploration Satellite Project
  • the airborne propellant dose still limits the working life of the satellite.
  • the satellite cannot continue to maintain orbit under the influence of aerodynamic drag and will fall off orbit. Carrying too much propellant will not only limit the payload, but also increase the difficulty of launching.
  • electric propulsion technology can use gas as a working medium for ionization propulsion, in order to achieve a longer working life and a higher payload, it can be propelled by collecting orbital atmosphere as a working medium. Under the circumstances, the resistance compensation work is completed in the ultra-low orbit.
  • the present invention provides an inhalation that can work across orbits, is suitable for an intelligent feedback pressurization system, and can realize attitude orbit control and resistance compensation.
  • Electric propulsion system The invention can realize flexible maneuverability in the ultra-low orbit range of 50km-250km, and can work in a variety of flow patterns such as continuous flow in the lower orbit, free molecular flow in the higher orbit, and transition flow between the two. Mission requirements.
  • a multi-flow state intelligent control air-breathing electric propulsion system which is composed of an air inlet, an intelligent feedback supercharging system, a hybrid thruster system, a control system, and an energy supply system.
  • the configuration of the intake port is parabolic, including a front-end inlet and a rear-end outlet.
  • the front-end inlet is the windward part of the system, and the rear-end outlet is connected to an intelligent feedback supercharging system. Initial compression.
  • the intelligent feedback pressurization system includes a pump body, a pressure gauge and a working fluid storage tank.
  • the pump body includes an air pump suitable for low-pressure continuous flow and a molecular pump suitable for free molecular flow.
  • the molecular pump, the air pump, and the working fluid storage tank are connected in series in sequence, and the molecular pump is connected behind the air inlet.
  • the working fluid storage tank is connected with the hybrid thruster system.
  • Two pressure gauges are respectively arranged at the front end of the air pump and the working fluid storage tank, and are connected to the control system, and are respectively used for feedback adjustment of the power of the molecular pump and the air pump.
  • the hybrid thruster system includes 7 electric thrusters and 7 restrictor valves, and the control system respectively controls the power of the electric thruster and the flow rate of the restrictor valve.
  • the electric thrusters of the hybrid thruster system are densely arranged in parallel and contain 4 magnetic plasma thrusters and 3 ion thrusters.
  • the control system is equipped with a wireless signal receiving module and a wired signal input port. By processing the wireless remote control signal and the input feedback signal, it controls the working state of the intelligent feedback booster system and the hybrid thruster system.
  • the energy supply system includes a battery and a solar panel, and the solar panel covers the surface of the electric propulsion system shell without generating additional resistance and maintaining a charged state during work.
  • the energy supply system is connected with the intelligent feedback booster system, hybrid thruster system and control system to provide power for the above systems.
  • the orbit of the satellite using this system is limited to a sun-synchronous orbit.
  • the air inlet generates a shock wave effect in a continuous flow gas environment to compress the incoming gas flow; in a free molecular flow gas environment, a parabolic mirror reflection focusing effect is used to compress incoming gas particles; in a transitional flow state
  • the above two effects work synergistically.
  • the initially compressed gas enters the intelligent feedback pressurization system for further pressurization to ensure good compression effects in different orbital atmospheric environments.
  • the working state of the molecular pump is adjusted by negative feedback by the first pressure gauge.
  • the power of the molecular pump is increased through the control system to increase the gas density in the system.
  • the molecular pump works.
  • the working state of the air pump is adjusted by negative feedback by the second pressure gauge.
  • the air pressure of the tank connected with the second pressure gauge does not reach the rated value, the air pump is controlled to continue to work through the control system.
  • the smaller the second pressure gauge the higher the working power of the feedback air pump, so as to ensure that the working fluid in the storage tank can meet the task requirements.
  • the hybrid thruster system is provided with 4 magnetic plasma thrusters and 3 ion thrusters, wherein the magnetic plasma thruster is activated in a low orbit high flow rate environment, and its ignition demand flow rate is high ,
  • the thrust density is large; in the environment of high orbit low flow rate, the ion thruster is activated, its ignition demand flow rate is low, the thrust density is small, and the control accuracy is high.
  • the parabolic focus of the parabolic inlet is located outside the rear end of the inlet.
  • the molecular thermal motion speed is much lower than that of the aircraft, and incoming molecules can be regarded as horizontal incoming flow. Due to the geometric focusing characteristics of the parabola, the particles will be focused to the focus of the parabola through the mirror reflection of the wall under the design of the inlet.
  • the design focus is located outside the rear exit, which can effectively improve the intake efficiency of the inlet, and the effect is significant.
  • the wall surface coating of the intake duct is a mirror coating suitable for oxygen-containing and high-temperature environments, such as magnesium fluoride, so as to improve the intake efficiency of the thin free molecular flow in the atmosphere when working in a higher orbit.
  • oxygen-containing and high-temperature environments such as magnesium fluoride
  • the conductive parts in the hybrid thruster system use gold plating, and the conductive parts do not need to use ceramic materials; other parts of the air ducts and air inlets are all made of nickel and molybdenum stainless steel materials.
  • the solar panels in the energy supply system cover other surfaces except the inlet surface of the air inlet and the exit surface of the hybrid thruster system, that is, the four surfaces whose normals are perpendicular to the flying direction, and are not generated by the solar panels. Additional resistance.
  • the on-board equipment of the satellites used in the electric propulsion system are all placed inside the air intake, the hybrid thruster system and the hexahedron included in the four solar panels, and the satellites are elongated and work with minimal resistance.
  • 7 thrusters are densely arranged in parallel, one of which is a magnetic plasma thruster located at the center point, and the other 3 magnetic plasma thrusters and 3 ion thrusters are arranged in a regular hexagon
  • the 6 vertices of the shape are alternately arranged at the center of the circle.
  • the front ends of the seven electric thrusters are each connected to a restrictor valve, and the seven electric thrusters and their restrictor valves are individually controlled through the control system to achieve a variety of different thrusts. Status requirements.
  • the hybrid thruster system is provided with 4 magnetic plasma thrusters and 3 ion thrusters.
  • the two thrusters work together when the working medium of the storage tank is sufficient, and the thrusters work
  • the power and the flow rate of the restrictor valve are controlled by the control system to achieve the purpose of accurately adjusting the thrust of each thruster, and the total force and torque are generated by separately controlling the thrust of the 7 thrusters to meet the attitude control and resistance Compensation and other task requirements.
  • the present invention can discharge by absorbing the atmosphere as a working medium to generate thrust, which enables the satellite to maintain long-term operation with a small amount or even no working medium, so as to increase the effective load and reduce the satellite launch and operating costs;
  • the hybrid thruster system of the present invention can realize orbit change, resistance compensation, attitude adjustment and other functions by separately controlling the thrust, so that the satellite can be flexibly maneuvered according to mission requirements within the working orbit;
  • the present invention improves the feasibility of satellites working in ultra-low orbits in the range of 50km-250km. Compared with other high-altitude orbits, satellites working in ultra-low orbits have higher equipment efficiency and can meet more tasks. demand;
  • An advantage of the present invention is that due to the presence of atmospheric resistance, satellites operating in ultra-low orbits will quickly fall into the atmosphere for dissociation after the mission ends, which can prevent failed satellites from becoming space junk.
  • Figure 1 is a system structure diagram
  • Figure 2 is the structure diagram of the intelligent feedback supercharging system
  • Figure 3 is a diagram of the working principle of the inlet in the free molecular flow state
  • Figure 4 is a structural diagram of the hybrid thruster system
  • Figure 5 is a schematic diagram of a solar panel.
  • Air inlet 1. Air inlet; 2. Intelligent feedback booster system; 3. Solar panel; 4. Hybrid thruster system; 5. Control system; 21. Molecular pump; 22. First pressure gauge; 23. Air pump; 24. The second pressure gauge; 25, the working fluid tank; 41, the first magnetic plasma thruster; 43, the second magnetic plasma thruster; 45, the third magnetic plasma thruster; 47, the fourth magnetic plasma thrust 42, the first ion thruster; 44, the second ion thruster; 46, the third ion thruster.
  • the application background of the present invention is an orbit with a height in the range of 50km-250km, in which the atmosphere in the lower part of the orbit is in a continuous flow state, the atmosphere in the higher part of the orbit is in a free molecular flow state, and the atmosphere in the middle section is in a transitional flow state.
  • the working modes of different flow regimes are introduced separately.
  • a multi-flow state intelligent control air-breathing electric propulsion system which is composed of an air inlet 1, an intelligent feedback supercharging system 2, a hybrid thruster system 4, a control system 5, and an energy supply system.
  • the configuration of the air inlet 1 is parabolic, including a front inlet and a rear outlet.
  • the front inlet is the windward part of the system, and the rear outlet is connected to the intelligent feedback supercharging system 2.
  • the flow gas undergoes preliminary compression.
  • the intelligent feedback pressurization system 2 includes a pump body, a pressure gauge and a working fluid storage tank 25.
  • the pump body includes a molecular pump 21 suitable for free molecular flow and an air pump 23 suitable for low-pressure continuous flow.
  • the molecular pump 21, the air pump 23, and the working fluid storage tank 25 are connected in series in sequence, and the molecular pump 21 Connected to the outlet of the rear end of the air inlet 1, the first pressure gauge 22 and the second pressure gauge 24 are respectively arranged at the front end of the air pump 23 and the working fluid storage tank 25, and are connected to the control system 5 for feedback adjustment of the molecular pump 21 and the air pump. 23 power.
  • the hybrid thruster system 4 includes 7 electric thrusters and 7 limiting valves, and the control system 5 controls the power of the electric thrusters and the flow rate of the limiting valve respectively.
  • the seven electric thrusters of the hybrid thruster system 4 are densely arranged in parallel.
  • the electric thrusters include plasma thrusters and ion thrusters.
  • the plasma thrusters are the first magnetic plasma thruster 41 and the second magnetic plasma thruster.
  • the volume thruster 43, the third magnetic plasma thruster 45 and the fourth magnetic plasma thruster 47, the ion thrusters are the first ion thruster 42, the second ion thruster 44, and the third ion thruster 46.
  • the control system 5 has a wireless signal receiving device and a wired signal input port, and controls the working state of the intelligent feedback booster system 2 and the hybrid thruster system 4 by processing the wireless remote control signal and the input feedback signal.
  • the energy supply system includes a battery and a solar panel 3, and the solar panel 3 covers the surface of the electric propulsion system housing without generating additional resistance and maintaining a charged state during operation.
  • the energy supply system is connected with the intelligent feedback supercharging system 2, the hybrid thruster system 4 and the control system 5 to provide power for the above systems.
  • the orbit of the satellite using this system is limited to a sun-synchronous orbit.
  • the air inlet 1 generates a shock wave effect in a continuous flow gas environment to compress the incoming gas flow; in a free molecular flow gas environment, the parabolic mirror reflection focusing effect is used to compress incoming gas particles;
  • the above two effects are synergistic.
  • the initially compressed gas enters the intelligent feedback pressurization system 2 for further pressurization, so as to ensure that a good compression effect can be obtained in different orbit atmospheric environments.
  • the working state of the molecular pump 21 is adjusted negatively by the first pressure gauge 22.
  • the power of the molecular pump 21 is increased through the control system 5 to increase the gas density in the system.
  • the molecular pump 21 operates.
  • the working state of the air pump 23 is adjusted by negative feedback by the second pressure gauge 24.
  • the control system 5 controls the air pump 23 to continue to work.
  • the air pump 23 continues to work during the entire track range of the system.
  • the hybrid thruster system 4 has four magnetic plasma thrusters, namely the first magnetic plasma thruster 41, the second magnetic plasma thruster 43, the third magnetic plasma thruster 45, and the second magnetic plasma thruster.
  • the magnetic plasma is activated in a lower orbit high flow rate environment
  • the bulk thrusters namely the first magnetic plasma thruster 41, the second magnetic plasma thruster 43, the third magnetic plasma thruster 45, and the fourth magnetic plasma thruster 47, have high ignition demand flow rate and thrust density Large; in the environment of higher orbit and low flow rate, enable ion thrusters, that is, the first ion thruster 42, the second ion thruster 44, and the third ion thruster 46.
  • the ignition demand flow rate is low, and the thrust density is small ,
  • the control precision is high.
  • the parabolic focus of the parabolic inlet port 1 is located outside the rear end of the inlet port 1.
  • the molecular thermal motion speed is much lower than that of the aircraft, and incoming molecules can be regarded as horizontal incoming flow. Due to the geometric focusing characteristics of the parabola, the particles will be focused to the focus of the parabola through the mirror reflection of the wall under this inlet design.
  • the design focus is located outside the rear exit, which can effectively improve the intake efficiency of the inlet 1, and the effect is significant .
  • the wall surface coating of the air intake duct 1 is a mirror coating suitable for oxygen-containing and high-temperature environments such as magnesium fluoride, so as to improve the air intake efficiency of the thin free molecular flow of the atmosphere when operating in a higher orbit.
  • the conductive parts in the hybrid thruster system 4 use gold plating, and the conductive parts are not required to use ceramic materials; other parts of the air duct and the air inlet 1 are all made of nickel and molybdenum stainless steel materials.
  • the solar panels 3 in the energy supply system cover other surfaces except the inlet surface of the air inlet 1 and the outlet surface of the hybrid thruster system 4, that is, the four surfaces whose normals are perpendicular to the flight direction.
  • the solar panel 3 generates additional resistance.
  • the on-board equipment of the satellites used in the electric propulsion system are all placed in the air inlet 1, the hybrid thruster system 4, and the hexahedron included by the four solar panels 3.
  • the satellites are elongated and work with minimal resistance. .
  • 7 thrusters are densely arranged in parallel, in which the first magnetic plasma thruster 41 is located at the center point, and the other three magnetic plasma thrusters, namely the second magnetic plasma thrust
  • the 6 vertices of the polygon are arranged alternately at the center of the circle.
  • the front ends of the seven electric thrusters are each connected to a restrictor valve, and the seven electric thrusters and their restrictor valves are individually controlled through the control system 5 to achieve multiple Requirements for different thrust states.
  • the hybrid thruster system 4 has four magnetic plasma thrusters, namely the second magnetic plasma thruster 43, the third magnetic plasma thruster 45, the fourth magnetic plasma thruster 47 and 3
  • the two thrusters work together when the working medium of the storage tank is sufficient.
  • the working power and the flow rate of the restrictor valve are controlled by the control system 5 to achieve the purpose of accurately adjusting the thrust of each thruster.
  • the total force and torque are generated by separately controlling the thrust of the 7 thrusters to meet the attitude control And resistance compensation and other tasks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)

Abstract

可应用于多流态的智能控制吸气式电推进系统,利用超低轨道稀薄气体作为工质进行姿轨控制以及阻力补偿推进,通过抛物线型进气道(1)将气体收集进入智能反馈增压系统(2),由分子泵(21)与气泵(23)对气体工质进行智能反馈增压并存入工质储箱(25),以供应由七组电推力器组成的混合型推力器系统(4)产生推力,可实现多种推力模式,达到了姿轨控制以及阻力补偿的目的。该推进系统具有可应用于50km-250km超低轨道连续流、自由分子流等多流态工作环境的优势,可使卫星在超低轨道稳定长期工作,在该轨道上的星载设备效率将会大大提高。

Description

可应用于多流态的智能控制吸气式电推进系统 【技术领域】
本发明属于航天电推进技术领域,具体涉及一种可机动变轨,可应用于连续流、自由分子流的智能控制吸气式电推进系统。
【背景技术】
随着航天技术的发展,空间轨道逐渐饱和。高度在50km-250km的超低轨道空间区域对于卫星工作而言具有较高的开发潜力,较低的轨道高度使得在该轨道上的星载设备效率将会大大提高,在空间气象、大气模型、地球电场监控、地球遥感等领域都有着很大的开发价值。但是由于超低轨道上稀薄大气的存在,与高轨道的真空环境相比,飞行器在超低轨道工作时会产生使其轨道高度衰减的气动阻力,限制了卫星的工作寿命,目前该轨道区域还处于未完全开发的状态。
高度在50km-250km范围内的大气环境变化显著。随着轨道高度的增加,大气密度连续降低,轨道大气从连续流态向自由分子流态过渡。特殊的工作环境对于飞行器而言有着特殊的工作要求。
电推进具有性能稳定、比冲高、推力可调、成本低等特点,是目前航天推进领域的热门研究方向。由于其特性,电推进在进行阻力补偿时有着良好的效果与性能。欧空局的地球重力场和海洋环流探测卫星项目(GOCE)卫星携带40kg氙气工质,使用电推进系统进行阻力补偿,在220km轨道上实现了4年多的任务寿命,验证了使用吸气式电推进进行阻力补偿的可行性。
然而,机载推进剂量仍限制着卫星的工作寿命。当用于进行阻力补偿的推进剂耗尽时,卫星无法继续在气动阻力的影响下保持轨道,将会脱轨坠落。而携带过多推进剂不仅会限制有效载荷,也会增加发射难度。考虑到电推进技术可以使用气体为工质进行电离推进,为实现更长的工作寿命以及更高的有效载荷,可通过收集轨道大气作为工质进行推进,可以在少携带甚至不携带工质的情况下在超低轨道完成阻力补偿工作。
【发明内容】
针对50km-250km超低轨道因阻力存在而未完全开发问题,本发明提供了一种可跨轨道工作,适用于带有智能反馈增压系统的,且能够实现姿轨控制与阻力补偿的吸气式电推进系统。该发明可以实现在50km-250km超低轨道范围内灵活机动,能够在较低轨连续流、 较高轨自由分子流以及二者之间的过渡流等多种流态中进行工作,满足多种任务需求。
本发明的技术方案如下:
可应用于多流态的智能控制吸气式电推进系统,由进气道、智能反馈增压系统、混合型推力器系统、控制系统、供能系统组成。
所述进气道构型为抛物线型,包括前端入口及后端出口,其中,前端入口为系统迎风部位,后端出口连接智能反馈增压系统,所述进气道用于对来流气体进行初步压缩。
所述智能反馈增压系统包括泵体、压力计及工质储箱。
所述泵体包括一个适用于低压连续流的气泵以及一个适用于自由分子流的分子泵,按照来流顺序,分子泵、气泵、工质储箱按顺序串联,分子泵连接于进气道后端出口,工质储箱与混合型推力器系统相连。两个压力计分别设置于气泵前端以及工质储箱,与控制系统相连,分别用于反馈调节分子泵、气泵的功率。
所述混合型推力器系统包括7个电推力器与7个限流阀,控制系统分别控制电推力器功率以及限流阀流率。
所述混合型推力器系统的电推力器并联密集排列,含有4个磁等离子体推力器以及3个离子推力器。
所述控制系统带有无线信号接收模块以及有线信号输入端口,通过对无线遥控信号以及输入反馈信号进行处理,控制智能反馈增压系统以及混合型推力器系统的工作状态。
所述供能系统包括电池以及太阳能板,太阳能板覆盖于所述电推进系统外壳表面,不产生额外阻力,在工作中保持充电状态。供能系统与智能反馈增压系统、混合型推力器系统以及控制系统连接,为以上系统提供电源。为保证太阳能供给效率,应用该系统的卫星运行轨道限定为太阳同步轨道。
所述进气道在连续流气体环境中产生激波效应,对来流气体流进行压缩;在自由分子流气体环境中利用抛物线镜面反射聚焦效应,对来流气体粒子进行压缩;在过渡流态以上两种效应协同作用。初步压缩后的气体进入智能反馈增压系统内进行进一步增压,以保证在不同轨道大气环境中均能得到良好压缩效果。
所述分子泵的工作状态由第一压力计进行负反馈调节。当第一压力计连通气压不满足气泵的工作要求时,通过控制系统增大分子泵的功率以提高系统内的气体密度。一般而言,在大气环境为自由分子流态时,分子泵进行工作。
所述气泵的工作状态由第二压力计进行负反馈调节。当第二压力计连通的储箱气压未达到额定值时,通过控制系统控制气泵持续工作。且第二压力计示数越小,反馈气泵工作功率越高,以达到保证储箱内工质能够满足任务需求的目的。
优选的,所述混合型推力器系统带有4个磁等离子体推力器以及3个离子推力器,其中在较低轨高流率环境中,启用磁等离子体推力器,其点火需求流率高,推力密度大;在较高轨低流率环境中,启用离子推力器,其点火需求流率低,推力密度较小,控制精度高。
优选的,所述抛物线型进气道的抛物线焦点位于进气道后端出口外。在自由分子流环境工作时,分子热运动速度远小于飞行器速度,来流分子可视为水平来流。由于抛物线的几何聚焦特性,在该进气道设计下粒子经过壁面镜面反射将会聚焦到抛物线的焦点,设计焦点位于后端出口外可以有效地提高进气道的进气效率,且效果显著。
优选的,所述进气道的壁面涂层为氟化镁等适用于含氧、高温环境的镜面涂层,以提高在较高轨道工作时稀薄大气自由分子流的进气效率。
优选的,所述混合型推力器系统中的导电部位使用金镀层,不需导电部位使用陶瓷材料;其他部位通气管道以及进气道均使用含镍、钼不锈钢材料。
优选的,所述供能系统中的太阳能板覆盖在除进气道入口面与混合型推力器系统出口面以外的其他面,即法线与飞行方向垂直的四个面,不因太阳能板产生额外的阻力。
优选的,所述电推进系统所应用卫星的星载设备均置于进气道、混合型推力器系统以及四个太阳能板所包括的六面体内部,卫星呈长条型以最小阻力工作。
优选的,所述混合型推力器系统中,7个推力器并联密集排列,其中的1个磁等离子体推力器位于中心点,其他3个磁等离子体推力器及3个离子推力器以正六边形的6个顶点为圆心交替排列。
优选的,所述混合型推力器系统中,7个电推力器前端各连接一个限流阀,通过控制系统分别对7个电推力器及其限流阀单独进行控制,以实现多种不同推力状态需求。
优选的,所述混合型推力器系统带有4个磁等离子体推力器以及3个离子推力器,对于特殊任务需求,在储箱工质充足的情况下两种推力器协同工作,推力器工作功率以及限流阀流率由控制系统进行控制,以达到各个推力器的推力精确可调的使用目的,并通过分别控制7个推力器的推力大小产生合力与力矩,以满足姿轨控制与阻力补偿等任务需求。
本发明的有益效果是:
1.本发明可以通过吸收大气为工质进行放电,产生推力,可使卫星在少量甚至不携带工质的情况下维持长期工作,以增加有效载荷,减小卫星发射以及运行成本;
2.本发明中的混合型推力器系统通过分别控制推力可以实现轨道变更、阻力补偿、姿态调整等功能,使卫星在工作轨道范围内根据任务需求灵活机动;
3.本发明提高了卫星在50km-250km范围超低轨道内工作的可行性,相较于其他高度轨道而言在超低轨道上工作的卫星具有更高的设备效率,能够满足更多的任务需求;
4.本发明的一个优势在于在超低轨道工作的卫星由于大气阻力的存在,将会在任务结束之后迅速坠入大气层进行解离,可以避免失效的卫星成为太空垃圾。
【附图说明】
图1为系统结构图;
图2为智能反馈增压系统结构图;
图3为自由分子流态下进气道工作原理图;
图4为混合型推力器系统结构图;
图5为太阳能板示意图。
附图标号说明:
1、进气道;2、智能反馈增压系统;3、太阳能板;4、混合型推力器系统;5、控制系统;21、分子泵;22、第一压力计;23、气泵;24、第二压力计;25、工质储箱;41、第一磁等离子体推力器;43、第二磁等离子体推力器;45、第三磁等离子体推力器;47、第四磁等离子体推力器;42、第一离子推力器;44、第二离子推力器;46、第三离子推力器。
【具体实施方式】
下面结合附图对本发明的内容做进一步细化说明。
本发明的应用背景为50km-250km范围高度的轨道,其中轨道较低部分大气为连续流态,轨道较高部分大气为自由分子流态,中间段大气为过渡流态。随着轨道增高,大气密度降低,分别对不同流态的工作模式进行介绍。
可应用于多流态的智能控制吸气式电推进系统,由进气道1、智能反馈增压系统2、混合型推力器系统4、控制系统5、供能系统组成。
所述进气道1构型为抛物线型,包括前端入口及后端出口,其中,前端入口为系统迎风部位,后端出口连接智能反馈增压系统2,所述进气道1用于对来流气体进行初步压缩。
所述智能反馈增压系统2包括泵体、压力计及工质储箱25。
所述泵体包括一个适用于自由分子流的分子泵21以及一个适用于低压连续流的气泵23,按照来流顺序,分子泵21、气泵23、工质储箱25按顺序串联,分子泵21连接于进气道1后端出口,第一压力计22、第二压力计24分别设置于气泵23前端以及工质储箱25,与控制系统5相连,分别用于反馈调节分子泵21、气泵23的功率。
所述混合型推力器系统4包括7个电推力器与7个限流阀,控制系统5分别控制电推力器功率以及限流阀流率。
所述混合型推力器系统4的7个电推力器并联密集排列,电推力器包括等离子体推力 器和离子推力器,等离子体推力器即为第一磁等离子体推力器41、第二磁等离子体推力器43、第三磁等离子体推力器45和第四磁等离子体推力器47,离子推力器即为第一离子推力器42、第二离子推力器44、第三离子推力器46。
所述控制系统5带有无线信号接收装置以及有线信号输入端口,通过对无线遥控信号以及输入反馈信号进行处理,控制智能反馈增压系统2以及混合型推力器系统4的工作状态。
所述供能系统包括电池以及太阳能板3,太阳能板3覆盖于所述电推进系统外壳表面,不产生额外阻力,在工作中保持充电状态。供能系统与智能反馈增压系统2、混合型推力器系统4以及控制系统5连接,为以上系统提供电源。为保证太阳能供给效率,应用该系统的卫星运行轨道限定为太阳同步轨道。
所述进气道1在连续流气体环境中产生激波效应,对来流气体流进行压缩;在自由分子流气体环境中利用抛物线镜面反射聚焦效应,对来流气体粒子进行压缩;在过渡流态以上两种效应协同作用。初步压缩后的气体进入智能反馈增压系统2内进行进一步增压,以保证在不同轨道大气环境中均能得到良好压缩效果。
所述分子泵21的工作状态由第一压力计22进行负反馈调节。当第一压力计22连通气压不满足气泵23的工作要求时,通过控制系统5增大分子泵21的功率以提高系统内的气体密度。一般而言,在大气环境为自由分子流态时,分子泵21进行工作。
所述气泵23的工作状态由第二压力计24进行负反馈调节。当第二压力计24连通的工质储箱25气压未达到额定值时,通过控制系统5控制气泵23持续工作。且第二压力计24示数越小,反馈气泵23工作功率越高,以达到保证储箱内工质能够满足任务需求的目的。一般而言,在系统运行全轨道范围气泵23持续工作。
优选的,所述混合型推力器系统4带有4个磁等离子体推力器,即第一磁等离子体推力器41、第二磁等离子体推力器43、第三磁等离子体推力器45、第四磁等离子体推力器47以及3个离子推力器,即第一离子推力器42、第二离子推力器44、第三离子推力器46,其中在较低轨高流率环境中,启用磁等离子体推力器,即第一磁等离子体推力器41、第二磁等离子体推力器43、第三磁等离子体推力器45、第四磁等离子体推力器47,其点火需求流率高,推力密度大;在较高轨低流率环境中,启用离子推力器,即第一离子推力器42、第二离子推力器44、第三离子推力器46,其点火需求流率低,推力密度较小,控制精度高。
优选的,所述抛物线型进气道1的抛物线焦点位于进气道1后端出口外。在自由分子流环境工作时,分子热运动速度远小于飞行器速度,来流分子可视为水平来流。由于抛物 线的几何聚焦特性,在该进气道设计下粒子经过壁面镜面反射将会聚焦到抛物线的焦点,设计焦点位于后端出口外可以有效地提高进气道1的进气效率,且效果显著。
优选的,所述进气道1的壁面涂层为氟化镁等适用于含氧、高温环境的镜面涂层,以提高在较高轨道工作时稀薄大气自由分子流的进气效率。
优选的,所述混合型推力器系统4中的导电部位使用金镀层,不需导电部位使用陶瓷材料;其他部位通气管道以及进气道1均使用含镍、钼不锈钢材料。
优选的,所述供能系统中的太阳能板3覆盖在除进气道1入口面与混合型推力器系统4出口面以外的其他面,即法线与飞行方向垂直的四个面,不因太阳能板3产生额外的阻力。
优选的,所述电推进系统所应用卫星的星载设备均置于进气道1、混合型推力器系统4以及四个太阳能板3所包括的六面体内部,卫星呈长条型以最小阻力工作。
优选的,所述混合型推力器系统4中,7个推力器并联密集排列,其中第一磁等离子体推力器41位于中心点,其他3个磁等离子体推力器,即第二磁等离子体推力器43、第三磁等离子体推力器45、第四磁等离子体推力器47及3个离子推力器,即第一离子推力器42、第二离子推力器44、第三离子推力器46以正六边形的6个顶点为圆心交替排列。
优选的,所述混合型推力器系统4中,7个电推力器前端各连接一个限流阀,通过控制系统5分别对7个电推力器及其限流阀单独进行控制,以实现多种不同推力状态需求。
优选的,所述混合型推力器系统4带有4个磁等离子体推力器,即第二磁等离子体推力器43、第三磁等离子体推力器45、第四磁等离子体推力器47以及3个离子推力器,即第一离子推力器42、第二离子推力器44、第三离子推力器46,对于特殊任务需求,在储箱工质充足的情况下两种推力器协同工作,推力器工作功率以及限流阀流率由控制系统5进行控制,以达到各个推力器的推力精确可调的使用目的,并通过分别控制7个推力器的推力大小产生合力与力矩,以满足姿轨控制与阻力补偿等任务需求。
上述对实施例的描述是为便于本技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对上述实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 可应用于多流态的智能控制吸气式电推进系统,其特征在于,由进气道(1)、智能反馈增压系统(2)、混合型推力器系统(4)、控制系统(5)、供能系统组成;所述进气道(1)构型为抛物线型,包括前端入口及后端出口,其中,前端入口为系统迎风部位,后端出口连接智能反馈增压系统(2),所述进气道(1)用于对来流气体进行初步压缩;所述智能反馈增压系统(2)包括泵体、压力计及工质储箱(25);所述泵体包括一个适用于自由分子流的分子泵(21)以及一个适用于低压连续流的气泵(23),按照来流顺序,分子泵(21)、气泵(23)、工质储箱(25)按顺序串联,分子泵(21)连接于进气道(1)后端出口,第一压力计(22)、第二压力计(24)分别设置于气泵(23)前端以及工质储箱(25),与控制系统(5)相连,分别用于反馈调节分子泵(21)、气泵(23)的功率;所述混合型推力器系统(4)包括7个电推力器与7个限流阀,7个电推力器分别是第一磁等离子体推力器(41)、第二磁等离子体推力器(43)、第三磁等离子体推力器(45)、第四磁等离子体推力器(47)以及第一离子推力器(42)、第二离子推力器(44)、第三离子推力器(46),并且7个电推力器并联密集排列,控制系统(5)分别控制电推力器功率以及限流阀流率;所述控制系统(5)带有无线信号接收装置以及有线信号输入端口,通过对无线遥控信号以及输入反馈信号进行处理,控制智能反馈增压系统(2)以及混合型推力器系统(4)的工作状态;所述供能系统包括电池以及太阳能板(3),太阳能板(3)覆盖于所述电推进系统外壳表面,不产生额外阻力,在工作中保持充电状态;供能系统与智能反馈增压系统(2)、混合型推力器系统(4)以及控制系统(5)连接,为智能反馈增压系统(2)、混合型推力器系统(4)以及控制系统(5)提供电源;所述进气道(1)在连续流气体环境中产生激波效应,对来流气体流进行压缩;在自由分子流气体环境中利用抛物线镜面反射聚焦效应,对来流气体粒子进行压缩;在过渡流态,所述激波效应、聚焦效应两种效应协同作用;初步压缩后的气体进入智能反馈增压系统(2)内进行进一步增压,以保证在不同轨道大气环境中均能得到良好压缩效果;所述分子泵(21)的工作状态由第一压力计(22)进行负反馈调节;当第一压力计(22)连通气压不满足气泵(23)的工作要求时,通过控制系统(5)增大分子泵(21)的功率以提高系统内的气体密度;所述气泵(23)的工作状态由第二压力计(24)进行负反馈调节;当第二压力计(24)连通的工质储箱(25)气压未达到额定值时,通过控制系统(5)控制气泵(23)持续工作;且第二压力计(24)示数越小,反馈气泵(23)工作功率越高,以达到保证储箱内工质能够满足任务需求的目的。
  2. 如权利要求1所述的可应用于多流态的智能控制吸气式电推进系统,其特征在于,所述混合型推力器系统(4)带有4个磁等离子体推力器,分别为第一磁等离子体推力器(41)、第二磁等离子体推力器(43)、第三磁等离子体推力器(45)、第四磁等离子体推力器(47),以及3个离子推力器,分别为第一离子推力器(42)、第二离子推力器(44)、第三离子推力器(46),其中在高流率环境中,启用第一磁等离子体推力器(41)、第二磁等离子体推力器(43)、第三磁等离子体推力器(45)、第四磁等离子体推力器(47),其点火需求流率高,推力密度大;在低流率环境中,启用第一离子推力器(42)、第二离子推力器(44)、第三离子推力器(46),其点火需求流率低,推力密度较小,控制精度高。
  3. 如权利要求1所述的可应用于多流态的智能控制吸气式电推进系统,其特征在于,所述抛物线型进气道(1)的抛物线焦点位于进气道(1)后端出口外;在自由分子流环境工作时,分子热运动速度远小于飞行器速度,来流分子视为水平来流;由于抛物线的几何聚焦特性,在该进气道设计下粒子经过壁面镜面反射将会聚焦到抛物线的焦点,设计焦点位于后端出口外可以有效地提高进气道(1)的进气效率。
  4. 如权利要求1所述的可应用于多流态的智能控制吸气式电推进系统,其特征在于,所述进气道(1)的壁面涂层为适用于含氧、高温环境的氟化镁镜面涂层,以提高在低流率环境工作时稀薄大气自由分子流的进气效率。
  5. 如权利要求1所述的可应用于多流态的智能控制吸气式电推进系统,其特征在于,所述混合型推力器系统(4)中的导电部位使用金镀层,不需导电部位使用陶瓷材料;智能反馈增压系统(2)的通气管道以及进气道(1)均使用含镍、钼不锈钢材料。
  6. 如权利要求1所述的可应用于多流态的智能控制吸气式电推进系统,其特征在于,所述供能系统中的太阳能板(3)覆盖在飞行方向的四个垂直面,其中飞行方向与进气道(1)入口面以及混合型推力器系统(4)出口面平行,不因太阳能板(3)产生额外的阻力。
  7. 如权利要求1所述的可应用于多流态的智能控制吸气式电推进系统,其特征在于,所述电推进系统所应用卫星的星载设备均置于进气道(1)、混合型推力器系统(4)以及四个太阳能板(3)所包括的六面体内部,卫星呈长条型以最小阻力工作。
  8. 如权利要求1所述的可应用于多流态的智能控制吸气式电推进系统,其特征在于,所述混合型推力器系统(4)中,7个推力器并联密集排列,其中第一磁等离子体推力器(41)位于中心点,其他3个磁等离子体推力器即第二磁等离子体推力器(43)、第三磁等离子体推力器(45)、第四磁等离子体推力器(47)及3个离子推力器即第一离子推力器(42)、第二离子推力器(44)、第三离子推力器(46)以正六边形的6个顶点为圆心交替排列。
  9. 如权利要求1所述的可应用于多流态的智能控制吸气式电推进系统,其特征在于,所述混合型推力器系统(4)中,7个电推力器前端各连接一个限流阀,通过控制系统(5)分别对7个电推力器及其限流阀单独进行控制,以实现多种不同推力状态需求。
  10. 如权利要求1所述的可应用于多流态的智能控制吸气式电推进系统,其特征在于,所述混合型推力器系统(4)带有4个磁等离子体推力器,分别为第一磁等离子体推力器(41)、第二磁等离子体推力器(43)、第三磁等离子体推力器(45)、第四磁等离子体推力器(47)以及3个离子推力器,分别为第一离子推力器(42)、第二离子推力器(44)、第三离子推力器(46),对于大阻力补偿需求与大阻力时的姿态调整需求,在储箱工质充足的情况下两种推力器协同工作,推力器工作功率以及限流阀流率由控制系统(5)进行控制,以达到各个推力器的推力精确可调的使用目的,并通过分别控制7个推力器的推力大小产生合力与力矩,以满足姿轨控制与阻力补偿的任务需求。
PCT/CN2020/119594 2019-10-29 2020-09-30 可应用于多流态的智能控制吸气式电推进系统 WO2021082873A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/605,568 US11754058B2 (en) 2019-10-29 2020-09-30 Intelligent control gas suction-type electric propulsion system applicable to multi-flow regimes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911040221.0A CN110748467B (zh) 2019-10-29 2019-10-29 可应用于多流态的智能控制吸气式电推进系统
CN201911040221.0 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021082873A1 true WO2021082873A1 (zh) 2021-05-06

Family

ID=69280964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119594 WO2021082873A1 (zh) 2019-10-29 2020-09-30 可应用于多流态的智能控制吸气式电推进系统

Country Status (3)

Country Link
US (1) US11754058B2 (zh)
CN (1) CN110748467B (zh)
WO (1) WO2021082873A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110748467B (zh) * 2019-10-29 2020-08-21 中国人民解放军国防科技大学 可应用于多流态的智能控制吸气式电推进系统
CN112224451B (zh) * 2020-10-26 2021-11-23 中国人民解放军国防科技大学 一种低空间轨道稀薄大气分子摄取装置
CN112327949A (zh) * 2020-11-05 2021-02-05 中国人民解放军国防科技大学 一种用于吸气式电推进的流量智能控制系统及控制方法
CN112572833A (zh) * 2020-12-05 2021-03-30 中国人民解放军国防科技大学 基于吸气式电推进的智能姿轨控系统
CN113062839B (zh) * 2021-04-30 2024-06-14 中国科学院力学研究所 一种吸气电推技术用电子束预电离增强吸气装置及方法
CN113062838B (zh) * 2021-04-30 2024-05-03 中国科学院力学研究所 一种吸气电推技术用激光预电离增强吸气装置及方法
CN113048031B (zh) * 2021-04-30 2024-06-21 中国科学院力学研究所 一种用于空间吸气式电推进系统的气体捕集装置
CN113998150B (zh) * 2021-11-29 2024-02-09 航天东方红卫星有限公司 一种超低轨卫星全电推进轨道维持系统
CN114718829B (zh) * 2022-03-14 2024-07-26 中国人民解放军国防科技大学 多级吸气式电推进装置
CN115684777B (zh) * 2022-10-18 2023-10-20 兰州空间技术物理研究所 一种中高功率离子推力器联试试验方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2244159C2 (ru) * 2003-06-05 2005-01-10 Кочетков Борис Федорович Ракетный двигатель для космических аппаратов
CN102767497A (zh) * 2012-05-22 2012-11-07 北京卫星环境工程研究所 基于空间原子氧的无燃料航天器推进系统及推进方法
CN103453805A (zh) * 2013-09-05 2013-12-18 兰州空间技术物理研究所 用于低轨航天器的吸气式电火箭
CN105156290A (zh) * 2015-07-13 2015-12-16 兰州空间技术物理研究所 一种新型三环混合电推力器
CN109595133A (zh) * 2019-02-15 2019-04-09 哈尔滨工业大学 一种霍尔推力器稳定放电装置
CN109983217A (zh) * 2016-11-23 2019-07-05 乔治洛德方法研究和开发液化空气有限公司 用于调节气体流量的装置和方法
CN110159502A (zh) * 2019-06-28 2019-08-23 中国人民解放军国防科技大学 超低轨可变推力吸气式脉冲等离子体推力器
CN110374830A (zh) * 2019-07-15 2019-10-25 上海交通大学 适用于碘工质电推进器的热辐射加热储罐
CN110748467A (zh) * 2019-10-29 2020-02-04 中国人民解放军国防科技大学 可应用于多流态的智能控制吸气式电推进系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947421A (en) * 1997-07-09 1999-09-07 Beattie; John R. Electrostatic propulsion systems and methods
GB0823391D0 (en) * 2008-12-23 2009-01-28 Qinetiq Ltd Electric propulsion
CN105354400A (zh) * 2015-12-14 2016-02-24 中国航空工业集团公司西安飞机设计研究所 一种发动机反推力装置设计方法
FR3057307B1 (fr) * 2016-10-11 2018-11-02 Centre National De La Recherche Scientifique - Cnrs - Propulseur ionique a decharge plasma externe
CN108482635B (zh) * 2018-03-16 2020-07-31 中国人民解放军国防科技大学 一种充气机翼式可驻留飞行器
CN208360507U (zh) * 2018-06-22 2019-01-11 北京航空航天大学 一种分布式电推进飞机
CN109632156A (zh) * 2019-01-07 2019-04-16 中国人民解放军国防科技大学 一种基于巴克豪森效应的微推力测量系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2244159C2 (ru) * 2003-06-05 2005-01-10 Кочетков Борис Федорович Ракетный двигатель для космических аппаратов
CN102767497A (zh) * 2012-05-22 2012-11-07 北京卫星环境工程研究所 基于空间原子氧的无燃料航天器推进系统及推进方法
CN103453805A (zh) * 2013-09-05 2013-12-18 兰州空间技术物理研究所 用于低轨航天器的吸气式电火箭
CN105156290A (zh) * 2015-07-13 2015-12-16 兰州空间技术物理研究所 一种新型三环混合电推力器
CN109983217A (zh) * 2016-11-23 2019-07-05 乔治洛德方法研究和开发液化空气有限公司 用于调节气体流量的装置和方法
CN109595133A (zh) * 2019-02-15 2019-04-09 哈尔滨工业大学 一种霍尔推力器稳定放电装置
CN110159502A (zh) * 2019-06-28 2019-08-23 中国人民解放军国防科技大学 超低轨可变推力吸气式脉冲等离子体推力器
CN110374830A (zh) * 2019-07-15 2019-10-25 上海交通大学 适用于碘工质电推进器的热辐射加热储罐
CN110748467A (zh) * 2019-10-29 2020-02-04 中国人民解放军国防科技大学 可应用于多流态的智能控制吸气式电推进系统

Also Published As

Publication number Publication date
CN110748467A (zh) 2020-02-04
US20220205436A1 (en) 2022-06-30
US11754058B2 (en) 2023-09-12
CN110748467B (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2021082873A1 (zh) 可应用于多流态的智能控制吸气式电推进系统
US9796487B2 (en) Fuel-free spacecraft propelling system based on spatial atomic oxygen and propelling method
US7306189B2 (en) System and method for an ambient atmosphere ion thruster
Nishiyama Air breathing ion engine concept
CN106286179A (zh) 吸气式离子发动机
Diamant A 2-stage cylindrical hall thruster for air breathing electric propulsion
US9909574B1 (en) Electrothermal space thruster heater for decomposable propellants
CN112572833A (zh) 基于吸气式电推进的智能姿轨控系统
CN105673088A (zh) 一种油冷涡轮动叶片
CN102767496B (zh) 化学-电磁混合可变比冲的推进器
Hejmanowski et al. CubeSat high impulse propulsion system (CHIPS)
Filatyev et al. Research and development of aerospace vehicles with air breathing electric propulsion: Yesterday, today, and tomorrow
Shumeiko et al. Helicon engine in outboard air as a successful solution for maintaining small space vehicle in orbits up to 200 km
CN211397783U (zh) 超低轨可变推力吸气式磁等离子体推力器
Kuninaka et al. Flight report during two years on HAYABUSA explorer propelled by microwave discharge ion engines
CN214998052U (zh) 一种吸气式电推进系统
Kuninaka et al. Powered flight of HAYABUSA in deep space
CN210068400U (zh) 超低轨可变推力吸气式脉冲等离子体推力器
CN114279272A (zh) 一种可用于微小载荷发射的组合模式激光推进系统
Berner et al. Air scooping vehicle
Crandall et al. Air-Breathing Electric Propulsion Spacecraft Performance and Aerodynamic Maneuverability
Lewis Sharp leading edge hypersonic vehicles in the air and beyond
Wrobel et al. PowerCube (TM)-enhanced power, propulsion, and pointing to enable agile, high-performance CubeSat missions
Davis et al. Review of laser lightcraft propulsion system
Sun et al. Propulsion Technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883168

Country of ref document: EP

Kind code of ref document: A1