WO2021082531A1 - 一种现场智能单相电能表故障诊断仪 - Google Patents

一种现场智能单相电能表故障诊断仪 Download PDF

Info

Publication number
WO2021082531A1
WO2021082531A1 PCT/CN2020/102504 CN2020102504W WO2021082531A1 WO 2021082531 A1 WO2021082531 A1 WO 2021082531A1 CN 2020102504 W CN2020102504 W CN 2020102504W WO 2021082531 A1 WO2021082531 A1 WO 2021082531A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault diagnosis
electric energy
energy meter
phase electric
diagnosis instrument
Prior art date
Application number
PCT/CN2020/102504
Other languages
English (en)
French (fr)
Inventor
谷战垒
刘永光
卢利军
王琰
徐晓娜
孙宾
武珠琳
杨琳
Original Assignee
河南许继仪表有限公司
许继集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南许继仪表有限公司, 许继集团有限公司 filed Critical 河南许继仪表有限公司
Publication of WO2021082531A1 publication Critical patent/WO2021082531A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/04Testing or calibrating of apparatus covered by the other groups of this subclass of instruments for measuring time integral of power or current

Definitions

  • the application belongs to the field of electric energy measurement, and specifically relates to an on-site intelligent single-phase electric energy meter fault diagnosis instrument.
  • the existing electric meter field test equipment requires the user to have a large actual power load during the test process.
  • the power user does not use electricity, it needs an external power load.
  • the wiring is complicated, which makes the measurement work of the smart single-phase electric meter very difficult. Big obstacle.
  • the purpose of this application is to provide an on-site intelligent single-phase electric energy meter fault diagnosis instrument to solve the problem of complicated wiring caused by the need to connect an external electric load when the user has no electricity.
  • a field intelligent single-phase electric energy meter fault diagnosis instrument of the present application includes a virtual load, the virtual load includes an isolated power supply unit, the input end of the isolated power supply unit is used to connect the live wire and the neutral wire, and the output end loop is set in series There are a first terminal, a second terminal and a switch, wherein the first terminal is used to connect the live wire input interface and the live wire output interface of the electric energy meter to be tested, and the second terminal refers to the current sampling terminal of the fault diagnosis instrument .
  • the switch is a magnetic latching relay.
  • the isolated power supply unit is a transformer.
  • it further includes a processor, and the I/O port of the processor is connected to the current sampling terminal of the fault diagnosis instrument.
  • a display module is further included, and the processor is connected to the display module.
  • it further includes a Bluetooth module, and the processor is connected to the Bluetooth module.
  • a communication module is further included, and the processor is connected to the communication module.
  • the communication module includes an RS485 communication module and a carrier communication module.
  • the fault diagnosis instrument can automatically close the switch and isolate the output terminal of the power supply unit to generate a virtual load current.
  • the current sampling can be completed by the intelligent single-phase electric energy meter and the fault diagnosis instrument to be tested.
  • FIG. 1 is a schematic diagram of the fault diagnosis instrument of the present application.
  • Figure 2 is a flow chart of power error diagnosis
  • Figure 3 is a schematic diagram of a virtual load.
  • This on-site intelligent single-phase electric energy meter fault diagnosis instrument can measure the voltage, current, active power, reactive power, power factor, etc. of the power supply grid without disassembling the meter and uninterrupted power supply, and at the same time read the electric energy meter to be tested.
  • the operating data of the power supply grid obtained.
  • After receiving the test command it can use the built-in fault library algorithm to compare and calculate the read operation data of the electric energy meter under test with the power grid data measured by itself, and measure the error and accuracy of the measured electric energy meter on site. degree.
  • Figure 3 shows the schematic diagram of the fault diagnosis instrument.
  • the isolated power supply unit is connected to the circuit.
  • the input end of the isolated power supply unit is connected to the live wire and the neutral wire, and the first terminal, the second terminal and the switch are arranged in series in the output loop.
  • the first terminal is used to connect the live wire input interface and the live wire output of the electric energy meter under test.
  • the second terminal refers to the current sampling terminal of the fault diagnosis instrument (that is, the current sampling terminal of the metering module).
  • the output terminal of the isolated power supply unit generates a virtual load current through a current-limiting resistor, and this current can be sampled by the electric energy meter and the fault diagnosis instrument to be tested.
  • the isolated power supply unit adopts a transformer T0.
  • the input terminal of T0 is connected to the live wire L and the neutral wire N respectively.
  • the output loop is connected with resistor R1, the live wire input interface 11 of the intelligent single-phase electric energy meter, the live wire output interface 12, and the current sampling terminal of the metering module of the fault diagnosis instrument. 21, 22, and magnetic latching relay S1.
  • the current sampling terminal 21 of the metering module is connected to the live wire output interface 12 of the intelligent single-phase electric energy meter, and the terminal 22 is connected to the magnetic latching relay S1; the other is the current sampling resistor R3, the terminal 23 is connected to the terminal 31 of the current clamp, and the terminal 24 is connected to The other terminal 32 of the current clamp is connected.
  • the intelligent single-phase electric energy meter is the equipment to be tested and diagnosed. 13 is the neutral input terminal of the intelligent single-phase electric energy meter, 14 is the neutral output terminal of the intelligent single-phase electric energy meter, and R0 is the current sampling resistor of the intelligent single-phase electric energy meter.
  • the fault diagnosis instrument automatically disconnects the magnetic latching relay S1 through the drive circuit, and the current signal collected by the current clamp is provided to the current sampling
  • the resistance R3 completes the collection of the current signal; the intelligent single-phase electric energy meter to be tested completes the collection of the current signal by itself.
  • the fault diagnosis instrument reads the data of the intelligent single-phase electric energy meter to be tested and the current data of R3, and compares the two data, thereby judging whether the intelligent single-phase electric energy meter to be tested is faulty.
  • the load current of the smart single-phase electric energy meter is less than 0.004Ib, that is, the user may not use electricity at this time. If the current detected by the fault diagnosis instrument through the current clamp is small, the current signal is completed by connecting to the virtual load at this time Of sampling.
  • the fault diagnosis instrument automatically closes the magnetic latching relay S1 through the drive circuit.
  • the output terminal of the transformer T0 generates a virtual load current through the current-limiting resistor R1.
  • the current sampling resistor R0 and the current sampling resistor R2 are connected in series with the current-limiting resistor R1. At this time, R1 is generated.
  • the virtual load current is sampled by the intelligent single-phase electric energy meter and the fault diagnosis instrument.
  • the fault diagnosis instrument completes the sampling of the current signal by reading the relevant data of R2; the intelligent single-phase electric energy meter to be tested completes the acquisition of the current signal by itself.
  • the fault diagnosis instrument reads the data of the intelligent single-phase electric energy meter to be tested and the related data of R2, and compares the two data, thereby judging whether the intelligent single-phase electric energy meter to be tested is faulty.
  • the intelligent single-phase electric energy meter and the fault diagnosis instrument are connected to AC voltage at the same time, and the voltage sampling is completed by their respective voltage sampling loops.
  • the field intelligent single-phase electric energy meter fault diagnosis instrument is mainly composed of memory module, RS485 communication module, display module, Bluetooth communication module, metering module V9811, carrier module, and virtual load circuit. among them:
  • the memory is used to store data such as power metering data, fault library algorithms, and fault diagnosis results.
  • the RS485 communication module is connected to the RS485 terminal of the intelligent single-phase electric energy meter through a retractable probe to complete the RS485 communication fault diagnosis.
  • the display module is used to display fault diagnosis results and run record query.
  • the Bluetooth module sends data wirelessly to the mobile device.
  • the metering module V9811 is used to collect voltage, current, power and data reading and forwarding functions.
  • the carrier module is connected to the neutral and live wire terminals of the intelligent single-phase electric energy meter through a retractable probe to complete the carrier communication fault diagnosis.
  • the on-site intelligent single-phase electric energy meter has the following functions:
  • the field intelligent single-phase electric energy meter fault diagnosis instrument adopts the power comparison method, which can quickly diagnose the error condition of the single-phase electric energy meter running in the field.
  • the specific method process is shown in Figure 2.
  • the field intelligent single-phase electric energy meter fault diagnosis instrument collects the power data of the tested intelligent single-phase electric energy meter and the local power data of the field intelligent single-phase electric energy meter fault diagnosis instrument 30 times each within 1.5 minutes.
  • the error diagnosis instrument reads the current data of the intelligent single-phase electric energy meter through the RS485 port.
  • the meter current read by the RS485 port is greater than 0.004Ib, and Ib is the basic current of 5A.
  • Ib is the basic current of 5A.
  • the local current clamp circuit power data of the fault diagnosis instrument reads the local current clamp circuit power data of the fault diagnosis instrument and temporarily store it; otherwise, close the relay and connect to the virtual load.
  • the local power data of the fault diagnosis instrument adopts the internal virtual load. The current, and temporarily store it. Among them, the specific virtual load is introduced above and will not be repeated.
  • the fault diagnosis instrument takes the average value of 30 power data collected by itself, and compares the average value of the 30 power data of the P diagnosis instrument and the intelligent single-phase electric energy meter as the P electric meter to obtain the power error, when the power error
  • the fault diagnosis instrument uploads the power error result to the mobile device through the Bluetooth interface
  • the operation and maintenance personnel can see the power error result on the mobile device.
  • the on-site intelligent electric energy meter fault diagnosis instrument has its own fault library algorithm, which can read the operating data of the intelligent single-phase electric energy meter and the local data of the fault diagnostic instrument, and through the built-in fault library algorithm, give the intelligent single-phase electric energy meter operation report.
  • Smart single-phase watt-hour meter stop read the total forward and reverse active power of the current smart single-phase watt-hour meter and the combined total active power after 2 minutes. If the current total forward and reverse active power is one If the difference between the sum and the combined active total power after 2 minutes is 0, it is judged that the smart single-phase electric energy meter has stopped.
  • Smart single-phase electric energy meter goes backwards: read the total positive active power of the previous day, the total positive active power of the last two days, and the total positive active power of the last three days. If the total positive active power of the previous day is The difference between the total positive active power on the second day is less than 0, and the difference between the total positive active power on the previous two days and the total positive active power on the previous three days is also less than 0, and the smart single-phase electric energy meter is judged to go backwards.
  • Abnormal power consumption read the occurrence time and end time of the last time the meter cover is opened and compare it with the actual occurrence time and end time of the last time the meter cover is opened. If they are inconsistent, it is judged as abnormal power usage.
  • Abnormal power outage event read the occurrence time and end time of the last power outage event, compare it with the actual occurrence time, and determine that the power outage event is abnormal if they are inconsistent.
  • Power over-tolerance Read the average value of active power of 30 groups of fault diagnosis instrument P, the average value of active power of the diagnostic instrument and the intelligent single-phase electric energy meter , if:
  • Clock abnormal diagnosis read the time of the smart single-phase energy meter Time meter and the system time Time system , if:
  • the field intelligent single-phase electric energy meter fault diagnosis instrument has the communication function of all electric energy meters, and can detect the communication interface failure of the electric energy meter running in the field, including RS485 communication, carrier communication and so on.
  • the field intelligent single-phase electric energy meter fault diagnosis instrument receives the communication interface verification command forwarded by the mobile device through the Bluetooth module.
  • the diagnostic instrument sends the 645 protocol to read the electric meter voltage to the intelligent single-phase electric energy meter through the RS485 interface and the carrier communication interface library respectively. If the 645 protocol data frame returned by the electric meter is successfully received, the correct response frame is sent to the mobile device; otherwise, if the diagnostic instrument does not receive the data returned by the electric meter, the abnormal data frame is sent to the mobile device. Analyze communication data of mobile devices and output communication abnormal reports.
  • the diagnostic instrument has the function of Bluetooth communication, which can send data to mobile devices via Bluetooth, which is convenient for on-site operation and maintenance personnel to view.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种现场智能单相电能表故障诊断仪,在用户没有用电或者电流钳采集到电流信号几乎为零时,故障诊断仪能够自动使磁保持继电器(S1)闭合,隔离供电单元的输出端产生虚拟负载电流,能够被待测智能单相电能表和故障诊断仪完成电流采样。故障诊断仪能够解决当用户没有用电需外接用电负载时接线复杂的问题,及时完成现场故障诊断的需求,极大地提高了现场电力运维人员的工作效率。

Description

一种现场智能单相电能表故障诊断仪
相关申请的交叉引用
本申请基于申请号为201911054859.X、申请日为2019年10月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请属于电能计量领域,具体涉及一种现场智能单相电能表故障诊断仪。
背景技术
随着智能单相电能表的普及应用,智能单相电能表的现场运维工作量也越来越大。目前没有一款快速有效检测智能单相电能表的装置,一旦现场智能单相电能表出现故障,通常采用拆卸现场运行的智能单相电能表,更换新的智能单相电能表来解决问题。当智能单相电能表通信出现线路中断、采集器故障、主站服务器故障等问题时,常常会有大量智能单相电能表被误拆的情况,造成不必要的人力物力成本的增加。
而且,现有电表现场测试设备在测试过程中需要用户有较大的实际用电负载,当电力用户没有用电时需要外接用电负载,接线复杂,给智能单相电能表的测量工作制造很大阻碍。
发明内容
本申请的目的是提供一种现场智能单相电能表故障诊断仪,用以解决当用户没有用电时需外接用电负载导致接线复杂的问题。
为解决上述技术问题,本申请的技术方案为:
本申请的一种现场智能单相电能表故障诊断仪,包括虚拟负载,所述虚拟负载包括隔离供电单元,所述隔离供电单元的输入端用于连接火线和零线,输出端回路中串设有第一端子、第二端子和开关,其中,所述第一端子用于连接待测电能表的火线输入接口和火线输出接口,所述第二端子是指所述故障诊断仪的电流采样端子。
在一可选方式中,所述开关为磁保持继电器。
在一可选方式中,所述隔离供电单元为变压器。
在一可选方式中,还包括处理器,所述处理器的I/O口与所述故障诊断仪的电流采样端子相连。
在一可选方式中,还包括显示模块,所述处理器与显示模块相连。
在一可选方式中,还包括蓝牙模块,所述处理器与蓝牙模块相连。
在一可选方式中,还包括通信模块,所述处理器与通信模块相连。
在一可选方式中,所述通信模块包括RS485通信模块与载波通信模块。
本申请的有益效果:
本申请的现场智能单相电能表故障诊断仪,在用户没有用电或者电流钳采集到电流信号几乎为零时,故障诊断仪能够自动使开关闭合,隔离供电单元的输出端产生虚拟负载电流,能够被待测智能单相电能表和故障诊断仪完成电流采样。本申请能够解决当用户没有用电需外接用电负载时接线复杂的问题,及时完成现场故障诊断的需求,极大地提高了现场电力运维人员的工作效率。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是本申请的故障诊断仪原理图;
图2是功率误差诊断流程图;
图3是虚拟负载原理图。
具体实施方式
为使本申请的目的、技术方案及优点更加明白清楚,下面结合附图及具体实施方式对本申请作进一步的详细说明,但本申请的实施方式不局限于此。
该现场智能单相电能表故障诊断仪,在不拆表、不断电的情况下,通过测量供电电网的电压、电流、有功功率、无功功率、功率因数等,同时读取待测电能表测得的供电电网的运行数据。在接收到测试命令后,能够通过自带的故障库算法,将读取的待测电能表运行数据和自身测量的电网数据进行比较与计算,测得现场校验被测电能表的误差、准确度。
一般来说,在现场测试过程中,需要用户有较大的实际用电负载;在没有用电负载的情况下,需要外接用电负载。若外接负载,接线复杂,给智能单相电能表的测量工作制造很大阻碍。本申请自带虚拟负载,使得在电力用户没有用电的情况下,同样能够满足现场故障诊断的需求,完成对待测电能表的故障诊断。
如图3所示为该故障诊断仪的原理图。当读取到的待测电能表的负载电流较小的情况下,将隔离供电单元接入到电路中。隔离供电单元的输入端连接火线和零线,输出端回路中串设有第一端子、第二端子和开关,其中,所述第一端子用于连接待测电能表的火线输入接口和火线输出接口,所述第二端子是指所述故障诊断仪的电流采样端子(也即计量模块的电流采样端子)。隔离供电单元的输出端经过限流电阻产生虚拟负载电流,而此电流能够被待测电能表和故障诊断仪完成电流采样。
如图3所示,在本实施例中,隔离供电单元采用变压器T0。T0的输入端分别与火线L和零线N连接,输出端回路中串设有电阻R1、智能单相电能表的火线输入接口11、火线输出接口12、故障诊断仪的计量模块的电流 采样端子21、22、以及磁保持继电器S1。计量模块的电流采样端子21与智能单相电能表的火线输出接口12连接,端子22与磁保持继电器S1连接;另一路为电流采样电阻R3,端子23与电流钳的端子31连接,端子24与电流钳的另一端子32连接。
其中,智能单相电能表为待测被诊断设备。13为智能单相电能表的零线输入端,14为智能单相电能表的零线输出端,R0为智能单相电能表的电流采样电阻。
正常情况下,当智能单相电能表负载电流大于0.004Ib(Ib为基本电流5A)时,故障诊断仪通过驱动电路自动使磁保持继电器S1断开,由电流钳采集的电流信号提供给电流采样电阻R3,完成电流信号的采集;待测的智能单相电能表则通过自身完成电流信号的采集。故障诊断仪读取待测的智能单相电能表的数据及R3的电流数据,将两者的数据进行比较,从而判断待测的智能单相电能表是否故障。
当智能单相电能表负载电流小于0.004Ib时,即此时可能用户没有用电,故障诊断仪通过电流钳检测到的电流较小的情况下,此时通过接入虚拟负载来完成运行电流信号的采样。该故障诊断仪通过驱动电路自动使磁保持继电器S1闭合,变压器T0的输出端经过限流电阻R1产生虚拟负载电流,电流采样电阻R0和电流采样电阻R2与限流电阻R1串联,此时R1产生虚拟负载电流被智能单相电能表和故障诊断仪完成电流采样。故障诊断仪通过读取R2的相关数据,完成电流信号的采样;待测的智能单相电能表则通过自身完成电流信号的采集。故障诊断仪读取待测的智能单相电能表的数据及R2的相关数据,将两者的数据进行比较,从而判断待测的智能单相电能表是否故障。
智能单相电能表和故障诊断仪同时接有交流电压,由各自的电压采样回路完成电压采样。
整体来看,如图1,该现场智能单相电能表故障诊断仪主要由存储器模 块、RS485通信模块、显示模块、蓝牙通信模块、计量模块V9811、载波模块、虚拟负载电路组成。其中:
存储器用来存储功率计量数据、故障库算法、故障诊断结果等数据。RS485通信模块通过可伸缩探针与智能单相电能表RS485端子连接,完成RS485通信故障诊断。显示模块用来显示故障诊断结果及运行记录查询。蓝牙模块将数据以无线的方式发送给移动设备。计量模块V9811用来采集电压、电流、功率及数据读取和转发功能。载波模块通过可伸缩探针与智能单相电能表零线和火线端子连接,完成载波通信故障诊断。
具体来说,该现场智能单相电能表具备以下功能:
该现场智能单相电能表故障诊断仪采用功率比较法,能够快速诊断现场运行的单相电能表误差情况,具体方法流程如图2所示。
现场智能单相电能表故障诊断仪在接收到误差采集命令后,在1.5分钟内分别采集被测智能单相电能表功率数据和现场智能单相电能表故障诊断仪本地功率数据各30次。误差诊断仪通过RS485口读智能单相电能表电流数据。
在读取数据之前需要先判断RS485口读到电表电流是否大于0.004Ib,Ib为基本电流5A。当读取电表的电流大于等于0.004Ib时,则读取故障诊断仪本地电流钳回路功率数据,并暂存;否则,则闭合继电器,接入虚拟负载,故障诊断仪本地功率数据采用内部虚拟负载的电流,并暂存。其中,具体虚拟负载在上边介绍,不再赘述。
当读够30个数据后,停止读取功率数据。故障诊断仪将自己采集30个功率数据取平均值为P 诊断仪和智能单相电能表的30个功率数据平均值为P 电表作比较,得到功率误差,当功率误差
Figure PCTCN2020102504-appb-000001
时,则认为误差超差。则故障诊断仪通过蓝牙接口上传功率误差结果 给移动设备,
运维人员能够在移动设备上看到功率误差结果。
该现场智能电能表故障诊断仪自带故障库算法,能够读取智能单相电能表运行数据和故障诊断仪本地数据并经过自带的故障库算法,给出智能单相电能表运行报告。
1)智能单相电能表停走:读取当前智能单相电能表的正向和反向有功总电量和2分钟后的组合有功总电量,如果当前的正向有功和反向有功总电量之和与2分钟后的组合有功总电量差值为0,则判断为智能单相电能表停走。
2)智能单相电能表倒走:读取上一日正向有功总电量、上二日正向有功总电量和上三日正向有功总电量,如果上一日正向有功总电量与上二日正向有功总电量的差值小于0,上二日正向有功总电量与上三日正向有功总电量的差值也小于0,则判断智能单相电能表倒走。
3)异常用电:读取上一次开表盖的发生时刻和结束时刻和实际的上一次开表盖记录的发生时刻和结束时刻进行比较,若不一致则判断为异常用电。
4)停电事件异常:读取上一次停电事件的发生时刻和结束时刻,与实际的发生时刻进行比较,若不一致则判断为停电事件异常。
5)电压超差:读取故障诊断仪电压U 诊断仪与智能单相电能表电压U 电表,若:
Figure PCTCN2020102504-appb-000002
判断电压超差。
6)电流超差:读取故障诊断仪电流I 诊断仪与智能单相电能表电流I 电表,若:
Figure PCTCN2020102504-appb-000003
判断电流超差。
7)功率超差:读取30组故障诊断仪有功功率平均值P 诊断仪与智能单相电能表有功功率的平均值P 电表,若:
Figure PCTCN2020102504-appb-000004
判断功率超差。
8)时钟异常诊断:读取智能单相电能表时间Time 电表和系统时间Time 系统,若:
|Time 系统-Time 电表|>5分钟
则判断时钟异常。
该现场智能单相电能表故障诊断仪具有所有电能表的通信功能,能够检测现场运行电能表的通信接口故障问题,包括RS485通信、载波通信等。
该现场智能单相电能表故障诊断仪通过蓝牙模块接收到移动设备转发的通信接口验证命令,诊断仪分别通过RS485接口和载波通信接口库给智能单相电能表发送读取电表电压的645协议,如果成功接收到电表返回的645协议数据帧,发送正确应答帧给移动设备;否则,如果诊断仪没有接收到电表返回的数据,则发送数据异常帧给移动设备。移动设备通信数据分析,输出通信异常报告。
同时,诊断仪具有蓝牙通信的功能,可以通过蓝牙将数据发送到移动设备上,便于现场运维人员查看。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (8)

  1. 一种现场智能单相电能表故障诊断仪,包括虚拟负载,所述虚拟负载包括隔离供电单元,所述隔离供电单元的输入端用于连接火线和零线,输出端回路中串设有第一端子、第二端子和开关,其中,所述第一端子用于连接待测电能表的火线输入接口和火线输出接口,所述第二端子是指所述故障诊断仪的电流采样端子。
  2. 根据权利要求1所述的现场智能单相电能表故障诊断仪,其中,所述开关为磁保持继电器。
  3. 根据权利要求1所述的现场智能单相电能表故障诊断仪,其中,所述隔离供电单元为变压器。
  4. 根据权利要求1所述的现场智能单相电能表故障诊断仪,其中,还包括处理器,所述处理器的I/O口与所述故障诊断仪的电流采样端子相连。
  5. 根据权利要求4所述的现场智能单相电能表故障诊断仪,其中,还包括显示模块,所述处理器与显示模块相连。
  6. 根据权利要求4所述的现场智能单相电能表故障诊断仪,其中,还包括蓝牙模块,所述处理器与蓝牙模块相连。
  7. 根据权利要求4所述的现场智能单相电能表故障诊断仪,其中,还包括通信模块,所述处理器与通信模块相连。
  8. 根据权利要求7所述的现场智能单相电能表故障诊断仪,其中,所述通信模块包括RS485通信模块与载波通信模块。
PCT/CN2020/102504 2019-10-31 2020-07-16 一种现场智能单相电能表故障诊断仪 WO2021082531A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911054859.X 2019-10-31
CN201911054859.XA CN112748389A (zh) 2019-10-31 2019-10-31 一种现场智能单相电能表故障诊断仪

Publications (1)

Publication Number Publication Date
WO2021082531A1 true WO2021082531A1 (zh) 2021-05-06

Family

ID=75645573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102504 WO2021082531A1 (zh) 2019-10-31 2020-07-16 一种现场智能单相电能表故障诊断仪

Country Status (2)

Country Link
CN (1) CN112748389A (zh)
WO (1) WO2021082531A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2938136Y (zh) * 2006-08-29 2007-08-22 宋国元 带虚拟负载的电能表现场测试仪
CN102944864A (zh) * 2012-11-16 2013-02-27 保定供电公司 一种单相电能表虚拟负载装置
CN203572957U (zh) * 2013-12-05 2014-04-30 国家电网公司 现场式校表系统
CN203849399U (zh) * 2014-04-21 2014-09-24 国家电网公司 一种单相载波智能电能表误掉电故障分析装置
CN204142951U (zh) * 2014-10-17 2015-02-04 国家电网公司 一种电能表误差校验装置
WO2017158385A1 (en) * 2016-03-17 2017-09-21 42 Technology Limited Electrical measurement apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202230198U (zh) * 2011-09-28 2012-05-23 邯郸供电公司 掌上型现场单相虚拟负载装置
CN104714206B (zh) * 2012-10-29 2018-09-21 江苏省电力公司常州供电公司 一种故障发现及时的电能计量装置远程监测诊断方法
CN202886592U (zh) * 2012-11-16 2013-04-17 保定供电公司 一种单相电能表虚拟负载装置
CN106154209B (zh) * 2016-07-29 2018-11-30 国电南瑞科技股份有限公司 基于决策树算法的电能表故障预测方法
CN106443556A (zh) * 2016-08-31 2017-02-22 国网江苏省电力公司常州供电公司 电能表智能诊断方法
CN106842106A (zh) * 2017-02-23 2017-06-13 广东电网有限责任公司茂名供电局 电能表故障预测方法和装置
CN206757027U (zh) * 2017-04-14 2017-12-15 国网四川省电力公司电力科学研究院 基于虚电流装置的现场虚负荷校验装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2938136Y (zh) * 2006-08-29 2007-08-22 宋国元 带虚拟负载的电能表现场测试仪
CN102944864A (zh) * 2012-11-16 2013-02-27 保定供电公司 一种单相电能表虚拟负载装置
CN203572957U (zh) * 2013-12-05 2014-04-30 国家电网公司 现场式校表系统
CN203849399U (zh) * 2014-04-21 2014-09-24 国家电网公司 一种单相载波智能电能表误掉电故障分析装置
CN204142951U (zh) * 2014-10-17 2015-02-04 国家电网公司 一种电能表误差校验装置
WO2017158385A1 (en) * 2016-03-17 2017-09-21 42 Technology Limited Electrical measurement apparatus

Also Published As

Publication number Publication date
CN112748389A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
CN104237645B (zh) 一种变电站直流系统绝缘状态在线监测系统和方法
CN109298379B (zh) 一种基于数据监测的智能电表现场误差异常的识别方法
CN103472331B (zh) 一种基于光伏物理模型的光伏发电故障诊断系统
CN104635198B (zh) 故障发现及时的电能计量装置远程监测诊断方法
CN102928809A (zh) 电能计量装置远程监测诊断系统及其工作方法
CN102621516B (zh) 基于大规模数据应用背景下的电能表运行异常的判断方法
WO2013040726A1 (zh) 用电信息采集系统现场测试仪及其测试方法
CN104678348B (zh) 效率较高的电能计量装置远程监测诊断方法
CN113098130A (zh) 一种监测低压台区线损异常问题的分析系统
CN202939301U (zh) 一种电能计量装置远程监测诊断系统
CN104714206B (zh) 一种故障发现及时的电能计量装置远程监测诊断方法
CN113063997A (zh) 一种配变台区线损异常问题监测方法
CN106569165A (zh) 一种电子式电能表计量性能远程在线检测系统
KR20200103932A (ko) Ami 시스템에서의 전자식 전력량계의 고장 감지장치 및 그 방법
WO2021082531A1 (zh) 一种现场智能单相电能表故障诊断仪
CN210243820U (zh) 一种分路巡检的关口电能计量装置在线监测系统
CN104614700B (zh) 一种实时性好的电能计量装置远程监测诊断方法
CN112865321A (zh) 一种配变台区线损异常用户定位分析系统
CN104656050B (zh) 一种节省人力的电能计量装置远程监测诊断方法
CN111521966A (zh) 台区电表时间超差监测方法、装置、监测终端和存储介质
CN209911524U (zh) 一种停电检测终端
CN104656051B (zh) 实时性好的电能计量装置远程监测诊断方法
CN104656052B (zh) 一种降损增效的电能计量装置远程监测诊断方法
CN110174591A (zh) 一种基于暂态录波型故障指示器的线路测试系统及测试工装
CN209710088U (zh) 一种低压载波模块的通讯故障诊断终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880472

Country of ref document: EP

Kind code of ref document: A1