WO2021081949A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021081949A1
WO2021081949A1 PCT/CN2019/114876 CN2019114876W WO2021081949A1 WO 2021081949 A1 WO2021081949 A1 WO 2021081949A1 CN 2019114876 W CN2019114876 W CN 2019114876W WO 2021081949 A1 WO2021081949 A1 WO 2021081949A1
Authority
WO
WIPO (PCT)
Prior art keywords
control resource
time
resource set
pdcch
search space
Prior art date
Application number
PCT/CN2019/114876
Other languages
English (en)
French (fr)
Inventor
樊波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/114876 priority Critical patent/WO2021081949A1/zh
Priority to CN201980101474.6A priority patent/CN114586400B/zh
Priority to EP19951034.8A priority patent/EP4040835A4/en
Publication of WO2021081949A1 publication Critical patent/WO2021081949A1/zh
Priority to US17/730,945 priority patent/US20220279491A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a communication method and device.
  • the network device can send the physical downlink sharing channel (PDSCH) to the terminal device, and the PDSCH is generally scheduled and controlled by the control information carried in the physical downlink control channel (PDCCH)
  • the information is, for example, downlink control information (DCI). Therefore, in order to receive the PDSCH correctly, the terminal device needs to monitor the PDCCH first, and obtain the DCI carried in the PDCCH by monitoring the PDCCH, and then obtain relevant information required for receiving the PDSCH, such as the PDSCH time-frequency resource location and size.
  • DCI downlink control information
  • the 5th generation (5G) communication system has introduced many types of services, some of which have higher reliability requirements, such as ultra-reliable and low-latency communications (URLLC) services, which are then used
  • URLLC ultra-reliable and low-latency communications
  • the transmission reliability requirements of the PDSCH and the corresponding PDCCH for transmitting these services are also relatively high.
  • the present application provides a communication method and device for implementing multiple repeated transmissions of PDCCH.
  • this application provides a communication method, which can be applied to a terminal device, or can also be applied to a chip inside the terminal device.
  • configuration information from a network device is received, and the configuration information is used to configure a control resource set and M search spaces, and the control resource set is associated with M search spaces; each of the M search spaces
  • the control resource set associated with each search space is used to transmit the PDCCH once; further, the first PDCCH may be monitored on the control resource set and the time-frequency resources corresponding to the M search spaces; where M Is an integer greater than 1.
  • control resource set meets the first preset condition, and/or the M search spaces meet the second preset condition.
  • the terminal device determines that the control resource set meets the first preset condition, and/or the M search spaces meet the second preset condition, it can learn that the control resource set and the M search spaces are used to compare the PDCCH Performing M transmissions facilitates subsequent use of combined decoding methods to save processing resources.
  • control resource set meeting the first preset condition includes one or more of the following:
  • the control resource set is associated with multiple search spaces
  • the control resource set corresponds to multiple activated TCI-states
  • the number of activated TCI-states corresponding to the control resource set is equal to the number of search spaces associated with the control resource set;
  • the M search spaces meeting the second preset condition include one or more of the following:
  • the time domain starting positions corresponding to the M search spaces are the same.
  • the method before monitoring the first PDCCH on the control resource set and the time-frequency resources corresponding to the M search spaces, the method further includes: receiving first indication information from a network device, the first The indication information is used to indicate that the control resource set and M search spaces are used to perform M transmissions on the first PDCCH.
  • the frequency domain resources corresponding to the control resource set include M frequency domain resource parts, and the M frequency domain resource parts are associated with M search spaces one by one; each search in the M search spaces
  • the control resource set associated with the space and each search space is used to transmit the first PDCCH once, including: each of the M search spaces and the frequency domain resource part associated with each search space is used for the first PDCCH
  • One PDCCH is transmitted once.
  • control resource set corresponds to M activated TCI-states
  • monitoring the first PDCCH on the control resource set and the time-frequency resources corresponding to the M search spaces includes: according to M Receiving the first PDCCH on the control resource set and the time-frequency resources corresponding to the M search spaces.
  • M activated TCI-states are associated with M search spaces one by one.
  • the method further includes: receiving second indication information from the network device, where the second indication information is used to indicate activation M TCI-states corresponding to the control resource set.
  • the second indication information includes one or more of the following:
  • the first information is used to indicate the number of activated TCI-states
  • Second information the second information is used to indicate that the number of activated TCI-states is multiple
  • the third information is used to indicate that the M TCI-states are used for simultaneous transmission of the first PDCCH or time-sharing transmission of the first PDCCH.
  • the control resource set and the time-frequency resources corresponding to the M search spaces include M groups of time-frequency resources; wherein, each search space in the M search spaces and the control associated with each search space
  • the resource set corresponds to a group of time-frequency resources in the M groups of time-frequency resources; the M groups of time-frequency resources are completely the same; or, the M groups of time-frequency resources have the same time-domain resources but different frequency-domain resources; or, the M groups of time-frequency resources
  • the frequency domain resources are the same but the time domain resources are different; or, the M groups of time-frequency resources have different frequency domain resources and different time domain resources.
  • this application provides a communication method, which can be applied to a network device, or can also be applied to a chip inside the network device.
  • configuration information is sent to the terminal device, and the configuration information is used to configure a control resource set and M search spaces, and the control resource set is associated with M search spaces; each of the M search spaces is summed with The control resource set associated with each search space is used to transmit the first PDCCH once; furthermore, the first PDCCH may be transmitted M times on the control resource set and the time-frequency resources corresponding to the M search spaces; Wherein, M is an integer greater than 1.
  • control resource set meets the first preset condition, and/or the M search spaces meet the second preset condition.
  • control resource set meeting the first preset condition includes one or more of the following:
  • the control resource set is associated with multiple search spaces
  • the control resource set corresponds to multiple activated TCI-states
  • the number of activated TCI-states corresponding to the control resource set is equal to the number of search spaces associated with the control resource set;
  • the M search spaces meeting the second preset condition include one or more of the following:
  • the time domain starting positions of the M search spaces are the same.
  • the method before performing M transmissions of the first PDCCH on the control resource set and the time-frequency resources corresponding to the M search spaces, the method further includes: sending first indication information to a terminal device, and An indication information is used to indicate that the control resource set and M search spaces are used to perform M transmissions on the first PDCCH.
  • the frequency domain resources corresponding to the control resource set include M frequency domain resource parts, and the M frequency domain resource parts are associated with M search spaces one by one; each search in the M search spaces
  • the control resource set associated with the space and each search space is used to transmit the first PDCCH once, including: each of the M search spaces and the frequency domain resource part associated with each search space is used for the first PDCCH
  • One PDCCH is transmitted once.
  • the control resource set corresponds to M activated TCI-states; the first PDCCH is transmitted M times on the time-frequency resources corresponding to the control resource set and the M search spaces, including: According to the M activated TCI-states, the first PDCCH is transmitted on the control resource set and the time-frequency resources corresponding to the M search spaces.
  • M activated TCI-states are associated with M search spaces one by one.
  • the method further includes: sending second indication information to the terminal device, where the second indication information is used to indicate the activation of all TCI-states. M TCI-states corresponding to the control resource set.
  • the second indication information includes one or more of the following:
  • the first information is used to indicate the number of activated TCI-states
  • Second information the second information is used to indicate that the number of activated TCI-states is multiple
  • the third information is used to indicate that the M TCI-states are used for simultaneous transmission of the first PDCCH or time-sharing transmission of the first PDCCH.
  • the control resource set and the time-frequency resources corresponding to the M search spaces include M groups of time-frequency resources; wherein, each search space in the M search spaces and the control associated with each search space
  • the resource set corresponds to a group of time-frequency resources in the M groups of time-frequency resources; the M groups of time-frequency resources are completely the same; or, the M groups of time-frequency resources have the same time-domain resources but different frequency-domain resources; or, the M groups of time-frequency resources
  • the frequency domain resources are the same but the time domain resources are different; or, the M groups of time-frequency resources have different frequency domain resources and different time domain resources.
  • this application provides a communication method, which can be applied to a terminal device, or can also be applied to a chip inside the terminal device.
  • the configuration information from the network device is received, and the configuration information is used to configure M control resource sets and M search spaces, and the M control resource sets are associated with the M search spaces one by one;
  • Each control resource set and the search space associated with each control resource set are used to transmit the first PDCCH once; furthermore, the first PDCCH can be monitored on the time-frequency resources corresponding to the M control resource sets and the M search spaces;
  • M is an integer greater than 1.
  • the existing configuration method can be used.
  • a control resource set and a search space can be configured.
  • M control resource sets and M search spaces can be configured, so that multiple repeated transmissions of the first PDCCH can be realized on the basis of minor changes to the existing solution, and the transmission reliability of the first PDCCH can be improved.
  • the M control resource sets meet the first preset condition, and/or the M search spaces meet the second preset condition.
  • the M control resource sets meeting the first preset condition include: the frequency domain resources corresponding to the M control resource sets are the same, and/or the DMRS scrambling identifiers of the M control resource sets are the same;
  • the M search spaces meeting the second preset condition include one or more of the following:
  • the detection periods of the M search spaces are the same;
  • the time domain starting positions of the M search spaces are the same.
  • the method before monitoring the first PDCCH on the time-frequency resources corresponding to the M control resource sets and the M search spaces, the method further includes: receiving first indication information from a network device, and the first The indication information is used to indicate that M control resource sets and M search spaces are used to perform M transmissions on the first PDCCH.
  • each control resource set in the M control resource sets corresponds to an activated TCI-state; the first control resource set is monitored on the time-frequency resources corresponding to the M control resource sets and the M search spaces.
  • the PDCCH includes: receiving the first PDCCH on the time-frequency resources corresponding to the M control resource sets and the M search spaces according to the M activated TCI-states.
  • the time-frequency resources corresponding to the M control resource sets and the M search spaces include M sets of time-frequency resources; among them, each control resource set and each control resource set in the M control resource sets
  • the associated search space corresponds to a set of time-frequency resources in the M sets of time-frequency resources; the M sets of time-frequency resources are completely the same; or, the M sets of time-frequency resources have the same time-domain resources but different frequency-domain resources; or, the M sets of time-frequency resources
  • the frequency domain resources of the resources are the same but the time domain resources are different; or, the frequency domain resources of the M groups of time-frequency resources are different and the time domain resources are different.
  • the present application provides a communication method, which can be applied to a network device, or can also be applied to a chip inside the network device.
  • configuration information is sent to the terminal device, and the configuration information is used to configure M control resource sets and M search spaces, and the M control resource sets are associated with the M search spaces one by one; each of the M control resource sets
  • the search spaces associated with each control resource set and each control resource set are used to transmit the first PDCCH once; further, the first PDCCH may be transmitted on the time-frequency resources corresponding to the M control resource sets and the M search spaces. Perform M transmissions; where M is an integer greater than 1.
  • the existing configuration method can be used.
  • a control resource set and a search space can be configured.
  • M control resource sets and M search spaces can be configured, so that multiple repeated transmissions of the first PDCCH can be realized on the basis of minor changes to the existing solution, and the transmission reliability of the first PDCCH can be improved.
  • the M control resource sets meet the first preset condition, and/or the M search spaces meet the second preset condition.
  • the M control resource sets meeting the first preset condition include: the frequency domain resources corresponding to the M control resource sets are the same, and/or the DMRS scrambling identifiers of the M control resource sets are the same;
  • the M search spaces meeting the second preset condition include one or more of the following:
  • the detection periods of the M search spaces are the same;
  • the time domain starting positions of the M search spaces are the same.
  • the method before performing M transmissions on the first PDCCH on the time-frequency resources corresponding to the M control resource sets and the M search spaces, the method further includes: sending the first indication information to the terminal device, so The first indication information is used to indicate that M control resource sets and M search spaces are used to perform M transmissions on the first PDCCH.
  • each control resource set in the M control resource sets corresponds to an activated TCI-state; the first time-frequency resource corresponding to the M control resource sets and the M search spaces is Performing M transmissions of the PDCCH includes: transmitting the first PDCCH on the time-frequency resources corresponding to the M control resource sets and the M search spaces according to the M activated TCI-states.
  • the time-frequency resources corresponding to the M control resource sets and the M search spaces include M sets of time-frequency resources; among them, each control resource set and each control resource set in the M control resource sets
  • the associated search space corresponds to a set of time-frequency resources in the M sets of time-frequency resources; the M sets of time-frequency resources are completely the same; or, the M sets of time-frequency resources have the same time-domain resources but different frequency-domain resources; or, the M sets of time-frequency resources
  • the frequency domain resources of the resources are the same but the time domain resources are different; or, the frequency domain resources of the M groups of time-frequency resources are different and the time domain resources are different.
  • this application provides a communication method, which can be applied to a terminal device, or can also be applied to a chip inside the terminal device.
  • configuration information from the network device is received, and the configuration information is used to configure M control resource sets and a search space, and the M control resource sets are respectively associated with the search space; each of the M control resource sets The search space associated with the control resource set and each control resource set is used to transmit the first PDCCH once; further, the first PDCCH is monitored on the time-frequency resources corresponding to the M control resource sets and the search space ;
  • M is an integer greater than 1.
  • the M control resource sets meet the first preset condition, and/or the search space meets the second preset condition.
  • the M control resource sets meeting the first preset condition include one or more of the following:
  • the search spaces associated with the M control resource sets are the same;
  • the frequency domain resources corresponding to the M control resource sets are the same;
  • the DMRS scrambling identifiers of the M control resource sets are the same;
  • the search space meeting the second preset condition includes one or more of the following:
  • the search space includes multiple listening opportunities
  • the number of monitoring opportunities included in the search space is equal to the number of control resource sets associated with the search space.
  • the method before monitoring the first PDCCH on the M control resource sets and the time-frequency resources corresponding to the search space, the method further includes: receiving first indication information from a network device.
  • the indication information is used to indicate M control resource sets and the search space is used to perform M transmissions on the first PDCCH.
  • the search space includes M monitoring opportunities, and M monitoring opportunities are associated with M control resource sets one by one; each control resource set and each control resource set in the M control resource sets
  • the associated search space is used for one transmission of the first PDCCH, including: each control resource set in the M control resource sets and the monitoring opportunity associated with each control resource set is used for one transmission of the first PDCCH.
  • each control resource set in the M control resource sets corresponds to an activated TCI-state; monitors the first TCI-state on the M control resource sets and the time-frequency resource corresponding to the search space
  • the PDCCH includes: receiving the first PDCCH on M control resource sets and time-frequency resources corresponding to the search space according to M activated TCI-states.
  • the M control resource sets and the time-frequency resources corresponding to the search space include M sets of time-frequency resources; wherein, each control resource set and each control resource set in the M control resource sets
  • the associated search space corresponds to a group of time-frequency resources in the M groups of time-frequency resources; the M groups of time-frequency resources are completely the same; or, the M groups of time-frequency resources have the same time domain resources but different frequency domain resources; or, the M groups The frequency domain resources of the time-frequency resources are the same but the time domain resources are different; or, the frequency domain resources of the M groups of time-frequency resources are different and the time domain resources are different.
  • this application provides a communication method, which can be applied to a network device, or can also be applied to a chip inside the network device.
  • configuration information is sent to the terminal device, and the configuration information is used to configure M control resource sets and a search space, and the M control resource sets are respectively associated with the search space; each control resource in the M control resource sets
  • the search space associated with the resource set and each control resource set is used to transmit the first PDCCH once; further, the first PDCCH can be compared to the M control resource sets and the time-frequency resources corresponding to the search space. Perform M transmissions; where M is an integer greater than 1.
  • the M control resource sets meet the first preset condition, and/or the search space meets the second preset condition.
  • the M control resource sets meeting the first preset condition include one or more of the following:
  • the search spaces associated with the M control resource sets are the same;
  • the frequency domain resources corresponding to the M control resource sets are the same;
  • the DMRS scrambling identifiers of the M control resource sets are the same;
  • the search space meeting the second preset condition includes one or more of the following:
  • the search space includes multiple listening opportunities
  • the number of monitoring opportunities included in the search space is equal to the number of control resource sets associated with the search space.
  • the method before performing M transmissions of the first PDCCH on the M control resource sets and the time-frequency resources corresponding to the search space, the method further includes: sending first indication information to a terminal device, and the first PDCCH An indication information is used to indicate M control resource sets and the search space is used to perform M transmissions on the first PDCCH.
  • the search space includes M monitoring opportunities, and M monitoring opportunities are associated with M control resource sets one by one; each control resource set and each control resource set in the M control resource sets
  • the associated search space is used for one transmission of the first PDCCH, including: each control resource set in the M control resource sets and the monitoring opportunity associated with each control resource set is used for one transmission of the first PDCCH.
  • each control resource set in the M control resource sets corresponds to an activated TCI-state; the first PDCCH is performed on the M control resource sets and the time-frequency resources corresponding to the search space M transmissions include: transmitting the first PDCCH on M control resource sets and time-frequency resources corresponding to the search space according to the M activated TCI-states.
  • the M control resource sets and the time-frequency resources corresponding to the search space include M sets of time-frequency resources; wherein, each control resource set and each control resource set in the M control resource sets
  • the associated search space corresponds to a group of time-frequency resources in the M groups of time-frequency resources; the M groups of time-frequency resources are completely the same; or, the M groups of time-frequency resources have the same time domain resources but different frequency domain resources; or, the M groups The frequency domain resources of the time-frequency resources are the same but the time domain resources are different; or, the frequency domain resources of the M groups of time-frequency resources are different and the time domain resources are different.
  • the present application provides a communication method, which can be applied to a terminal device, or can also be applied to a chip inside the terminal device.
  • configuration information from a network device is received, and the configuration information is used to configure a control resource set and a search space, the control resource set is associated with the search space; the control resource set and the search space are used M transmissions are performed on the first PDCCH; further, the first PDCCH may be monitored on the time-frequency resource corresponding to the control resource set and the search space.
  • control resource set meets a first preset condition
  • search space meets a second preset condition
  • the control resource set meeting the first preset condition includes: the control resource set corresponds to multiple activated TCI-states; or, the control resource set corresponds to multiple activated TCI-states , And the number of activated TCI-states corresponding to the control resource set is equal to the number of monitoring opportunities included in the search space;
  • the search space meeting the second preset condition includes: the search space includes multiple monitoring Opportunities; or, the number of monitoring opportunities included in the search space is equal to the number of activated TCI-states corresponding to the control resource set.
  • the method before monitoring the first PDCCH on the control resource set and the time-frequency resource corresponding to the search space, the method further includes: receiving first indication information from a network device, and the first The indication information is used to indicate that the control resource set and the search space are used to perform M transmissions on the first PDCCH.
  • the search space includes M listening opportunities, and the M listening opportunities are respectively associated with the control resource set; the control resource set and the search space are used to perform M times on the first PDCCH Transmission includes: each monitoring opportunity among the M monitoring opportunities and the control resource set associated with each monitoring opportunity are used to transmit the first PDCCH once.
  • the frequency domain resource corresponding to the control resource set includes M frequency domain resource parts, and the M frequency domain resource parts are respectively associated with the search space; the control resource set and the search space It is used to perform M transmissions on the first PDCCH, including: each frequency domain resource part of the M frequency domain resource parts and the search space associated with each frequency domain resource part are used for one transmission of the first PDCCH.
  • control resource set corresponds to M activated TCI-states
  • monitoring the first PDCCH on the time-frequency resource corresponding to the control resource set and the search space includes: In an activated TCI-state, the first PDCCH is received on the control resource set and the time-frequency resource corresponding to the search space.
  • the method further includes: receiving second indication information from the network device, where the second indication information is used to indicate activation M TCI-states corresponding to the control resource set.
  • the second indication information includes one or more of the following:
  • the first information is used to indicate the number of activated TCI-states
  • Second information the second information is used to indicate that the number of activated TCI-states is multiple
  • the third information is used to indicate that the M TCI-states are used to transmit the first PDCCH simultaneously or to transmit the first PDCCH in time sharing.
  • the control resource set and the time-frequency resource corresponding to the search space include M groups of time-frequency resources, and each group of time-frequency resources in the M groups of time-frequency resources is used to perform one PDCCH on the first PDCCH.
  • M groups of time-frequency resources are identical; or, M groups of time-frequency resources have the same time-domain resources but different frequency-domain resources; or, M groups of time-frequency resources have the same frequency-domain resources but different time-domain resources; or, M groups The frequency domain resources of the time-frequency resources are different and the time domain resources are different.
  • the present application provides a communication method, which can be applied to a network device, or can also be applied to a chip inside the network device.
  • configuration information is sent to the terminal device, and the configuration information is used to configure a control resource set and a search space, and the control resource set is associated with the search space; further, the control resource set and the search space may be
  • the first PDCCH is transmitted M times on the time-frequency resource corresponding to the search space.
  • control resource set meets a first preset condition
  • search space meets a second preset condition
  • the control resource set meeting the first preset condition includes: the control resource set corresponds to multiple activated TCI-states; or, the control resource set corresponds to multiple activated TCI-states , And the number of activated TCI-states corresponding to the control resource set is equal to the number of monitoring opportunities included in the search space;
  • the search space meeting the second preset condition includes: the search space includes multiple monitoring Opportunities; or, the search space includes multiple monitoring opportunities, and the number of monitoring opportunities included in the search space is equal to the number of activated TCI-states corresponding to the control resource set.
  • the method before performing M transmissions of the first PDCCH on the control resource set and the time-frequency resource corresponding to the search space, the method further includes: sending first indication information to a terminal device, and the first PDCCH An indication information is used to indicate that the control resource set and the search space are used to perform M transmissions on the first PDCCH.
  • the search space includes M monitoring opportunities, and the M monitoring opportunities are respectively associated with the control resource set; each of the M monitoring opportunities is associated with each monitoring opportunity.
  • the control resource set is used to transmit the first PDCCH once.
  • the frequency domain resource corresponding to the control resource set includes M frequency domain resource parts, and the M frequency domain resource parts are respectively associated with the search space; each of the M frequency domain resource parts The frequency domain resource part and the search space associated with each frequency domain resource part are used to transmit the first PDCCH once.
  • the control resource set corresponds to M activated TCI-states
  • performing M transmissions on the first PDCCH on the control resource set and the time-frequency resource corresponding to the search space includes: According to the M activated TCI-states, the first PDCCH is transmitted on the time-frequency resource corresponding to the control resource set and the search space.
  • the method further includes: sending second indication information to the terminal device, where the second indication information is used to indicate the activation of all TCI-states. M TCI-states corresponding to the control resource set.
  • the second indication information includes one or more of the following:
  • the first information is used to indicate the number of activated TCI-states
  • Second information the second information is used to indicate that the number of activated TCI-states is multiple
  • the third information is used to indicate that the M TCI-states are used to transmit the first PDCCH simultaneously or to transmit the first PDCCH in time sharing.
  • the control resource set and the time-frequency resource corresponding to the search space include M groups of time-frequency resources, and each group of time-frequency resources in the M groups of time-frequency resources is used to perform one PDCCH on the first PDCCH.
  • M groups of time-frequency resources are identical; or, M groups of time-frequency resources have the same time-domain resources but different frequency-domain resources; or, M groups of time-frequency resources have the same frequency-domain resources but different time-domain resources; or, M groups The frequency domain resources of the time-frequency resources are different and the time domain resources are different.
  • the present application provides a communication device, and the communication device may be a terminal device or a chip set inside the terminal device.
  • the communication device has the function of implementing the first aspect or the third aspect or the fifth aspect or the seventh aspect.
  • the communication device includes the function of executing the first aspect, the third aspect, the fifth aspect, or the seventh aspect.
  • the modules or units or means corresponding to the steps can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit.
  • the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the communication unit is used to receive The configuration information of the network device; the processing unit can be used to perform some internal operations of the communication device, such as separate decoding or combined decoding of the signal received by the communication unit.
  • the functions performed by the processing unit and the communication unit may correspond to the steps involved in the first aspect or the third aspect or the fifth aspect or the seventh aspect described above.
  • the communication device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals.
  • the processor executes program instructions to complete the first aspect or the third aspect or the first aspect.
  • the communication device may further include one or more memories, and the memories are used for coupling with the processor.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may store necessary computer programs or instructions to realize the functions related to the first aspect or the third aspect or the fifth aspect or the seventh aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any of the first aspect, the third aspect, the fifth aspect, or the seventh aspect. Possible design or method of implementation.
  • the communication device includes a processor and a memory
  • the memory can store necessary computer programs or instructions for realizing the functions involved in the first aspect or the third aspect or the fifth aspect or the seventh aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any of the first aspect, the third aspect, the fifth aspect, or the seventh aspect. Possible design or method of implementation.
  • the communication device includes at least one processor and an interface circuit, where at least one processor is used to communicate with other devices through the interface circuit and execute the first aspect or the third aspect or the first aspect described above.
  • the present application provides a communication device.
  • the communication device may be a network device or a chip set inside the network device.
  • the communication device is capable of implementing functions related to the second aspect, the fourth aspect, the sixth aspect, or the eighth aspect.
  • the communication device includes performing the second aspect, the fourth aspect, the sixth aspect, or the eighth aspect.
  • the functions or units or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit.
  • the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the communication unit is used to communicate with the terminal.
  • the device sends configuration information; the processing unit may be used to perform some internal operations of the communication device, such as generating the above-mentioned configuration information.
  • the functions performed by the processing unit and the communication unit may correspond to the steps involved in the second aspect or the fourth aspect or the sixth aspect or the eighth aspect described above.
  • the communication device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to complete the second aspect or the fourth aspect or the first aspect.
  • the method in any possible design or implementation of the sixth aspect or the eighth aspect.
  • the communication device may further include one or more memories, and the memories are used for coupling with the processor.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may store necessary computer programs or instructions for realizing the functions related to the second aspect or the fourth aspect or the sixth aspect or the eighth aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any of the second aspect or the fourth aspect, the sixth aspect, or the eighth aspect. Possible design or method of implementation.
  • the communication device includes a processor and a memory
  • the memory can store necessary computer programs or instructions for realizing the functions involved in the second aspect or the fourth aspect or the sixth aspect or the eighth aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any of the second aspect or the fourth aspect, the sixth aspect, or the eighth aspect. Possible design or method of implementation.
  • the communication device includes at least one processor and an interface circuit, where at least one processor is used to communicate with other devices through the interface circuit and execute the second or fourth aspect or the first aspect described above.
  • the method in any possible design or implementation of the sixth aspect or the eighth aspect.
  • the present application provides a computer-readable storage medium that stores computer-readable instructions, and when the computer reads and executes the computer-readable instructions, the computer executes the first aspect described above. Any one of the possible design methods from the eighth aspect.
  • this application provides a computer program product, which when a computer reads and executes the computer program product, causes the computer to execute any one of the possible design methods of the first to eighth aspects.
  • the present application provides a chip including a processor, the processor is coupled with a memory, and is configured to read and execute a software program stored in the memory, so as to implement the above-mentioned first aspect to the first aspect. Any one of the eight possible design methods.
  • FIG. 1 is a schematic diagram of a network architecture to which an embodiment of this application is applicable;
  • FIG. 2 is a schematic diagram of another network architecture to which the embodiments of this application are applicable;
  • FIG. 3 is a schematic diagram of another network architecture to which the embodiments of this application are applicable.
  • Figure 4a is a schematic diagram of a downlink time-frequency resource grid provided by an embodiment of this application.
  • FIG. 4b is an example of parameters of a search space provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of a flow corresponding to the communication method provided in Embodiment 1 of this application;
  • FIG. 6a is a schematic diagram of repeated transmission of the first PDCCH according to an embodiment of this application.
  • FIG. 6b is another schematic diagram of repeated transmission of the first PDCCH according to an embodiment of this application.
  • FIG. 6c is another schematic diagram of repeated transmission of the first PDCCH according to an embodiment of this application.
  • FIG. 6d is another schematic diagram of repeated transmission of the first PDCCH according to an embodiment of this application.
  • FIG. 6e is another schematic diagram of repeated transmission of the first PDCCH according to an embodiment of this application.
  • FIG. 7 is a schematic diagram of blind detection of a terminal device according to an embodiment of the application.
  • FIG. 8 is a schematic flow diagram corresponding to the communication method provided in the second embodiment of the application.
  • FIG. 9 is a schematic diagram of a flow corresponding to the communication method provided in the third embodiment of this application.
  • FIG. 10a is a schematic diagram of a format of MAC CE provided by an embodiment of this application.
  • Figure 10b is an example of MAC CE provided by an embodiment of the application.
  • FIG. 11 is a schematic flowchart corresponding to the communication method provided in the fourth embodiment of the application.
  • FIG. 12 is a possible exemplary block diagram of a device involved in an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • Terminal device It can be a wireless terminal device that can receive network device scheduling and instruction information.
  • a wireless terminal device can be a device that provides voice and/or data connectivity to users, or a handheld device with wireless connection function, or Other processing equipment connected to the wireless modem.
  • a terminal device can communicate with one or more core networks or the Internet via a radio access network (e.g., radio access network, RAN).
  • the terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone, mobile phone). (mobile phone)), computers and data cards, for example, may be portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station (MS), remote station (remote station), access point ( access point (AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), subscriber station (SS), user terminal equipment (customer premises equipment, CPE), terminal (terminal), user equipment (user equipment, UE), mobile terminal (mobile terminal, MT), etc.
  • the terminal device may also be a wearable device and a next-generation communication system, for example, a terminal device in a 5G communication system or a terminal device in a public land mobile network (PLMN) that will evolve in the future.
  • PLMN public land mobile network
  • the network equipment may be a radio access network (RAN) node (or device) that connects terminal equipment to the wireless network, and may also be called a base station.
  • RAN equipment are: new generation Node B (gNodeB), transmission reception point (TRP), evolved Node B (evolved Node B, eNB), wireless network in 5G communication system Controller (radio network controller, RNC), node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB), Or home Node B, HNB, baseband unit (BBU), or wireless fidelity (Wi-Fi) access point (AP), etc.
  • gNodeB new generation Node B
  • TRP transmission reception point
  • eNB evolved Node B
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transce
  • the network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • the network device may be another device that provides wireless communication functions for the terminal device.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device. For ease of description, in the embodiments of the present application, a device that provides a wireless communication function for a terminal device is called a network device.
  • ordinal numbers such as "first" and "second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects. degree.
  • the first information and the second information are only for distinguishing different information, but do not indicate the difference in priority or importance of the two types of information.
  • FIG. 1 is a schematic diagram of a network architecture to which an embodiment of this application is applicable.
  • the terminal device 130 can access a wireless network to obtain services from an external network (such as the Internet) through the wireless network, or communicate with other devices through the wireless network, for example, it can communicate with other terminal devices.
  • the wireless network includes a radio access network (RAN) device 110 and a core network (core network, CN) device 120.
  • the RAN device 110 is used to connect the terminal device 130 to the wireless network
  • the CN device 120 is used to Manage terminal equipment and provide a gateway for communication with the external network.
  • the number of devices in the communication system shown in FIG. 1 is only for illustration, and the embodiment of the present application is not limited to this. In actual applications, the communication system may also include more terminal devices 130 and more RAN devices. 110, it may also include other devices.
  • the CN may include multiple CN devices 120.
  • the CN device 120 may be an access and mobility management function (AMF) entity, session management A function (session management function, SMF) entity or a user plane function (UPF) entity, etc.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the CN device 120 may It is a mobility management entity (mobility management entity, MME) and a serving gateway (serving gateway, S-GW), etc.
  • MME mobility management entity
  • serving gateway serving gateway
  • FIG. 2 is a schematic diagram of another network architecture to which the embodiments of this application are applicable.
  • the network architecture includes CN equipment, RAN equipment and terminal equipment.
  • the RAN equipment includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one node or by multiple nodes.
  • the radio frequency device can be implemented remotely from the baseband device, or integrated in the baseband device, or partially pulled.
  • the remote part is integrated in the baseband device.
  • the RAN equipment (eNB) includes a baseband device and a radio frequency device, where the radio frequency device can be arranged remotely relative to the baseband device, such as a remote radio unit (RRU) arranged remotely relative to the BBU .
  • RRU remote radio unit
  • the control plane protocol layer structure can include the radio resource control (radio resource control, RRC) layer and the packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC Radio link control
  • MAC media access control
  • user plane protocol layer structure can include PDCP layer, RLC layer, MAC layer
  • SDAP service data adaptation protocol
  • the RAN equipment can be implemented by one node to implement the functions of the RRC, PDCP, RLC, and MAC protocol layers, or multiple nodes can implement the functions of these protocol layers.
  • RAN equipment may include CUs and DUs, and multiple DUs may be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layer of the wireless network. For example, the functions of the PDCP layer and the above protocol layers are set in the CU, and the protocol layers below the PDCP, such as the RLC layer and MAC layer, are set in the DU.
  • This type of protocol layer division is just an example, it can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and above protocol layers are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU; Or, in a certain protocol layer, for example, part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it can also be divided in other ways, for example, by time delay. The functions that need to meet the delay requirement for processing time are set in the DU, and the functions that do not need to meet the delay requirement are set in the CU.
  • the radio frequency device can be remote, not placed in the DU, can also be integrated in the DU, or part of the remote part is integrated in the DU, and there is no restriction here.
  • FIG. 3 is a schematic diagram of another network architecture to which the embodiments of this application are applicable.
  • the control plane (CP) and the user plane (UP) of the CU can also be separated and implemented by dividing them into different entities, namely the control plane (CP) CU entity (That is, the CU-CP entity) and the user plane (UP) CU entity (that is, the CU-UP entity).
  • CP control plane
  • UP user plane
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the terminal device can be sent to the CU through the DU.
  • the DU may directly pass the protocol layer encapsulation without analyzing the signaling and transparently transmit it to the terminal device or the CU. If the following embodiments involve the transmission of such signaling between the DU and the terminal device, at this time, the sending or receiving of the signaling by the DU includes this scenario.
  • the RRC or PDCP layer signaling will eventually be processed as PHY layer signaling and sent to the terminal device, or converted from the received PHY layer signaling.
  • the RRC or PDCP layer signaling can also be considered to be sent by the DU, or sent by the DU and radio frequency loading.
  • the network architecture shown in Fig. 1, Fig. 2 or Fig. 3 can be applied to various radio access technology (RAT) communication systems, such as LTE communication system or 5G (or called The new radio (NR) communication system may also be a transitional system between an LTE communication system and a 5G communication system.
  • RAT radio access technology
  • the transitional system may also be referred to as a 4.5G communication system, and of course it may also be a future communication system.
  • the network architecture and business scenarios described in the embodiments of this application are intended to more clearly illustrate the technical solutions of the embodiments of this application, and do not constitute a limitation on the technical solutions provided in the embodiments of this application.
  • the devices in the following embodiments of the present application may be located in terminal equipment or network equipment according to their realized functions.
  • the network device may be a CU or DU or a RAN device including CU and DU.
  • the 5G communication system will use a higher carrier frequency than LTE (generally, greater than 6GHz), such as 28GHz, 38GHz , Or 72GHz frequency band, etc., to achieve greater bandwidth and higher transmission rate wireless communication. Due to the high carrier frequency, the wireless signal transmitted by it experiences more severe fading during the space propagation process, and it is even difficult to detect the wireless signal at the receiving end. For this reason, beamforming (BF) technology will be used in 5G communication systems to obtain beams with good directivity to increase antenna gain, increase power in the transmitting direction, and improve the signal-to-interference-to-noise ratio at the receiving end. interference plus noise ratio, SINR).
  • SINR interference plus noise ratio
  • a network device can send configuration information to a terminal device.
  • the configuration information is used to configure a control-resource set (CORESET) and a search space (search space) associated with the control-resource set.
  • the search space can also be referred to as a search space set;
  • the downlink control channel is sent to the terminal device according to the time-frequency resource corresponding to the control resource set and the search space associated with the control resource set; accordingly, the terminal device receives
  • the downlink control channel can be monitored on the control resource set and the time-frequency resource corresponding to the search space associated with the control resource set.
  • the downlink control channel may be a PDCCH, or an enhanced physical downlink control channel (ePDCCH), or other downlink control channels, which are not specifically limited.
  • the main downstream control channel is PDCCH as an example for description.
  • Time-frequency resources Taking a 5G communication system as an example, the frequency domain is divided into independent subcarriers.
  • the subcarrier spacing (SCS) can be determined according to the subcarrier spacing parameter u.
  • the common subcarrier spacing is 15KHz or 30KHz, etc.
  • the unit of the uplink/downlink frequency domain resources is a resource block (resource block, RB), and each RB is composed of 12 consecutive subcarriers in the frequency domain.
  • Figure 4a which is a downlink time-frequency resource grid.
  • Figure 4a Represents the number of resource blocks (resource blocks, RBs) for one downlink scheduling.
  • An RB includes 12 consecutive subcarriers in the frequency domain, and each element on the resource grid is called a resource element (RE) , RE is the smallest physical resource, including one subcarrier in one time domain symbol.
  • the grid of uplink time-frequency resources is similar to that of downlink.
  • the time domain symbols can also be referred to as symbols for short, including but not limited to orthogonal frequency division multiplexing (OFDM) symbols and single carrier frequency division multiple access (SC-FDMA) symbols. .
  • a beam is a communication resource.
  • the beam can be a wide beam, a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, a hybrid digital/analog beamforming technology, etc.
  • Different beams can be considered as different communication resources, and the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam, and one beam may include one or more antenna ports for transmitting data channels, control channels, sounding signals, and the like.
  • one or more antenna ports forming a beam can also be regarded as an antenna port set, and the beam can also be called a spatial domain filter or spatial filter or spatial parameter ( spatial parameter).
  • the beam used to transmit a signal can be called a transmission beam (Tx beam), it can also be called a spatial domain transmission filter or a spatial transmission parameter; the beam used to receive a signal can be It is called a receive beam (reception beam, Rx beam), and can also be called a spatial domain receive filter (spatial domain receive filter) or a spatial receive parameter (spatial RX parameter).
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna, and the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam can be reflected by the quasi colocation (QCL) relationship of the antenna ports.
  • the two signals of the same beam have a QCL relationship with respect to the spatial reception parameter (spatial Rx parameter), that is, the QCL-Type D: ⁇ Spatial Rx parameter ⁇ in the protocol.
  • the beam can be specifically represented by various signal identifiers in the protocol, such as the resource index of the channel state information reference signal (CSI-RS), and the synchronous signal/physical broadcast channel block (synchronous signal/physical broadcast channel block).
  • CSI-RS channel state information reference signal
  • SS/PBCH block also referred to as SSB for short index
  • sounding reference signal sounding reference signal
  • SRS sounding reference signal
  • TRS tracking reference signal
  • the related information of the transmission beam can be indicated by the transmission configuration index state (transmission configuration index state, TCI-state).
  • TCI-state transmission configuration index state
  • the terminal device knows which TCI-state the network device uses to transmit the channel or signal (such as PDCCH) )
  • the TCI-state may include a resource index of a reference signal (for example, resource #1), indicating that the channel or signal used for transmission in the TCI-state has the same receiving beam as the resource #1, so that the terminal device will The receiving beam of resource #1 is used to receive the channel or signal (the terminal device already knows the receiving beam of resource #1 in advance).
  • Configuration information It can also be referred to as PDCCH configuration information, which is used to configure relevant parameters of PDCCH transmission, for example, to configure control resource sets and search spaces.
  • PDCCH configuration information which is used to configure relevant parameters of PDCCH transmission, for example, to configure control resource sets and search spaces.
  • Each search space is associated with a control resource set, and the two are combined to correspond to a PDCCH, that is, the terminal device receives a PDCCH according to the configuration of a search space and its associated control resource set. If other PDCCHs are to be received, the network device can configure control resource sets and search spaces corresponding to other PDCCHs.
  • Control resource set PDCCH is transmitted on frequency domain resources corresponding to the control resource set, and the frequency domain resources corresponding to the control resource set may include multiple RBs.
  • a control resource set can be configured with one or more TCI-states.
  • the PDCCH corresponding to the control resource set can be transmitted by using one TCI-state of one or more TCI-states configured for the control resource set.
  • Which TCI-state is specifically used can be performed by signaling sent by a network device activation. That is to say, although the network device configures multiple TCI-states for a control resource set, these TCI-states are not activated (not valid) and can only take effect after being activated through signaling.
  • the search space can be configured with some time domain information, such as: detection period (that is, the time interval of the detection search space, and the unit can be time slot); time slot offset (that is, the detection cycle starts to the actual detection search space The time slot offset between, and the time slot offset is less than the value of the detection period; the second duration (that is, the time for continuously detecting the search space, which can include multiple time slots, and the number of time slots included) Less than the value of the detection period); the time domain start position (that is, the time domain start position corresponding to the control resource set associated with the search space in each time slot).
  • detection period that is, the time interval of the detection search space, and the unit can be time slot
  • time slot offset that is, the detection cycle starts to the actual detection search space The time slot offset between, and the time slot offset is less than the value of the detection period
  • the second duration that is, the time for continuously detecting the search space, which can include multiple time slots, and the number of time slots included
  • the time domain start position that is, the time
  • the detection period is 10 time slots
  • the time slot offset is 3 time slots
  • the second duration is 2 time slots
  • the start position of the time domain is the symbols 0 and in one time slot.
  • Symbol 7 the first duration of the control resource set associated with the search space is 2 symbols.
  • the terminal device can detect the PDCCH on symbols 0, 1 and 7 and 8 in slot 3 and slot 4 in the detection period of every 10 slots.
  • multiple search spaces may be associated with the same control resource set, which is equivalent to that the control resource set is associated with multiple search spaces.
  • the search space can correspond to one or more monitoring occasions (MO), which can be specifically indicated by the monitoringSymbolsWithinSlot parameter.
  • the monitoringSymbolsWithinSlot parameter is a 14-bit bitmap (bitmap), each bit corresponds to an OFDM symbol, and a bit value of 1 indicates that the OFDM symbol corresponding to the bit is the first OFDM symbol of a monitoring opportunity, that is, from the OFDM symbol to the The next X consecutive OFDM symbols correspond to one monitoring opportunity.
  • X is indicated by the duration parameter in the control resource set, and represents the number of symbols occupied by a listening opportunity.
  • monitoringSymbolsWithinSlot 10000100000000
  • duration in the associated control resource set 3
  • the first monitoring opportunity is located in the 1st to 3rd OFDM symbols
  • the second monitoring opportunity Located at the 6th to 8th OFDM symbols.
  • one PDCCH corresponds to one control resource set and one search space set, and the PDCCH can be transmitted once on the control resource set and the time-frequency resource corresponding to the search space.
  • the PDSCH and the corresponding PDCCH used to transmit the URLLC service need to be repeatedly transmitted multiple times.
  • the embodiments of the present application provide a communication method and device, which are used to implement multiple repeated transmissions of the PDCCH, so as to improve the transmission reliability of the PDCCH.
  • the method can be executed by two communication devices, such as a first communication device and a second communication device, where the first communication device can be a network device or can support the network device to implement the functions required by the method.
  • the communication device may also be other communication devices, such as a chip or a chip system.
  • the second communication device may be a terminal device or a communication device capable of supporting the terminal device to implement the functions required by the method, and of course it may also be another communication device, such as a chip or a chip system.
  • the method is executed by the network device and the terminal device as an example, that is, the first communication device is the network device and the second communication device is the terminal device as an example.
  • the network device described below may be the network device in the system architecture shown in FIG.
  • the terminal device described in the following may be the terminal device in the system architecture shown in FIG. 1.
  • the method provided in the embodiments of the present application may be applicable to scenarios where a single network device transmits data or control signaling to a single or multiple terminal devices, and may also be applicable to multiple network devices simultaneously transmitting data or control signaling to a single terminal device. Control signaling scenario.
  • the communication method provided in the embodiment of the present application may include four possible solutions, which are referred to as solution one, solution two, solution three, and solution four for ease of description.
  • the network device can configure M control resource sets and M search spaces for the terminal device, and the M control resource sets are associated with the M search spaces one by one.
  • Each control resource set in the M control resource sets and The search space associated with each control resource set is used to transmit the first PDCCH once; and the network device may transmit the first PDCCH M times on the time-frequency resources corresponding to the M control resource sets and the M search spaces.
  • the network device can continue to use the existing configuration method.
  • a control resource set and a search space can be configured.
  • the first PDCCH needs to be performed multiple times (such as M times) )
  • M control resource sets and M search spaces can be configured, so that multiple repeated transmissions of the first PDCCH can be realized on the basis of minor changes to the existing scheme, and the transmission reliability of the first PDCCH can be improved.
  • the network device can configure M control resource sets and a search space for the terminal device, and the M control resource sets are respectively associated with the above search space; each control resource set and each control resource set in the M control resource sets
  • the aforementioned search space associated with the resource set is used to perform one transmission of the first PDCCH; furthermore, the network device may perform M transmissions of the first PDCCH on the M control resource sets and the time-frequency resources corresponding to the aforementioned search space.
  • the network device configures a control resource set and M search spaces for the terminal device, and the control resource set is associated with the M search spaces; then the network device is on a control resource set and the time-frequency resources corresponding to the M search spaces Perform M transmissions on the first PDCCH.
  • a control resource set and M search spaces can be configured, so that multiple repeated transmissions of the first PDCCH can be realized on the basis of saving configuration resources. Improve the transmission reliability of the first PDCCH.
  • the network device configures a control resource set and a search space for the terminal device, and then the network device transmits the first PDCCH M times on the time-frequency resource corresponding to the control resource set and the search space.
  • the network device determines that the first PDCCH needs to be transmitted M times, it can configure a control resource set and a search space, so that on the basis of saving configuration resources, it can achieve multiple repeated transmissions of the first PDCCH and improve Transmission reliability of the first PDCCH.
  • the first PDCCH is transmitted multiple times, for example, M transmissions are performed, which may be M transmissions at the same time, for example, multiple TCI-states and/or multiple DMRS ports and / Or multiple sets of different frequency domain resources for M transmissions at the same time; or time sharing for M transmissions, for example using multiple TCI-states and/or multiple DMRS ports and/or multiple sets of different time domain resources M transmissions are performed in time-sharing. That is to say, performing M transmissions of the first PDCCH can be understood as transmitting M first PDCCHs, and the M first PDCCHs may be transmitted at the same time, or may also be transmitted in time sharing.
  • the M first PDCCHs may be PDCCHs used to schedule the same PDSCH.
  • the PDSCH may be transmitted only once, or repeated multiple times, and each transmission may correspond to the same redundant version (RV) or different redundant versions of the same TB (transport block), or It can also correspond to different TBs.
  • the contents carried by the M first PDCCHs may be completely the same, for example, the contents of the carried DCI are completely the same. Alternatively, the contents carried by the M first PDCCHs may not be completely the same.
  • the M first PDCCHs correspond to the M PDSCHs in a one-to-one correspondence, and each first PDCCH carries the corresponding PDSCH information.
  • Related transmission parameters Since there are some differences in the transmission parameters of M transmissions of the PDSCH, the contents carried by the corresponding first PDCCH will have some differences and are not completely the same.
  • FIG. 5 is a schematic diagram of a process corresponding to the communication method provided in Embodiment 1 of this application, as shown in FIG. 5, including:
  • Step 501 The network device sends configuration information to the terminal device.
  • the configuration information is used to configure M control resource sets and M search spaces.
  • the M control resource sets are associated with the M search spaces one by one, and M is an integer greater than 1.
  • each control resource set in the M control resource sets and the search space associated with each control resource set can be used to transmit the first PDCCH once, and then the M control resource sets are associated with the M control resource sets.
  • the search space can be used for M transmissions of the first PDCCH.
  • the terminal device receives configuration information from the network device.
  • the terminal device after the terminal device receives the configuration information of the network device, it can determine whether M control resource sets and M search spaces are used for M transmissions of the first PDCCH; the "determine” here can also be understood To “know” or “know”, it belongs to the internal implementation of the terminal device.
  • the terminal device there may be multiple implementation manners for the terminal device to determine M control resource sets and M search spaces for M transmissions of the first PDCCH.
  • the following describes two possible implementation manners, which are implementation manners a1 and a1.
  • Implementation a2 Exemplarily, the specific implementation manner to be adopted may be indicated by RRC, MAC CE, or DCI signaling.
  • the terminal device determines that the M control resource sets meet the preset condition 1, and/or the M search spaces meet the preset condition 2, it can determine that the M control resource sets and the M search spaces are used to compare the first A PDCCH is transmitted M times.
  • the M control resource sets meet the preset condition 1 may include that one or more parameters in the M control resource sets are the same.
  • the set of M control resources that meet the preset condition 1 may include one or more of the following:
  • the frequency domain resources corresponding to the M control resource sets are the same.
  • M control resource sets include control resource set 1.
  • the frequency domain resources of control resource set 1 can be indicated by a bitmap, and each bit in the bitmap corresponds to a continuous segment.
  • the frequency domain resource for example, may be 6 consecutive RBs.
  • the frequency domain resources corresponding to the control resource set can be configured through the frequencyDomainResources parameter.
  • the frequency domain resources corresponding to the M control resource sets are the same. It can be understood that the frequencyDomainResources parameters of the M control resource sets have the same value.
  • the number of frequency domain resources corresponding to the M control resource sets is the same.
  • control resource set 1 when the frequency domain resources of control resource set 1 are indicated by a bitmap, the number of frequency domain resources corresponding to control resource set 1 can be the number of bits whose value is 1 in the bitmap For example, it can be the number of bits whose value is 1 in the frequencyDomainResources parameter of the control resource set 1.
  • the number of frequency domain resources corresponding to the M control resource sets is the same. It can be understood that the number of bits with a value of 1 in the frequencyDomainResources parameter of the M control resource sets is the same.
  • the first durations of the M control resource sets are the same. Taking control resource set 1 as an example, the first duration of control resource set 1 may be the number of consecutive symbols occupied in the time domain corresponding to control resource set 1. Exemplarily, referring to the configuration information format of the control resource set illustrated above, the first duration can be configured by the duration parameter.
  • the first durations of the M control resource sets are the same, which can be understood as that the duration parameters of the M control resource sets have the same value.
  • control channel element (control-channel element, CCE)-resource-element group (REG) mapping mode of the M control resource sets is the same.
  • control resource set 1 the CCE-REG mapping mode of control resource set 1 may be interlaced or non-interlaced.
  • the CCE-REG mapping mode can be configured through the cce-REG-MappingType parameter.
  • the CCE-REG mapping manners of the M control resource sets are the same. It can be understood that the cce-REG-MappingType parameters of the M control resource sets have the same value.
  • the precoding granularity of the M control resource sets is the same.
  • the precoding granularity can be configured through the precoderGranularity parameter.
  • the precoding granularity of the M control resource sets is the same, and it can be understood that the precoderGranularity parameters of the M control resource sets have the same value.
  • the demodulation reference signal (demodulation reference signal, DMRS) scrambling identifiers of the M control resource sets are the same.
  • the DMRS scrambling identifier can be configured through the pdcch-DMRS-ScramblingID parameter.
  • the DMRS scrambling IDs of the M control resource sets are the same. It can be understood that the pdcch-DMRS-ScramblingID parameters of the M control resource sets have the same value.
  • the DMRS scrambling identifier may be a DMRS scrambling index.
  • the M search spaces meeting the preset condition 2 may include that one or more parameters in the M search spaces are the same.
  • M search spaces meeting the preset condition 2 may include one or more of the following:
  • the detection period and the slot offset can be configured through the monitoringSlotPeriodicity and offset parameters; wherein, monitoringSlotPeriodicity corresponds to the detection period, and offset corresponds to the slot offset.
  • monitoringSlotPeriodicity corresponds to the detection period
  • offset corresponds to the slot offset.
  • the monitoringSlotPeriodicity and offset parameters of the M search spaces have the same value.
  • the monitoringSlotPeriodicity and offset parameters of the M search spaces can also be configured so that the detection periods of the M search spaces are the same but the slot offsets are different.
  • the second duration of the M search spaces is the same.
  • M search spaces can include search space 1.
  • the second duration of search space 1 can be understood as the time of continuous detection of search space in a detection period, or in other words, search space 1 is in a detection period. The number of repetitions in the cycle.
  • the second duration can be configured by the duration parameter.
  • the second durations of the M search spaces are the same, which can be understood as the duration parameters of the M search spaces have the same value.
  • the time domain starting positions of the M search spaces are the same. Exemplarily, referring to the configuration information format of the search space shown above, the time domain starting position can be configured through the monitoringSymbolsWithinSlot parameter.
  • the time domain starting positions of the M search spaces are the same, which can be understood as the monitoringSymbolsWithinSlot parameters of the M search spaces have the same value.
  • the number of blind checks for M search spaces is the same. Exemplarily, referring to the configuration information format of the search space shown above, the number of blind checks can be configured through the nrofCandidates parameter.
  • the number of blind checks of the M search spaces is the same, which can be understood as the nrofCandidates parameters of the M search spaces have the same value.
  • 6M search spaces are of the same type.
  • the type of the search space can be configured through the searchSpaceType parameter.
  • the types of the M search spaces are the same, and it can be understood that the searchSpaceType parameters of the M search spaces have the same value.
  • the terminal device receives the first indication information from the network device, the first indication information indicates that M control resource sets and M search spaces are used for M transmissions of the first PDCCH, it can determine M control resource sets and M The search spaces are used for M transmissions of the first PDCCH.
  • the terminal device may be carried in RRC signaling, MAC CE signaling, or DCI signaling. There may also be multiple specific manifestations of the first indication information.
  • the first indication information may indicate the association relationship between the M control resource sets. For example, information indicating other control resource sets in a control resource set, such as an index, indicates that the control resource set is associated with the other control resource set. Multiple control resource sets with an association relationship can be used for repeated transmission of PDCCH.
  • the first indication information may also indicate an association relationship between M search spaces. For example, information indicating other search spaces in one search space, such as an index, indicates that the search space is related to the other search spaces. Multiple search spaces with an association relationship can be used for repeated transmission of the PDCCH.
  • a field in the above signaling can be used to indicate whether to use PDCCH repetitive transmission; further, it can also specifically indicate the PDCCH repetitive transmission mode used, such as time domain repetitive transmission mode, spatial repetition The transmission mode, the frequency domain repetitive transmission mode, and the first repetitive transmission mode.
  • the time-domain repeated transmission mode means that multiple PDCCH transmissions use the same frequency domain resources but different time domain resources.
  • the frequency domain repetitive transmission mode means that multiple PDCCH transmissions use the same time domain resource but different frequency domain resources.
  • the spatial repetitive transmission mode means that multiple PDCCH transmissions use the same time domain resources and frequency domain resources.
  • the first repetitive transmission mode may be a transmission mode other than the foregoing three repetitive transmission modes, such as a transmission mode in which the time domain resources and frequency domain resources used for multiple PDCCH transmissions are different.
  • the first indication information may also indicate the information of the control resource set and/or the information of the search space used for PDCCH repeated transmission. For example, information about M control resource sets and/or search spaces used for PDCCH repeated transmission may be indicated, such as an index, and the terminal device may learn that these M control resource sets and/or search spaces are used for PDCCH repeated transmission.
  • M control resource sets can meet configuration constraint 1, and/or M search spaces can meet configuration constraint 2. That is, if M control resource sets are used for M repeated transmissions of the first PDCCH, then these M control resource sets need to meet configuration constraint 1; if M search spaces are used for M times of the first PDCCH If the transmission is repeated, then the M search spaces need to satisfy the configuration constraint 2.
  • the M control resource sets meet the configuration constraint 1 may include that one or more parameters of the M control resource sets are the same, and/or one or more parameters of the M control resource sets are different.
  • M control resource sets meeting configuration constraint 1 may include one or more of the following:
  • the frequency domain resources corresponding to the M control resource sets are the same.
  • the number of frequency domain resources corresponding to the M control resource sets is the same.
  • the precoding granularity of the M control resource sets is the same.
  • the M search spaces meeting the configuration constraint 2 may include that one or more parameters of the M search spaces are the same, and/or, one or more parameters of the M search spaces are different.
  • M search spaces meeting configuration constraint 2 may include one or more of the following:
  • 6M search spaces are of the same type.
  • time domain starting positions of the M search spaces are different.
  • the time domain starting positions of any two search spaces in the M search spaces must be staggered by at least X symbols, and X is a set of M control resources
  • the value indicated by the duration parameter here, it is assumed that the values indicated by the duration parameters in the M control resource sets are the same), so as to ensure that the M search spaces do not overlap, so as to realize the time-sharing repeated transmission of the first PDCCH.
  • Step 503 The network device sends second indication information to the terminal device, where the second indication information is used to indicate the activation of M TCI-states corresponding to the M control resource sets.
  • the network device may send a media access control (MAC) control element (CE) to the terminal device, and the MAC CE includes the second indication information.
  • MAC media access control
  • CE control element
  • the terminal device receives the second indication information from the network device, and activates M TCI-states.
  • Step 505 The network device transmits the first PDCCH M times on the time-frequency resources corresponding to the M control resource sets and the M search spaces.
  • the network device may transmit the first PDCCH M times on the time-frequency resources corresponding to the M control resource sets and the M search spaces according to the M TCI-states respectively corresponding to the M control resource sets.
  • M control resource sets include control resource set 1 and control resource set 2
  • M search spaces include search space 1 and search space 2
  • control resource set 1 is associated with search space 1
  • control resource set 2 is associated with search space 2.
  • the activated TCI-state corresponding to control resource set 1 is TCI-state1, and the activated TCI-state corresponding to control resource set 2 is TCI-state2; the network device can control resource set 1 and search space 1 according to TCI-state1
  • the first PDCCH is transmitted once on the corresponding time-frequency resource, and the first PDCCH is transmitted once on the time-frequency resources corresponding to the control resource set 2 and the search space 2 according to the TCI-state2.
  • M control resource sets and M search spaces form M ⁇ control resource set, search space ⁇ combinations, and each ⁇ control resource set, search space ⁇ combination corresponds to a set of time-frequency resources for the first
  • the PDCCH is transmitted once.
  • one first PDCCH transmission corresponds to a set of time-frequency resources
  • M first PDCCH transmissions correspond to M sets of time-frequency resources.
  • These M sets of time-frequency resources may be completely the same, or they may be the same time-domain resources but frequency-domain resources. Different, or different time domain resources but the same frequency domain resources, or different time domain resources and different frequency domain resources.
  • the time-frequency resource corresponding to one first PDCCH transmission may be referred to as a group of time-frequency resources for short
  • the time-frequency resource corresponding to M first PDCCH transmissions may be referred to as a group of M time-frequency resources for short.
  • a group of time-frequency resources corresponding to one first PDCCH transmission may include several CCEs, and the time-frequency resources actually carrying the first PDCCH may be part of the CCEs. That is to say, a group of time-frequency resources corresponding to one first PDCCH transmission does not refer to the time-frequency resources actually carrying the first PDCCH, but may be a larger resource range.
  • the M groups of time-frequency resources corresponding to the first PDCCH transmission of M times may be completely the same, that is, the M groups of time-frequency resources have the same time-domain resources and the same frequency-domain resources.
  • the network device can transmit the first PDCCH on the same time-frequency resource according to M TCI-states.
  • the M first PDCCHs can use different DMRS ports, for example, different DMRS ports generated by the same DMRS scrambling identifier (the pdcch-DMRS-ScramblingID parameters of the M control resource sets are the same), and the network device can Different DMRS ports are used to perform spatial repetitive transmission of the first PDCCH; or, the M first PDCCHs may also use the same DMRS port.
  • the M first PDCCHs can use the same or different DMRS ports. It can also be understood that the M first PDCCHs can use the same or different DMRS sequences, that is, the DMRS ports can also be replaced with DMRSs. sequence. In the embodiment of this application, the DMRS port is taken as an example for description.
  • the network device can transmit the first PDCCH on the same time-frequency resource in the same detection period, Or the first PDCCH is transmitted on different time-frequency resources in different periods.
  • the network device can use different DMRS ports (such as DMRS port 1 and DMRS port 2) or the same DMRS port to transmit the first PDCCH on the same time-frequency resource in the detection period, as shown in Figure 6a
  • the network device can use DMRS port 1 to transmit the first PDCCH once on the time-frequency resource in the first detection period, and use DMRS port 2 to transmit the first PDCCH once on the time-frequency resource in the second detection period.
  • PDCCH see Figure 6b.
  • the detection period of the M search spaces is the same, and the network device transmits the first PDCCH on the time-frequency resource in the same detection period as an example for description.
  • the M sets of time-frequency resources corresponding to the first PDCCH transmission of M times have the same time domain resources but different frequency domain resources.
  • the network device may transmit the first PDCCH M times on the same time domain resource and different frequency domain resources according to the M TCI-states, that is, the network device may perform frequency domain repeated transmission of the first PDCCH.
  • M 2
  • the network device may transmit the first PDCCH on the frequency domain resource 1 once, and transmit the first PDCCH on the frequency domain resource 2 once.
  • the M first PDCCHs may use the same DMRS port, or the M first PDCCHs may also use different DMRS ports.
  • the M sets of time-frequency resources corresponding to the first PDCCH transmission of M times have different time domain resources but the same frequency domain resources.
  • the network device can transmit the first PDCCH M times on the same frequency domain resource and different time domain resources according to M TCI-states, that is, the network device can perform time domain repeated transmission of the first PDCCH.
  • M 2
  • the network device may transmit the first PDCCH on the time domain resource 1 once, and transmit the first PDCCH on the time domain resource 2 once.
  • the M first PDCCHs may use the same DMRS port, or the M first PDCCHs may also use different DMRS ports.
  • the M sets of time-frequency resources corresponding to M first PDCCH transmissions have different time-domain resources and different frequency-domain resources, that is, the time-domain resources and frequency-domain resources of the M sets of time-frequency resources are different.
  • the network device can use one of the multiple transmission modes described in the above example to repeatedly transmit the first PDCCH.
  • the network device can also instruct the terminal device to use the transmission mode.
  • Mode for example, the network device sends an indication message to the terminal device to indicate which transmission mode to use.
  • Step 506 The terminal device monitors the first PDCCH on the time-frequency resources corresponding to the M control resource sets and the M search spaces.
  • the terminal device may receive the first PDCCH on the M sets of time-frequency resources corresponding to M first PDCCH transmissions according to the M TCI-states corresponding to the M control resource sets.
  • the terminal device may receive the first PDCCH through a blind detection process.
  • the blind detection process refers to taking part of a group of time-frequency resources, such as a group of CCE signals for decoding, if the decoding is successful, it means that the first PDCCH is successfully received, if it is unsuccessful, it continues to try another group CCE. For example, suppose a set of time-frequency resources includes 4 CCEs, and one blind detection can use 2 CCEs. As shown in (a) in Figure 7, the terminal device can try various 2 CCEs among the 4 CCEs.
  • the specific number of attempts can be configured by the nrofCandidates parameter in the search space associated with the control resource set. Therefore, the terminal device can respectively receive signals from the M groups of time-frequency resources according to the M TCI-states corresponding to the M control resource sets, and decode the signals on the M groups of time-frequency resources individually or combinedly. .
  • separate decoding can be understood as performing blind detection separately on the M groups of time-frequency resources.
  • the terminal device sequentially performs blind detection on M groups of time-frequency resources, and if no blind detection succeeds on one group of time-frequency resources, it continues to perform blind detection on the next group of time-frequency resources. If the blind detection is successful on a group of time-frequency resources, the terminal device can stop the blind detection of the remaining groups of time-frequency resources, thereby reducing the number of blind checks and reducing the processing burden of the terminal device. Since each group of time-frequency resources corresponds to a search space, separate decoding can also be expressed as blind detection in M search spaces respectively. If the blind detection fails in one search space, then the blind detection continues in the next search space. . If the blind detection is successful in a search space, the terminal device can stop the blind detection of the remaining search space.
  • Combined decoding can be understood as joint blind detection of M groups of time-frequency resources.
  • part of the time-frequency resources in the M groups of time-frequency resources can be taken for each blind detection, such as a group of CCE signals, a total of M signals, and these M signals are combined and translated code.
  • the M signals correspond to M groups of time-frequency resources, that is, one signal is determined from a group of CCEs on each group of time-frequency, and a total of M signals are formed.
  • the joint blind detection can be divided into the following types, which will be described in detail below.
  • the M sets of time-frequency resources corresponding to the first PDCCH transmission of M times are completely the same.
  • the group of time-frequency resources includes multiple CCEs, and the terminal device takes a group of CCEs from the CCEs included in the group of time-frequency resources each time, receives M signals from the group of CCEs through M different DMRS ports, and combines them M signals are combined and decoded.
  • the above operation is called a joint blind inspection.
  • the terminal device receives M signals through M different DMRS ports on the first 2 CCEs, and combines and decodes these M signals. If it is unsuccessful, M signals are received through M different DMRS ports on the next 2 CCEs, and these M signals are combined and decoded.
  • the M groups of time-frequency resources corresponding to the first PDCCH transmission of M times are not completely the same.
  • other repetitive transmission modes may include frequency domain repetitive transmission mode, time domain repetitive transmission mode, and first PDCCH transmission.
  • Repeat transmission mode may include frequency domain repetitive transmission mode, time domain repetitive transmission mode, and first PDCCH transmission.
  • each group of time-frequency resources in the M groups of time-frequency resources includes multiple CCEs.
  • the terminal device can take a group of CCEs from each group of time-frequency resources, and obtain the CCEs in the group of CCEs. There are a total of M signals, and these M signals are combined and decoded.
  • the decoding is unsuccessful, proceed to the next blind detection, that is, take another group of CCEs from each group of time-frequency resources, obtain the signals on the group of CCEs, total M signals, and combine these M signals for decoding . If the decoding is successful, stop performing blind detection on the M groups of time-frequency resources, or in other words stop performing blind detection on the search space corresponding to the M first PDCCH transmissions.
  • each blind detection the number of CCEs included in a group of CCEs selected by the terminal device from each group of time-frequency resources for joint decoding is the same.
  • the terminal device selects two CCEs from each group of time-frequency resources, obtains the signals on the two CCEs, a total of M signals, and combines and decodes the M signals.
  • the CCE number or order or position of the group of CCEs selected from each group of time-frequency resources for combined decoding are the same in each group of time-frequency resources. For example, as shown in (c) in FIG. 7 and (d) in FIG. 7, each group of time-frequency resources in the M groups of time-frequency resources includes 4 CCEs.
  • the first two CCEs in each group of time-frequency resources are taken for combined decoding
  • the last two CCEs in each group of time-frequency resources are taken for joint decoding.
  • the number of CCEs included in a group of CCEs selected by the terminal device from each group of time-frequency resources for joint decoding in each blind detection may also be different.
  • the application embodiment does not limit this.
  • Exemplarily, which of the foregoing combined decoding methods is specifically adopted, may be indicated to the terminal device by the network device through RRC, MAC CE, or DCI signaling, or the terminal device may report to the network device.
  • the network device can configure M control resource sets and M search spaces for the terminal device, and then perform M transmissions on the first PDCCH on the time-frequency resources corresponding to the M control resource sets and the M search spaces, thereby It can effectively improve the transmission reliability of the first PDCCH; and, after receiving the configuration information from the network device, the terminal device can learn M control resource sets and M search spaces for M transmissions of the first PDCCH.
  • the decoding is performed separately, the blind detection can be stopped after the decoding is successful, avoiding all the possibilities of blind detection, which may lead to high resource consumption of the terminal equipment; if the combined decoding is used for processing, it can effectively reduce The number of blind inspections is convenient to save the processing resources of the terminal equipment.
  • Fig. 8 is a schematic diagram of a process corresponding to the communication method provided in the second embodiment of the application, as shown in Fig. 8, including:
  • Step 801 The network device sends configuration information to the terminal device.
  • the configuration information is used to configure M control resource sets and one search space, and the M control resource sets are respectively associated with the above search space.
  • each control resource set in the M control resource sets and the search space associated with each control resource set are used to transmit the first PDCCH once, and then the M control resource sets are associated with the M control resource sets.
  • the foregoing search space may be used to perform M transmissions on the first PDCCH.
  • the terminal device receives configuration information from the network device.
  • the terminal device after receiving the configuration information of the network device, the terminal device can determine whether M control resource sets and one search space are used for M transmissions of the first PDCCH.
  • the terminal device can determine whether M control resource sets and one search space are used for M transmissions of the first PDCCH.
  • the terminal device may determine that the M control resource sets and one search space are used to compare the first PDCCH Perform M transmissions.
  • the M control resource sets meeting the preset condition 3 may include that one or more parameters in the M control resource sets are the same.
  • the set of M control resources meeting the preset condition 3 may include one or more of the following:
  • the frequency domain resources corresponding to the M control resource sets are the same.
  • the number of frequency domain resources corresponding to the M control resource sets is the same.
  • the precoding granularity of the M control resource sets is the same.
  • the search space meets the preset conditions 4, including one or more of the following:
  • the search space associates multiple control resource sets.
  • the search space includes multiple monitoring opportunities.
  • the number of monitoring opportunities included in the search space is equal to the number of control resource sets associated with the search space.
  • the search space includes M monitoring opportunities, and the search space is associated with M control resource sets.
  • search space meeting the preset condition 4 may also be referred to as the search space meeting the configuration constraint 4.
  • search space meeting the configuration constraint 4 The foregoing is a description of some possible situations in which the search space meets the preset condition 4. In other possible examples, other possible situations may also be included, which are not specifically limited.
  • the terminal device receives the first indication information from the network device, the first indication information is used to indicate M control resource sets and a search space for M transmissions of the first PDCCH, it can determine the M control resource sets and One search space is used for M transmissions of the first PDCCH.
  • the first indication information may be carried in RRC signaling, MAC CE signaling, or DCI signaling.
  • the first indication information may be carried in RRC signaling, MAC CE signaling, or DCI signaling.
  • the M control resource sets can meet the configuration constraint 3, and/or the search space can meet the configuration constraint 4. That is, if M control resource sets are used for M repeated transmissions of the first PDCCH, then these M control resource sets need to meet configuration constraint 3; if the search space is used for M repeated transmissions of the first PDCCH Yes, then this search space needs to meet configuration constraint 4.
  • the M control resource sets meet the configuration constraint 3 may include that one or more parameters of the M control resource sets are the same, and/or one or more parameters of the M control resource sets are different.
  • M control resource sets meeting configuration constraint 3 may include one or more of the following:
  • the frequency domain resources corresponding to the M control resource sets are the same.
  • the number of frequency domain resources corresponding to the M control resource sets is the same.
  • the precoding granularity of the M control resource sets is the same.
  • the search space conforming to the configuration constraint 4 may include that one or more parameters of the search space are the same, and/or one or more parameters of the M search spaces are different.
  • the search space meets the configuration constraint 4 can include one or more of the following:
  • the search space associates multiple control resource sets.
  • the search space includes multiple monitoring opportunities.
  • the number of monitoring opportunities included in the search space is equal to the number of control resource sets associated with the search space.
  • the search space includes M monitoring opportunities, and the search space is associated with M control resource sets.
  • Step 803 The network device sends second indication information to the terminal device, where the second indication information is used to indicate the activation of M TCI-states corresponding to the M control resource sets.
  • the terminal device receives the second indication information from the network device and activates M TCI-states.
  • Step 805 The network device transmits the first PDCCH M times on the time-frequency resources corresponding to the M control resource sets and one search space.
  • the network device may transmit the first PDCCH M times on the time-frequency resources corresponding to the M control resource sets and one search space according to the M TCI-states respectively corresponding to the M control resource sets.
  • M control resource sets include control resource set 1 and control resource set 2, control resource set 1, control resource set 2 and search space association, the activated TCI-state corresponding to control resource set 1 is TCI-state1, control resource The activated TCI-state corresponding to set 2 is TCI-state2; the network device can transmit the first PDCCH once on the time-frequency resource corresponding to the control resource set 1 and the search space according to TCI-state1, and according to TCI-state2, The first PDCCH is transmitted once on the control resource set 2 and the time-frequency resource corresponding to the search space.
  • the search space may include one monitoring opportunity or M monitoring opportunity, which are described in detail below respectively.
  • Scenario 1 The search space includes a monitor occasion
  • the search space includes a monitoring opportunity, which may mean that the monitoringSymbolsWithinSlot parameter of the search space contains 1 bits with a value of 1. Starting from the symbol corresponding to the bit whose value is 1 in monitoringSymbolsWithinSlot, a group of symbols corresponding to consecutive X symbols is a listening opportunity. X is the value of the duration parameter in the control resource set.
  • M sets of control resources and the listening opportunity can determine M groups of time-frequency resources.
  • the time-domain resources of each group of time-frequency resources are the same, and the frequency-domain resources can be the same or different. Whether the domain resources are the same depends on whether the frequency domain resources corresponding to the M control resource sets are the same.
  • the M groups of time-frequency resources are in one-to-one correspondence with M first PDCCH transmissions, that is, one first PDCCH transmission corresponds to a group of time-frequency resources.
  • the frequency domain resources corresponding to the M control resource sets are the same, that is, the M control resource sets and the M sets of time-frequency resources corresponding to the search space are completely the same, and then the network device can use the M TCI-states
  • the first PDCCH is transmitted on the same time-frequency resource.
  • a different DRMS port or the same DMRS port may be used. For example, refer to FIG. 6a.
  • the frequency domain resources corresponding to the M control resource sets are different, that is, the M control resource sets and the M sets of time-frequency resources corresponding to the search space have the same time domain resources but different frequency domain resources
  • the network device The first PDCCH can be transmitted on the same time domain resource and different frequency domain resources according to M TCI-states. Each time the first PDCCH is transmitted, a different DRMS port or the same DMRS port can be used. For example, see Figure 6c. .
  • Scenario 2 The search space includes M listening opportunities
  • the search space includes M listening opportunities means that the monitoringSymbolsWithinSlot parameter of the search space contains M bits whose bit value is 1, and the M listening opportunities correspond to M groups of different time domain resources.
  • M listening opportunities means that the monitoringSymbolsWithinSlot parameter of the search space contains M bits whose bit value is 1, and the M listening opportunities correspond to M groups of different time domain resources.
  • M control resource sets can be associated with M listening opportunities one by one.
  • M control resource sets may correspond to M listening opportunities in a one-to-one order from small to large index.
  • the control resource set with the smallest index is associated with the first (earliest) listening opportunity
  • the control resource set with the largest index is associated with the last (latest) listening opportunity.
  • the M control resource sets may also correspond to the M listening opportunities one-to-one according to the configuration sequence. For example, the control resource set with the first configuration order is associated with the first (earliest) listening opportunity, and the control resource set with the configuration order of the last is associated with the last (latest) listening opportunity.
  • M sets of control resources and M listening opportunities can determine M sets of time-frequency resources.
  • the time-domain resources of each set of time-frequency resources are different.
  • the frequency-domain resources can be the same or different. Whether the frequency-domain resources are the same depends on M Whether the frequency domain resources corresponding to the two control resource sets are the same.
  • the M groups of time-frequency resources correspond to M first PDCCH transmissions one-to-one, that is, one first PDCCH transmission corresponds to a group of time-frequency resources.
  • the frequency domain resources corresponding to the M control resource sets are the same, that is, the M control resource sets and the M sets of time-frequency resources corresponding to the search space have different time domain resources but the same frequency domain resources
  • the network device may According to M TCI-states, the first PDCCH is transmitted M times on the same frequency domain resource and different time domain resources. Each time the first PDCCH is transmitted, a different DRMS port or the same DMRS port may be used. For example, see the figure 6d.
  • the frequency domain resources corresponding to the M control resource sets are different, that is, the M control resource sets and the M sets of time-frequency resources corresponding to the search space have different time domain resources and different frequency domain resources, and thus the network device According to M TCI-states, the first PDCCH can be transmitted M times on different frequency domain resources and different time domain resources.
  • a different DRMS port or the same DMRS port can be used, for example, see Figure 6e.
  • the network device may indicate the transmission mode adopted by the terminal device.
  • the network device sends an indication message to the terminal device to indicate which transmission mode is specifically adopted.
  • Step 806 The terminal device monitors the first PDCCH on the time-frequency resources corresponding to the M control resource sets and one search space.
  • the terminal device may receive the first PDCCH on the M groups of time-frequency resources according to the M TCI-states respectively corresponding to the M control resource sets. If the search space includes a listening opportunity, the terminal device can receive M signals on the M control resource sets and the time-frequency resources corresponding to the foregoing listening opportunity according to the M TCI-states corresponding to the M control resource sets, and M signals are decoded separately or combined; if the search space includes M monitoring opportunities, the terminal device can use the M TCI-states corresponding to the M control resource sets in the M control resource sets and M monitoring opportunities. Receive M signals on the time-frequency resource corresponding to the opportunity, and perform independent decoding or combined decoding on the M signals. For the introduction of separate decoding or combined decoding, please refer to the first embodiment, which will not be repeated here.
  • the network device can configure M control resource sets and one search space for the terminal device, and then perform M transmissions on the first PDCCH on the time-frequency resources corresponding to the M control resource sets and one search space, which can effectively Improve the transmission reliability of the first PDCCH; and, after receiving the configuration information from the network device, the terminal device can learn M control resource sets and a search space for M transmissions of the first PDCCH, if separate decoding is used After the decoding is successful, the blind detection can be stopped to avoid all the possibilities of blind detection, which will cause the resource consumption of the terminal equipment; if the combined decoding method is used for processing, the number of blind detections can be effectively reduced , It is convenient to save the processing resources of the terminal equipment.
  • Fig. 9 is a schematic diagram of a process corresponding to the communication method provided in the third embodiment of the application, as shown in Fig. 9, including:
  • Step 901 The network device sends configuration information to the terminal device.
  • the configuration information is used to configure a control resource set and M search spaces, and the control resource sets are respectively associated with the M search spaces.
  • each of the M search spaces and the above-mentioned control resource set associated with each search space are used to transmit the first PDCCH once, and then the M search spaces and one control resource set can be used for the first PDCCH.
  • the PDCCH is transmitted M times.
  • the terminal device receives configuration information from the network device.
  • the terminal device after receiving the configuration information of the network device, the terminal device can determine whether a control resource set and M search spaces are used for M transmissions of the first PDCCH.
  • a control resource set and M search spaces are used for M transmissions of the first PDCCH.
  • the terminal device may determine a control resource set and M search spaces for the first PDCCH Perform M transmissions.
  • control resource set meeting the preset condition 5 may include one or more of the following:
  • the control resource set has multiple activated TCI-states, or in other words, the control resource set corresponds to multiple activated TCI-states.
  • the number of activated TCI-states of the control resource set is equal to the number of search spaces associated with the control resource set.
  • control resource set meeting the preset condition 5 may also be referred to as the control resource set meeting the configuration constraint 5.
  • the foregoing is a description of some possible situations in which the control resource set meets the preset condition 5, and in other possible examples, other possible situations may also be included, which are not specifically limited.
  • the M search spaces meeting the preset condition 6 include that one or more parameters in the M search spaces are the same.
  • the M search spaces meeting the preset condition 6 may include one or more of the following:
  • 6M search spaces are of the same type.
  • the terminal device receives the first indication information from the network device, the first indication information is used to indicate a control resource set and M search spaces for M transmissions of the first PDCCH, it can determine the M control resource sets and One search space is used for M transmissions of the first PDCCH.
  • the terminal device may be carried in RRC signaling, MAC CE signaling, or DCI signaling.
  • the first indication information may be carried in RRC signaling, MAC CE signaling, or DCI signaling.
  • the control resource set can meet the configuration constraint 5, and/or the M search spaces can meet the configuration constraint 6.
  • this control resource set needs to meet configuration constraint 5; if M search spaces are used for M repeated transmissions of the first PDCCH, Then the M search spaces need to satisfy the configuration constraint 6.
  • control resource set meeting configuration constraint 5 may include one or more of the following:
  • the control resource collection has multiple activated TCI-states.
  • the number of activated TCI-states of the control resource set is equal to the number of search spaces associated with the control resource set.
  • the M search spaces meeting the configuration constraint 6 may include that one or more parameters of the M search spaces are the same, and/or, one or more parameters of the M search spaces are different.
  • the M search spaces meeting the configuration constraint 6 may include one or more of the following:
  • 6M search spaces are of the same type.
  • Step 903 The network device sends second indication information to the terminal device, where the second indication information is used to activate one or more TCI-states of the control resource set.
  • the terminal device receives the second indication information from the network device and activates one or more TCI-states.
  • the second indication information may include one or more of the following: the identifiers of the M TCI-states; the first information, the first information Used to indicate the number of activated TCI-states; the second information, the second information is used to indicate whether the number of activated TCI-states is one or more; the third information, the third information is used to indicate the activated M Whether the TCI-state is used to transmit the first PDCCH at the same time or to transmit the first PDCCH in a time-sharing manner.
  • the second indication information may include M TCI-states, and further, may also include one or more of the first information, the second information, and the third information.
  • the second indication information may be carried in RRC signaling, MAC CE signaling or DCI signaling.
  • the network device may send the MAC CE to the terminal device, and the MAC CE includes the second indication information.
  • the above-mentioned MAC CE may include field 1, field 2, one or more fields 3, and one field 3 is used to carry a TCI-state identifier.
  • FIG. 10a which is a schematic diagram of a format of MAC CE.
  • Field 1 may be referred to as F field
  • field 2 may be referred to as S/T field. It should be understood that the specific names of field 1 and field 2 are not limited in this application.
  • field 1 can be used to carry the first information or the second information.
  • field 1 can include 1 bit, the value of field 1 can be 0 or 1, the value of field 1 is 0 to indicate activation of a single TCI-state, and the value of field 1 is 1 to indicate activation Multiple TCI-states. Or conversely, a value of 0 in field 1 indicates that multiple TCI-states are activated, and a value of 1 in field 1 indicates that a single TCI-state is activated.
  • Field 2 can be used to carry third information. If the third information is used to indicate that M TCI-states are used to transmit the first PDCCH at the same time, the network device can use these M TCI-states to transmit the PDCCH at the same time.
  • the TCI-state receives the first PDCCH at the same time; if the third information is used to indicate that M TCI-states are used to transmit the first PDCCH in a time-sharing manner, the network device can use these M TCI-states to transmit the first PDCCH at different times.
  • a single TCI-state is used each time, or a part of the TCI-state is used each time, for example, half of the TCI-state is used.
  • the terminal device may use a single or partial TCI-state to receive the first PDCCH at different times each time.
  • M TCI-states can also be associated with each of the M search spaces, that is, the network device can simultaneously use M TCI-states for the first PDCCH transmission, and each transmission corresponds to one search. Space, a total of M transmissions.
  • the association relationship between M search spaces and the activated M TCI-states corresponding to the control resource set can also be determined according to the third information. For example, if the third information is used for Indicate that M TCI-states are used to transmit the first PDCCH at the same time, which means that M TCI-states are associated with M search spaces one by one; if the third information is used to indicate that M TCI-states are used to transmit the first PDCCH in time sharing, then It means that each of the M search spaces is associated with M TCI-states.
  • the network device can send the third information in an explicit way, for example, the third information is carried in the field 2 described above and sent to the terminal device; or the network can also send the third information in an implicit way
  • MAC CE does not include field 2, but by controlling whether the time domain start positions of the M search spaces associated with the resource set are the same, it is implicitly instructed to use M TCI-states for simultaneous transmission or time-sharing transmission of the first PDCCH, For example, if the time domain start positions of the M search spaces associated with the control resource set are the same, it means that the activated M TCI-states corresponding to the control resource set are used to simultaneously transmit the first PDCCH (or use M TCI-states).
  • M TCI-states and M search spaces can have multiple possible association modes.
  • the following takes M TCI-states and M search spaces one-to-one association as an example to describe several possible association modes.
  • the M TCI-states and the M search spaces can be associated according to the indexes of the M TCI-states and the indexes of the M search spaces.
  • M TCI-states can be associated with M search spaces in the order of ascending index or descending index.
  • the TCI-state with the smallest index is associated with the search space with the smallest index
  • the TCI-state with the largest index is associated with the search space with the largest index.
  • the M TCI-states and the M search spaces can be associated with the indexes of the M search spaces according to the order in which the M TCI-states are activated.
  • the M TCI-states can be associated with the M search spaces in the order of indexing from small to large or from large to small in the order of activation.
  • the TCI-state with the highest activation order is associated with the search space with the smallest index, and the TCI-state with the lowest activation order corresponds to the search space with the largest index.
  • the M TCI-states and the M search spaces may be associated according to the index of the M TCI-states and the configuration order of the M search spaces.
  • the M TCI-states are associated with the M search spaces in the order of configuration in the order of the index from small to large or from large to small.
  • the TCI-state with the smallest index is associated with the search space with the highest configuration order
  • the TCI-state with the largest index is associated with the search space with the lowest configuration order.
  • the M TCI-states and the M search spaces may be associated according to the order in which the M TCI-states are activated and the configuration order of the M search spaces.
  • the M TCI-states are associated with the M search spaces in the order in which they are activated.
  • the TCI-state with the highest activation order is associated with the search space with the highest configuration order; the TCI-state with the lowest activation order is associated with the search space with the lowest configuration order.
  • Which of the above combined decoding methods is used can be indicated to the terminal device by the network device through RRC, MAC CE, or DCI signaling, or the terminal device can report to the network device.
  • M TCI-states and M first SearchSpaces may also have other associations.
  • each TCI-state is associated with M search spaces, or each search space is associated with M TCI-states.
  • Step 905 The network device performs M transmissions on the first PDCCH on the control resource set and the time-frequency resources corresponding to the M search spaces.
  • the network device may transmit the first PDCCH M times on the time-frequency resources corresponding to the control resource set and the M search spaces according to the M TCI-states corresponding to the control resource set.
  • M search spaces include search space 1 and search space 2
  • the activated TCI-state corresponding to the control resource set includes TCI-state1 and TCI-state2
  • search space 1 is associated with TCI-state1
  • search space 2 is associated with TCI-state2.
  • Association the network device can transmit the first PDCCH once on the time-frequency resource corresponding to the control resource set and search space 1 according to TCI-state1, and according to TCI-state2, on the time-frequency resource corresponding to the control resource set and search space 2
  • the first PDCCH is transmitted once on the resource.
  • the frequency domain resource corresponding to the control resource set may include M frequency domain resource parts, and the M frequency domain resource parts may be associated with M search spaces one by one (wherein, each frequency domain resource in the M frequency domain resource parts The search space associated with each frequency domain resource part corresponds to a group of time-frequency resources, which are used for one transmission of the first PDCCH; the M frequency domain resource parts and M search spaces correspond to M groups of time-frequency resources, which are used for matching The first PDCCH is transmitted M times), or the M frequency domain resource parts can be associated with the activated M TCI-states one by one, or each frequency domain resource part of the M frequency domain resource parts corresponds to one time of the first PDCCH Transmission, or M frequency domain resource parts respectively correspond to M DMRS ports.
  • the M first PDCCHs can be respectively sent at M different frequency domain resource positions. Take M frequency domain resource parts that can be associated with M search spaces one by one, and M search spaces are associated with M TCI-state one by one as an example. In this case, if the time domain resources of the M groups of time-frequency resources are the same However, the frequency domain resources are different, and the network device can transmit the first PDCCH M times on the same time domain resource and different frequency domain resources according to M TCI-states, as shown in FIG. 6c. If the M groups of time-frequency resources have different time-domain resources and different frequency-domain resources, the network device can transmit the first PDCCH M times on different time-domain resources and different frequency-domain resources according to M TCI-states, as shown in Figure 6e Show.
  • frequencyDomainResources is a bitmap, and each bit represents a continuous frequency domain resource (for example, 6 consecutive RBs), and then
  • the first half can have one bit more, or the second half can have one bit more.
  • the frequencyDomainResources parameter is a 45-bit bitmap
  • the first 23 bits can be used as the first half
  • the last 22 bits can be used as the second half; or, according to the parity of each bit, the frequencyDomainResources parameter Bits are divided, that is, all odd-numbered bits are used as one part, and all even-numbered bits are used as another part.
  • the first 11 bits can be used as the first half, and the last 10 bits can be used as the second half; or, according to the parity of each bit in the frequencyDomainResources parameter All bits with a value of 1 are divided, that is, all odd-numbered bits are used as one part, and all even-numbered bits are used as another part.
  • the first half can have one more RB ( Or CCE, or RBG, or PRG), or one more RB in the second half (or CCE, or RBG, or PRG); or, according to the parity of the location of the RB, the RB (or CCE, or RBG, Or PRG), such as sorting all RBs (or CCE, or RBG, or PRG), all odd-numbered RBs (or CCE, or RBG, or PRG) as a part, all even-numbered RBs (or CCE, Or RBG, or PRG) as another part.
  • Step 906 The terminal device monitors the first PDCCH on a control resource set and time-frequency resources corresponding to the M search spaces.
  • the terminal device may receive the first PDCCH on the control resource set and the time-frequency resources corresponding to the M search spaces according to M TCI-states (M TCI-states are associated with M search spaces one by one). If the frequency domain resources corresponding to the control resource set include M frequency domain resource parts, and the M frequency domain resource parts are associated with M search spaces one by one, then the terminal device can select from the M frequency domains according to the M TCI-states.
  • the domain resource part and the time-frequency resources corresponding to the M search spaces receive M signals, and perform independent decoding or combined decoding on the M signals.
  • separate decoding or combined decoding please refer to the first embodiment, which will not be repeated here.
  • the network device can configure a control resource set and M search spaces for the terminal device, and then perform M transmissions on the first PDCCH on the time-frequency resources corresponding to the control resource set and the M search spaces, which can be effective Improve the transmission reliability of the first PDCCH; and, after receiving the configuration information from the network device, the terminal device can learn a set of control resources and M search spaces for M transmissions of the first PDCCH, if separate decoding is used After the decoding is successful, the blind detection can be stopped to avoid all the possibilities of blind detection, which will cause the resource consumption of the terminal equipment; if the combined decoding method is used for processing, the number of blind detections can be effectively reduced , It is convenient to save the processing resources of the terminal equipment.
  • Fig. 11 is a schematic diagram of a process corresponding to the communication method provided in the fourth embodiment of the application, as shown in Fig. 11, including:
  • Step 1101 The network device sends configuration information to the terminal device.
  • the configuration information is used to configure a control resource set and a search space, and the control resource set is associated with the search space.
  • the terminal device receives the configuration information from the network device.
  • the terminal device after receiving the configuration information of the network device, the terminal device can determine whether a control resource set and a search space are used for M transmissions of the first PDCCH.
  • a control resource set and a search space are used for M transmissions of the first PDCCH.
  • the terminal device determines that the control resource set meets the preset condition 7, and/or the search space meets the preset condition 8, it can determine a control resource set and a search space for M transmissions of the first PDCCH .
  • control resource set meeting the preset condition 7 may include one of the following:
  • the control resource set corresponds to multiple activated TCI-states.
  • the control resource set corresponds to multiple activated TCI-states, and the number of activated TCI-states corresponding to the control resource set is equal to the number of listening opportunities included in the search space associated with the control resource set.
  • the search space meets the preset conditions 8 including one of the following:
  • the search space includes multiple monitoring opportunities.
  • the search space includes multiple monitoring opportunities, and the number of monitoring opportunities included in the search space is equal to the number of activated TCI-states corresponding to the set of control resources associated with the search space.
  • the terminal device receives the first indication information from the network device, the first indication information is used to indicate a control resource set and a search space for M transmissions of the first PDCCH, it can determine a control resource set and a search The space is used for M transmissions of the first PDCCH.
  • the first indication information may be carried in RRC signaling, MAC CE signaling, or DCI signaling.
  • the first indication information may be carried in RRC signaling, MAC CE signaling, or DCI signaling.
  • control resource set can meet the configuration constraint 7, and/or the search space can meet the configuration constraint 8, that is, if the control resource set is used for M repeated transmissions of the first PDCCH, then this The control resource set needs to meet configuration constraint 7; if M search spaces are used for M repeated transmissions of the first PDCCH, then these M search spaces need to meet configuration constraint 8.
  • control resource set meeting the configuration constraint 7 may include: the control resource set corresponds to multiple activated TCI-states; or, the control resource set corresponds to multiple activated TCI-states, and the control resource set corresponds to the activated TCI-state The number is equal to the number of monitoring opportunities included in the search space associated with the control resource set.
  • the search space meeting configuration constraint 8 may include: the search space includes multiple monitoring opportunities; or, the search space includes multiple monitoring opportunities, and the number of monitoring opportunities included in the search space is equal to the activated TCI corresponding to the control resource set associated with the search space -The number of states.
  • Step 1103 The network device sends second indication information to the terminal device, where the second indication information is used to indicate one or more TCI-states corresponding to the activation control resource set.
  • the terminal device receives the second indication information from the network device, and activates one or more TCI-states corresponding to the control resource set.
  • Step 1105 The network device transmits the first PDCCH M times on a control resource set and a time-frequency resource corresponding to a search space.
  • the control resource set may correspond to one or M activated TCI-states.
  • the network device can perform M transmissions on the first PDCCH on the time-frequency resource corresponding to the control resource set and the search space according to the M TCI-states. For example, if the search space includes one monitoring opportunity, the network device can transmit the first PDCCH M times on the time-frequency resource corresponding to the control resource set and the monitoring opportunity according to M TCI-states, as shown in FIG. 6a.
  • the frequency domain resources corresponding to the control resource set may include M frequency domain resource parts (M frequency domain resource parts are associated with M TCI-states one by one), and the M frequency domain resource parts are respectively associated with the aforementioned search space,
  • M frequency domain resource parts in the M frequency domain resource parts and the search space associated with each frequency domain resource part are used to transmit the first PDCCH once (that is, each frequency domain resource part in the M frequency domain resource parts)
  • the domain resource part and the search space associated with each frequency domain resource part correspond to a group of time-frequency resources, which are used for one transmission of the first PDCCH;
  • the M frequency domain resource parts and the search space correspond to M groups of time-frequency resources, these M groups
  • the time domain resources of the time-frequency resources are the same but the frequency domain resources are different), and the network device can perform M transmissions on the first PDCCH on the same time domain resource and different frequency domain resources according to M TCI-states, as shown in Fig.
  • the search space may include M monitoring opportunities (M monitoring opportunities are associated with M TCI-states one by one), M monitoring opportunities are respectively associated with the above-mentioned control resource set, and each of the M monitoring opportunities is The control resource set associated with each monitoring opportunity is used to transmit the first PDCCH once (that is, each of the M monitoring opportunities and the control resource set associated with each monitoring opportunity correspond to a set of time-frequency resources, It is used to transmit the first PDCCH once; M monitoring opportunities and control resource sets correspond to M sets of time-frequency resources, and the M sets of time-frequency resources have the same frequency domain resources but different time domain resources), and the network device can be based on the M sets of time-frequency resources.
  • the first PDCCH is transmitted M times on the same frequency domain resource and different time domain resources, as shown in FIG. 6d.
  • the frequency domain resource corresponding to the control resource set may include M frequency domain resource parts
  • the search space may include M monitoring opportunities (M monitoring opportunities are associated with M TCI-states one by one, and/or M frequencies Domain resource parts are associated with M TCI-states one by one), M frequency domain resource parts are associated with M listening opportunities one by one, and each frequency domain resource part and each frequency domain resource part of the M frequency domain resource parts
  • the associated monitoring opportunity is used to transmit the first PDCCH once, or in other words, each of the M monitoring opportunities and the frequency domain resource portion associated with each monitoring opportunity are used to transmit the first PDCCH once (that is, In other words, M frequency domain resource parts and M monitoring opportunities correspond to M groups of time-frequency resources, and the M groups of time-frequency resources have different frequency domain resources and different time domain resources), and the network equipment can be based on the M TCI-states.
  • the first PDCCH is
  • M monitoring opportunities are associated with M TCI-states according to the index of M TCI-states and the time of M monitoring opportunities.
  • M TCI-states are indexed from small to large or The order from largest to smallest is associated with the M monitors in chronological order.
  • the TCI-state with the smallest index is associated with the earliest listening opportunity, and the TCI-state with the largest index is associated with the latest listening opportunity.
  • M monitoring opportunities are associated with M TCI-states according to the order in which M TCI-states are activated and the time of M monitoring opportunities.
  • M TCI-states are activated by pressing
  • the sequence of M monitors is associated with the M monitors in chronological order.
  • the TCI-state with the highest activation order is associated with the Jinting opportunity with the earliest time
  • the TCI-state with the lowest activation order is associated with the listening opportunity with the latest time.
  • control resource set corresponding to M activated TCI-states When the control resource set corresponds to one activated TCI-state, refer to the processing. For example, if the control resource set corresponds to an activated TCI-state and the search space includes a listening opportunity, the network device can perform M on the first PDCCH on the time-frequency resource corresponding to the control resource set and the listening opportunity according to the TCI-state. Second transmission, see Figure 6a. For another example, if the control resource set corresponds to an activated TCI-state, and the search space includes M monitoring opportunities, the network device can compare the control resource set and the time-frequency resources corresponding to the M monitoring opportunities according to the TCI-state. A PDCCH is transmitted M times, as shown in Fig. 6d.
  • Step 1106 The terminal device monitors the first PDCCH on a control resource set and a time-frequency resource corresponding to a search space.
  • the terminal device may receive the first PDCCH on the time-frequency resource corresponding to the control resource set and the search space according to the M TCI-states. For example, if the search space includes a monitoring opportunity (at this time, the network device transmits the first PDCCH in the manner shown in FIG. 6a), the terminal device receives M signals on the control resource set and the time-frequency resource corresponding to the monitoring opportunity.
  • the combined signal of the first PDCCH signal, and the terminal device can decode the combined signal, which can be understood as combined decoding.
  • the terminal device can use the M TCI-states in The M frequency domain resource parts and the time-frequency resources corresponding to the search space receive M signals, and the M signals are decoded separately or combined.
  • the search space can include M monitoring opportunities (at this time, the network device can transmit the first PDCCH in the manner shown in FIG. 6d)
  • the terminal device can control the resource set and M monitoring according to the M TCI-states. Receive M signals on the time-frequency resource corresponding to the opportunity, and perform independent decoding or combined decoding on the M signals.
  • the frequency domain resources corresponding to the control resource set may include M frequency domain resource parts, and the search space may include M monitoring opportunities (at this time, the network device may transmit the first PDCCH in the manner shown in FIG. 6e), then the terminal The device can receive M signals on the time-frequency resources corresponding to the M frequency domain resource parts and the M monitoring opportunities according to the M TCI-states, and decode the M signals individually or combinedly.
  • the terminal The device can receive M signals on the time-frequency resources corresponding to the M frequency domain resource parts and the M monitoring opportunities according to the M TCI-states, and decode the M signals individually or combinedly.
  • the network device can configure a control resource set and a search space for the terminal device, and then transmit the first PDCCH M times on the time-frequency resource corresponding to the control resource set and the search space, thereby effectively improving the first PDCCH.
  • the transmission reliability of a PDCCH and, after the terminal device receives the configuration information from the network device, it can learn a set of control resources and a search space for M transmissions of the first PDCCH, if it is decoded separately After the decoding is successful, the blind detection can be stopped to avoid all the possibilities of blind detection, which will lead to high resource consumption of the terminal equipment; if the combined decoding method is used for processing, the number of blind detections can be effectively reduced, which is convenient for saving The processing resources of the terminal equipment.
  • the parameters can be determined by the following methods.
  • the terminal device can report whether it supports the above-mentioned separate decoding, and/or report whether it supports the above-mentioned combined decoding, and/or report the supported decoding method through the terminal capability reporting process.
  • the terminal device can also report whether it supports PDCCH repeated transmission through the terminal capability reporting process. For example, it may report whether PDCCH spatial repetitive transmission is supported, and/or whether it supports PDCCH frequency repetitive transmission, and/or whether it supports PDCCH repetitive transmission in time domain, and/or whether it supports the first repetitive transmission mode.
  • the terminal device may also report the number of PDCCH repeated transmissions supported by the terminal capability reporting process, that is, the value of M in the foregoing embodiment.
  • the value range of M can be ⁇ 1,2,3,4 ⁇ , or ⁇ 1,2,4 ⁇ , or ⁇ 1,2,4,8 ⁇ , or ⁇ 2,4 ⁇ , or ⁇ 2,3, 4 ⁇ , or ⁇ 2,4,8 ⁇ , or ⁇ 1,2,3,4,8 ⁇ . If 1 is reported, it means that the terminal device does not support PDCCH repeated transmission.
  • the number of repeated transmissions of the PDCCH may also be specified by the protocol, that is, the value of M in the foregoing embodiment. For example, the agreement may specify that the value of M is one of ⁇ 1,2,3,4,8 ⁇ .
  • the network device can indicate the value of M through RRC signaling, MAC CE or DCI signaling.
  • M can be ⁇ 1,2,3,4 ⁇ , or ⁇ 1,2,4 ⁇ , Or ⁇ 1,2,4,8 ⁇ , or ⁇ 2,4 ⁇ , or ⁇ 2,3,4 ⁇ , or ⁇ 2,4,8 ⁇ , or ⁇ 1,2,3,4,8 ⁇ . If it indicates 1, it means that the network device does not use PDCCH repeated transmission to transmit the PDCCH.
  • the terminal device can also report the maximum number of search spaces associated with a control resource set, or report the maximum number of control resource sets associated with a search space, or report the maximum number of listening opportunities that can be included in a search space, or report a control
  • S is used to represent the above maximum number, and the value of S can be 2 or 4.
  • the protocol specifies the maximum number of search spaces associated with a control resource set, or the maximum number of control resource sets associated with a search space, or the maximum number of listening opportunities that a search space can include, or a control resource set
  • S is used to represent the above maximum number, and the value of S can be 2 or 4.
  • the network device can indicate which embodiment corresponding method is specifically adopted through RRC, MAC CE, or DCI information.
  • the terminal device may report the method corresponding to which embodiment is supported.
  • step numbers in the above Figures 5, 8, 9 and 11 are examples of the execution process, and do not constitute a restriction on the order of execution of the steps, and there is no time sequence dependency among the embodiments of this application. There is no strict order of execution between the steps of the relationship.
  • the differences between the different embodiments are mainly described.
  • the differences between the different embodiments include: In the first embodiment, M control resource sets and M search spaces are used to M repetitive transmissions of the first PDCCH are realized. In the second embodiment, M repetitive transmissions of the first PDCCH are realized through M control resource sets and a search space. In the third embodiment, M repetitive transmissions of the first PDCCH are realized through a control resource set and M A search space is used to implement M repeated transmissions of the first PDCCH. In the fourth embodiment, a control resource set and a search space are used to implement M repeated transmissions of the first PDCCH. In addition to the above differences, the first to fourth embodiments can refer to each other.
  • the network device or the terminal device may include a corresponding hardware structure and/or software module for performing each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the terminal device and the network device into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • FIG. 12 shows a possible exemplary block diagram of a device involved in an embodiment of the present application.
  • the apparatus 1200 may include: a processing unit 1202 and a communication unit 1203.
  • the processing unit 1202 is used to control and manage the actions of the device 1200.
  • the communication unit 1203 is used to support communication between the apparatus 1200 and other devices.
  • the communication unit 1203 is also called a transceiving unit, and may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the apparatus 1200 may further include a storage unit 1201 for storing program codes and/or data of the apparatus 1200.
  • the apparatus 1200 may be the terminal device in any of the foregoing embodiments, or may also be a chip provided in the terminal device.
  • the processing unit 1202 may support the apparatus 1200 to perform the actions of the terminal device in the above method examples.
  • the processing unit 1202 mainly executes the internal actions of the terminal device in the method example, and the communication unit 1203 can support communication between the apparatus 1200 and the network device.
  • the communication unit 1203 can be used to perform step 502, step 504, step 506 in FIG. 5, step 802, step 804, or step 806 in FIG. 8, and step 902, step 904, and step 906 in FIG. 9, And step 1102, step 1104, and step 1106 in FIG. 11.
  • the communication unit 1203 is configured to: receive configuration information from a network device, the configuration information is used to configure a control resource set and M search spaces, and the control resource set is associated with the M search spaces; Each search space in the M search spaces and the control resource set associated with each search space are used to transmit the PDCCH once; and monitoring on the control resource set and the time-frequency resources corresponding to the M search spaces The first PDCCH; where M is an integer greater than 1.
  • control resource set meets the first preset condition, and/or the M search spaces meet the second preset condition.
  • control resource set meeting the first preset condition includes one or more of the following:
  • the control resource set is associated with multiple search spaces
  • the control resource set corresponds to multiple activated TCI-states
  • the number of activated TCI-states corresponding to the control resource set is equal to the number of search spaces associated with the control resource set;
  • the M search spaces meeting the second preset condition include one or more of the following:
  • the time domain starting positions corresponding to the M search spaces are the same.
  • the communication unit 1203 is further configured to: receive first indication information from a network device, where the first indication information is used to indicate that the control resource set and M search spaces are used to compare the first PDCCH Perform M transmissions.
  • the frequency domain resources corresponding to the control resource set include M frequency domain resource parts, and the M frequency domain resource parts are associated with M search spaces one by one; each search in the M search spaces
  • the control resource set associated with the space and each search space is used to transmit the first PDCCH once, including: each of the M search spaces and the frequency domain resource part associated with each search space is used for the first PDCCH
  • One PDCCH is transmitted once.
  • control resource set corresponds to M activated TCI-states; the communication unit 1203 is specifically configured to: according to the M activated TCI-states, the control resource set corresponds to the M search spaces
  • the first PDCCH is received on the time-frequency resource.
  • M activated TCI-states are associated with M search spaces one by one.
  • the communication unit 1203 is further configured to: receive second indication information from the network device, where the second indication information is used to indicate Activate the M TCI-states corresponding to the control resource set.
  • the second indication information includes one or more of the following:
  • the first information is used to indicate the number of activated TCI-states
  • Second information the second information is used to indicate that the number of activated TCI-states is multiple
  • the third information is used to indicate that the M TCI-states are used to transmit the first PDCCH simultaneously or to transmit the first PDCCH in time sharing.
  • the control resource set and the time-frequency resources corresponding to the M search spaces include M groups of time-frequency resources; wherein, each search space in the M search spaces and the control associated with each search space
  • the resource set corresponds to a group of time-frequency resources in the M groups of time-frequency resources; the M groups of time-frequency resources are completely the same; or, the M groups of time-frequency resources have the same time-domain resources but different frequency-domain resources; or, the M groups of time-frequency resources
  • the frequency domain resources are the same but the time domain resources are different; or, the M groups of time-frequency resources have different frequency domain resources and different time domain resources.
  • the communication unit 1203 is configured to: receive configuration information from the network device, the configuration information is used to configure M control resource sets and M search spaces, and the M control resource sets are associated with the M search spaces one by one. ; Each control resource set in the M control resource sets and the search space associated with each control resource set is used for one transmission of the first PDCCH; and, the time-frequency corresponding to the M control resource sets and the M search spaces The first PDCCH is monitored on the resource; where M is an integer greater than 1.
  • the M control resource sets meet the first preset condition, and/or the M search spaces meet the second preset condition.
  • the M control resource sets meeting the first preset condition include: the frequency domain resources corresponding to the M control resource sets are the same, and/or the DMRS scrambling identifiers of the M control resource sets are the same;
  • the M search spaces meeting the second preset condition include one or more of the following:
  • the detection periods of the M search spaces are the same;
  • the time domain starting positions of the M search spaces are the same.
  • the communication unit 1203 is further configured to: receive first indication information from a network device, where the first indication information is used to indicate M control resource sets and M search spaces for comparing the first indication information.
  • a PDCCH is transmitted M times.
  • each control resource set in the M control resource sets corresponds to an activated TCI-state; the communication unit 1203 is specifically configured to: according to the M activated TCI-states, in the M control resource sets The first PDCCH is received on the time-frequency resources corresponding to the M search spaces.
  • the time-frequency resources corresponding to the M control resource sets and the M search spaces include M sets of time-frequency resources; among them, each control resource set and each control resource set in the M control resource sets
  • the associated search space corresponds to a set of time-frequency resources in the M sets of time-frequency resources; the M sets of time-frequency resources are completely the same; or, the M sets of time-frequency resources have the same time-domain resources but different frequency-domain resources; or, the M sets of time-frequency resources
  • the frequency domain resources of the resources are the same but the time domain resources are different; or, the frequency domain resources of the M groups of time-frequency resources are different and the time domain resources are different.
  • the communication unit 1203 is configured to: receive configuration information from a network device, the configuration information is used to configure M control resource sets and a search space, and the M control resource sets are respectively associated with the search space; M Each control resource set in the three control resource sets and the search space associated with each control resource set are used to transmit the first PDCCH once; and, in the M control resource sets and the time-frequency corresponding to the search space The first PDCCH is monitored on the resource; where M is an integer greater than 1.
  • the M control resource sets meet the first preset condition, and/or the search space meets the second preset condition.
  • the M control resource sets meeting the first preset condition include one or more of the following:
  • the search spaces associated with the M control resource sets are the same;
  • the frequency domain resources corresponding to the M control resource sets are the same;
  • the DMRS scrambling identifiers of the M control resource sets are the same;
  • the search space meeting the second preset condition includes one or more of the following:
  • the search space includes multiple listening opportunities
  • the number of monitoring opportunities included in the search space is equal to the number of control resource sets associated with the search space.
  • the communication unit 1203 is further configured to: receive first indication information from the network device, where the first indication information is used to indicate the M control resource sets and the search space is used to perform M operations on the first PDCCH. Transfers.
  • the search space includes M monitoring opportunities, and M monitoring opportunities are associated with M control resource sets one by one; each control resource set and each control resource set in the M control resource sets
  • the associated search space is used for one transmission of the first PDCCH, including: each control resource set in the M control resource sets and the monitoring opportunity associated with each control resource set is used for one transmission of the first PDCCH.
  • each control resource set in the M control resource sets corresponds to an activated TCI-state; the communication unit 1203 is specifically configured to: according to the M activated TCI-states, in the M control resource sets Receiving the first PDCCH on the time-frequency resource corresponding to the search space.
  • the M control resource sets and the time-frequency resources corresponding to the search space include M sets of time-frequency resources; wherein, each control resource set and each control resource set in the M control resource sets
  • the associated search space corresponds to a group of time-frequency resources in the M groups of time-frequency resources; the M groups of time-frequency resources are completely the same; or, the M groups of time-frequency resources have the same time domain resources but different frequency domain resources; or, the M groups The frequency domain resources of the time-frequency resources are the same but the time domain resources are different; or, the frequency domain resources of the M groups of time-frequency resources are different and the time domain resources are different.
  • the communication unit 1203 is configured to: receive configuration information from a network device, the configuration information is used to configure a control resource set and a search space, and the control resource set is associated with the search space; The resource set and the search space are used to perform M transmissions on the first PDCCH; and, the first PDCCH is monitored on the time-frequency resource corresponding to the control resource set and the search space.
  • control resource set meets a first preset condition
  • search space meets a second preset condition
  • the control resource set meeting the first preset condition includes: the control resource set corresponds to multiple activated TCI-states; or, the control resource set corresponds to multiple activated TCI-states , And the number of activated TCI-states corresponding to the control resource set is equal to the number of monitoring opportunities included in the search space;
  • the search space meeting the second preset condition includes: the search space includes multiple monitoring Opportunities; or, the number of monitoring opportunities included in the search space is equal to the number of activated TCI-states corresponding to the control resource set.
  • the communication unit 1203 is further configured to: receive first indication information from a network device, where the first indication information is used to indicate that the control resource set and the search space are used to compare the first PDCCH Perform M transmissions.
  • the search space includes M listening opportunities, and the M listening opportunities are respectively associated with the control resource set; the control resource set and the search space are used to perform M times on the first PDCCH Transmission includes: each monitoring opportunity among the M monitoring opportunities and the control resource set associated with each monitoring opportunity are used to transmit the first PDCCH once.
  • the frequency domain resource corresponding to the control resource set includes M frequency domain resource parts, and the M frequency domain resource parts are respectively associated with the search space; the control resource set and the search space It is used to perform M transmissions on the first PDCCH, including: each frequency domain resource part of the M frequency domain resource parts and the search space associated with each frequency domain resource part are used for one transmission of the first PDCCH.
  • control resource set corresponds to M activated TCI-states; the communication unit 1203 is specifically configured to: according to the M activated TCI-states, the control resource set corresponds to the search space Receiving the first PDCCH on the time-frequency resource of.
  • the method further includes: the terminal device receives second indication information from the network device, and the second indication information is used for Indicates to activate the M TCI-states corresponding to the control resource set.
  • the second indication information includes one or more of the following:
  • the first information is used to indicate the number of activated TCI-states
  • Second information the second information is used to indicate that the number of activated TCI-states is multiple
  • the third information is used to indicate that the M TCI-states are used to transmit the first PDCCH simultaneously or to transmit the first PDCCH in time sharing.
  • the control resource set and the time-frequency resource corresponding to the search space include M groups of time-frequency resources, and each group of time-frequency resources in the M groups of time-frequency resources is used to perform one PDCCH on the first PDCCH.
  • M groups of time-frequency resources are identical; or, M groups of time-frequency resources have the same time-domain resources but different frequency-domain resources; or, M groups of time-frequency resources have the same frequency-domain resources but different time-domain resources; or, M groups The frequency domain resources of the time-frequency resources are different and the time domain resources are different.
  • the apparatus 1200 may also be the network device in any of the foregoing embodiments, or may also be a chip provided in the network device.
  • the processing unit 1202 may support the apparatus 1200 to execute the actions of the network device in the above method examples.
  • the processing unit 1202 mainly executes the internal actions of the network device in the method example, and the communication unit 1203 can support communication between the apparatus 1200 and the terminal device.
  • the communication unit 1203 can be used to perform step 501, step 503, and step 505 in FIG. 5, as well as step 801, step 803, or step 805 in FIG. 8, and step 901, step 903, and step 905 in FIG. 9, And step 1101, step 1103, and step 1105 in FIG. 11.
  • the communication unit 1203 is configured to: send configuration information to the terminal device, the configuration information is used to configure a control resource set and M search spaces, and the control resource set is associated with the M search spaces; M Each of the search spaces and the control resource set associated with each search space are used to transmit the first PDCCH once; and, on the control resource set and the time-frequency resources corresponding to the M search spaces Perform M transmissions on the first PDCCH; where M is an integer greater than 1.
  • control resource set meets the first preset condition, and/or the M search spaces meet the second preset condition.
  • control resource set meeting the first preset condition includes one or more of the following:
  • the control resource set is associated with multiple search spaces
  • the control resource set corresponds to multiple activated TCI-states
  • the number of activated TCI-states corresponding to the control resource set is equal to the number of search spaces associated with the control resource set;
  • the M search spaces meeting the second preset condition include one or more of the following:
  • the time domain starting positions of the M search spaces are the same.
  • the communication unit 1203 is further configured to: send first indication information to the terminal device, where the first indication information is used to indicate that the control resource set and the M search spaces are used to perform the first PDCCH M transmissions.
  • the frequency domain resources corresponding to the control resource set include M frequency domain resource parts, and the M frequency domain resource parts are associated with M search spaces one by one; each search in the M search spaces
  • the set of control resources associated with the space and each search space is used to transmit the first PDCCH once, including: each search space in the M search spaces and the frequency domain resource part associated with each search space is used for the first PDCCH Make a transfer.
  • control resource set corresponds to M activated TCI-states; the communication unit 1203 is specifically configured to: according to the M activated TCI-states, the control resource set corresponds to the M search spaces
  • the first PDCCH is transmitted on the time-frequency resources of.
  • M activated TCI-states are associated with M search spaces one by one.
  • the communication unit 1203 is further configured to: send second indication information to the terminal device, where the second indication information is used to indicate activation M TCI-states corresponding to the control resource set.
  • the second indication information includes one or more of the following:
  • the first information is used to indicate the number of activated TCI-states
  • Second information the second information is used to indicate that the number of activated TCI-states is multiple
  • the third information is used to indicate that the M TCI-states are used to transmit the first PDCCH simultaneously or to transmit the first PDCCH in time sharing.
  • the control resource set and the time-frequency resources corresponding to the M search spaces include M groups of time-frequency resources; wherein, each search space in the M search spaces is associated with all the search spaces.
  • the control resource set corresponds to a group of time-frequency resources in the M groups of time-frequency resources; the M groups of time-frequency resources are completely the same; or, the M groups of time-frequency resources have the same time-domain resources but different frequency-domain resources; or, the M groups of time-frequency resources
  • the frequency domain resources of the resources are the same but the time domain resources are different; or, the frequency domain resources of the M groups of time-frequency resources are different and the time domain resources are different.
  • the communication unit 1203 is configured to send configuration information to the terminal device, the configuration information is used to configure M control resource sets and M search spaces, and the M control resource sets are associated with the M search spaces one by one; Each control resource set in the M control resource sets and the search space associated with each control resource set are used for one transmission of the first PDCCH; and, the time-frequency resources corresponding to the M control resource sets and the M search spaces The above first PDCCH is transmitted M times; where M is an integer greater than 1.
  • the M control resource sets meet the first preset condition, and/or the M search spaces meet the second preset condition.
  • the M control resource sets meeting the first preset condition include: the frequency domain resources corresponding to the M control resource sets are the same, and/or the DMRS scrambling identifiers of the M control resource sets are the same;
  • the M search spaces meeting the second preset condition include one or more of the following:
  • the detection periods of the M search spaces are the same;
  • the time domain starting positions of the M search spaces are the same.
  • the communication unit 1203 is further configured to: send first indication information to the terminal device, where the first indication information is used to indicate M control resource sets and M search spaces for the first The PDCCH is transmitted M times.
  • each control resource set in the M control resource sets corresponds to an activated TCI-state; the communication unit 1203 is specifically configured to: according to the M activated TCI-states, in the M control resource sets The first PDCCH is transmitted on the time-frequency resources corresponding to the M search spaces.
  • the time-frequency resources corresponding to the M control resource sets and the M search spaces include M sets of time-frequency resources; among them, each control resource set and each control resource set in the M control resource sets
  • the associated search space corresponds to a set of time-frequency resources in the M sets of time-frequency resources; the M sets of time-frequency resources are completely the same; or, the M sets of time-frequency resources have the same time-domain resources but different frequency-domain resources; or, the M sets of time-frequency resources
  • the frequency domain resources of the resources are the same but the time domain resources are different; or, the frequency domain resources of the M groups of time-frequency resources are different and the time domain resources are different.
  • the communication unit 1203 is configured to: send configuration information to the terminal device, the configuration information is used to configure M control resource sets and a search space, and the M control resource sets are respectively associated with the search space; M Each control resource set in the control resource set and the search space associated with each control resource set are used to transmit the first PDCCH once; and, in the M control resource sets and the time-frequency resources corresponding to the search space The above first PDCCH is transmitted M times; where M is an integer greater than 1.
  • the M control resource sets meet the first preset condition, and/or the search space meets the second preset condition.
  • the M control resource sets meeting the first preset condition include one or more of the following:
  • the search spaces associated with the M control resource sets are the same;
  • the frequency domain resources corresponding to the M control resource sets are the same;
  • the DMRS scrambling identifiers of the M control resource sets are the same;
  • the search space meeting the second preset condition includes one or more of the following:
  • the search space includes multiple listening opportunities
  • the number of monitoring opportunities included in the search space is equal to the number of control resource sets associated with the search space.
  • the communication unit 1203 is further configured to: send first indication information to the terminal device, where the first indication information is used to indicate the M control resource sets and the search space is used to perform the first PDCCH M transmissions.
  • the search space includes M monitoring opportunities, and M monitoring opportunities are associated with M control resource sets one by one; each control resource set and each control resource set in the M control resource sets
  • the associated search space is used for one transmission of the first PDCCH, including: each control resource set in the M control resource sets and the monitoring opportunity associated with each control resource set is used for one transmission of the first PDCCH.
  • each control resource set in the M control resource sets corresponds to an activated TCI-state; the communication unit 1203 is specifically configured to: according to the M activated TCI-states, in the M control resource sets The first PDCCH is transmitted on the time-frequency resource corresponding to the search space.
  • the M control resource sets and the time-frequency resources corresponding to the search space include M sets of time-frequency resources; wherein, each control resource set and each control resource set in the M control resource sets
  • the associated search space corresponds to a group of time-frequency resources in the M groups of time-frequency resources; the M groups of time-frequency resources are completely the same; or, the M groups of time-frequency resources have the same time domain resources but different frequency domain resources; or, the M groups The frequency domain resources of the time-frequency resources are the same but the time domain resources are different; or, the frequency domain resources of the M groups of time-frequency resources are different and the time domain resources are different.
  • the communication unit 1203 is configured to: send configuration information to the terminal device, the configuration information is used to configure a control resource set and a search space, the control resource set is associated with the search space; and
  • the first PDCCH is transmitted M times on the control resource set and the time-frequency resource corresponding to the search space.
  • control resource set meets a first preset condition
  • search space meets a second preset condition
  • the control resource set meeting the first preset condition includes: the control resource set corresponds to multiple activated TCI-states; or, the control resource set corresponds to multiple activated TCI-states , And the number of activated TCI-states corresponding to the control resource set is equal to the number of monitoring opportunities included in the search space;
  • the search space meeting the second preset condition includes: the search space includes multiple monitoring Opportunities; or, the search space includes multiple monitoring opportunities, and the number of monitoring opportunities included in the search space is equal to the number of activated TCI-states corresponding to the control resource set.
  • the communication unit 1203 is further configured to: send first indication information to the terminal device, where the first indication information is used to indicate that the control resource set and the search space are used to perform the first PDCCH M transmissions.
  • the search space includes M monitoring opportunities, and the M monitoring opportunities are respectively associated with the control resource set; each of the M monitoring opportunities is associated with each monitoring opportunity.
  • the control resource set is used to transmit the first PDCCH once.
  • the frequency domain resource corresponding to the control resource set includes M frequency domain resource parts, and the M frequency domain resource parts are respectively associated with the search space; each of the M frequency domain resource parts The frequency domain resource part and the search space associated with each frequency domain resource part are used to transmit the first PDCCH once.
  • control resource set corresponds to M activated TCI-states; the communication unit 1203 is specifically configured to: according to the M activated TCI-states, the control resource set corresponds to the search space
  • the first PDCCH is transmitted on the time-frequency resources of.
  • the method further includes: the network device sends second indication information to the terminal device, and the second indication information is used to indicate Activate the M TCI-states corresponding to the control resource set.
  • the second indication information includes one or more of the following:
  • the first information is used to indicate the number of activated TCI-states
  • Second information the second information is used to indicate that the number of activated TCI-states is multiple
  • the third information is used to indicate that the M TCI-states are used to transmit the first PDCCH simultaneously or to transmit the first PDCCH in time sharing.
  • the control resource set and the time-frequency resource corresponding to the search space include M groups of time-frequency resources, and each group of time-frequency resources in the M groups of time-frequency resources is used to perform one PDCCH on the first PDCCH.
  • M groups of time-frequency resources are identical; or, M groups of time-frequency resources have the same time-domain resources but different frequency-domain resources; or, M groups of time-frequency resources have the same frequency-domain resources but different time-domain resources; or, M groups The frequency domain resources of the time-frequency resources are different and the time domain resources are different.
  • each unit in the device can be all implemented in the form of software called by processing elements; they can also be all implemented in the form of hardware; part of the units can also be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separate processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASICs), or, one or Multiple microprocessors (digital singnal processors, DSPs), or, one or more field programmable gate arrays (Field Programmable Gate Arrays, FPGAs), or a combination of at least two of these integrated circuits.
  • ASICs application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • FIG. 13 is a schematic structural diagram of a terminal device according to an embodiment of the application. It may be the terminal device in the above embodiment, and is used to implement the operation of the terminal device in the above embodiment.
  • the terminal device includes: an antenna 1310, a radio frequency part 1320, and a signal processing part 1330.
  • the antenna 1310 is connected to the radio frequency part 1320.
  • the radio frequency part 1320 receives the information sent by the network device through the antenna 1310, and sends the information sent by the network device to the signal processing part 1330 for processing.
  • the signal processing part 1330 processes the information of the terminal equipment and sends it to the radio frequency part 1320
  • the radio frequency part 1320 processes the information of the terminal equipment and sends it to the network equipment via the antenna 1310.
  • the signal processing part 1330 may include a modem subsystem, which is used to process the various communication protocol layers of the data; it may also include a central processing subsystem, which is used to process the terminal device operating system and application layer; in addition, it may also Including other subsystems, such as multimedia subsystems, peripheral subsystems, etc., where the multimedia subsystem is used to control the terminal device camera, screen display, etc., and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be a separate chip.
  • the modem subsystem may include one or more processing elements 1331, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 1332 and an interface circuit 1333.
  • the storage element 1332 is used to store data and programs, but the program used to execute the method performed by the terminal device in the above method may not be stored in the storage element 1332, but is stored in a memory outside the modem subsystem, When in use, the modem subsystem is loaded and used.
  • the interface circuit 1333 is used to communicate with other subsystems.
  • the modem subsystem can be implemented by a chip, the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute each step of any method executed by the above terminal device, and the interface circuit is used to communicate with other devices.
  • the unit for the terminal device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the terminal device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the terminal device in the above method embodiment.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program used to execute the method executed by the terminal device in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads a program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal device in the above method embodiment.
  • the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the modem subsystem, where the processing elements may be integrated circuits, For example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the terminal device that implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC), and the SOC chip is used to implement the above method.
  • SOC system-on-a-chip
  • the chip can integrate at least one processing element and a storage element, and the processing element can call the stored program of the storage element to implement the method executed by the above terminal device; or, the chip can integrate at least one integrated circuit to implement the above terminal The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for terminal equipment may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any of the methods performed by the terminal equipment provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the terminal device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps executed by the terminal device are executed in a manner; of course, part or all of the steps executed by the terminal device may also be executed in combination with the first manner and the second manner.
  • the processing element here is the same as that described above, and can be implemented by a processor, and the function of the processing element can be the same as the function of the processing unit described in FIG. 12.
  • the processing element may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more microprocessors DSP , Or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 12.
  • the storage element can be one memory or a collective term for multiple memories.
  • the interface circuit can be implemented by a transceiver, and the transceiver can include a receiver and/or a transmitter, where the receiver is used to implement receiving operations, such as receiving signals, and the transmitter is used to implement sending operations, such as sending signals; the function of the interface circuit can be as follows
  • the functions of the communication units described in FIG. 12 are the same.
  • the terminal device shown in FIG. 13 can implement various processes involving the terminal device in the method embodiment illustrated in FIG. 5 or FIG. 8 or FIG. 9 or FIG. 11.
  • the operations and/or functions of each module in the terminal device shown in FIG. 13 are used to implement the corresponding processes in the foregoing method embodiments.
  • FIG. 14 is a schematic structural diagram of a network device provided by an embodiment of this application. It is used to implement the operation of the network device in the above embodiment.
  • the network equipment includes: an antenna 1401, a radio frequency device 1402, and a baseband device 1403.
  • the antenna 1401 is connected to the radio frequency device 1402.
  • the radio frequency device 1402 receives the information sent by the terminal device through the antenna 1401, and sends the information sent by the terminal device to the baseband device 1403 for processing.
  • the baseband device 1403 processes the information of the terminal device and sends it to the radio frequency device 1402, and the radio frequency device 1402 processes the information of the terminal device and sends it to the terminal device via the antenna 1401.
  • the baseband device 1403 may include one or more processing elements 14031, for example, a main control CPU and other integrated circuits.
  • the baseband device 1403 may also include a storage element 14032 and an interface 14033.
  • the storage element 14032 is used to store programs and data; the interface 14033 is used to exchange information with the radio frequency device 1402.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above apparatus for network equipment may be located in the baseband apparatus 1403.
  • the above apparatus for network equipment may be a chip on the baseband apparatus 1403.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network. For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit of the network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the baseband device.
  • the processing elements here may be integrated circuits, such as one Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the network equipment to implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device includes the SOC chip for implementing the above method.
  • At least one processing element and storage element can be integrated in the chip, and the processing element can call the stored program of the storage element to implement the method executed by the above network device; or, at least one integrated circuit can be integrated in the chip to implement the above network The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of processing elements calling programs, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for a network device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method performed by the network device provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the network device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the network device are executed in the method; of course, part or all of the steps executed by the network device can be executed in combination with the first method and the second method.
  • the processing element here is the same as that described above, and can be implemented by a processor, and the function of the processing element can be the same as the function of the processing unit described in FIG. 12.
  • the processing element may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more microprocessors DSP , Or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be realized by a memory, and the function of the storage element can be the same as the function of the storage unit described in FIG. 12.
  • the storage element can be one memory or a collective term for multiple memories.
  • the interface circuit can be implemented by a transceiver, and the transceiver can include a receiver and/or a transmitter, where the receiver is used to implement receiving operations, such as receiving signals, and the transmitter is used to implement sending operations, such as sending signals; the function of the interface circuit can be as follows
  • the functions of the communication units described in FIG. 12 are the same.
  • the network device shown in FIG. 14 can implement various processes involving the network device in the method embodiment illustrated in FIG. 5 or FIG. 8 or FIG. 9 or FIG. 11.
  • the operations and/or functions of the various modules in the network device shown in FIG. 14 are used to implement the corresponding processes in the foregoing method embodiments.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,其中方法包括:接收来自网络设备的配置信息,配置信息用于配置一个控制资源集合和M个搜索空间,所述控制资源集合与M个搜索空间关联;M个搜索空间中的每个搜索空间和每个搜索空间关联的控制资源集合用于对PDCCH进行一次传输;进而,可以在所述控制资源集合和M个搜索空间对应的时频资源上监听所述第一PDCCH;其中,M为大于1的整数。采用上述方法,通过配置一个控制资源集合和M个搜索空间,实现第一PDCCH的多次重复传输,从而能够在节省配置资源的基础上,提高第一PDCCH的传输可靠性。

Description

一种通信方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种通信方法及装置。
背景技术
通信系统中,网络设备可以向终端设备发送物理下行共享信道(physical downlink sharing channel,PDSCH),而PDSCH一般是通过物理下行控制信道(physical downlink control channel,PDCCH)中承载的控制信息来调度,控制信息例如为下行控制信息(downlink control information,DCI)。因此,为了正确接收PDSCH,终端设备需要先监听PDCCH,并通过监听PDCCH获取PDCCH中承载的DCI,进而获得接收PDSCH所需要的相关信息,例如PDSCH时频资源位置和大小等。
第五代(5th generation,5G)通信系统中引入了多种类型的业务,有些业务的可靠性要求较高,比如高可靠低时延通信(ultra reliable and low latency communications,URLLC)业务,进而用于传输这些业务的PDSCH及对应的PDCCH的传输可靠性要求也较高。
然而,针对于PDCCH来说,如何提高PDCCH的传输可靠性,仍需进一步的研究。
发明内容
本申请提供一种通信方法及装置,用以实现PDCCH的多次重复传输。
第一方面,本申请提供一种通信方法,该方法可以应用于终端设备,或者也可以应用于终端设备内部的芯片。在该方法中,接收来自网络设备的配置信息,配置信息用于配置一个控制资源集合和M个搜索空间,所述控制资源集合与M个搜索空间关联;M个搜索空间中的每个搜索空间和每个搜索空间关联的所述控制资源集合用于对PDCCH进行一次传输;进而,可以在所述控制资源集合和M个搜索空间对应的时频资源上监听所述第一PDCCH;其中,M为大于1的整数。
采用上述方法,通过配置一个控制资源集合和M个搜索空间,实现第一PDCCH的多次重复传输,从而能够在节省配置资源的基础上,提高第一PDCCH的传输可靠性。
在一种可能的设计中,所述控制资源集合符合第一预设条件,和/或,M个搜索空间符合第二预设条件。
如此,终端设备若确定所述控制资源集合符合第一预设条件,和/或,M个搜索空间符合第二预设条件,则可以获知所述控制资源集合和M个搜索空间用于对PDCCH进行M次传输,进而便于后续采用合并译码方法,以节省处理资源。
在一种可能的设计中,所述控制资源集合符合第一预设条件包括以下一项或多项:
所述控制资源集合关联多个搜索空间;
所述控制资源集合对应多个激活的TCI-state;
所述控制资源集合对应的激活的TCI-state的个数等于所述控制资源集合关联的搜索空间的个数;
M个搜索空间符合第二预设条件包括以下一项或多项:
M个搜索空间的周期相同;
M个搜索空间的持续时间相同;
M个搜索空间对应的时域起始位置相同。
在一种可能的设计中,在所述控制资源集合和M个搜索空间对应的时频资源上监听所述第一PDCCH之前,还包括:接收来自网络设备的第一指示信息,所述第一指示信息用于指示所述控制资源集合和M个搜索空间用于对第一PDCCH进行M次传输。
在一种可能的设计中,所述控制资源集合对应的频域资源包括M个频域资源部分,M个频域资源部分与M个搜索空间一一关联;M个搜索空间中的每个搜索空间和每个搜索空间关联的所述控制资源集合用于对第一PDCCH进行一次传输,包括:M个搜索空间中的每个搜索空间和每个搜索空间关联的频域资源部分用于对第一PDCCH进行一次传输。
在一种可能的设计中,所述控制资源集合对应M个激活的TCI-state;在所述控制资源集合和M个搜索空间对应的时频资源上监听所述第一PDCCH,包括:根据M个激活的TCI-state,在所述控制资源集合和M个搜索空间对应的时频资源上接收所述第一PDCCH。
在一种可能的设计中,M个激活的TCI-state与M个搜索空间一一关联。
在一种可能的设计中,若所述控制资源集合对应M个激活的TCI-state,则所述方法还包括:接收来自网络设备的第二指示信息,所述第二指示信息用于指示激活所述控制资源集合对应的M个TCI-state。
在一种可能的设计中,所述第二指示信息包括以下一项或多项:
M个TCI-state的标识;
第一信息,所述第一信息用于指示激活的TCI-state的个数;
第二信息,所述第二信息用于指示激活的TCI-state的个数为多个;
第三信息,所述第三信息用于指示M个TCI-state用于同时传输第一PDCCH或者分时传输第一PDCCH。
在一种可能的设计中,所述控制资源集合和M个搜索空间对应的时频资源包括M组时频资源;其中,M个搜索空间中的每个搜索空间和每个搜索空间关联的控制资源集合对应M组时频资源中的一组时频资源;M组时频资源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资源不同;或者,M组时频资源的频域资源不同且时域资源不同。
第二方面,本申请提供一种通信方法,该方法可以应用于网络设备,或者也可以应用于网络设备内部的芯片。在该方法中,向终端设备发送配置信息,配置信息用于配置一个控制资源集合和M个搜索空间,所述控制资源集合与M个搜索空间关联;M个搜索空间中的每个搜索空间和每个搜索空间关联的所述控制资源集合用于对第一PDCCH进行一次传输;进而,可以在所述控制资源集合和M个搜索空间对应的时频资源上对第一PDCCH进行M次传输;其中,M为大于1的整数。
采用上述方法,通过配置一个控制资源集合和M个搜索空间,实现第一PDCCH的多次重复传输,从而能够在节省配置资源的基础上,提高第一PDCCH的传输可靠性。
在一种可能的设计中,所述控制资源集合符合第一预设条件,和/或,M个搜索空间符合第二预设条件。
在一种可能的设计中,所述控制资源集合符合第一预设条件包括以下一项或多项:
所述控制资源集合关联多个搜索空间;
所述控制资源集合对应多个激活的TCI-state;
所述控制资源集合对应的激活的TCI-state的个数等于所述控制资源集合关联的搜索空间的个数;
M个搜索空间符合第二预设条件包括以下一项或多项:
M个搜索空间的周期相同;
M个搜索空间的持续时间相同;
M个搜索空间的时域起始位置相同。
在一种可能的设计中,在所述控制资源集合和M个搜索空间对应的时频资源上对第一PDCCH进行M次传输之前,还包括:向终端设备发送第一指示信息,所述第一指示信息用于指示所述控制资源集合和M个搜索空间用于对第一PDCCH进行M次传输。
在一种可能的设计中,所述控制资源集合对应的频域资源包括M个频域资源部分,M个频域资源部分与M个搜索空间一一关联;M个搜索空间中的每个搜索空间和每个搜索空间关联的所述控制资源集合用于对第一PDCCH进行一次传输,包括:M个搜索空间中的每个搜索空间和每个搜索空间关联的频域资源部分用于对第一PDCCH进行一次传输。
在一种可能的设计中,所述控制资源集合对应M个激活的TCI-state;在所述控制资源集合和M个搜索空间对应的时频资源上对第一PDCCH进行M次传输,包括:根据M个激活的TCI-state,在所述控制资源集合和M个搜索空间对应的时频资源上对第一PDCCH进行传输。
在一种可能的设计中,M个激活的TCI-state与M个搜索空间一一关联。
在一种可能的设计中,若所述控制资源集合对应M个激活的TCI-state,则所述方法还包括:向终端设备发送第二指示信息,所述第二指示信息用于指示激活所述控制资源集合对应的M个TCI-state。
在一种可能的设计中,所述第二指示信息包括以下一项或多项:
M个TCI-state的标识;
第一信息,所述第一信息用于指示激活的TCI-state的个数;
第二信息,所述第二信息用于指示激活的TCI-state的个数为多个;
第三信息,所述第三信息用于指示M个TCI-state用于同时传输第一PDCCH或者分时传输第一PDCCH。
在一种可能的设计中,所述控制资源集合和M个搜索空间对应的时频资源包括M组时频资源;其中,M个搜索空间中的每个搜索空间和每个搜索空间关联的控制资源集合对应M组时频资源中的一组时频资源;M组时频资源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资源不同;或者,M组时频资源的频域资源不同且时域资源不同。
第三方面,本申请提供一种通信方法,该方法可以应用于终端设备,或者也可以应用于终端设备内部的芯片。在该方法中,接收来自网络设备的配置信息,配置信息用于配置M个控制资源集合和M个搜索空间,M个控制资源集合与M个搜索空间一一关联;M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的搜索空间用于对第一PDCCH进行一次传输;进而,可以在M个控制资源集合和M个搜索空间对应的时频资源上监听第一PDCCH;其中,M为大于1的整数。
采用上述方法,可以沿用已有的配置方式,当需要对第一PDCCH进行一次传输时,可以配置一个控制资源集合和一个搜索空间,当需要对第一PDCCH进行多次(比如M次) 传输时,可以配置M个控制资源集合和M个搜索空间,从而可以在对现有方案改动较小的基础上,实现第一PDCCH的多次重复传输,提高第一PDCCH的传输可靠性。
在一种可能的设计中,M个控制资源集合符合第一预设条件,和/或,M个搜索空间符合第二预设条件。
在一种可能的设计中,M个控制资源集合符合第一预设条件包括:M个控制资源集合对应的频域资源相同,和/或,M个控制资源集合的DMRS加扰标识相同;
M个搜索空间符合第二预设条件包括以下一项或多项:
M个搜索空间的检测周期相同;
M个搜索空间的持续时间相同;
M个搜索空间的时域起始位置相同。
在一种可能的设计中,在M个控制资源集合和M个搜索空间对应的时频资源上监听所述第一PDCCH之前,还包括:接收来自网络设备的第一指示信息,所述第一指示信息用于指示M个控制资源集合和M个搜索空间用于对所述第一PDCCH进行M次传输。
在一种可能的设计中,M个控制资源集合中的每个控制资源集合对应一个激活的TCI-state;在M个控制资源集合和M个搜索空间对应的时频资源上监听所述第一PDCCH,包括:根据M个激活的TCI-state,在M个控制资源集合和M个搜索空间对应的时频资源上接收第一PDCCH。
在一种可能的设计中,M个控制资源集合和M个搜索空间对应的时频资源包括M组时频资源;其中,M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的搜索空间对应M组时频资源中的一组时频资源;M组时频资源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资源不同;或者,M组时频资源的频域资源不同且时域资源不同。
第四方面,本申请提供一种通信方法,该方法可以应用于网络设备,或者也可以应用于网络设备内部的芯片。在该方法中,向终端设备发送配置信息,配置信息用于配置M个控制资源集合和M个搜索空间,M个控制资源集合与M个搜索空间一一关联;M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的搜索空间用于对第一PDCCH进行一次传输;进而,可以在M个控制资源集合和M个搜索空间对应的时频资源上对所述第一PDCCH进行M次传输;其中,M为大于1的整数。
采用上述方法,可以沿用已有的配置方式,当需要对第一PDCCH进行一次传输时,可以配置一个控制资源集合和一个搜索空间,当需要对第一PDCCH进行多次(比如M次)传输时,可以配置M个控制资源集合和M个搜索空间,从而可以在对现有方案改动较小的基础上,实现第一PDCCH的多次重复传输,提高第一PDCCH的传输可靠性。
在一种可能的设计中,M个控制资源集合符合第一预设条件,和/或,M个搜索空间符合第二预设条件。
在一种可能的设计中,M个控制资源集合符合第一预设条件包括:M个控制资源集合对应的频域资源相同,和/或,M个控制资源集合的DMRS加扰标识相同;
M个搜索空间符合第二预设条件包括以下一项或多项:
M个搜索空间的检测周期相同;
M个搜索空间的持续时间相同;
M个搜索空间的时域起始位置相同。
在一种可能的设计中,在M个控制资源集合和M个搜索空间对应的时频资源上对所述第一PDCCH进行M次传输之前,还包括:向终端设备发送第一指示信息,所述第一指示信息用于指示M个控制资源集合和M个搜索空间用于对所述第一PDCCH进行M次传输。
在一种可能的设计中,M个控制资源集合中的每个控制资源集合对应一个激活的TCI-state;在M个控制资源集合和M个搜索空间对应的时频资源上对所述第一PDCCH进行M次传输,包括:根据M个激活的TCI-state,在M个控制资源集合和M个搜索空间对应的时频资源上对所述第一PDCCH进行传输。
在一种可能的设计中,M个控制资源集合和M个搜索空间对应的时频资源包括M组时频资源;其中,M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的搜索空间对应M组时频资源中的一组时频资源;M组时频资源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资源不同;或者,M组时频资源的频域资源不同且时域资源不同。
第五方面,本申请提供一种通信方法,该方法可以应用于终端设备,或者也可以应用于终端设备内部的芯片。在该方法中,接收来自网络设备的配置信息,配置信息用于配置M个控制资源集合和一个搜索空间,M个控制资源集合分别与所述搜索空间关联;M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的所述搜索空间用于对第一PDCCH进行一次传输;进而,在M个控制资源集合和所述搜索空间对应的时频资源上监听所述第一PDCCH;其中,M为大于1的整数。
采用上述方法,通过M个控制资源集合和一个搜索空间,实现第一PDCCH的多次重复传输,从而能够在节省配置资源的基础上,提高第一PDCCH的传输可靠性。
在一种可能的设计中,M个控制资源集合符合第一预设条件,和/或,所述搜索空间符合第二预设条件。
在一种可能的设计中,M个控制资源集合符合第一预设条件包括以下一项或多项:
M个控制资源集合关联的搜索空间相同;
M个控制资源集合对应的频域资源相同;
M个控制资源集合的DMRS加扰标识相同;
所述搜索空间符合第二预设条件包括以下一项或多项:
所述搜索空间关联多个控制资源集合;
所述搜索空间包括多个监听机会;
所述搜索空间包括的监听机会的个数等于所述搜索空间关联的控制资源集合的个数。
在一种可能的设计中,在M个控制资源集合和所述搜索空间对应的时频资源上监听所述第一PDCCH之前,还包括:接收来自网络设备的第一指示信息,所述第一指示信息用于指示M个控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输。
在一种可能的设计中,所述搜索空间包括M个监听机会,M个监听机会与M个控制资源集合一一关联;M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的所述搜索空间用于对第一PDCCH进行一次传输,包括:M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的监听机会用于对第一PDCCH进行一次传输。
在一种可能的设计中,M个控制资源集合中的每个控制资源集合对应一个激活的TCI-state;在M个控制资源集合和所述搜索空间对应的时频资源上监听所述第一PDCCH, 包括:根据M个激活的TCI-state,在M个控制资源集合和所述搜索空间对应的时频资源上接收所述第一PDCCH。
在一种可能的设计中,M个控制资源集合和所述搜索空间对应的时频资源包括M组时频资源;其中,M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的所述搜索空间对应M组时频资源中的一组时频资源;M组时频资源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资源不同;或者,M组时频资源的频域资源不同且时域资源不同。
第六方面,本申请提供一种通信方法,该方法可以应用于网络设备,或者也可以应用于网络设备内部的芯片。在该方法中,向终端设备发送配置信息,配置信息用于配置M个控制资源集合和一个搜索空间,M个控制资源集合分别与所述搜索空间关联;M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的所述搜索空间用于对第一PDCCH进行一次传输;进而,可以在M个控制资源集合和所述搜索空间对应的时频资源上对所述第一PDCCH进行M次传输;其中,M为大于1的整数。
采用上述方法,通过M个控制资源集合和一个搜索空间,实现第一PDCCH的多次重复传输,从而能够在节省配置资源的基础上,提高第一PDCCH的传输可靠性。
在一种可能的设计中,M个控制资源集合符合第一预设条件,和/或,所述搜索空间符合第二预设条件。
在一种可能的设计中,M个控制资源集合符合第一预设条件包括以下一项或多项:
M个控制资源集合关联的搜索空间相同;
M个控制资源集合对应的频域资源相同;
M个控制资源集合的DMRS加扰标识相同;
所述搜索空间符合第二预设条件包括以下一项或多项:
所述搜索空间关联多个控制资源集合;
所述搜索空间包括多个监听机会;
所述搜索空间包括的监听机会的个数等于所述搜索空间关联的控制资源集合的个数。
在一种可能的设计中,在M个控制资源集合和所述搜索空间对应的时频资源上对第一PDCCH进行M次传输之前,还包括:向终端设备发送第一指示信息,所述第一指示信息用于指示M个控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输。
在一种可能的设计中,所述搜索空间包括M个监听机会,M个监听机会与M个控制资源集合一一关联;M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的所述搜索空间用于对第一PDCCH进行一次传输,包括:M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的监听机会用于对第一PDCCH进行一次传输。
在一种可能的设计中,M个控制资源集合中的每个控制资源集合对应一个激活的TCI-state;在M个控制资源集合和所述搜索空间对应的时频资源上对第一PDCCH进行M次传输,包括:根据M个激活的TCI-state,在M个控制资源集合和所述搜索空间对应的时频资源上对所述第一PDCCH进行传输。
在一种可能的设计中,M个控制资源集合和所述搜索空间对应的时频资源包括M组时频资源;其中,M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的所述搜索空间对应M组时频资源中的一组时频资源;M组时频资源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资 源不同;或者,M组时频资源的频域资源不同且时域资源不同。
第七方面,本申请提供一种通信方法,该方法可以应用于终端设备,或者也可以应用于终端设备内部的芯片。在该方法中,接收来自网络设备的配置信息,配置信息用于配置一个控制资源集合和一个搜索空间,所述控制资源集合与所述搜索空间关联;所述控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输;进而,可以在所述控制资源集合和所述搜索空间对应的时频资源上监听所述第一PDCCH。
采用上述方法,通过配置一个控制资源集合和一个搜索空间,实现第一PDCCH的多次重复传输,从而能够在节省配置资源的基础上,提高第一PDCCH的传输可靠性。
在一种可能的设计中,所述控制资源集合符合第一预设条件,和/或,所述搜索空间符合第二预设条件。
在一种可能的设计中,所述控制资源集合符合第一预设条件包括:所述控制资源集合对应多个激活的TCI-state;或,所述控制资源集合对应多个激活的TCI-state,且所述控制资源集合对应的激活的TCI-state的个数等于所述搜索空间包括的监听机会的个数;所述搜索空间符合第二预设条件包括:所述搜索空间包括多个监听机会;或,所述搜索空间包括的监听机会的个数等于所述控制资源集合对应的激活的TCI-state的个数。
在一种可能的设计中,在所述控制资源集合和所述搜索空间对应的时频资源上监听所述第一PDCCH之前,还包括:接收来自网络设备的第一指示信息,所述第一指示信息用于指示所述控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输。
在一种可能的设计中,所述搜索空间包括M个监听机会,M个监听机会分别与所述控制资源集合关联;所述控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输,包括:M个监听机会中的每个监听机会和每个监听机会关联的所述控制资源集合用于对第一PDCCH进行一次传输。
在一种可能的设计中,所述控制资源集合对应的频域资源包括M个频域资源部分,M个频域资源部分分别与所述搜索空间关联;所述控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输,包括:M个频域资源部分中的每个频域资源部分和每个频域资源部分关联的搜索空间用于对第一PDCCH进行一次传输。
在一种可能的设计中,所述控制资源集合对应M个激活的TCI-state;在所述控制资源集合和所述搜索空间对应的时频资源上监听所述第一PDCCH,包括:根据M个激活的TCI-state,在所述控制资源集合和所述搜索空间对应的时频资源上接收所述第一PDCCH。
在一种可能的设计中,若所述控制资源集合对应M个激活的TCI-state,则所述方法还包括:接收来自网络设备的第二指示信息,所述第二指示信息用于指示激活所述控制资源集合对应的M个TCI-state。
在一种可能的设计中,所述第二指示信息包括以下一项或多项:
M个TCI-state的标识;
第一信息,所述第一信息用于指示激活的TCI-state的个数;
第二信息,所述第二信息用于指示激活的TCI-state的个数为多个;
第三信息,所述第三信息用于指示M个TCI-state用于同时传输第一PDCCH或者分时传输第一PDCCH。
在一种可能的设计中,所述控制资源集合和所述搜索空间对应的时频资源包括M组时频资源,M组时频资源中的每组时频资源用于对第一PDCCH进行一次传输;M组时频资 源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资源不同;或者,M组时频资源的频域资源不同且时域资源不同。
第八方面,本申请提供一种通信方法,该方法可以应用于网络设备,或者也可以应用于网络设备内部的芯片。在该方法中,向终端设备发送配置信息,配置信息用于配置一个控制资源集合和一个搜索空间,所述控制资源集合与所述搜索空间关联;进而,可以在所述控制资源集合和所述搜索空间对应的时频资源上对第一PDCCH进行M次传输。
采用上述方法,通过配置一个控制资源集合和一个搜索空间,实现第一PDCCH的多次重复传输,从而能够在节省配置资源的基础上,提高第一PDCCH的传输可靠性。
在一种可能的设计中,所述控制资源集合符合第一预设条件,和/或,所述搜索空间符合第二预设条件。
在一种可能的设计中,所述控制资源集合符合第一预设条件包括:所述控制资源集合对应多个激活的TCI-state;或,所述控制资源集合对应多个激活的TCI-state,且所述控制资源集合对应的激活的TCI-state的个数等于所述搜索空间包括的监听机会的个数;所述搜索空间符合第二预设条件包括:所述搜索空间包括多个监听机会;或,所述搜索空间包括多个监听机会,且所述搜索空间包括的监听机会的个数等于所述控制资源集合对应的激活的TCI-state的个数。
在一种可能的设计中,在所述控制资源集合和所述搜索空间对应的时频资源上对第一PDCCH进行M次传输之前,还包括:向终端设备发送第一指示信息,所述第一指示信息用于指示所述控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输。
在一种可能的设计中,所述搜索空间包括M个监听机会,M个监听机会分别与所述控制资源集合关联;M个监听机会中的每个监听机会和每个监听机会关联的所述控制资源集合用于对第一PDCCH进行一次传输。
在一种可能的设计中,所述控制资源集合对应的频域资源包括M个频域资源部分,M个频域资源部分分别与所述搜索空间关联;M个频域资源部分中的每个频域资源部分和每个频域资源部分关联的搜索空间用于对第一PDCCH进行一次传输。
在一种可能的设计中,所述控制资源集合对应M个激活的TCI-state;在所述控制资源集合和所述搜索空间对应的时频资源上对第一PDCCH进行M次传输,包括:根据M个激活的TCI-state,在所述控制资源集合和所述搜索空间对应的时频资源上传输所述第一PDCCH。
在一种可能的设计中,若所述控制资源集合对应M个激活的TCI-state,则所述方法还包括:向终端设备发送第二指示信息,所述第二指示信息用于指示激活所述控制资源集合对应的M个TCI-state。
在一种可能的设计中,所述第二指示信息包括以下一项或多项:
M个TCI-state的标识;
第一信息,所述第一信息用于指示激活的TCI-state的个数;
第二信息,所述第二信息用于指示激活的TCI-state的个数为多个;
第三信息,所述第三信息用于指示M个TCI-state用于同时传输第一PDCCH或者分时传输第一PDCCH。
在一种可能的设计中,所述控制资源集合和所述搜索空间对应的时频资源包括M组时频资源,M组时频资源中的每组时频资源用于对第一PDCCH进行一次传输;M组时频资 源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资源不同;或者,M组时频资源的频域资源不同且时域资源不同。
第九方面,本申请提供一种通信装置,所述通信装置可以为终端设备或者设置在终端设备内部的芯片。所述通信装置具备实现上述第一方面或第三方面或第五方面或第七方面的功能,比如,所述通信装置包括执行上述第一方面或第三方面或第五方面或第七方面涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于接收来自网络设备的配置信息;处理单元可以用于执行该通信装置的一些内部操作,比如对通信单元接收到的信号进行单独译码或合并译码。处理单元、通信单元执行的功能可以和上述第一方面或第三方面或第五方面或第七方面涉及的步骤相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述第一方面或第三方面或第五方面或第七方面中任意可能的设计或实现方式中由终端设备执行的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。存储器可以保存实现上述第一方面或第三方面或第五方面或第七方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第三方面或第五方面或第七方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面或第三方面或第五方面或第七方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第三方面或第五方面或第七方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括至少一个处理器和接口电路,其中,至少一个处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面或第三方面或第五方面或第七方面任意可能的设计或实现方式中由终端设备执行的方法。
第十方面,本申请提供一种通信装置,所述通信装置可以为网络设备或者设置在网络设备内部的芯片。所述通信装置具备实现上述第二方面或第四方面或第六方面或第八方面涉及的功能,比如,所述通信装置包括执行上述第二方面或第四方面或第六方面或第八方面涉及步骤所对应的模块或单元或手段,所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于向终端设备发送配置信息;处理单元可以用于执行该通信装置的一些内部操作,比如生成上述配置信息。处理单元、通信单元执行的功能可以和上述第二方面或第四方面或第六方面或第八方面涉及的的步骤相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用 于收发信号,所述处理器执行程序指令,以完成上述第二方面或第四方面或第六方面或第八方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。存储器可以保存实现上述第二方面或第四方面或第六方面或第八方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第二方面或第四方面或第六方面或第八方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第二方面或第四方面或第六方面或第八方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第二方面或第四方面或第六方面或第八方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括至少一个处理器和接口电路,其中,至少一个处理器用于通过所述接口电路与其它装置通信,并执行上述第二方面或第四方面或第六方面或第八方面任意可能的设计或实现方式中的方法。
第十一方面,本申请提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面至第八方面的任一种可能的设计中的方法。
第十二方面,本申请提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面至第八方面的任一种可能的设计中的方法。
第十三方面,本申请提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面至第八方面的任一种可能的设计中的方法。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例适用的一种网络架构示意图;
图2为本申请实施例适用的又一种网络架构示意图;
图3为本申请实施例适用的又一种网络架构示意图;
图4a为本申请实施例提供的下行时频资源网格示意图;
图4b为本申请实施例提供的一种搜索空间的参数示例;
图5为本申请实施例一提供的通信方法所对应的流程示意图;
图6a为本申请实施例提供的第一PDCCH的重复传输的一种示意图;
图6b为本申请实施例提供的第一PDCCH的重复传输的又一种示意图;
图6c为本申请实施例提供的第一PDCCH的重复传输的又一种示意图;
图6d为本申请实施例提供的第一PDCCH的重复传输的又一种示意图;
图6e为本申请实施例提供的第一PDCCH的重复传输的又一种示意图;
图7为本申请实施例提供的终端设备的盲检测示意图;
图8为本申请实施例二提供的通信方法所对应的流程示意图;
图9为本申请实施例三提供的通信方法所对应的流程示意图;
图10a为本申请实施例提供的MAC CE的一种格式示意图;
图10b为本申请实施例提供的MAC CE示例;
图11为本申请实施例四提供的通信方法所对应的流程示意图;
图12为本申请实施例中所涉及的装置的可能的示例性框图;
图13为本申请实施例提供的一种终端设备的结构示意图;
图14为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
首先,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)终端设备:可以是能够接收网络设备调度和指示信息的无线终端设备,无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。终端设备可以经无线接入网(如,radio access network,RAN)与一个或多个核心网或者互联网进行通信,终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户站(subscriber station,SS)、用户端设备(customer premises equipment,CPE)、终端(terminal)、用户设备(user equipment,UE)、移动终端(mobile terminal,MT)等。终端设备也可以是可穿戴设备以及下一代通信系统,例如,5G通信系统中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。
(2)网络设备:是无线网络中的设备,例如网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN设备的举例为:5G通信系统中的新一代基站(generation Node B,gNodeB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。另外,在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。此外,在其它可能的情况下,网络设备可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对网络设备所采用 的具体技术和具体设备形态不做限定。为方便描述,本申请实施例中,为终端设备提供无线通信功能的装置称为网络设备。
(3)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。
以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信息和第二信息,只是为了区分不同的信息,而并不是表示这两种信息的优先级或者重要程度等的不同。
图1为本申请实施例适用的一种网络架构示意图。如图1所示,终端设备130可接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它设备通信,如可以与其它终端设备通信。该无线网络包括无线接入网(radio access network,RAN)设备110和核心网(core network,CN)设备120,其中RAN设备110用于将终端设备130接入到无线网络,CN设备120用于对终端设备进行管理并提供与外网通信的网关。应理解,图1所示的通信系统中各个设备的数量仅作为示意,本申请实施例并不限于此,实际应用中在通信系统中还可以包括更多的终端设备130、更多的RAN设备110,还可以包括其它设备。
CN中可以包括多个CN设备120,当图1所示的网络架构适用于5G通信系统时,CN设备120可以为接入和移动性管理功能(access and mobility management function,AMF)实体、会话管理功能(session management function,SMF)实体或用户面功能(user plane function,UPF)实体等,当图1所示的网络架构适用于长期演进(long term evolution,LTE)通信系统时,CN设备120可以为移动性管理实体(mobility management entity,MME)和服务网关(serving gateway,S-GW)等。
图2为本申请实施例适用的又一种网络架构示意图。如图2所示,该网络架构包括CN设备、RAN设备和终端设备。其中,RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成在基带装置中,或者部分拉远部分集成在基带装置中。例如,在LTE通信系统中,RAN设备(eNB)包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置,例如射频拉远单元(remote radio unit,RRU)相对于BBU拉远布置。
RAN设备和终端设备之间的通信遵循一定的协议层结构,例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层等协议层的功能;用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种可能的实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
RAN设备可以由一个节点实现RRC、PDCP、RLC和MAC等协议层的功能,或者可以由多个节点实现这些协议层的功能。例如,在一种演进结构中,RAN设备可以包括CU)和DU,多个DU可以由一个CU集中控制。如图2所示,CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
图3为本申请实施例适用的又一种网络架构示意图。相对于图2所示的网络架构,图3中还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面(control plane,CP)CU实体(即CU-CP实体)和用户面(user plane,UP)CU实体(即CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端设备,或者终端设备产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端设备或CU。以下实施例中如果涉及这种信令在DU和终端设备之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为PHY层的信令发送给终端设备,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频装载发送的。
上述图1、图2或图3所示意的网络架构可以适用于各种无线接入技术(radio access technology,RAT)的通信系统中,例如可以是LTE通信系统,也可以是5G(或者称为新无线(new radio,NR))通信系统,也可以是LTE通信系统与5G通信系统之间的过渡系统,该过渡系统也可以称为4.5G通信系统,当然也可以是未来的通信系统。本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。本申请以下实施例中的装置,根据其实现的功能,可以位于终端设备或网络设备。当采用以上CU-DU的结构时,网络设备可以为CU或DU或包括CU和DU的RAN设备。
以上述图1、图2或图3所示意的网络架构适用于5G通信系统为例,5G通信系统将会采用相对于LTE更高的载波频率(一般地,大于6GHz以上),比如28GHz、38GHz、或者72GHz频段等,来实现更大带宽、更高传输速率的无线通信。由于载波频率较高,使得其发射的无线信号在空间传播过程中经历更加严重的衰落,甚至在接收端难以检测出该无线信号。为此,5G通信系统中将采用波束赋形(beamforming,BF)技术来获得具有良 好方向性的波束,以提升天线增益,提高在发射方向上的功率,改善接收端的信干噪比(signal to interference plus noise ratio,SINR)。
示例性地,在5G通信系统中,网络设备可以向终端设备发送配置信息,配置信息用于配置控制资源集合(control-resource set,CORESET)和该控制资源集合关联的搜索空间(search space),搜索空间也可以称为搜索空间集合(search space set);进而根据在控制资源集合和该控制资源集合关联的搜索空间对应的时频资源上向终端设备发送下行控制信道;相应地,终端设备接收到配置信息后,可以在控制资源集合和该控制资源集合关联的搜索空间对应的时频资源上监听下行控制信道。其中,下行控制信道可以为PDCCH,或者增强的物理下行控制信道(enhanced physical downlink control channel,ePDCCH),又或者其他的下行控制信道,具体不做限制。本申请实施例中将主要以下行控制信道为PDCCH为例进行描述。
下面对PDCCH所涉及的相关技术特征进行介绍。
(1)时频资源:以5G通信系统为例,频域上被划分为独立的子载波,子载波间隔(subcarrier spacing,SCS)可以根据子载波间隔参数u确定,例如常见的子载波间隔为15KHz或30KHz等。上/下行频域资源的单位是资源块(resource block,RB),每个RB由频域上12个连续的子载波组成。参见图4a所示,为下行时频资源网格。图4a中的
Figure PCTCN2019114876-appb-000001
表示一次下行调度的资源块(resource block,RB)的个数,一个RB在频域上包括12个连续的子载波,资源网格上的每个元素称为一个资源元素(resource element,RE),RE为最小的物理资源,包含一个时域符号内的一个子载波。上行时频资源的网格与下行是类似的。其中,时域符号也可以简称为符号,包含但不限于正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、单载波频分多址(single carrier frequency division multiple access,SC-FDMA)符号。
(2)波束(beam):高频通信的一个主要问题是信号能量随传输距离急剧下降,导致信号传输距离短。为了克服这个问题,高频通信采用模拟波束技术,通过大规模天线阵列进行加权处理,将信号能量集中在一个较小的范围内,形成一个类似于光束一样的信号(称为模拟波束,简称波束),从而提高传输距离。
波束是一种通信资源,波束可以是宽波束,也可为窄波束,或其它类型的波束。形成波束的技术可以是波束成形技术或其它技术手段。波束成形技术可具体为数字波束成形技术、模拟波束成形技术、混合数字/模拟波束成形技术等。不同的波束可认为是不同的通信资源,通过不同的波束可发送相同的信息或不同的信息。可选的,可以将具有相同或者类似通信特征的多个波束视为一个波束,一个波束可包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集,波束还可以称为空域滤波器(spatial domain filter)或空间滤波器(spatial filter)或空间参数(spatial parameter)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),还可以称为空域发送滤波器(spatial domain transmission filter)或空间发射参数(spatial transmission parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),还可以称为空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RX parameter)。发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
在目前的NR协议中,波束可通过天线端口准共址(quasi colocation,QCL)关系体现。具体地,两个同波束的信号具有关于空域接收参数(spatial Rx parameter)的QCL关系,即协议中的QCL-Type D:{Spatial Rx parameter}。波束在协议中具体地可以通过各种信号的标识来表示,例如信道状态信息参考信号(channel state information reference signal,CSI-RS)的资源索引,同步信号广播信道块(synchronous signal/physical broadcast channel block,SS/PBCH block,也可以简称为SSB)的索引,探测参考信号(sounding reference signal,SRS)的资源索引,跟踪参考信号(tracking reference signal,TRS)的资源索引。
本申请实施例中,发送波束的相关信息可以通过传输配置编号状态(transmission configuration index state,TCI-state)来指示,比如当终端设备知道网络设备是采用哪个TCI-state发送信道或信号(比如PDCCH)时,便可知道网络设备采用的是哪个发送波束发送PDCCH,从而可以确定应该采用哪个接收波束来接收PDCCH。示例性地,TCI-state中可以包括一个参考信号的资源索引(例如,资源#1),表示采用该TCI-state进行传输的信道或信号与资源#1具有相同的接收波束,从而终端设备会采用资源#1的接收波束来接收该信道或信号(终端设备提前已经知道资源#1的接收波束)。
(3)配置信息:也可以称为PDCCH配置信息,用于配置PDCCH传输的相关参数,比如用于配置控制资源集合和搜索空间。每个搜索空间关联一个控制资源集合,两者联合起来对应一个PDCCH,即终端设备根据一个搜索空间和其关联的控制资源集合的配置来进行一个PDCCH的接收。如果还要接收其它PDCCH,则网络设备可以配置其它PDCCH对应的控制资源集合和搜索空间。
(4)控制资源集合:PDCCH是在控制资源集合对应的频域资源上传输,控制资源集合对应的频域资源可以包括多个RB。一个控制资源集合可以配置有一个或多个TCI-state。控制资源集合对应的PDCCH可以采用为该控制资源集合配置的一个或多个TCI-state中的一个TCI-state来进行传输,具体采用哪一个TCI-state可以是通过网络设备发送的信令来进行激活。也就是说,虽然网络设备为一个控制资源集合配置了多个TCI-state,但这些TCI-state是没有激活的(没有生效的),只有通过信令激活后才能生效。
如下为控制资源集合的配置信息格式示意:
Figure PCTCN2019114876-appb-000002
Figure PCTCN2019114876-appb-000003
(5)搜索空间:搜索空间可以配置有一些时域信息,比如:检测周期(即检测搜索空间的时间间隔,单位可以为时隙);时隙偏移(即检测周期开始到实际检测搜索空间之间的时隙偏移量,且该时隙偏移量小于检测周期的取值);第二持续时间(即连续检测搜索空间的时间,可以包括多个时隙,且包括的时隙数量小于检测周期的取值);时域起始位置(即每个时隙内,搜索空间关联的控制资源集合对应的时域起始位置)。为了方便理解,以具体例子介绍各参数的含义。如图4b所示,其中,检测周期为10个时隙,时隙偏移为3个时隙,第二持续时间为2个时隙,时域起始位置为一个时隙内的符号0和符号7,搜索空间关联的控制资源集合的第一持续时间为2个符号。在这个示例中,终端设备可以在每10个时隙的检测周期内的时隙3和时隙4内的符号0、符号1以及符号7、符号8上检测PDCCH。
如下为搜索空间的配置信息格式示意:
Figure PCTCN2019114876-appb-000004
示例性地,多个搜索空间可以关联同一个控制资源集合,等效于该控制资源集合关联多个搜索空间。搜索空间可以对应一个或多个监听机会(monitor occasion,MO),具体可以通过monitoringSymbolsWithinSlot参数来指示。monitoringSymbolsWithinSlot参数是一个14比特的位图(bitmap),每个比特对应一个OFDM符号,比特值为1表示该比特对应的OFDM符号是一个监听机会的第一个OFDM符号,即从该OFDM符号开始往后连续X个OFDM符号对应一个监听机会。X是控制资源集合中的duration参数指示的,表示一个监听机会所占的符号数。例如,monitoringSymbolsWithinSlot的值为10000100000000,关联的控制资源集合中的duration的值为3,则该搜索空间有两个监听机会,第一个监听机会位于第1~3个OFDM符号,第二个监听机会位于第6~8个OFDM符号。
根据上述介绍可知,目前的PDCCH传输方案中,一个PDCCH对应于一个控制资源集合和一个搜索空间集合,该PDCCH可以在该控制资源集合和该搜索空间对应的时频资源上进行一次传输。然而,由于5G通信系统中引入了URLLC业务,为了保证传输的可靠性,用于传输URLLC业务的PDSCH及对应的PDCCH需要进行多次重复传输。
基于此,本申请实施例提供一种通信方法及装置,用于实现PDCCH的多次重复传输,以提高PDCCH的传输可靠性。
在下文的介绍过程中,以本申请实施例所提供的方法应用于图1所示的系统架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装 置,其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片或芯片系统。第二通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片或芯片系统。为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例,也就是,以第一通信装置是网络设备、第二通信装置是终端设备为例。如果将本实施例应用在图1所示的系统架构,下文中所述的网络设备(比如用于执行图5所示实施例的网络设备)可以是图1所示的系统架构中的网络设备,下文中所述的终端设备(比如用于执行图5所示实施例的终端设备)可以是图1所示的系统架构中的终端设备。需要说明的是,本申请实施例提供的方法可以适用于单个网络设备向单个或多个终端设备传输数据或控制信令的场景,也可以适用于多个网络设备同时向单个终端设备传输数据或控制信令的场景。
示例性地,本申请实施例提供的通信方法可以包括四种可能的方案,为便于描述,称为方案一、方案二、方案三和方案四。
在方案一中,网络设备可以为终端设备配置M个控制资源集合和M个搜索空间,M个控制资源集合与M个搜索空间一一关联,M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的搜索空间用于对第一PDCCH进行一次传输;进而网络设备可以在M个控制资源集合和M个搜索空间对应的时频资源上对第一PDCCH进行M次传输。采用该种方法,网络设备可以沿用已有的配置方式,当需要对第一PDCCH进行一次传输时,可以配置一个控制资源集合和一个搜索空间,当需要对第一PDCCH进行多次(比如M次)传输时,可以配置M个控制资源集合和M个搜索空间,从而可以在对现有方案改动较小的基础上,实现第一PDCCH的多次重复传输,提高第一PDCCH的传输可靠性。
在方案二中,网络设备可以为终端设备配置M个控制资源集合和一个搜索空间,M个控制资源集合分别与上述搜索空间关联;M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的上述搜索空间用于对第一PDCCH进行一次传输;进而网络设备可以在M个控制资源集合和上述搜索空间对应的时频资源上对第一PDCCH进行M次传输。采用上述方法,网络设备确定需要对第一PDCCH进行M次传输时,可以配置M个控制资源集合和一个搜索空间,从而能够在节省配置资源的基础上,实现第一PDCCH的多次重复传输,提高第一PDCCH的传输可靠性。
在方案三中,网络设备为终端设备配置一个控制资源集合和M个搜索空间,控制资源集合与M个搜索空间关联;进而网络设备在一个控制资源集合和M个搜索空间对应的时频资源上对第一PDCCH进行M次传输。采用上述方法,网络设备确定需要对第一PDCCH进行M次传输时,可以配置一个控制资源集合和M个搜索空间,从而能够在节省配置资源的基础上,实现第一PDCCH的多次重复传输,提高第一PDCCH的传输可靠性。
在方案四中,网络设备为终端设备配置一个控制资源集合和一个搜索空间,进而网络设备在控制资源集合和搜索空间对应的时频资源上对第一PDCCH进行M次传输。采用上述方法,网络设备确定需要对第一PDCCH进行M次传输时,可以配置一个控制资源集合和一个搜索空间,从而能够在节省配置资源的基础上,实现第一PDCCH的多次重复传输,提高第一PDCCH的传输可靠性。
需要说明的是,本申请实施例中,对第一PDCCH进行多次传输,比如进行M次传输,可以是同时进行M次传输,例如同时采用多个TCI-state和/或多个DMRS端口和/或多组 不同的频域资源同时进行M次传输;或者也可以是分时进行M次传输,例如采用多个TCI-state和/或多个DMRS端口和/或多组不同的时域资源分时进行M次传输。也就是说,对第一PDCCH进行M次传输,可以理解为,传输M个第一PDCCH,M个第一PDCCH可以是同时传输的,或者也可以是分时传输的。M个第一PDCCH可以是用于调度同一个PDSCH的PDCCH。所述PDSCH可以只传输一次,也可以重复传输多次,各次传输可以对应同一个TB(transport block,传输块)的同一个冗余版本(redundant version,RV)或不同的冗余版本,或者也可以对应不同的TB。M个第一PDCCH携带的内容可以是完全相同的,例如携带的DCI的内容完全相同。或者,M个第一PDCCH携带的内容也可以是不完全相同的,例如PDSCH也进行M次传输时,M个第一PDCCH与M个PDSCH一一对应,每个第一PDCCH携带对应的PDSCH的相关传输参数。由于PDSCH的M次传输的传输参数有一些区别,因此对应的第一PDCCH携带的内容会有一些区别,并不完全相同。
下面结合实施例一至实施例四对本申请实施例提供的通信方法进行详细介绍。
实施例一
在实施例一中,将基于上述方案一描述通信方法的一种可能的实现。
图5为本申请实施例一提供的通信方法所对应的流程示意图,如图5所示,包括:
步骤501,网络设备向终端设备发送配置信息,配置信息用于配置M个控制资源集合和M个搜索空间,M个控制资源集合与M个搜索空间一一关联,M为大于1的整数。
此处,M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的搜索空间可以用于对第一PDCCH进行一次传输,进而M个控制资源集合和M个控制资源集合关联的搜索空间可以用于对第一PDCCH进行M次传输。
相应地,在步骤502中,终端设备接收来自网络设备的配置信息。
本申请实施例中,终端设备接收到网络设备的配置信息后,可以确定M个控制资源集合与M个搜索空间是否用于对第一PDCCH进行M次传输;此处的“确定”也可以理解为“获知”或“知晓”,属于终端设备的内部实现。示例性地,终端设备确定M个控制资源集合与M个搜索空间用于对第一PDCCH进行M次传输的实现方式可以有多种,下面描述两种可能的实现方式,分别为实现方式a1和实现方式a2。示例性地,具体采用哪一种实现方式可以通过RRC、MAC CE或DCI信令来指示。
实现方式a1
终端设备根据配置信息,若确定M个控制资源集合符合预设条件1,和/或,M个搜索空间符合预设条件2,则可以确定M个控制资源集合与M个搜索空间用于对第一PDCCH进行M次传输。
其中,M个控制资源集合符合预设条件1可以包括M个控制资源集合中的一个或多个参数相同。比如,M个控制资源集合符合预设条件1可以包括以下一项或多项:
①M个控制资源集合对应的频域资源相同。比如M个控制资源集合中包括控制资源集合1,以控制资源集合1为例,控制资源集合1的频域资源可以通过一个比特位图来指示,比特位图中的每个比特对应一段连续的频域资源,比如可以为连续6个RB。示例性地,参见上文中所示意的控制资源集合的配置信息格式,控制资源集合对应的频域资源可以通过frequencyDomainResources参数来配置。M个控制资源集合对应的频域资源相同,可以理解 为,M个控制资源集合的frequencyDomainResources参数为相同的值。
②M个控制资源集合对应的频域资源数量相同。以控制资源集合1为例,当控制资源集合1的频域资源通过一个比特位图来指示时,控制资源集合1对应的频域资源数量可以为比特位图中取值为1的比特个数,比如可以为控制资源集合1的frequencyDomainResources参数中取值为1的比特个数。M个控制资源集合对应的频域资源数量相同,可以理解为,M个控制资源集合的frequencyDomainResources参数中取值为1的比特个数相同。
③M个控制资源集合的第一持续时间相同。以控制资源集合1为例,控制资源集合1的第一持续时间可以为控制资源集合1对应的时域上所占的连续符号个数。示例性地,参见上文中所示意的控制资源集合的配置信息格式,第一持续时间可以通过duration参数来配置。M个控制资源集合的第一持续时间相同,可以理解为,M个控制资源集合的duration参数为相同的值。
④M个控制资源集合的控制信道单元(control-channel element,CCE)-资源单元组(resource-element group,REG)映射方式相同。以控制资源集合1为例,控制资源集合1的CCE-REG映射方式可以为交织或非交织。示例性地,参见上文中所示意的控制资源集合的配置信息格式,CCE-REG映射方式可以通过cce-REG-MappingType参数来配置。M个控制资源集合的CCE-REG映射方式相同,可以理解为,M个控制资源集合的cce-REG-MappingType参数为相同的值。
⑤M个控制资源集合的预编码粒度相同。示例性地,参见上文中所示意的控制资源集合的配置信息格式,预编码粒度可以通过precoderGranularity参数来配置。M个控制资源集合的预编码粒度相同,可以理解为,M个控制资源集合的precoderGranularity参数为相同的值。
⑥M个控制资源集合的tci-PresentInDCI参数相同。
⑦M个控制资源集合的解调参考信号(demodulation reference signal,DMRS)加扰标识相同。示例性地,参见上文中所示意的控制资源集合的配置信息格式,DMRS加扰标识可以通过pdcch-DMRS-ScramblingID参数来配置。M个控制资源集合的DMRS加扰标识相同,可以理解为,M个控制资源集合的pdcch-DMRS-ScramblingID参数为相同的值。在一个示例中,DMRS加扰标识可以为DMRS加扰索引。
需要说明的是,上述是针对M个控制资源集合符合预设条件1所包括的一些可能的情形进行描述,在其它可能的示例下,还可以包括其它可能的情形,具体不做限定。
M个搜索空间符合预设条件2可以包括M个搜索空间中的一个或多个参数相同。比如,M个搜索空间符合预设条件2可以包括以下一项或多项:
①M个搜索空间的检测周期相同。
②M个搜索空间的时隙偏移相同。
示例性地,参见上文中所示意的搜索空间的配置信息格式,检测周期和时隙偏移可以通过monitoringSlotPeriodicityandoffset参数来配置;其中,monitoringSlotPeriodicity对应检测周期,offset对应时隙偏移。比如,M个搜索空间的检测周期和时隙偏移相同,可以理解为,M个搜索空间的monitoringSlotPeriodicityandoffset参数为相同的值。需要说明的是,在其它示例中,也可以通过配置M个搜索空间的monitoringSlotPeriodicityandoffset参数,使得M个搜索空间的检测周期相同但时隙偏移不同。
③M个搜索空间的第二持续时间相同。比如M个搜索空间可以包括搜索空间1,以搜索 空间1为例,搜索空间1的第二持续时间可以理解为在一个检测周期内连续检测搜索空间的时间,或者说,搜索空间1在一个检测周期内重复出现的次数。示例性地,参见上文中所示意的搜索空间的配置信息格式,第二持续时间可以通过duration参数来配置。M个搜索空间的第二持续时间相同,可以理解为,M个搜索空间的duration参数为相同的值。
④M个搜索空间的时域起始位置相同。示例性地,参见上文中所示意的搜索空间的配置信息格式,时域起始位置可以通过monitoringSymbolsWithinSlot参数来配置。M个搜索空间的时域起始位置相同,可以理解为,M个搜索空间的monitoringSymbolsWithinSlot参数为相同的值。
⑤M个搜索空间的盲检次数相同。示例性地,参见上文中所示意的搜索空间的配置信息格式,盲检次数可以通过nrofCandidates参数来配置。M个搜索空间的盲检次数相同,可以理解为,M个搜索空间的nrofCandidates参数为相同的值。
⑥M个搜索空间的类型相同。示例性地,参见上文中所示意的搜索空间的配置信息格式,搜索空间的类型可以通过searchSpaceType参数来配置。M个搜索空间的类型相同,可以理解为,M个搜索空间的searchSpaceType参数为相同的值。
需要说明的是,上述是针对M个搜索空间符合预设条件2所包括的一些可能的情形进行描述,在其它可能的示例下,还可以包括其它可能的情形,具体不做限定。
实现方式a2
终端设备若接收到来自网络设备的第一指示信息,第一指示信息指示M个控制资源集合和M个搜索空间用于对第一PDCCH进行M次传输,则可以确定M个控制资源集合和M个搜索空间用于对第一PDCCH进行M次传输。示例性地,终端设备接收来自网络设备的第一指示信息的方式可以有多种,比如,第一指示信息可以携带在RRC信令,MAC CE信令或DCI信令中。第一指示信息的具体体现形式也可以有多种。
在一种可能的实现方式中,第一指示信息可以指示M个控制资源集合之间的关联关系。例如,在一个控制资源集合中指示其它控制资源集合的信息,如索引,表示该控制资源集合与所述其它控制资源集合是关联的。具有关联关系的多个控制资源集合可以用于PDCCH的重复传输。或者,第一指示信息也可以是指示M个搜索空间之间的关联关系。例如,在一个搜索空间中指示其它搜索空间的信息,如索引,表示该搜索空间与所述其它搜索空间是关联的。具有关联关系的多个搜索空间可以用于PDCCH的重复传输。
在另一种可能的实现方式中,可以通过上述信令中的一个字段来指示是否采用PDCCH重复传输;进一步地,还可以具体指示采用的PDCCH重复传输模式,例如时域重复传输模式、空域重复传输模式、频域重复传输模式和第一重复传输模式。时域重复传输模式是指多次PDCCH传输采用相同频域资源,不同时域资源。频域重复传输模式是指多次PDCCH传输采用相同时域资源,不同频域资源。空域重复传输模式是指多次PDCCH传输采用相同的时域资源和频域资源。第一重复传输模式可以是除上述三种重复传输模式外的其它传输模式,如多次PDCCH传输采用的时域资源和频域资源都不相同的传输模式。或者,第一指示信息也可以指示用于PDCCH重复传输的控制资源集合的信息和/或搜索空间的信息。例如,可以指示用于PDCCH重复传输的M个控制资源集合和/或搜索空间的信息,如索引,进而终端设备可以获知这M个控制资源集合和/或搜索空间是用于PDCCH重复传输的。
本申请实施例中,M个控制资源集合可以符合配置约束1,和/或,M个搜索空间可以 符合配置约束2。也就是说,如果M个控制资源集合是用于第一PDCCH的M次重复传输的,那么这M个控制资源集合需要满足配置约束1;如果M个搜索空间是用于第一PDCCH的M次重复传输的,那么这M个搜索空间需要满足配置约束2。
其中,M个控制资源集合符合配置约束1可以包括M个控制资源集合的一个或多个参数相同,和/或,M个控制资源集合的一个或多个参数不同。比如M个控制资源集合符合配置约束1可以包括以下一项或多项:
①M个控制资源集合对应的频域资源相同。
②M个控制资源集合对应的频域资源数量相同。
③M个控制资源集合的第一持续时间相同。
④M个控制资源集合的控制信道单元CCE-REG映射方式相同。
⑤M个控制资源集合的预编码粒度相同。
⑥M个控制资源集合的tci-PresentInDCI参数相同。
⑦M个控制资源集合的DMRS加扰标识相同。
⑧M个控制资源集合对应的频域资源不同。
⑨M个控制资源集合的DMRS加扰标识不同。
M个搜索空间符合配置约束2可以包括M个搜索空间的一个或多个参数相同,和/或,M个搜索空间的一个或多个参数不同。M个搜索空间符合配置约束2可以包括以下一项或多项:
①M个搜索空间的检测周期相同。
②M个搜索空间的时隙偏移相同。
③M个搜索空间的第二持续时间相同。
④M个搜索空间的时域起始位置相同。
⑤M个搜索空间的盲检次数相同。
⑥M个搜索空间的类型相同。
⑦M个搜索空间的时域起始位置不同。示例性地,当M个搜索空间的时域起始位置不同时,M个搜索空间中任意两个搜索空间的时域起始位置之间要错开至少X个符号,X是M个控制资源集合中的duration参数指示的值(此处是假设M个控制资源集合中的duration参数指示的值相同),从而保证M个搜索空间是不重叠的,以便于实现第一PDCCH的分时重复传输。
⑧M个搜索空间的时隙偏移不同。
步骤503,网络设备向终端设备发送第二指示信息,第二指示信息用于指示激活M个控制资源集合分别对应的M个TCI-state。
示例性地,网络设备可以向终端设备发送媒体访问控制(media access control,MAC)控制单元(control element,CE),MAC CE中包括第二指示信息。M个控制资源集合和M个TCI-state一一对应。
相应地,步骤504中,终端设备接收来自网络设备的第二指示信息,并激活M个TCI-state。
步骤505,网络设备在M个控制资源集合和M个搜索空间对应的时频资源上对第一PDCCH进行M次传输。
示例性地,网络设备可以根据M个控制资源集合分别对应的M个TCI-state,在M个 控制资源集合和M个搜索空间对应的时频资源上对第一PDCCH进行M次传输。比如,M个控制资源集合包括控制资源集合1和控制资源集合2,M个搜索空间包括搜索空间1和搜索空间2,控制资源集合1和搜索空间1关联,控制资源集合2和搜索空间2关联,控制资源集合1对应的激活的TCI-state为TCI-state1,控制资源集合2对应的激活的TCI-state为TCI-state2;网络设备可以根据TCI-state1,在控制资源集合1和搜索空间1对应的时频资源上对第一PDCCH进行一次传输,以及根据TCI-state2,在控制资源集合2和搜索空间2对应的时频资源上对第一PDCCH进行一次传输。也就是说,M个控制资源集合和M个搜索空间组成M个{控制资源集合,搜索空间}组合,每个{控制资源集合,搜索空间}组合对应一组时频资源,用于对第一PDCCH进行一次传输。即一次第一PDCCH传输对应一组时频资源,M次第一PDCCH传输对应M组时频资源,这M组时频资源可能是完全相同的,或者也可以是时域资源相同但频域资源不同,或者也可以是时域资源不同但频域资源相同,或者也可以是时域资源不同且频域资源不同。不失一般性,一次第一PDCCH传输对应的时频资源可以简称为一组时频资源,M次第一PDCCH传输对应的时频资源可以简称为M组时频资源。
应理解,一次第一PDCCH传输对应的一组时频资源可以包括若干个CCE,实际承载第一PDCCH的时频资源可以是其中部分CCE。也就是说,一次第一PDCCH传输对应的一组时频资源并非是指实际承载第一PDCCH的时频资源,而可以是一个更大的资源范围。
在一个示例中,M次第一PDCCH传输对应的M组时频资源可以完全相同,即M组时频资源的时域资源相同且频域资源相同。此种情形下,网络设备可以根据M个TCI-state,在同一时频资源上传输第一PDCCH。在该示例中,M个第一PDCCH可以采用不同的DMRS端口,例如通过相同的DMRS加扰标识(M个控制资源集合的pdcch-DMRS-ScramblingID参数相同)生成的不同DMRS端口,进而网络设备可以采用不同的DMRS端口,对第一PDCCH进行空域重复传输;或者,M个第一PDCCH也可以采用相同的DMRS端口。本申请实施例中,M个第一PDCCH可以采用相同或不同的DMRS端口,也可以理解为,M个第一PDCCH可以采用相同或不同的DMRS序列,也就是说,DMRS端口也可以替换为DMRS序列。本申请实施例中是以DMRS端口为例进行描述。
需要说明的是,由于M个控制资源集合和M个搜索空间对应的时频资源为周期性出现的时频资源,因此网络设备可以在同一检测周期内的同一时频资源上传输第一PDCCH,或者在不同周期的不同时频资源上传输第一PDCCH。举个例子,M=2,网络设备可以在检测周期内的同一时频资源上采用不同的DMRS端口(比如DMRS端口1和DMRS端口2)或相同的DMRS端口传输第一PDCCH,参见图6a所示;或者,网络设备可以在第一个检测周期内的时频资源上采用DMRS端口1传输一次第一PDCCH,以及在第二个检测周期内的时频资源上采用DMRS端口2传输一次第一PDCCH,参见图6b所示。
本申请实施例中,将主要以M个搜索空间的检测周期相同,网络设备在同一个检测周期内的时频资源上传输第一PDCCH为例进行描述。
在又一个示例中,M次第一PDCCH传输对应的M组时频资源的时域资源相同但频域资源不同。此种情形下,网络设备可以根据M个TCI-state,在同一时域资源且不同频域资源上传输M次第一PDCCH,即网络设备可以对第一PDCCH进行频域重复传输。举个例子,参见图6c所示,M=2,网络设备可以在频域资源1上传输一次第一PDCCH,以及在频域资源2上传输一次第一PDCCH。在该示例中,M个第一PDCCH可以采用相同的DMRS 端口,或者M个第一PDCCH也可以采用不同的DMRS端口。
在又一个示例中,M次第一PDCCH传输对应的M组时频资源的时域资源不同但频域资源相同。此种情形下,网络设备可以根据M个TCI-state,在同一频域资源且不同时域资源上传输M次第一PDCCH,即网络设备可以对第一PDCCH进行时域重复传输。举个例子,参见图6d所示,M=2,网络设备可以在时域资源1上传输一次第一PDCCH,以及在时域资源2上传输一次第一PDCCH。在该示例中,M个第一PDCCH可以采用相同的DMRS端口,或者M个第一PDCCH也可以采用不同的DMRS端口。
在又一个示例中,M次第一PDCCH传输对应的M组时频资源的时域资源不同且频域资源不同,即M组时频资源的时域资源和频域资源都是不同的。此种情形下,网络设备可以根据M个TCI-state,在不同频域资源且不同时域资源上传输M次第一PDCCH。举个例子,参见图6e所示,M=2,网络设备可以在时频资源1上传输一次第一PDCCH,以及在时频资源2上传输一次第一PDCCH。
需要说明的是,网络设备可以采用上述示例中所描述的多种传输模式中的一种传输模式来对第一PDCCH进行重复传输,示例性地,网络设备还可以指示终端设备其所采用的传输模式,比如网络设备向终端设备发送一个指示信息来指示具体采用哪一种传输模式。
步骤506,终端设备在M个控制资源集合和M个搜索空间对应的时频资源上监听第一PDCCH。
示例性地,终端设备可以根据M个控制资源集合对应的M个TCI-state,在M次第一PDCCH传输对应的M组时频资源上接收第一PDCCH。其中,终端设备接收第一PDCCH可以是通过盲检过程来实现的。盲检过程是指取一组时频资源中的部分时频资源,如一组CCE上的信号来进行译码,如果译码成功则表示成功接收第一PDCCH,如果不成功则继续尝试另一组CCE。举个例子,假设一组时频资源包括4个CCE,一次盲检可以采用2个CCE,如图7中的(a)所示,则终端设备可以在4个CCE中尝试各种2个CCE的组合,具体尝试次数可以由控制资源集合关联的搜索空间中的nrofCandidates参数来配置。因此,终端设备可以根据M个控制资源集合对应的M个TCI-state,分别从所述M组时频资源上接收信号,并对M组时频资源上的信号进行单独译码或合并译码。
其中,单独译码可以理解为在所述M组时频资源上单独进行盲检。示例性地,终端设备依次在M组时频资源上进行盲检,如果在一组时频资源上没有盲检成功,则继续在下一组时频资源中进行盲检。如果在一组时频资源上盲检成功,则终端设备可以停止对剩余的各组时频资源的盲检,从而减少盲检次数,降低终端设备的处理负担。由于每组时频资源对应一个搜索空间,因此,单独译码还可以表述为,分别在M个搜索空间进行盲检,如果在一个搜索空间没有盲检成功,则继续在下一个搜索空间进行盲检。如果在一个搜索空间盲检成功,则终端设备可以停止对剩余搜索空间的盲检。
合并译码可以理解为对M组时频资源进行联合盲检。示例性地,在联合盲检机制中,每次盲检都可以取M组时频资源中的部分时频资源,如一组CCE上的信号,共计M个信号,将这M个信号进行合并译码。M个信号对应M组时频资源,即从每组时频上的一组CCE上确定一个信号,共组成M个信号。根据第一PDCCH的不同的重复传输模式,联合盲检可以分为以下几种,下面进行详细介绍。
(1)空域重复传输模式下的联合盲检
当第一PDCCH采用空域重复传输时,M次第一PDCCH传输对应的M组时频资源是 完全相同的。如图7中的(b)所示,由于M组时频资源是完全相同的,即重叠在一起,因此可以看作一组时频资源。该组时频资源包括多个CCE,终端设备每次从该组时频资源包括的CCE中取一组CCE,通过M个不同的DMRS端口,从该组CCE上接收M个信号,并将这M个信号进行合并译码。上述操作称为一次联合盲检。如果译码不成功,则继续下一次盲检,即从该组时频资源包括的CCE中取另一组CCE,通过M个不同的DMRS端口,从该组CCE上接收M个信号,并将这M个信号进行合并译码。如果译码成功,则停止在所述M组时频资源上进行盲检,或者说停止在所述M次第一PDCCH传输对应的搜索空间上进行盲检。如图7中的(b)所示,终端设备在前2个CCE上通过M个不同的DMRS端口收到M个信号,并将这M个信号进行合并译码。如果不成功,再在后2个CCE上通过M个不同的DMRS端口收到M个信号,并将这M个信号进行合并译码。
(2)其它重复传输模式下的联合盲检
当第一PDCCH采用其它重复传输模式时,M次第一PDCCH传输对应的M组时频资源不是完全相同的,比如其它重复传输模式可以包括频域重复传输模式、时域重复传输模式和第一重复传输模式。此种情形下,M组时频资源中的每组时频资源都包括多个CCE,在一次盲检中,终端设备可以从每组时频资源中各取一组CCE,获取该组CCE上的信号,共计M个信号,并将这M个信号进行合并译码。如果译码不成功,则继续下一次盲检,即从每组时频资源中取另一组CCE,获取该组CCE上的信号,共计M个信号,并将这M个信号进行合并译码。如果译码成功,则停止在所述M组时频资源上进行盲检,或者说停止在所述M次第一PDCCH传输对应的搜索空间上进行盲检。
示例性地,在每次盲检中,终端设备从各组时频资源中选出来用于联合译码的一组CCE所包括的CCE数量是相同的。例如,每次盲检中,终端设备从每组时频资源中选两个CCE,获取这两个CCE上的信号,共计M个信号,将这M个信号进行合并译码。进一步的,可以限定在一次盲检中,从每组时频资源中选出来进行合并译码的那一组CCE在各组时频资源中的CCE编号或排序或位置是相同的。例如图7中的(c)和图7中的(d)所示,M组时频资源中每组时频资源都包括4个CCE。第一次盲检时,取每组时频资源中的前2个CCE进行合并译码,第二次盲检时,取每组时频资源中的后两个CCE进行联合译码。采用此种方式,可以便于联合盲检的实现,避免在M组时频资源上取不同位置或不同编号的CCE而导致联合盲检较为混乱的问题。
需要说明的是,在其它可能的示例中,在每次盲检中,终端设备从各组时频资源中选出来用于联合译码的一组CCE所包括的CCE数量也可以是不同的,本申请实施例对此不做限定。
示例性地,具体采用上述哪种合并译码方法,可以由网络设备通过RRC、MAC CE或DCI信令来向终端设备指示,或终端设备上报给网络设备。
采用上述方法,网络设备可以为终端设备配置M个控制资源集合和M个搜索空间,进而在M个控制资源集合和M个搜索空间对应的时频资源上对第一PDCCH进行M次传输,从而能够有效提高第一PDCCH的传输可靠性;且,终端设备接收到来自网络设备的配置信息后,可以获知M个控制资源集合和M个搜索空间用于对第一PDCCH进行M次传输,若采用单独译码的方式进行处理,则在译码成功后,可以停止盲检,避免盲检所有可能性而导致终端设备的资源消耗较大;若采用合并译码的方式进行处理,则可以有效降低盲检次数,便于节省终端设备的处理资源。
实施例二
在实施例二中,将基于上述方案二描述通信方法的一种可能的实现。
图8为本申请实施例二提供的通信方法所对应的流程示意图,如图8所示,包括:
步骤801,网络设备向终端设备发送配置信息,配置信息用于配置M个控制资源集合和一个搜索空间,M个控制资源集合分别与上述搜索空间关联。
此处,M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的上述搜索空间用于对第一PDCCH进行一次传输,进而M个控制资源集合和M个控制资源集合关联的上述搜索空间可以用于对第一PDCCH进行M次传输。
相应地,在步骤802中,终端设备接收来自网络设备的配置信息。
本申请实施例中,终端设备接收到网络设备的配置信息后,可以确定M个控制资源集合与一个搜索空间是否用于对第一PDCCH进行M次传输。示例性地,终端设备确定M个控制资源集合与一个搜索空间用于对第一PDCCH进行M次传输的实现方式可以有多种,下面描述两种可能的实现方式,分别为实现方式b1和实现方式b2。
实现方式b1
终端设备根据配置信息,若确定M个控制资源集合符合预设条件3,和/或,上述搜索空间符合预设条件4,则可以确定M个控制资源集合与一个搜索空间用于对第一PDCCH进行M次传输。
其中,M个控制资源集合符合预设条件3可以包括M个控制资源集合中的一个或多个参数相同。比如,M个控制资源集合符合预设条件3可以包括以下一项或多项:
①M个控制资源集合对应的频域资源相同。
②M个控制资源集合对应的频域资源数量相同。
③M个控制资源集合的第一持续时间相同。
④M个控制资源集合的CCE-REG映射方式相同。
⑤M个控制资源集合的预编码粒度相同。
⑥M个控制资源集合的tci-PresentInDCI参数相同。
⑦M个控制资源集合的DMRS加扰标识相同。
⑧M个控制资源集合关联的搜索空间相同。
需要说明的是,上述是针对M个控制资源集合符合预设条件3所包括的一些可能的情形进行描述,在其它可能的示例下,还可以包括其它可能的情形,具体不做限定。
搜索空间符合预设条件4包括以下一项或多项:
①搜索空间关联多个控制资源集合。
②搜索空间包括多个监听机会。
③搜索空间包括的监听机会的个数等于搜索空间关联的控制资源集合的个数,比如搜索空间包括M个监听机会,搜索空间关联M个控制资源集合。
需要说明的是,搜索空间符合预设条件4也可以称为搜索空间符合配置约束4。上述是针对搜索空间符合预设条件4所包括的一些可能的情形进行描述,在其它可能的示例下,还可以包括其它可能的情形,具体不做限定。
实现方式b2
终端设备若接收到来自网络设备的第一指示信息,第一指示信息用于指示M个控制资 源集合和一个搜索空间用于对第一PDCCH进行M次传输,则可以确定M个控制资源集合和一个搜索空间用于对第一PDCCH进行M次传输。示例性地,终端设备接收来自网络设备的第一指示信息的方式可以有多种,比如,第一指示信息可以携带在RRC信令,MAC CE信令或DCI信令中,第一指示信息的具体体现形式也可以有多种,可以参见实施例一中有关第一指示信息的描述,此处不再赘述。
本申请实施例中,M个控制资源集合可以符合配置约束3,和/或,搜索空间可以符合配置约束4。也就是说,如果M个控制资源集合是用于第一PDCCH的M次重复传输的,那么这M个控制资源集合需要满足配置约束3;如果搜索空间是用于第一PDCCH的M次重复传输的,那么这个搜索空间需要满足配置约束4。
其中,M个控制资源集合符合配置约束3可以包括M个控制资源集合的一个或多个参数相同,和/或,M个控制资源集合的一个或多个参数不同。比如M个控制资源集合符合配置约束3可以包括以下一项或多项:
①M个控制资源集合对应的频域资源相同。
②M个控制资源集合对应的频域资源数量相同。
③M个控制资源集合的第一持续时间相同。
④M个控制资源集合的控制信道单元CCE-REG映射方式相同。
⑤M个控制资源集合的预编码粒度相同。
⑥M个控制资源集合的tci-PresentInDCI参数相同。
⑦M个控制资源集合的DMRS加扰标识相同。
⑧M个控制资源集合对应的频域资源不同。
⑨M个控制资源集合的DMRS加扰标识不同。
搜索空间符合配置约束4可以包括搜索空间的一个或多个参数相同,和/或,M个搜索空间的一个或多个参数不同。搜索空间符合配置约束4可以包括以下一项或多项:
①搜索空间关联多个控制资源集合。
②搜索空间包括多个监听机会。
③搜索空间包括的监听机会的个数等于搜索空间关联的控制资源集合的个数,比如搜索空间包括M个监听机会,搜索空间关联M个控制资源集合。
步骤803,网络设备向终端设备发送第二指示信息,第二指示信息用于指示激活M个控制资源集合分别对应的M个TCI-state。
相应地,步骤804中,终端设备接收来自网络设备的第二指示信息,并激活M个TCI-state。
步骤805,网络设备在M个控制资源集合和一个搜索空间对应的时频资源上对第一PDCCH进行M次传输。
示例性地,网络设备可以根据M个控制资源集合分别对应的M个TCI-state,在M个控制资源集合和一个搜索空间对应的时频资源上对第一PDCCH进行M次传输。比如,M个控制资源集合包括控制资源集合1和控制资源集合2,控制资源集合1、控制资源集合2和搜索空间关联,控制资源集合1对应的激活的TCI-state为TCI-state1,控制资源集合2对应的激活的TCI-state为TCI-state2;网络设备可以根据TCI-state1,在控制资源集合1和搜索空间对应的时频资源上对第一PDCCH进行一次传输,以及根据TCI-state2,在控制资源集合2和搜索空间对应的时频资源上对第一PDCCH进行一次传输。
本申请实施例中,搜索空间可以包括一个监听机会或者M监听机会,下面分别针对这两种情形进行详细描述。
情形1:搜索空间包括一个监听机会(monitor occasion)
搜索空间包括一个监听机会可以是指搜索空间的monitoringSymbolsWithinSlot参数包含的值为1的比特数量为1。从monitoringSymbolsWithinSlot中值为1的比特对应的符号开始,连续X个符号对应的一组符号为一个侦听机会。X为控制资源集合中的duration参数的值。
当搜索空间只包括一个侦听机会时,M个控制资源集合和该侦听机会可以确定M组时频资源,每组时频资源的时域资源相同,频域资源可以相同也可以不同,频域资源是否相同取决于M个控制资源集合对应的频域资源是否相同。M组时频资源与M次第一PDCCH传输一一对应,即一次第一PDCCH传输对应一组时频资源。
在一个示例中,M个控制资源集合对应的频域资源相同,即M个控制资源集合和所述搜索空间对应的M组时频资源完全相同,进而网络设备可以根据M个TCI-state,在同一时频资源上传输第一PDCCH,每次第一PDCCH传输可以采用不同的DRMS端口,也可以采用相同的DMRS端口,例如可以参见图6a。在又一个示例中,M个控制资源集合对应的频域资源不同,即M个控制资源集合和所述搜索空间对应的M组时频资源的时域资源相同但频域资源不同,进而网络设备可以根据M个TCI-state,在同一时域资源且不同频域资源上传输第一PDCCH,每次第一PDCCH传输可以采用不同的DRMS端口,也可以采用相同的DMRS端口,例如可以参见图6c。
情形2:搜索空间包括M个监听机会
搜索空间包括M个监听机会是指搜索空间的monitoringSymbolsWithinSlot参数包含的比特值为1的比特数量为M,M个侦听机会对应M组不同的时域资源。示例性地,还可以约束任意两个值为1的比特的位置偏移至少X个符号,X是控制资源集合中的duration参数指示的值。错开X个符号是为了保证M个侦听机会是不重叠的,从而用于实现第一PDCCH的分时重复传输。例如,X=3时,monitoringSymbolsWithinSlot的值为10010001000100是满足上述约束的,因为任意两个值为1的比特的位置之间偏移都不小于3个符号。
当搜索空间包括M个侦听机会时,M个控制资源集合可以与M个监听机会一一关联。其中,M个控制资源集合与M个监听机会一一关联的方式可以有多种,比如M个控制资源集合可以按照索引从小到大的顺序与M个侦听机会一一对应。例如,索引最小的控制资源集合与第一个(时间最早的)侦听机会关联,索引最大的控制资源集合与最后一个(时间最晚)侦听机会关联。M个控制资源集合也可以按照配置顺序与M个侦听机会一一对应。例如,配置顺序为第一个的控制资源集合与第一个(时间最早的)侦听机会关联,配置顺序为最后一个的控制资源集合与最后一个(时间最晚的)侦听机会关联。
进一步地,M个控制资源集合和M个侦听机会可以确定M组时频资源,每组时频资源的时域资源不同,频域资源可以相同也可以不同,频域资源是否相同取决于M个控制资源集合对应的频域资源是否相同。这M组时频资源与M次第一PDCCH传输一一对应,即一次第一PDCCH传输对应一组时频资源。
在一个示例中,M个控制资源集合对应的频域资源相同,即M个控制资源集合和所述搜索空间对应的M组时频资源的时域资源不同但频域资源相同,进而网络设备可以根据 M个TCI-state,在同一频域资源且不同时域资源上传输M次第一PDCCH,每次传输第一PDCCH可以采用不同的DRMS端口,也可以采用相同的DMRS端口,例如可以参见图6d。在又一个示例中,M个控制资源集合对应的频域资源不同,即M个控制资源集合和所述搜索空间对应的M组时频资源的时域资源不同且频域资源不同,进而网络设备可以根据M个TCI-state,在不同频域资源且不同时域资源上传输M次第一PDCCH,每次传输第一PDCCH可以采用不同的DRMS端口,也可以采用相同的DMRS端口,例如可以参见图6e。
示例性地,网络设备可以指示终端设备其所采用的传输模式,比如网络设备向终端设备发送一个指示信息来指示具体采用哪一种传输模式。
步骤806,终端设备在M个控制资源集合和一个搜索空间对应的时频资源上监听第一PDCCH。
示例性地,终端设备可以根据M个控制资源集合分别对应的M个TCI-state,在M组时频资源上接收第一PDCCH。若搜索空间包括一个监听机会,则终端设备可以根据M个控制资源集合分别对应的M个TCI-state,在M个控制资源集合和上述监听机会对应的时频资源上接收M个信号,并对M个信号进行单独译码或合并译码;若搜索空间包括M个监听机会,则终端设备可以根据M个控制资源集合分别对应的M个TCI-state,在M个控制资源集合和M个监听机会对应的时频资源上接收M个信号,并对M个信号进行单独译码或合并译码。有关单独译码或合并译码的介绍可以参见实施例一,此处不再赘述。
采用上述方法,网络设备可以为终端设备配置M个控制资源集合和一个搜索空间,进而在M个控制资源集合和一个搜索空间对应的时频资源上对第一PDCCH进行M次传输,从而能够有效提高第一PDCCH的传输可靠性;且,终端设备接收到来自网络设备的配置信息后,可以获知M个控制资源集合和一个搜索空间用于对第一PDCCH进行M次传输,若采用单独译码的方式进行处理,则在译码成功后,可以停止盲检,避免盲检所有可能性而导致终端设备的资源消耗较大;若采用合并译码的方式进行处理,则可以有效降低盲检次数,便于节省终端设备的处理资源。
实施例三
在实施例三中,将基于上述方案三描述通信方法的一种可能的实现。
图9为本申请实施例三提供的通信方法所对应的流程示意图,如图9所示,包括:
步骤901,网络设备向终端设备发送配置信息,配置信息用于配置一个控制资源集合和M个搜索空间,上述控制资源集合分别与M个搜索空间关联。
此处,M个搜索空间中的每个搜索空间和每个搜索空间关联的上述控制资源集合用于对第一PDCCH进行一次传输,进而M个搜索空间和一个控制资源集合可以用于对第一PDCCH进行M次传输。
相应地,在步骤902中,终端设备接收来自网络设备的配置信息。
本申请实施例中,终端设备接收到网络设备的配置信息后,可以确定一个控制资源集合与M个搜索空间是否用于对第一PDCCH进行M次传输。示例性地,终端设备确定一个控制资源集合与M个搜索空间用于对第一PDCCH进行M次传输的实现方式可以有多种,下面描述两种可能的实现方式,分别为实现方式c1和实现方式c2。
实现方式c1
终端设备根据配置信息,若确定上述控制资源集合符合预设条件5,和/或,M个搜索空间符合预设条件6,则可以确定一个控制资源集合与M个搜索空间用于对第一PDCCH进行M次传输。
其中,上述控制资源集合符合预设条件5可以包括以下一项或多项:
①控制资源集合关联多个搜索空间。
②控制资源集合有多个激活的TCI-state,或者说,控制资源集合对应多个激活的TCI-state。
③控制资源集合的激活的TCI-state的个数等于控制资源集合关联的搜索空间的个数。
需要说明的是,控制资源集合符合预设条件5也可以称为控制资源集合符合配置约束5。上述是针对控制资源集合符合预设条件5所包括的一些可能的情形进行描述,在其它可能的示例下,还可以包括其它可能的情形,具体不做限定。
M个搜索空间符合预设条件6包括M个搜索空间中的一个或多个参数相同,比如,M个搜索空间符合预设条件6可以包括以下一项或多项:
①M个搜索空间的检测周期相同。
②M个搜索空间的时隙偏移相同。
③M个搜索空间的第二持续时间相同。
④M个搜索空间的时域起始位置相同。
⑤M个搜索空间的盲检次数相同。
⑥M个搜索空间的类型相同。
需要说明的是,上述是针对M个搜索空间符合预设条件6所包括的一些可能的情形进行描述,在其它可能的示例下,还可以包括其它可能的情形,具体不做限定。
实现方式c2
终端设备若接收到来自网络设备的第一指示信息,第一指示信息用于指示一个控制资源集合和M个搜索空间用于对第一PDCCH进行M次传输,则可以确定M个控制资源集合和一个搜索空间用于对第一PDCCH进行M次传输。示例性地,终端设备接收来自网络设备的第一指示信息的方式可以有多种,比如,第一指示信息可以携带在RRC信令,MAC CE信令或DCI信令中,第一指示信息的具体体现形式也可以有多种,可以参见实施例一中有关第一指示信息的描述,此处不再赘述。
本申请实施例中,控制资源集合可以符合配置约束5,和/或,M个搜索空间可以符合配置约束6。也就是说,如果控制资源集合是用于第一PDCCH的M次重复传输的,那么这个控制资源集合需要满足配置约束5;如果M个搜索空间是用于第一PDCCH的M次重复传输的,那么这M个搜索空间需要满足配置约束6。
其中,控制资源集合符合配置约束5可以包括以下一项或多项:
①控制资源集合关联多个搜索空间。
②控制资源集合有多个激活的TCI-state。
③控制资源集合的激活的TCI-state的个数等于控制资源集合关联的搜索空间的个数。
M个搜索空间符合配置约束6可以包括M个搜索空间的一个或多个参数相同,和/或,M个搜索空间的一个或多个参数不同。M个搜索空间符合配置约束6可以包括以下一项或多项:
①M个搜索空间的检测周期相同。
②M个搜索空间的时隙偏移相同。
③M个搜索空间的第二持续时间相同。
④M个搜索空间的时域起始位置相同。
⑤M个搜索空间的盲检次数相同。
⑥M个搜索空间的类型相同。
⑦M个搜索空间的时域起始位置不同。
⑧M个搜索空间的时隙偏移不同。
步骤903,网络设备向终端设备发送第二指示信息,第二指示信息用于激活控制资源集合的一个或多个TCI-state。
相应地,步骤904中,终端设备接收来自网络设备的第二指示信息,并激活一个或多个TCI-state。
本申请实施例中,若第二指示信息用于指示激活M个TCI-state,则第二指示信息可以包括以下一项或多项:M个TCI-state的标识;第一信息,第一信息用于指示激活的TCI-state的个数;第二信息,第二信息用于指示激活的TCI-state的个数为一个还是多个;第三信息,第三信息用于指示激活的M个TCI-state是用于同时传输第一PDCCH还是分时传输第一PDCCH。在一个示例中,第二指示信息可以包括M个TCI-state,进一步地,还可以包括第一信息、第二信息和第三信息中的一项或多项。第二指示信息可以携带在RRC信令,MAC CE信令或DCI信令。
示例性地,网络设备可以向终端设备发送MAC CE,MAC CE中包括第二指示信息。在一个示例中,上述MAC CE可以包括字段1、字段2、一个或多个字段3,一个字段3用于承载一个TCI-state标识。参见图10a所示,为MAC CE的一种格式示意图,字段1可以称为F字段,字段2可以称为S/T字段,应理解,本申请并不限定字段1和字段2的具体名称。
其中,字段1可以用于承载第一信息或第二信息。当字段1用于承载第一信息时,字段1中所包括的比特个数与一个MAC CE能激活的TCI-state数量上限N有关。比如N=2,则字段1可以包括1比特,字段1的值可以为0或1,字段1的值为0表示激活1个TCI-state,字段1的值为1表示激活2个TCI-state。或者反过来,字段1的值为0表示激活2个TCI-state,字段1的值为1表示激活1个TCI-state。当字段1用于承载第二信息时,字段1可以包括1个比特,字段1的值可以为0或1,字段1的值为0表示激活单个TCI-state,字段1的值为1表示激活多个TCI-state。或者反过来,字段1的值为0表示激活多个TCI-state,字段1的值为1表示激活单个TCI-state。
字段2可以用于承载第三信息,若第三信息用于指示使用M个TCI-state同时传输第一PDCCH,则网络设备可以采用这M个TCI-state同时发送PDCCH,终端设备根据这M个TCI-state同时接收第一PDCCH;若第三信息用于指示使用M个TCI-state分时传输第一PDCCH,则网络设备可以采用这M个TCI-state在不同的时间分别发送第一PDCCH,每次采用单个TCI-state,或每次采用部分TCI-state,如采用一半的TCI-state。相应地,终端设备可以每次采用单个或部分TCI-state在不同的时间接收第一PDCCH。
示例性地,M个TCI-state还可以与M个搜索空间中的每个搜索空间关联,也就是说,网络设备可以同时采用M个TCI-state进行第一PDCCH传输,每次传输对应一个搜索空间,总共传输M次。
需要说明的是:(1)本申请实施例中,还可以根据第三信息确定M个搜索空间与控制资源集合对应的激活的M个TCI-state的关联关系,比如,若第三信息用于指示使用M个TCI-state同时传输第一PDCCH,则表示M个TCI-state与M个搜索空间一一关联;若第三信息用于指示使用M个TCI-state分时传输第一PDCCH,则表示M个搜索空间中的每个搜索空间都与M个TCI-state关联。
(2)网络设备可以通过显式的方式发送第三信息,比如,将第三信息承载在上述所描述的字段2中发送给终端设备;或者,网络也可以通过隐式的方式发送第三信息,比如MAC CE中不包括字段2,而是通过控制资源集合关联的M个搜索空间的时域起始位置是否相同来隐式指示使用M个TCI-state同时传输或分时传输第一PDCCH,比如,若控制资源集合关联的M个搜索空间的时域起始位置相同,则表示控制资源集合对应的激活的M个TCI-state用于同时传输第一PDCCH(或者说使用M个TCI-state同时传输第一PDCCH);若控制资源集合关联的M个搜索空间的时域起始位置不同,则表示控制资源集合对应的激活的M个TCI-state用于分时传输第一PDCCH。
示例性地,M个TCI-state和M个搜索空间可以有多种可能的关联方式,下面以M个TCI-state和M个搜索空间一一关联为例,描述几种可能的关联方式。
关联方式1
M个TCI-state和M个搜索空间可以根据M个TCI-state的索引和M个搜索空间的索引进行关联。比如,M个TCI-state可以按索引从小到大或从大到小的顺序与M个搜索空间按索引从小到大的顺序一一关联。举个例子,索引最小的TCI-state与索引最小的搜索空间关联,索引最大的TCI-state与索引最大的搜索空间关联。
关联方式2
M个TCI-state和M个搜索空间可以根据M个TCI-state被激活的顺序和M个搜索空间的索引进行关联。比如,M个TCI-state可以按被激活的先后顺序与M个搜索空间按索引从小到大或从大到小的顺序一一关联。举个例子,激活顺序最靠前的TCI-state与索引最小的搜索空间关联,激活顺序最靠后的TCI-state与索引最大的搜索空间对应。
其中,M个TCI-state被激活的顺序可以是根据M个TCI-state在MAC CE中的排列顺序得到的,其中,在MAC CE中的排列顺序靠前,则被激活的顺序靠前。如图10b所示,M=2,TCI-state1在MAC CE中排列在TCI-state2前面,则TCI-state1先于TCI-state2被激活。
关联方式3
M个TCI-state和M个搜索空间可以根据M个TCI-state的索引和M个搜索空间的配置顺序进行关联。比如,M个TCI-state按索引从小到大或从大到小的顺序与M个搜索空间按配置的先后顺序一一关联。举个例子,索引最小的TCI-state与配置顺序最靠前的搜索空间关联,索引最大的TCI-state与配置顺序最靠后的搜索空间关联。
关联方式4
M个TCI-state和M个搜索空间可以根据M个TCI-state被激活的顺序和M个搜索空间的配置顺序进行关联。比如,M个TCI-state按被激活的先后顺序与M个搜索空间按配置的先后顺序一一关联。举个例子,激活顺序最靠前的TCI-state与配置顺序最靠前的搜索空间关联;激活顺序最靠后的TCI-state与配置顺序最靠后的搜索空间关联。
具体采用上述哪种合并译码方法,可以由网络设备通过RRC、MAC CE或DCI信令 来向终端设备指示,或终端设备上报给网络设备。
需要说明的是,上述仅是描述了M个TCI-state和M个搜索空间关联的4种示例,在其它可能的实施例中,M个TCI-state与M个第一SearchSpace还可以有其它关联方式,比如每个TCI-state都关联M个搜索空间,或每个搜索空间都关联M个TCI-state。
步骤905,网络设备在控制资源集合和M个搜索空间对应的时频资源上对第一PDCCH进行M次传输。
示例性地,网络设备可以根据控制资源集合对应的M个TCI-state,在控制资源集合和M个搜索空间对应的时频资源上对第一PDCCH进行M次传输。比如,M个搜索空间包括搜索空间1和搜索空间2,控制资源集合对应的激活的TCI-state包括TCI-state1和TCI-state2,搜索空间1与TCI-state1关联,搜索空间2与TCI-state2关联;网络设备可以根据TCI-state1,在控制资源集合和搜索空间1对应的时频资源上对第一PDCCH进行一次传输,以及根据TCI-state2,在控制资源集合和搜索空间2对应的时频资源上对第一PDCCH进行一次传输。
其中,控制资源集合对应的频域资源可以包括M个频域资源部分,M个频域资源部分可以与M个搜索空间一一关联(其中,M个频域资源部分中的每个频域资源部分和每个频域资源部分关联的搜索空间对应一组时频资源,用于对第一PDCCH进行一次传输;M个频域资源部分和M个搜索空间对应M组时频资源,用于对第一PDCCH进行M次传输),或者M个频域资源部分可以与激活的M个TCI-state一一关联,或者M个频域资源部分中的每个频域资源部分对应第一PDCCH的一次传输,或者M个频域资源部分分别对应M个DMRS端口。通过将控制资源集合对应的频域资源划分为M个频域资源部分,从而能够在M个不同的频域资源位置,分别发送M个第一PDCCH。以M个频域资源部分可以与M个搜索空间一一关联,以及M个搜索空间与M个TCI-state一一关联为例,此种情形下,若M组时频资源的时域资源相同但频域资源不同,则网络设备可以根据M个TCI-state,在同一时域资源且不同频域资源上传输M次第一PDCCH,参见图6c所示。若M组时频资源的时域资源不同且频域资源不同,则网络设备可以根据M个TCI-state,在不同时域资源且不同频域资源上传输M次第一PDCCH,参见图6e所示。
本申请实施例中,将控制资源集合对应的频域资源划分为M个频域资源部分的方式可以有多种,下面描述几种可能的划分方式。
划分方式1
考虑到控制资源集合对应的频域资源是通过控制资源集合中的frequencyDomainResources参数指示的,frequencyDomainResources为一个比特位图,每个比特表示一段连续的频域资源(比如连续6个RB),进而可以将frequencyDomainResources参数中的比特均分为M份,每一份对应一个频域资源部分。如果无法均分则尽量均分,使得各份之间的比特个数的差距不超过1个(或者说小于或等于1个)。例如,当M=2时,将frequencyDomainResources参数中的比特均分为2份(即前一半和后一半),如果无法均分,则前一半可以多一个比特,或者后一半多一个比特。举个例子,frequencyDomainResources参数为45个比特的比特位图,则可以将前23个比特作为前一半,后22个比特作为后一半;或者,根据各个比特所在比特位的奇偶来对frequencyDomainResources参数中的比特进行划分,即所有奇数位的比特作为一部分,所有偶数位的比特作为另一部分。
划分方式2
将控制资源集合的frequencyDomainResources参数中值为1的各个比特均分为M份。如果无法均分则尽量均分,使得各份之间的比特个数的差距不超过1个(或者说小于或等于1个)。例如,当M=2时,将frequencyDomainResources参数中值为1的各个比特均分为2份(即前一半和后一半),如果无法均分,则前一半可以多一个比特,或者后一半多一个比特。举个例子,frequencyDomainResources参数中值为1的比特有21个,则可以将前11个比特作为前一半,后10个比特作为后一半;或者,根据各个比特所在比特位的奇偶来对frequencyDomainResources参数中所有值为1的比特进行划分,即所有奇数位比特作为一部分,所有偶数位比特作为另一部分。
划分方式3
将控制资源集合的frequencyDomainResources参数所指示的RB(或CCE,或RBG,或预编码资源块组(precoding resource block group,PRG))均分为M份。如果无法均分则尽量均分,使得各份之间的RB(或CCE,或RBG,或PRG)个数的差距不超过1个(或者说小于或等于1个)。例如,M=2,将frequencyDomainResources参数所指示的RB(或CCE,或RBG,或PRG)均分为2份(即前一半和后一半),如果无法均分,则前一半可以多一个RB(或CCE,或RBG,或PRG),或者后一半多一个RB(或CCE,或RBG,或PRG);或者,根据RB所在位置的奇偶来对frequencyDomainResources参数所指示的RB(或CCE,或RBG,或PRG)进行划分,比如把所有RB(或CCE,或RBG,或PRG)进行排序,所有奇数位的RB(或CCE,或RBG,或PRG)作为一部分,所有偶数位的RB(或CCE,或RBG,或PRG)作为另一部分。
需要说明的是,上述描述了将控制资源集合对应的频域资源划分为M个频域资源部分的4种示例,在其它可能的实施例中,还可能有其它的划分方式,具体不做限定。
步骤906,终端设备在一个控制资源集合和M个搜索空间对应的时频资源上监听第一PDCCH。
示例性地,终端设备可以根据M个TCI-state(M个TCI-state与M个搜索空间一一关联),在控制资源集合和M个搜索空间对应的时频资源上接收第一PDCCH。若控制资源集合对应的频域资源包括M个频域资源部分,M个频域资源部分与M个搜索空间一一关联,则终端设备可以根据M个TCI-state,分别从所述M个频域资源部分和M个搜索空间对应的时频资源上接收M个信号,并对M个信号进行单独译码或合并译码。有关单独译码或合并译码的介绍可以参见实施例一,此处不再赘述。
采用上述方法,网络设备可以为终端设备配置一个控制资源集合和M个搜索空间,进而在一个控制资源集合和M个搜索空间对应的时频资源上对第一PDCCH进行M次传输,从而能够有效提高第一PDCCH的传输可靠性;且,终端设备接收到来自网络设备的配置信息后,可以获知一个控制资源集合和M个搜索空间用于对第一PDCCH进行M次传输,若采用单独译码的方式进行处理,则在译码成功后,可以停止盲检,避免盲检所有可能性而导致终端设备的资源消耗较大;若采用合并译码的方式进行处理,则可以有效降低盲检次数,便于节省终端设备的处理资源。
实施例四
在实施例四中,将基于上述方案四描述通信方法的一种可能的实现。
图11为本申请实施例四提供的通信方法所对应的流程示意图,如图11所示,包括:
步骤1101,网络设备向终端设备发送配置信息,配置信息用于配置一个控制资源集合和一个搜索空间,上述控制资源集合与上述搜索空间关联。
相应地,在步骤1102中,终端设备接收来自网络设备的配置信息。
本申请实施例中,终端设备接收到网络设备的配置信息后,可以确定一个控制资源集合与一个搜索空间是否用于对第一PDCCH进行M次传输。示例性地,终端设备确定一个控制资源集合与一个搜索空间用于对第一PDCCH进行M次传输的实现方式可以有多种,下面描述两种可能的实现方式,分别为实现方式d1和实现方式d2。
实现方式d1
终端设备根据配置信息,若确定控制资源集合符合预设条件7,和/或,搜索空间符合预设条件8,则可以确定一个控制资源集合与一个搜索空间用于对第一PDCCH进行M次传输。
其中,控制资源集合符合预设条件7可以包括以下其中一项:
①控制资源集合对应多个激活的TCI-state。
②控制资源集合对应多个激活的TCI-state,且控制资源集合对应的激活的TCI-state的个数等于控制资源集合关联的搜索空间包括的监听机会的个数。
需要说明的是,上述是针对控制资源集合符合预设条件7所包括的一些可能的情形进行描述,在其它可能的示例下,还可以包括其它可能的情形,具体不做限定。
搜索空间符合预设条件8包括以下其中一项:
①搜索空间包括多个监听机会。
②搜索空间包括多个监听机会,且搜索空间包括的监听机会的个数等于搜索空间关联的控制资源集合对应的激活的TCI-state的个数。
需要说明的是,上述是针对搜索空间符合预设条件8所包括的一些可能的情形进行描述,在其它可能的示例下,还可以包括其它可能的情形,具体不做限定。
实现方式d2
终端设备若接收到来自网络设备的第一指示信息,第一指示信息用于指示一个控制资源集合和一个搜索空间用于对第一PDCCH进行M次传输,则可以确定一个控制资源集合和一个搜索空间用于对第一PDCCH进行M次传输。示例性地,终端设备接收来自网络设备的第一指示信息的方式可以有多种,比如,第一指示信息可以携带在RRC信令,MAC CE信令或DCI信令中,第一指示信息的具体体现形式也可以有多种,可以参见实施例一中有关第一指示信息的描述,此处不再赘述。
本申请实施例中,控制资源集合可以符合配置约束7,和/或,搜索空间可以符合配置约束8,也就是说,如果控制资源集合是用于第一PDCCH的M次重复传输的,那么这个控制资源集合需要满足配置约束7;如果M个搜索空间是用于第一PDCCH的M次重复传输的,那么这M个搜索空间需要满足配置约束8。
其中,控制资源集合符合配置约束7可以包括:控制资源集合对应多个激活的TCI-state;或者,控制资源集合对应多个激活的TCI-state,且控制资源集合对应的激活的TCI-state的个数等于控制资源集合关联的搜索空间包括的监听机会的个数。搜索空间符合配置约束8可以包括:搜索空间包括多个监听机会;或者,搜索空间包括多个监听机会,且搜索空间包括的监听机会的个数等于搜索空间关联的控制资源集合对应的激活的TCI-state的个数。
步骤1103,网络设备向终端设备发送第二指示信息,第二指示信息用于指示激活控制资源集合对应的一个或多个TCI-state。
相应地,步骤1104中,终端设备接收来自网络设备的第二指示信息,并激活控制资源集合对应的一个或多个TCI-state。
步骤1105,网络设备在一个控制资源集合和一个搜索空间对应的时频资源上对第一PDCCH进行M次传输。
本申请实施例中,控制资源集合可以对应的一个或M个激活的TCI-state。以控制资源集合对应M个激活的TCI-state为例,网络设备可以根据M个TCI-state,在控制资源集合和搜索空间对应的时频资源上对第一PDCCH进行M次传输。比如,搜索空间包括一个监听机会,则网络设备可以根据M个TCI-state,在控制资源集合和监听机会对应的时频资源上对第一PDCCH进行M次传输,参见图6a所示。又比如,控制资源集合对应的频域资源可以包括M个频域资源部分(M个频域资源部分与M个TCI-state一一关联),M个频域资源部分分别与上述搜索空间关联,M个频域资源部分中的每个频域资源部分和每个频域资源部分关联的搜索空间用于对第一PDCCH进行一次传输(也就是说,M个频域资源部分中的每个频域资源部分和每个频域资源部分关联的搜索空间对应一组时频资源,用于对第一PDCCH进行一次传输;M个频域资源部分和搜索空间对应M组时频资源,这M组时频资源的时域资源相同但频域资源不同),进而网络设备可以根据M个TCI-state,在相同时域资源且不同频域资源上对第一PDCCH进行M次传输,参见图6c所示。又比如,搜索空间可以包括M个监听机会(M个监听机会与M个TCI-state一一关联),M个监听机会分别与上述控制资源集合关联,M个监听机会中的每个监听机会和每个监听机会关联的控制资源集合用于对第一PDCCH进行一次传输(也就是说,M个监听机会中的每个监听机会和每个监听机会关联的控制资源集合对应一组时频资源,用于对第一PDCCH进行一次传输;M个监听机会和控制资源集合对应M组时频资源,这M组时频资源的频域资源相同但时域资源不同),进而网络设备可以根据M个TCI-state,在相同频域资源且不同时域资源上对第一PDCCH进行M次传输,参见图6d所示。又比如,控制资源集合对应的频域资源可以包括M个频域资源部分,搜索空间可以包括M个监听机会(M个监听机会与M个TCI-state一一关联,和/或,M个频域资源部分与M个TCI-state一一关联),M个频域资源部分与M个监听机会一一关联,M个频域资源部分中的每个频域资源部分和每个频域资源部分关联的监听机会用于对第一PDCCH进行一次传输,或者说,M个监听机会中的每个监听机会和每个监听机会关联的频域资源部分用于对第一PDCCH进行一次传输(也就是说,M个频域资源部分和M个监听机会对应M组时频资源,这M组时频资源的频域资源不同且时域资源不同),进而网络设备可以根据M个TCI-state,在不同频域资源且不同时域资源上对第一PDCCH进行M次传输,参见图6e所示。
其中,上述所描述的M个监听机会与M个TCI-state一一关联的方式可以有多种。在一种可能的方式中,M个监听机会与M个TCI-state根据M个TCI-state的索引和M个监听机会的时间一一关联,比如,M个TCI-state按索引从小到大或从大到小的顺序与M个监听机会按时间排序一一关联。举个例子,索引最小的TCI-state与时间最早的监听机会关联,索引最大的TCI-state与时间最晚的监听机会关联。
在又一种可能的方式中,M个监听机会与M个TCI-state根据M个TCI-state被激活的顺序和M个监听机会的时间一一关联,比如,M个TCI-state按被激活的先后顺序与M个 监听机会按时间排序一一关联。举个例子,激活顺序最靠前的TCI-state与时间最早的锦亭机会关联,激活顺序最靠后的TCI-state与时间最晚的监听机会关联。
需要说明的是,上述是以控制资源集合对应M个激活的TCI-state为例,当控制资源集合对应一个激活的TCI-state时,可以参照处理。比如,若控制资源集合对应一个激活的TCI-state,搜索空间包括一个监听机会,则网络设备可以根据该TCI-state,在控制资源集合和监听机会对应的时频资源上对第一PDCCH进行M次传输,参见图6a所示。又比如,若控制资源集合对应一个激活的TCI-state,搜索空间包括M个监听机会,则网络设备可以根据该TCI-state,在控制资源集合和M个监听机会对应的时频资源上对第一PDCCH进行M次传输,参见图6d所示。
步骤1106,终端设备在一个控制资源集合和一个搜索空间对应的时频资源上监听第一PDCCH。
示例性地,以控制资源集合对应M个激活的TCI-state为例,终端设备可以根据M个TCI-state,在控制资源集合和搜索空间对应的时频资源上接收第一PDCCH。比如,若搜索空间包括一个监听机会(此时网络设备采用图6a所示意的方式传输第一PDCCH),则终端设备在控制资源集合和监听机会对应的时频资源上接收到的信号为M个第一PDCCH信号合并后的信号,进而终端设备可以对该合并后的信号进行译码,可以理解为合并译码。又比如,若控制资源集合对应的频域资源可以包括M个频域资源部分(此时网络设备采用图6c所示意的方式传输第一PDCCH),则终端设备可以根据M个TCI-state,在M个频域资源部分和搜索空间对应的时频资源上接收M个信号,并对M个信号进行单独译码或合并译码。又比如,若搜索空间可以包括M个监听机会(此时网络设备可以采用图6d所示意的方式传输第一PDCCH),则终端设备可以根据M个TCI-state,在控制资源集合和M个监听机会对应的时频资源上接收M个信号,并对M个信号进行单独译码或合并译码。又比如,若控制资源集合对应的频域资源可以包括M个频域资源部分,搜索空间可以包括M个监听机会(此时网络设备可以采用图6e所示意的方式传输第一PDCCH),则终端设备可以根据M个TCI-state,在M个频域资源部分和M个监听机会对应的时频资源上接收M个信号,并对M个信号进行单独译码或合并译码。有关单独译码或合并译码的介绍可以参见实施例一,此处不再赘述。
采用上述方法,网络设备可以为终端设备配置一个控制资源集合和一个搜索空间,进而在一个控制资源集合和一个搜索空间对应的时频资源上对第一PDCCH进行M次传输,从而能够有效提高第一PDCCH的传输可靠性;且,终端设备接收到来自网络设备的配置信息后,可以获知一个控制资源集合和一个搜索空间用于对第一PDCCH进行M次传输,若采用单独译码的方式进行处理,则在译码成功后,可以停止盲检,避免盲检所有可能性而导致终端设备的资源消耗较大;若采用合并译码的方式进行处理,则可以有效降低盲检次数,便于节省终端设备的处理资源。
针对于上述实施例一至实施例四,需要说明的是:
(1)对于上述各个实施例的方法,可以通过以下方法来对其中的参数进行确定。
终端设备可以通过终端能力上报过程,上报是否支持上述单独译码,和/或上报是否支持上述合并译码,和/或上报所支持的译码方式。
终端设备还可以通过终端能力上报过程,上报是否支持PDCCH重复传输。比如,可 以上报是否支持PDCCH空域重复传输,和/或上报是否支持PDCCH频域重复传输,和/或上报是否支持PDCCH时域重复传输,和/或上报是否支持所述第一重复传输模式。
终端设备还可以通过终端能力上报过程,上报支持的PDCCH重复传输次数,即上述实施例中的M的值。M的取值范围可以是{1,2,3,4},或{1,2,4},或{1,2,4,8},或{2,4},或{2,3,4},或{2,4,8},或{1,2,3,4,8}。如果上报1,则说明终端设备不支持PDCCH重复传输。或者,也可以由协议来规定PDCCH重复传输次数,即上述实施例中的M的值。例如,协议可以规定M的值为{1,2,3,4,8}中的一种。又或者,网络设备可以通过RRC信令、MAC CE或DCI信令来指示M的值,这是M的取值范围可以是{1,2,3,4},或{1,2,4},或{1,2,4,8},或{2,4},或{2,3,4},或{2,4,8},或{1,2,3,4,8}。如果指示1,表示网络设备不采用PDCCH重复传输来传输PDCCH。
终端设备还可以上报一个控制资源集合关联的搜索空间的最大数量,或上报一个搜索空间关联的控制资源集合的最大数量,或上报一个搜索空间可以包括的侦听机会的最大数量,或上报一个控制资源集合可以划分的频域资源部分的最大数量,或上报一个控制资源集合可以激活的TCI-state的最大数量。对于上述任意一种,用S来表示上述最大数量,S的取值可以是2,或者4。或者,由协议来规定一个控制资源集合关联的搜索空间的最大数量,或一个搜索空间关联的控制资源集合的最大数量,或一个搜索空间可以包括的侦听机会的最大数量,或一个控制资源集合可以划分的频域资源部分的最大数量,或一个控制资源集合可以激活的TCI-state的最大数量。对于上述任意一种,用S来表示上述最大数量,S的取值可以是2,或者4。
对于以上几个实施例对应的方法,网络设备可以通过RRC、MAC CE或DCI信息指示具体采用哪一实施例对应的方法。或者,终端设备可以上报支持哪一实施例对应的方法。
(2)上述图5、图8、图9和图11中的步骤编号为执行流程的一种示例,并不构成对步骤执行的先后顺序的限制,本申请实施例中相互之间没有时序依赖关系的步骤之间没有严格的执行顺序。
(3)上述实施例一至实施例四中,侧重描述了不同实施例之间的差异,比如不同实施例之间的差异包括:实施例一中,通过M个控制资源集合和M个搜索空间来实现对第一PDCCH的M次重复传输,实施例二中,通过M个控制资源集合和一个搜索空间来实现对第一PDCCH的M次重复传输,实施例三中,通过一个控制资源集合和M个搜索空间来实现对第一PDCCH的M次重复传输,实施例四中,通过一个控制资源集合和一个搜索空间来实现对第一PDCCH的M次重复传输。除上述差异之外的其它内容,实施例一至实施例四可以相互参照。
上述主要从网络设备和终端设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,网络设备或终端设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备和网络设备进行功能单元的划分,例 如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图12示出了本申请实施例中所涉及的装置的可能的示例性框图。如图12所示,装置1200可以包括:处理单元1202和通信单元1203。处理单元1202用于对装置1200的动作进行控制管理。通信单元1203用于支持装置1200与其他设备的通信。可选地,通信单元1203也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置1200还可以包括存储单元1201,用于存储装置1200的程序代码和/或数据。
该装置1200可以为上述任一实施例中的终端设备、或者还可以为设置在终端设备中的芯片。处理单元1202可以支持装置1200执行上文中各方法示例中终端设备的动作。或者,处理单元1202主要执行方法示例中的终端设备的内部动作,通信单元1203可以支持装置1200与网络设备之间的通信。例如,通信单元1203可以用于执行图5中的步骤502、步骤504、步骤506,以及图8中的步骤802、步骤804或步骤806,以及图9中的步骤902、步骤904、步骤906,以及图11中的步骤1102、步骤1104、步骤1106。
具体地,在一个实施例中,通信单元1203用于:接收来自网络设备的配置信息,配置信息用于配置一个控制资源集合和M个搜索空间,所述控制资源集合与M个搜索空间关联;M个搜索空间中的每个搜索空间和每个搜索空间关联的所述控制资源集合用于对PDCCH进行一次传输;以及,在所述控制资源集合和M个搜索空间对应的时频资源上监听第一PDCCH;其中,M为大于1的整数。
在一种可能的设计中,所述控制资源集合符合第一预设条件,和/或,M个搜索空间符合第二预设条件。
在一种可能的设计中,所述控制资源集合符合第一预设条件包括以下一项或多项:
所述控制资源集合关联多个搜索空间;
所述控制资源集合对应多个激活的TCI-state;
所述控制资源集合对应的激活的TCI-state的个数等于所述控制资源集合关联的搜索空间的个数;
M个搜索空间符合第二预设条件包括以下一项或多项:
M个搜索空间的周期相同;
M个搜索空间的持续时间相同;
M个搜索空间对应的时域起始位置相同。
在一种可能的设计中,通信单元1203还用于:接收来自网络设备的第一指示信息,所述第一指示信息用于指示所述控制资源集合和M个搜索空间用于对第一PDCCH进行M次传输。
在一种可能的设计中,所述控制资源集合对应的频域资源包括M个频域资源部分,M个频域资源部分与M个搜索空间一一关联;M个搜索空间中的每个搜索空间和每个搜索空间关联的所述控制资源集合用于对第一PDCCH进行一次传输,包括:M个搜索空间中的每个搜索空间和每个搜索空间关联的频域资源部分用于对第一PDCCH进行一次传输。
在一种可能的设计中,所述控制资源集合对应M个激活的TCI-state;通信单元1203具体用于:根据M个激活的TCI-state,在所述控制资源集合和M个搜索空间对应的时频资源上接收第一PDCCH。
在一种可能的设计中,M个激活的TCI-state与M个搜索空间一一关联。
在一种可能的设计中,若所述控制资源集合对应M个激活的TCI-state,则通信单元1203还用于:接收来自网络设备的第二指示信息,所述第二指示信息用于指示激活所述控制资源集合对应的M个TCI-state。
在一种可能的设计中,所述第二指示信息包括以下一项或多项:
M个TCI-state的标识;
第一信息,所述第一信息用于指示激活的TCI-state的个数;
第二信息,所述第二信息用于指示激活的TCI-state的个数为多个;
第三信息,所述第三信息用于指示M个TCI-state用于同时传输第一PDCCH或者分时传输第一PDCCH。
在一种可能的设计中,所述控制资源集合和M个搜索空间对应的时频资源包括M组时频资源;其中,M个搜索空间中的每个搜索空间和每个搜索空间关联的控制资源集合对应M组时频资源中的一组时频资源;M组时频资源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资源不同;或者,M组时频资源的频域资源不同且时域资源不同。
在又一个实施例中,通信单元1203用于:接收来自网络设备的配置信息,配置信息用于配置M个控制资源集合和M个搜索空间,M个控制资源集合与M个搜索空间一一关联;M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的搜索空间用于对第一PDCCH进行一次传输;以及,在M个控制资源集合和M个搜索空间对应的时频资源上监听第一PDCCH;其中,M为大于1的整数。
在一种可能的设计中,M个控制资源集合符合第一预设条件,和/或,M个搜索空间符合第二预设条件。
在一种可能的设计中,M个控制资源集合符合第一预设条件包括:M个控制资源集合对应的频域资源相同,和/或,M个控制资源集合的DMRS加扰标识相同;
M个搜索空间符合第二预设条件包括以下一项或多项:
M个搜索空间的检测周期相同;
M个搜索空间的持续时间相同;
M个搜索空间的时域起始位置相同。
在一种可能的设计中,通信单元1203还用于:接收来自网络设备的第一指示信息,所述第一指示信息用于指示M个控制资源集合和M个搜索空间用于对所述第一PDCCH进行M次传输。
在一种可能的设计中,M个控制资源集合中的每个控制资源集合对应一个激活的TCI-state;通信单元1203具体用于:根据M个激活的TCI-state,在M个控制资源集合和M个搜索空间对应的时频资源上接收第一PDCCH。
在一种可能的设计中,M个控制资源集合和M个搜索空间对应的时频资源包括M组时频资源;其中,M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的搜索空间对应M组时频资源中的一组时频资源;M组时频资源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资源不同;或者,M组时频资源的频域资源不同且时域资源不同。
在又一个实施例中,通信单元1203用于:接收来自网络设备的配置信息,配置信息 用于配置M个控制资源集合和一个搜索空间,M个控制资源集合分别与所述搜索空间关联;M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的所述搜索空间用于对第一PDCCH进行一次传输;以及,在M个控制资源集合和所述搜索空间对应的时频资源上监听所述第一PDCCH;其中,M为大于1的整数。
在一种可能的设计中,M个控制资源集合符合第一预设条件,和/或,所述搜索空间符合第二预设条件。
在一种可能的设计中,M个控制资源集合符合第一预设条件包括以下一项或多项:
M个控制资源集合关联的搜索空间相同;
M个控制资源集合对应的频域资源相同;
M个控制资源集合的DMRS加扰标识相同;
所述搜索空间符合第二预设条件包括以下一项或多项:
所述搜索空间关联多个控制资源集合;
所述搜索空间包括多个监听机会;
所述搜索空间包括的监听机会的个数等于所述搜索空间关联的控制资源集合的个数。
在一种可能的设计中,通信单元1203还用于:接收来自网络设备的第一指示信息,第一指示信息用于指示M个控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输。
在一种可能的设计中,所述搜索空间包括M个监听机会,M个监听机会与M个控制资源集合一一关联;M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的所述搜索空间用于对第一PDCCH进行一次传输,包括:M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的监听机会用于对第一PDCCH进行一次传输。
在一种可能的设计中,M个控制资源集合中的每个控制资源集合对应一个激活的TCI-state;通信单元1203具体用于:根据M个激活的TCI-state,在M个控制资源集合和所述搜索空间对应的时频资源上接收所述第一PDCCH。
在一种可能的设计中,M个控制资源集合和所述搜索空间对应的时频资源包括M组时频资源;其中,M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的所述搜索空间对应M组时频资源中的一组时频资源;M组时频资源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资源不同;或者,M组时频资源的频域资源不同且时域资源不同。
在又一个实施例中,通信单元1203用于:接收来自网络设备的配置信息,配置信息用于配置一个控制资源集合和一个搜索空间,所述控制资源集合与所述搜索空间关联;所述控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输;以及,在所述控制资源集合和所述搜索空间对应的时频资源上监听所述第一PDCCH。
在一种可能的设计中,所述控制资源集合符合第一预设条件,和/或,所述搜索空间符合第二预设条件。
在一种可能的设计中,所述控制资源集合符合第一预设条件包括:所述控制资源集合对应多个激活的TCI-state;或,所述控制资源集合对应多个激活的TCI-state,且所述控制资源集合对应的激活的TCI-state的个数等于所述搜索空间包括的监听机会的个数;所述搜索空间符合第二预设条件包括:所述搜索空间包括多个监听机会;或,所述搜索空间包括的监听机会的个数等于所述控制资源集合对应的激活的TCI-state的个数。
在一种可能的设计中,通信单元1203还用于:接收来自网络设备的第一指示信息,所述第一指示信息用于指示所述控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输。
在一种可能的设计中,所述搜索空间包括M个监听机会,M个监听机会分别与所述控制资源集合关联;所述控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输,包括:M个监听机会中的每个监听机会和每个监听机会关联的所述控制资源集合用于对第一PDCCH进行一次传输。
在一种可能的设计中,所述控制资源集合对应的频域资源包括M个频域资源部分,M个频域资源部分分别与所述搜索空间关联;所述控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输,包括:M个频域资源部分中的每个频域资源部分和每个频域资源部分关联的搜索空间用于对第一PDCCH进行一次传输。
在一种可能的设计中,所述控制资源集合对应M个激活的TCI-state;通信单元1203具体用于:根据M个激活的TCI-state,在所述控制资源集合和所述搜索空间对应的时频资源上接收所述第一PDCCH。
在一种可能的设计中,若所述控制资源集合对应M个激活的TCI-state,则所述方法还包括:终端设备接收来自网络设备的第二指示信息,所述第二指示信息用于指示激活所述控制资源集合对应的M个TCI-state。
在一种可能的设计中,所述第二指示信息包括以下一项或多项:
M个TCI-state的标识;
第一信息,所述第一信息用于指示激活的TCI-state的个数;
第二信息,所述第二信息用于指示激活的TCI-state的个数为多个;
第三信息,所述第三信息用于指示M个TCI-state用于同时传输第一PDCCH或者分时传输第一PDCCH。
在一种可能的设计中,所述控制资源集合和所述搜索空间对应的时频资源包括M组时频资源,M组时频资源中的每组时频资源用于对第一PDCCH进行一次传输;M组时频资源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资源不同;或者,M组时频资源的频域资源不同且时域资源不同。
该装置1200还可以为上述任一实施例中的网络设备、或者还可以为设置在网络设备中的芯片。处理单元1202可以支持装置1200执行上文中各方法示例中网络设备的动作。或者,处理单元1202主要执行方法示例中的网络设备的内部动作,通信单元1203可以支持装置1200与终端设备之间的通信。例如,通信单元1203可以用于执行图5中的步骤501、步骤503、步骤505,以及图8中的步骤801、步骤803或步骤805,以及图9中的步骤901、步骤903、步骤905,以及图11中的步骤1101、步骤1103、步骤1105。
具体地,在一个实施例中,通信单元1203用于:向终端设备发送配置信息,配置信息用于配置一个控制资源集合和M个搜索空间,所述控制资源集合与M个搜索空间关联;M个搜索空间中的每个搜索空间和每个搜索空间关联的所述控制资源集合用于对第一PDCCH进行一次传输;以及,在所述控制资源集合和M个搜索空间对应的时频资源上对第一PDCCH进行M次传输;其中,M为大于1的整数。
在一种可能的设计中,所述控制资源集合符合第一预设条件,和/或,M个搜索空间符合第二预设条件。
在一种可能的设计中,所述控制资源集合符合第一预设条件包括以下一项或多项:
所述控制资源集合关联多个搜索空间;
所述控制资源集合对应多个激活的TCI-state;
所述控制资源集合对应的激活的TCI-state的个数等于所述控制资源集合关联的搜索空间的个数;
M个搜索空间符合第二预设条件包括以下一项或多项:
M个搜索空间的周期相同;
M个搜索空间的持续时间相同;
M个搜索空间的时域起始位置相同。
在一种可能的设计中,通信单元1203还用于:向终端设备发送第一指示信息,所述第一指示信息用于指示所述控制资源集合和M个搜索空间用于对第一PDCCH进行M次传输。
在一种可能的设计中,所述控制资源集合对应的频域资源包括M个频域资源部分,M个频域资源部分与M个搜索空间一一关联;M个搜索空间中的每个搜索空间和每个搜索空间关联的控制资源集合用于对第一PDCCH进行一次传输,包括:M个搜索空间中的每个搜索空间和每个搜索空间关联的频域资源部分用于对第一PDCCH进行一次传输。
在一种可能的设计中,所述控制资源集合对应M个激活的TCI-state;通信单元1203具体用于:根据M个激活的TCI-state,在所述控制资源集合和M个搜索空间对应的时频资源上对第一PDCCH进行传输。
在一种可能的设计中,M个激活的TCI-state与M个搜索空间一一关联。
在一种可能的设计中,若所述控制资源集合对应M个激活的TCI-state,则通信单元1203还用于:向终端设备发送第二指示信息,所述第二指示信息用于指示激活所述控制资源集合对应的M个TCI-state。
在一种可能的设计中,所述第二指示信息包括以下一项或多项:
M个TCI-state的标识;
第一信息,所述第一信息用于指示激活的TCI-state的个数;
第二信息,所述第二信息用于指示激活的TCI-state的个数为多个;
第三信息,所述第三信息用于指示M个TCI-state用于同时传输第一PDCCH或者分时传输第一PDCCH。
在一种可能的设计中,所述控制资源集合和M个搜索空间对应的时频资源包括M组时频资源;其中,M个搜索空间中的每个搜索空间和每个搜索空间关联的所述控制资源集合对应M组时频资源中的一组时频资源;M组时频资源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资源不同;或者,M组时频资源的频域资源不同且时域资源不同。
在又一个实施例中,通信单元1203用于:向终端设备发送配置信息,配置信息用于配置M个控制资源集合和M个搜索空间,M个控制资源集合与M个搜索空间一一关联;M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的搜索空间用于对第一PDCCH进行一次传输;以及,在M个控制资源集合和M个搜索空间对应的时频资源上对所述第一PDCCH进行M次传输;其中,M为大于1的整数。
在一种可能的设计中,M个控制资源集合符合第一预设条件,和/或,M个搜索空间 符合第二预设条件。
在一种可能的设计中,M个控制资源集合符合第一预设条件包括:M个控制资源集合对应的频域资源相同,和/或,M个控制资源集合的DMRS加扰标识相同;
M个搜索空间符合第二预设条件包括以下一项或多项:
M个搜索空间的检测周期相同;
M个搜索空间的持续时间相同;
M个搜索空间的时域起始位置相同。
在一种可能的设计中,通信单元1203还用于:向终端设备发送第一指示信息,所述第一指示信息用于指示M个控制资源集合和M个搜索空间用于对所述第一PDCCH进行M次传输。
在一种可能的设计中,M个控制资源集合中的每个控制资源集合对应一个激活的TCI-state;通信单元1203具体用于:根据M个激活的TCI-state,在M个控制资源集合和M个搜索空间对应的时频资源上对所述第一PDCCH进行传输。
在一种可能的设计中,M个控制资源集合和M个搜索空间对应的时频资源包括M组时频资源;其中,M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的搜索空间对应M组时频资源中的一组时频资源;M组时频资源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资源不同;或者,M组时频资源的频域资源不同且时域资源不同。
在又一个实施例中,通信单元1203用于:向终端设备发送配置信息,配置信息用于配置M个控制资源集合和一个搜索空间,M个控制资源集合分别与所述搜索空间关联;M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的所述搜索空间用于对第一PDCCH进行一次传输;以及,在M个控制资源集合和所述搜索空间对应的时频资源上对所述第一PDCCH进行M次传输;其中,M为大于1的整数。
在一种可能的设计中,M个控制资源集合符合第一预设条件,和/或,所述搜索空间符合第二预设条件。
在一种可能的设计中,M个控制资源集合符合第一预设条件包括以下一项或多项:
M个控制资源集合关联的搜索空间相同;
M个控制资源集合对应的频域资源相同;
M个控制资源集合的DMRS加扰标识相同;
所述搜索空间符合第二预设条件包括以下一项或多项:
所述搜索空间关联多个控制资源集合;
所述搜索空间包括多个监听机会;
所述搜索空间包括的监听机会的个数等于所述搜索空间关联的控制资源集合的个数。
在一种可能的设计中,通信单元1203还用于:向终端设备发送第一指示信息,所述第一指示信息用于指示M个控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输。
在一种可能的设计中,所述搜索空间包括M个监听机会,M个监听机会与M个控制资源集合一一关联;M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的所述搜索空间用于对第一PDCCH进行一次传输,包括:M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的监听机会用于对第一PDCCH进行一次传输。
在一种可能的设计中,M个控制资源集合中的每个控制资源集合对应一个激活的TCI-state;通信单元1203具体用于:根据M个激活的TCI-state,在M个控制资源集合和所述搜索空间对应的时频资源上对所述第一PDCCH进行传输。
在一种可能的设计中,M个控制资源集合和所述搜索空间对应的时频资源包括M组时频资源;其中,M个控制资源集合中的每个控制资源集合和每个控制资源集合关联的所述搜索空间对应M组时频资源中的一组时频资源;M组时频资源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资源不同;或者,M组时频资源的频域资源不同且时域资源不同。
在又一个实施例中,通信单元1203用于:向终端设备发送配置信息,配置信息用于配置一个控制资源集合和一个搜索空间,所述控制资源集合与所述搜索空间关联;以及,在所述控制资源集合和所述搜索空间对应的时频资源上对第一PDCCH进行M次传输。
在一种可能的设计中,所述控制资源集合符合第一预设条件,和/或,所述搜索空间符合第二预设条件。
在一种可能的设计中,所述控制资源集合符合第一预设条件包括:所述控制资源集合对应多个激活的TCI-state;或,所述控制资源集合对应多个激活的TCI-state,且所述控制资源集合对应的激活的TCI-state的个数等于所述搜索空间包括的监听机会的个数;所述搜索空间符合第二预设条件包括:所述搜索空间包括多个监听机会;或,所述搜索空间包括多个监听机会,且所述搜索空间包括的监听机会的个数等于所述控制资源集合对应的激活的TCI-state的个数。
在一种可能的设计中,通信单元1203还用于:向终端设备发送第一指示信息,所述第一指示信息用于指示所述控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输。
在一种可能的设计中,所述搜索空间包括M个监听机会,M个监听机会分别与所述控制资源集合关联;M个监听机会中的每个监听机会和每个监听机会关联的所述控制资源集合用于对第一PDCCH进行一次传输。
在一种可能的设计中,所述控制资源集合对应的频域资源包括M个频域资源部分,M个频域资源部分分别与所述搜索空间关联;M个频域资源部分中的每个频域资源部分和每个频域资源部分关联的搜索空间用于对第一PDCCH进行一次传输。
在一种可能的设计中,所述控制资源集合对应M个激活的TCI-state;通信单元1203具体用于:根据M个激活的TCI-state,在所述控制资源集合和所述搜索空间对应的时频资源上传输所述第一PDCCH。
在一种可能的设计中,若所述控制资源集合对应M个激活的TCI-state,则所述方法还包括:网络设备向终端设备发送第二指示信息,所述第二指示信息用于指示激活所述控制资源集合对应的M个TCI-state。
在一种可能的设计中,所述第二指示信息包括以下一项或多项:
M个TCI-state的标识;
第一信息,所述第一信息用于指示激活的TCI-state的个数;
第二信息,所述第二信息用于指示激活的TCI-state的个数为多个;
第三信息,所述第三信息用于指示M个TCI-state用于同时传输第一PDCCH或者分时传输第一PDCCH。
在一种可能的设计中,所述控制资源集合和所述搜索空间对应的时频资源包括M组时频资源,M组时频资源中的每组时频资源用于对第一PDCCH进行一次传输;M组时频资源完全相同;或者,M组时频资源的时域资源相同但频域资源不同;或者,M组时频资源的频域资源相同但时域资源不同;或者,M组时频资源的频域资源不同且时域资源不同。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
请参考图13,其为本申请实施例提供的一种终端设备的结构示意图。其可以为以上实施例中的终端设备,用于实现以上实施例中终端设备的操作。如图13所示,该终端设备包括:天线1310、射频部分1320、信号处理部分1330。天线1310与射频部分1320连接。在下行方向上,射频部分1320通过天线1310接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分1330进行处理。在上行方向上,信号处理部分1330对终端设备的信息进行处理,并发送给射频部分1320,射频部分1320对终端设备的信息进行处理后经过天线1310发送给网络设备。
信号处理部分1330可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端设备操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端设备相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。
调制解调子系统可以包括一个或多个处理元件1331,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件1332和接口电路1333。存储 元件1332用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件1332中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路1333用于与其它子系统通信。
该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图12中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图12中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。接口电路可以通过收发器实现,收发器可以包括接收器和/或发送器,其中,接收器用于实现接收操作,比如接收信号,发送器用于实现发送操作,比如发送信号;接口电路的功能可以和图12中所描述的通信单元的功能相同。
图13所示的终端设备能够实现图5或图8或图9或图11所示意的方法实施例中涉及终端设备的各个过程。图13所示的终端设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此 处适当省略详述描述。
请参考图14,其为本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备的操作。如图14所示,该网络设备包括:天线1401、射频装置1402、基带装置1403。天线1401与射频装置1402连接。在上行方向上,射频装置1402通过天线1401接收终端设备发送的信息,将终端设备发送的信息发送给基带装置1403进行处理。在下行方向上,基带装置1403对终端设备的信息进行处理,并发送给射频装置1402,射频装置1402对终端设备的信息进行处理后经过天线1401发送给终端设备。
基带装置1403可以包括一个或多个处理元件14031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置1403还可以包括存储元件14032和接口14033,存储元件14032用于存储程序和数据;接口14033用于与射频装置1402交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置1403,例如,以上用于网络设备的装置可以为基带装置1403上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图12中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图12中所描述的存储单元的 功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。接口电路可以通过收发器实现,收发器可以包括接收器和/或发送器,其中,接收器用于实现接收操作,比如接收信号,发送器用于实现发送操作,比如发送信号;接口电路的功能可以和图12中所描述的通信单元的功能相同。
图14所示的网络设备能够实现图5或图8或图9或图11所示意的方法实施例中涉及网络设备的各个过程。图14所示的网络设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (70)

  1. 一种通信方法,其特征在于,所述方法包括:
    接收来自网络设备的配置信息,所述配置信息用于配置一个控制资源集合和M个搜索空间,所述控制资源集合与所述M个搜索空间关联;所述M个搜索空间中的每个搜索空间和所述每个搜索空间关联的所述控制资源集合用于对第一物理下行共享信道PDCCH进行一次传输;
    在所述控制资源集合和所述M个搜索空间对应的时频资源上监听所述第一PDCCH;
    其中,M为大于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述控制资源集合符合第一预设条件,和/或,所述M个搜索空间符合第二预设条件。
  3. 根据权利要求2所述的方法,其特征在于,所述控制资源集合符合第一预设条件包括以下一项或多项:
    所述控制资源集合关联多个搜索空间;
    所述控制资源集合对应多个激活的传输配置编号状态TCI-state;
    所述控制资源集合对应的激活的TCI-state的个数等于所述控制资源集合关联的搜索空间的个数;
    所述M个搜索空间符合第二预设条件包括以下一项或多项:
    所述M个搜索空间的周期相同;
    所述M个搜索空间的持续时间相同;
    所述M个搜索空间对应的时域起始位置相同。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,在所述控制资源集合和所述M个搜索空间对应的时频资源上监听所述第一PDCCH之前,还包括:
    接收来自网络设备的第一指示信息,所述第一指示信息用于指示所述控制资源集合和所述M个搜索空间用于对第一PDCCH进行M次传输。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述控制资源集合对应的频域资源包括M个频域资源部分,所述M个频域资源部分与所述M个搜索空间一一关联;
    所述M个搜索空间中的每个搜索空间和所述每个搜索空间关联的所述控制资源集合用于对第一PDCCH进行一次传输,包括:所述M个搜索空间中的每个搜索空间和所述每个搜索空间关联的频域资源部分用于对第一PDCCH进行一次传输。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述控制资源集合对应M个激活的TCI-state;
    在所述控制资源集合和所述M个搜索空间对应的时频资源上监听所述第一PDCCH,包括:
    根据所述M个激活的TCI-state,在所述控制资源集合和所述M个搜索空间对应的时频资源上接收所述第一PDCCH。
  7. 根据权利要求6所述的方法,其特征在于,所述M个激活的TCI-state与所述M个搜索空间一一关联。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,若所述控制资源集合对 应M个激活的TCI-state,则所述方法还包括:
    接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示激活所述控制资源集合对应的M个TCI-state。
  9. 根据权利要求8所述的方法,其特征在于,所述第二指示信息包括以下一项或多项:
    所述M个TCI-state的标识;
    第一信息,所述第一信息用于指示激活的TCI-state的个数;
    第二信息,所述第二信息用于指示激活的TCI-state的个数为多个;
    第三信息,所述第三信息用于指示所述M个TCI-state用于同时传输第一PDCCH或者分时传输第一PDCCH。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述控制资源集合和所述M个搜索空间对应的时频资源包括M组时频资源;其中,所述M个搜索空间中的每个搜索空间和所述每个搜索空间关联的控制资源集合对应所述M组时频资源中的一组时频资源;
    所述M组时频资源完全相同;或者,
    所述M组时频资源的时域资源相同但频域资源不同;或者,
    所述M组时频资源的频域资源相同但时域资源不同;或者,
    所述M组时频资源的频域资源不同且时域资源不同。
  11. 一种通信方法,其特征在于,所述方法包括:
    向终端设备发送配置信息,所述配置信息用于配置一个控制资源集合和M个搜索空间,所述控制资源集合与所述M个搜索空间关联;所述M个搜索空间中的每个搜索空间和所述每个搜索空间关联的所述控制资源集合用于对第一PDCCH进行一次传输;
    在所述控制资源集合和所述M个搜索空间对应的时频资源上对第一PDCCH进行M次传输;
    其中,M为大于1的整数。
  12. 根据权利要求11所述的方法,其特征在于,所述控制资源集合符合第一预设条件,和/或,所述M个搜索空间符合第二预设条件。
  13. 根据权利要求12所述的方法,其特征在于,所述控制资源集合符合第一预设条件包括以下一项或多项:
    所述控制资源集合关联多个搜索空间;
    所述控制资源集合对应多个激活的TCI-state;
    所述控制资源集合对应的激活的TCI-state的个数等于所述控制资源集合关联的搜索空间的个数;
    所述M个搜索空间符合第二预设条件包括以下一项或多项:
    所述M个搜索空间的周期相同;
    所述M个搜索空间的持续时间相同;
    所述M个搜索空间的时域起始位置相同。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,在所述控制资源集合和所述M个搜索空间对应的时频资源上对第一PDCCH进行M次传输之前,还包括:
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述控制资源集合和 所述M个搜索空间用于对第一PDCCH进行M次传输。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述控制资源集合对应的频域资源包括M个频域资源部分,所述M个频域资源部分与所述M个搜索空间一一关联;
    所述M个搜索空间中的每个搜索空间和所述每个搜索空间关联的所述控制资源集合用于对第一PDCCH进行一次传输,包括:所述M个搜索空间中的每个搜索空间和所述每个搜索空间关联的频域资源部分用于对第一PDCCH进行一次传输。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述控制资源集合对应M个激活的TCI-state;
    在所述控制资源集合和所述M个搜索空间对应的时频资源上对第一PDCCH进行M次传输,包括:
    根据所述M个激活的TCI-state,在所述控制资源集合和所述M个搜索空间对应的时频资源上对第一PDCCH进行传输。
  17. 根据权利要求16所述的方法,其特征在于,所述M个激活的TCI-state与所述M个搜索空间一一关联。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,若所述控制资源集合对应M个激活的TCI-state,则所述方法还包括:
    向所述终端设备发送第二指示信息,所述第二指示信息用于指示激活所述控制资源集合对应的M个TCI-state。
  19. 根据权利要求18所述的方法,其特征在于,所述第二指示信息包括以下一项或多项:
    所述M个TCI-state的标识;
    第一信息,所述第一信息用于指示激活的TCI-state的个数;
    第二信息,所述第二信息用于指示激活的TCI-state的个数为多个;
    第三信息,所述第三信息用于指示所述M个TCI-state用于同时传输第一PDCCH或者分时传输第一PDCCH。
  20. 根据权利要求11至19中任一项所述的方法,其特征在于,所述控制资源集合和所述M个搜索空间对应的时频资源包括M组时频资源;其中,所述M个搜索空间中的每个搜索空间和所述每个搜索空间关联的控制资源集合对应所述M组时频资源中的一组时频资源;
    所述M组时频资源完全相同;或者,
    所述M组时频资源的时域资源相同但频域资源不同;或者,
    所述M组时频资源的频域资源相同但时域资源不同;或者,
    所述M组时频资源的频域资源不同且时域资源不同。
  21. 一种通信方法,其特征在于,所述方法包括:
    接收来自网络设备的配置信息,所述配置信息用于配置M个控制资源集合和M个搜索空间,所述M个控制资源集合与所述M个搜索空间一一关联;所述M个控制资源集合中的每个控制资源集合和所述每个控制资源集合关联的搜索空间用于对第一PDCCH进行一次传输;
    在所述M个控制资源集合和所述M个搜索空间对应的时频资源上监听所述第一 PDCCH;
    其中,M为大于1的整数。
  22. 根据权利要求21所述的方法,其特征在于,所述M个控制资源集合符合第一预设条件,和/或,所述M个搜索空间符合第二预设条件。
  23. 根据权利要求22所述的方法,其特征在于,所述M个控制资源集合符合第一预设条件包括:所述M个控制资源集合对应的频域资源相同,和/或,所述M个控制资源集合的DMRS加扰标识相同;
    所述M个搜索空间符合第二预设条件包括以下一项或多项:
    所述M个搜索空间的检测周期相同;
    所述M个搜索空间的持续时间相同;
    所述M个搜索空间的时域起始位置相同。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,在所述M个控制资源集合和所述M个搜索空间对应的时频资源上监听所述第一PDCCH之前,还包括:
    接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述M个控制资源集合和所述M个搜索空间用于对所述第一PDCCH进行M次传输。
  25. 根据权利要求21至24中任一项所述的方法,其特征在于,所述M个控制资源集合中的每个控制资源集合对应一个激活的TCI-state;
    在所述M个控制资源集合和所述M个搜索空间对应的时频资源上监听所述第一PDCCH,包括:
    根据M个激活的TCI-state,在所述M个控制资源集合和所述M个搜索空间对应的时频资源上接收所述第一PDCCH。
  26. 根据权利要求21至25中任一项所述的方法,其特征在于,所述M个控制资源集合和所述M个搜索空间对应的时频资源包括M组时频资源;其中,所述M个控制资源集合中的每个控制资源集合和所述每个控制资源集合关联的搜索空间对应所述M组时频资源中的一组时频资源;
    所述M组时频资源完全相同;或者,
    所述M组时频资源的时域资源相同但频域资源不同;或者,
    所述M组时频资源的频域资源相同但时域资源不同;或者,
    所述M组时频资源的频域资源不同且时域资源不同。
  27. 一种通信方法,其特征在于,所述方法包括:
    向终端设备发送配置信息,所述配置信息用于配置M个控制资源集合和M个搜索空间,所述M个控制资源集合与所述M个搜索空间一一关联;所述M个控制资源集合中的每个控制资源集合和所述每个控制资源集合关联的搜索空间用于对第一PDCCH进行一次传输;
    在所述M个控制资源集合和所述M个搜索空间对应的时频资源上对所述第一PDCCH进行M次传输;
    其中,M为大于1的整数。
  28. 根据权利要求27所述的方法,其特征在于,所述M个控制资源集合符合第一预设条件,和/或,所述M个搜索空间符合第二预设条件。
  29. 根据权利要求28所述的方法,其特征在于,所述M个控制资源集合符合第一预 设条件包括:所述M个控制资源集合对应的频域资源相同,和/或,所述M个控制资源集合的DMRS加扰标识相同;
    所述M个搜索空间符合第二预设条件包括以下一项或多项:
    所述M个搜索空间的检测周期相同;
    所述M个搜索空间的持续时间相同;
    所述M个搜索空间的时域起始位置相同。
  30. 根据权利要求27至29中任一项所述的方法,其特征在于,在所述M个控制资源集合和所述M个搜索空间对应的时频资源上对所述第一PDCCH进行M次传输之前,还包括:
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述M个控制资源集合和所述M个搜索空间用于对所述第一PDCCH进行M次传输。
  31. 根据权利要求27至30中任一项所述的方法,其特征在于,所述M个控制资源集合中的每个控制资源集合对应一个激活的TCI-state;
    在所述M个控制资源集合和所述M个搜索空间对应的时频资源上对所述第一PDCCH进行M次传输,包括:
    根据M个激活的TCI-state,在所述M个控制资源集合和所述M个搜索空间对应的时频资源上对所述第一PDCCH进行传输。
  32. 根据权利要求27至31中任一项所述的方法,其特征在于,所述M个控制资源集合和所述M个搜索空间对应的时频资源包括M组时频资源;其中,所述M个控制资源集合中的每个控制资源集合和所述每个控制资源集合关联的搜索空间对应所述M组时频资源中的一组时频资源;
    所述M组时频资源完全相同;或者,
    所述M组时频资源的时域资源相同但频域资源不同;或者,
    所述M组时频资源的频域资源相同但时域资源不同;或者,
    所述M组时频资源的频域资源不同且时域资源不同。
  33. 一种通信方法,其特征在于,所述方法包括:
    接收来自网络设备的配置信息,所述配置信息用于配置M个控制资源集合和一个搜索空间,所述M个控制资源集合分别与所述搜索空间关联;所述M个控制资源集合中的每个控制资源集合和所述每个控制资源集合关联的所述搜索空间用于对第一PDCCH进行一次传输;
    在所述M个控制资源集合和所述搜索空间对应的时频资源上监听所述第一PDCCH;
    其中,M为大于1的整数。
  34. 根据权利要求33所述的方法,其特征在于,所述M个控制资源集合符合第一预设条件,和/或,所述搜索空间符合第二预设条件。
  35. 根据权利要求34所述的方法,其特征在于,所述M个控制资源集合符合第一预设条件包括以下一项或多项:
    所述M个控制资源集合关联的搜索空间相同;
    所述M个控制资源集合对应的频域资源相同;
    所述M个控制资源集合的DMRS加扰标识相同;
    所述搜索空间符合第二预设条件包括以下一项或多项:
    所述搜索空间关联多个控制资源集合;
    所述搜索空间包括多个监听机会;
    所述搜索空间包括的监听机会的个数等于所述搜索空间关联的控制资源集合的个数。
  36. 根据权利要求33所述的方法,其特征在于,在所述M个控制资源集合和所述搜索空间对应的时频资源上监听所述第一PDCCH之前,还包括:
    接收来自网络设备的第一指示信息,所述第一指示信息用于指示所述M个控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输。
  37. 根据权利要求33至36中任一项所述的方法,其特征在于,所述搜索空间包括M个监听机会,所述M个监听机会与所述M个控制资源集合一一关联;
    所述M个控制资源集合中的每个控制资源集合和所述每个控制资源集合关联的所述搜索空间用于对第一PDCCH进行一次传输,包括:所述M个控制资源集合中的每个控制资源集合和所述每个控制资源集合关联的监听机会用于对第一PDCCH进行一次传输。
  38. 根据权利要求33至37中任一项所述的方法,其特征在于,所述M个控制资源集合中的每个控制资源集合对应一个激活的TCI-state;
    在所述M个控制资源集合和所述搜索空间对应的时频资源上监听所述第一PDCCH,包括:
    根据M个激活的TCI-state,在所述M个控制资源集合和所述搜索空间对应的时频资源上接收所述第一PDCCH。
  39. 根据权利要求33至38中任一项所述的方法,其特征在于,所述M个控制资源集合和所述搜索空间对应的时频资源包括M组时频资源;其中,所述M个控制资源集合中的每个控制资源集合和所述每个控制资源集合关联的所述搜索空间对应所述M组时频资源中的一组时频资源;
    所述M组时频资源完全相同;或者,
    所述M组时频资源的时域资源相同但频域资源不同;或者,
    所述M组时频资源的频域资源相同但时域资源不同;或者,
    所述M组时频资源的频域资源不同且时域资源不同。
  40. 一种通信方法,其特征在于,所述方法包括:
    向终端设备发送配置信息,所述配置信息用于配置M个控制资源集合和一个搜索空间,所述M个控制资源集合分别与所述搜索空间关联;所述M个控制资源集合中的每个控制资源集合和所述每个控制资源集合关联的所述搜索空间用于对第一PDCCH进行一次传输;
    在所述M个控制资源集合和所述搜索空间对应的时频资源上对所述第一PDCCH进行M次传输;
    其中,M为大于1的整数。
  41. 根据权利要求40所述的方法,其特征在于,所述M个控制资源集合符合第一预设条件,和/或,所述搜索空间符合第二预设条件。
  42. 根据权利要求41所述的方法,其特征在于,所述M个控制资源集合符合第一预设条件包括以下一项或多项:
    所述M个控制资源集合关联的搜索空间相同;
    所述M个控制资源集合对应的频域资源相同;
    所述M个控制资源集合的DMRS加扰标识相同;
    所述搜索空间符合第二预设条件包括以下一项或多项:
    所述搜索空间关联多个控制资源集合;
    所述搜索空间包括多个监听机会;
    所述搜索空间包括的监听机会的个数等于所述搜索空间关联的控制资源集合的个数。
  43. 根据权利要求40至42中任一项所述的方法,其特征在于,在所述M个控制资源集合和所述搜索空间对应的时频资源上对第一PDCCH进行M次传输之前,还包括:
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述M个控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输。
  44. 根据权利要求40至43中任一项所述的方法,其特征在于,所述搜索空间包括M个监听机会,所述M个监听机会与所述M个控制资源集合一一关联;
    所述M个控制资源集合中的每个控制资源集合和所述每个控制资源集合关联的所述搜索空间用于对第一PDCCH进行一次传输,包括:所述M个控制资源集合中的每个控制资源集合和所述每个控制资源集合关联的监听机会用于对第一PDCCH进行一次传输。
  45. 根据权利要求40至44中任一项所述的方法,其特征在于,所述M个控制资源集合中的每个控制资源集合对应一个激活的TCI-state;
    在所述M个控制资源集合和所述搜索空间对应的时频资源上对第一PDCCH进行M次传输,包括:
    根据M个激活的TCI-state,在所述M个控制资源集合和所述搜索空间对应的时频资源上对所述第一PDCCH进行传输。
  46. 根据权利要求40至45中任一项所述的方法,其特征在于,所述M个控制资源集合和所述搜索空间对应的时频资源包括M组时频资源;其中,所述M个控制资源集合中的每个控制资源集合和所述每个控制资源集合关联的所述搜索空间对应所述M组时频资源中的一组时频资源;
    所述M组时频资源完全相同;或者,
    所述M组时频资源的时域资源相同但频域资源不同;或者,
    所述M组时频资源的频域资源相同但时域资源不同;或者,
    所述M组时频资源的频域资源不同且时域资源不同。
  47. 一种通信方法,其特征在于,所述方法包括:
    接收来自网络设备的配置信息,所述配置信息用于配置一个控制资源集合和一个搜索空间,所述控制资源集合与所述搜索空间关联;所述控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输;
    在所述控制资源集合和所述搜索空间对应的时频资源上监听所述第一PDCCH。
  48. 根据权利要求47所述的方法,其特征在于,所述控制资源集合符合第一预设条件,和/或,所述搜索空间符合第二预设条件。
  49. 根据权利要求48所述的方法,其特征在于,所述控制资源集合符合第一预设条件包括:所述控制资源集合对应多个激活的TCI-state;或,所述控制资源集合对应多个激活的TCI-state,且所述控制资源集合对应的激活的TCI-state的个数等于所述搜索空间包括的监听机会的个数;
    所述搜索空间符合第二预设条件包括:所述搜索空间包括多个监听机会;或,所述搜索空间包括的监听机会的个数等于所述控制资源集合对应的激活的TCI-state的个数。
  50. 根据权利要求47至49中任一项所述的方法,其特征在于,在所述控制资源集合和所述搜索空间对应的时频资源上监听所述第一PDCCH之前,还包括:
    接收来自网络设备的第一指示信息,所述第一指示信息用于指示所述控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输。
  51. 根据权利要求47至50中任一项所述的方法,其特征在于,所述搜索空间包括M个监听机会,所述M个监听机会分别与所述控制资源集合关联;
    所述控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输,包括:所述M个监听机会中的每个监听机会和所述每个监听机会关联的所述控制资源集合用于对第一PDCCH进行一次传输。
  52. 根据权利要求47至51中任一项所述的方法,其特征在于,所述控制资源集合对应的频域资源包括M个频域资源部分,所述M个频域资源部分分别与所述搜索空间关联;
    所述控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输,包括:所述M个频域资源部分中的每个频域资源部分和所述每个频域资源部分关联的搜索空间用于对第一PDCCH进行一次传输。
  53. 根据权利要求47至52中任一项所述的方法,其特征在于,所述控制资源集合对应M个激活的TCI-state;
    在所述控制资源集合和所述搜索空间对应的时频资源上监听所述第一PDCCH,包括:
    根据所述M个激活的TCI-state,在所述控制资源集合和所述搜索空间对应的时频资源上接收所述第一PDCCH。
  54. 根据权利要求47至53中任一项所述的方法,其特征在于,若所述控制资源集合对应M个激活的TCI-state,则所述方法还包括:
    接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示激活所述控制资源集合对应的M个TCI-state。
  55. 根据权利要求54所述的方法,其特征在于,所述第二指示信息包括以下一项或多项:
    所述M个TCI-state的标识;
    第一信息,所述第一信息用于指示激活的TCI-state的个数;
    第二信息,所述第二信息用于指示激活的TCI-state的个数为多个;
    第三信息,所述第三信息用于指示所述M个TCI-state用于同时传输第一PDCCH或者分时传输第一PDCCH。
  56. 根据权利要求47至55中任一项所述的方法,其特征在于,所述控制资源集合和所述搜索空间对应的时频资源包括M组时频资源,所述M组时频资源中的每组时频资源用于对第一PDCCH进行一次传输;
    所述M组时频资源完全相同;或者,
    所述M组时频资源的时域资源相同但频域资源不同;或者,
    所述M组时频资源的频域资源相同但时域资源不同;或者,
    所述M组时频资源的频域资源不同且时域资源不同。
  57. 一种通信方法,其特征在于,所述方法包括:
    向终端设备发送配置信息,所述配置信息用于配置一个控制资源集合和一个搜索空间,所述控制资源集合与所述搜索空间关联;
    在所述控制资源集合和所述搜索空间对应的时频资源上对第一PDCCH进行M次传输。
  58. 根据权利要求57所述的方法,其特征在于,所述控制资源集合符合第一预设条件,和/或,所述搜索空间符合第二预设条件。
  59. 根据权利要求58所述的方法,其特征在于,所述控制资源集合符合第一预设条件包括:所述控制资源集合对应多个激活的TCI-state;或,所述控制资源集合对应多个激活的TCI-state,且所述控制资源集合对应的激活的TCI-state的个数等于所述搜索空间包括的监听机会的个数;
    所述搜索空间符合第二预设条件包括:所述搜索空间包括多个监听机会;或,所述搜索空间包括多个监听机会,且所述搜索空间包括的监听机会的个数等于所述控制资源集合对应的激活的TCI-state的个数。
  60. 根据权利要求57至59中任一项所述的方法,其特征在于,在所述控制资源集合和所述搜索空间对应的时频资源上对第一PDCCH进行M次传输之前,还包括:
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述控制资源集合和所述搜索空间用于对第一PDCCH进行M次传输。
  61. 根据权利要求57至60中任一项所述的方法,其特征在于,所述搜索空间包括M个监听机会,所述M个监听机会分别与所述控制资源集合关联;
    所述M个监听机会中的每个监听机会和所述每个监听机会关联的所述控制资源集合用于对第一PDCCH进行一次传输。
  62. 根据权利要求57至61中任一项所述的方法,其特征在于,所述控制资源集合对应的频域资源包括M个频域资源部分,所述M个频域资源部分分别与所述搜索空间关联;
    所述M个频域资源部分中的每个频域资源部分和所述每个频域资源部分关联的搜索空间用于对第一PDCCH进行一次传输。
  63. 根据权利要求57至62中任一项所述的方法,其特征在于,所述控制资源集合对应M个激活的TCI-state;
    在所述控制资源集合和所述搜索空间对应的时频资源上对第一PDCCH进行M次传输,包括:
    根据所述M个激活的TCI-state,在所述控制资源集合和所述搜索空间对应的时频资源上传输所述第一PDCCH。
  64. 根据权利要求57至63中任一项所述的方法,其特征在于,若所述控制资源集合对应M个激活的TCI-state,则所述方法还包括:
    向所述终端设备发送第二指示信息,所述第二指示信息用于指示激活所述控制资源集合对应的M个TCI-state。
  65. 根据权利要求64所述的方法,其特征在于,所述第二指示信息包括以下一项或多项:
    所述M个TCI-state的标识;
    第一信息,所述第一信息用于指示激活的TCI-state的个数;
    第二信息,所述第二信息用于指示激活的TCI-state的个数为多个;
    第三信息,所述第三信息用于指示所述M个TCI-state用于同时传输第一PDCCH或者分时传输第一PDCCH。
  66. 根据权利要求57至65中任一项所述的方法,其特征在于,所述控制资源集合和 所述搜索空间对应的时频资源包括M组时频资源,所述M组时频资源中的每组时频资源用于对第一PDCCH进行一次传输;
    所述M组时频资源完全相同;或者,
    所述M组时频资源的时域资源相同但频域资源不同;或者,
    所述M组时频资源的频域资源相同但时域资源不同;或者,
    所述M组时频资源的频域资源不同且时域资源不同。
  67. 一种通信装置,其特征在于,包括处理器,收发器和存储器;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现如权利要求1至10中任一项所述的方法,或者如权利要求11至20中任一项所述的方法,或者如权利要求21至26中任一项所述的方法,或者如权利要求27至32中任一项所述的方法,或者如权利要求33至39中任一项所述的方法,或者如权利要求40至46中任一项所述的方法,或者如权利要求47至56中任一项所述的方法,或者如权利要求57至66中任一项所述的方法。
  68. 一种通信装置,其特征在于,包括处理器和存储器;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,当所述计算机程序或指令被执行时,如权利要求1至10中任一项所述的方法被执行,或者如权利要求11至20中任一项所述的方法被执行,或者如权利要求21至26中任一项所述的方法被执行,或者如权利要求27至32中任一项所述的方法被执行,或者如权利要求33至39中任一项所述的方法被执行,或者如权利要求40至46中任一项所述的方法被执行,或者如权利要求47至56中任一项所述的方法被执行,或者如权利要求57至66中任一项所述的方法被执行。
  69. 一种可读存储介质,其特征在于,包括计算机程序或指令,当所述计算机程序或指令被执行时,如权利要求1至10中任一项所述的方法被执行,或者如权利要求11至20中任一项所述的方法被执行,或者如权利要求21至26中任一项所述的方法被执行,或者如权利要求27至32中任一项所述的方法被执行,或者如权利要求33至39中任一项所述的方法被执行,或者如权利要求40至46中任一项所述的方法被执行,或者如权利要求47至56中任一项所述的方法被执行,或者如权利要求57至66中任一项所述的方法被执行。
  70. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述计算机程序或指令被执行时,如权利要求1至10中任一项所述的方法被执行,或者如权利要求11至20中任一项所述的方法被执行,或者如权利要求21至26中任一项所述的方法被执行,或者如权利要求27至32中任一项所述的方法被执行,或者如权利要求33至39中任一项所述的方法被执行,或者如权利要求40至46中任一项所述的方法被执行,或者如权利要求47至56中任一项所述的方法被执行,或者如权利要求57至66中任一项所述的方法被执行。
PCT/CN2019/114876 2019-10-31 2019-10-31 一种通信方法及装置 WO2021081949A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/114876 WO2021081949A1 (zh) 2019-10-31 2019-10-31 一种通信方法及装置
CN201980101474.6A CN114586400B (zh) 2019-10-31 2019-10-31 一种通信方法及装置
EP19951034.8A EP4040835A4 (en) 2019-10-31 2019-10-31 COMMUNICATION METHOD AND DEVICE
US17/730,945 US20220279491A1 (en) 2019-10-31 2022-04-27 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114876 WO2021081949A1 (zh) 2019-10-31 2019-10-31 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/730,945 Continuation US20220279491A1 (en) 2019-10-31 2022-04-27 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021081949A1 true WO2021081949A1 (zh) 2021-05-06

Family

ID=75715746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114876 WO2021081949A1 (zh) 2019-10-31 2019-10-31 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20220279491A1 (zh)
EP (1) EP4040835A4 (zh)
CN (1) CN114586400B (zh)
WO (1) WO2021081949A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118264361A (zh) * 2022-12-27 2024-06-28 华为技术有限公司 数据传输的方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021058A2 (en) * 2012-08-02 2014-02-06 Nec Corporation Resource allocation signalling
CN108809451A (zh) * 2017-05-05 2018-11-13 中国移动通信有限公司研究院 一种搜索空间的确定方法及网元设备
CN109587710A (zh) * 2017-09-29 2019-04-05 展讯通信(上海)有限公司 控制资源组配置方法、基站、用户设备及计算机可读介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347778B (zh) * 2017-01-25 2022-01-14 华为技术有限公司 通信方法及装置
KR102573235B1 (ko) * 2017-08-11 2023-09-01 한국전자통신연구원 하향링크 제어 채널의 송수신 방법 및 이를 이용하는 장치
KR20190111307A (ko) * 2018-03-22 2019-10-02 주식회사 케이티 차세대 무선망을 위한 하향 링크 제어 채널 반복 전송 방법 및 장치
EP3771133A1 (en) * 2019-07-22 2021-01-27 Comcast Cable Communications, LLC Communication and data processing in wireless communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021058A2 (en) * 2012-08-02 2014-02-06 Nec Corporation Resource allocation signalling
CN108809451A (zh) * 2017-05-05 2018-11-13 中国移动通信有限公司研究院 一种搜索空间的确定方法及网元设备
CN109587710A (zh) * 2017-09-29 2019-04-05 展讯通信(上海)有限公司 控制资源组配置方法、基站、用户设备及计算机可读介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Correction on default CORESET for types 0A, 1, and 2 CSS", 3GPP DRAFT; R1-1907716 CORRECTION ON DEFAULT CORESET FOR TYPES 0A, 1, AND 2 CSS, vol. RAN WG1, 16 May 2019 (2019-05-16), Reno, United States, pages 1 - 11, XP051739996 *
See also references of EP4040835A4 *

Also Published As

Publication number Publication date
CN114586400A (zh) 2022-06-03
CN114586400B (zh) 2024-03-26
EP4040835A1 (en) 2022-08-10
EP4040835A4 (en) 2022-10-19
US20220279491A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US11528099B2 (en) Communication method and apparatus
US11224064B2 (en) Systems and methods for signaling starting symbols in multiple PDSCH transmission occasions
WO2018171640A1 (zh) 一种数据传输方法、终端设备及基站系统
WO2019015590A1 (zh) 一种传输方法及其装置
AU2010350535B2 (en) Signalling report transmission in carrier aggregation
CN114451043A (zh) 数据传输的方法和装置
JP2013535941A (ja) 基準信号の送信
JP2015526998A (ja) コンポーネント・キャリア設定の方法、基地局、およびユーザ装置
WO2020001607A1 (zh) 数据加扰方法及相关设备
US20220225333A1 (en) Resource dynamic indication method and apparatus
WO2022028584A1 (zh) 配置方法、通信节点及存储介质
WO2019037695A1 (zh) 一种通信方法及装置
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
WO2021051392A1 (zh) 优先级确定方法以及装置
WO2022141299A1 (zh) 参考信号资源的传输方法、设备及存储介质
WO2019137011A1 (zh) 一种通信方法及上行资源确定方法
US20230140502A1 (en) Beam indication method and communications apparatus
US20220279491A1 (en) Communication method and apparatus
CN113518434A (zh) 一种通信方法及装置
WO2023029008A1 (zh) 信息传输方法、设备及存储介质
WO2022022340A1 (zh) 一种通信方法及装置
CN112399574B (zh) 一种无线通信的方法和装置以及通信设备
WO2021056585A1 (zh) 一种混合自动重传请求反馈方法及装置
WO2019157920A1 (zh) 传输反馈信息的方法和通信设备
WO2019096147A1 (zh) 一种控制信息的检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019951034

Country of ref document: EP

Effective date: 20220504

NENP Non-entry into the national phase

Ref country code: DE