WO2021082843A1 - 基于软弱地层的浅覆土盾构隧道加固方法 - Google Patents

基于软弱地层的浅覆土盾构隧道加固方法 Download PDF

Info

Publication number
WO2021082843A1
WO2021082843A1 PCT/CN2020/118212 CN2020118212W WO2021082843A1 WO 2021082843 A1 WO2021082843 A1 WO 2021082843A1 CN 2020118212 W CN2020118212 W CN 2020118212W WO 2021082843 A1 WO2021082843 A1 WO 2021082843A1
Authority
WO
WIPO (PCT)
Prior art keywords
grouting
shield
tunnel
reinforcement
shallow
Prior art date
Application number
PCT/CN2020/118212
Other languages
English (en)
French (fr)
Inventor
王忠仁
闫利亚
王永军
温法庆
孙连勇
李庆斌
权宗国
Original Assignee
中铁十八局集团有限公司
中铁十八局集团第三工程有限公司
济南轨道交通集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁十八局集团有限公司, 中铁十八局集团第三工程有限公司, 济南轨道交通集团有限公司 filed Critical 中铁十八局集团有限公司
Publication of WO2021082843A1 publication Critical patent/WO2021082843A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/003Linings or provisions thereon, specially adapted for traffic tunnels, e.g. with built-in cleaning devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/36Concrete or concrete-like piles cast in position ; Apparatus for making same making without use of mouldpipes or other moulds
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • E21D11/105Transport or application of concrete specially adapted for the lining of tunnels or galleries ; Backfilling the space between main building element and the surrounding rock, e.g. with concrete
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D20/00Setting anchoring-bolts
    • E21D20/003Machines for drilling anchor holes and setting anchor bolts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D20/00Setting anchoring-bolts
    • E21D20/02Setting anchoring-bolts with provisions for grouting
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/0607Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining the shield being provided with devices for lining the tunnel, e.g. shuttering
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2250/00Production methods
    • E02D2250/0023Cast, i.e. in situ or in a mold or other formwork

Definitions

  • the invention belongs to the technical field of shield construction, and in particular relates to a method for strengthening a shield tunnel with shallow overlying soil based on a weak stratum.
  • Shield construction has become the main construction method of urban rail transit construction. With the rapid development of urban rail transit, shield construction often passes through various complex stratums, both water-rich composite stratum and water-rich karst stratum, both exceeding 20m The above deep coverings also have shallow coverings that are less than the radius of the tunnel. Different hydrogeological conditions have different requirements for the stability of the formed tunnel.
  • the purpose of the present invention is to provide a method for strengthening a shallow-covered shield tunnel based on a weak stratum, which solves the floating problem of a shield tunnel formed in the weak shallow stratum, and provides a guarantee for the safe operation of subway trains.
  • the present invention provides a method for strengthening a shallow-covered shield tunnel based on a weak stratum, which includes the following steps:
  • Shield tunneling in the shallow overburden layer adopts segments with increased grouting holes.
  • the tunneling mode of shield tunneling adopts earth pressure balance tunneling and guarantees sufficient simultaneous grouting.
  • the segments are pulled out of the shield tail in time for a second time Double liquid grout is injected to further improve the stability of the formation.
  • the section of the equipment bridge after the segment is released from the shield tail or the position after the segment is removed from the trolley, the hollow grouting anchor is used to deepen the tunnel along the lifting hole or grouting hole Hole grouting reinforcement.
  • the high-pressure jet grouting pile reinforcement includes:
  • the tunnel is composed of several segments, and adjacent segments are fixedly connected by connecting pieces.
  • the lifting hole is located in the middle of the segment, the grouting holes are located on both sides of the lifting hole, and the grouting holes are provided on the segment.
  • the hoisting holes with the segment are evenly distributed on the cross section of the segment.
  • the deep hole grouting reinforcement is deep grouting using hollow grouting anchor rods.
  • the deep hole grouting reinforcement includes the following steps:
  • the pressure and flow dual control mode is adopted during grouting, the grouting is stopped when the grouting pressure reaches the design pressure for 20 minutes and the grouting volume does not reach the design flow, and the grouting pressure is controlled to 0.4-0.6 MPa.
  • the ground is reinforced by high-pressure jet grouting.
  • the reinforcement range is 2 meters on the upper and lower sides of the tunnel section and 2 meters on the left and right sides of the tunnel section, which improves the stability of the upper stratum of the tunnel.
  • Grouting holes are added to the segment.
  • the hoisting holes have the function of grouting holes, and the hoisting holes and grouting holes are evenly distributed on the cross section of the segment.
  • earth pressure balance tunneling is adopted and sufficient simultaneous grouting is ensured.
  • double-liquid grout is injected twice in time to improve the stability of the formation.
  • the grout hole is drilled for deep grouting reinforcement, which can effectively control the problems of dislocation and floating of segments that may occur during the operation of the tunnel.
  • FIG. 1 is a schematic diagram of a cross-sectional structure diagram of ground reinforcement for excavation in an embodiment of a method for reinforcement of a shallow overlying shield tunnel based on a weak stratum according to the present invention
  • Fig. 2 is a schematic diagram of a plane structure of ground reinforcement for excavation in an embodiment of a method for reinforcement of a shield tunnel with shallow overlying soil based on a weak stratum according to the present invention
  • FIG. 3 is a schematic diagram of the grouting hole structure of the formed tunnel segment ring of the embodiment of the method for strengthening the shallow earth shield tunnel based on the weak ground of the present invention
  • FIG. 4 is a schematic diagram of an anchor rod reinforcement structure according to an embodiment of a method for strengthening a shallow earth shield tunnel based on a weak stratum according to the present invention
  • Fig. 5 is a schematic diagram of bolt grouting of an embodiment of the method for strengthening a shallow-covered shield tunnel based on a weak ground according to the present invention
  • FIG. 6 is a flow chart of the high-pressure jet-grouting pile reinforcement method of the embodiment of the method for strengthening the shallow-covered shield tunnel based on the weak stratum according to the present invention
  • Fig. 7 is a flow chart of bolt grouting in an embodiment of a method for strengthening a shield tunnel with shallow overlying soil based on a weak stratum according to the present invention.
  • FIG. 1 is a schematic diagram of the cross-sectional structure of the excavation ground reinforcement of an embodiment of the method for strengthening a shallow overlying shield tunnel based on a weak ground of the present invention
  • FIG. 2 is a diagram of the excavation ground reinforcement plane of an embodiment of the method for strengthening a shallow overlying shield tunnel based on a weak ground of the present invention Schematic.
  • the stratum 9 is strengthened with a triple-tube high-pressure jet grouting pile.
  • the reinforcement range is 2m on the upper and lower sides of the tunnel section and on the left and right.
  • the pile foundation 1 formed after the high-pressure jet grouting pile is reinforced includes a grouting reinforcement area 3 and an end reinforcement area 2.
  • the end reinforcement area 2 can also be formed by other reinforcement methods, and the specific reinforcement plan is carried out according to the design.
  • Fig. 6 is a flow chart of a high-pressure jet grouting pile reinforcement method of an embodiment of a method for strengthening a shallow-covered shield tunnel based on a weak stratum according to the present invention. Reinforcement of high-pressure jet grouting piles includes:
  • Drilling is carried out, water and air are distributed, cement slurry is prepared, and the rotary blasting machine is rotary blasted and lifted after the drilling is in place.
  • FIG. 3 is a schematic diagram of the grouting hole structure of a shaped tunnel segment ring of an embodiment of a method for strengthening a shallow-covered shield tunnel based on a weak stratum of the present invention
  • FIG. 4 is an anchor of an embodiment of a method for strengthening a shallow-covered shield tunnel based on a weak stratum of the present invention
  • FIG. 5 is a schematic diagram of bolt grouting in an embodiment of the method for reinforcing a shallow-covered shield tunnel based on a weak stratum according to the present invention. Reinforce the inside of the tunnel after reinforcing the ground. For the shallow overburden section, choose the segment 5 with grouting holes 7.
  • the cross section of the tunnel is composed of 6 segments 5, and the adjacent segments 5 are fixedly connected by connecting pieces 4, and the connecting pieces 4 are bolts.
  • the lifting hole 6 is located in the middle of the segment 5, and the grouting hole 7 is located on both sides of the lifting hole 6.
  • the grouting holes 7 provided on the segment 5 and the lifting holes 6 of the segment 5 are evenly distributed on the cross section of the segment 5.
  • the hoisting hole 6 is used in conjunction with the grouting hole 7 and has the same structure as the grouting hole 7.
  • the shield tunneling mode adopts earth pressure balance tunneling and guarantees sufficient simultaneous grouting. According to the monitoring of ground settlement, the pipe segments 5 that have emerged from the shield tail are grouted twice in time to further improve the stability of the formation 9 and ensure the formation of the shield.
  • the purpose of tunnel quality In order to effectively control the problems of misalignment and floating of segments 5 during the operation period of the shield-shaped tunnel, the tunnel was reinforced by deep-hole grouting.
  • the deep hole grouting reinforcement in the cave uses the pipe segment 5 lifting hole 6 and the additional grouting hole 7 to inject grouting into the depths of the formation 9, and the grouting range is 5 circles of the pipe segment.
  • the reinforcement radius and 7 grouting holes are determined according to the structure of the stratum 9 and the groundwater conditions, and the hollow grouting anchor 8 is used for deep grouting.
  • Fig. 7 is a flow chart of bolt grouting in an embodiment of a method for strengthening a shield tunnel with shallow overlying soil based on a weak stratum according to the present invention.
  • the compressed air supply is convenient for the front and rear ranges of the trolley in the shield tunnel.
  • the pneumatic anchor 8 drilling rig is used for drilling. According to the actual situation of the site, the hydraulic anchor 8 drilling rig can also be used.
  • the main operation process of the pneumatic anchor 8 drilling rig is as follows:
  • the shield tunnel is located in the Jinan CBD area, and the shield tunnel needs to pass through the underground space before reaching the Silk Park Station reception.
  • the covering section arrives at the receiving station.
  • the shallow soil section is a gravel soil layer 9 with poor stability.
  • the length of the shallow soil section is about 50m, and the thickness of the soil is 2.8-3.0m, which is less than the outer diameter of the shield tunnel 6.4m.
  • the shield tunnel reinforcement method of the present invention is used to reinforce the section, and the constructed tunnel has a stable structure, no tunnel floating phenomenon occurs, and a good construction effect is achieved.
  • the present invention adopts the above-mentioned method for strengthening the shallow-covered shield tunnel based on the weak ground, which can solve the problem of floating of the formed shield tunnel in the weak shallow ground and provide guarantee for the safe operation of subway trains.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

一种基于软弱地层(9)的浅覆土盾构隧道加固方法,包括以下步骤:S1、采用三重管高压旋喷桩对地层(9)进行加固,加固范围为隧道断面上下、左右各2m;S2、隧道内加固,盾构在浅覆土地层(9)中掘进采用增加注浆孔(7)的管片(5),盾构掘进模式采用土压平衡掘进并保证足量的同步注浆,管片(5)脱出盾尾后及时二次注入双液浆以进一步提高管片(5)的稳定性,管片(5)脱出盾尾后的设备桥区段或管片(5)脱出台车后位置,采用中空注浆锚杆(8)沿着吊装孔(6)或注浆孔(7)对隧道进行深孔注浆加固。

Description

基于软弱地层的浅覆土盾构隧道加固方法 技术领域
本发明属于盾构施工技术领域,尤其涉及一种基于软弱地层的浅覆土盾构隧道加固方法。
背景技术
盾构施工已成为城市轨道交通施工的主要施工工法,伴随着城市轨道交通的快速发展,盾构施工经常穿越各类复杂地层,既有富水复合地层,也有富水岩溶地层,既有超过20m以上的深覆土,也有不足隧道半径的浅覆土。不同水文地质条件下对成型隧道的稳定性要求不同。
在城市新兴CBD的建设中,有较多的轨道交通与地下空间、综合管廊的合建问题,在盾构下穿地下空间或综合管廊结构时常常遇到浅覆土的问题,盾构隧道覆土厚度的变化会带来隧道稳定性的影响,在富水地层易出现因成型隧道上浮带来的隧道错台、渗漏水等问题;盾构隧道正常施工完成后,因地下空间或综合管廊的开挖,造成成型盾构隧道覆土的减小,覆土的变化带来了隧道上浮的风险;成型盾构隧道的上浮带来了地铁列车正常运营的风险,对运营中的盾构隧道进行加固处理又会影响地铁列车的正常运营及存在较大的施工安全风险。
在盾构隧道设计、施工期间应充分考虑隧道覆土变化对盾构隧道稳定性的影响,必要时需采取预处理措施,以保证成型盾构隧道的质量,规避因隧道上浮变形带来的地铁列车运营风险。
发明内容
本发明的目的是提供一种基于软弱地层的浅覆土盾构隧道加固方法,解 决软弱浅覆土地层中成型盾构隧道的上浮问题,为地铁列车的安全运营提供保障。
为实现上述目的,本发明提供了一种基于软弱地层的浅覆土盾构隧道加固方法,包括以下步骤:
S1、采用三重管高压旋喷桩对地层进行加固,加固范围为隧道断面上下、左右各2m;高压旋喷桩加固后形成注浆加固区和端头加固区;
S2、隧道内加固,盾构在浅覆土地层中掘进采用增加注浆孔的管片,盾构掘进模式采用土压平衡掘进并保证足量的同步注浆,管片脱出盾尾后及时二次注入双液浆以进一步提高地层的稳定性,管片脱出盾尾后的设备桥区段或管片脱出台车后位置,采用中空注浆锚杆沿着吊装孔或注浆孔对隧道进行深孔注浆加固。
优选的,所述高压旋喷桩加固包括:
S11、对旋喷机进行调试、就位;
S12、进行钻进,配送水、空气,配制水泥浆液,钻进到位后旋喷机旋喷提升;
S13、按照设定的注浆参数将浆液注入到地层中对地层进行加固,在注浆过程中将泥浆排出;
S14、完成注浆后清洗机具进行下一根桩的施工。
优选的,所述隧道由若干片管片组成,相邻管片之间通过连接件固定连接,吊装孔位于管片的中部,注浆孔位于吊装孔的两侧,管片上设置的注浆孔与管片的吊装孔在管片的横截面上均匀的分布。
优选的,所述深孔注浆加固为采用中空注浆锚杆进行深层注浆。
优选的,所述深孔注浆加固包括以下步骤:
S21、在预钻孔位置架设架柱,调整钻机位置,组装钻机并全面检查钻机状况;
S22、钻机连接压缩空气,空气压力为0.4-0.6MPa;
S23、在中空锚杆的头部装上硬质合金钻头,连接锚杆与钻机,用锚杆代替钻杆沿着吊装孔或注浆孔进行钻进,钻进到设计深度;
S24、卸下钻机并装上止浆塞及排气管,安装垫板、螺母,移动钻机开始下一个钻孔;
S25、采用钻机完成钻孔后,拆除钻机开始注浆作业,打开球阀,通过进浆管向钻孔内注浆;
S26、注浆结束后关闭球阀。
优选的,所述步骤S25中,注浆时采用压力与流量双控模式,注浆压力达到设计压力20min后注浆量未达到设计流量时停止注浆,注浆压力控制为0.4~0.6MPa。
本发明所述的基于软弱地层的浅覆土盾构隧道加固方法的有益效果是:
(1)在对隧道进行开挖施工前,首先对地面进行高压旋喷加固,加固范围为隧道断面的上下、左右各2米,提高了隧道上部地层的稳定性。
(2)在管片上增设注浆孔,吊装孔兼具注浆孔的作用,吊装孔和注浆孔在管片的横截面上均匀的分布。在盾构掘进过程中,采用土压平衡掘进并保证足量的同步注浆,管片脱出盾尾后及时二次注入双液浆,提高地层的稳定性。
(3)管片脱出盾尾后的设备桥区段或管片脱出台车后位置,采用中空注浆锚杆对管片进一步加固,用液压或气动锚杆钻机按设计管片加固位置的注浆孔处钻孔进行深层注浆加固,有效的控制隧道在运营期间可能产生的管片错台、上浮问题。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明基于软弱地层的浅覆土盾构隧道加固方法实施例的掘进地面加固横剖面结构示意图;
图2为本发明基于软弱地层的浅覆土盾构隧道加固方法实施例的掘进地面加固平面结构示意图;
图3为本发明基于软弱地层的浅覆土盾构隧道加固方法实施例的成型隧道管片环注浆孔结构示意图;
图4为本发明基于软弱地层的浅覆土盾构隧道加固方法实施例的锚杆加固结构示意图;
图5为本发明基于软弱地层的浅覆土盾构隧道加固方法实施例的锚杆注浆示意图;
图6为本发明基于软弱地层的浅覆土盾构隧道加固方法实施例的高压旋喷桩加固流程图;
图7为本发明基于软弱地层的浅覆土盾构隧道加固方法实施例的锚杆注浆流程图。
附图标记
1、桩基;2、端头加固区;3、注浆加固区;4、连接件;5、管片;6、吊装孔;7、注浆孔;8、锚杆;9、地层;10、钻头;11、止浆塞;12、螺母;13、球阀;14、进浆管;15、排气管;16、垫板。
具体实施方式
实施例
以下将结合附图对本发明作进一步的描述,需要说明的是,本实施例以本技术方案为前提,给出了详细的实施方式和具体的操作过程,但本发明的保护范围并不限于本实施例。
图1为本发明基于软弱地层的浅覆土盾构隧道加固方法实施例的掘进地面加固横剖面结构示意图,图2为本发明基于软弱地层的浅覆土盾构隧道加固方法实施例的掘进地面加固平面结构示意图。一种基于软弱地层9的浅覆土盾构隧道加固方法,首先采用三重管高压旋喷桩对地层9进行加固。加固 范围为隧道断面上下、左右各2m。高压旋喷桩加固后形成的桩基1包括注浆加固区3和端头加固区2。端头加固区2还可以采用其他的加固方式形成,具体的加固方案依据设计进行。
图6为本发明基于软弱地层的浅覆土盾构隧道加固方法实施例的高压旋喷桩加固流程图。高压旋喷桩加固包括:
S11、对旋喷机进行调试、就位,
S12、进行钻进,配送水、空气,配制水泥浆液,钻进到位后旋喷机旋喷提升,
S13、按照设定的注浆参数将浆液注入到地层9中对地层9进行加固,在注浆过程中将泥浆排出,
S14、完成注浆后清洗机具进行下一根桩的施工。高压旋喷为常规技术在此不再赘述,按照设计图纸要求进行施工并验收。
图3为本发明基于软弱地层的浅覆土盾构隧道加固方法实施例的成型隧道管片环注浆孔结构示意图,图4为本发明基于软弱地层的浅覆土盾构隧道加固方法实施例的锚杆加固结构示意图,图5为本发明基于软弱地层的浅覆土盾构隧道加固方法实施例的锚杆注浆示意图。在对地面进行加固后对隧道内进行加固。浅覆土地段选用增加注浆孔7的管片5,隧道的横截面上由6片管片5组成,相邻管片5之间通过连接件4固定连接,连接件4为螺栓。吊装孔6位于管片5的中部,注浆孔7位于吊装孔6的两侧。管片5上设置的注浆孔7与管片5的吊装孔6在管片5的横截面上均匀的分布。吊装孔6兼并注浆孔7使用,其与注浆孔7具有相同的结构。盾构掘进模式采用土压平衡掘进并保证足量的同步注浆,根据地面沉降监测情况对脱出盾尾的管片5及时二次注浆以进一步提高地层9稳定性,起到保证成型盾构隧道质量的目的。为了有效控制盾构成型隧道在运营期可能产生的管片5错台、上浮的问题对隧道进行深孔注浆加固。
洞内的深孔注浆加固利用管片5吊装孔6和增设的注浆孔7向地层9深 处注浆,注浆范围为管片5周圈。根据地层9结构、地下水情况确定加固半径及注浆孔7位,采用中空注浆锚杆8进行深层注浆。
图7为本发明基于软弱地层的浅覆土盾构隧道加固方法实施例的锚杆注浆流程图。盾构隧道内的台车前后范围压缩空气供气方便,采用气动锚杆8钻机钻孔,根据现场实际情况也可采用液压锚杆8钻机,气动锚杆8钻机主要操作流程如下:
S21、在预钻孔位置架设架柱,调整钻机位置,组装钻机并全面检查钻机状况;
S22、钻机连接压缩空气,空气压力为0.4-0.6MPa;
S23、在中空锚杆8的头部装上硬质合金钻头10,连接锚杆8与钻机,用锚杆8代替钻杆沿着吊装孔6或注浆孔7进行钻进,钻进到设计深度;
S24、退出钻机,锚杆8与钻头10留在钻孔内,在钻孔上装上止浆塞11及排气管15,安装垫板16、螺母12,移动钻机开始下一个钻孔;
S25、采用钻机完成钻孔后,拆除钻机开始注浆作业,打开球阀13,通过进浆管14向钻孔内注浆;注浆期间应随时检查锚杆8垫板16与管片5注浆孔7的密贴情况,若有松动应及时处理;根据现场空间情况,在满足安全作业的前提下可钻孔与注浆交叉作业;
S26、注浆结束后关闭球阀13。
在实际施工中根据地面沉降数据、成型隧道上浮变形情况增加点位或多次注浆提高地层9的密实度,以达到控制隧道顶部地面沉降、成型隧道上浮的目的。
济南市CBD市政配套工程(轨道交通预留)土建施工某标段历下广场站~绸带公园站盾构区间位于济南市CBD区域,盾构掘进到达绸带公园站接收前需穿越地下空间浅覆土段到达接收车站。浅覆土区段为碎石土地层9稳定性较差,浅覆土区段长度约50m、覆土厚度2.8~3.0m,小于盾构隧道外径6.4m。采用本发明所述的盾构隧道加固方法对该段进行施工加固,建造的 隧道结构稳定,没有出现隧道上浮的现象,取得了较好的施工效果。
因此,本发明采用上述基于软弱地层的浅覆土盾构隧道加固方法,能够解决软弱浅覆土地层中成型盾构隧道的上浮问题,为地铁列车的安全运营提供保障。
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。

Claims (6)

  1. 一种基于软弱地层的浅覆土盾构隧道加固方法,其特征在于,包括以下步骤:
    S1、采用三重管高压旋喷桩对地层进行加固,加固范围为隧道断面上下、左右各2m;高压旋喷桩加固后形成注浆加固区和端头加固区;
    S2、隧道内加固,盾构在浅覆土地层中掘进采用增加注浆孔的管片,盾构掘进模式采用土压平衡掘进并保证足量的同步注浆,管片脱出盾尾后及时二次注入双液浆以进一步提高地层的稳定性,管片脱出盾尾后的设备桥区段或管片脱出台车后位置,采用中空注浆锚杆沿着吊装孔或注浆孔对隧道进行深孔注浆加固。
  2. 根据权利要求1所述的基于软弱地层的浅覆土盾构隧道加固方法,其特征在于:所述高压旋喷桩加固包括:
    S11、对旋喷机进行调试、就位;
    S12、进行钻进,配送水、空气,配制水泥浆液,钻进到位后旋喷机旋喷提升;
    S13、按照设定的注浆参数将浆液注入到地层中对地层进行加固,在注浆过程中将泥浆排出;
    S14、完成注浆后清洗机具进行下一根桩的施工。
  3. 根据权利要求1所述的基于软弱地层的浅覆土盾构隧道加固方法,其特征在于:所述隧道由若干片管片组成,相邻管片之间通过连接件固定连接,吊装孔位于管片的中部,注浆孔位于吊装孔的两侧,管片上设置的注浆孔与管片的吊装孔在管片的横截面上均匀的分布。
  4. 根据权利要求1所述的基于软弱地层的浅覆土盾构隧道加固方法,其特征在于:所述深孔注浆加固为采用中空注浆锚杆进行深层注浆。
  5. 根据权利要求4所述的基于软弱地层的浅覆土盾构隧道加固方法,其特征在于,所述深孔注浆加固包括以下步骤:
    S21、在预钻孔位置架设架柱,调整钻机位置,组装钻机并全面检查钻机状况;
    S22、钻机连接压缩空气,空气压力为0.4-0.6MPa;
    S23、在中空锚杆的头部装上硬质合金钻头,连接锚杆与钻机,用锚杆代替钻杆沿着吊装孔或注浆孔进行钻进,钻进到设计深度;
    S24、卸下钻机并装上止浆塞及排气管,安装垫板、螺母,移动钻机开始下一个钻孔;
    S25、采用钻机完成钻孔后,拆除钻机开始注浆作业,打开球阀,通过进浆管向钻孔内注浆;
    S26、注浆结束后关闭球阀。
  6. 根据权利要求5所述的基于软弱地层的浅覆土盾构隧道加固方法,其特征在于:所述步骤S25中,注浆时采用压力与流量双控模式,注浆压力达到设计压力20min后注浆量未达到设计流量时停止注浆,注浆压力控制为0.4~0.6MPa。
PCT/CN2020/118212 2019-10-31 2020-09-28 基于软弱地层的浅覆土盾构隧道加固方法 WO2021082843A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911056049.8A CN110700853A (zh) 2019-10-31 2019-10-31 基于软弱地层的浅覆土盾构隧道加固方法
CN201911056049.8 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021082843A1 true WO2021082843A1 (zh) 2021-05-06

Family

ID=69204083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118212 WO2021082843A1 (zh) 2019-10-31 2020-09-28 基于软弱地层的浅覆土盾构隧道加固方法

Country Status (2)

Country Link
CN (1) CN110700853A (zh)
WO (1) WO2021082843A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110700853A (zh) * 2019-10-31 2020-01-17 中铁十八局集团第三工程有限公司 基于软弱地层的浅覆土盾构隧道加固方法
CN111156032B (zh) * 2020-01-20 2024-04-02 杭州临安中民筑友智造科技有限公司 一种注浆管内插型钢注浆加固既有地铁隧道结构及方法
CN112901203A (zh) * 2020-09-09 2021-06-04 中铁二院工程集团有限责任公司 一种盾构和顶管隧道周边地层加固结构与加固方法
CN114320405B (zh) * 2022-01-06 2024-05-14 重庆交通大学 一种隧道超浅埋破碎围岩人工成拱支护系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003694A (ja) * 1999-06-24 2001-01-09 Ohbayashi Corp コンクリート打設制御装置及びそれを用いたコンクリート打設方法
CN102979535A (zh) * 2012-12-27 2013-03-20 西南交通大学 一种隧道衬砌用泄水式管片
CN104533434A (zh) * 2014-12-28 2015-04-22 上海隧道工程股份有限公司 超浅覆土矩形隧道的构建方法
CN109488334A (zh) * 2018-10-25 2019-03-19 中铁第勘察设计院集团有限公司 盾构隧道内深孔注浆加固方法及设备
CN109653755A (zh) * 2019-01-03 2019-04-19 中铁隧道集团二处有限公司 一种大直径泥水盾构零沉降穿越无砟轨道路基的施工方法
CN110107303A (zh) * 2019-04-19 2019-08-09 同济大学 浅覆土盾构下穿高速铁路的变形控制方法
CN110700853A (zh) * 2019-10-31 2020-01-17 中铁十八局集团第三工程有限公司 基于软弱地层的浅覆土盾构隧道加固方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332929A (en) * 1976-09-09 1978-03-28 Mitsui Constr Method of shield construction to soft ground
JP2812666B2 (ja) * 1995-03-09 1998-10-22 東京電力株式会社 深礎坑内壁ライニング方法および装置
JP3970133B2 (ja) * 2002-08-30 2007-09-05 三菱重工業株式会社 トンネル掘削機
CN206000553U (zh) * 2016-08-30 2017-03-08 中铁第四勘察设计院集团有限公司 高水头深厚砂层地区的盾构端头土体加固体系
CN207048783U (zh) * 2017-01-05 2018-02-27 中铁十六局集团北京轨道交通工程建设有限公司 盾构始发施工系统
CN108708742A (zh) * 2018-08-30 2018-10-26 沈阳建筑大学 用于混凝土管片锚杆偏位的联合支护结构
CN208793021U (zh) * 2018-09-30 2019-04-26 西南石油大学 一种盾构隧道抗浮控制结构
CN109458184A (zh) * 2018-11-22 2019-03-12 重庆大学 湖下浅埋段盾构施工方法
CN110005419A (zh) * 2019-04-09 2019-07-12 上海市机械施工集团有限公司 一种盾构隧道端头加固方法
CN110159284B (zh) * 2019-05-22 2020-07-31 中铁十一局集团第四工程有限公司 滨海吹填地层盾构机超浅覆土、大纵坡始发施工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003694A (ja) * 1999-06-24 2001-01-09 Ohbayashi Corp コンクリート打設制御装置及びそれを用いたコンクリート打設方法
CN102979535A (zh) * 2012-12-27 2013-03-20 西南交通大学 一种隧道衬砌用泄水式管片
CN104533434A (zh) * 2014-12-28 2015-04-22 上海隧道工程股份有限公司 超浅覆土矩形隧道的构建方法
CN109488334A (zh) * 2018-10-25 2019-03-19 中铁第勘察设计院集团有限公司 盾构隧道内深孔注浆加固方法及设备
CN109653755A (zh) * 2019-01-03 2019-04-19 中铁隧道集团二处有限公司 一种大直径泥水盾构零沉降穿越无砟轨道路基的施工方法
CN110107303A (zh) * 2019-04-19 2019-08-09 同济大学 浅覆土盾构下穿高速铁路的变形控制方法
CN110700853A (zh) * 2019-10-31 2020-01-17 中铁十八局集团第三工程有限公司 基于软弱地层的浅覆土盾构隧道加固方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU JIANGUO , XU TIANHUA , SONG CHENGPENG: "Construction Techniques of Shield Tunnels Approaching Existing Metro Tunnels in Soft Ground at Seafront Areas", MODERN TUNNELLING TECHNOLOGY, vol. 56, no. 4, 15 August 2019 (2019-08-15), pages 160 - 167, XP055807972, ISSN: 1009-6582, DOI: 10.13807/j.cnki.mtt.2019.04.024 *

Also Published As

Publication number Publication date
CN110700853A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2021082843A1 (zh) 基于软弱地层的浅覆土盾构隧道加固方法
CN107246267B (zh) 一种不良地层中的立井井壁结构、施工装置及方法
CN106759297A (zh) 一种支护桩与三管高压旋喷桩深基坑的施工方法
CN102121395A (zh) 低渗透单一煤层瓦斯综合治理一体化的方法
CN101560764B (zh) 间隔式高压旋喷注浆封堵勘察孔的方法
CN106437726A (zh) 浅埋暗挖隧道过地裂缝破碎带施工方法
CN108756898A (zh) 采用hsc灌浆材料的超前预注浆施工方法
CN111411970B (zh) 一种富水砂层地质条件下盾构始发施工方法
CN111075478A (zh) 采掘工作面构造破碎带地面施工预注浆加固工艺
CN114233385B (zh) 一种斜井井筒突泥涌水的治理方法
CN104453946A (zh) 一种软弱围岩隧道修建的超前加固施工方法
WO2020259059A1 (zh) 一种tbm平导洞身施工方法
CN207377562U (zh) 一种不良地层中的立井井壁结构及施工装置
CN111734420A (zh) 一种设置洞门砂浆挡墙的富水地层盾构水下接收方法
CN106013078B (zh) 一种强透水地层加固帷幕结构的施工方法
CN108005682A (zh) 一种盾构隧道加固方法
CN111364532B (zh) 一种基于浆液控制的既有桩基加固方法
CN107191188B (zh) 基岩段不良含水层定位靶向注浆立井井壁结构、施工装置及方法
CN109989756B (zh) 厚表土薄基岩钻井井筒突水溃砂的防治方法
CN114109442B (zh) 隧道岩溶破碎带溜塌半断面帷幕前进式注浆加固处理方法
CN203702071U (zh) 竖井探水注浆施工的防突水顶钻装置
CN112482415B (zh) 高外水压力动水条件下地下洞室固结灌浆方法
CN108894247A (zh) 一种地铁联络通道周边土体高压旋喷加固结构及施工方法
CN109881696B (zh) 一种hppg封底施工方法
CN115387383B (zh) 一种紧邻既有线地铁车站夹层的加固处理新方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881658

Country of ref document: EP

Kind code of ref document: A1