WO2021082512A1 - Use of blue-light activated blebbistatin analogues in killing drug-resistant bacteria - Google Patents

Use of blue-light activated blebbistatin analogues in killing drug-resistant bacteria Download PDF

Info

Publication number
WO2021082512A1
WO2021082512A1 PCT/CN2020/100528 CN2020100528W WO2021082512A1 WO 2021082512 A1 WO2021082512 A1 WO 2021082512A1 CN 2020100528 W CN2020100528 W CN 2020100528W WO 2021082512 A1 WO2021082512 A1 WO 2021082512A1
Authority
WO
WIPO (PCT)
Prior art keywords
blebbistatin
drug
resistant bacteria
blue light
cfu
Prior art date
Application number
PCT/CN2020/100528
Other languages
French (fr)
Inventor
Nai-Kei Wong
Yong-li XIE
Jing Yuan
Yang Zhang
Ziyuan ZHOU
Mingde Li
Lei Liu
Original Assignee
Shenzhen Third People's Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Third People's Hospital filed Critical Shenzhen Third People's Hospital
Publication of WO2021082512A1 publication Critical patent/WO2021082512A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0038Radiosensitizing, i.e. administration of pharmaceutical agents that enhance the effect of radiotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • A61L2/0052Visible light

Definitions

  • the invention relates to the field of biomedicine, and in particular relates to the use of blue-light activated blebbistatin analogues in killing drug-resistant bacteria and a method thereof.
  • Pathogenic bacteria commonly found in hospital-acquired infections include Gram-positive bacteria (e.g., Staphylococcus aureus, Enterococcus spp. ) and Gram-negative bacteria (e.g., Pseudomonas aeruginosa, Acinetobacter baumannii, E. coli) .
  • Staphylococcus aureus is a common food-borne pathogenic microorganism, often parasitic in the skin, nasal cavity, throat, gastrointestinal, suppurative sores, and easily lead to food poisoning.
  • Enterococcus is widely distributed in the gastrointestinal (GI) tract of human beings and is an important opportunistic pathogen in nosocomial infections, capable of causing urinary tract infections, skin and soft tissue infections, abdominal infections, meningitis, etc.
  • GI gastrointestinal
  • Pseudomonas aeruginosa is widely distributed in the natural environment, normal human skin, intestines, and respiratory tract. It is one of the major opportunistic pathogens encountered in the clinic, with close to 10%of hospital infections being caused by this bacterium.
  • Acinetobacter baumannii is commonly isolatable from the environment as well as the human skin, digestive system, urinary system, etc. The main population vulnerable to its infections is patients from intensive care unit (ICU) , elderly people, immuno-compromised patients. Acinetobacter baumannii also opportunistically cause infections in surgical and invasive treatments, including use of mechanical ventilators.
  • ICU intensive care unit
  • Acinetobacter baumannii also opportunistically cause infections in surgical and invasive treatments, including use of mechanical ventilators.
  • Phenotypic character of multidrug-resistant Acinetobacter baumannii is very prominent, typically involving extensive resistance to carbapenem and quinolone classes of antibiotics. Tigecycline and colistin antibiotics have become the last line of defense against clinical infections by Acinetobacter baumannii, but these two types of drugs tend to have major side-effects and relatively low efficacy. Escherichia coli is a common nosocomial pathogen. Due to uncritical and excessive use of broad-spectrum antibiotics, the spread of multidrug-resistant E. coli has greatly increased the challenge of anti-infective treatment. It has even reached a point that there are no effective anti-infective medicine available. In recent years, 80%of clinical antibacterial drugs have been made ineffective due to a menacing of drug resistance among bacterial pathogens.
  • One object of the invention is to provide the use of blue-light activated blebbistatin analogues in killing drug-resistant bacteria and a method thereof, which display an extremely efficient bactericidal activity under blue light, without risks for bacterial mutation or inducing drug resistance during the bacterial killing process, and thereby solve the problems of prior art.
  • One aspect of the present invention is the use of blue-light activated blebbistatin analogues in killing drug-resistant bacteria.
  • the structural formulas of the blebbistatin analogues are:
  • R 1 , R 2 , R 3 , R 4 and R 5 may be one of H, CN, NH 2 , F, Cl, Br, I, alkyl, haloalkyl, heteroalkyl, alkenyl, alkynyl, aryl, alkaryl, heterocyclyl, cycloalkyl, cycloalkenyl, cycloalkynyl, hydroxyalkyl, aminoalkyl, alkylamino, arylamino, dialkylamino, alkarylamino, aryloxy, arylalkoxy, acyloxy, carbamoyl, trifluoromethyl, trifluoromethoxy, phenoxy, benzyloxy, phosphonyl, phosphate, sulfonic, sulfonate, and sulfonamide; when one of R 1 , R 2 , R 3 , R 4 and R 5 is the above group, the remaining four groups are all H.
  • the structural formulas of the blebbistatin analogues are:
  • One of X 1 , X 2 , X 3 , X 4 and X 5 may be one of H, CN, CF 3 , F, Cl, Br, and I, and when one of X 1 , X 2 , X 3 , X 4 and X 5 is the above group, the remaining four groups are H.
  • One of R 1 , R 2 , R 3 , R 4 and R 5 may be one of H, CN, NH 2 , F, Cl, Br, I, alkyl, haloalkyl, heteroalkyl, alkenyl, alkynyl, aryl, alkaryl, heterocyclic, cycloalkyl, cycloalkenyl, cycloalkynyl, hydroxyalkyl, aminoalkyl, alkylamino, arylamino, dialkylamino, alkarylamino, aryloxy, arylalkoxy, acyloxy, carbamoyl, trifluoro
  • one of the blebbistatin analogues is (R) -blebbistatin.
  • the drug-resistant bacteria include Staphylococcus aureus, Escherichia coli, Enterococcus spp., Pseudomonas aeruginosa, and Acinetobacter baumannii.
  • the blue light excitation wavelength is 420 nm.
  • Another aspect of the present invention is a method of killing drug-resistant bacteria by using a blue-light activated blebbistatin analogue, which mainly comprises: mixing a liquid culture of exponential-phase drug-resistant bacteria having a 2-fold working density and a blebbistatin analogue having a 2-fold working concentration in a ratio of 1: 1. After mixing, the blue light with an excitation wavelength of 420 nm was used for irradiating the bacterial liquid culture for 30-60 min. To evaluate the killing effects of the compounds, an inoculum of the bacterial liquid culture was gently spotted vertically on the surface of an agar plate, and the plate was inverted and cultured for 12 hours for observation of any surviving colonies, based on which the bacterial killing efficiency was to be evaluated.
  • the absence or presence of residual regrowth of bacterial colonies on an inoculated agar plate provides a measure of bactericidal activity of blue-light activated blebbistatin analogues.
  • the agar plate assay is a sensitive screening test.
  • the blue light source is placed at 7.2 cm above liquid culture of exponential-phase drug-resistant bacteria.
  • the working density of the liquid culture of exponential-phase drug-resistant bacteria is 10 8 cfu/mL or lower.
  • the working concentrations of blebbistatin analogues are from 2 ⁇ M to 10 ⁇ M.
  • the liquid culture of exponential-phase drug-resistant bacteria may be prepared by the following steps:
  • the 2-fold working concentration of the blebbistatin analogue may be prepared with DMF (dimethylformamide) as a solvent to give a stock solution, which was then diluted to an intermediate concentration of 2-fold with phosphate buffered saline (PBS) .
  • DMF dimethylformamide
  • the composition of phosphate buffer (PBS) includes NaCl, KCl, Na 2 HPO 4 , and KH 2 PO 4 .
  • the invention can be used to effectively eradicate drug-resistant bacteria such as Staphylococcus aureus, Escherichia coli, Enterococcus spp., Pseudomonas aeruginosa, and Acinetobacter baumannii by the combined use of blue light (excitation at 420 nm) and (R) -blebbistatin, which has no known mammalian protein targets and is therefore biologically inactive.
  • the invention produces a strong bactericidal effect.
  • (R) -blebbistatin treatment was safe for 60 min treatment in vivo (in zebrafish embryo model) , and its bacterial sterilization efficiency is improved with increasing irradiation time. There is no risk of inducing drug resistance when blue light is absent.
  • the application scope of the invention is clearly not restricted by bacterial resistance, and provides a solid and powerful technical framework for the treatment of clinical multi-drug resistant bacteria.
  • Figure 1 A photochemical reaction platform with a blue LED light source in the invention.
  • FIG. 2 Acinetobacter baumannii of high densities (10 8 cfu/mL and 10 7 cfu/mL) was killed effectively by (R) -blebbistatin across a concentration gradient under blue light (excitation at 420 nm) , and thereafter any residual bacterial growth was detected on MH agar plates, with IC 50 value and MIC value reported for evaluation.
  • Figure 3 Acinetobacter baumannii of high densities (10 8 cfu/mL to 10 3 cfu/mL) was killed by (R) -blebbistatin under blue light (excitation at 420 nm) , whose residual bacterial growth was monitored on MH agar plates.
  • Figure 4 Acinetobacter baumannii of high density (10 8 cfu/mL) was killed by (R) -blebbistatin under blue light of different wavelengths, whose residual bacterial growth was evaluated on MH agar plates to give a corresponding histogram reporting residual growth.
  • Figure 5 Different strains of Acinetobacter baumannii of high density (10 8 cfu/mL) was killed by (R) -blebbistatin under blue light (excitation at 420 nm) , whose residual bacterial growth was monitored on MH agar plates.
  • FIG. 6 Staphylococcus aureus of high density (10 8 cfu/mL) was killed by (R) -blebbistatin under blue light (excitation at 420 nm) , whose residual bacterial growth was evaluated on MH agar plates to give a corresponding histogram reporting residual growth.
  • Figure 7 Enterococcus faecium of high density (10 8 cfu/mL) was killed by (R) -blebbistatin under blue light (excitation at 420 nm) , whose residual bacterial growth was evaluated on MH agar plates to give a corresponding histogram reporting residual growth.
  • FIG. 8 E. coli of high density (10 8 cfu/mL) was killed by (R) -blebbistatin under blue light (excitation at 420 nm) , whose residual bacterial growth was evaluated on MH agar plates to give a corresponding histogram reporting residual growth.
  • Figure 9 Pseudomonas aeruginosa of high density (10 8 cfu/mL) was killed by (R) -blebbistatin under blue light (excitation at 420 nm) , whose residual bacterial growth was evaluated on MH agar plates to give a corresponding histogram reporting residual growth.
  • Figure 10 Klebsiella pneumoniae of high density (10 8 cfu/mL) was treated with (R) -blebbistatin under blue light (excitation at 420 nm) , whose residual bacterial growth was evaluated on MH agar plates to give a corresponding histogram reporting residual growth.
  • Figure 11 Microscopic imaging of the effects of (R) -blebbistatin and (S) -blebbistatin on zebrafish embryos in vivo (20 ⁇ magnification) .
  • Figure 12 Bacterial killing effects of (R) -blebbistatin and (S) -blebbistatin across a concentration gradient under blue light (excitation at 420 nm) on Acinetobacter baumannii at relatively high density (10 7 cfu/mL) , as evaluated on MH agar plates.
  • FIG 13 Heatmap of antimicrobial susceptibility test (AST) data (MIC values) for various drug-resistant bacteria tested in the embodiments.
  • Turbidity or growth can be validated by measuring optic density or absorbance (600 nm) in a Nanodrop instrument.
  • (R) -blebbistatin in PBS is to be mixed with the bacterial suspension by doing a 2-fold dilution, and then placed at a certain distance under the blue light source for irradiation to allow bacterial killing to occur.
  • step 2 convert a bacterial culture in logarithmic growth phase to a 2-fold working density, typically as 2 ⁇ 10 8 cfu/mL or 2 ⁇ 10 7 cfu/mL.
  • This blue-light platform consists of a rectangular box with a hollow circular hole at the top that can fit in the LED lamp.
  • the LED is coupled to a small fan acting as a heat sink for heat dissipation to reduce the errors generated by heat.
  • the Eppendorf tube containing the bacterial suspension to be killed by the compound is left to stand upright in a transparent plastic rack, so that the liquid level of the bacterial suspension and the LED lamp is separated by a distance of 7.2 cm.
  • step 4 Based on the (R) -blebbistatin treated bacterial suspension obtained in step 3, by means of a pipetman, about 6 ⁇ L of the undiluted suspension was vertically spotted as an inoculum on MH agar plates. The agar plates were incubated in an inverted position in an incubator for 12 hours for visualizing any bactericidal effects.
  • a clinical isolate of drug-resistant Acinetobacter baumannii (strain GD0302) was used for testing bactericidal effects at a working density of 10 8 cfu/mL or 10 7 cfu/mL.
  • the blue LED light source was set as 420 nm to deliver irradiation for 60 min. It was observed that 2 ⁇ M (R) -blebbistatin can kill a large number (10 8 cfu/mL) of drug-resistant Acinetobacter baumannii, and that (R) -blebbistatin at a concentration above 2 ⁇ M can completely eradicate drug-resistant Acinetobacter baumannii.
  • a method for killing (density-gradient sterilization) the clinical isolate of drug-resistant Acinetobacter baumannii (strain GD0302) by a blue-light activated blebbistatin analogue, (R) -blebbistatin, comprising the following steps:
  • Example 1 Unlike 3.1) in Example 1, the working density of the bacteria was changed to cover the range of 10 8 cfu/mL-10 3 cfu/mL. Prior to photochemical reactions, bacteria were serially diluted in PBS with a 10-fold density gradient to give 2 ⁇ working densities, i.e. : 2 ⁇ 10 8 cfu/mL, 2 ⁇ 10 7 cfu/mL, 2 ⁇ 10 6 cfu/mL, 2 ⁇ 10 5 cfu/mL, 2 ⁇ 10 4 cfu /mL, 2 ⁇ 10 3 cfu/mL.
  • 2 ⁇ working densities i.e. : 2 ⁇ 10 8 cfu/mL, 2 ⁇ 10 7 cfu/mL, 2 ⁇ 10 6 cfu/mL, 2 ⁇ 10 5 cfu/mL, 2 ⁇ 10 4 cfu /mL, 2 ⁇ 10 3 cfu/mL
  • This example uses a clinical isolate of drug-resistant Acinetobacter baumannii (strain GD0302) with a working density of 10 8 cfu/mL, 10 7 cfu/mL, 10 6 cfu/mL, 10 5 cfu/mL, 10 4 cfu/mL, or 10 3 cfu/mL.
  • strain GD0302 drug-resistant Acinetobacter baumannii
  • a blue-light activated blebbistatin analogue (R) -blebbistatin kills the clinical isolate of drug-resistant Acinetobacter baumannii (strain GD0302) under blue light at different wavelengths, including the following steps:
  • Example 3 the density of the drug-resistant Acinetobacter baumannii in Example 3 was 10 8 cfu/mL, that is, its 2 ⁇ density was 2 ⁇ 10 8 cfu/mL.
  • the concentration of (R) -blebbistatin used in Example 3 is 0 ⁇ M, 1 ⁇ M, and 6 ⁇ M, that is, their 2 ⁇ concentrations were 2 ⁇ 0 ⁇ M, 2 ⁇ 1 ⁇ M, 2 ⁇ 6 ⁇ M.
  • Example 3 uses three different wavelengths of blue light sources, such as 360 nm, 420 nm, and 460 nm.
  • a clinical isolate of drug-resistant Acinetobacter baumannii (strain GD0302) was used at a working density of 10 8 cfu/mL. After mixing with 0 ⁇ M, 1 ⁇ M, and 6 ⁇ M (R) -blebbistatin, blue light irradiation proceeded at 360 nm, 420 nm or 460 nm for 60 min.
  • a method for killing different clinical subtypes of Acinetobacter baumannii by blebbistatin analogue (R) -blebbistatin activated by blue light comprising the following steps:
  • Example 1 Acinetobacter baumannii isolates of different sequence types (STs) were used, including: GD0302 of sequence type 195, ATCC19606 of sequence type 931, GD0311 of sequence type 208, AYE of sequence type 231, and GD0304 of sequence type 195.
  • STs Acinetobacter baumannii isolates of different sequence types
  • Example 2 Unlike the case of different subtypes of drug-resistant A. baumannii used in example 4, 3.1) in Example 1, the working densities of 10 8 cfu/mL, 10 7 cfu/mL, and 10 6 cfu/mL were used, which were diluted from 2-fold densities: 2 ⁇ 10 8 cfu/mL, 2 ⁇ 10 7 cfu/mL, and 2 ⁇ 10 6 cfu/mL.
  • Example 4 Unlike 4.1) in Example 1, in Example 4, the inoculum spotted on the MH agar plates was of a bacterial liquid density of 10 8 cfu/mL;
  • Acinetobacter baumannii isolates of different sequence types of drug-resistant were used, and the working density was 10 8 cfu/mL.
  • After mixing with 6 ⁇ M (R) -blebbistatin blue light irradiation proceeded at a wavelength of 420 nm for 60 min.
  • 6 ⁇ M of (R) -blebbistatin under 420 nm blue light could completely kill drug-resistant Acinetobacter baumannii of different sequence types without residual colonies ( Figure 5) .
  • the antimicrobial susceptibility test (AST) profiles of drug-resistant Acinetobacter baumannii of different sequence types are as shown in Table 1.
  • Table 1 Antimicrobial susceptibility test (AST) results of drug-resistant Acinetobacter baumannii of different sequence types
  • AMP ampicillin
  • AMC amoxicillin/clavulanate
  • CSL cefoperazone/sulbactam
  • IMP imipenem
  • MEM meropenem
  • CIP ciprofloxacin
  • AMK amikacin
  • COL colistin
  • Antibiotic categories I: penicillins; II: cephalosporins; III: penems; IV: quinolones; V: aminoglycosides; VI: lipopeptides.
  • a method for killing clinical S. aureus by a blue-light activated blebbistatin analogue (R) -blebbistatin comprising the following steps:
  • the S. aureus working density used in example 5 was 10 8 cfu/mL, and whose 2 ⁇ density was thus 2 ⁇ 10 8 cfu/mL.
  • Staphylococcus aureus (strain Sau16162) was used, whose working density was 10 8 cfu/mL. After mixing with 10 ⁇ M of (R) -blebbistatin, irradiation proceeded under 420 nm blue light for 60 min. It was found that 10 ⁇ M of (R) -blebbistatin under blue light completely kills S. aureus on MH agar plates, with no residual colonies. Staphylococcus aureus also did not re-grow in liquid culture (see Figure 6) .
  • the heatmap for antimicrobial susceptibility test (AST) results (MIC value) of S. aureus with respect to clinical antibiotics of the embodiment is as shown in figure 13.
  • a method for killing a clinical isolate of drug-resistant Enterococcus faecalis by a blue-light activated blebbistatin analogue (R) -blebbistatin comprising the following steps: the culture materials, equipment and processes of the embodiment are substantially the same as those of the first embodiment, the difference being:
  • the density of Enterococcus faecalis used in example 6 was 10 8 cfu/mL, whose 2 ⁇ density was 2 ⁇ 10 8 cfu/mL.
  • Enterococcus faecium strain Ef36950
  • a working density of 10 8 cfu/mL 10 8 cfu/mL.
  • 10 ⁇ M of (R) -blebbistatin 10 ⁇ M of (R) -blebbistatin under blue light can completely eradicate Enterococcus faecium without residual colonies on MH agar plates and without regrowth in liquid culture ( Figure 7) .
  • Heatmap of antimicrobial susceptibility test (AST) results (MIC value) for Enterococcus faecium used in the present embodiment is as shown in figure 13.
  • a method for killing a clinical isolate of drug-resistant Escherichia coli by a blue-activated blebbistatin analogue (R) -blebbistatin comprising the following steps:
  • the working density of the drug-resistant Escherichia coli used in example 7 was 10 8 cfu/mL, and thus its 2 ⁇ density was 2 ⁇ 10 8 cfu/mL.
  • Heatmap of antimicrobial susceptibility test (AST) results (MIC value) for Escherichia coli used in the example is as shown in figure 13.
  • a method for killing a clinical isolate of Pseudomonas aeruginosa by a blue-light activated blebbistatin analogue (R) -blebbistatin comprising the following steps:
  • Pseudomonas aeruginosa used in example 8 had a working density of 10 8 cfu/mL, and thus its 2 ⁇ density is 2 ⁇ 10 8 cfu/mL.
  • Heatmap of antimicrobial susceptibility test (AST) results (MIC values) of Pseudomonas aeruginosa used in this example is as shown in figure 13.
  • a method for killing Klebsiella pneumoniae by a blue-light activated blebbistatin analogue (R) -blebbistatin comprising the following steps:
  • the working density of Klebsiella pneumoniae used in example 9 was 10 8 cfu/mL, and thus its 2 ⁇ density was 2 ⁇ 10 8 cfu/mL.
  • (S) -blebbistatin a known myosin II inhibitor is expected to elicit cellular toxicity
  • (R) -blebbistatin a compound with no known biological targets in mammalian cells, is expected to elicit low or no toxicity in dark conditions.
  • This example uses a clinical isolate of drug-resistant Acinetobacter baumannii (strain GD0302) with a density of 10 7 cfu/mL, mixed with 0 ⁇ M, 2 ⁇ M, 10 ⁇ M of (R) -blebbistatin and (S) -blebbistatin. After that, blue light irradiation was performed at a wavelength of 420 nm for 60 min.
  • the structural formulas of the blebbistatin analogues include:
  • R 1 , R 2 , R 3 , R 4 and R 5 may be one of H, CN, NH 2 , F, Cl, Br, I, alkyl, haloalkyl, heteroalkyl, alkenyl, alkynyl, aryl, alkaryl, heterocyclyl, cycloalkyl, cycloalkenyl, cycloalkynyl, hydroxyalkyl, aminoalkyl, alkylamino, arylamino, dialkylamino, alkarylamino, aryloxy, arylalkoxy, acyloxy, carbamoyl, trifluoromethyl, trifluoromethoxy, phenoxy, benzyloxy, phosphonyl, phosphate, sulfonic, sulfonate, and sulfonamide; when one of R 1 , R 2 , R 3 , R 4 and R 5 is the above group, the remaining four groups are all H.
  • the structural formulas of the blebbistatin analogues also include:
  • One of X 1 , X 2 , X 3 , X 4 and X 5 may be one of H, CN, CF 3 , F, Cl, Br, and I, and when one of X 1 , X 2 , X 3 , X 4 and X 5 is the above group, the remaining four groups are H.
  • One of R 1 , R 2 , R 3 , R 4 and R 5 may be one of H, CN, NH 2 , F, Cl, Br, I, alkyl, haloalkyl, heteroalkyl, alkenyl, alkynyl, aryl, alkaryl, heterocyclic, cycloalkyl, cycloalkenyl, cycloalkynyl, hydroxyalkyl, aminoalkyl, alkylamino, arylamino, dialkylamino, alkarylamino, aryloxy, arylalkoxy, acyloxy, carbamoyl, trifluoro

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Communicable Diseases (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided herein is the use of biologically inert compounds that can be photoactiveted by blue light at a specific wavelength to remove or kill drug-resistant bacteria. The photoactivatable compounds include blebbistatin analogues such as (R)-blebbistatin. (R)-blebbistatin has no mammalian protein targets and can be photoactivated by blue light to exert significant bactericidal effects. Also provided herein is a method for killing pathogenic bacteria of varied antimicrobial resistance profiles including Staphylococcus aureus, Escherichia coli, Enterococcus spp., Pseudomonas aeruginosa, and Acinetobacter baumannii. Bacterial killing efficiency increases with increasing illumination time, and there is no risk of inducing drug resistance. (R) -blebbistatin is safe to zebrafish embryos after 60 min treatment in vivo. The method is not limited by antibiotic resistance in bacteria, which provides foundation for treating infections by multi-drug resistant pathogens including but not limited to bacteria.

Description

USE OF BLUE-LIGHT ACTIVATED BLEBBISTATIN ANALOGUES IN KILLING DRUG-RESISTANT BACTERIA TECHNICAL FIELD
The invention relates to the field of biomedicine, and in particular relates to the use of blue-light activated blebbistatin analogues in killing drug-resistant bacteria and a method thereof.
BACKGROUND
Pathogenic bacteria commonly found in hospital-acquired infections (i.e., nosocomial infections) include Gram-positive bacteria (e.g., Staphylococcus aureus, Enterococcus spp. ) and Gram-negative bacteria (e.g., Pseudomonas aeruginosa, Acinetobacter baumannii, E. coli) . Staphylococcus aureus is a common food-borne pathogenic microorganism, often parasitic in the skin, nasal cavity, throat, gastrointestinal, suppurative sores, and easily lead to food poisoning. Enterococcus is widely distributed in the gastrointestinal (GI) tract of human beings and is an important opportunistic pathogen in nosocomial infections, capable of causing urinary tract infections, skin and soft tissue infections, abdominal infections, meningitis, etc. However, due to intrinsic drug resistance of Enterococcus, incidence of infection and mortality rate associated with its infections have increased, adding to treatment costs and disease burden. Pseudomonas aeruginosa is widely distributed in the natural environment, normal human skin, intestines, and respiratory tract. It is one of the major opportunistic pathogens encountered in the clinic, with close to 10%of hospital infections being caused by this bacterium. Moreover, Pseudomonas aeruginosa is naturally resistant to most antibiotics and can rapidly acquire drug resistance. Except for quinolone class of antibiotics, other antibiotics need to be used via an injection route. Acinetobacter baumannii is commonly isolatable from the environment as well as the human skin, digestive system, urinary system, etc. The main population vulnerable to its infections is patients from intensive care unit (ICU) , elderly people, immuno-compromised patients. Acinetobacter baumannii also opportunistically cause infections in surgical and invasive treatments, including use of mechanical ventilators. Phenotypic character of multidrug-resistant Acinetobacter baumannii is very prominent, typically involving extensive resistance to carbapenem and quinolone classes of antibiotics. Tigecycline and colistin antibiotics have become the last line of defense against clinical infections by Acinetobacter baumannii, but these two types of drugs tend to have major side-effects and relatively low efficacy. Escherichia coli is a common nosocomial pathogen. Due to uncritical and excessive use of broad-spectrum antibiotics, the spread of multidrug-resistant E. coli has greatly increased the challenge of anti-infective treatment. It has even reached a point that there are no effective anti-infective medicine available. In recent years, 80%of clinical antibacterial drugs have been made ineffective due to a menacing of drug resistance among bacterial pathogens.
At present, due to a critical lack of incentives for research and development of new antibiotics, it is extremely urgent to search for alternative antimicrobial strategies to address the serious shortages of usable antibiotics. Blue light-dependent photochemotherapies are currently an attractive and promising therapeutic approach, which is directly and precisely delivered by controllable photochemical reactions; photoactivatable agents do not cause genetic mutations or resistance in bacteria in the absence of light. The synergistic bactericidal effects of photoactivatable agents and blue light increase with time, and there is no risk of inducing drug resistance.
Aaron F. Straight et al. (Aaron F. Straight, Dissecting Temporal and Spatial Control of Cytokinesis with a Myosin II Inhibitor, Science, 2003) disclosed the chemical structure and biological characteristics of levorotatory blebbistatin (that is, (S) -blebbistatin) and dextrorotatory blebbistatin (that is, (R) -blebbistatin) . In particular, (R) -blebbistatin has been shown to be devoid of biological targets and is biologically active in mammalian cells. There have been no studies on (R) -blebbistatin biological activity or its biological or medical applications to this date.
SUMMARY
One object of the invention is to provide the use of blue-light activated blebbistatin analogues in killing drug-resistant bacteria and a method thereof, which display an extremely efficient bactericidal activity under blue light, without risks for bacterial mutation or inducing drug resistance during the bacterial killing process, and thereby solve the problems of prior art.
One aspect of the present invention is the use of blue-light activated blebbistatin analogues in killing drug-resistant bacteria.
Preferably, the structural formulas of the blebbistatin analogues are:
Figure PCTCN2020100528-appb-000001
One of R 1, R 2, R 3, R 4 and R 5 may be one of H, CN, NH 2, F, Cl, Br, I, alkyl, haloalkyl, heteroalkyl, alkenyl, alkynyl, aryl, alkaryl, heterocyclyl, cycloalkyl, cycloalkenyl, cycloalkynyl, hydroxyalkyl, aminoalkyl, alkylamino, arylamino, dialkylamino, alkarylamino, aryloxy, arylalkoxy, acyloxy, carbamoyl, trifluoromethyl, trifluoromethoxy, phenoxy, benzyloxy, phosphonyl, phosphate, sulfonic, sulfonate, and sulfonamide; when one of R 1, R 2, R 3, R 4 and R 5 is the above group, the remaining four groups are all H.
Preferably, the structural formulas of the blebbistatin analogues are:
Figure PCTCN2020100528-appb-000002
One of X 1, X 2, X 3, X 4 and X 5 may be one of H, CN, CF 3, F, Cl, Br, and I, and when one of X 1, X 2, X 3, X 4 and X 5 is the above group, the remaining four groups are H.One of R 1, R 2, R 3, R 4 and R 5 may be one of H, CN, NH 2, F, Cl, Br, I, alkyl, haloalkyl, heteroalkyl, alkenyl, alkynyl, aryl, alkaryl, heterocyclic, cycloalkyl, cycloalkenyl, cycloalkynyl, hydroxyalkyl, aminoalkyl, alkylamino, arylamino, dialkylamino, alkarylamino, aryloxy, arylalkoxy, acyloxy, carbamoyl, trifluoromethyl, trifluoromethoxy, phenoxy, benzyloxy, phosphonyl, phosphate, sulfonic, sulfonate, and sulfonamide, and when one of R 1, R 2, R 3, R 4 and R 5 is the above groups, the remaining four groups are H.
More preferably, one of the blebbistatin analogues is (R) -blebbistatin.
Preferably, the drug-resistant bacteria include Staphylococcus aureus, Escherichia coli, Enterococcus spp., Pseudomonas aeruginosa, and Acinetobacter baumannii.
Preferably, the blue light excitation wavelength is 420 nm.
Another aspect of the present invention is a method of killing drug-resistant bacteria by using a blue-light activated blebbistatin analogue, which mainly comprises: mixing a liquid culture of exponential-phase drug-resistant bacteria having a 2-fold working density and a blebbistatin analogue having a 2-fold working concentration in a ratio of 1: 1. After mixing, the blue light with an excitation wavelength of 420 nm was used for irradiating the bacterial liquid culture for 30-60 min. To evaluate the killing effects of the compounds, an inoculum of the bacterial liquid culture was gently spotted vertically on the surface of an agar plate, and the plate was inverted and cultured for 12 hours for observation of any surviving colonies, based on which the bacterial killing efficiency was to be evaluated. The absence or presence of residual regrowth of bacterial colonies on an inoculated agar plate provides a measure of bactericidal activity of blue-light activated blebbistatin analogues. The agar plate assay is a sensitive screening test.
Preferably, the blue light source is placed at 7.2 cm above liquid culture of exponential-phase drug-resistant bacteria.
Preferably, the working density of the liquid culture of exponential-phase drug-resistant bacteria is 10 8 cfu/mL or lower.
Preferably, the working concentrations of blebbistatin analogues are from 2 μM to 10 μM.
Preferably, the liquid culture of exponential-phase drug-resistant bacteria may be prepared by the following steps:
(1) Drug-resistant bacteria stored at -80 ℃ were streaked multiple times on an agar plate, and monoclonal bacterial colonies were obtained after 12 h culture on the plate;
(2) The monoclonal bacterial colonies were picked and added to an LB (Luria-Bertani) medium and /or MH (Müller-Hinton) medium, and cultured for 1.5 h in a bacterial culture shaker to obtain the liquid culture of exponential-phase drug-resistant bacteria.
Preferably, the 2-fold working concentration of the blebbistatin analogue may be prepared with DMF (dimethylformamide) as a solvent to give a stock solution, which was then diluted to an intermediate concentration of 2-fold with phosphate buffered saline (PBS) . The composition of phosphate buffer (PBS) includes NaCl, KCl, Na 2HPO 4, and KH 2PO 4.
Compared with prior art, the invention can be used to effectively eradicate drug-resistant bacteria such as Staphylococcus aureus, Escherichia coli, Enterococcus spp., Pseudomonas aeruginosa, and Acinetobacter baumannii by the combined use of blue light (excitation at 420 nm) and (R) -blebbistatin, which has no known mammalian protein targets and is therefore biologically inactive. The invention produces a strong bactericidal effect. As an embodiment of the invention, (R) -blebbistatin treatment was safe for 60 min treatment in vivo (in zebrafish embryo model) , and its bacterial sterilization efficiency is improved with increasing irradiation time. There is no risk of inducing drug resistance when blue light is absent. The application scope of the invention is clearly not restricted by bacterial resistance, and provides a solid and powerful technical framework for the treatment of clinical multi-drug resistant bacteria.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1: A photochemical reaction platform with a blue LED light source in the invention.
Figure 2: Acinetobacter baumannii of high densities (10 8 cfu/mL and 10 7 cfu/mL) was killed effectively by (R) -blebbistatin across a concentration gradient under blue light (excitation at 420 nm) , and thereafter any residual bacterial growth was detected on MH agar plates, with IC 50 value and MIC value reported for evaluation.
Figure 3: Acinetobacter baumannii of high densities (10 8 cfu/mL to 10 3 cfu/mL) was killed by (R) -blebbistatin under blue light (excitation at 420 nm) , whose residual bacterial growth was monitored on MH agar plates.
Figure 4: Acinetobacter baumannii of high density (10 8 cfu/mL) was killed by (R) -blebbistatin under blue light of different wavelengths, whose residual bacterial growth was evaluated on MH agar plates to give a corresponding histogram reporting residual growth.
Figure 5: Different strains of Acinetobacter baumannii of high density (10 8 cfu/mL) was killed by (R) -blebbistatin under blue light (excitation at 420 nm) , whose residual bacterial growth was monitored on MH agar plates.
Figure 6: Staphylococcus aureus of high density (10 8 cfu/mL) was killed by (R) -blebbistatin under blue light (excitation at 420 nm) , whose residual bacterial growth was evaluated on MH agar plates to give a corresponding histogram reporting residual growth.
Figure 7: Enterococcus faecium of high density (10 8 cfu/mL) was killed by (R) -blebbistatin under blue light (excitation at 420 nm) , whose residual bacterial growth was evaluated on MH agar plates to give a corresponding histogram reporting residual growth.
Figure 8: E. coli of high density (10 8 cfu/mL) was killed by (R) -blebbistatin under blue light (excitation at 420 nm) , whose residual bacterial growth was evaluated on MH agar plates to give a corresponding histogram reporting residual growth.
Figure 9: Pseudomonas aeruginosa of high density (10 8 cfu/mL) was killed by (R) -blebbistatin under blue light (excitation at 420 nm) , whose residual bacterial growth was evaluated on MH agar plates to give a corresponding histogram reporting residual growth.
Figure 10: Klebsiella pneumoniae of high density (10 8 cfu/mL) was treated with (R) -blebbistatin under blue light (excitation at 420 nm) , whose residual bacterial growth was evaluated on MH agar plates to give a corresponding histogram reporting residual growth.
Figure 11: Microscopic imaging of the effects of (R) -blebbistatin and (S) -blebbistatin on zebrafish embryos in vivo (20× magnification) .
Figure 12: Bacterial killing effects of (R) -blebbistatin and (S) -blebbistatin across a concentration gradient under blue light (excitation at 420 nm) on Acinetobacter baumannii at relatively high density (10 7 cfu/mL) , as evaluated on MH agar plates.
Figure 13: Heatmap of antimicrobial susceptibility test (AST) data (MIC values) for various drug-resistant bacteria tested in the embodiments. R: resistant; S: sensitive; I: intermediate.
DETAILED DESCRIPTION OF THE EMBODIMENTS
To clarify the purpose, technical solution and advantages of the invention, the present invention is further described herein in detail with reference to the accompanying drawings. In addition to a variety of clinical pathogens such as Acinetobacter baumannii, the rest of the equipment and reagents involved in the embodiments are commercially available.
Example 1
A method ( “concentration gradient sterilization” ) for killing clinical isolates of drug-resistant Acinetobacter baumannii (strain GD0302) by a blebbistatin analogue, (R) -blebbistatin, activated under blue light at 420 nm, comprising the following steps:
1. Streak a clinical isolate of drug-resistant Acinetobacter baumannii on a culture plate to obtain a monoclonal clone.
1.1) Retrieve the clinical isolate of drug-resistant Acinetobacter baumannii (strain GD0302) stored at -80 ℃. After briefly standing the bacterial stock on ice, use a circular inoculation needle to draw 1 μL of the bacterial stock and inoculate the LB agar plates by streaking multiple lines.
1.2) Invert an inoculated plate and leave it in a bacterial incubator (37℃) for 12 h to obtain a bacterial lawn from a monoclonal strain.
2. Use the purified monoclonal strain to inoculate fresh culture medium to obtain a liquid culture of Acinetobacter baumannii in logarithmic growth phase.
2.1) Pick 1-4 bacterial colonies of monoclonal strains from LB agar plates and add them to a culture tube containing 3 mL of LB medium for overnight incubation with shaking (220 rpm) .
2.2) The next morning, take 1/10 of the overnight bacterial culture and add it to a new culture tube containing 3 mL LB medium for 1-1.5 h incubation with shaking (220 rpm) . This typically yields a liquid culture of Acinetobacter baumannii in logarithmic growth phase.
2.3) Turbidity or growth can be validated by measuring optic density or absorbance (600 nm) in a Nanodrop instrument. The desired range of bacterial harvest is such that OD 600 nm = 0.6-1.0, which corresponds to logarithmic growth phase of bacterial culture.
2.4) Transfer 3 mL of the bacterial culture to a 15 mL centrifuge tube and spin down the culture at 4000×g for 10 min to collect a bacterial cell pellet.
2.5) Prepare PBS, and wash the bacteria twice with 3 mL PBS, followed by centrifugation at 4000×g for 5 min.
2.6) Re-suspend the bacteria in 3 mL PBS, and use Nanodrop to re-obtain accurate OD 600 nm values for the bacterial suspension in PBS.
3. (R) -blebbistatin in PBS is to be mixed with the bacterial suspension by doing a 2-fold dilution, and then placed at a certain distance under the blue light source for  irradiation to allow bacterial killing to occur.
3.1) According to the OD values obtained in step 2, convert a bacterial culture in logarithmic growth phase to a 2-fold working density, typically as 2 × 10 8 cfu/mL or 2 × 10 7 cfu/mL.
3.2) Weigh 5 mg of (R) -blebbistatin into the organic solvent DMF to prepare a 100 mM stock solution. Store this at -20 ℃ until use. On the day of application, prepare intermediate stock solutions in PBS at 2 × working concentration of the compound: 2 × 0.4 μM, 2 × 2 μM, 2 × 6 μM.
3.3) Pipette 500 μL of 2× bacterial suspension in PBS and add it to 500 μL of 2×(R) -blebbistatin in PBS in a 1.5 mL Eppendorf tube, followed by mixing to give a desired working concentration (i.e., 1 × 10 8 cfu/mL or 1 × 10 7 cfu/mL) .
3.4) Assemble the blue LED light source platform (see Figure 1. This blue-light platform consists of a rectangular box with a hollow circular hole at the top that can fit in the LED lamp. The LED is coupled to a small fan acting as a heat sink for heat dissipation to reduce the errors generated by heat. The Eppendorf tube containing the bacterial suspension to be killed by the compound is left to stand upright in a transparent plastic rack, so that the liquid level of the bacterial suspension and the LED lamp is separated by a distance of 7.2 cm.
3.5) Proceed with blue light (420 nm) irradiation for 60 min. At the end of the photochemical reaction, collect the bacterial suspension in Eppendorf tube and immediately placed it on ice to avoid further reaction.
4. Assess the bactericidal effect and determine if there are residual colonies of bacteria surviving the photochemical reaction, after regrowth in a sufficiently long period of time on an MH agar plate.
4.1) Based on the (R) -blebbistatin treated bacterial suspension obtained in step 3, by means of a pipetman, about 6 μL of the undiluted suspension was vertically spotted as an inoculum on MH agar plates. The agar plates were incubated in an inverted position in an incubator for 12 hours for visualizing any bactericidal effects.
5. Results
In this example, a clinical isolate of drug-resistant Acinetobacter baumannii (strain GD0302) was used for testing bactericidal effects at a working density of 10 8 cfu/mL or 10 7 cfu/mL. After mixing with different concentrations of (R) -blebbistatin, the blue LED light source was set as 420 nm to deliver irradiation for 60 min. It was observed that 2 μM (R) -blebbistatin can kill a large number (10 8 cfu/mL) of drug-resistant Acinetobacter baumannii, and that (R) -blebbistatin at a concentration above 2 μM can completely eradicate drug-resistant Acinetobacter baumannii. For 10 7 cfu/mL of Acinetobacter baumannii, (R) -blebbistatin at 2 μM or more can completely eradicate drug-resistant Acinetobacter baumannii. The corresponding MICs (minimum inhibitory concentration) are 2.52 μg/mL (for 10 8 cfu/mL) , and 1.84 μg/mL (for 10 7 cfu/mL) (See Figure 2) .
Example 2
A method for killing (density-gradient sterilization) the clinical isolate of drug-resistant Acinetobacter baumannii (strain GD0302) by a blue-light activated blebbistatin analogue, (R) -blebbistatin, comprising the following steps:
The culture materials, instruments and processes of this embodiment are basically the same as those of the first embodiment, and the difference lies in:
(1) Unlike 3.1) in Example 1, the working density of the bacteria was changed to cover the range of 10 8 cfu/mL-10 3 cfu/mL. Prior to photochemical reactions, bacteria were serially diluted in PBS with a 10-fold density gradient to give 2 × working densities, i.e. : 2 × 10 8 cfu/mL, 2 × 10 7 cfu/mL, 2 × 10 6 cfu/mL, 2 × 10 5 cfu/mL, 2 × 10 4 cfu /mL, 2 × 10 3 cfu/mL.
(2) Results
This example uses a clinical isolate of drug-resistant Acinetobacter baumannii (strain GD0302) with a working density of 10 8 cfu/mL, 10 7 cfu/mL, 10 6 cfu/mL, 10 5 cfu/mL, 10 4 cfu/mL, or 10 3 cfu/mL. After mixing with 6 μM of (R) -blebbistatin, the bacterial suspension was exposed to blue light (420 nm) for 60 min. It was observed that 6 μM of (R) -blebbistatin was able to eradicate drug-resistant Acinetobacter baumannii at all densities tested (Figure 3) .
Example 3
A blue-light activated blebbistatin analogue (R) -blebbistatin kills the clinical isolate of drug-resistant Acinetobacter baumannii (strain GD0302) under blue light at different wavelengths, including the following steps:
The culture materials, instruments and processes of this embodiment are basically the same as those of the first embodiment, and the difference lies in:
(1) Unlike 3.1) in Example 1, the density of the drug-resistant Acinetobacter baumannii in Example 3 was 10 8 cfu/mL, that is, its 2 × density was 2×10 8 cfu/mL.
(2) Unlike 3.2) in Example 1, the concentration of (R) -blebbistatin used in Example 3 is 0 μM, 1 μM, and 6 μM, that is, their 2 × concentrations were 2×0 μM, 2×1 μM, 2 × 6 μM.
(3) Unlike Example 3.5) , Example 3 uses three different wavelengths of blue light sources, such as 360 nm, 420 nm, and 460 nm.
(4) Unlike 4.1 in Example 1, based on the (R) -blebbistatin treated bacterial suspension obtained in Step 3, 100 μL of MH medium (4 wells) and 10 μL of the bacterial solution was added to a well (in at least 4 replicates) in a 96-well microplate, and the culture was allowed to stand in a bacterial incubator. After culturing overnight, the OD 600 nm absorbance value was measured by an absorbance reader for microplates to assess any bactericidal effects.
(5) Results
In this example, a clinical isolate of drug-resistant Acinetobacter baumannii (strain GD0302) was used at a working density of 10 8 cfu/mL. After mixing with 0 μM, 1 μM, and 6 μM (R) -blebbistatin, blue light irradiation proceeded at 360 nm, 420 nm or 460 nm for 60 min. It was observed that a 460 nm wavelength with (R) -blebbistatin had a weak bactericidal activity; a 360 nm wavelength with (R) -blebbistatin had no bactericidal effects; and a 420 nm wavelength with (R) -blebbistatin could stop growth of drug-resistant Acinetobacter baumannii at 6 μM. The strain was completely killed (Figure 4) .
Example 4
A method for killing different clinical subtypes of Acinetobacter baumannii by blebbistatin analogue (R) -blebbistatin activated by blue light, comprising the following steps:
The culture materials, instruments and processes of this embodiment are basically the same as those of the first embodiment, and the difference lies in:
(1) Unlike 1.1) in Example 1, this time, Acinetobacter baumannii isolates of different sequence types (STs) were used, including: GD0302 of sequence type 195, ATCC19606 of sequence type 931, GD0311 of sequence type 208, AYE of sequence type 231, and GD0304 of sequence type 195.
(2) Unlike the case of different subtypes of drug-resistant A. baumannii used in example 4, 3.1) in Example 1, the working densities of 10 8 cfu/mL, 10 7 cfu/mL, and 10 6 cfu/mL were used, which were diluted from 2-fold densities: 2 × 10 8 cfu/mL, 2 ×10 7 cfu/mL, and 2 × 10 6 cfu/mL.
(3) Unlike 4.1) in Example 1, in Example 4, the inoculum spotted on the MH agar plates was of a bacterial liquid density of 10 8 cfu/mL;
(4) Results
In this example, Acinetobacter baumannii isolates of different sequence types of drug-resistant (strains GD0302, ATCC19606, GD0311, AYE, and GD0304) were used, and the working density was 10 8 cfu/mL. After mixing with 6 μM (R) -blebbistatin, blue light irradiation proceeded at a wavelength of 420 nm for 60 min. As visualized on MH agar plates, 6 μM of (R) -blebbistatin under 420 nm blue light could completely kill drug-resistant Acinetobacter baumannii of different sequence types without residual colonies (Figure 5) . The antimicrobial susceptibility test (AST) profiles of drug-resistant Acinetobacter baumannii of different sequence types are as shown in Table 1.
Table 1: Antimicrobial susceptibility test (AST) results of drug-resistant Acinetobacter baumannii of different sequence types
Figure PCTCN2020100528-appb-000003
Figure PCTCN2020100528-appb-000004
AMP: ampicillin; AMC: amoxicillin/clavulanate; CSL: cefoperazone/sulbactam; IMP: imipenem; MEM: meropenem; CIP: ciprofloxacin; AMK: amikacin; COL: colistin;
Antibiotic categories: I: penicillins; II: cephalosporins; III: penems; IV: quinolones; V: aminoglycosides; VI: lipopeptides.
Example 5
A method for killing clinical S. aureus by a blue-light activated blebbistatin analogue (R) -blebbistatin, comprising the following steps:
The culture materials, instruments and processes of this embodiment are basically the same as those of the first embodiment, and the difference lies in:
(1) Unlike 1.1) in example 1, this time the bacterium Staphylococcus aureus (strain Sau16162) was used.
(2) Unlike 3.1) in example 1, the S. aureus working density used in example 5 was 10 8 cfu/mL, and whose 2× density was thus 2×10 8 cfu/mL.
(3) Unlike the 3.2) in the example 1, the working concentration of (R) -blebbistatin used in this example was 10 μM.
(4) Unlike 4.1) in example 1, based on the (R) -blebbistatin-treated bacterial suspension obtained in the step 3, after 50,000× dilution, 100 μL of the bacterial suspension was aspirated and added as an inoculum to MH agar plates. Bactericidal effects were observed after incubation overnight.
(5) Unlike 4.1) in example 1, based on the (R) -blebbistatin-treated bacterial suspension obtained in step 3, 100 μL of MH medium (4 wells) and 10 μL of the bacterial solution were added to a well (in at least 4 replicates) in a 96-well microplate, and the culture was allowed to stand. After culture for overnight, the OD 600 nm absorbance value was measured by a microplate reader to assess any bactericidal effects.
(6) Results
In this example, Staphylococcus aureus (strain Sau16162) was used, whose working density was 10 8 cfu/mL. After mixing with 10 μM of (R) -blebbistatin, irradiation proceeded under 420 nm blue light for 60 min. It was found that 10 μM of (R) -blebbistatin under blue light completely kills S. aureus on MH agar plates, with no residual colonies. Staphylococcus aureus also did not re-grow in liquid culture (see Figure 6) .
The heatmap for antimicrobial susceptibility test (AST) results (MIC value) of S. aureus with respect to clinical antibiotics of the embodiment is as shown in figure 13.
Example 6
A method for killing a clinical isolate of drug-resistant Enterococcus faecalis by a blue-light activated blebbistatin analogue (R) -blebbistatin, comprising the following steps: the culture materials, equipment and processes of the embodiment are substantially the same as those of the first embodiment, the difference being:
(1) Unlike 1.1) in example 1, this time the bacterium Enterococcus faecium (strain Ef36950) was used.
(2) Unlike 3.1) in example 1, the density of Enterococcus faecalis used in example 6 was 10 8 cfu/mL, whose 2× density was 2×10 8 cfu/mL.
(3) Unlike 3.2) in example 1, the working concentration of (R) -blebbistatin used in this example was 10 μM.
(4) Unlike 4.1) in example 1, based on the (R) -blebbistatin-treated bacterial suspension obtained in step 3, after 50,000× dilution, 100 μL of the bacterial suspension was aspirated and spotted as an inoculum onto MH agar plates. Bactericidal effects were assessed following overnight culture.
(5) Unlike 4.1) in example 1, based on the (R) -blebbistatin-treated bacterial suspension obtained in step 3, 100 μL of MH medium (4 wells) and 10 μL of the bacterial suspension were added to a well (in at least 4 replicates) in 96-well microplate, and the culture was allowed to stand overnight. After overnight culture, OD 600 nm absorbance value was measured by a microplate reader to assess any bactericidal effects.
(6) Results
In this example, Enterococcus faecium (strain Ef36950) was used, with a working density of 10 8 cfu/mL. After mixing with 10 μM of (R) -blebbistatin, the mix was irradiated by blue light at 420 nm for 60 min. It was found that 10 μM of (R) -blebbistatin under blue light can completely eradicate Enterococcus faecium without residual colonies on MH agar plates and without regrowth in liquid culture (Figure 7) .
Heatmap of antimicrobial susceptibility test (AST) results (MIC value) for Enterococcus faecium used in the present embodiment is as shown in figure 13.
Example 7
A method for killing a clinical isolate of drug-resistant Escherichia coli by a blue-activated blebbistatin analogue (R) -blebbistatin, comprising the following steps:
The culture materials, instruments and processes of this embodiment are basically the same as those of the first embodiment, and the difference lies in:
(1) Unlike 1.1) in example 1, this time the bacterium E. coli (strain Eco16351) was used.
(2) Unlike the 3.1) in example 1, the working density of the drug-resistant Escherichia coli used in example 7 was 10 8 cfu/mL, and thus its 2× density was 2×10 8 cfu/mL.
(3) Unlike the 3.2) in the examples, the working concentration of (R) -blebbistatin used in this example was 10 μM.
(4) Unlike example 4.1) , based on the (R) -blebbistatin treated bacterial suspension obtained in step 3, after 50,000× dilution, 100 μL of the bacterial liquid was aspirated and spotted as an inoculum onto MH agar plates, and the bactericidal effects thereof were assessed following overnight culture.
(5) Unlike 4.1) in example 1, based on the (R) -blebbistatin treated bacterial suspension obtained in step 3, 100 μL of MH medium (4 pairs of wells) and 10 μL of the bacterial solution were added to a well (in at least triplicates) in a 96-well microplate, and the culture was allowed to stand overnight. After overnight culture, the OD 600 nm absorbance value was determined by a microplate reader to assess any bactericidal effect.
(6) Results
In this example, a clinical isolate of drug-resistant Escherichia coli (strain Eco16351) was used, whose working density was 10 8 cfu/mL. After mixing with 10 μM of (R) -blebbistatin, blue light irradiation proceeded at 420 nm for 60 min. The results show that 10 μM of (R) -blebbistatin in combination with blue light completely eradicated drug-resistant E. coli leaving no residual colonies on MH agar plates, and no regrowth in liquid culture (Figure 8) .
Heatmap of antimicrobial susceptibility test (AST) results (MIC value) for Escherichia coli used in the example is as shown in figure 13.
Example 8
A method for killing a clinical isolate of Pseudomonas aeruginosa by a blue-light activated blebbistatin analogue (R) -blebbistatin, comprising the following steps:
The culture materials, instruments and processes of this embodiment are basically the same as those of the first embodiment, and the difference lies in:
(1) Unlike 1.1) in example 1, this time the bacterium Pseudomonas aeruginosa (strain Pae6709) was used.
(2) Unlike 3.1) in example 1, Pseudomonas aeruginosa used in example 8 had a working density of 10 8 cfu/mL, and thus its 2× density is 2 × 10 8 cfu/mL.
(3) Unlike 3.2) in example 1, working concentration of (R) -blebbistatin used in this example was 10 μM.
(4) Unlike the 4.1) in example 1, based on the (R) -blebbistatin treated bacterial suspension obtained in step 3, after 50,000× dilution, 100 μL of the bacterial suspension was aspirated and spotted as an inoculum onto MH agar plates. Bactericidal effects were assessed following overnight culture.
(5) Unlike 4.1) in example 1, based on the (R) -blebbistatin treated bacterial suspension in step 3, 100 μL of MH medium (4 wells) and 10 μL of the bacterial solution were added into a well (in at least 4 replicates) in a 96-well microplate, and the culture was allowed to stand overnight. After overnight culture, the OD 600nm absorbance value was determined by a microplate reader to assess the bactericidal effects.
(6) Results
In this example, a clinical isolate of Pseudomonas aeruginosa (strain Pae6709) was used, whose working density was 10 8 cfu/mL. After mixing with 10 μM of (R) -blebbistatin, irradiation of blue light proceeded at 420 nm for 60 min. The results showed that 10 μM of (R) -blebbistatin with blue light can completely eradicate Pseudomonas aeruginosa leaving no residual colonies on MH agar plates, and no regrowth in liquid culture (figure 9) .
Heatmap of antimicrobial susceptibility test (AST) results (MIC values) of Pseudomonas aeruginosa used in this example is as shown in figure 13.
Example 9
A method for killing Klebsiella pneumoniae by a blue-light activated blebbistatin analogue (R) -blebbistatin, comprising the following steps:
The culture materials, instruments and processes of this embodiment are basically the same as those of the first embodiment, and the difference lies in:
(1) Unlike 1.1) in example 1, this time the bacterium Klebsiella pneumoniae (strain Kpn1096) was used.
(2) Unlike 3.1) in example 1, the working density of Klebsiella pneumoniae used in example 9 was 10 8 cfu/mL, and thus its 2× density was 2 × 10 8 cfu/mL.
(3) Unlike 3.2) in example 1, working concentration of (R) -blebbistatin used in this example was 10 μM.
(4) Unlike the 4.1) in example 1, based on the (R) -blebbistatin treated bacterial  suspension obtained in the step 3, after 50,000× dilution, 100 μL of the bacterial suspension was aspirated and spotted as an inoculum onto MH agar plates. The bactericidal effects thereof were observed following overnight culture.
(5) Unlike 4.1 in example 1, based on the (R) -blebbistatin treated bacterial suspension obtained in step 3, 100 μL of MH medium (4 wells) and 10 μL of the bacterial suspension was added into a well (in at least 4 replicates) in a 96-well microplate, and the culture was allowed to stand. After culturing overnight, the OD 600  nm absorbance value was measured by a microplate reader to assess bactericidal effects.
(6) Results
In this example, a clinical isolate of drug-resistant Klebsiella pneumoniae (strain Kpn1096) was used, whose working density was 10 8 cfu/mL. After mixing with 10 μM of (R) -blebbistatin, irradiation of blue light proceeded at 420 nm blue light for 60 min. However, it was found that 10 μM of (R) -blebbistatin with blue light was ineffective against Klebsiella pneumoniae on MH plates and could not kill Klebsiella pneumoniae to a significant extent (figure 10) .
Heatmap of antimicrobial susceptibility test (AST) results (MIC value) of Klebsiella pneumoniae used in the present embodiment as shown in figure 13.
Example 10
(S) -blebbistatin, a known myosin II inhibitor is expected to elicit cellular toxicity, whereas (R) -blebbistatin, a compound with no known biological targets in mammalian cells, is expected to elicit low or no toxicity in dark conditions.
Z3 Q3Comparisons of the properties of the blebbistatin analogues (R) -blebbistatin and (S) -blebbistatin:
1.Comparison of intrinsic toxicity in dark between (R) -blebbistatin and (S) -blebbistatin
(1) In this example, zebrafish embryos at post-fertilization day 0 (pfd 0) were treated (R) -blebbistatin and (S) -blebbistatin at 0 μM and 10 μM. After treatment for 6 h, 12 h, 24 h, and 48 h without blue light, in vivo toxicity was assessed by means of an optical microscope (magnification = 20×) to observe whether the development and morphology of zebrafish embryos were altered.
(2) Results
As shown in Figure 11, following treatment of the compounds in zebrafish embryos for 6 h, 12 h, 24 h, 48 h, 10 μM in the absence of blue light, (R) -blebbistatin treatment group elicited no effects on the morphological development of zebrafish embryos, indicating that (R) -blebbistatin generated no toxicity in vivo. Zebrafish embryos cannot develop further after 6 h treatment of (S) -blebbistatin. Therefore, the intrinsic toxicity of (R) -blebbistatin is much lower than that of (S) -blebbistatin.
2. Comparison of bacterial killing efficiency between (R) -blebbistatin and (S) -blebbistatin
(1) Bacterial killing assay
The culture materials, instruments and processes of this embodiment are basically the same as those of the first embodiment, and the difference lies in:
1) Unlike 3.1) in example 1, the working density of the bacteria (Acinetobacter baumannii) was changed to 10 7 cfu/mL;
2) Unlike 3.2) in example 1, the compounds used in the experiment were (R) -blebbistatin at 2 μM and 10 μM; and (S) -blebbistatin at 2 μM and 10 μM;
3) Unlike 4.1) in example 1, based on the blebbistatin-treated bacterial suspension obtained in the step 3, after 10,000× dilution, 100 μL of the bacterial suspension was sampled and spotted as an inoculum onto MH agar plates, and the bactericidal effects thereof were assessed following overnight culture.
(2) Results
This example uses a clinical isolate of drug-resistant Acinetobacter baumannii (strain GD0302) with a density of 10 7 cfu/mL, mixed with 0 μM, 2 μM, 10 μM of (R) -blebbistatin and (S) -blebbistatin. After that, blue light irradiation was performed at a wavelength of 420 nm for 60 min. It was observed that under blue light, (R) -blebbistatin and (S) -blebbistatin completely eradicated the bacteria at 10 μM, while at 2 μM (R) -blebbistatin under blue light killed the bacterium with less bacterial regrowth than the case of (S) -blebbistatin. It was found that (R) -blebbistatin has better bacterial killing efficiency than does (S) -blebbistatin under the same conditions.
Example 11
Experiment on optimizing the separation between light source and bacterial object: A method for optimizing the blue light delivery efficiency in killing a clinical isolate of drug-resistant Acinetobacter baumannii (strain GD0302) by the blebbistatin analogue (R) -blebbistatin.
The culture materials, instruments and processes of this embodiment are basically the same as those of the first embodiment, and the difference lies in:
(1) Unlike 3.4) in example 1, and the assembly of the blue light source platform (Figure 1) in 3.4) , the Eppendorf tube was placed on a transparent plastic rack, so that the separation between the liquid surface of bacterial suspension and the blue LED light source was varied: 8.2, 10, 12 cm.
(2) Results
When the separation between the liquid surface of the bacterial suspension and the blue LED light source was increased from 8.2, 10, to 12 cm, the sterilization efficiency became weaker.
Example 12
A method for killing a clinical isolate of drug-resistant Acinetobacter baumannii (strain GD0302) by blue-light activated blebbistatin analogues.
The culture materials, instruments and processes of this embodiment are basically the same as those of the first embodiment, and the difference lies in:
The (R) -blebbistatin solution of example 1 was replaced with other blebbistatin analogues, and the killing effects against drug-resistant Acinetobacter baumannii (strain GD0302) were similar to that of example 1.
The structural formulas of the blebbistatin analogues include:
Figure PCTCN2020100528-appb-000005
One of R 1, R 2, R 3, R 4 and R 5 may be one of H, CN, NH 2, F, Cl, Br, I, alkyl, haloalkyl, heteroalkyl, alkenyl, alkynyl, aryl, alkaryl, heterocyclyl, cycloalkyl, cycloalkenyl, cycloalkynyl, hydroxyalkyl, aminoalkyl, alkylamino, arylamino, dialkylamino, alkarylamino, aryloxy, arylalkoxy, acyloxy, carbamoyl, trifluoromethyl, trifluoromethoxy, phenoxy, benzyloxy, phosphonyl, phosphate, sulfonic, sulfonate, and sulfonamide; when one of R 1, R 2, R 3, R 4 and R 5 is the above group, the remaining four groups are all H.
The structural formulas of the blebbistatin analogues also include:
Figure PCTCN2020100528-appb-000006
One of X 1, X 2, X 3, X 4 and X 5 may be one of H, CN, CF 3, F, Cl, Br, and I, and when one of X 1, X 2, X 3, X 4 and X 5 is the above group, the remaining four groups are H.One of R 1, R 2, R 3, R 4 and R 5 may be one of H, CN, NH 2, F, Cl, Br, I, alkyl, haloalkyl, heteroalkyl, alkenyl, alkynyl, aryl, alkaryl, heterocyclic, cycloalkyl, cycloalkenyl, cycloalkynyl, hydroxyalkyl, aminoalkyl, alkylamino, arylamino, dialkylamino, alkarylamino, aryloxy, arylalkoxy, acyloxy, carbamoyl, trifluoromethyl,  trifluoromethoxy, phenoxy, benzyloxy, phosphonyl, phosphate, sulfonic, sulfonate and sulfonamide, and when one of R 1, R 2, R 3, R 4 and R 5 is the above group, the remaining four groups are all H.

Claims (10)

  1. Use of blue-light activated blebbistatin analogues in killing drug-resistant bacteria.
  2. The use according to claim 1, characterized in that, the blebbistatin analogues have the following structural formulas:
    Figure PCTCN2020100528-appb-100001
    wherein one of R 1, R 2, R 3, R 4 and R 5 is selected from H, CN, NH 2, F, Cl, Br, I, alkyl, haloalkyl, heteroalkyl, alkenyl, alkynyl, aryl, alkaryl, heterocyclyl, cycloalkyl, cycloalkenyl, cycloalkynyl, hydroxyalkyl, aminoalkyl, alkylamino, arylamino, dialkylamino, alkarylamino, aryloxy, arylalkoxy, acyloxy, carbamoyl, trifluoromethyl, trifluoromethoxy, phenoxy, benzyloxy, phosphonyl, phosphate, sulfonic, sulfonate, and sulfonamide; when one of R 1, R 2, R 3, R 4 and R 5 is the above group, the four remaining groups are all H.
  3. The use according to claim 1, characterized in that, the blebbistatin analogues have the following structural formulas:
    Figure PCTCN2020100528-appb-100002
    wherein one of X 1, X 2, X 3, X 4 and X 5 is selected from H, CN, CF 3, F, Cl, Br, and I, and when one of X 1, X 2, X 3, X 4 and X 5 is the above group, the remaining four groups are H;
    one of R 1, R 2, R 3, R 4 and R 5 is selected from H, CN, NH 2, F, Cl, Br, I, alkyl, haloalkyl, heteroalkyl, alkenyl, alkynyl, aryl, alkaryl, heterocyclyl, cycloalkyl, cycloalkenyl, cycloalkynyl, hydroxyalkyl, aminoalkyl, alkylamino, arylamino, dialkylamino, alkarylamino, aryloxy, arylalkoxy, acyloxy, carbamoyl, trifluoromethyl,  trifluoromethoxy, phenoxy, benzyloxy , phosphonyl, phosphate, sulfonic, sulfonate, and sulfonamide, and when one of R 1, R 2, R 3, R 4 and R 5 is the above group, the remaining four groups are all H.
  4. The use according to claim 1, characterized in that, the drug-resistant bacteria include Staphylococcus aureus, Escherichia coli, Enterococcus spp., Pseudomonas aeruginosa, and Acinetobacter baumannii.
  5. The use according to claim 1, characterized in that, a wavelength of the blue light is 420 nm.
  6. A method of killing drug-resistant bacteria using a blue-light activated blebbistatin analogue, characterized in that, the method comprises: mixing a liquid culture of exponential-phase drug-resistant bacteria having a 2-fold working density and a blebbistatin analogue having a 2-fold working concentration in a ratio of 1: 1, and subjecting to irradiation by blue light of 420 nm for 30-60 min.
  7. The method according to claim 6, characterized in that, a light source of the blue light is placed at 7.2 cm above the liquid culture of exponential-phase drug-resistant bacteria.
  8. The method according to claim 6, characterized in that, the liquid culture of exponential-phase drug-resistant bacteria has a working density of 10 8 cfu/mL or less, and the blebbistatin analogue has a working concentration of 2 μM to 10 μM.
  9. The method according to claim 6, characterized in that, a method for preparing the liquid culture of exponential-phase drug-resistant bacteria comprises:
    (1) streaking the drug-resistant bacteria stored at -80 ℃ multiple times on an agar plate, and inverting the plate to allow culture for 12 h to obtain monoclonal bacterial colonies of the drug-resistant bacteria;
    (2) picking the monoclonal bacterial colonies of the drug-resistant bacteria and adding to a Luria-Bertani medium and/or Mueller-Hinton medium, and culturing for 1.5 h in a bacterial culture shaker to obtain the liquid culture of exponential-phase drug-resistant bacteria.
  10. The method according to claim 6, characterized in that, the blebbistatin analogue having a 2-fold working concentration is prepared by reconstituting a blebbistatin analogue in dimethylformamide to give a stock solution, and then diluting in a phosphate buffer saline to the 2-fold working concentration.
PCT/CN2020/100528 2019-11-01 2020-07-07 Use of blue-light activated blebbistatin analogues in killing drug-resistant bacteria WO2021082512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911057933.3 2019-11-01
CN201911057933.3A CN110812481B (en) 2019-11-01 2019-11-01 Application and method for killing drug-resistant bacteria by blue light activated blebbistatin analogue

Publications (1)

Publication Number Publication Date
WO2021082512A1 true WO2021082512A1 (en) 2021-05-06

Family

ID=69552184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100528 WO2021082512A1 (en) 2019-11-01 2020-07-07 Use of blue-light activated blebbistatin analogues in killing drug-resistant bacteria

Country Status (2)

Country Link
CN (1) CN110812481B (en)
WO (1) WO2021082512A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114522230A (en) * 2022-01-11 2022-05-24 上海市伤骨科研究所 Blue light and p-benzoquinone combined sterilization method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110812481B (en) * 2019-11-01 2021-11-23 深圳市第三人民医院 Application and method for killing drug-resistant bacteria by blue light activated blebbistatin analogue

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001224A2 (en) * 2007-06-22 2008-12-31 Eth Zurich Antivirals
WO2010088803A1 (en) * 2009-02-04 2010-08-12 山东农业大学 New porcine reproductive and respiratory syndrome virus receptor, and blockers thereof
CN110755612A (en) * 2019-10-22 2020-02-07 深圳市第三人民医院 Application and method for killing drug-resistant acinetobacter baumannii by blue light-activated (S) -blebbistatin molecules
CN110812481A (en) * 2019-11-01 2020-02-21 深圳市第三人民医院 Application and method for killing drug-resistant bacteria by blue light activated blebbistatin analogue

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102327278B (en) * 2011-07-18 2013-05-29 东南大学 Application of carborane derivatives, nano compound preparation and application of nano compound preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001224A2 (en) * 2007-06-22 2008-12-31 Eth Zurich Antivirals
WO2010088803A1 (en) * 2009-02-04 2010-08-12 山东农业大学 New porcine reproductive and respiratory syndrome virus receptor, and blockers thereof
CN110755612A (en) * 2019-10-22 2020-02-07 深圳市第三人民医院 Application and method for killing drug-resistant acinetobacter baumannii by blue light-activated (S) -blebbistatin molecules
CN110812481A (en) * 2019-11-01 2020-02-21 深圳市第三人民医院 Application and method for killing drug-resistant bacteria by blue light activated blebbistatin analogue

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIRCHNER MARIELUISE, HIGGINS DARREN E.: "Inhibition of ROCK activity allows InlF-mediated invasion and increased virulence of Listeria monocytogenes", MOLECULAR MICROBIOLOGY, WILEY-BLACKWELL PUBLISHING LTD, GB, vol. 68, no. 3, 1 May 2008 (2008-05-01), GB, pages 749 - 767, XP055809240, ISSN: 0950-382X, DOI: 10.1111/j.1365-2958.2008.06188.x *
MIKULICH, A. ET AL.: "Blebbistatin, a myosin inhibitor, is phototoxic to human cancer cells under exposure to blue light.", BIOCHIMICA ET BIOPHYSICA ACTA., vol. 1820, no. 7, 10 April 2012 (2012-04-10), XP028509262, DOI: 10.1016/j.bbagen.2012.04.003 *
ROMAN BART I., VERHASSELT SIGRID, STEVENS CHRISTIAN V.: "Medicinal Chemistry and Use of Myosin II Inhibitor ( S )-Blebbistatin and Its Derivatives", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 61, no. 21, 8 November 2018 (2018-11-08), US, pages 9410 - 9428, XP055809242, ISSN: 0022-2623, DOI: 10.1021/acs.jmedchem.8b00503 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114522230A (en) * 2022-01-11 2022-05-24 上海市伤骨科研究所 Blue light and p-benzoquinone combined sterilization method

Also Published As

Publication number Publication date
CN110812481A (en) 2020-02-21
CN110812481B (en) 2021-11-23

Similar Documents

Publication Publication Date Title
Mama et al. Antibacterial Activity of Honey against Methicillin‐Resistant Staphylococcus aureus: A Laboratory‐Based Experimental Study
US9241928B2 (en) Antimicrobial compounds
KR101137675B1 (en) Plate for selection of antibiotics against biofilm infections
WO2021082512A1 (en) Use of blue-light activated blebbistatin analogues in killing drug-resistant bacteria
Tyor et al. Biochemical characterization and antibacterial properties of fish skin mucus of fresh water fish, Hypophthalmichthys nobilis
Zhan et al. Chromone derivatives CM3a potently eradicate Staphylococcus aureus biofilms by inhibiting cell adherence
JP2021510379A (en) Treatment of parasitic infections on the surface of fish
CN110755612B (en) Application and method for killing drug-resistant acinetobacter baumannii by blue light-activated (S) -blebbistatin molecules
Fadl Antibacterial and antibiofilm effects of bee venom from (Apis mellifera) on multidrug-resistant bacteria (MDRB)
RU2505295C2 (en) Combination containing fulvic acid and antibiotics
CN113461606B (en) Pyridine dicarboxylic acid amine derivative as metal beta-lactamase inhibitor and preparation method thereof
CN115350197A (en) Application of alisol A-24-acetate in improving sensitivity of MRSA to beta-lactam antibiotics
Patrzałek et al. Preliminary evaluation of application of a 3-dimensional network structure of siloxanes Dergall preparation on chick embryo development and microbiological status of eggshells
Shcherbyna et al. The study of antimicrobial activity of 2-((4-R-3-(morpholinomethylene)-4H-1, 2, 4-triazole-5-yl) thio) acetic acid salts
Aruna et al. Evaluation of antimicrobial activity of indigenous cow urine against bacterial fish pathogens
Niranjana et al. Antimicrobial efficacy of a synthetic antimicrobial peptide against mammary pathogenic Escherichia coli (MPEC)
CN113425719B (en) H 2 Application of dpa and derivatives thereof as metallo-beta-lactamase inhibitor in antibiosis
CN115197091B (en) Symmetrical lysine cation antibacterial peptide mimic with antibiotic synergistic activity and preparation method thereof
Anutrakunchai et al. Role of RelA and SpoT in Burkholderia pseudomallei survival, biofilm formation and ceftazidime tolerance during nutritional stress
You et al. Implant-associated biofilm infection established in an experimental Galleria mellonella model
CN113577238B (en) Application of Brazil hematoxylin synergistic polymyxin antibiotics in bacteriostasis effect on escherichia coli
RU2733144C1 (en) Bacterial strain klebsiella pneumoniae subsp_ pneumoniae, capable of biofilm formation
Rini et al. Effect of selected antibiotics on biofilm formed by Salmonella enterica serovars Typhi and Paratyphi
RU2377240C2 (en) 2,4,6-tri-(p-methoxyphenyl)selenopyrilium showing antimicrobial activity
CN117338770A (en) Application of indole-3-methanol in preparation of polymyxin antibacterial synergist and anti-gram-negative bacteria pharmaceutical composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883037

Country of ref document: EP

Kind code of ref document: A1