WO2021081851A1 - 侧行链路中的资源抢占方法及侧行链路设备 - Google Patents

侧行链路中的资源抢占方法及侧行链路设备 Download PDF

Info

Publication number
WO2021081851A1
WO2021081851A1 PCT/CN2019/114500 CN2019114500W WO2021081851A1 WO 2021081851 A1 WO2021081851 A1 WO 2021081851A1 CN 2019114500 W CN2019114500 W CN 2019114500W WO 2021081851 A1 WO2021081851 A1 WO 2021081851A1
Authority
WO
WIPO (PCT)
Prior art keywords
side uplink
control information
time
frequency resource
uplink control
Prior art date
Application number
PCT/CN2019/114500
Other languages
English (en)
French (fr)
Inventor
张莉莉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/114500 priority Critical patent/WO2021081851A1/zh
Priority to CN201980101765.5A priority patent/CN114600550A/zh
Publication of WO2021081851A1 publication Critical patent/WO2021081851A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols

Definitions

  • This application relates to the field of communication technology, and in particular to a method for preempting resources in a side-link and a side-link device.
  • Side link communication includes: device-to-device (D2D) communication, and vehicle-to-everything (V2X) communication.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • V2X communication has periodic services, which means that V2X communication needs to be configured with transmission resources that can be used by V2X all the time. Therefore, it is necessary to provide a mechanism that can efficiently indicate transmission resources to devices that perform V2X or D2D communication.
  • mode 1 base station scheduling
  • mode 2 mode 2
  • resource preemption methods make use of resources.
  • the base station needs to indicate to the side link device which resources are used for SL transmission.
  • mode 2 the base station needs to configure a resource pool for the side link device.
  • the resource pool can be exclusive to mode 2 or shared between mode 1 and mode 2.
  • the side-link device is enabled to pre-emption in mode 2
  • a side-link device finds that higher priority data preempts the resources currently used by the side-link device .
  • the preempted party needs to trigger resource reselection or resource release. Therefore, the preempted party needs to detect whether its own resources will be preempted as soon as possible, and trigger resource reselection or resource release as soon as possible to ensure reliable communication.
  • whether to preempt or be preempted depends on parameters such as the preemptor or the preempted party's data packet priority, 5QI, broadcast type, and whether to be sent periodically.
  • the preempted party needs to obtain the above-mentioned parameters of the preempted party or the preempted party to determine whether its own resources will be preempted, so as to determine whether to trigger resource reselection or resource release. According to the above parameters, it is determined whether the resource is preempted, the detection complexity is high, and the detection time is long.
  • the present application provides a method for preempting resources in a side-link and a side-link device, so as to improve the efficiency of detecting whether resources are preempted, reduce the complexity of detection, and improve the reliability of communication.
  • a method for resource preemption in a side link includes: a first side link device sends first side link control information to a second side link device, and The first side uplink control information includes occupied first time-frequency resource information and priority information corresponding to the first service data transmitted by the first side uplink device; wherein, the first side uplink control The time-frequency resource position of the information is associated with the priority of the first service data, and/or the time-frequency resource position of the first side uplink control information is associated with the second side uplink device transmitted by the second side uplink device. Priority correlation of business data.
  • the first side link device transmits the first service data and/or second side link control information on the first time-frequency resource, wherein the second side link device
  • the link control information includes scheduling information corresponding to the first service data.
  • the second side uplink control information is control information used to schedule the first service data.
  • the priority of the second service data transmitted by the second side uplink device is lower than the priority of the first service data
  • the first time-frequency resource is the second side uplink The time-frequency resources currently used by the device.
  • the first time-frequency resource is the time-frequency resource currently used by the second side uplink device, which is: the first time-frequency resource is the time-frequency resource that the second side uplink device determines to use Frequency resources, or time-frequency resources in use.
  • the second service data transmitted by the second side uplink device is service data to be transmitted or to be transmitted by the second side uplink device.
  • the first service data transmitted by the first side uplink device is service data to be transmitted or to be transmitted by the first side uplink device.
  • the first side uplink device sending the first side uplink control information to the second side uplink device includes: the first side uplink device sends the first side uplink control information to the second side uplink device according to the configuration times.
  • the second side uplink device sends the first side uplink control information of the configured number of times; and/or the first side uplink device travels to the second side link one or more times within the first time period
  • the link device sends the first side link control information.
  • the priority of the first service data is associated with one or more candidate time-frequency resource positions of the first side uplink control information; the method further includes: The time-frequency resource position for sending the first side uplink control information is selected among the candidate time-frequency resource positions of the side uplink control information; the first side uplink device sends the first side uplink device to the second side uplink device
  • the side uplink control information includes: the first side uplink device sends the first side uplink device to the second side uplink device at the selected time-frequency resource position of the first side uplink control information Side link control information.
  • a resource preemption method in a side uplink including: if the time-frequency resource position of the first side uplink control information is associated with the priority of the first service data, the second side uplink The device receives the first side uplink control information sent by the first side uplink device at a time-frequency resource location that is higher than or equal to the priority of the second service data transmitted by the second side uplink device; And/or if the time-frequency resource location of the first side uplink control information is associated with the priority of the second service data, the second side link device is in priority with the second service data Receiving the first side uplink control information at the location of the time-frequency resource associated with the level;
  • the first side uplink control information includes occupied first time-frequency resource information and priority information corresponding to the first service data transmitted by the first side uplink device.
  • the priority of the second service data is lower than the priority of the first service data
  • the first time-frequency resource is the time-frequency resource currently used by the second side uplink device.
  • the second side uplink device receiving the first side uplink control information sent by the first side uplink device includes: the second side uplink device receives the first side uplink control information of the configuration times Side uplink control information; and/or the second side uplink device receives the first side uplink sent by the first side uplink device one or more times within the first time period Control information.
  • a method for preempting resources in a side link includes: a first side link device sends first side link control information to a second side link device, and The first side uplink control information includes occupied first time-frequency resource information and priority information corresponding to the first service data transmitted by the first side uplink device; wherein, the first side uplink control The time-frequency resource location of the information is associated with the identification of the second side uplink device, and/or the time-frequency resource location of the first side uplink control information is related to the area of the second side uplink device Identification association;
  • the first side link device transmits the first service data and/or second side link control information on the first time-frequency resource, wherein the second side link device
  • the link control information includes scheduling information corresponding to the first service data.
  • the priority of the second service data transmitted by the second side link device is lower than the priority of the first service data
  • the first time-frequency resource is the second side link device. The time-frequency resources currently used by the link device.
  • the first service data transmitted by the first side uplink device is service data to be transmitted or to be transmitted by the first side uplink device.
  • the first side uplink device sending the first side uplink control information to the second side uplink device includes: the first side uplink device sends the first side uplink control information to the second side uplink device according to the configuration times.
  • the second side uplink device sends the first side uplink control information of the configured number of times; and/or the first side uplink device travels to the second side link one or more times within the first time period
  • the link device sends the first side link control information.
  • a method for preempting resources in a side link includes: a second side link device receives first side link control information sent by a first side link device, so The first side uplink control information includes occupied first time-frequency resource information and priority information corresponding to the first service data transmitted by the first side uplink device; wherein, the first side uplink
  • the position of the time-frequency resource of the control information is associated with the identification of the second side uplink device, and/or the position of the time-frequency resource of the first side uplink control information is related to the position of the second side uplink device.
  • Area identification association is associated with the identification of the second side uplink device, and/or the position of the time-frequency resource of the first side uplink control information is related to the position of the second side uplink device.
  • a method for preempting resources in a side link includes: a first side link device sends first side link control information to a second side link device, and The first side uplink control information includes occupied first time-frequency resource information and priority information corresponding to the first service data transmitted by the first side uplink device, and the first side uplink device is Transmitting the first service data and/or second side link control information on the first time-frequency resource, where the second side link control information includes scheduling information corresponding to the first service data .
  • the preemptor informs the preempted party of the time-frequency resources occupied by the preempted party and the priority of the business data transmitted by the preempted party through information with less overhead, so that the preempted party can timely know that the time-frequency resources currently used by the preempted party are preempted.
  • Trigger resource reselection or release improve the efficiency of detecting whether the resource is preempted, reduce the complexity of detection, and improve the reliability of communication.
  • the priority of the second service data transmitted by the second side link device is lower than the priority of the first service data
  • the first time-frequency resource is the second side link device. The time-frequency resources currently used by the link device.
  • the first service data transmitted by the first side uplink device is service data to be transmitted or to be transmitted by the first side uplink device.
  • the first side uplink device sending the first side uplink control information to the second side uplink device includes: the first side uplink device sends the first side uplink control information to the second side uplink device according to the configuration times.
  • the second side uplink device sends the first side uplink control information of the configured number of times; and/or the first side uplink device travels to the second side link one or more times within the first time period
  • the link device sends the first side link control information.
  • the second side uplink device can reliably receive the first side uplink control information.
  • the time-frequency resource location of the first side uplink control information is associated with the priority of the first service data, and/or the time-frequency resource of the first side uplink control information The location is associated with the priority of the second service data.
  • the second side uplink device can accurately detect the first side uplink control information.
  • the priority of the first service data is associated with one or more candidate time-frequency resource positions of the first side uplink control information; the method further includes: The time-frequency resource position for sending the first side uplink control information is selected among the candidate time-frequency resource positions of the side uplink control information; the first side uplink device sends the first side uplink device to the second side uplink device
  • the side uplink control information includes: the first side uplink device sends the first side uplink device to the second side uplink device at the selected time-frequency resource position of the first side uplink control information Side link control information.
  • the first side uplink control information is sent at the selected candidate time-frequency resource location, which improves the reliability of the transmission information and reduces the detection delay of the first side uplink control information. This enables the second side uplink device to receive the first side uplink control information reliably and with a lower delay.
  • the time-frequency resource location of the first side uplink control information is associated with the identification of the second side uplink device, and/or the time of the first side uplink control information
  • the location of the frequency resource is associated with the area identifier of the second side link device.
  • the second side uplink device can accurately receive the first side uplink control information sent to itself.
  • the first side uplink control information includes the identification of the second side uplink device, or the cyclic redundancy check bit of the first side uplink control information is determined by the The identification of the second side uplink device is scrambled.
  • the second side uplink device can accurately receive the first side uplink control information sent to itself.
  • a method for preempting resources in a side link includes: a second side link device receives first side link control information sent by a first side link device, so The first side uplink control information includes occupied first time-frequency resource information and priority information corresponding to the first service data transmitted by the first side uplink device, and the first time-frequency resource is the Time-frequency resources currently used by the second side uplink device;
  • the second side uplink device determines that the first time-frequency resource is occupied; and the second side uplink device releases the first time-frequency resource, and/or re-competes for use The second time-frequency resource for the second service data transmission.
  • the priority of the second service data transmitted by the second side uplink device is lower than the priority of the first service data.
  • the time-frequency resource location of the first side uplink control information is associated with the priority of the first service data, and/or the time-frequency resource of the first side uplink control information The location is associated with the priority of the second service data
  • the second side link device receiving the first side link control information sent by the first side link device includes: the second side link device The road device receives the first time-frequency resource at all time-frequency resource locations that are higher than or equal to the priority of the second service data, and/or at the time-frequency resource location that is associated with the priority of the second service data. Side link control information.
  • the time-frequency resource location of the first side uplink control information is associated with the identification of the second side uplink device, and/or the time of the first side uplink control information
  • the frequency resource location is associated with the area identifier of the second side uplink device
  • the second side uplink device receiving the first side uplink control information sent by the first side uplink device includes: said The second side uplink device receives the first side uplink control information at a time-frequency resource location associated with the identity of the second side uplink device or the area identity of the second side uplink device .
  • the first side uplink control information includes an identifier of the second side uplink device, and the second side uplink device receives the first side uplink device sent by the first side uplink device.
  • the side link control information includes: the second side link device receives the first side link control information according to the identifier of the second side link device; or the first side link device The cyclic redundancy check bit of the route control information is scrambled by the identifier of the second side uplink device, and the second side uplink device receives the first side uplink device sent by the first side uplink device.
  • the control information includes: the second side uplink device uses the identifier of the second side uplink device to descramble the received first side uplink control information.
  • a method for preempting resources in a side link includes: a first side link device sends first side link control information to a second side link device, and The first side uplink control information includes occupied first time-frequency resource information and priority information corresponding to the first service data transmitted by the first side uplink device; wherein, the first side uplink control The information includes the identity of the second side uplink device, or the cyclic redundancy check bit of the first side uplink control information is scrambled by the identity of the second side uplink device.
  • the priority of the second service data transmitted by the second side link device is lower than the priority of the first service data
  • the first time-frequency resource is the second side link The time-frequency resources currently used by the road equipment.
  • the second side uplink control information is control information used to schedule the first service data.
  • the first time-frequency resource is the time-frequency resource currently used by the second side uplink device, which is: the first time-frequency resource is the time-frequency resource that the second side uplink device determines to use Frequency resources, or time-frequency resources in use.
  • the second service data transmitted by the second side uplink device is service data to be transmitted or to be transmitted by the second side uplink device.
  • the first side uplink device transmits the first service data and/or the second side uplink control information on the first time-frequency resource, wherein the second side The uplink control information includes scheduling information corresponding to the first service data.
  • the first side uplink device sending the first side uplink control information to the second side uplink device includes: the first side uplink device sends the first side uplink control information to the second side uplink device according to the configuration times.
  • the second side uplink device sends the first side uplink control information of the configured number of times; and/or the first side uplink device travels to the second side link one or more times within the first time period
  • the link device sends the first side link control information.
  • a method for preempting resources in a side link includes: a second side link device receives first side link control information sent by a first side link device, and The first side uplink control information includes occupied first time-frequency resource information and priority information corresponding to the first service data transmitted by the first side uplink device; wherein, the first side uplink control The information includes the identity of the second side uplink device, or the cyclic redundancy check bit of the first side uplink control information is scrambled by the identity of the second side uplink device.
  • a side link device which can implement any one of the foregoing aspects or methods for resource preemption in a side link.
  • the side link device may be a chip.
  • the above method can be implemented by software, hardware, or by hardware executing corresponding software.
  • the structure of the side link device includes a processor and a memory; the processor is configured to support the device to execute the corresponding resource preemption method in the side link Features.
  • the memory is used for coupling with the processor, and it stores the necessary programs (instructions) and/or data of the device.
  • the side link device may further include a communication interface for supporting communication between the device and other network elements.
  • the side link device may include unit modules that perform corresponding functions or actions in the foregoing method.
  • a processor and a transceiver device are included, the processor is coupled with the transceiver device, and the processor is configured to execute a computer program or instruction to control the transceiver device to receive and receive information. Send; when the processor executes the computer program or instruction, the processor is also used to implement the above method.
  • the transceiver device may be a transceiver, a transceiver circuit, or an input/output interface.
  • the transceiver device is a transceiver circuit or an input/output interface.
  • the sending unit may be an output unit, such as an output circuit or a communication interface; the receiving unit may be an input unit, such as an input circuit or a communication interface.
  • the sending unit may be a transmitter or a transmitter; the receiving unit may be a receiver or a receiver.
  • a computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the methods described in the above aspects.
  • a computer program product containing instructions which when run on a computer, causes the computer to execute the methods described in the above aspects.
  • a communication system including any one of the aforementioned side uplink devices.
  • Fig. 1 is a schematic diagram of a communication system involved in this application
  • FIG. 2 is a schematic flowchart of another method for resource preemption in a side link according to an embodiment of the application
  • FIG. 3 is a schematic diagram of the first side uplink control information indicating that resources are preempted
  • FIG. 4 is a schematic flowchart of another method for resource preemption in a side link provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of another method for preempting resources in a side link according to an embodiment of this application;
  • FIG. 6 is a schematic flowchart of another method for resource preemption in a side link provided by an embodiment of the application.
  • FIG. 7 is a schematic flowchart of yet another method for resource preemption in a side link according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of a module structure of a side link device provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of the module structure of another side link device according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of the hardware structure of a simplified side link device provided by an embodiment of the present application.
  • Figure 1 shows a schematic diagram of a communication system involved in this application.
  • the communication system may include at least one network device and one or more terminal devices connected to the network device.
  • Terminal devices can communicate with network devices, and multiple terminal devices can also communicate on side links.
  • the network device can be a device that can communicate with terminal devices.
  • the network device can be any device with a wireless transceiver function. Including but not limited to: base station (NodeB), evolved base station (eNodeB, eNB), base station (gNB) in the fifth generation (5G) communication system, base station or network equipment in future communication system, WiFi system In the access node, wireless relay node, wireless backhaul node, etc.
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device may also be a small station, a transmission reference point (TRP), etc.
  • TRP transmission reference point
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the communication system can be a hybrid network communication system or a single communication system. Figure 1 illustrates that the hybrid networking communication system includes two network devices: gNB and eNB, and may also include other network devices.
  • a terminal device is a device with a wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water, such as a ship, etc.; it can also be deployed in the air, such as aircraft, Balloons and satellites are first class.
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control ( Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety
  • Terminal equipment can sometimes also be referred to as user equipment (UE), access terminal equipment, UE unit, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, terminal, wireless communication equipment, UE Agent or UE device, etc.
  • Figure 1 illustrates that the communication system includes three UEs: UE1, UE2, and UE3.
  • UE1, UE2, and UE3 the present application does not limit the number of UEs included in the communication system.
  • This application relates to side link communication, and the communication system includes at least two UEs.
  • the communication system may also include one or more roadside units (RSU), and the RSU may communicate with UE, gNB, and eNB.
  • RSU roadside units
  • the communication system may also include one or more global navigation satellite systems (GNSS), which can provide positioning and timing information for UEs and RSUs.
  • GNSS global navigation satellite systems
  • This application provides a resource preemption solution in a side link.
  • the preemptor informs the preempted party of the time-frequency resources occupied by the preempted party and the priority of the service data transmitted by the preempted party through information with lower overhead, so that the preempted party can understand in time
  • the resource reselection or release is triggered, which improves the efficiency of detecting whether the resource is preempted, reduces the complexity of detection, and improves the reliability of communication.
  • FIG. 2 it is a schematic flowchart of a method for preempting resources in a side link according to an embodiment of this application, and the method may include:
  • the first side uplink device sends first side uplink control information to the second side uplink device.
  • the second side uplink device receives the first side uplink control information.
  • the first side uplink device needs to acquire time-frequency resources to transmit the first service data, and the second side uplink device has acquired the first time-frequency resource, and is transmitting or The second service data will be transmitted soon.
  • the priority of the second service data is lower than the priority of the first service data.
  • the first side uplink device can preempt the first time-frequency resource used by the second side uplink device to transmit the second service data.
  • the second side uplink device in order for the second side uplink device to detect in time that the first time-frequency resource currently used by it will be preempted, avoid using the same time-frequency resource, and trigger the second side uplink device to perform resource reselection or release, so that To avoid resource conflicts during initial transmission, the first side uplink device sends the first side link control information (SCI) to the second side uplink device in advance.
  • SCI side link control information
  • the first side uplink control information includes occupied first time-frequency resource information and priority information corresponding to the first service data. Since the first side uplink control information does not contain scheduling information, the signaling is small. That is, the first side uplink control information is intended to notify collisions, not for data transmission.
  • the first side uplink control information indicates that the resource is preempted.
  • the first side uplink device is to transmit the first service data, and the time-frequency resource needs to be selected first.
  • the first side uplink device sends the first side uplink control information to the second side uplink device, and the first side uplink control information is carried in the physical side uplink control On the physical sidelink control channel (PSCCH).
  • PSCCH physical sidelink control channel
  • the first side uplink control information includes occupied first time-frequency resource information and priority information corresponding to the first service data, that is, it is used to indicate to the second side uplink device that the priority of the first service data is higher than For the priority of the second service data, the first side uplink device has preempted/will preempt the first time-frequency resource of the second side uplink device.
  • the first side link control information may also be referred to as sidelink control information-reserved (SCI-R) for indicating reservation, or SCI-only, or stand-alone SCI. It should be noted that the network device can be configured to activate the transmission of the SCI-R used to preempt resources in this application.
  • the first side uplink control information can be transmitted in the first preemption. Send one or more times before. The number of transmissions can be configured by the network device. Then, the first side uplink device sends the configured number of first side uplink control information to the second side uplink device according to the configuration times.
  • the first side uplink device may also transmit the above-mentioned first side uplink control information one or more times within a first time period (time duration).
  • the length of the first time period can be pre-defined or configured by the network device. It is usually determined according to statistical characteristics for a low-priority side link device to be completed within the first time period.
  • the network device may configure the first time period, that is, configure at least one of the start time of the first time period, the duration of the first time period, or the period of the first time period.
  • the first time period may be the length of the above-mentioned time-frequency resource selection window.
  • all “configurations” can be pre-configured or configured by network equipment through signaling, where the signaling is at least one of high-level signaling, MAC layer signaling, or physical layer signaling.
  • the second side uplink device receives the first side uplink control information.
  • the second side uplink device may also actively detect the time-frequency resource location for sending the first side uplink control information.
  • the time-frequency resource location of the first side uplink control information is associated with the priority of the first service data.
  • the first side uplink device will send the first side uplink control information at the time-frequency resource location associated with the priority of the first service data.
  • the second side uplink device can detect the first side uplink control information at all possible time-frequency resource locations that are higher than or equal to the priority of the second service data according to the association relationship. In this way, the second side uplink device can detect in time whether its first time-frequency resource may be preempted.
  • the time-frequency resource location of the first side uplink control information is associated with the priority of the second service data.
  • the first side uplink device obtains the association relationship, and sends the first side uplink control information at the time-frequency resource location associated with the priority of the second service data.
  • the second side uplink device may detect the first side uplink control information at the time-frequency resource location associated with the priority of the second service data according to the association relationship. It can be understood that there may be one or more time-frequency resource positions associated with the priority of the second service data.
  • the priority of the data service can be the quality of service (QoS) level.
  • QoS level can be expressed as: per packet priority (PPPP); it can also be expressed as N A quality of service index (n QoS index, NQI), where N is a positive integer; other indexes can also be used to identify the QoS level.
  • PPPP per packet priority
  • NQI quality of service index
  • the time-frequency resource location of the first side uplink control information is associated with the priority of the first service data and the priority of the second service data.
  • the first side uplink device may send the first side uplink control information at the time-frequency resource location associated with the priority of the first service data, or it may send the first side uplink control information at the time-frequency resource location associated with the priority of the second service data The first side uplink control information.
  • the second side uplink device can be associated with all time-frequency resource locations higher than or equal to the priority of the first service data, and detect the first location at the time-frequency resource location associated with the priority of the second service data. Side link control information.
  • the time-frequency resource location of the first side uplink control information is associated with the identification of the second side uplink device, and/or the time-frequency resource location of the first side uplink control information is associated with the second The area identification association of the side link device.
  • the identification or area identification of the second side link device may be associated with one or more time-frequency resource locations.
  • the first side uplink device sends the first side uplink control information at one of the time-frequency resource locations associated with the identifier or the area identifier of the second side uplink device.
  • the second side uplink device detects the first side uplink control information at one or more time-frequency resource locations associated with the identity or area identity of the second side uplink device.
  • the first side uplink control information may also include the identifier of the second side uplink device, and when the second side uplink device receives the first side uplink control information, it is determined according to the first side uplink control information.
  • the identifier of the second side link device carried in the uplink control information can determine that the first side link control information is sent to itself.
  • the cyclic redundancy check (cyclic redundancy check, CRC) bit of the first side uplink control information may be scrambled by the identifier of the second side uplink device.
  • the second side uplink device performs detection and descrambling through its own identifier, and can obtain the first side uplink control information sent to the second side uplink device. In this manner, the first side uplink control information may not carry the identifier of the second side uplink device.
  • the first side uplink device transmits the first service data and/or second side uplink control information on the first time-frequency resource, where the second side uplink control
  • the information includes scheduling information corresponding to the first service data.
  • the first time-frequency resource is a resource used to transmit first service data, or the first time-frequency resource is a second side uplink control information and first service data used to transmit and schedule the first service data Resources.
  • the preempted first time-frequency resource is used to transmit the first service data, and the first service data is carried on the physical sidelink shared channel (PSSCH); the first time of preemption
  • the frequency resource may also be used to transmit second side uplink control information, and the second side uplink control information is also carried on the PSCCH.
  • the second side uplink control information includes scheduling information, such as modulation and coding scheme (MCS).
  • MCS modulation and coding scheme
  • the second side link control information may also be used for sidelink control information-data (SCI-D) of data.
  • SCI-D sidelink control information-data
  • the payload of the second side uplink control information is larger than that of the first side uplink control information.
  • the second side uplink device determines that the first time-frequency resource is occupied.
  • the second side link device After the second side link device receives the first side link control information, it compares the priority of the second service data transmitted by itself with the priority of the first service data, and determines that the priority of the second service data is lower than The priority of the first service data determines that the first time-frequency resource will be occupied by the first side uplink device, and the second side uplink device can no longer transmit the second service data on the first time-frequency resource.
  • the method may also include the following steps, which are optional steps:
  • the second side uplink device releases the first time-frequency resource, and/or re-competes for the second time-frequency resource used for the second service data transmission.
  • the second side link device After the second side link device determines that the first time-frequency resource is preempted, the second side link device releases the first time-frequency resource. The second side link device also re-competes for the second time-frequency resource used for the second service data transmission, so as to improve the reliability of communication.
  • the first side uplink device may transmit the first side uplink control information on the first time-frequency resource that it has preempted after sending the first side uplink control information.
  • Service data and/or second side uplink control information the first side uplink device may also determine that the second side uplink device releases the first time-frequency resource, and then preempt the first time-frequency resource
  • the first service data and/or the second side link control information are transmitted upstream.
  • the preemptor informs the preempted party of the time-frequency resources occupied by the preempted party and the priority of the service data transmitted by the preempted party through information with less overhead, so that the preempted party
  • the party can learn in time that the time-frequency resource currently used by itself is preempted, trigger resource reselection or release, improve the efficiency of detecting whether the resource is preempted, reduce the complexity of detection, and improve the reliability of communication.
  • FIG. 4 it is a schematic flow chart of another method for resource preemption in a side link provided by an embodiment of this application.
  • the method may include:
  • S201 Select a time-frequency resource position of the first side uplink control information sent to the second side uplink device from one or more candidate time-frequency resource positions of the first side uplink control information.
  • some candidate time-frequency resource positions may be allocated for transmitting the first side uplink control information. These candidate time-frequency resource locations are located in a specific search space (search space).
  • the position of the time-frequency resource of the first side uplink control information sent to the second side uplink device may be selected according to the set sequence or the occupation state of the candidate time-frequency resources.
  • the first side uplink device sends the first side uplink control information to the second side uplink device at the time-frequency resource location of the selected first side uplink control information.
  • the second side uplink device receives the first side uplink control information.
  • the first side uplink control information includes occupied first time-frequency resource information and priority information corresponding to the first service data transmitted by the first side uplink device, wherein the second side The priority of the second service data transmitted by the uplink device is lower than the priority of the first service data, and the first time-frequency resource is the time-frequency resource currently used by the second side uplink device.
  • the first side uplink control information is sent to the second side uplink device at the time-frequency resource position of the selected first side uplink control information, which improves the reliability of sending information, so that the second side uplink The road device can reliably receive the first side link control information.
  • the first side uplink device transmits the first service data and/or the second side uplink control information on the first time-frequency resource, where the second side uplink control information includes the The scheduling information corresponding to the first service data.
  • the second side uplink device determines that the first time-frequency resource is occupied.
  • the second side uplink device releases the first time-frequency resource, and/or re-competes for the second time-frequency resource used for the second service data transmission.
  • the preemptor informs the preempted party of the time-frequency resources occupied by the preempted party and the priority of the service data transmitted by the preempted party through information with less overhead, so that the preempted party
  • the party can learn in time that the time-frequency resource currently used by itself is preempted, trigger resource reselection or release, improve the efficiency of detecting whether the resource is preempted, reduce the complexity of detection, and improve the reliability of communication;
  • the first side uplink control information is sent at the candidate time-frequency resource location, which improves the reliability of the sent information, so that the second side uplink device can reliably receive the first side uplink control information.
  • FIG. 5 it is a schematic flow chart of another method for resource preemption in a side link provided by an embodiment of this application.
  • the method may include:
  • the first side uplink device sends the first side uplink control information to the second side uplink device.
  • the second side uplink device receives the first side uplink control information.
  • the first side uplink control information includes occupied first time-frequency resource information and priority information corresponding to the first service data transmitted by the first side uplink device; the first side uplink The time-frequency resource location of the route control information is associated with the priority of the first service data, and/or the time-frequency resource location of the first side uplink control information is associated with the priority of the second service data.
  • the time-frequency resource location of the first side uplink control information is associated with the priority of the first service data.
  • the first side uplink device will send the first side uplink control information at the time-frequency resource location associated with the priority of the first service data.
  • the second side uplink device can detect the first side uplink control information at all possible time-frequency resource locations that are higher than or equal to the priority of the second service data according to the association relationship. In this way, the second side uplink device can detect in time whether its first time-frequency resource may be preempted.
  • the time-frequency resource location of the first side uplink control information is associated with the priority of the second service data.
  • the first side uplink device obtains the association relationship, and sends the first side uplink control information at the time-frequency resource location associated with the priority of the second service data.
  • the second side uplink device may detect the first side uplink control information at the time-frequency resource location associated with the priority of the second service data according to the association relationship. It can be understood that there may be one or more time-frequency resource positions associated with the priority of the second service data.
  • the time-frequency resource location of the first side uplink control information is associated with the priority of the first service data and the priority of the second service data.
  • the first side uplink device may send the first side uplink control information at the time-frequency resource location associated with the priority of the first service data, or it may send the first side uplink control information at the time-frequency resource location associated with the priority of the second service data Send the first side uplink control information.
  • the second side uplink device may be associated with all time-frequency resource locations higher than or equal to the priority of the second service data, and detect the first location at the time-frequency resource location associated with the priority of the second service data. Side link control information.
  • S301 includes: according to the configuration times, the first side uplink device sends the first side uplink control information of the configuration times to the second side uplink device; and/or the first side uplink control information
  • the side uplink device sends the first side uplink control information to the second side uplink device in the first time period.
  • the method may further include: the priority of the second service data transmitted by the second side uplink device is lower than the priority of the first service data, and the first time-frequency resource is the first The time-frequency resource currently used by the second side uplink device; the first side uplink device transmits the first service data and/or the second side uplink control information on the first time-frequency resource, Wherein, the second side uplink control information includes scheduling information corresponding to the first service data.
  • the priority of the second service data transmitted by the second side uplink device is lower than the priority of the first service data
  • the first time-frequency resource is the first The time-frequency resource currently used by the second side uplink device
  • the first side uplink device transmits the first service data and/or the second side uplink control information on the first time-frequency resource
  • the second side uplink control information includes scheduling information corresponding to the first service data.
  • the priority of the first service data is associated with one or more candidate time-frequency resource positions of the first side link control information; the method further includes: linking the one or more first side link control information Select the time-frequency resource position for sending the first side uplink control information from the candidate time-frequency resource positions of the path control information; the first side uplink device controls the selected first side uplink The first side uplink control information is sent to the second side uplink device at the time-frequency resource location of the information.
  • the preemptor informs the preempted party of the time-frequency resources occupied by the preempted party and the priority of the service data transmitted by the preempted party through information with less overhead, so that the preempted party
  • the party can learn in time that the time-frequency resource currently used by itself is preempted, the position of the time-frequency resource of the first side uplink control information is associated with the priority of the first service data, and/or the first side uplink control information
  • the time-frequency resource location is associated with the priority of the second service data, so that the second side uplink device can accurately detect the first side uplink control information, which reduces the complexity of detection and improves the reliability of communication.
  • FIG. 6 a schematic flowchart of another method for resource preemption in a side link provided by an embodiment of this application, and the method may include:
  • the first side uplink device sends first side uplink control information to the second side uplink device, where the first side uplink control information includes occupied first time-frequency resource information and the second side uplink device. Priority information corresponding to the first service data transmitted by the side uplink device.
  • the time-frequency resource location of the first side uplink control information is associated with the identification of the second side uplink device, and/or the time-frequency resource location of the first side uplink control information is associated with The area identification association of the second side uplink device.
  • the identifier or the area identifier of the second side uplink device may be associated with one or more time-frequency resource locations.
  • the first side uplink device sends the first side uplink control information at one of the time-frequency resource locations associated with the identifier or the area identifier of the second side uplink device.
  • the second side uplink device detects the first side uplink control information at one or more time-frequency resource locations associated with the identity or area identity of the second side uplink device.
  • first side uplink device sends the first side uplink control information of the configuration times to the second side uplink device according to the configuration times; and/or the first side uplink device
  • the link device sends the first side uplink control information to the second side uplink device in the first time period.
  • the priority of the second service data transmitted by the second side uplink device is lower than the priority of the first service data
  • the first time-frequency resource is the second side uplink device The currently used time-frequency resource; the first side uplink device transmits the first service data and/or the second side uplink control information on the first time-frequency resource, wherein the second The side link control information includes scheduling information corresponding to the first service data.
  • the preemptor informs the preempted party of the time-frequency resources occupied by the preempted party and the priority of the service data transmitted by the preempted party through information with less overhead, so that the preempted party
  • the party can learn in time that the time-frequency resource currently used by itself is preempted, and the position of the time-frequency resource of the first side uplink control information is associated with the identifier or area identifier of the second side uplink device, so that the second side uplink device
  • the link device can accurately receive the first side uplink control information sent to itself, which reduces the complexity of detection and improves the reliability of communication.
  • FIG. 7 a schematic flowchart of another method for preempting resources in a side link provided by an embodiment of this application, and the method may include:
  • the first side uplink device sends first side uplink control information to the second side uplink device, where the first side uplink control information includes occupied first time-frequency resource information and the second side uplink device. Priority information corresponding to the first service data transmitted by the side uplink device.
  • the first side uplink control information includes the identifier of the second side uplink device, or the cyclic redundancy check bit of the first side uplink control information is determined by the second side uplink device.
  • the identification of the link device is scrambled.
  • the first side uplink control information includes the identifier of the second side uplink device.
  • the first side uplink device can be determined according to the identifier of the second side uplink device carried in the first side uplink control information. Route control information is sent to itself.
  • the cyclic redundancy check (cyclic redundancy check, CRC) bit of the first side uplink control information may be scrambled by the identifier of the second side uplink device.
  • the second side uplink device performs detection and descrambling through its own identifier, and can obtain the first side uplink control information sent to the second side uplink device. In this manner, the first side uplink control information may not carry the identifier of the second side uplink device.
  • first side uplink device further sends the first side uplink control information of the configuration times to the second side uplink device according to the configuration times; and/or the first side The uplink device sends the first side uplink control information to the second side uplink device one or more times in the first time period.
  • first side uplink device further sends the first side uplink control information of the configuration times to the second side uplink device according to the configuration times; and/or the first side The uplink device sends the first side uplink control information to the second side uplink device one or more times in the first time period.
  • the priority of the second service data transmitted by the second side uplink device is lower than the priority of the first service data
  • the first time-frequency resource is the second side uplink device The currently used time-frequency resource; the first side uplink device transmits the first service data and/or the second side uplink control information on the first time-frequency resource, wherein the second The side link control information includes scheduling information corresponding to the first service data.
  • the preemptor informs the preempted party of the time-frequency resources occupied by the preempted party and the priority of the service data transmitted by the preempted party through information with less overhead, so that the preempted party
  • the party can know in time that the time-frequency resources currently used by itself are preempted
  • the first side uplink control information includes the identification of the second side uplink device, or the cyclic redundancy check bit of the first side uplink control information
  • the identification of the second side uplink device is scrambled, so that the second side uplink device can accurately receive the first side uplink control information sent to itself, which reduces the complexity of detection and improves the communication efficiency. reliability.
  • the side-link device 1000 includes: a transceiver unit 11; It may include a processing unit 12; among them:
  • the transceiver unit 11 is configured to send first side uplink control information to a second side uplink device, where the first side uplink control information includes occupied first time-frequency resource information and the first side uplink Priority information corresponding to the first service data transmitted by the link device;
  • the time-frequency resource position of the first side uplink control information is associated with the priority of the first service data, and/or the time-frequency resource position of the first side uplink control information is associated with the The priority of the second service data transmitted by the second side link device is associated.
  • the transceiving unit 11 is further configured to transmit the first service data and/or the second side link control information on the first time-frequency resource, wherein the second side row
  • the link control information includes scheduling information corresponding to the first service data.
  • the priority of the second service data is lower than the priority of the first service data
  • the first time-frequency resource is the time-frequency resource currently used by the second side uplink device .
  • the first time-frequency resource is the time-frequency resource currently used by the second side uplink device, which is: the first time-frequency resource is the time-frequency resource that the second side uplink device determines to use Frequency resources, or time-frequency resources in use.
  • the transceiver unit 11 is configured to send the first side uplink control information of the configuration times to the second side uplink device according to the configuration times; and/or Sending the first side uplink control information to the second side uplink device one or more times within a period of time.
  • the priority of the first service data is associated with one or more candidate time-frequency resource positions of the first side link control information; the side link device further includes:
  • the processing unit 12 is configured to select a time-frequency resource position for sending the first side uplink control information among the candidate time-frequency resource positions of the one or more first side uplink control information;
  • the transceiver unit 11 is configured to send the first side uplink control information to the second side uplink device at the selected candidate time-frequency resource position.
  • the side-link device as a preemptor informs the preempted party of the time-frequency resources occupied by the preempted party and the priority of the service data transmitted by the preemptive party through information with lower overhead. This enables the preempted party to know in time that the time-frequency resource currently used by itself is preempted, triggers resource reselection or release, improves the efficiency of detecting whether the resource is preempted, reduces the complexity of detection, and improves the reliability of communication.
  • the side link device 2000 includes: a transceiver unit 21; :
  • the transceiver unit 21 is configured to, if the time-frequency resource position of the first side uplink control information is associated with the priority of the first service data, the priority of the second service data transmitted by the second side uplink device is higher than or equal to Level-associated time-frequency resource location, receiving the first side uplink control information sent by the first side uplink device; and/or if the time-frequency resource location of the first side uplink control information is the same as the first side uplink control information 2.
  • Priority association of service data receiving the first side uplink control information at a time-frequency resource location associated with the priority of the second service data;
  • the first side uplink control information includes occupied first time-frequency resource information and priority information corresponding to the first service data transmitted by the first side uplink device.
  • the priority of the second service data transmitted by the second side link device is lower than the priority of the first service data
  • the first time-frequency resource is the second side link The time-frequency resources currently used by the road equipment.
  • the transceiver unit 21 is configured to receive the first side line link control information of the configured number of times; and/or receive the first side line link one or more times within the first time period The first side uplink control information sent by the road device.
  • the side link device serves as the preempted party and receives the time-frequency resource occupied and the service data transmitted by the preemptive party notified by the preemptive party through information with less overhead.
  • the preempted party can know in time that the time-frequency resource currently used by itself is preempted, trigger resource reselection or release, improve the efficiency of detecting whether the resource is preempted, reduce the complexity of detection, and improve the reliability of communication .
  • the embodiment of the present application also provides a side-link device, which is used to execute the above-mentioned method for resource preemption in the side-link.
  • a side-link device which is used to execute the above-mentioned method for resource preemption in the side-link.
  • Part or all of the resource preemption methods in the side link described above may be implemented by hardware or software.
  • the side link device may be a chip or an integrated circuit in specific implementation.
  • the side link device when part or all of the resource preemption method in the side link of the foregoing embodiment is implemented by software, the side link device includes a processor, which is used to execute a program, and when the program is executed, So that the side-link device can implement the resource preemption method in the side-link device provided in the above-mentioned embodiments, the side-link device may also include a memory for storing necessary programs, and these related programs can be run on the side-link device. The link device is loaded into the memory when it leaves the factory, or it can be loaded into the memory when needed later.
  • the foregoing memory may be a physically independent unit, or may be integrated with the processor.
  • the side link device may also only include a processor.
  • the memory used to store the program is located outside the side link device, and the processor is connected to the memory through a circuit/wire for reading and executing the program stored in the memory.
  • the processor may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • the processor may include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL generic array logic
  • the memory may include volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory) , Hard disk drive (HDD) or solid-state drive (solid-state drive, SSD); the memory may also include a combination of the above types of memory.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • flash memory flash memory
  • HDD Hard disk drive
  • SSD solid-state drive
  • Figure 10 shows a simplified schematic diagram of the hardware structure of a side link device. It is easy to understand and easy to illustrate.
  • the side link device uses a mobile phone as an example.
  • the side link device includes a processor, and may also include a radio frequency circuit, an antenna, and an input and output device.
  • the processor can be used to process communication protocols and communication data, and can also be used to control side link devices, execute software programs, and process data of software programs.
  • the side link device may also include a memory.
  • the memory is mainly used to store software programs and data. These related programs can be loaded into the memory when the communication device leaves the factory, or can be loaded into the memory when needed later. .
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of side link equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and performs the data To process.
  • FIG. 10 only one memory and processor are shown in FIG. 10. In the actual side link device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function can be regarded as the receiving unit and the transmitting unit (also collectively referred to as the transceiver unit) of the side link device, and the processor with the processing function can be regarded as the side link device.
  • the processing unit of the link device includes a receiving unit 31, a processing unit 32, and a sending unit 33.
  • the receiving unit 31 may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit 33 may also be called a transmitter, a transmitter, a transmitter, a transmitting circuit, etc.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the side link device may be the first side link device in the foregoing embodiment.
  • the sending unit 33 is configured to perform the function of the first side uplink device in steps S101 and S102 in the embodiment shown in FIG. 2.
  • the processing unit 32 is used to execute the step S201 in the embodiment shown in FIG. 4; and the sending unit 33 is used to execute the first side row in S202 and S203 in the embodiment shown in FIG. 4 The function of the link device.
  • the sending unit 33 is configured to perform the function of the first side uplink device in step S301 in the embodiment shown in FIG. 5.
  • the sending unit 33 is configured to perform the function of the first side uplink device in step S401 in the embodiment shown in FIG. 6.
  • the sending unit 33 is configured to perform the function of the first side uplink device in step S501 in the embodiment shown in FIG. 7.
  • the side link device may be the second side link device in the foregoing embodiment.
  • the receiving unit 31 is configured to perform the function of the second side uplink device in step S101 in the embodiment shown in FIG. 2; and the processing unit 32 is configured to perform the implementation shown in FIG. Steps S103 and S104 in the example.
  • the receiving unit 31 is used to perform the function of the second side uplink device in step S202 in the embodiment shown in FIG. 4; and the processing unit 32 is used to perform the implementation shown in FIG. 4 Steps S204 and S205 in the example.
  • the receiving unit 31 is configured to perform the function of the second side uplink device in step S301 in the embodiment shown in FIG. 5.
  • the receiving unit 31 is configured to perform the function of the second side uplink device in step S401 in the embodiment shown in FIG. 6.
  • the receiving unit 31 is configured to perform the function of the second side uplink device in step S501 in the embodiment shown in FIG. 7.
  • the embodiments of the present application also provide a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, the computer executes the method described in each of the foregoing embodiments.
  • the embodiments of the present application also provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the methods described in the foregoing embodiments.
  • the embodiment of the present application also provides a communication system, including any one of the aforementioned side uplink devices.
  • the disclosed system, device, and method may be implemented in other ways.
  • the division of the unit is only a logical function division. In actual implementation, there can be other divisions.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not. carried out.
  • the displayed or discussed mutual coupling, or direct coupling, or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer instructions can be sent from a website, computer, server, or data center to another via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) A website, computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium can be read-only memory (ROM), random access memory (RAM), or magnetic media, such as floppy disks, hard disks, magnetic tapes, magnetic disks, or optical media, for example, Digital versatile disc (DVD) or semiconductor media, for example, solid state disk (SSD), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种侧行链路中的资源抢占方法及侧行链路设备。第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,第一侧行链路控制信息包括占用的第一时频资源信息以及第一侧行链路设备传输的第一业务数据对应的优先级信息,其中,第二侧行链路设备传输的第二业务数据的优先级低于第一业务数据的优先级。抢占方通过开销较小的信息通知被抢占方占用的时频资源及抢占方传输的业务数据的优先级,使得被抢占方可以及时了解到自己当前使用的时频资源被抢占,触发资源重选或释放,提高了检测资源是否被抢占的效率,减少了检测的复杂度,提高了通信的可靠性。

Description

侧行链路中的资源抢占方法及侧行链路设备 技术领域
本申请涉及通信技术领域,尤其涉及一种侧行链路中的资源抢占方法及侧行链路设备。
背景技术
在进行侧行链路(sidelink,SL)通信时,需要确定其传输资源。侧行链路通信包括:设备到设备(device to device,D2D)通信,车联网(vehicle to everything,V2X)通信。其中,例如V2X通信存在周期性的业务,也就是说V2X通信需要在时间上一直都配置有可供V2X使用的传输资源。因此需要提供一种机制,能够向进行V2X或D2D通信的设备高效地指示传输资源。
SL上进行资源传输时,通常有两种模式,一种是模式1(mode 1):基站调度;另一种是模式2(mode 2):基于侧行链路设备自动感知,根据资源抢占方法进行资源的使用。但无论哪种,都需要基站指示给侧行链路设备哪些资源用于SL传输。mode 2中,需要基站给侧行链路设备配置资源池。该资源池可以是mode 2独享,也可以是mode 1和mode 2共享。
如果使能了侧行链路设备在mode 2中进行资源抢占(pre-emption),当一个侧行链路设备发现更高优先级的数据抢占了该侧行链路设备目前正在使用的资源时,被抢占方需要触发资源重选或资源释放。因此,被抢占方需要尽快地检测自身资源是否会被抢占,尽快触发资源重选或资源释放,以保证通信的可靠进行。
而现有技术中,是否做抢占或被抢占取决于抢占方或被抢占方的数据包优先级、5QI、广播类型和是否周期性发送等参数。被抢占方需要获取抢占方或被抢占方的上述参数,才能确定自身资源是否会被抢占,从而确定是否触发资源重选或资源释放。而根据上述参数确定资源是否被抢占,检测复杂度高,检测时间长。
发明内容
本申请提供了一种侧行链路中的资源抢占方法及侧行链路设备,以提高检测资源是否被抢占的效率,减少检测的复杂度,提高通信的可靠性。
第一方面,提供了一种侧行链路中的资源抢占方法,所述方法包括:第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息;其中,所述第一侧行链路控制信息的时频资源位置与所述第一业务数据的优先级关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备传输的第二业务数据的优先级关联。
在一个实现中,所述第一侧行链路设备在所述第一时频资源上传输所述第一业务数据和/或第二侧行链路控制信息,其中,所述第二侧行链路控制信息包括所述第一业务数据对应的调度信息。
其中,第二侧行链路控制信息为用来调度第一业务数据的控制信息。
在又一个实现中,第二侧行链路设备传输的第二业务数据的优先级低于所述第一业务 数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源。
在又一个实现中,第一时频资源为所述第二侧行链路设备当前使用的时频资源,为:第一时频资源为所述第二侧行链路设备确定要使用的时频资源,或正在使用的时频资源。
在又一个实现中,第二侧行链路设备传输的第二业务数据为第二侧行链路设备待传输或将要传输的业务数据。
在又一个实现中,所述第一侧行链路设备传输的第一业务数据为所述第一侧行链路设备待传输或将要传输的业务数据。
在又一个实现中,所述第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,包括:所述第一侧行链路设备根据配置次数,向所述第二侧行链路设备发送所述配置次数的第一侧行链路控制信息;和/或所述第一侧行链路设备在第一时间段内一次或多次向第二侧行链路设备发送第一侧行链路控制信息。
在又一个实现中,所述第一业务数据的优先级关联一个或多个第一侧行链路控制信息的候选时频资源位置;所述方法还包括:在所述一个或多个第一侧行链路控制信息的候选时频资源位置中选择发送所述第一侧行链路控制信息的时频资源位置;所述第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,包括:所述第一侧行链路设备在所选择的所述第一侧行链路控制信息的时频资源位置上向第二侧行链路设备发送第一侧行链路控制信息。
第二方面,提供了一种侧行链路中的资源抢占方法,包括:若第一侧行链路控制信息的时频资源位置与第一业务数据的优先级关联,第二侧行链路设备在高于或等于所述第二侧行链路设备传输的第二业务数据的优先级关联的时频资源位置,接收第一侧行链路设备发送的第一侧行链路控制信息;和/或若所述第一侧行链路控制信息的时频资源位置与所述第二业务数据的优先级关联,所述第二侧行链路设备在与所述第二业务数据的优先级关联的时频资源位置接收所述第一侧行链路控制信息;
其中,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息。
在一个实现中,所述第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源。
在又一个实现中,所述第二侧行链路设备接收第一侧行链路设备发送的第一侧行链路控制信息,包括:所述第二侧行链路设备接收配置次数的第一侧行链路控制信息;和/或所述第二侧行链路设备在第一时间段内一次或多次接收所述第一侧行链路设备发送的所述第一侧行链路控制信息。
第三方面,提供了一种侧行链路中的资源抢占方法,所述方法包括:第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息;其中,所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的标识关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的区域标识关联;
在一个实现中,所述第一侧行链路设备在所述第一时频资源上传输所述第一业务数据 和/或第二侧行链路控制信息,其中,所述第二侧行链路控制信息包括所述第一业务数据对应的调度信息。
在又一个实现中,所述第二侧行链路设备传输的第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源。
在又一个实现中,所述第一侧行链路设备传输的第一业务数据为所述第一侧行链路设备待传输或将要传输的业务数据。
在又一个实现中,所述第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,包括:所述第一侧行链路设备根据配置次数,向所述第二侧行链路设备发送所述配置次数的第一侧行链路控制信息;和/或所述第一侧行链路设备在第一时间段内一次或多次向第二侧行链路设备发送第一侧行链路控制信息。
第四方面,提供了一种侧行链路中的资源抢占方法,所述方法包括:第二侧行链路设备接收第一侧行链路设备发送的第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息;其中,所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的标识关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的区域标识关联。
第五方面,提供了一种侧行链路中的资源抢占方法,所述方法包括:第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息,以及所述第一侧行链路设备在所述第一时频资源上传输所述第一业务数据和/或第二侧行链路控制信息,其中,所述第二侧行链路控制信息包括所述第一业务数据对应的调度信息。在该方面中,抢占方通过开销较小的信息通知被抢占方占用的时频资源及抢占方传输的业务数据的优先级,使得被抢占方可以及时了解到自己当前使用的时频资源被抢占,触发资源重选或释放,提高了检测资源是否被抢占的效率,减少了检测的复杂度,提高了通信的可靠性。
在又一个实现中,所述第二侧行链路设备传输的第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源。
在又一个实现中,所述第一侧行链路设备传输的第一业务数据为所述第一侧行链路设备待传输或将要传输的业务数据。
在又一个实现中,所述第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,包括:所述第一侧行链路设备根据配置次数,向所述第二侧行链路设备发送所述配置次数的第一侧行链路控制信息;和/或所述第一侧行链路设备在第一时间段内一次或多次向第二侧行链路设备发送第一侧行链路控制信息。在该实现中,可以尽可能地使得第二侧行链路设备可以可靠地接收到第一侧行链路控制信息。
在又一个实现中,所述第一侧行链路控制信息的时频资源位置与所述第一业务数据的优先级关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二业务数据的优先级关联。在该实现中,使得第二侧行链路设备可以准确地检测到第一侧行链路控制信息。
在又一个实现中,所述第一业务数据的优先级关联一个或多个第一侧行链路控制信息 的候选时频资源位置;所述方法还包括:在所述一个或多个第一侧行链路控制信息的候选时频资源位置中选择发送所述第一侧行链路控制信息的时频资源位置;所述第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,包括:所述第一侧行链路设备在所选择的所述第一侧行链路控制信息的时频资源位置上向第二侧行链路设备发送第一侧行链路控制信息。在该实现中,在所选择的候选时频资源位置上发送第一侧行链路控制信息,提高了发送信息的可靠性,减少了对该第一侧行链路控制信息的检测时延,使得第二侧行链路设备可以可靠并较低时延地接收到该第一侧行链路控制信息。
在又一个实现中,所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的标识关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的区域标识关联。在该实现中,可以使得第二侧行链路设备可以准确地接收到发送给自身的第一侧行链路控制信息。
在又一个实现中,所述第一侧行链路控制信息包括所述第二侧行链路设备的标识,或所述第一侧行链路控制信息的循环冗余校验位由所述第二侧行链路设备的标识加扰。在该实现中,可以使得第二侧行链路设备可以准确地接收到发送给自身的第一侧行链路控制信息。
第六方面,提供了一种侧行链路中的资源抢占方法,所述方法包括:第二侧行链路设备接收第一侧行链路设备发送的第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源;
在一个实现中,所述第二侧行链路设备确定所述第一时频资源被占用;以及所述第二侧行链路设备释放所述第一时频资源,和/或重新竞争用于所述第二业务数据传输的第二时频资源。
在又一个实现中,所述第二侧行链路设备传输的第二业务数据的优先级低于所述第一业务数据的优先级。
在又一个实现中,所述第一侧行链路控制信息的时频资源位置与所述第一业务数据的优先级关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二业务数据的优先级关联,所述第二侧行链路设备接收第一侧行链路设备发送的第一侧行链路控制信息,包括:所述第二侧行链路设备在与所有高于或等于所述第二业务数据的优先级关联的时频资源位置,和/或在与所述第二业务数据的优先级关联的时频资源位置接收所述第一侧行链路控制信息。
在又一个实现中,所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的标识关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的区域标识关联,所述第二侧行链路设备接收第一侧行链路设备发送的第一侧行链路控制信息,包括:所述第二侧行链路设备在与所述第二侧行链路设备的标识或所述第二侧行链路设备的区域标识关联的时频资源位置接收所述第一侧行链路控制信息。
在又一个实现中,所述第一侧行链路控制信息包括所述第二侧行链路设备的标识,所述第二侧行链路设备接收第一侧行链路设备发送的第一侧行链路控制信息,包括:所述第二侧行链路设备根据所述第二侧行链路设备的标识接收所述第一侧行链路控制信息;或所 述第一侧行链路控制信息的循环冗余校验位由所述第二侧行链路设备的标识加扰,所述第二侧行链路设备接收第一侧行链路设备发送的第一侧行链路控制信息,包括:所述第二侧行链路设备采用所述第二侧行链路设备的标识对接收到的所述第一侧行链路控制信息进行解扰。
第七方面,提供了一种侧行链路中的资源抢占方法,所述方法包括:第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息;其中,所述第一侧行链路控制信息包括所述第二侧行链路设备的标识,或所述第一侧行链路控制信息的循环冗余校验位由所述第二侧行链路设备的标识加扰。
在一个实现中,所述第二侧行链路设备传输的第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源。
其中,第二侧行链路控制信息为用来调度第一业务数据的控制信息。
在又一个实现中,第一时频资源为所述第二侧行链路设备当前使用的时频资源,为:第一时频资源为所述第二侧行链路设备确定要使用的时频资源,或正在使用的时频资源。
在又一个实现中,第二侧行链路设备传输的第二业务数据为第二侧行链路设备待传输或将要传输的业务数据。
在又一个实现中,所述第一侧行链路设备在所述第一时频资源上传输所述第一业务数据和/或第二侧行链路控制信息,其中,所述第二侧行链路控制信息包括所述第一业务数据对应的调度信息。
在又一个实现中,所述第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,包括:所述第一侧行链路设备根据配置次数,向所述第二侧行链路设备发送所述配置次数的第一侧行链路控制信息;和/或所述第一侧行链路设备在第一时间段内一次或多次向第二侧行链路设备发送第一侧行链路控制信息。
第八方面,提供了一种侧行链路中的资源抢占方法,所述方法包括:第二侧行链路设备接收第一侧行链路设备发送第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息;其中,所述第一侧行链路控制信息包括所述第二侧行链路设备的标识,或所述第一侧行链路控制信息的循环冗余校验位由所述第二侧行链路设备的标识加扰。
第九方面,提供了一种侧行链路设备,可以实现上述任一方面或任一实现的侧行链路中的资源抢占方法。例如所述侧行链路设备可以是芯片。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述侧行链路设备的结构中包括处理器、存储器;所述处理器被配置为支持所述设备执行上述侧行链路中的资源抢占方法中相应的功能。存储器用于与处理器耦合,其保存所述设备必要的程序(指令)和/或数据。可选的,所述侧行链路设备还可以包括通信接口用于支持所述设备与其他网元之间的通信。
在另一种可能的实现方式中,所述侧行链路设备,可以包括执行上述方法中相应功能或动作的单元模块。
在又一种可能的实现方式中,包括处理器和收发设备,所述处理器与所述收发设备耦 合,所述处理器用于执行计算机程序或指令,以控制所述收发设备进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现上述方法。示例性的,所述收发设备可以为收发器、收发电路或输入输出接口。当所述侧行链路设备为芯片时,所述收发设备为收发电路或输入输出接口。
当所述侧行链路设备为芯片时,发送单元可以是输出单元,比如输出电路或者通信接口;接收单元可以是输入单元,比如输入电路或者通信接口。当所述侧行链路设备为网络设备时,发送单元可以是发射器或发射机;接收单元可以是接收器或接收机。
第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十二方面,提供了一种通信系统,包括前述的任一侧行链路设备。
附图说明
图1为本申请涉及的一种通信系统的示意图;
图2为本申请实施例提供的又一种侧行链路中的资源抢占方法的流程示意图;
图3为第一侧行链路控制信息指示资源被抢占的示意图;
图4为本申请实施例提供的又一种侧行链路中的资源抢占方法的流程示意图;
图5为本申请实施例提供的又一种侧行链路中的资源抢占方法的流程示意图;
图6为本申请实施例提供的又一种侧行链路中的资源抢占方法的流程示意图;
图7为本申请实施例提供的又一种侧行链路中的资源抢占方法的流程示意图;
图8为本申请实施例提供的一种侧行链路设备的模块结构示意图;
图9为本申请实施例提供的又一种侧行链路设备的模块结构示意图;
图10本申请实施例提供的一种简化的侧行链路设备的硬件结构示意图。
具体实施方式
图1给出了本申请涉及的一种通信系统的示意图。该通信系统可以包括至少一个网络设备以及与网络设备连接的一个或多个终端设备。终端设备可以与网络设备之间进行通信,多个终端设备之间也可以进行侧行链路通信。
网络设备可以是能和终端设备通信的设备。网络设备可以是任意一种具有无线收发功能的设备。包括但不限于:基站(NodeB)、演进型基站(eNodeB,eNB)、第五代(the fifth generation,5G)通信系统中的基站(gNB)、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备还可以是小站,传输节点(transmission reference point,TRP)等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。该通信系统可以是混合组网的通信系统,也可以是单一的通信系统。在图1中示例了混合组网通信系统包括两个网络设备:gNB和eNB,还可以包括其它的网络设备。
终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,如飞机、气球和卫星上等。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、移动站、移动台、远方站、远程终端设备、移动设备、终端(terminal)、无线通信设备、UE代理或UE装置等。在图1中示例了该通信系统包括三个UE:UE1、UE2和UE3,当然,本申请对通信系统所包括的UE数量不作限制。本申请涉及到侧行链路通信,该通信系统包括至少两个UE。
对于V2X场景,该通信系统还可以包括一个或多个路侧单元(road side unit,RSU),RSU可以与UE、gNB、eNB通信。另外,该通信系统还可以包括一个或多个全球导航卫星系统(global navigation satellite system,GNSS),GNSS可以为UE、RSU提供定位与授时的信息。
本申请提供一种侧行链路中的资源抢占方案,抢占方通过开销较小的信息通知被抢占方占用的时频资源及抢占方传输的业务数据的优先级,使得被抢占方可以及时了解到自己当前使用的时频资源被抢占,触发资源重选或释放,提高了检测资源是否被抢占的效率,减少了检测的复杂度,提高了通信的可靠性。
下面结合具体的实施例进行描述:
如图2所示,为本申请实施例提供的一种侧行链路中的资源抢占方法的流程示意图,该方法可以包括:
S101、第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息。
相应地,第二侧行链路设备接收该第一侧行链路控制信息。
本实施例中,第一侧行链路设备需要获取时频资源传输第一业务数据,第二侧行链路设备已经获取到第一时频资源,在该第一时频资源上正在传输或即将传输第二业务数据。其中,第二业务数据的优先级低于第一业务数据的优先级。
由于第一业务数据的优先级高于第二业务数据的优先级,第一侧行链路设备可以抢占第二侧行链路设备用于传输第二业务数据的第一时频资源。但为了第二侧行链路设备可以及时检测到自己当前使用的第一时频资源会被抢占,避免使用相同的时频资源,触发第二侧行链路设备进行资源重选或释放,使得初始传输时就避免资源冲突,第一侧行链路设备提前向第二侧行链路设备发送第一侧行链路控制信息(sidelink control information,SCI)。
其中,该第一侧行链路控制信息包括占用的第一时频资源信息以及第一业务数据对应的优先级信息。由于该第一侧行链路控制信息未包含调度信息,信令较小。即该第一侧行链路控制信息旨在通知碰撞,而不是为了数据传输。
如图3所示的第一侧行链路控制信息指示资源被抢占的示意图,第一侧行链路设备将要传输第一业务数据,需要先选择时频资源。在时频资源选择窗口内,第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,该第一侧行链路控制信息承载在物理侧行链路控制信道(physical sidelink control channel,PSCCH)上。该第一侧行链路控制信息包括占用的第一时频资源信息以及第一业务数据对应的优先级信息,即用于指示第二侧行链路设备:第一业务数据的优先级高于第二业务数据的优先级,第一侧行链路设备抢占了/要抢占第二侧行链路设备的第一时频资源。该第一侧行链路控制信息也可以称为用于指示预留的侧行链路控制信息(sidelink control information-reserved,SCI-R),或者称SCI-only,或者称stand-alone SCI。需要说明的是,网络设备可以配置是否激活本申请的用于抢占资源的SCI-R的传输。
进一步地,在一个实现中,为了尽可能地使得第二侧行链路设备可以可靠地接收到第一侧行链路控制信息,该第一侧行链路控制信息可以在第一次抢占传输之前发送一次或者多次。发送的次数可以由网络设备配置。则第一侧行链路设备根据配置次数,向第二侧行链路设备发送所配置次数的第一侧行链路控制信息。
进一步地,在又一个实现中,第一侧行链路设备还可以在一个第一时间段(time duration)内一次或多次传输上述第一侧行链路控制信息。该第一时间段的时间段长度可以是预先定义的,也可以是网络设备配置的,通常是根据统计特性确定的对于一个低优先级的侧行链路设备能够在该第一时间段内完成碰撞检测的时间段。网络设备可以配置该第一时间段,即配置该第一时间段的起始时刻,该第一时间段的持续时间,或该第一时间段的周期中至少一项。
在一个示例中,第一时间段可以是上述时频资源选择窗口的长度。
本申请中,所有“配置”可以为预配置,或者由网络设备通过信令进行配置,其中信令为高层信令,MAC层信令或者物理层信令中至少一种。
第二侧行链路设备接收该第一侧行链路控制信息。
具体实现中,第二侧行链路设备也可以主动检测发送第一侧行链路控制信息的时频资源位置。
在一个实现中,第一侧行链路控制信息的时频资源位置与第一业务数据的优先级关联。第一侧行链路设备会在第一业务数据的优先级关联的时频资源位置发送该第一侧行链路控制信息。相应地,第二侧行链路设备可以根据该关联关系,在与所有高于或等于第二业务数据的优先级关联的可能的时频资源位置检测该第一侧行链路控制信息。这样第二侧行链路设备可以及时检测到自身的第一时频资源是否可能会被抢占。
在又一个实现中,第一侧行链路控制信息的时频资源位置与第二业务数据的优先级关联。第一侧行链路设备获取该关联关系,会在与第二业务数据的优先级关联的时频资源位置发送第一侧行链路控制信息。相应地,第二侧行链路设备可以根据该关联关系,在与第二业务数据的优先级关联的时频资源位置检测该第一侧行链路控制信息。可以理解的是,与第二业务数据的优先级关联的时频资源位置可以是一个或多个。
作为一个示例,数据业务的优先级可以为服务质量(quality of service,QoS)级别,具体来说,QoS级别可以表示为:每包优先权(proSe per packet priority,PPPP);还可以 表示为N个服务质量索引(n QoS index,NQI),其中N为正整数;还可以采用别的索引标识QoS级别。
在又一个实现中,第一侧行链路控制信息的时频资源位置与第一业务数据的优先级和第二业务数据的优先级关联。第一侧行链路设备可以在第一业务数据的优先级关联的时频资源位置发送第一侧行链路控制信息,也可以在与第二业务数据的优先级关联的时频资源位置发送第一侧行链路控制信息。相应地,第二侧行链路设备可以与所有高于或等于第一业务数据的优先级关联的时频资源位置,以及在与第二业务数据的优先级关联的时频资源位置检测第一侧行链路控制信息。
在又一个实现中,第一侧行链路控制信息的时频资源位置与第二侧行链路设备的标识关联,和/或第一侧行链路控制信息的时频资源位置与第二侧行链路设备的区域标识关联。第二侧行链路设备的标识或区域标识可以关联一个或多个时频资源位置。第一侧行链路设备在与第二侧行链路设备的标识或区域标识关联的其中一个时频资源位置发送第一侧行链路控制信息。对应地,第二侧行链路设备在与第二侧行链路设备的标识或区域标识关联的一个或多个时频资源位置检测第一侧行链路控制信息。
进一步地,该第一侧行链路控制信息还可以包括第二侧行链路设备的标识,当第二侧行链路设备接收到该第一侧行链路控制信息时,根据第一侧行链路控制信息携带的第二侧行链路设备的标识,可以确定该第一侧行链路控制信息是发送给自身的。
进一步地,该第一侧行链路控制信息的循环冗余校验(cyclic redundancy check,CRC)位可以由第二侧行链路设备的标识加扰。第二侧行链路设备通过自身的标识进行检测及解扰,可以获取发送给改第二侧行链路设备的第一侧行链路控制信息。在该方式中,第一侧行链路控制信息可以不携带第二侧行链路设备的标识。
S102、所述第一侧行链路设备在所述第一时频资源上传输所述第一业务数据和/或第二侧行链路控制信息,其中,所述第二侧行链路控制信息包括所述第一业务数据对应的调度信息。
所述第一时频资源为用于传输第一业务数据的资源,或者,所述第一时频资源为用于传输调度第一业务数据的第二侧行链路控制信息和第一业务数据的资源。
如图3所示,抢占的第一时频资源用于传输第一业务数据,该第一业务数据承载在物理侧行链路共享信道(physical sidelink shared channel,PSSCH)上;抢占的第一时频资源还可以用于传输第二侧行链路控制信息,该第二侧行链路控制信息也承载在PSCCH上。与第一侧行链路控制信息不同的是,该第二侧行链路控制信息包括调度信息,例如调制编码方式(modulation and coding scheme,MCS)。该第二侧行链路控制信息也可以用于数据的侧行链路控制信息(sidelink control information-data,SCI-D)。一般地,该第二侧行链路控制信息的负荷(payload)比第一侧行链路控制信息的大。
S103、所述第二侧行链路设备确定所述第一时频资源被占用。
第二侧行链路设备在接收到第一侧行链路控制信息后,对比自身传输的第二业务数据的优先级和第一业务数据的优先级,确定第二业务数据的优先级低于第一业务数据的优先级,则确定第一时频资源将被第一侧行链路设备占用,第二侧行链路设备不能再在第一时频资源上传输第二业务数据。
进一步地,该方法还可以包括以下步骤,以下步骤为可选的步骤:
S104、所述第二侧行链路设备释放所述第一时频资源,和/或重新竞争用于所述第二业务数据传输的第二时频资源。
第二侧行链路设备在确定第一时频资源被抢占后,第二侧行链路设备释放第一时频资源。第二侧行链路设备还重新竞争用于第二业务数据传输的第二时频资源,以提高通信的可靠性。
需要说明的是,S102和S103~S104没有执行的先后顺序,第一侧行链路设备可以在发送完第一侧行链路控制信息后,在抢占到的第一时频资源上传输第一业务数据和/或第二侧行链路控制信息;第一侧行链路设备也可以在确定第二侧行链路设备释放掉第一时频资源后,在抢占到的第一时频资源上传输第一业务数据和/或第二侧行链路控制信息。
根据本申请实施例提供的一种侧行链路中的资源抢占方法,抢占方通过开销较小的信息通知被抢占方占用的时频资源及抢占方传输的业务数据的优先级,使得被抢占方可以及时了解到自己当前使用的时频资源被抢占,触发资源重选或释放,提高了检测资源是否被抢占的效率,减少了检测的复杂度,提高了通信的可靠性。
如图4所示,为本申请实施例提供的又一种侧行链路中的资源抢占方法的流程示意图,该方法可以包括:
S201、在一个或多个第一侧行链路控制信息的候选时频资源位置中选择发送给第二侧行链路设备的第一侧行链路控制信息的时频资源位置。
在本实施例中,可以分配一些候选时频资源位置用于传输第一侧行链路控制信息。这些候选时频资源位置位于一个特定的搜索空间(search space)。
可以按照设定顺序、或者候选时频资源的占用状态,选择发送给第二侧行链路设备的第一侧行链路控制信息的时频资源位置。
S202、第一侧行链路设备在所选择的第一侧行链路控制信息的时频资源位置上向第二侧行链路设备发送第一侧行链路控制信息。
相应地,第二侧行链路设备接收该第一侧行链路控制信息。
其中,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息,其中,所述第二侧行链路设备传输的第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源。
在所选择的第一侧行链路控制信息的时频资源位置上向第二侧行链路设备发送第一侧行链路控制信息,提高了发送信息的可靠性,使得第二侧行链路设备可以可靠地接收到该第一侧行链路控制信息。
S203、第一侧行链路设备在所述第一时频资源上传输第一业务数据和/或第二侧行链路控制信息,其中,所述第二侧行链路控制信息包括所述第一业务数据对应的调度信息。
该步骤的具体实现可以参考图2所示实施例的步骤S102。
S204、第二侧行链路设备确定所述第一时频资源被占用。
该步骤的具体实现可以参考图2所示实施例的步骤S103。
S205、第二侧行链路设备释放所述第一时频资源,和/或重新竞争用于所述第二业务数据传输的第二时频资源。
该步骤的具体实现可以参考图2所示实施例的步骤S104。
根据本申请实施例提供的一种侧行链路中的资源抢占方法,抢占方通过开销较小的信息通知被抢占方占用的时频资源及抢占方传输的业务数据的优先级,使得被抢占方可以及时了解到自己当前使用的时频资源被抢占,触发资源重选或释放,提高了检测资源是否被抢占的效率,减少了检测的复杂度,提高了通信的可靠性;且在所选择的候选时频资源位置上发送第一侧行链路控制信息,提高了发送信息的可靠性,使得第二侧行链路设备可以可靠地接收到该第一侧行链路控制信息。
如图5所示,为本申请实施例提供的又一种侧行链路中的资源抢占方法的流程示意图,该方法可以包括:
S301、第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息。
相应地,第二侧行链路设备接收该第一侧行链路控制信息。
其中,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息;所述第一侧行链路控制信息的时频资源位置与所述第一业务数据的优先级关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二业务数据的优先级关联。
具体地,在一个实现中,第一侧行链路控制信息的时频资源位置与第一业务数据的优先级关联。第一侧行链路设备会在第一业务数据的优先级关联的的时频资源位置发送该第一侧行链路控制信息。相应地,第二侧行链路设备可以根据该关联关系,在与所有高于或等于第二业务数据的优先级关联的可能的时频资源位置检测该第一侧行链路控制信息。这样第二侧行链路设备可以及时检测到自身的第一时频资源是否可能会被抢占。
在又一个实现中,第一侧行链路控制信息的时频资源位置与第二业务数据的优先级关联。第一侧行链路设备获取该关联关系,会在与第二业务数据的优先级关联的时频资源位置发送第一侧行链路控制信息。第二侧行链路设备可以根据该关联关系,在与第二业务数据的优先级关联的时频资源位置检测该第一侧行链路控制信息。可以理解的是,与第二业务数据的优先级关联的时频资源位置可以是一个或多个。
在又一个实现中,第一侧行链路控制信息的时频资源位置与第一业务数据的优先级和第二业务数据的优先级关联。第一侧行链路设备可以在与第一业务数据的优先级关联的时频资源位置发送第一侧行链路控制信息,也可以在与第二业务数据的优先级关联的时频资源位置发送第一侧行链路控制信息。相应地,第二侧行链路设备可以与所有高于或等于第二业务数据的优先级关联的时频资源位置,以及在与第二业务数据的优先级关联的时频资源位置检测第一侧行链路控制信息。
具体地,S301包括:根据配置次数,所述第一侧行链路设备向所述第二侧行链路设备发送所述配置次数的第一侧行链路控制信息;和/或所述第一侧行链路设备在第一时间段内向第二侧行链路设备发送第一侧行链路控制信息。具体的实现可以参考图2所示实施例的相关描述。
进一步地,该方法还可以包括:所述第二侧行链路设备传输的第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源;所述第一侧行链路设备在所述第一时频资源上传输所述第一业务数据和/或第二侧行链路控制信息,其中,所述第二侧行链路控制信息包括所述第一业务数据对应的调度信息。具体的实现可以参考图2所示实施例的相关描述。
进一步地,所述第一业务数据的优先级关联一个或多个第一侧行链路控制信息的候选时频资源位置;所述方法还包括:在所述一个或多个第一侧行链路控制信息的候选时频资源位置中选择发送所述第一侧行链路控制信息的时频资源位置;所述第一侧行链路设备在所选择的所述第一侧行链路控制信息的时频资源位置上向第二侧行链路设备发送第一侧行链路控制信息。具体的实现可以参考图2所示实施例的相关描述。
根据本申请实施例提供的一种侧行链路中的资源抢占方法,抢占方通过开销较小的信息通知被抢占方占用的时频资源及抢占方传输的业务数据的优先级,使得被抢占方可以及时了解到自己当前使用的时频资源被抢占,第一侧行链路控制信息的时频资源位置与第一业务数据的优先级关联,和/或第一侧行链路控制信息的时频资源位置与第二业务数据的优先级关联,使得第二侧行链路设备可以准确地检测到第一侧行链路控制信息,减少了检测的复杂度,提高了通信的可靠性。
如图6所示,为本申请实施例提供的又一种侧行链路中的资源抢占方法的流程示意图,该方法可以包括:
S401、第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息。
其中,所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的标识关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的区域标识关联。
具体地,第二侧行链路设备的标识或区域标识可以关联一个或多个时频资源位置。第一侧行链路设备在与第二侧行链路设备的标识或区域标识关联的其中一个时频资源位置发送第一侧行链路控制信息。对应地,第二侧行链路设备在与第二侧行链路设备的标识或区域标识关联的一个或多个时频资源位置检测第一侧行链路控制信息。
进一步地,所述第一侧行链路设备根据配置次数,向所述第二侧行链路设备发送所述配置次数的第一侧行链路控制信息;和/或所述第一侧行链路设备在第一时间段内向第二侧行链路设备发送第一侧行链路控制信息。具体的实现可以参考图2所示实施例的相关描述。
进一步地,所述第二侧行链路设备传输的第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源;所述第一侧行链路设备在所述第一时频资源上传输所述第一业务数据和/或第二侧行链路控制信息,其中,所述第二侧行链路控制信息包括所述第一业务数据对应的调度信息。具体的实现可以参考图2所示实施例的相关描述。
根据本申请实施例提供的一种侧行链路中的资源抢占方法,抢占方通过开销较小的信 息通知被抢占方占用的时频资源及抢占方传输的业务数据的优先级,使得被抢占方可以及时了解到自己当前使用的时频资源被抢占,第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的标识或区域标识关联,使得第二侧行链路设备可以准确地接收到发送给自身的第一侧行链路控制信息,减少了检测的复杂度,提高了通信的可靠性。
如图7所示,为本申请实施例提供的又一种侧行链路中的资源抢占方法的流程示意图,该方法可以包括:
S501、第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息。
其中,所述第一侧行链路控制信息包括所述第二侧行链路设备的标识,或所述第一侧行链路控制信息的循环冗余校验位由所述第二侧行链路设备的标识加扰。
具体地,该第一侧行链路控制信息包括第二侧行链路设备的标识。当第二侧行链路设备接收到该第一侧行链路控制信息时,根据第一侧行链路控制信息携带的第二侧行链路设备的标识,可以确定该第一侧行链路控制信息是发送给自身的。
该第一侧行链路控制信息的循环冗余校验(cyclic redundancy check,CRC)位可以由第二侧行链路设备的标识加扰。第二侧行链路设备通过自身的标识进行检测及解扰,可以获取发送给改第二侧行链路设备的第一侧行链路控制信息。在该方式中,第一侧行链路控制信息可以不携带第二侧行链路设备的标识。
进一步地,所述第一侧行链路设备还根据配置次数,向所述第二侧行链路设备发送所述配置次数的第一侧行链路控制信息;和/或所述第一侧行链路设备在第一时间段内一次或多次向第二侧行链路设备发送第一侧行链路控制信息。具体的实现可以参考图2所示实施例的相关描述。
进一步地,所述第二侧行链路设备传输的第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源;所述第一侧行链路设备在所述第一时频资源上传输所述第一业务数据和/或第二侧行链路控制信息,其中,所述第二侧行链路控制信息包括所述第一业务数据对应的调度信息。具体的实现可以参考图2所示实施例的相关描述。
根据本申请实施例提供的一种侧行链路中的资源抢占方法,抢占方通过开销较小的信息通知被抢占方占用的时频资源及抢占方传输的业务数据的优先级,使得被抢占方可以及时了解到自己当前使用的时频资源被抢占,第一侧行链路控制信息包括第二侧行链路设备的标识,或第一侧行链路控制信息的循环冗余校验位由第二侧行链路设备的标识加扰,使得第二侧行链路设备可以准确地接收到发送给自身的第一侧行链路控制信息,减少了检测的复杂度,提高了通信的可靠性。
基于上述侧行链路中的资源抢占方法的同一构思,本申请实施例还提供了一种侧行链路设备,如图8所示,该侧行链路设备1000包括:收发单元11;还可以包括处理单元12;其中:
收发单元11,用于向第二侧行链路设备发送第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息;
其中,所述第一侧行链路控制信息的时频资源位置与所述第一业务数据的优先级关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备传输的第二业务数据的优先级关联。
在一个实现中,所述收发单元11,还用于在所述第一时频资源上传输所述第一业务数据和/或第二侧行链路控制信息,其中,所述第二侧行链路控制信息包括所述第一业务数据对应的调度信息。
在又一个实现中,所述第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源。
在又一个实现中,第一时频资源为所述第二侧行链路设备当前使用的时频资源,为:第一时频资源为所述第二侧行链路设备确定要使用的时频资源,或正在使用的时频资源。
在又一个实现中,所述收发单元11,用于根据配置次数,向所述第二侧行链路设备发送所述配置次数的所述第一侧行链路控制信息;和/或在第一时间段内一次或多次向所述第二侧行链路设备发送所述第一侧行链路控制信息。
在又一个实现中,所述第一业务数据的优先级关联一个或多个第一侧行链路控制信息的候选时频资源位置;所述侧行链路设备还包括:
处理单元12,用于在所述一个或多个第一侧行链路控制信息的候选时频资源位置中选择发送所述第一侧行链路控制信息的时频资源位置;
所述收发单元11,用于在所选择的候选时频资源位置上向所述第二侧行链路设备发送所述第一侧行链路控制信息。
有关上述收发单元11和处理单元12的具体实现可参考上述图2、图4~图7所示的实施例中第一侧行链路设备的相关描述。
根据本申请实施例提供的一种侧行链路设备,该侧行链路设备作为抢占方通过开销较小的信息通知被抢占方占用的时频资源及抢占方传输的业务数据的优先级,使得被抢占方可以及时了解到自己当前使用的时频资源被抢占,触发资源重选或释放,提高了检测资源是否被抢占的效率,减少了检测的复杂度,提高了通信的可靠性。
基于上述侧行链路中的资源抢占方法的同一构思,本申请实施例还提供了一种侧行链路设备,如图9所示,该侧行链路设备2000包括:收发单元21;其中:
收发单元21,用于若第一侧行链路控制信息的时频资源位置与第一业务数据的优先级关联,在高于或等于第二侧行链路设备传输的第二业务数据的优先级关联的时频资源位置,接收第一侧行链路设备发送的第一侧行链路控制信息;和/或若所述第一侧行链路控制信息的时频资源位置与所述第二业务数据的优先级关联,在与所述第二业务数据的优先级关联的时频资源位置接收所述第一侧行链路控制信息;
其中,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息。
在一个实现中,所述第二侧行链路设备传输的第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源。
在又一个实现中,所述收发单元21,用于接收配置次数的所述第一侧行链路控制信息;和/或在第一时间段内一次或多次接收所述第一侧行链路设备发送的所述第一侧行链路控制信息。
有关上述收发单元21的具体实现可参考上述图2、图4~图7所示的实施例中第二侧行链路设备的相关描述。
根据本申请实施例提供的一种侧行链路设备,该侧行链路设备作为被抢占方,接收抢占方通过开销较小的信息通知的占用的时频资源及抢占方传输的业务数据的优先级,被抢占方可以及时了解到自己当前使用的时频资源被抢占,触发资源重选或释放,提高了检测资源是否被抢占的效率,减少了检测的复杂度,提高了通信的可靠性。
本申请实施例还提供一种侧行链路设备,该侧行链路设备用于执行上述侧行链路中的资源抢占方法。上述侧行链路中的资源抢占方法中的部分或全部可以通过硬件来实现也可以通过软件来实现。
可选的,侧行链路设备在具体实现时可以是芯片或者集成电路。
可选的,当上述实施例的侧行链路中的资源抢占方法中的部分或全部通过软件来实现时,侧行链路设备包括:处理器,用于执行程序,当程序被执行时,使得侧行链路设备可以实现上述实施例提供的侧行链路中的资源抢占方法,该侧行链路设备还可以包括存储器,用于存储必要的程序,这些涉及的程序可以在该侧行链路设备出厂时即装载再存储器中,也可以在后期需要的时候再装载入存储器。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
可选的,当上述实施例的侧行链路中的资源抢占方法中的部分或全部通过软件实现时,侧行链路设备也可以只包括处理器。用于存储程序的存储器位于侧行链路设备之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
可选的,处理器可以包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
图10示出了一种简化的侧行链路设备的硬件结构示意图。便于理解和图示方便,图10中,侧行链路设备以手机作为例子。如图10所示,侧行链路设备包括处理器,还可以 包括射频电路、天线以及输入输出装置。其中,处理器可用于对通信协议以及通信数据进行处理,还可以用于对侧行链路设备进行控制,执行软件程序,处理软件程序的数据等。该侧行链路设备还可以包括存储器,存储器主要用于存储软件程序和数据,这些涉及的程序可以在该通信装置出厂时即装载再存储器中,也可以在后期需要的时候再装载入存储器。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的侧行链路设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到侧行链路设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图10中仅示出了一个存储器和处理器。在实际的侧行链路设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为侧行链路设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为侧行链路设备的处理单元。如图10所示,侧行链路设备包括接收单元31、处理单元32和发送单元33。接收单元31也可以称为接收器、接收机、接收电路等,发送单元33也可以称为发送器、发射器、发射机、发射电路等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。
该侧行链路设备可以是上述实施例中的第一侧行链路设备。
例如,在一个实施例中,发送单元33用于执行图2所示的实施例中的步骤S101和S102中第一侧行链路设备的功能。
例如,在又一个实施例中,处理单元32用于执行图4所示的实施例中S201的步骤;以及发送单元33用于执行图4所示的实施例中S202和S203中第一侧行链路设备的功能。
例如,在又一个实施例中,发送单元33用于执行图5所示的实施例中的步骤S301中第一侧行链路设备的功能。
例如,在又一个实施例中,发送单元33用于执行图6所示的实施例中的步骤S401中第一侧行链路设备的功能。
例如,在又一个实施例中,发送单元33用于执行图7所示的实施例中的步骤S501中第一侧行链路设备的功能。
该侧行链路设备可以是上述实施例中的第二侧行链路设备。
例如,在又一个实施例中,接收单元31用于执行图2所示的实施例中的步骤S101中第二侧行链路设备的功能;以及处理单元32用于执行图2所示的实施例中的步骤S103和S104。
例如,在又一个实施例中,接收单元31用于执行图4所示的实施例中的步骤S202中 第二侧行链路设备的功能;以及处理单元32用于执行图4所示的实施例中的步骤S204和S205。
例如,在又一个实施例中,接收单元31用于执行图5所示的实施例中的步骤S301中第二侧行链路设备的功能。
例如,在又一个实施例中,接收单元31用于执行图6所示的实施例中的步骤S401中第二侧行链路设备的功能。
例如,在又一个实施例中,接收单元31用于执行图7所示的实施例中的步骤S501中第二侧行链路设备的功能。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各个实施例中所述的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各个实施例中所述的方法。
本申请实施例还提供了一种通信系统,包括前述的任一侧行链路设备。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所显示或讨论的相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是只读存储器(read-only memory,ROM),或随机存储存储器(random access memory,RAM),或磁性介质,例如,软盘、硬盘、磁带、磁碟、或光介质,例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质,例如,固态硬盘(solid state disk,SSD)等。

Claims (29)

  1. 一种侧行链路中的资源抢占方法,其特征在于,所述方法包括:
    第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息;
    其中,所述第一侧行链路控制信息的时频资源位置与所述第一业务数据的优先级关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备传输的第二业务数据的优先级关联。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一侧行链路设备在所述第一时频资源上传输所述第一业务数据和/或第二侧行链路控制信息,其中,所述第二侧行链路控制信息包括所述第一业务数据对应的调度信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,第一时频资源为所述第二侧行链路设备当前使用的时频资源,为:第一时频资源为所述第二侧行链路设备确定要使用的时频资源,或正在使用的时频资源。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,包括:所述第一侧行链路设备根据配置次数,向所述第二侧行链路设备发送所述配置次数的所述第一侧行链路控制信息;和/或所述第一侧行链路设备在第一时间段内一次或多次向所述第二侧行链路设备发送所述第一侧行链路控制信息。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述第一业务数据的优先级关联一个或多个第一侧行链路控制信息的候选时频资源位置;所述方法还包括:
    在所述一个或多个第一侧行链路控制信息的候选时频资源位置中选择发送所述第一侧行链路控制信息的时频资源位置;
    所述第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,包括:所述第一侧行链路设备在所选择的候选时频资源位置上向所述第二侧行链路设备发送所述第一侧行链路控制信息。
  7. 一种侧行链路中的资源抢占方法,其特征在于,所述方法包括:
    若第一侧行链路控制信息的时频资源位置与第一业务数据的优先级关联,第二侧行链路设备在高于或等于所述第二侧行链路设备传输的第二业务数据的优先级关联的时频资源位置,接收第一侧行链路设备发送的第一侧行链路控制信息;和/或若所述第一侧行链路控制信息的时频资源位置与所述第二业务数据的优先级关联,所述第二侧行链路设备在与所述第二业务数据的优先级关联的时频资源位置接收所述第一侧行链路控制信息;
    其中,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链 路设备传输的第一业务数据对应的优先级信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第二侧行链路设备接收第一侧行链路设备发送的第一侧行链路控制信息,包括:所述第二侧行链路设备接收配置次数的第一侧行链路控制信息;和/或所述第二侧行链路设备在第一时间段内一次或多次接收所述第一侧行链路设备发送的所述第一侧行链路控制信息。
  10. 一种侧行链路中的资源抢占方法,其特征在于,所述方法包括:
    第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息;
    其中,所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的标识关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的区域标识关联。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第一侧行链路设备在所述第一时频资源上传输所述第一业务数据和/或第二侧行链路控制信息,其中,所述第二侧行链路控制信息包括所述第一业务数据对应的调度信息。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源。
  13. 根据权利要求10~12任一项所述的方法,其特征在于,所述第一侧行链路设备向第二侧行链路设备发送第一侧行链路控制信息,包括:所述第一侧行链路设备根据配置次数,向所述第二侧行链路设备发送所述配置次数的所述第一侧行链路控制信息;和/或所述第一侧行链路设备在第一时间段内一次或多次向所述第二侧行链路设备发送所述第一侧行链路控制信息。
  14. 一种侧行链路中的资源抢占方法,其特征在于,所述方法包括:
    第二侧行链路设备接收第一侧行链路设备发送的第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息;
    其中,所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的标识关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的区域标识关联。
  15. 一种侧行链路设备,其特征在于,包括:
    收发单元,用于向第二侧行链路设备发送第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息;
    其中,所述第一侧行链路控制信息的时频资源位置与所述第一业务数据的优先级关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备传输的第二业 务数据的优先级关联。
  16. 根据权利要求15所述的侧行链路设备,其特征在于:
    所述收发单元,还用于在所述第一时频资源上传输所述第一业务数据和/或第二侧行链路控制信息,其中,所述第二侧行链路控制信息包括所述第一业务数据对应的调度信息。
  17. 根据权利要求15或16所述的侧行链路设备,其特征在于,所述第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源。
  18. 根据权利要求15~17任一项所述的侧行链路设备,其特征在于,第一时频资源为所述第二侧行链路设备当前使用的时频资源,为:第一时频资源为所述第二侧行链路设备确定要使用的时频资源,或正在使用的时频资源。
  19. 根据权利要求15~18任一项所述的侧行链路设备,其特征在于,所述收发单元,用于根据配置次数,向所述第二侧行链路设备发送所述配置次数的所述第一侧行链路控制信息;和/或在第一时间段内一次或多次向所述第二侧行链路设备发送所述第一侧行链路控制信息。
  20. 根据权利要求15~19任一项所述的侧行链路设备,其特征在于,所述第一业务数据的优先级关联一个或多个第一侧行链路控制信息的候选时频资源位置;所述侧行链路设备还包括:
    处理单元,用于在所述一个或多个第一侧行链路控制信息的候选时频资源位置中选择发送所述第一侧行链路控制信息的时频资源位置;
    所述收发单元,用于在所选择的候选时频资源位置上向所述第二侧行链路设备发送所述第一侧行链路控制信息。
  21. 一种侧行链路设备,其特征在于,包括:
    收发单元,用于若第一侧行链路控制信息的时频资源位置与第一业务数据的优先级关联,在高于或等于第二侧行链路设备传输的第二业务数据的优先级关联的时频资源位置,接收第一侧行链路设备发送的第一侧行链路控制信息;和/或若所述第一侧行链路控制信息的时频资源位置与所述第二业务数据的优先级关联,在与所述第二业务数据的优先级关联的时频资源位置接收所述第一侧行链路控制信息;
    其中,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息。
  22. 根据权利要求21所述的侧行链路设备,其特征在于,所述第二侧行链路设备传输的第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源。
  23. 根据权利要求21或22所述的侧行链路设备,其特征在于,所述收发单元,用于接收配置次数的所述第一侧行链路控制信息;和/或在第一时间段内一次或多次接收所述第一侧行链路设备发送的所述第一侧行链路控制信息。
  24. 一种侧行链路设备,其特征在于,包括:
    收发单元,用于向第二侧行链路设备发送第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对 应的优先级信息;
    其中,所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的标识关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的区域标识关联。
  25. 根据权利要求24所述的侧行链路设备,其特征在于:
    所述收发单元,还用于在所述第一时频资源上传输所述第一业务数据和/或第二侧行链路控制信息,其中,所述第二侧行链路控制信息包括所述第一业务数据对应的调度信息。
  26. 根据权利要求24或25所述的侧行链路设备,其特征在于,所述第二侧行链路设备传输的第二业务数据的优先级低于所述第一业务数据的优先级,所述第一时频资源为所述第二侧行链路设备当前使用的时频资源。
  27. 根据权利要求24~25任一项所述的侧行链路设备,其特征在于,所述收发单元用于根据配置次数,向所述第二侧行链路设备发送所述配置次数的所述第一侧行链路控制信息;和/或在第一时间段内一次或多次向所述第二侧行链路设备发送所述第一侧行链路控制信息。
  28. 一种侧行链路设备,其特征在于,包括:
    收发单元,用于接收第一侧行链路设备发送的第一侧行链路控制信息,所述第一侧行链路控制信息包括占用的第一时频资源信息以及所述第一侧行链路设备传输的第一业务数据对应的优先级信息;
    其中,所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的标识关联,和/或所述第一侧行链路控制信息的时频资源位置与所述第二侧行链路设备的区域标识关联。
  29. 一种侧行链路设备,其特征在于,包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如权利要求1-6任一项所述的方法、或根据所述指令实现如权利要求7~9任一项所述的方法、或根据权利要求10~13任一项所述的方法、或根据权利要求14所述的方法。
PCT/CN2019/114500 2019-10-30 2019-10-30 侧行链路中的资源抢占方法及侧行链路设备 WO2021081851A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/114500 WO2021081851A1 (zh) 2019-10-30 2019-10-30 侧行链路中的资源抢占方法及侧行链路设备
CN201980101765.5A CN114600550A (zh) 2019-10-30 2019-10-30 侧行链路中的资源抢占方法及侧行链路设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114500 WO2021081851A1 (zh) 2019-10-30 2019-10-30 侧行链路中的资源抢占方法及侧行链路设备

Publications (1)

Publication Number Publication Date
WO2021081851A1 true WO2021081851A1 (zh) 2021-05-06

Family

ID=75715751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114500 WO2021081851A1 (zh) 2019-10-30 2019-10-30 侧行链路中的资源抢占方法及侧行链路设备

Country Status (2)

Country Link
CN (1) CN114600550A (zh)
WO (1) WO2021081851A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246745A1 (zh) * 2022-06-25 2023-12-28 华为技术有限公司 一种通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109644436A (zh) * 2018-03-20 2019-04-16 Oppo广东移动通信有限公司 资源共享的方法和终端设备
WO2019158054A1 (en) * 2018-02-13 2019-08-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method for performing vehicle to everything communication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019158054A1 (en) * 2018-02-13 2019-08-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method for performing vehicle to everything communication
CN109644436A (zh) * 2018-03-20 2019-04-16 Oppo广东移动通信有限公司 资源共享的方法和终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
U.S. DEPARTMENT OF COMMERCE (U.S. DOC): "ProSe RAN functional description for realizing off-network MCPTT priority", 3GPP DRAFT; R2-152669 PROSE RAN FUNCTIONAL DESCRIPTION FOR REALIZING OFF-NETWORK MCPTT PRIORITY-FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Fukuoka, Japan; 20150525 - 20150529, 15 May 2015 (2015-05-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP050970523 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246745A1 (zh) * 2022-06-25 2023-12-28 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN114600550A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
US20230101824A1 (en) Method for sharing power and resources for sidelink positioning, and apparatus therefor
EP3354097B1 (en) Scheduling and transmitting control information and data for direct communication
JP6728485B2 (ja) ワイヤレス通信の方法、装置、およびシステム
CN112399639B (zh) 无线通信的设备及该设备的无线通信方法
CN114980221A (zh) 用于无线电通信的方法和设备
CN114051709B (zh) 上行链路传输抢占
WO2018196454A1 (zh) 一种d2d多载波聚合的载波集选取方法及相关设备
CA3023184A1 (en) Electronic apparatus, information processing device and information processing method
WO2020259363A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2019174011A1 (zh) 一种数据传输方法及装置、计算机存储介质
EP3625911A1 (en) Techniques for handling semi-persistent scheduling collisions for wireless networks
US20170111921A1 (en) Method and apparatus for requesting scheduling
WO2024036671A1 (zh) 侧行通信的方法及装置
CN111316718B (zh) 用于侧链通信的载波聚合
CN114073158A (zh) 用于副链路调度请求及缓冲状态报告传输的方法及设备
WO2021036834A1 (zh) 资源指示方法及装置
WO2021081851A1 (zh) 侧行链路中的资源抢占方法及侧行链路设备
CN114424654A (zh) 测量方法、装置及系统
WO2016173644A1 (en) Use of multiple device-to-device (d2d) discovery message resources for transmission of a service message in a wireless network
JP2017529794A (ja) 装置間(d2d)通信のための協調分散スケジューリング
WO2019051654A1 (zh) 一种逻辑信道的资源确定方法及装置、计算机存储介质
JP2022521086A (ja) 送受信デバイス及びスケジューリングデバイス
WO2019174017A1 (zh) 车联网中载波选择的方法和终端设备
CN112153737A (zh) 一种通信方法和装置
US11317366B2 (en) Synchronous carrier selection method and apparatus, and computer storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950904

Country of ref document: EP

Kind code of ref document: A1