WO2021082077A1 - 基于量子随机数的非对称密码终端、通信系统及方法 - Google Patents

基于量子随机数的非对称密码终端、通信系统及方法 Download PDF

Info

Publication number
WO2021082077A1
WO2021082077A1 PCT/CN2019/117952 CN2019117952W WO2021082077A1 WO 2021082077 A1 WO2021082077 A1 WO 2021082077A1 CN 2019117952 W CN2019117952 W CN 2019117952W WO 2021082077 A1 WO2021082077 A1 WO 2021082077A1
Authority
WO
WIPO (PCT)
Prior art keywords
asymmetric cryptographic
quantum random
key
cryptographic terminal
random number
Prior art date
Application number
PCT/CN2019/117952
Other languages
English (en)
French (fr)
Inventor
徐东
杨光
赵周荞
邱红康
Original Assignee
江苏亨通问天量子信息研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通问天量子信息研究院有限公司 filed Critical 江苏亨通问天量子信息研究院有限公司
Publication of WO2021082077A1 publication Critical patent/WO2021082077A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0869Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures

Definitions

  • the present invention relates to communication encryption technology, relates to an asymmetric cryptographic terminal based on quantum random numbers, and also relates to a communication system including a plurality of such asymmetric cryptographic terminals, and to a secure communication using the asymmetric cryptographic terminal Secure communication method.
  • One of the current secure communication technologies is the encryption technology based on classical symmetric or asymmetric cryptosystems, and the other is the quantum secure communication technology based on quantum state distribution keys that has emerged in recent years.
  • a symmetric cryptosystem is a traditional cryptosystem, also known as a private key cryptosystem.
  • the same key is used for encryption and decryption. Because the encryption/decryption keys are the same, the two parties who need to communicate must choose and save their common key, and each party must trust the other party not to leak the key, so that the confidentiality and integrity of the data can be achieved.
  • Typical algorithms include DES (Data Encryption Standard) algorithm and its variants Triple DES (Triple DES), GDES (Generalized DES), IDEA in Europe, and FEAL-N and RC5 in Japan.
  • symmetric encryption has some good characteristics, it also has obvious shortcomings: 1Key distribution problem: the two parties in communication need to negotiate encryption keys through a secret secure channel, and this secret secure channel It may be difficult to implement; 2Key management problem: In a network with n users, there needs to be a shared key between any two users. When the number of users in the network (ie n) is large, it needs to be managed The number of keys is very large, n(n-1)/2; 3Does not have the digital signature function: When subject A receives the electronic data of subject B, it cannot prove to a third party that the electronic document is indeed from B.
  • Asymmetric cryptosystem is also called public key encryption technology, which is proposed to address the defects of private key cryptosystem.
  • encryption and decryption are relatively independent. Encryption and decryption will use public key (or “public key”) and private key (or “private key”). "Key") Two different keys.
  • the public key can be disclosed to the public and anyone can use it, but the private key is only known to oneself, and the private key cannot be calculated based on the public key.
  • the most famous representative of the algorithms of the public key cryptosystem is the RSA system.
  • knapsack cipher McEliece cipher, Diffe_Hellman, Rabin, zero-knowledge proof, elliptic curve, Eigamal algorithm, etc.
  • the advantage of asymmetric encryption lies in the fact that the key set and number required for the transmission of confidential information between multiple people are small, the issuance of the key is not a problem, and the public key system can realize digital signatures.
  • the disadvantages are: large key size, slow encryption/decryption speed, and short development history.
  • Quantum secure communication which generally refers to Quantum Key Distribution (QKD) technology, is to generate and share a truly random and absolutely secure key between the two communicating parties by encoding and measuring the light quantum state The source is then called by the encryption device to encrypt and decrypt the communication data.
  • QKD Quantum Key Distribution
  • quantum key distribution is based on the basic principles of quantum mechanics, while the security of traditional cryptography is based on the computational complexity of certain mathematical algorithms.
  • One of the most important characteristics of quantum key distribution is that once a third party tries to steal the key from the channel, the two conveniences of communication will be noticed, while traditional cryptography cannot detect eavesdropping, and it cannot fundamentally guarantee the key. Security.
  • the working mechanism of the QKD system is still symmetric encryption, it has the advantages of a symmetric cryptosystem. In addition, it also solves the problems of secure key distribution and key management that are difficult to solve by the traditional symmetric cryptosystem, and realizes the continuous and rapid key change, which can support the change of one secret and one secret at a time. Key encryption process.
  • the QKD system still has many disadvantages: 1The keys negotiated and distributed by both ends of the QKD system are the same key, so the system itself still does not have the digital signature function; 2A complete QKD system must consist of a pair of QKD and two QKS , One QKMC, two QVPNs, at least two switches, and at least one bare fiber. It can be seen that the system is relatively complicated, at least not as convenient as mainstream cryptographic machines in terms of use; 3QKD technology has only gradually matured in recent years, and has not undergone rigorous market inspections. Its development and application history are more The traditional asymmetric cryptosystem is still short. The technology marketization rate is low, and commercial applications are basically blank.
  • the technical problem to be solved by the present invention is to provide an asymmetric cryptographic terminal based on quantum random numbers, a communication system including a plurality of the asymmetric cryptographic terminals, and a secure communication method using the asymmetric cryptographic terminal for secure communication;
  • the asymmetric cryptographic terminal is a cryptographic machine that integrates quantum technology and classical asymmetric encryption. It not only has the same application form and networking capabilities as the current mainstream cryptographic machine, but also has a random key similar to the QKD system. Encryption efficiency of one password at a time. Therefore, its deployment is more convenient and cost-effective, it is more suitable for the actual environment of the current communication network, and it is easier to popularize and use. And because of its simple algorithm and high key update frequency, it can not only provide digital signature services, but also data encryption/decryption services during the communication process.
  • an asymmetric cryptographic terminal based on quantum random numbers including:
  • Quantum random number generator used to generate and output two quantum random numbers
  • the key generator is used to first divide and truncate the two quantum random numbers into two groups of random number sequences of equal length, and then use the private key algorithm and the public key algorithm to convert the two groups of random number sequences into each other A set of paired private keys and a set of public keys;
  • the asymmetric cryptographic terminal performs encryption and decryption, signature, and signature verification according to the private key and the public key that are paired with each other.
  • the asymmetric cryptographic terminal has two quantum random number generators, and the two quantum random number generators respectively generate and output the two quantum random numbers.
  • the asymmetric cryptographic terminal further includes a trusted memory, and the trusted memory includes a storage unit I, a storage unit II, and a storage unit III;
  • the storage unit I is used to store the marked private keys in an orderly manner
  • the storage unit II is used to store the marked public keys in an orderly manner
  • the public key of the communication partner obtained by the exchange is marked and stored in the storage unit III in an orderly manner.
  • the asymmetric cryptographic terminal further includes a data processor, and the data processor includes an encryption/decryption module and a digital signature module;
  • the public key or the private key is extracted from the trust memory to complete data encryption or data decryption;
  • the digital signature module is used to extract the private key or the public key from the trusted memory to complete the digital signature or signature verification work.
  • the asymmetric cryptographic terminal further includes a transceiver interface module I and a transceiver interface module II;
  • the transceiver interface module I establishes a ciphertext transmission channel with the communication counterparty through the classic communication network, which is used to send the ciphertext data encrypted by the encryption module to the communication counterparty, and is used to complete the transmission through the digital signature module.
  • the transceiver interface module II establishes a public key exchange channel with the communication partner through the classic communication network, which is used to send the public key of the machine to the communication partner and to receive the public key of the communication partner.
  • the asymmetric cryptographic terminal further includes an integrated control processor, and the integrated control processor is used to control the quantum random number generator, the key generator, the trusted memory, and the data
  • the processor, the transceiver interface module I and the transceiver interface module II work together.
  • the present invention also provides a secure communication method, using the asymmetric cryptographic terminal for secure communication, and the initial sources of the private key and the public key used in the secure communication are both quantum random numbers;
  • the quantum random number generator located at the first asymmetric cryptographic terminal generates two quantum random numbers
  • the key generator of the first asymmetric cryptographic terminal truncates the two quantum random numbers into equal lengths in advance. After the two sets of random number sequences are respectively converted into a set of first private keys and a set of first public keys that are paired with each other using a private key algorithm and a public key algorithm;
  • the quantum random number generator at the second asymmetric cryptographic terminal generates two quantum random numbers, and the key generator of the second asymmetric cryptographic terminal truncates the two quantum random numbers into other two groups of equal length in advance. After the random number sequence is converted into a set of second private key and a set of second public key that are paired with each other by using a private key algorithm and a public key algorithm, respectively.
  • the secure communication method further includes the following steps:
  • the first asymmetric cryptographic terminal receives and stores the second public key sent by the second asymmetric cryptographic terminal, and the second asymmetric cryptographic terminal receives and stores the first public key sent by the first asymmetric cryptographic terminal ;
  • the first asymmetric cryptographic terminal uses the second public key to encrypt the communication data and sends it to the second asymmetric cryptographic terminal;
  • the second asymmetric cryptographic terminal receives the encrypted communication data sent by the first asymmetric cryptographic terminal, and uses the second private key to decrypt and restore the communication data;
  • the first asymmetric cryptographic terminal uses the first private key to sign the communication data and sends it along with the encrypted ciphertext data to the second asymmetric cryptographic terminal; the second asymmetric cryptographic terminal receives the transmission from the first asymmetric cryptographic terminal And use the first public key to complete the signature verification.
  • the initial sources of the public key and the private key required for encryption and decryption, signature and verification signature are all generated by a quantum random number generator that can continuously generate quantum random numbers.
  • the random number generator can generate a sustainable long chain of true random numbers (i.e. quantum random numbers).
  • a quantum random number is a binary string containing infinite bits, and whether each character is 1 or 0 is completely random.
  • the asymmetric cryptographic terminal can support the high-frequency conversion of public and private keys, achieving one secret for one thing and one secret at a time, making decryption of the password meaningless, thereby improving the security of communication using asymmetric cryptographic terminals .
  • the traditional asymmetric cryptosystem in order to achieve a high level of encryption security, uses a large number of ciphers, complex cipher calculations, and complex encryption/decryption algorithms, which results in very slow encryption/decryption speeds during normal use.
  • the existing asymmetric cryptosystems are mainly used for digital signatures in the communication process, and are rarely used for data encryption/decryption in the communication process.
  • the asymmetric cryptographic terminal of this application supports high-frequency conversion of public keys and private keys to achieve one-time one-time encryption and one-time encryption. On this basis, only simple encryption and decryption algorithms are needed to achieve secure encryption. As a result, the cryptographic terminal can be used not only for digital signatures in the communication process, but also for data encryption/decryption in the communication process.
  • the QKD system developed by quantum secure communication technology has been proven to provide unconditional and secure encrypted communication guarantee, as far as current technical conditions are concerned, the QKD system has had inherent deficiencies in its design since the beginning of its development ( QKD equipment can only be used one-to-one; QKD equipment can only be used for key distribution, and must rely on the server for key storage and control, and QVPN acts as a cryptographic machine), which makes its deployment complicated and extremely costly, and conditions of use It is also harsh, resulting in a low cost performance of the QKD system, which is completely unable to match the current mature encryption system, so it does not conform to the current communication development trend, and it is actually difficult to achieve large-scale commercial use.
  • the asymmetric cryptographic terminal of the present application like the current mainstream cryptographic machine, integrates key distribution and encryption/decryption, thereby simplifying the deployment process of the encryption system and more in line with the deployment requirements of the current communication network.
  • the cryptographic terminal described in this technical solution has a built-in quantum random number generator and the various algorithms implanted in the device are quite simple, it is more efficient and safer in terms of application effects than the current mainstream cryptographic machines. .
  • Figure 1 is a structural block diagram of an asymmetric cryptographic terminal in a preferred embodiment of the present invention
  • Figure 2 is a schematic diagram of two cryptographic terminals completing A-B data encryption/decryption work
  • Figure 3 is a schematic diagram of two cryptographic terminals completing A-B digital signature work
  • Fig. 4 is a schematic diagram of the joint deployment of the cryptographic terminal of the present invention and QKD to complete the A-B data encryption/decryption and digital signature work.
  • the cryptographic terminal includes a quantum random number generator, a key generator, a trusted memory, a data processor, a transceiver interface module I, Transceiver interface module II and integrated control processor.
  • the above-mentioned quantum random number generator uses the inherent uncertainty of quantum phenomena to continuously output ultra-long chains of true random numbers (or "quantum random numbers") at a high speed through signal acquisition and digitization of physical sources, each truly random
  • the number is a binary string containing infinite bits, and whether the character on each bit is 1 or 0 is completely random.
  • true random numbers will not be successfully predicted even with unlimited computing resources and quantum computers, and they have excellent uncertainty and unpredictability.
  • the cryptographic terminal of this application requires two quantum random numbers to work together. Based on this, as the first technical solution of this embodiment, the cryptographic terminal is equipped with two quantum random number generators, and the two quantum random number generators simultaneously generate and Output two quantum random numbers.
  • the cryptographic terminal is equipped with a quantum random number generator.
  • the quantum random number generator has multiple (including two) output terminals, and a quantum random number The quantum random number generated by the generator is converted into two quantum random numbers through two output terminals. Since the high-speed quantum random number generator generates a quantum random number with a very high coding rate (up to Gbps level), the key consumption rate of encryption or signature operations in the actual communication process is basically impossible to reach such a high level. After all, the memory capacity of the device itself is limited, so quantum random numbers will inevitably be discarded in actual use. Therefore, the use of a single but multiple output quantum random number generator can appropriately reduce product costs and reduce energy consumption. Improve the efficiency of equipment.
  • the two quantum random numbers qrn 1 and qrn 2 output by the quantum random number generator enter the key generator at the same time.
  • the above-mentioned key generator first divides and truncates the two quantum random numbers qrn 1 and qrn 2 into two groups of equal-length random number sequences RN X and RN Y , and then synchronously submits RN X and RN Y to the private key algorithm for calculation
  • the unit and the public key algorithm calculation unit are converted into a paired private key SK n and a public key PK n .
  • This asymmetric cryptographic terminal (hereinafter referred to as "this machine") will use mutually paired private keys and public keys to encrypt and decrypt data, or perform digital signatures and verification.
  • the above-mentioned trusted memory solves the trustworthiness of the storage medium from the hardware, and can ensure the security and credibility of the key storage. It is internally divided into three storage units: storage unit I, storage unit II, and storage unit III.
  • the secret key SK n converted by the key generator is stored in the storage unit I
  • the public key PK n converted by the key generator is stored in the storage unit II; and the communication network except for this machine
  • the public keys of the other parties exchanged by the other parties are stored in the storage unit III.
  • the information stored in the three storage units in addition to the private key SK n and the public key PK n converted by the key generator, there are also the key sequence number and key generation Information such as timestamp and key source device ID are used to mark the key itself.
  • the marked key is stored in each storage unit. Its function is to synchronously mark the public key and private key of each cryptographic terminal. Correspondingly. (That is, the private key, the public key, and the public key of the other party exchanged by the public key are marked with the same number).
  • the above-mentioned data processor includes an encryption/decryption module and a digital signature module; among them, the encryption/decryption module is used to extract a public key or a private key from a trusted memory on demand to complete data encryption or data decryption; the digital signature module is used to Extract the private key or public key from the trusted storage as needed to complete the digital signature or signature verification work.
  • the aforementioned transceiver interface module I establishes a ciphertext transmission channel with the counterparty through the classic communication network, and sends the ciphertext data encrypted by the encryption module to the counterparty, and sends the signature information completed by the digital signature module to the counterparty, and Receive the encrypted ciphertext data sent by the communication partner, and receive the signature information sent by the communication partner.
  • the above-mentioned transceiver interface module II establishes a public key exchange channel with the communication partner through the classic communication network, and is used to share the public key with the communication partner, send the public key of the machine to the communication partner, and receive the public key of the communication partner.
  • the aforementioned integrated control processor is used to control the quantum random number generator, the key generator, the trusted memory, the data processor, the transceiver interface module I and the transceiver interface module II to work together.
  • a clock module can also be configured to provide clock signals to the integrated control processor; and a certificate service module can be configured to verify the legitimacy of the cryptographic terminals used by all parties before the start of communication; and, to configure the management interface
  • the module is used to connect an external management terminal to provide an external management interactive interface; and to configure other auxiliary components such as switching power supplies and fans.
  • the realization principle of this technical scheme is: the quantum random number generator continuously outputs the quantum true random number generated by it to the key generator, and the key generator converts the two quantum true random numbers into two preset simple algorithms The public key PK n and the private key SK n . After that, the two parties in communication secretly keep their SK n but exchange their PK n with each other for the data processor to call. Finally, the integrated control processor controls the data processor to perform data encryption and decryption, digital signature and signature verification on the real-time communication data of the communication parties, so that the entire communication network forms an asymmetric cryptographic system that can continuously update keys.
  • both parties A and B Deploy a cryptographic terminal as described in this solution on both parties A and B.
  • the cryptographic terminals of both A and B should be as far as possible Ground with two lines (with conditions, two physical lines can be set up, and without conditions, two logical channels can be opened on one communication line (such as dividing VLANs, setting different IP network segments, modulating different wavelengths of light waves, etc.)) interconnected.
  • mutual trust configuration should be performed first, that is, mutual configuration of the master and slave certificates and import the slave certificates into each other's cryptographic terminal, so that the cryptographic terminals of both parties become mutually trusted cryptographic terminals.
  • the two quantum random number generators built in the cryptographic terminal A generate and output quantum random numbers qrn a 1 and qrn a 2 in real time in a quantum manner, and then qrn a 1 and qrn a 2 are sent to the key generator A for processing Subsequent processing;
  • the key generator A Under the control of the integrated control processor, the key generator A first truncates qrn a 1 to a fixed bit length (such as 256bit, 512bit, 1024bit,...) and is composed of X random numbers permutation.
  • the number sequence RN A X at the same time, qrn a 2 is truncated into a fixed bit length (such as 256 bit, 512 bit, 1024 bit,...) and composed of Y random number sequence RN A Y at the same time .
  • the key generator A will synchronously submit RN A X and RN A Y to the public key algorithm and the private key algorithm.
  • the two algorithm units will operate according to the two preset different minimalist algorithms to convert the public key PK a. n and the secret key SK a n, A and outputs it to the trusted memory;
  • A is trusted SK a n tag sequence numbers assigned to the storage unit and I a, is a PK a n synchronization flag and the sequence number assigned to the storage unit II a;
  • the two quantum random number generators built in crypto terminal B will also generate and output quantum random numbers qrn b 1 , qrn b 2 in real time in a quantum manner, and then qrn b 1 , qrn b 2 It is sent to the key generator B for subsequent processing;
  • the key generator B truncates qrn b 1 to a fixed bit length (such as 256bit, 512bit, 1024bit, ...) as a random number consisting of x random numbers permutation Number sequence RN B x , at the same time qrn b 2 will be truncated into a fixed bit length (such as 256bit, 512bit, 1024bit,...) consisting of y random numbers permutation RN B y , and then will be According to the preset public key algorithm and private key algorithm, they are respectively converted into a public key PK b m and a private key SK b m and output to the trusted memory B;
  • a fixed bit length such as 256bit, 512bit, 1024bit, .
  • the integrated control processor B controls the trusted memory B to assign the SK b m mark sequence number and assign it to the storage unit I b , and the PK b m synchronization mark sequence number and assign it to the storage unit II b ;
  • a first terminal transmits the password exchange with the integrated control processor A from the transceiver interface module A2 negotiation message to the cryptographic public key of the terminal B, the terminal B to give the password after the acknowledgment from the storage unit PK a n of memory A trusted II a is called out and sent from the transceiver interface module A2 to the public key exchange channel and sent to the cryptographic terminal B.
  • the terminal B also receives the public key PK b m sent by the cryptographic terminal B from the transceiver interface module A2 and distributes it to the storage unit III a of the trusted memory A;
  • the cryptographic terminal B receives and confirms the negotiation request for exchanging the public key from the cryptographic terminal A from the transceiver interface module B2, and then receives the public key PK from the cryptographic terminal A from the transceiver interface module B2 a n is allocated to the storage unit III b of the trusted memory B.
  • PK b m is also called out from the storage unit II b of the trusted memory B and sent from the transceiver interface module B2 to the public key exchange channel to send to the cryptographic terminal A;
  • the data DATA a to be sent by party A to party B is input into the cryptographic terminal A from the outside, and then temporarily stored in the data processor A.
  • the integrated control processor A mobilizes the encryption/decryption module a to orderly retrieve the exchanged public key PK b m from the storage unit III a of the trusted memory A to encrypt DATA a according to the preset simple encryption algorithm, Convert it into ciphertext a .
  • ciphertext a is sent to the transceiver interface module A1, and sent to the cipher terminal B via the ciphertext transmission channel;
  • the cryptographic terminal B receives the ciphertext a through the transceiver interface module B1 and transfers it to the data processor B for temporary storage.
  • the integrated control processor B mobilizes the encryption/decryption module b to sequentially retrieve the private key SK b m from the storage unit I b of the trusted memory B to perform corresponding decryption processing on ciphertext a to restore DATA a and output it to the B network;
  • the cryptographic terminal A receives the ciphertext b through the transceiver interface module A1 and forwards it to the data processor A for temporary storage.
  • a processor integrated control mobilization encryption / decryption module ordered a private key SK a n retrieved from the storage unit A in trusted memory I a ciphertext b accordingly to the decryption process and to reduce the DATA b to the A network.
  • steps (9) to (12) are complete AB two-way encrypted communication.
  • the cryptographic terminal described in this technical solution can also be used for digital signatures between communication parties, as described in the following step (13) ⁇ (16) is the AB two-way digital signature, as shown in Figure 3:
  • the integrated control processor A mobilizes the digital signature module a to use the HASH function to generate a message-digest a for the DATA a input from the outside, and then retrieve it from the storage unit I a of the trusted memory A in an orderly manner generating a private key SK a n of the message-digest a simple encrypting according to a preset encryption algorithm, converts it to a signature (signature a), and along with step (9) together with the ciphertext a transceiver via the interface module A1 Send it into the ciphertext transmission channel to send to the cipher terminal B;
  • the cryptographic terminal B transfers the received signature a to the data processor B for buffering through the transceiver interface module B1.
  • Integrated control processor module B b mobilization digital signature from the trusted memory storage unit B, III b ordered retrieved from the exchange of the public key PK a n do signature a corresponding decryption process to restore the message-digest a.
  • the digital signature module b also needs to run a hash function on the DATA A decrypted and restored by the encryption/decryption module b, and then calculate the message-digest A and compare it with the message-digest a to verify the digital signature of party A. Verify that the decrypted DATA A is indeed the data DATA a sent by party A;
  • the integrated control processor B will mobilize the digital signature module b to run the HASH function on DATA b to calculate the message-digest b , and then retrieve the message-digest b from the trusted memory B
  • the storage unit I b retrieves the private key SK b m in an orderly manner, encrypts it, and converts it into a signature (signature b ).
  • signature b and ciphertext b in step (11) are sent together from the ciphertext transmission channel to the cipher terminal A through the transceiver interface module B1;
  • the cryptographic terminal A forwards the received signature b to the data processor A buffer through the transceiver interface module A1.
  • the integrated control processor A mobilizes the digital signature module a to sequentially retrieve the public key PK b m from the storage unit III a of the trusted memory A to decrypt the signature b to restore the message-digest b .
  • the digital signature module a also needs to run the HASH function on the DATA B decrypted by the encryption/decryption module a to calculate the message-diges B , and then compare it with the message-digest b to see if it is consistent, so as to verify the digital signature of the B party. Verify that the decrypted DATA B is indeed the data DATA b sent by party B.
  • the cipher terminal of the present invention can also be used as a cipher machine in the existing QKD system, which can not only complete normal data encryption/decryption, but also fill in the blank of the lack of digital signature function, as shown in FIG. 4.
  • the cryptographic terminal described in this technical solution can be used as a supplement to the QKD system to complete the digital signature process, thereby ensuring the entire communication process of the QKD system Data confidentiality and data tamper-proof, non-repudiation, etc.
  • This alternative solution only needs to make appropriate structural modifications to the cryptographic terminal described in this technical solution: that is, expand a storage unit IV in the trusted memory, dedicated to storing the quantum security key generated by the QKD system; add a slave transceiver interface module II The communication bus to the trusted memory so that the quantum security key generated by the QKD system is dumped to the storage unit IV via the transceiver interface module II; the communication bus from the trusted memory to the data processor is added to facilitate the encryption/decryption module when needed Quantum key is extracted from the storage unit IV in real time for data encryption/decryption; a symmetric encryption algorithm is built in the encryption/decryption module to adapt to the use of quantum keys for encryption/decryption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种基于量子随机数的非对称密码终端,以及包含有多个该非对称密码终端的通信系统,以及使用该非对称密码终端进行保密通信的保密通信方法。该密码终端包括量子随机数发生器和密钥生成器,量子随机数发生器用于生成并输出两个量子随机数;密钥生成器用于首先将所述两个量子随机数分割截断成等长的两组随机数序列,然后分别使用私钥算法和公钥算法将所述两组随机数序列转换成互为配对的一组私密密钥和一组公共密钥;非对称密码终端根据互为配对的所述私密密钥和所述公共密钥进行加密和解密、签名和验签名。本发明的密码终端,算法简单、密钥更新频次高,在通信过程中可以同时提供数字签名服务和数据加解密服务。

Description

基于量子随机数的非对称密码终端、通信系统及方法 技术领域
本发明涉及通信加密技术,涉及一种基于量子随机数的非对称密码终端,还涉及一种包含有多个该非对称密码终端的通信系统,以及涉及一种使用该非对称密码终端进行保密通信的保密通信方法。
背景技术
现行的保密通信技术,其一是基于经典的对称或非对称密码体制的加密技术,其二是近些年风生水起的基于量子态分发密钥的量子保密通信技术。
(1)对称密码体制是一种传统密码体制,也称为私钥密码体制。在对称加密系统中,加密和解密采用相同的密钥。因为加/解密密钥相同,需要通信的双方必须选择和保存他们共同的密钥,各方必须信任对方不会将密钥泄密出去,这样就可以实现数据的机密性和完整性。比较典型的算法有DES(Data Encryption Standard,数据加密标准)算法及其变形Triple DES(三重DES)、GDES(广义DES)、欧洲的IDEA以及日本的FEAL-N和RC5等。
对称加密的优点是计算量小、算法简单、加解密速度快,是目前用于信息加密的主要方法。尽管对称加密有一些很好的特性,但它也存在着明显的缺陷:①密钥分配问题:通信双方要进行加密通信,需要通过秘密的安全信道协商加密密钥,而这种秘密的安全信道可能很难实现;②密钥管理问题:在有n个用户的网络中,任何两个用户之间都需要有共享的密钥,当网络中的用户数(即n)很大时,需要管理的密钥数目非常大,为n(n-1)/2;③不具备数字签名功能:当主体A收到主体B的电子数据时,无法向第三方证明此电子文档确实来源于B。
(2)非对称密码体制也叫公钥加密技术,该技术就是针对私钥密码体制的缺陷被提出来的。在公钥加密系统中,加密和解密是相对独立的,加密和解密会使用公开密钥(public key)(或称“公共密钥”)和私有密钥(private key)(或称“私密密钥”)两把不同的密钥,公开密钥可向公众公开,谁都可以使用,私有密钥却仅限自己知道,根据公开密钥无法推算出私有密钥。公钥密码体制的算法中最著名的代表是RSA系统,此外还有:背包密码、McEliece密码、Diffe_Hellman、Rabin、零知识证明、椭圆曲线、EIGamal算法等。
非对称加密的优点在于:多人间进行保密信息传输所需的密钥组和数量很小,密钥的发布不成问题,公开密钥系统可实现数字签名。而其缺点是:密钥尺寸大、加/解密速度慢、发展历史较短等。
(3)量子保密通信,泛指量子密钥分发(Quantum key Distribution,QKD)技术,是通过对光量子态进行编码和测量,从而在通信双方间产生并分享一个真随机的、绝对安全的密钥源,然后被加密设备调用来进行加密和解密通信数据。
量子密钥分发的安全性基于量子力学的基本原理,而传统密码学的安全性却是基于某些数学算法的计算复杂度。量子密钥分发有一个最重要的特性,那就是一旦有第三方试图从信道上窃取密钥,则通信的双方便会察觉,而传统密码学无法察觉窃听,也就无法从根本上保证密钥的安全性。
由于QKD系统工作机制仍然是对称加密,故其具备对称密码体制所具有的优点。除此之外,其还解决了传统对称密码体制难以解决的有关密钥安全分发、密钥如何管理的问题,以及实现了密钥持续快速更迭,可支持一事一密、一次一密的可变换密钥加密流程。
但是,QKD系统仍然存在很多的劣势:①QKD系统两端协商分配的密钥是相同的密钥,故系统自身仍不具有数字签名功能;②一个完整的QKD系统必须由一对QKD、两台QKS、一台QKMC、两台QVPN、至少两台交换机以 及至少一根裸光纤构建而成。由此可见,该系统还是相对比较复杂的,至少在使用上来讲不如主流的密码机方便;③QKD技术是近几年才逐渐成熟起来的,还未经历市场的严格检验,其发展和应用历史比之传统非对称密码体制还短。技术市场化率低,商用上基本空白,加之QKD设备关键器件仍须进口,且使用寿命较短,故QKD设备生产成本居高不下;④当前的QKD设备实际属于终端系产品,但与传统通信的终端设备相比却又存在着体型庞大、设备结构复杂、工作稳定性差、使用要求苛刻等不足。而且传统通信设备早已适应现代通信网络发展需求,发展出覆盖接入、汇聚、核心三个层面的全方位多系列的产品体系,而QKD设备从其形制来讲还只能算是处在接入层面这样的发展初级阶段,因受技术条件限制还无法发展出真正属于汇聚乃至核心层面的产品体系,所以说其与传统通信设备发展还存在很大的代差,无法适应现代通信网络发展需求。
发明内容
本发明要解决的技术问题是提供一种基于量子随机数的非对称密码终端,以及包含有多个该非对称密码终端的通信系统,以及使用该非对称密码终端进行保密通信的保密通信方法;该非对称密码终端为集量子技术与经典非对称加密于一身的密码机,其既具备当下主流密码机相同的应用形态和组网能力,又具备与QKD系统相似随机的密钥,以及一事一密、一次一密的加密效率。因而其部署更方便、成本更低廉,也就更契合当下通信网络的实际环境,更易于推广使用。而且因其算法简单、密钥更新频次高,故其在通信过程中不仅能提供数字签名服务,还可提供数据加/解密服务。
为了解决上述技术问题,本发明提供了一种基于量子随机数的非对称密码终端,包括,
量子随机数发生器,用于生成并输出两个量子随机数;
密钥生成器,用于首先将所述两个量子随机数分割截断成等长的两组随机 数序列,然后分别使用私钥算法和公钥算法将所述两组随机数序列转换成互为配对的一组私密密钥和一组公共密钥;
所述非对称密码终端根据互为配对的所述私密密钥和所述公共密钥进行加密和解密、签名和验签名。
本发明一个较佳实施例中,进一步包括所述量子随机数发生器具有两路输出端,所述量子随机数发生器生成的所述两个量子随机数分别通过两路输出端输出。
本发明一个较佳实施例中,进一步包括所述非对称密码终端具有两个量子随机数发生器,所述两个量子随机数发生器分别生成并输出所述两个量子随机数。
本发明一个较佳实施例中,进一步包括所述非对称密码终端还包括可信存储器,所述可信存储器包括存储单元I、存储单元II和存储单元III;
所述存储单元I用于有序存储被标记后的所述私密密钥;
所述存储单元II用于有序存储被标记后的所述公共密钥;
通过交换获得的通信对方的公共密钥被标记后有序存储在所述储单元III中。
本发明一个较佳实施例中,进一步包括所述非对称密码终端还包括数据处理器,所述数据处理器包括加/解密模块和数字签名模块;所述加/解密模块用于从所述可信存储器中提取公共密钥或者私密密钥完成数据加密或者数据解密工作;所述数字签名模块用于从所述可信存储器中提取私密密钥或者公共密钥完成数字签名或者签名验证工作。
本发明一个较佳实施例中,进一步包括所述非对称密码终端还包括收发接口模块I和收发接口模块II;
所述收发接口模块I通过经典通信网络与通信对方建立密文传输信道,其用于将经所述加密模块加密后的密文数据发送给通信对方,以及用于将经所述数字签名模块完成的签名信息发送给通信对方,以及用于接收通信对方发送的加密后的密文数据,以及用于接收通信对方发送的签名信息;
所述收发接口模块II通过经典通信网络与通信对方建立公钥交换信道,其用于将本机的公共密钥发送给通信对方,以及用于接收通信对方的公共密钥。
本发明一个较佳实施例中,进一步包括所述非对称密码终端还包括综合控制处理器,所述综合控制处理器用于控制所述量子随机数发生器、密钥生成器、可信存储器、数据处理器、收发接口模块I和收发接口模块II协同工作。
为了解决上述技术问题,本发明还提供了一种保密通信系统,包括多个所述非对称密码终端,所述多个非对称密码终端进行保密通信所使用的私密密钥和公共密钥的初始来源均为量子随机数。
为了解决上述技术问题,本发明还提供了一种保密通信方法,使用所述非对称密码终端进行保密通信,保密通信所使用的私密密钥和公共密钥的初始来源均为量子随机数;
其中,由位于第一非对称密码终端的量子随机数发生器生成两个量子随机数,再由第一非对称密码终端的密钥生成器预先将所述两个量子随机数截断成等长的两组随机数序列后分别使用私钥算法和公钥算法转换成相互配对的一组第一私密密钥和一组第一公共密钥;
由位于第二非对称密码终端的量子随机数发生器生成两个量子随机数,再由第二非对称密码终端的密钥生成器预先将该两个量子随机数截断成另外两组等长的随机数序列后分别使用私钥算法和公钥算法转换成相互配对的一组第二私密密钥和一组第二公共密钥。
本发明一个较佳实施例中,进一步包括所述保密通信方法具体包括以下步 骤,
(1)第一非对称密码终端接收并存储由第二非对称密码终端发送的第二公共密钥,第二非对称密码终端接收并存储由第一非对称密码终端发送的第一公共密钥;
(2)第一非对称密码终端使用第二公共密钥对通信数据进行加密并发送给第二非对称密码终端;
(3)第二非对称密码终端接收第一非对称密码终端发送的加密后的通信数据,并使用第二私密密钥进行解密还原出所述通信数据;
在进行加/解密的同时,
第一非对称密码终端使用第一私密密钥对通信数据进行签名并随同上述加密后的密文数据一起发送给第二非对称密码终端;第二非对称密码终端接收第一非对称密码终端发送来的签名信息,并使用第一公共密钥完成签名验证。
本发明的有益效果:
其一、本发明的非对称密码终端,进行加密和解密、签名和验签名所需要的公共密钥和私密密钥的初始来源均由能够持续生成量子随机数的量子随机数发生器生成,量子随机数发生器能够生成可持续增长的真随机数长链(即量子随机数),量子随机数是包含了无穷位的一个二进制字符串,且每位上的字符是1还是0完全随机,这使得非对称密码终端能够支持高频次变换公共密钥和私密密钥,做到一事一密,一次一密,令破译密码变得毫无意义,从而提高使用非对称密码终端进行通信的安全性。
其二、传统的非对称密码体制,为了达到高的加密安全级别,采用的密码位数多、密码计算复杂,加/解密使用的算法复杂,因而造成正常使用过程中加/解密速度非常慢,考虑这一实际情况,现有的非对称密码体制主要用于通信过程中的数字签名,很少用于通信过程中的数据加/解密。
本申请的非对称密码终端,支持高频次变换公共密钥和私密密钥,做到一事一密、一次一密,在此基础上只需要使用很简单的加解密算法即可达到安全加密的效果,使得本密码终端不仅能用于通信过程中的数字签名,也适用于通信过程中的数据加/解密。
其三、量子保密通信技术所发展的QKD系统,虽然被证明是可提供无条件安全的加密通信保障,但就目前的技术条件而言,QKD系统从其发展之初就存在着设计上的先天不足(QKD设备只能一对一使用;QKD设备仅可用于密钥分发,必须依靠服务器进行密钥存储与管控,借助QVPN担当密码机),这就造成了其部署复杂且成本极高,加之使用条件又严苛,导致QKD系统性价比很低,完全无法比肩现行成熟的加密系统,故其不符合现在的通信发展趋势,实际上难以实现规模化商用。
本申请的非对称密码终端,与现行主流的密码机一样,集密钥分发与加/解密于一体,从而简化了加密系统部署流程,更符合当前通信网络的部署需求。另外,由于本技术方案所述之密码终端内置有量子随机数发生器,且设备植入的各类算法相当简单,故其相较于现行主流的密码机从应用效果上来讲更高效、更安全。
附图说明
图1是本发明的优选实施例中非对称密码终端的结构框图;
图2是两密码终端完成A-B数据加/解密工作的示意图;
图3是两密码终端完成A-B数字签名工作的示意图;
图4是本发明的密码终端与QKD联合部署完成A-B数据加/解密及数字签名工作的示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人 员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例
本实施例公开一种基于量子随机数的非对称密码终端,参照图1所示,该密码终端包括量子随机数发生器、密钥生成器、可信存储器、数据处理器、收发接口模块I、收发接口模块II和综合控制处理器。
上述量子随机数发生器利用量子现象本质的不确定性,通过对物理源的信号采集和数字化技术来持续高速输出超长链的真随机数(或称“量子随机数”),每个真随机数都是一个包含有无穷位的二进制字符串,且每位上的字符是1还是0完全随机。与通过算法复杂度在计算机上生成的伪随机数不同,真随机数即使在拥有无限计算资源和量子计算机的情况下,也不会被成功预测,具有优良的不确定性和不可预测性。
本申请的密码终端需要两个量子随机数共同作用,基于此,作为本实施例第一种技术方案,该密码终端配置两个量子随机数发生器,该两个量子随机数发生器同时产生并输出两个量子随机数。
作为本实施例第二种技术方案,出于降本增效考虑,该密码终端配置一个量子随机数发生器,该量子随机数发生器具有多路(包含两路)输出端,一个量子随机数发生器产生的量子随机数,通过两路输出端输出转变成两个量子随机数。由于高速量子随机数发生器生成量子随机数的成码率很高(可达到Gbps量级),而实际通信过程中加密或签名操作的密钥消耗率基本不可能达到如此高的量级,加之设备本身配置的存储器容量毕竟有限,因而实际使用过程中量子随机数必然会出现溢出性丢弃,因而采用单个却是多路输出的量子随机数发生器可以适当地降低产品成本、降低能耗之余提高设备的工作效率。
量子随机数发生器输出的两个量子随机数qrn 1、qrn 2同时进入密钥生成器。
上述密钥生成器首先将该两个量子随机数qrn 1、qrn 2分割截断成等长的两组随机数序列RN X、RN Y,然后再将RN X和RN Y同步交由私钥算法计算单元和 公钥算法计算单元换算成互为配对的私密密钥SK n和公共密钥PK n
本非对称密码终端(以下简称“本机”)将利用互为配对的私密密钥和公共密钥进行数据加密、解密或者进行数字签名、验签。
上述可信存储器从硬件上解决存储介质的可信任性,能够保证密钥存储的安全可信,其内部划分为存储单元I、存储单元II和存储单元III三个存储单元。经密钥生成器转换而来的私密密钥SK n被存储在存储单元I,经密钥生成器转换而来的公共密钥PK n被存储在存储单元II;与通信网络中除本机以外的其它方相互交换所得的其他方的公共密钥被存储在存储单元III。
此处需要说明的有:三个存储单元中存储的信息,除了由密钥生成器转换而来的私密密钥SK n和公共密钥PK n以外,还有密钥的序列编号、密钥生成时间戳、密钥来源设备ID等信息,由这些信息对密钥本身进行标记,标记后的密钥存储在各个存储单元中,其作用是同步标记各密码终端的公共密钥和私密密钥以对应一致。(即由两个量子随机数转换所得的私密密钥、公共密钥以及由该公共密钥交换来的通信他方的公共密钥标记相同的编号)。
上述数据处理器包括加/解密模块和数字签名模块;其中,加/解密模块用于从可信存储器中按需提取公共密钥或者私密密钥完成数据加密或者数据解密工作;数字签名模块用于从可信存储器中按需提取私密密钥或者公共密钥完成数字签名或者签名验证工作。
上述收发接口模块I通过经典通信网络与通信对方建立密文传输信道,其将经加密模块加密后的密文数据发送给通信对方,以及将经数字签名模块完成的签名信息发送给通信对方,以及接收通信对方发送的加密后的密文数据,以及接收通信对方发送的签名信息。
上述收发接口模块II通过经典通信网络与通信对方建立公钥交换信道,用于与通信对方分享公共秘钥,将本机的公共密钥发送给通信对方,以及接收通信对方的公共密钥。
上述综合控制处理器用于控制所述量子随机数发生器、密钥生成器、可信存储器、数据处理器、收发接口模块I和收发接口模块II协同工作。
为了辅助本机工作,其内还可以配置时钟模块用于给综合控制处理器提供时钟信号;以及,配置证书服务模块用于通信开始前检验各方所用密码终端的合法性;以及,配置管理接口模块用于外接管理终端,提供外部管理交互界面;以及,配置开关电源、风扇等其它附属组件。
本技术方案实现原理是:量子随机数发生器将其生成的量子真随机数持续输出至密钥生成器,由密钥生成器将两个量子真随机数按两种预设的简单算法换算成公共密钥PK n和私密密钥SK n。之后,通信双方秘密保存自己的SK n但互相交换自己的PK n,以供数据处理器调用。最后综合控制处理器操控数据处理器对通信各方的实时通信数据进行数据加密和解密,数字签名和签名验证,从而使得整个通信网络形成了一个可不断更新密钥的非对称密码系统。
参照图2所示,以A-B点对点通信为例描述使用本申请所述的密码终端进行通信的数据加/解密工作模式:
在A、B双方分别部署一台本方案所述的密码终端,且为了保证传输可靠性应尽可能地以不同的信道来隔离密钥流和通信数据流,即A、B双方密码终端应尽可能地以两条线路(有条件的可以架设两条物理线路,不具条件的可在一条通信线路上开辟两个逻辑信道(比如划分vlan、设置不同IP网段、调制不同的光波波长等))进行互联。双方密码终端部署到位后,应先进行互信配置,即互相配置主、从证书并将从证书导入对方密码终端内,从而使双方密码终端成为互相信任的密码终端。
(1)密码终端A内置的俩量子随机数发生器以量子的方式实时产生并输出量子随机数qrn a 1、qrn a 2,随后qrn a 1、qrn a 2被送往密钥生成器A进行后续处理;
(2)在综合控制处理器的调控下,密钥生成器A首先将qrn a 1按需截断成 固定位长(如256bit、512bit、1024bit、……)的由X个随机数排列组成的随机数序列RN A X,与此同时亦将qrn a 2按需截断成固定位长(如256bit、512bit、1024bit、……)的由Y个随机数排列组成的随机数序列RN A Y。然后,密钥生成器A会将RN A X和RN A Y同步提交公钥算法和私钥算法两个算法单元按预置的不同的两种极简算法进行运算,换算出公共密钥PK a n和私密密钥SK a n,并输出到可信存储器A;
(3)综合控制处理器A操控可信存储器A为SK a n标记序列编号并分配到存储单元I a,为PK a n同步标记序列编号并分配到存储单元II a
(4)相应地,在B方,密码终端B内置的俩量子随机数发生器同样会以量子的方式实时产生并输出量子随机数qrn b 1、qrn b 2,随后qrn b 1、qrn b 2被送入密钥生成器B进行后续处理;
(5)在综合控制处理器B的调控下,密钥生成器B将qrn b 1按需截断成固定位长(如256bit、512bit、1024bit、……)的由x个随机数排列组成的随机数序列RN B x,同时亦会将qrn b 2按需截断成固定位长(如256bit、512bit、1024bit、……)的由y个随机数排列组成的随机数序列RN B y,然后方会按预置的公钥算法和私钥算法分别转换成公共密钥PK b m和私密密钥SK b m并输出到可信存储器B;
(6)综合控制处理器B操控可信存储器B为SK b m标记序列编号并分配到存储单元I b,为PK b m同步标记序列编号并分配到存储单元II b
(7)密码终端A通过综合控制处理器A从收发接口模块A2向密码终端B首次发送交换公钥的协商消息,得到密码终端B确认后便将PK a n从可信存储器A的存储单元II a调出并从收发接口模块A2送入公钥交换信道向密码终端B发送。与此同时,其也从收发接口模块A2接收密码终端B发来的公共密钥PK b m并分配到可信存储器A的存储单元III a
(8)相应地,密码终端B从收发接口模块B2收到密码终端A首次发来的 交换公钥的协商请求并予以确认,然后从收发接口模块B2接收密码终端A发来的公共密钥PK a n并分配到可信存储器B的存储单元III b。同时也将PK b m从可信存储器B的存储单元II b调出并从收发接口模块B2送入公钥交换信道向密码终端A发送;
(9)在此之后,A方待发送给B方的数据DATA a自外部输入到密码终端A后,被暂存在数据处理器A中。之后,综合控制处理器A调动加/解密模块a从可信存储器A的存储单元III a有序调取交换来的公钥PK b m对DATA a按预置的简易的加密算法进行加密处理,将其转变成密文信息ciphertext a。随后,ciphertext a被送往收发接口模块A1,经由密文传输信道发送到密码终端B;
(10)密码终端B通过收发接口模块B1接收ciphertext a并转给数据处理器B暂存。综合控制处理器B调动加/解密模块b从可信存储器B的存储单元I b有序调取私钥SK b m对ciphertext a做相应的解密处理以还原出DATA a并输出到B网络中;
(11)反过来,若B方也需向A方传送数据,则数据处理器B会暂存DATA b,随后综合控制处理器B调动加/解密模块b从可信存储器B的存储单元III b有序调取交换来的公钥PK a n对DATA b按预置的简易的加密算法进行加密处理,将其转变成密文信息ciphertext b,然后将之送往收发接口模块B1,经由密文传输信道发送给密码终端A;
(12)密码终端A通过收发接口模块A1接收ciphertext b并转发给数据处理器A暂存。综合控制处理器A调动加/解密模块a从可信存储器A的存储单元I a有序调取私钥SK a n对ciphertext b做相应的解密处理以还原出DATA b并输出到A网络中。
上述步骤(9)~(12)为完整的A-B双向加密通信,除此用途之外,本技术方案所述的密码终端还可用于通信各方之间进行数字签名,如下所述步骤(13)~(16)则为A-B双向数字签名,参照图3所示:
(13)综合控制处理器A调动数字签名模块a对自外部输入的DATA a先行用HASH函数生成报文摘要(message-digest a),然后从可信存储器A的存储单元I a有序调取私钥SK a n对生成的message-digest a按预置的简易的加密算法进行加密处理,将之转换成签名(signature a),然后随同步骤(9)中的ciphertext a一起通过收发接口模块A1送入密文传输信道向密码终端B发送;
(14)密码终端B通过收发接口模块B1将接收到的signature a转给数据处理器B缓存。综合控制处理器B调动数字签名模块b从可信存储器B的存储单元III b有序调取交换而来的公钥PK a n对signature a做相应的解密处理以还原出message-digest a。同时,数字签名模块b还需对由加/解密模块b解密还原出来的DATA A再运行哈希函数,算出message-digest A后与message-digest a进行对比,以验证A方的数字签名,从而验证解密出的DATA A确实是A方发送的数据DATA a
(15)反过来,若B方向A方发送数据,则综合控制处理器B会调动数字签名模块b先行对DATA b运行HASH函数计算出报文摘要message-digest b,然后从可信存储器B的存储单元I b有序调取私钥SK b m对其进行加密,将之转换成签名(signature b)。随后,signature b与步骤(11)中的ciphertext b被一起通过收发接口模块B1从密文传输信道发送给密码终端A;
(16)密码终端A通过收发接口模块A1将接收到的signature b转发给数据处理器A缓存。综合控制处理器A调动数字签名模块a从可信存储器A的存储单元III a有序调取公钥PK b m将signature b解密以还原出message-digest b。同时,数字签名模块a还需对由加/解密模块a解密出来的DATA B运行HASH函数计算出message-diges B,然后与message-digest b对比看是否一致,以验证B方的数字签名,从而验证解密出的DATA B确实是B方发送的数据DATA b
另,本发明的密码终端还可以作为现有QKD系统中的密码机来使用,既能完成正常的数据加/解密,又可填补缺乏数字签名功能的空白,参照图4所示。
由于QKD系统属于对称密码系统,其用于加/解密的密钥是完全相同的,因而相对于非对称密码系统而言其加/解密的效率要更高。但是正因为QKD系统只能产生对称密钥,故其生来就不具备数字签名能力,因此可以本技术方案所述之密码终端为QKD系统的补充来完成数字签名流程,从而确保QKD系统整个通信过程的数据保密性及数据防篡改、防抵赖等。
本替代方案仅需对本技术方案所述之密码终端做适当的结构修改:即在可信存储器内再扩容一个存储单元IV,专用于存储QKD系统生成的量子安全密钥;增设从收发接口模块II到可信存储器的通信总线以便于QKD系统产生的量子安全密钥经收发接口模块II转储到存储单元IV;增设从可信存储器到数据处理器的通信总线以便于加/解密模块在需要时从存储单元IV实时提取量子密钥(Quantum key)进行数据加/解密;在加/解密模块内置对称加密的算法以适应使用量子密钥进行加/解密。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种基于量子随机数的非对称密码终端,其特征在于:包括,
    量子随机数发生器,用于生成并输出两个量子随机数;
    密钥生成器,用于首先将所述两个量子随机数分割截断成等长的两组随机数序列,然后分别使用私钥算法和公钥算法将所述两组随机数序列转换成互为配对的一组私密密钥和一组公共密钥;
    所述非对称密码终端根据互为配对的所述私密密钥和所述公共密钥进行加密和解密、签名和验签名。
  2. 如权利要求1所述的基于量子随机数的非对称密码终端,其特征在于:所述量子随机数发生器具有两路输出端,所述量子随机数发生器生成的所述两个量子随机数分别通过两路输出端输出。
  3. 如权利要求1所述的基于量子随机数的非对称密码终端,其特征在于:所述非对称密码终端具有两个量子随机数发生器,所述两个量子随机数发生器分别生成并输出所述两个量子随机数。
  4. 如权利要求2或3所述的基于量子随机数的非对称密码终端,其特征在于:所述非对称密码终端还包括可信存储器,所述可信存储器包括存储单元I、存储单元II和存储单元III;
    所述存储单元I用于有序存储被标记后的所述私密密钥;
    所述存储单元II用于有序存储被标记后的所述公共密钥;
    通过交换获得的通信对方的公共密钥被标记后有序存储在所述储单元III中。
  5. 如权利要求4所述的基于量子随机数的非对称密码终端,其特征在于:所述非对称密码终端还包括数据处理器,所述数据处理器包括加/解密模块和数字签名模块;所述加/解密模块用于从所述可信存储器中提取公共密钥或者私密密钥完成数据加密或者数据解密工作;所述数字签名模块用于从所述可信存储器中提取私密密钥或者公共密钥完成数字签名或者签名验证工作。
  6. 如权利要求5所述的基于量子随机数的非对称密码终端,其特征在于:所述非对称密码终端还包括收发接口模块I和收发接口模块II;
    所述收发接口模块I通过经典通信网络与通信对方建立密文传输信道,其用于将经所述加密模块加密后的密文数据发送给通信对方,以及用于将经所述数字签名模块完成的签名信息发送给通信对方,以及用于接收通信对方发送的加密后的密文数据,以及用于接收通信对方发送的签名信息;
    所述收发接口模块II通过经典通信网络与通信对方建立公钥交换信道,其用于将本机的公共密钥发送给通信对方,以及用于接收通信对方的公共密钥。
  7. 如权利要求6所述的基于量子随机数的非对称密码终端,其特征在于:所述非对称密码终端还包括综合控制处理器,所述综合控制处理器用于控制所述量子随机数发生器、密钥生成器、可信存储器、数据处理器、收发接口模块I和收发接口模块II协同工作。
  8. 一种保密通信系统,其特征在于:包括多个如权利要求1-7任一项所述的非对称密码终端,所述多个非对称密码终端进行保密通信所使用的私密密钥和公共密钥的初始来源均为量子随机数。
  9. 一种使用权利要求1-7任一项所述的非对称密码终端进行保密通信的保密通信方法,其特征在于:保密通信所使用的私密密钥和公共密钥的初始来源均为量子随机数;
    其中,由位于第一非对称密码终端的量子随机数发生器生成两个量子随机数,再由第一非对称密码终端的密钥生成器预先将所述两个量子随机数截断成等长的两组随机数序列后分别使用私钥算法和公钥算法转换成相互配对的一组第一私密密钥和一组第一公共密钥;
    由位于第二非对称密码终端的量子随机数发生器生成两个量子随机数,再由第二非对称密码终端的密钥生成器预先将该两个量子随机数截断成另外两组等长的随机数序列后分别使用私钥算法和公钥算法转换成相互配对的一组第二私密密钥和一组第二公共密钥。
  10. 如权利要求9所述的保密通信方法,其特征在于:所述保密通信方法具体包括以下步骤,
    (1)第一非对称密码终端接收并存储由第二非对称密码终端发送的第二公共密钥,第二非对称密码终端接收并存储由第一非对称密码终端发送的第一公共密钥;
    (2)第一非对称密码终端使用第二公共密钥对通信数据进行加密并发送给第二非对称密码终端;
    (3)第二非对称密码终端接收第一非对称密码终端发送的加密后的通信数据,并使用第二私密密钥进行解密还原出所述通信数据;
    在进行加/解密的同时,
    第一非对称密码终端使用第一私密密钥对通信数据进行签名并随同上述加密后的密文数据一起发送给第二非对称密码终端;第二非对称密码终端接收第一非对称密码终端发送来的签名信息,并使用第一公共密钥完成签名验证。
PCT/CN2019/117952 2019-10-30 2019-11-13 基于量子随机数的非对称密码终端、通信系统及方法 WO2021082077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911044222.2A CN110611572A (zh) 2019-10-30 2019-10-30 基于量子随机数的非对称密码终端、通信系统及方法
CN201911044222.2 2019-10-30

Publications (1)

Publication Number Publication Date
WO2021082077A1 true WO2021082077A1 (zh) 2021-05-06

Family

ID=68895653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117952 WO2021082077A1 (zh) 2019-10-30 2019-11-13 基于量子随机数的非对称密码终端、通信系统及方法

Country Status (2)

Country Link
CN (1) CN110611572A (zh)
WO (1) WO2021082077A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111314083B (zh) * 2020-01-21 2023-04-07 南京如般量子科技有限公司 基于秘密共享和非对称密码学的量子保密通信系统和方法
CN112039819B (zh) * 2020-09-08 2023-02-14 东南大学 一种光正交频分复用网络中的时变导频系统
CN114362928B (zh) * 2021-03-23 2023-11-24 长春大学 一种用于多节点间加密的量子密钥分发与重构方法
CN114124370A (zh) * 2021-10-14 2022-03-01 阿里云计算有限公司 密钥生成方法及装置
CN115801257B (zh) * 2023-02-13 2023-05-05 广东广宇科技发展有限公司 一种基于量子加密的大数据安全传输方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015023550A1 (en) * 2013-08-13 2015-02-19 Fiske Software, LLC. Nado cryptography using one-way functions
CN108449183A (zh) * 2018-05-04 2018-08-24 北京邮电大学 一种使用量子随机数的非对称加密方法
CN108696354A (zh) * 2018-06-20 2018-10-23 北京邮电大学 一种使用量子随机数的量子非对称加密设备
WO2019069103A1 (en) * 2017-10-06 2019-04-11 Novus Paradigm Technologies Corporation SYSTEM AND METHOD FOR QUANTIALLY SECURING AUTHENTICATION, ENCRYPTION, AND INFORMATION DECLIFFING

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100435089C (zh) * 2005-12-16 2008-11-19 华南师范大学 一种产生真随机码的装置及其产生真随机码的方法
CN109560935B (zh) * 2018-10-31 2021-08-31 如般量子科技有限公司 基于公共非对称密钥池的抗量子计算的签章方法和签章系统
CN109672530A (zh) * 2019-01-08 2019-04-23 如般量子科技有限公司 基于非对称密钥池的抗量子计算数字签名方法和抗量子计算数字签名系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015023550A1 (en) * 2013-08-13 2015-02-19 Fiske Software, LLC. Nado cryptography using one-way functions
WO2019069103A1 (en) * 2017-10-06 2019-04-11 Novus Paradigm Technologies Corporation SYSTEM AND METHOD FOR QUANTIALLY SECURING AUTHENTICATION, ENCRYPTION, AND INFORMATION DECLIFFING
CN108449183A (zh) * 2018-05-04 2018-08-24 北京邮电大学 一种使用量子随机数的非对称加密方法
CN108696354A (zh) * 2018-06-20 2018-10-23 北京邮电大学 一种使用量子随机数的量子非对称加密设备

Also Published As

Publication number Publication date
CN110611572A (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
WO2021082077A1 (zh) 基于量子随机数的非对称密码终端、通信系统及方法
CN108418686B (zh) 一种多分布式的sm9解密方法与介质及密钥生成方法与介质
US9246674B2 (en) Generation of cryptographic keys
CN106533656B (zh) 一种基于wsn的密钥多层混合加/解密方法
CN111490871A (zh) 一种基于量子密钥云的sm9密钥认证方法、系统及存储介质
CN208986966U (zh) 一种加密终端以及相应的数据传输系统
CN104158880A (zh) 一种用户端云数据共享解决方法
CN111865589A (zh) 实现移动通信量子加密传输的量子通信加密系统及其方法
CN111769937A (zh) 面向智能电网高级测量体系的两方认证密钥协商协议
CN112055022A (zh) 一种高效率高安全性的网络文件传输双重加密方法
CN113630248A (zh) 一种会话密钥协商方法
CN114629646A (zh) 基于混合后量子密钥封装和协商的安全传输方法及系统
CN108989036B (zh) 基于混沌激光分时量化的高速密钥安全分发系统及方法
CN114499857A (zh) 一种实现大数据量子加解密中数据正确性与一致性的方法
CN114362928B (zh) 一种用于多节点间加密的量子密钥分发与重构方法
CN111953487B (zh) 一种密钥管理系统
CN109889329A (zh) 基于量子密钥卡的抗量子计算智能家庭量子通信方法和系统
CN113079003A (zh) 一种分布式sm9密钥生成方法及系统
CN110048852B (zh) 基于非对称密钥池的量子通信服务站数字签密方法和系统
CN111371551A (zh) 一种量子密钥同步中继装置
CN114401085B (zh) 一种量子保密通信网络的网络架构及密钥存储方法
CN116192437A (zh) 一种基于区块链及Signal协议的配网作业安全接入方法及系统
CN114499862A (zh) 一种基于量子秘钥分发的对称秘钥池加密及传输方法
CN114362936A (zh) 一种基于量子保密通信网络中密钥中继方法
CN109787772B (zh) 基于对称密钥池的抗量子计算签密方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950689

Country of ref document: EP

Kind code of ref document: A1