WO2021080012A1 - Speed profile creation device, operation assistance device, operation control device and speed profile creation method - Google Patents

Speed profile creation device, operation assistance device, operation control device and speed profile creation method Download PDF

Info

Publication number
WO2021080012A1
WO2021080012A1 PCT/JP2020/039991 JP2020039991W WO2021080012A1 WO 2021080012 A1 WO2021080012 A1 WO 2021080012A1 JP 2020039991 W JP2020039991 W JP 2020039991W WO 2021080012 A1 WO2021080012 A1 WO 2021080012A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
running
simulation
speed
coasting
Prior art date
Application number
PCT/JP2020/039991
Other languages
French (fr)
Japanese (ja)
Inventor
英明 行木
仁志 井山
Original Assignee
株式会社東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社東芝
Publication of WO2021080012A1 publication Critical patent/WO2021080012A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/40Adaptation of control equipment on vehicle for remote actuation from a stationary place
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor

Definitions

  • An embodiment of the present invention relates to a driving curve creating device, a driving support device, a driving control device, and a driving curve creating method.
  • Methods for reducing the power consumption of trains include weight reduction of rolling stock, reduction of air resistance, introduction of highly efficient motors, and driving utilizing coasting.
  • weight reduction of rolling stock reduction of air resistance
  • introduction of highly efficient motors introduction of highly efficient motors
  • driving utilizing coasting as a method of reducing power consumption without changing a vehicle or a motor, attention is paid to driving utilizing coasting.
  • Operating states include power running (a state in which driving force is applied in the direction of accelerating the train), braking (a state in which braking force is applied in the direction of decelerating the train), and coasting (a state in which power is not applied to the train). ).
  • the driving curve shows the speed and time with respect to the train position from the departure of the station to the arrival of the next station, and is created in consideration of the speed limit, gradient, vehicle performance, etc. of the line.
  • the energy-saving driving curve By creating a driving curve, it is possible to calculate the running time and power consumption of driving with different coasting sections and coasting lengths. By adjusting the coasting section and coasting length when creating the driving curve, it is possible to obtain a driving curve with low power consumption (hereinafter referred to as the energy-saving driving curve) while observing the running time specified by the train schedule. Can be done.
  • a candidate for a coasting section is selected from the sections that can coast, changed to coasting, and coasting is determined if the traveling time of the entire driving curve is within the allowable time. If it is not within the permissible time, it is canceled, a new coasting section candidate is selected, and the coasting is changed to coasting.
  • an operation curve that matches the conditions can be obtained (Patent Document 1).
  • the mileage is long and the number of coasting section candidates is large, the calculation time may become long.
  • an object to be solved by the present invention is to provide a driving curve creating device, a driving support device, a driving control device, and a driving curve creating method capable of creating an energy-saving driving curve in a short time.
  • the operation curve creating device of the embodiment includes a traveling condition setting unit that sets a train traveling range and a target traveling time, a traveling simulation execution unit that executes a traveling simulation of the train in the traveling range and creates a driving curve.
  • a parameter adjusting unit for adjusting parameters related to coasting during execution of the traveling simulation is provided according to the traveling time of the train obtained from the result of the traveling simulation for the traveling range.
  • the parameter adjusting unit adjusts the parameters so that the traveling time of the train obtained from the result of the traveling simulation is close to the target traveling time. Further, the parameters are adjusted according to the speed with respect to the position of the train in the traveling simulation.
  • FIG. 1 is a block diagram showing a configuration example of the operation curve creating device of the first embodiment.
  • FIG. 2 is a flowchart showing an example of processing by the operation curve creating device of the first embodiment.
  • FIG. 3A is a graph showing an example of an operation curve in a comparative example (conventional technique).
  • FIG. 3B is a graph showing an example of an operation curve created by the operation curve creation device of the first embodiment.
  • FIG. 4A is a graph showing a first example of an operation curve in a comparative example (conventional technique).
  • FIG. 4B is a graph showing a second example of the operation curve in the comparative example (conventional technique).
  • FIG. 4C is a graph showing an example of an operation curve created by the operation curve creation device of the first embodiment.
  • FIG. 5 is a diagram showing an example of a change in power consumption when the exponentiation of speed at the time of coasting amount calculation is changed in the operation curve creation according to the first embodiment.
  • FIG. 6 is a block diagram showing a configuration example of the driving support device according to the second embodiment.
  • FIG. 7 is a block diagram showing a configuration example of the operation control device according to the third embodiment.
  • a candidate for a coasting section is selected from the sections that can be changed to coasting and changed to coasting, and coasting is determined if the traveling time of the entire driving curve is within the allowable time. .. If it is not within the permissible time, it is canceled, a new coasting section candidate is selected, and the coasting is changed to coasting. By repeating the evaluation of the permissible time in this way, an operation curve that matches the conditions can be obtained. However, if the mileage is long and the number of coasting section candidates is large, the calculation time may become long.
  • FIG. 1 is a block diagram showing a configuration example of the operation curve creating device 100 of the first embodiment.
  • the operation curve creating device 100 includes a data input / output unit 1, a calculation unit 2, and a storage unit 3.
  • the operation curve creating device 100 also includes a user interface (keyboard, mouse, touch panel, etc.), a communication interface, and the like, but the illustration and description thereof will be omitted for the sake of brevity.
  • the data input / output unit 1 receives the train schedule information (departure / arrival station, departure / arrival time, etc.) necessary for creating the operation curve as input, and outputs it to the calculation unit 2. Further, the driving curve created by the calculation unit 2 is output to the outside for the purpose of driving support, driving control, or the like.
  • the storage unit 3 includes a vehicle performance / route information database 31 that holds vehicle performance (train weight, power running characteristics, braking characteristics, etc.) and route information (gradient, curve, speed limit, station position, etc.).
  • the calculation unit 2 includes a running condition setting unit 21, a running simulation execution unit 22, and a parameter adjustment unit 23, and sets a running range, creates a driving curve by executing a simulation, adjusts parameters at the time of executing a simulation, and the like.
  • the running condition setting unit 21 sets the running range and the target running time of the train.
  • the traveling condition setting unit 21 refers to the vehicle performance / route information database 31 based on the departure / arrival station information of the train schedule, and sets the departure station position and the arrival station position, which are the traveling ranges.
  • the target travel time is set using the departure and arrival times.
  • information such as the departure station position, the arrival station position, and the target travel time may be directly input to the operation curve creation device 100.
  • all the operation curves from the first station to the last station of the entire line may be created at once.
  • the running simulation execution unit 22 executes a running simulation of the train in the running range and creates a running curve. Specifically, for the traveling range set by the traveling condition setting unit 21, a driving curve is created by referring to the vehicle performance / route information database 31 using the parameters adjusted by the parameter adjusting unit 23.
  • the parameter adjusting unit 23 adjusts the parameters related to coasting used by the traveling simulation execution unit 22 when executing the traveling simulation so that the traveling time of the train is close to the target traveling time.
  • the parameter related to coasting is, for example, the amount of speed reduction due to coasting in the section to which coasting is added. Details of parameter setting for each section will be described later.
  • FIG. 2 is a flowchart showing an example of processing by the operation curve creating device 100 of the first embodiment.
  • step S1 the traveling condition setting unit 21 sets the traveling range and the target traveling time of the train.
  • the travel range is from the departure station position to the arrival station position, and the difference between the departure time of the train schedule and the arrival time of the arrival station is the target travel time.
  • step S2 the parameter adjusting unit 23 adjusts the parameters related to coasting (the amount of speed reduction due to coasting) used when executing the running simulation. Specifically, when the running time of the train obtained from the result of the running simulation by the running simulation execution unit 22 is shorter than the target running time, the parameter is adjusted in the direction of increasing coasting. As a result, the running time will be extended in the next running simulation.
  • the parameters related to coasting the amount of speed reduction due to coasting
  • step S3 the travel simulation execution unit 22 uses the parameters related to coasting adjusted by the parameter adjustment unit 23, refers to the vehicle performance / route information database 31, and executes a train travel simulation in the travel range to drive the train. Create a curve.
  • the parameter speed reduction amount due to coasting
  • the parameter is based on the value adjusted by the parameter adjusting unit 23, and the value proportional to the power of the speed with respect to the train position in the running simulation (for example, the cube or fourth power of the speed) is coasted. Is set for each section to which is added. Therefore, in the traveling range, the coasting is large in the high speed section, and the coasting is small in the low speed section.
  • step 4 it is determined whether or not the traveling time of the driving curve created in step S3 matches the target traveling time. If Yes, the process ends, and if No, the process returns to Step S2.
  • step S4 When the difference between the train running time and the target running time obtained from the simulation result is within the predetermined range, it is determined that both match (Yes in step S4), and the process is terminated.
  • step S4 the operation curve that matches the target travel time is adopted as the energy-saving operation curve and output to the data input / output unit 1.
  • the data input / output unit 1 outputs the adopted energy-saving operation curve data to the outside. Subsequent processing will be described with reference to the second embodiment and the third embodiment.
  • FIG. 3A is a graph showing an example of an operation curve in a comparative example (conventional technique).
  • FIG. 3B is a graph showing an example of an operation curve created by the operation curve creation device 100 of the first embodiment. In each case, the area around the arrival station is enlarged and displayed.
  • the traveling simulation execution unit 22 reduces the speed due to coasting according to the speed of the train position in the traveling simulation, based on the amount of speed reduction due to coasting adjusted by the parameter adjusting unit 23.
  • the amount was set. Specifically, the amount of speed reduction due to coasting was set to be proportional to the fourth power of the speed in the section based on the following equation (1).
  • Speed reduction due to coasting Reference value for speed reduction due to coasting x (4th power of speed limit in the relevant section) / (The highest speed limit in all sections to the 4th power) ... Equation (1)
  • the reference value of the speed reduction amount due to coasting indicates the value adjusted by the parameter adjusting unit 23.
  • the traveling time matched the target traveling time under the condition that the reference value of the speed reduction amount due to the coasting was 22 km / h.
  • the amount of speed reduction due to coasting in the speed limit 70 km / h section is 22 km / h ⁇ (70 ⁇ 4) / (120 ⁇ 4) ⁇ 2.5 km / h (B2).
  • the amount of speed reduction due to coasting in the speed limit 30 km / h section is 22 km / h ⁇ (30 ⁇ 4) / (120 ⁇ 4) ⁇ 0.1 km / h.
  • FIG. 4A is a graph showing a first example of an operation curve in a comparative example (conventional technique).
  • FIG. 4B is a graph showing a second example of the operation curve in the comparative example (conventional technique).
  • FIG. 4C is a graph showing an example of an operation curve created by the operation curve creation device 100 of the first embodiment.
  • 4A to 4C show a case where coasting is not added (FIG. 4A), a case where the speed reduction amount due to coasting is set uniformly regardless of the speed (FIG. 4B), and a case where the speed reduction amount due to coasting is set according to the speed of the section. It is the operation curve when it is set (FIG. 4C), and the traveling time is the same.
  • the operation curve 12 in FIG. 4B shows the entire area from the departure station to the arrival station in the operation curve 1 in FIG. 3A.
  • the power consumption is 144 kWh.
  • the operation curve 13 in FIG. 4C shows the entire area from the departure station to the arrival station in the operation curve 2 in FIG. 3B.
  • the power consumption is 139.5 kWh.
  • the driving curve 11 in FIG. 4A is a case where the same running time is obtained only by adjusting the running speed without adding coasting.
  • the power consumption is 145 kWh.
  • the power consumption reduction rate of the operation curve 12 of FIG. 4B with coasting was about 0.7% ((1-144 / 145) ⁇ 100) with respect to the operation curve 11 of FIG. 4A without coasting. ..
  • the power consumption reduction rate of the operation curve 13 of FIG. 4C in which coasting is added according to the speed created by the operation curve creating device 100 of the first embodiment with respect to the operation curve 11 of FIG. 4A to which coasting is not added. was about 3.8% ((1-139.5 / 145) ⁇ 100).
  • FIG. 5 is a diagram showing an example of a change in power consumption when the exponentiation of speed at the time of calculating the speed reduction amount by coasting is changed in the operation curve creation according to the first embodiment.
  • FIG. 6 is a block diagram showing a configuration example of the driving support device 201 according to the second embodiment.
  • the driving support device 201 including the driving curve creating device 100 is installed on the vehicle to support the driver to drive according to the energy-saving driving curve created by the driving curve creating device 100.
  • the driving support device 201 includes a driving support information creating unit 60, a driving support information display unit 70, a train schedule information receiving unit 40, and a speed position information receiving unit 50, in addition to the driving curve creating device 100 described above.
  • the configuration and operation of the operation curve creating device 100 are the same as those in the first embodiment. Therefore, the description of the operation curve creating device 100 will be omitted here.
  • the driving support device 201 acquires the speed and position of the current train from the speed position information receiving unit 50, and not only the driving curve from the departure station to the arrival station but also the current train position to the arrival station. Create a driving curve.
  • the driving support information creation unit 60 creates driving support information based on the driving curve created by the driving curve creating device 100 and the speed and position of the current train.
  • the driving support information includes a target speed, a target driving operation, and the like. For example, the speed on the operation curve with respect to the current train position is set as the target speed. Also, based on the target speed and the current train speed, the target driving operation (power running, coasting, braking operation) for bringing the train speed closer to the target speed is determined.
  • the created driving support information is output to the driving support information display unit 70.
  • the driving support information display unit 70 presents the driving support information created by the driving support information creation unit 60 to the driver.
  • the driver operates the power running handle 510 and the brake handle 520 based on the driving support information presented by the driving support information display unit 70, and operates the train according to the driving curve created by the driving curve creating device 100.
  • the driving support information may be displayed on the display (an example of the presentation unit) of the monitoring device mounted on the vehicle. Further, the presentation of the driving support information to the driver may be a voice instruction or the like.
  • the train schedule information receiving unit 40 acquires the train schedule information of the train equipped with the driving support device 201.
  • the train schedule information can be obtained from, for example, a monitor device 300 on the vehicle when the driver carries an IC card that records the station of the route on which the driver is on board and the departure / arrival time and transfers the information to the vehicle.
  • the operation support device 201 may be provided with a train timetable information storage unit (not shown) and a train timetable information input interface (not shown) so as to take in the train timetable information.
  • the running time between the running stations and the relevant station is uniformly determined, the running time between the running stations and the relevant station is recorded as the train timetable information instead of the time-based train timetable information. May be good.
  • the speed position information receiving unit 50 acquires the speed and position of the train.
  • the speed and position of the train are usually calculated by a speed position calculation device or a monitor device on the vehicle, and can be obtained from the device.
  • the speed of the train is calculated based on information such as a speed generator (not shown) provided in the train.
  • a speed generator not shown
  • the position of the train is set to about the kilometer of the station when the station is stopped, the travel distance is calculated based on information such as a speed generator (not shown), and the travel distance is added to the kilometer. ing.
  • the speed position information receiving unit 50 has a function of calculating the speed and position of the train based on GNSS (Global Navigation Satellite System) information. You may have it in.
  • GNSS Global Navigation Satellite System
  • the driving support device 201 can be configured by a general computer device or the like in addition to the dedicated hardware device.
  • the processing functions of the above parts are the functions of the CPU, display device, storage device, the control program stored in the storage device and executed by the CPU, and the input / output interface provided in the computer device. Is realized as.
  • the operation support device 201 has a train timetable information receiving unit 40 and a speed position information receiving unit 50, and the operation curve creating device 100 has an energy-saving operation curve according to the speed, position, and time of the train, which changes from moment to moment. Is created in real time on the car. Further, it has a driving support information creating unit 60 and a driving support information display unit 70, and brings the driving support information, that is, the target speed and the train speed closer to the target speed so that the driver can drive according to the energy-saving driving curve. Present the target driving operation for the driver. The driver can drive according to the energy-saving driving curve by operating the power running handle 510 and the brake handle 520 based on the presented driving support information.
  • the energy-saving driving curve is generated in real time on the vehicle according to the speed and position of the train which changes from moment to moment. It is possible to realize the operation according to the energy-saving operation curve, that is, the operation that can reduce the power consumption while observing the train schedule by the operation operation of the driver.
  • FIG. 7 is a block diagram showing a configuration example of the operation control device 202 according to the third embodiment.
  • the driving control device 202 including the driving curve creating device 100 is installed on the vehicle, and automatic driving is performed according to the energy-saving driving curve created by the driving curve creating device 100.
  • the operation control device 202 includes an operation control information creation unit 80, an automatic control unit 90, a train schedule information reception unit 40, and a speed position information reception unit 50 in addition to the operation curve creation device 100 described above.
  • the configuration and operation of the operation curve creating device 100 are the same as those of the first embodiment, and the configuration and operation of the train schedule information receiving unit 40 and the speed position information receiving unit 50 are the same as those of the second embodiment.
  • the driving support device 201 of the second embodiment is provided with a driving control information creating unit 80 and an automatic control unit 90 instead of the driving support information creating unit 60 and the driving support information display unit 70. is there. In the following, the description of the parts common to the first embodiment and the second embodiment will be omitted.
  • the operation control information creation unit 80 creates operation control information based on the operation curve created by the operation curve creation device 100 and the speed and position of the train.
  • the operation control information is a control command to the drive braking control device 500.
  • the speed on the operation curve corresponding to the current train position is set as the target speed, and the target control command (powering notch, coasting, brake notch command) for bringing the train speed closer to the target speed is determined.
  • the determined control command is output to the automatic control unit 90 as operation control information.
  • the automatic control unit 90 outputs the operation control information created by the operation control information creation unit 80, that is, the control command to the drive braking control device 500, and automatically operates the train.
  • the drive braking control device 500 controls the power running and braking operation of the train in accordance with a control command from the automatic control unit 90.
  • the operation control device 202 can be configured not only by a dedicated hardware device but also by a general computer device or the like.
  • a general computer device When a general computer device is used, the processing functions of the above parts are realized as functions by the CPU provided in the computer device, the storage device, the control program stored in the storage device and executed by the CPU, and the input / output interface. To.
  • the operation control device 202 has a train timetable information receiving unit 40 and a speed position information receiving unit 50, and the operation curve creating device 100 has an energy-saving operation curve according to the speed, position, and time of the train, which changes from moment to moment. Is created in real time on the car. Further, it has an operation control information creation unit 80 and an automatic control unit 90, and creates operation control information which is a control command for performing automatic operation according to an energy-saving operation curve, and directly transmits the drive braking control device 500 to the drive braking control device 500. Output.
  • the drive braking control device 500 can automatically perform energy-saving operation, that is, operation that can reduce power consumption while observing the train schedule, by controlling the power running and braking operation of the train in accordance with the control command.
  • the energy-saving operation curve is generated in real time on the vehicle according to the speed and position of the train which changes from moment to moment. It can be created in, and automatic operation can be performed according to the operation curve. Therefore, the influence of operation delays and operation mistakes by the driver is reduced, and energy-saving operation, that is, operation that can reduce power consumption while observing the train schedule can be realized more reliably.
  • the parameters related to coasting are not limited to the amount of speed reduction due to coasting, and may also be the mileage due to coasting, the coasting start point, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

According to one embodiment, this speed profile creation device comprises: a travel condition setting unit which sets a travel range and a target travel time for a train; a travel simulation execution unit which executes a travel simulation of the train for the travel range to create a speed profile; and a parameter adjustment unit which, according to a travel time for the train obtained from the result of the travel simulation for the travel range, adjusts a parameter relating to coasting during execution of the travel simulation. The parameter adjustment unit adjusts the parameter in such a way that the travel time for the train obtained from the result of the travel simulation, comes close to the target travel time. Moreover, the parameter is adjusted according to the speed of the train relative to the position thereof in the travel simulation.

Description

運転曲線作成装置、運転支援装置、運転制御装置および運転曲線作成方法Driving curve making device, driving support device, driving control device and driving curve making method
 本発明の実施形態は、運転曲線作成装置、運転支援装置、運転制御装置および運転曲線作成方法に関する。 An embodiment of the present invention relates to a driving curve creating device, a driving support device, a driving control device, and a driving curve creating method.
 列車の消費電力量を低減する方法として、車両の軽量化や空気抵抗の低減、効率の高いモータの導入、惰行を活用した運転等が挙げられる。本発明では、車両やモータを変更することなく消費電力量を低減する方法として、惰行を活用した運転に着目する。 Methods for reducing the power consumption of trains include weight reduction of rolling stock, reduction of air resistance, introduction of highly efficient motors, and driving utilizing coasting. In the present invention, as a method of reducing power consumption without changing a vehicle or a motor, attention is paid to driving utilizing coasting.
 列車の運転状態として、力行(列車を加速させる方向に駆動力をかけている状態)、ブレーキ(列車を減速させる方向に制動力をかけている状態)、惰行(列車に動力をかけていない状態)の3つがある。 Train operating states include power running (a state in which driving force is applied in the direction of accelerating the train), braking (a state in which braking force is applied in the direction of decelerating the train), and coasting (a state in which power is not applied to the train). ).
 力行時に、駆動力をかけるためにモータに供給したエネルギーは、すべてを運動エネルギーに変換することはできず、その一部は熱として失われる。また、ブレーキ時に、制動力をかけるためにモータを発電機として動作させ、運動エネルギーを吸収して電気エネルギーに変換する際(回生ブレーキ時)も、運動エネルギーの一部は熱として失われる。 At the time of power running, all the energy supplied to the motor to apply the driving force cannot be converted into kinetic energy, and a part of it is lost as heat. Also, when braking, a motor is operated as a generator to apply braking force, and when kinetic energy is absorbed and converted into electrical energy (during regenerative braking), part of the kinetic energy is lost as heat.
 このような状況に対し、惰行を上手く活用することで、熱として失われるエネルギーを減少させ、消費電力量を低減することができる。具体的には、下り勾配において、駆動力をかけずに惰行で加速したり、ブレーキをかける前に惰行で減速したりすることで、力行やブレーキ時の不要なエネルギー変換を回避し、熱として失われるエネルギーを低減する。 In such a situation, by making good use of coasting, it is possible to reduce the energy lost as heat and reduce the amount of power consumption. Specifically, on a downward slope, by accelerating by coasting without applying driving force or decelerating by coasting before applying the brake, unnecessary energy conversion during power running and braking is avoided, and as heat. Reduce the energy lost.
 惰行を活用した運転によって消費電力量の低減を図るため、列車の運転曲線を作成して検討する。運転曲線は、駅出発から次駅到着までの、列車位置に対する速度や時間を示したものであり、路線の速度制限や勾配、車両性能等を考慮して作成する。 Create and examine a train operation curve in order to reduce power consumption by driving using coasting. The driving curve shows the speed and time with respect to the train position from the departure of the station to the arrival of the next station, and is created in consideration of the speed limit, gradient, vehicle performance, etc. of the line.
 運転曲線を作成することで、惰行する区間や惰行の長さが異なる運転の走行時間や消費電力量を算出できる。運転曲線作成時に、惰行する区間や惰行の長さを調整することで、列車ダイヤで定められた走行時間を遵守しつつ消費電力量の小さい運転曲線(以下、省エネ運転曲線と称する)を得ることができる。 By creating a driving curve, it is possible to calculate the running time and power consumption of driving with different coasting sections and coasting lengths. By adjusting the coasting section and coasting length when creating the driving curve, it is possible to obtain a driving curve with low power consumption (hereinafter referred to as the energy-saving driving curve) while observing the running time specified by the train schedule. Can be done.
特許第6315811号公報Japanese Patent No. 6315811
 省エネ運転曲線を作成するためには、惰行する区間と惰行の長さを適切に調整する必要がある。例えば、惰行し得る区間の中から惰行区間の候補を選定して惰行に変更し、運転曲線全体の走行時間が許容時間以内なら惰行を確定する。また、許容時間以内でなければキャンセルし、新たな惰行区間候補を選定して惰行に変更する。このように許容時間の評価を繰り返すことで、条件に合致した運転曲線を得る(特許文献1)。しかし、この手法では、走行距離が長く、惰行区間候補の数が多くなると、演算時間が長くなる可能性がある。 In order to create an energy-saving driving curve, it is necessary to appropriately adjust the coasting section and the coasting length. For example, a candidate for a coasting section is selected from the sections that can coast, changed to coasting, and coasting is determined if the traveling time of the entire driving curve is within the allowable time. If it is not within the permissible time, it is canceled, a new coasting section candidate is selected, and the coasting is changed to coasting. By repeating the evaluation of the permissible time in this way, an operation curve that matches the conditions can be obtained (Patent Document 1). However, in this method, if the mileage is long and the number of coasting section candidates is large, the calculation time may become long.
 そこで、本発明が解決しようとする課題は、省エネ運転曲線を短時間で作成できる運転曲線作成装置、運転支援装置、運転制御装置および運転曲線作成方法を提供することである。 Therefore, an object to be solved by the present invention is to provide a driving curve creating device, a driving support device, a driving control device, and a driving curve creating method capable of creating an energy-saving driving curve in a short time.
 実施形態の運転曲線作成装置は、列車の走行範囲と目標走行時間を設定する走行条件設定部と、前記走行範囲における前記列車の走行シミュレーションを実行して運転曲線を作成する走行シミュレーション実行部と、前記走行範囲についての前記走行シミュレーションの結果から得た前記列車の走行時間に応じて、前記走行シミュレーション実行時の惰行に関するパラメータを調整するパラメータ調整部と、を備える。前記パラメータ調整部は、前記走行シミュレーションの結果から得た前記列車の走行時間が前記目標走行時間に近くなるように前記パラメータを調整する。また、前記パラメータを、前記走行シミュレーションにおける前記列車の位置に対する速度に応じて調整する。 The operation curve creating device of the embodiment includes a traveling condition setting unit that sets a train traveling range and a target traveling time, a traveling simulation execution unit that executes a traveling simulation of the train in the traveling range and creates a driving curve. A parameter adjusting unit for adjusting parameters related to coasting during execution of the traveling simulation is provided according to the traveling time of the train obtained from the result of the traveling simulation for the traveling range. The parameter adjusting unit adjusts the parameters so that the traveling time of the train obtained from the result of the traveling simulation is close to the target traveling time. Further, the parameters are adjusted according to the speed with respect to the position of the train in the traveling simulation.
図1は、第1実施形態の運転曲線作成装置の構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of the operation curve creating device of the first embodiment. 図2は、第1実施形態の運転曲線作成装置による処理の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of processing by the operation curve creating device of the first embodiment. 図3Aは、比較例(従来技術)における運転曲線例を示すグラフである。FIG. 3A is a graph showing an example of an operation curve in a comparative example (conventional technique). 図3Bは、第1実施形態の運転曲線作成装置で作成した運転曲線例を示すグラフである。FIG. 3B is a graph showing an example of an operation curve created by the operation curve creation device of the first embodiment. 図4Aは、比較例(従来技術)における運転曲線の第1例を示すグラフである。FIG. 4A is a graph showing a first example of an operation curve in a comparative example (conventional technique). 図4Bは、比較例(従来技術)における運転曲線の第2例を示すグラフである。FIG. 4B is a graph showing a second example of the operation curve in the comparative example (conventional technique). 図4Cは、第1実施形態の運転曲線作成装置で作成した運転曲線例を示すグラフである。FIG. 4C is a graph showing an example of an operation curve created by the operation curve creation device of the first embodiment. 図5は、第1実施形態による運転曲線作成において、惰行量算出時の速度の累乗の指数を変えた場合の消費電力量変化の一例を示す図である。FIG. 5 is a diagram showing an example of a change in power consumption when the exponentiation of speed at the time of coasting amount calculation is changed in the operation curve creation according to the first embodiment. 図6は、第2実施形態に係る運転支援装置の構成例を示すブロック図である。FIG. 6 is a block diagram showing a configuration example of the driving support device according to the second embodiment. 図7は、第3実施形態に係る運転制御装置の構成例を示すブロック図である。FIG. 7 is a block diagram showing a configuration example of the operation control device according to the third embodiment.
 以下、本発明の実施形態(第1実施形態~第3実施形態)について、図面を参照して説明する。まず、実施形態の理解を助けるために、背景技術についてあらためて説明する。 Hereinafter, embodiments of the present invention (first to third embodiments) will be described with reference to the drawings. First, in order to help the understanding of the embodiment, the background technology will be described again.
 省エネ運転曲線の作成方法として、組み合わせ最適化手法によるものが知られている。所定時間毎にあらゆるノッチ指令の組み合わせを想定して多数の走行シミュレーションを行い、走行時間が目標走行時間に近く、かつ最も消費電力量が小さいものを選択する。しかし、走行距離が長くなるにつれて組み合わせの数が指数関数的に増大し、解を得るのに膨大な時間がかかってしまう場合がある。 As a method of creating an energy-saving operation curve, a combinatorial optimization method is known. A large number of running simulations are performed assuming all combinations of notch commands at predetermined time intervals, and the one with the running time close to the target running time and the lowest power consumption is selected. However, as the mileage increases, the number of combinations increases exponentially, and it may take an enormous amount of time to obtain a solution.
 一方、最速運転曲線を基準とし、惰行を付加することで省エネ運転曲線を作成する方法が知られている。複数のブレーキ開始点付近に、一律で惰行を付加していき、走行時間を調整しつつ消費電力量の低減を図る。シミュレーションケース数が少なくて済むため、走行距離が長い場合でも比較的短時間で運転曲線を作成できる。しかし、低速域と高速域に同様な量の惰行を付加すると、消費電力量の低減効果が不十分となる場合がある。 On the other hand, a method of creating an energy-saving driving curve by adding coasting based on the fastest running curve is known. By uniformly adding coasting near multiple brake start points, the power consumption will be reduced while adjusting the running time. Since the number of simulation cases is small, a driving curve can be created in a relatively short time even when the mileage is long. However, if the same amount of coasting is added to the low speed region and the high speed region, the effect of reducing the power consumption may be insufficient.
 これに対し、上述の特許文献1の方法では、惰行に変更し得る区間の中から惰行区間の候補を選定して惰行に変更し、運転曲線全体の走行時間が許容時間以内なら惰行を確定する。また、許容時間以内でなければキャンセルし、新たな惰行区間候補を選定して惰行に変更する。このように許容時間の評価を繰り返すことで、条件に合致した運転曲線を得る。しかし、走行距離が長く、惰行区間候補の数が多くなると、演算時間が長くなる可能性がある。 On the other hand, in the method of Patent Document 1 described above, a candidate for a coasting section is selected from the sections that can be changed to coasting and changed to coasting, and coasting is determined if the traveling time of the entire driving curve is within the allowable time. .. If it is not within the permissible time, it is canceled, a new coasting section candidate is selected, and the coasting is changed to coasting. By repeating the evaluation of the permissible time in this way, an operation curve that matches the conditions can be obtained. However, if the mileage is long and the number of coasting section candidates is large, the calculation time may become long.
 そこで、以下では、列車の走行距離が長い場合であっても、省エネ運転曲線を短時間で作成できる方法について説明する。 Therefore, in the following, we will explain how to create an energy-saving operation curve in a short time even when the mileage of the train is long.
(第1実施形態)
 以下、本発明の第1実施形態について、図面を参照しながら説明する。図1は、第1実施形態の運転曲線作成装置100の構成例を示すブロック図である。運転曲線作成装置100は、データ入出力部1、演算部2、記憶部3を備える。なお、運転曲線作成装置100は、ユーザインターフェース(キーボード、マウス、タッチパネル等)や通信インタフェース等も備えるが、説明を簡潔にするために、それらの図示や説明を省略する。
(First Embodiment)
Hereinafter, the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration example of the operation curve creating device 100 of the first embodiment. The operation curve creating device 100 includes a data input / output unit 1, a calculation unit 2, and a storage unit 3. The operation curve creating device 100 also includes a user interface (keyboard, mouse, touch panel, etc.), a communication interface, and the like, but the illustration and description thereof will be omitted for the sake of brevity.
 データ入出力部1は、運転曲線作成に必要な列車ダイヤ情報(発着駅や発着時刻等)を入力として受け、演算部2に出力する。また、演算部2が作成した運転曲線を、運転支援や運転制御等の目的のために外部へ出力する。 The data input / output unit 1 receives the train schedule information (departure / arrival station, departure / arrival time, etc.) necessary for creating the operation curve as input, and outputs it to the calculation unit 2. Further, the driving curve created by the calculation unit 2 is output to the outside for the purpose of driving support, driving control, or the like.
 記憶部3は、車両性能(列車の重量、力行特性、ブレーキ特性等)や路線情報(勾配、曲線、制限速度、駅位置等)を保持した車両性能・路線情報データベース31を備える。 The storage unit 3 includes a vehicle performance / route information database 31 that holds vehicle performance (train weight, power running characteristics, braking characteristics, etc.) and route information (gradient, curve, speed limit, station position, etc.).
 演算部2は、走行条件設定部21、走行シミュレーション実行部22、パラメータ調整部23を備え、走行範囲の設定、シミュレーション実行による運転曲線作成、シミュレーション実行時のパラメータの調整等を行う。 The calculation unit 2 includes a running condition setting unit 21, a running simulation execution unit 22, and a parameter adjustment unit 23, and sets a running range, creates a driving curve by executing a simulation, adjusts parameters at the time of executing a simulation, and the like.
 走行条件設定部21は、列車の走行範囲と目標走行時間を設定する。具体的には、走行条件設定部21は、列車ダイヤの発着駅情報に基づいて車両性能・路線情報データベース31を参照し、走行範囲である出発駅位置と到着駅位置を設定する。また、発着時刻を用いて目標走行時間を設定する。 The running condition setting unit 21 sets the running range and the target running time of the train. Specifically, the traveling condition setting unit 21 refers to the vehicle performance / route information database 31 based on the departure / arrival station information of the train schedule, and sets the departure station position and the arrival station position, which are the traveling ranges. In addition, the target travel time is set using the departure and arrival times.
 なお、運転曲線作成装置100に対して、列車ダイヤ情報の代わりに、出発駅位置、到着駅位置、目標走行時間等の情報を直接入力してもよい。また、路線全体の始発駅から終着駅までのすべての運転曲線を一括して作成してもよい。 Note that, instead of the train schedule information, information such as the departure station position, the arrival station position, and the target travel time may be directly input to the operation curve creation device 100. In addition, all the operation curves from the first station to the last station of the entire line may be created at once.
 走行シミュレーション実行部22は、走行範囲における列車の走行シミュレーションを実行して運転曲線を作成する。具体的には、走行条件設定部21で設定した走行範囲について、パラメータ調整部23で調整したパラメータを用い、車両性能・路線情報データベース31を参照して運転曲線を作成する。 The running simulation execution unit 22 executes a running simulation of the train in the running range and creates a running curve. Specifically, for the traveling range set by the traveling condition setting unit 21, a driving curve is created by referring to the vehicle performance / route information database 31 using the parameters adjusted by the parameter adjusting unit 23.
 パラメータ調整部23は、走行シミュレーション実行部22が走行シミュレーション実行時に用いる惰行に関するパラメータを調整し、列車の走行時間が目標走行時間に近くなるようにする。 The parameter adjusting unit 23 adjusts the parameters related to coasting used by the traveling simulation execution unit 22 when executing the traveling simulation so that the traveling time of the train is close to the target traveling time.
 惰行に関するパラメータは、例えば、惰行を付加する区間での惰行による速度低下量である。区間毎のパラメータ設定の詳細については後述する。 The parameter related to coasting is, for example, the amount of speed reduction due to coasting in the section to which coasting is added. Details of parameter setting for each section will be described later.
 次に、図2を参照して、第1実施形態の運転曲線作成装置100による処理について説明する。図2は、第1実施形態の運転曲線作成装置100による処理の一例を示すフローチャートである。 Next, with reference to FIG. 2, the processing by the operation curve creating device 100 of the first embodiment will be described. FIG. 2 is a flowchart showing an example of processing by the operation curve creating device 100 of the first embodiment.
 まず、ステップS1において、走行条件設定部21は、列車の走行範囲と目標走行時間を設定する。走行範囲は、出発駅位置から到着駅位置までであり、列車ダイヤの出発駅出発時刻と到着駅到着時刻との差が目標走行時間となる。 First, in step S1, the traveling condition setting unit 21 sets the traveling range and the target traveling time of the train. The travel range is from the departure station position to the arrival station position, and the difference between the departure time of the train schedule and the arrival time of the arrival station is the target travel time.
 次に、ステップS2において、パラメータ調整部23は、走行シミュレーションの実行時に用いる惰行に関するパラメータ(惰行による速度低下量)を調整する。具体的には、走行シミュレーション実行部22による走行シミュレーションの結果から得た列車の走行時間が目標走行時間よりも短い場合、惰行が増加する方向にパラメータを調整する。これにより、次回の走行シミュレーションでは走行時間が延びる方向となる。 Next, in step S2, the parameter adjusting unit 23 adjusts the parameters related to coasting (the amount of speed reduction due to coasting) used when executing the running simulation. Specifically, when the running time of the train obtained from the result of the running simulation by the running simulation execution unit 22 is shorter than the target running time, the parameter is adjusted in the direction of increasing coasting. As a result, the running time will be extended in the next running simulation.
 次に、ステップS3において、走行シミュレーション実行部22は、パラメータ調整部23で調整した惰行に関するパラメータを用い、車両性能・路線情報データベース31を参照し、走行範囲における列車の走行シミュレーションを実行して運転曲線を作成する。 Next, in step S3, the travel simulation execution unit 22 uses the parameters related to coasting adjusted by the parameter adjustment unit 23, refers to the vehicle performance / route information database 31, and executes a train travel simulation in the travel range to drive the train. Create a curve.
 なお、パラメータ(惰行による速度低下量)は、パラメータ調整部23で調整した値を基準とし、走行シミュレーションにおける列車位置に対する速度の累乗(例えば速度の3乗または4乗)に比例した値を、惰行を付加する区間毎に設定する。したがって、走行範囲の中で、速度の高い区間では惰行が多く、速度が低い区間では惰行が少なくなる。 The parameter (speed reduction amount due to coasting) is based on the value adjusted by the parameter adjusting unit 23, and the value proportional to the power of the speed with respect to the train position in the running simulation (for example, the cube or fourth power of the speed) is coasted. Is set for each section to which is added. Therefore, in the traveling range, the coasting is large in the high speed section, and the coasting is small in the low speed section.
 次に、ステップ4において、ステップS3で作成した運転曲線の走行時間が目標走行時間に合致するか否かを判定し、Yesの場合は処理を終了し、Noの場合はステップS2に戻る。 Next, in step 4, it is determined whether or not the traveling time of the driving curve created in step S3 matches the target traveling time. If Yes, the process ends, and if No, the process returns to Step S2.
 シミュレーション結果から得た列車の走行時間と目標走行時間の差が所定の範囲内となった場合に、両者が合致したと判定し(ステップS4でYes)、処理を終了する。 When the difference between the train running time and the target running time obtained from the simulation result is within the predetermined range, it is determined that both match (Yes in step S4), and the process is terminated.
 ステップS4でYesの場合、目標走行時間に合致した運転曲線を省エネ運転曲線として採用し、データ入出力部1に出力する。データ入出力部1は、採用した省エネ運転曲線データを外部に出力する。これ以降の処理については、第2実施形態、第3実施形態で説明する。 In the case of Yes in step S4, the operation curve that matches the target travel time is adopted as the energy-saving operation curve and output to the data input / output unit 1. The data input / output unit 1 outputs the adopted energy-saving operation curve data to the outside. Subsequent processing will be described with reference to the second embodiment and the third embodiment.
 本実施形態で作成した運転曲線例と比較例(従来技術)の形状の違いについて説明する。図3Aは、比較例(従来技術)における運転曲線例を示すグラフである。図3Bは、第1実施形態の運転曲線作成装置100で作成した運転曲線例を示すグラフである。いずれも到着駅付近を拡大して表示したものである。 The difference in shape between the operation curve example and the comparative example (conventional technique) created in this embodiment will be described. FIG. 3A is a graph showing an example of an operation curve in a comparative example (conventional technique). FIG. 3B is a graph showing an example of an operation curve created by the operation curve creation device 100 of the first embodiment. In each case, the area around the arrival station is enlarged and displayed.
 図3Aの運転曲線1では、(A1)~(A3)で示すように、3箇所に惰行を付加している。
(A1)高速域で、惰行による速度低下量8km/h
(A2)中速域で、惰行による速度低下量8km/h
(A3)低速域で、惰行による速度低下量8km/h
 高速域、中速域、低速域のいずれも、惰行による速度低下量を同一とし、惰行を徐々に増加させた結果、一律8km/hの条件で走行時間が目標走行時間と合致した。
In the operation curve 1 of FIG. 3A, as shown by (A1) to (A3), coasting is added at three points.
(A1) In the high-speed range, the amount of speed reduction due to coasting is 8 km / h.
(A2) In the medium speed range, the amount of speed reduction due to coasting is 8 km / h.
(A3) In the low speed range, the amount of speed reduction due to coasting is 8 km / h.
As a result of making the amount of speed decrease due to coasting the same in all of the high-speed range, medium-speed range, and low-speed range and gradually increasing coasting, the running time matched the target running time under the condition of uniform 8 km / h.
 一方、図3Bの運転曲線2の作成において、走行シミュレーション実行部22は、パラメータ調整部23で調整した惰行による速度低下量を基準とし、走行シミュレーションにおける列車位置の速度に応じて、惰行による速度低下量を設定した。具体的には、惰行による速度低下量を、以下の式(1)に基づき、当該区間の速度の4乗に比例するように設定した。 On the other hand, in the creation of the operation curve 2 of FIG. 3B, the traveling simulation execution unit 22 reduces the speed due to coasting according to the speed of the train position in the traveling simulation, based on the amount of speed reduction due to coasting adjusted by the parameter adjusting unit 23. The amount was set. Specifically, the amount of speed reduction due to coasting was set to be proportional to the fourth power of the speed in the section based on the following equation (1).
 惰行による速度低下量=惰行による速度低下量の基準値
          ×(当該区間の制限速度の4乗)/
           (全区間で最も高い制限速度の4乗) …式(1)
Speed reduction due to coasting = Reference value for speed reduction due to coasting x (4th power of speed limit in the relevant section) /
(The highest speed limit in all sections to the 4th power) ... Equation (1)
 ここで、惰行による速度低下量の基準値は、パラメータ調整部23で調整した値を示す。惰行を徐々に増加させた結果、惰行による速度低下量の基準値が22km/hの条件で走行時間が目標走行時間と合致した。 Here, the reference value of the speed reduction amount due to coasting indicates the value adjusted by the parameter adjusting unit 23. As a result of gradually increasing the coasting, the traveling time matched the target traveling time under the condition that the reference value of the speed reduction amount due to the coasting was 22 km / h.
 この時の区間毎の惰行による速度低下量の算出状況を以下に示す。なお、図3A、図3Bの例では、全区間で最も高い制限速度は120km/hである。 The calculation status of the amount of speed reduction due to coasting for each section at this time is shown below. In the examples of FIGS. 3A and 3B, the highest speed limit in all sections is 120 km / h.
 惰行による速度低下量の基準値が22km/hの場合、制限速度120km/h区間(高速域)の惰行による速度低下量は、22km/h×(120^4)/(120^4)=22km/hとなる(B1)。なお、「120^4」は「120の4乗」を意味する。 When the reference value of the speed reduction amount due to coasting is 22 km / h, the speed reduction amount due to coasting in the speed limit 120 km / h section (high speed range) is 22 km / h × (120 ^ 4) / (120 ^ 4) = 22 km. / H (B1). In addition, "120 ^ 4" means "120 to the fourth power".
 同様に、制限速度70km/h区間(中速域)の惰行による速度低下量は、22km/h×(70^4)/(120^4)≒2.5km/hとなる(B2)。 Similarly, the amount of speed reduction due to coasting in the speed limit 70 km / h section (medium speed range) is 22 km / h × (70 ^ 4) / (120 ^ 4) ≈2.5 km / h (B2).
 同様に、制限速度30km/h区間(低速域)の惰行による速度低下量は、22km/h×(30^4)/(120^4)≒0.1km/hとなる。 Similarly, the amount of speed reduction due to coasting in the speed limit 30 km / h section (low speed range) is 22 km / h × (30 ^ 4) / (120 ^ 4) ≈0.1 km / h.
 図3Aと図3Bを比較すると、図3Bの運転曲線2では、図3Aの運転曲線1と比べて、高速域の惰行が長く、低速域の惰行が短い。 Comparing FIG. 3A and FIG. 3B, in the operation curve 2 of FIG. 3B, the coasting in the high speed region is longer and the coasting in the low speed region is shorter than the operation curve 1 in FIG. 3A.
 次に、本実施形態で作成した運転曲線例と比較例(従来技術)の消費電力量の違いについて説明する。図4Aは、比較例(従来技術)における運転曲線の第1例を示すグラフである。図4Bは、比較例(従来技術)における運転曲線の第2例を示すグラフである。図4Cは、第1実施形態の運転曲線作成装置100で作成した運転曲線例を示すグラフである。図4A~図4Cは、惰行を付加しない場合(図4A)と、惰行による速度低下量を速度によらず一律に設定した場合(図4B)と、惰行による速度低下量を区間の速度に応じて設定した場合(図4C)の運転曲線であり、走行時間はすべて同じである。 Next, the difference in power consumption between the operation curve example and the comparative example (conventional technique) created in this embodiment will be described. FIG. 4A is a graph showing a first example of an operation curve in a comparative example (conventional technique). FIG. 4B is a graph showing a second example of the operation curve in the comparative example (conventional technique). FIG. 4C is a graph showing an example of an operation curve created by the operation curve creation device 100 of the first embodiment. 4A to 4C show a case where coasting is not added (FIG. 4A), a case where the speed reduction amount due to coasting is set uniformly regardless of the speed (FIG. 4B), and a case where the speed reduction amount due to coasting is set according to the speed of the section. It is the operation curve when it is set (FIG. 4C), and the traveling time is the same.
 図4Bの運転曲線12は、図3Aの運転曲線1の出発駅から到着駅までの全体を示している。消費電力量は、144kWhである。 The operation curve 12 in FIG. 4B shows the entire area from the departure station to the arrival station in the operation curve 1 in FIG. 3A. The power consumption is 144 kWh.
 図4Cの運転曲線13は、図3Bの運転曲線2の出発駅から到着駅までの全体を示している。消費電力量は、139.5kWhである。 The operation curve 13 in FIG. 4C shows the entire area from the departure station to the arrival station in the operation curve 2 in FIG. 3B. The power consumption is 139.5 kWh.
 図4Aの運転曲線11は、惰行を付加せず、走行速度の調整のみで同じ走行時間となるようにした場合である。消費電力量は、145kWhである。 The driving curve 11 in FIG. 4A is a case where the same running time is obtained only by adjusting the running speed without adding coasting. The power consumption is 145 kWh.
 惰行を付加していない図4Aの運転曲線11に対する、惰行を付加した図4Bの運転曲線12の消費電力量低減率は約0.7%((1-144/145)×100)であった。一方、惰行を付加していない図4Aの運転曲線11に対する、第1実施形態の運転曲線作成装置100で作成した、速度に応じて惰行を付加した図4Cの運転曲線13の消費電力量低減率は約3.8%((1-139.5/145)×100)であった。 The power consumption reduction rate of the operation curve 12 of FIG. 4B with coasting was about 0.7% ((1-144 / 145) × 100) with respect to the operation curve 11 of FIG. 4A without coasting. .. On the other hand, the power consumption reduction rate of the operation curve 13 of FIG. 4C in which coasting is added according to the speed created by the operation curve creating device 100 of the first embodiment with respect to the operation curve 11 of FIG. 4A to which coasting is not added. Was about 3.8% ((1-139.5 / 145) × 100).
 図4Bの運転曲線12では、制限速度30km/hの低速域でも、高速域と同様な惰行量を設定しているため、低速域の惰行だけで走行時間が延びてしまい、消費電力量低減効果の高い高速域での惰行が短くなっている。これに対し、図4Cの運転曲線13では、速度に応じた惰行量とすることで、高速域での惰行が長くなり、全体として消費電力量の低減効果が大きくなったと考えられる。 In the operation curve 12 of FIG. 4B, even in the low speed range of the speed limit of 30 km / h, the same amount of coasting as in the high speed range is set, so that the traveling time is extended only by coasting in the low speed range, and the power consumption reduction effect. The coasting in the high speed range is shortened. On the other hand, in the operation curve 13 of FIG. 4C, it is considered that the coasting amount in the high speed range becomes longer and the effect of reducing the power consumption amount becomes larger as a whole by setting the coasting amount according to the speed.
 次に、図5を参照して、惰行による速度低減量算出時の速度の累乗の指数と消費電力量の関係について説明する。図5は、第1実施形態による運転曲線作成において、惰行による速度低減量算出時の速度の累乗の指数を変えた場合の消費電力量変化の一例を示す図である。 Next, with reference to FIG. 5, the relationship between the exponentiation of speed and the power consumption when calculating the speed reduction amount by coasting will be described. FIG. 5 is a diagram showing an example of a change in power consumption when the exponentiation of speed at the time of calculating the speed reduction amount by coasting is changed in the operation curve creation according to the first embodiment.
 惰行による速度低減量算出時の速度の累乗の指数を、0(速度によらず一律)、1、2、3、4、5と増加させると、速度の3乗と4乗の場合に消費電力量が最も小さくなった。速度の異なる惰行候補区間がある場合、このように高速域を優先して惰行量を大きくすることで消費電力量を低減することができる。 When the exponent of the power of speed when calculating the amount of speed reduction by coasting is increased to 0 (uniformly regardless of speed), 1, 2, 3, 4, 5, the power consumption is consumed in the case of the cube and fourth power of speed. The amount was the smallest. When there are coasting candidate sections with different speeds, the power consumption can be reduced by giving priority to the high speed range and increasing the coasting amount in this way.
 第1実施形態の運転曲線作成装置100により、走行シミュレーションにおける列車位置に対する速度の3乗または4乗に比例して惰行に関するパラメータを調整することで、消費電力量低減効果の高い高速区間に優先して惰行を付加することができる。 By adjusting the parameters related to coasting in proportion to the cube or fourth power of the speed with respect to the train position in the traveling simulation by the operation curve creating device 100 of the first embodiment, priority is given to a high-speed section having a high power consumption reduction effect. Can add coasting.
 惰行区間候補のうち、どの区間で惰行を多くすれば運転曲線全体として消費電力量が小さくなるかを、試行錯誤で評価する必要がないため、シミュレーションのケース数を少なくできる。したがって、走行距離が長く、惰行区間候補が多い場合であっても、省エネ運転曲線を短時間で作成できる。 Of the coasting section candidates, it is not necessary to evaluate by trial and error which section should be coasted to reduce the power consumption of the entire operation curve, so the number of simulation cases can be reduced. Therefore, even when the mileage is long and there are many coasting section candidates, the energy-saving operation curve can be created in a short time.
(第2実施形態)
 次に、第2実施形態について、図6を参照して説明する。図6は、第2実施形態に係る運転支援装置201の構成例を示すブロック図である。第2実施形態は、運転曲線作成装置100を備える運転支援装置201を車上に設置し、運転士が、運転曲線作成装置100で作成した省エネ運転曲線に従って運転できるように支援するものである。
(Second Embodiment)
Next, the second embodiment will be described with reference to FIG. FIG. 6 is a block diagram showing a configuration example of the driving support device 201 according to the second embodiment. In the second embodiment, the driving support device 201 including the driving curve creating device 100 is installed on the vehicle to support the driver to drive according to the energy-saving driving curve created by the driving curve creating device 100.
 運転支援装置201は、上記の運転曲線作成装置100に加え、運転支援情報作成部60、運転支援情報表示部70、列車ダイヤ情報受信部40、速度位置情報受信部50を備える。 The driving support device 201 includes a driving support information creating unit 60, a driving support information display unit 70, a train schedule information receiving unit 40, and a speed position information receiving unit 50, in addition to the driving curve creating device 100 described above.
 運転曲線作成装置100の構成と動作は、第1実施形態と同様である。したがって、ここでは、運転曲線作成装置100についての説明は省略する。
 なお、運転支援装置201は、速度位置情報受信部50から現在の列車の速度と位置を取得しており、出発駅から到着駅までの運転曲線だけでなく、現在の列車位置から到着駅までの運転曲線の作成を行う。
The configuration and operation of the operation curve creating device 100 are the same as those in the first embodiment. Therefore, the description of the operation curve creating device 100 will be omitted here.
The driving support device 201 acquires the speed and position of the current train from the speed position information receiving unit 50, and not only the driving curve from the departure station to the arrival station but also the current train position to the arrival station. Create a driving curve.
 運転支援情報作成部60は、運転曲線作成装置100が作成した運転曲線と、現在の列車の速度と位置に基づいて、運転支援情報を作成する。運転支援情報は、目標速度や目標運転操作等である。例えば、現在の列車の位置に対する運転曲線上の速度を目標速度とする。また、目標速度と現在の列車速度に基づき、列車の速度を目標速度に近づけるための目標運転操作(力行、惰行、ブレーキ操作)を決定する。作成した運転支援情報は運転支援情報表示部70に出力される。 The driving support information creation unit 60 creates driving support information based on the driving curve created by the driving curve creating device 100 and the speed and position of the current train. The driving support information includes a target speed, a target driving operation, and the like. For example, the speed on the operation curve with respect to the current train position is set as the target speed. Also, based on the target speed and the current train speed, the target driving operation (power running, coasting, braking operation) for bringing the train speed closer to the target speed is determined. The created driving support information is output to the driving support information display unit 70.
 運転支援情報表示部70は、運転支援情報作成部60で作成した運転支援情報を運転士に提示する。運転士は、運転支援情報表示部70が提示した運転支援情報に基づいて、力行ハンドル510やブレーキハンドル520の操作を行い、運転曲線作成装置100で作成された運転曲線に従った列車の運転を行う。なお、車両に搭載されたモニタ装置の表示器(提示部の一例)に運転支援情報を表示してもよい。また、運転士への運転支援情報の提示は、音声指示等であってもよい。 The driving support information display unit 70 presents the driving support information created by the driving support information creation unit 60 to the driver. The driver operates the power running handle 510 and the brake handle 520 based on the driving support information presented by the driving support information display unit 70, and operates the train according to the driving curve created by the driving curve creating device 100. Do. The driving support information may be displayed on the display (an example of the presentation unit) of the monitoring device mounted on the vehicle. Further, the presentation of the driving support information to the driver may be a voice instruction or the like.
 列車ダイヤ情報受信部40は、運転支援装置201を搭載した列車の列車ダイヤ情報を取得する。列車ダイヤ情報は、例えば、運転士が乗務する行路の駅や発着時刻を記録したICカードを携帯し、当該情報を車両に転送している場合、車上のモニタ装置300等から取得できる。また、運転支援装置201に、列車ダイヤ情報の記憶部(図示せず)および列車ダイヤ情報入力インタフェース(図示せず)を持たせ、列車ダイヤ情報を取り込むようにしてもよい。また、走行する駅間と当該駅間の走行時間が一律で決まっている場合は、時刻ベースの列車ダイヤ情報ではなく、走行する駅間と当該駅間の走行時間を列車ダイヤ情報として記録してもよい。 The train schedule information receiving unit 40 acquires the train schedule information of the train equipped with the driving support device 201. The train schedule information can be obtained from, for example, a monitor device 300 on the vehicle when the driver carries an IC card that records the station of the route on which the driver is on board and the departure / arrival time and transfers the information to the vehicle. Further, the operation support device 201 may be provided with a train timetable information storage unit (not shown) and a train timetable information input interface (not shown) so as to take in the train timetable information. In addition, if the running time between the running stations and the relevant station is uniformly determined, the running time between the running stations and the relevant station is recorded as the train timetable information instead of the time-based train timetable information. May be good.
 速度位置情報受信部50は、列車の速度と位置を取得する。列車の速度と位置は、通常、車上の速度位置算出装置やモニタ装置で算出しており、当該装置から取得できる。列車の速度は、例えば、列車に備わる速度発電機(図示せず)等の情報に基づいて算出している。列車の位置は、例えば、駅停車時に当該駅のキロ程に設定するとともに、速度発電機(図示せず)等の情報に基づいて移動距離を算出し、キロ程に移動距離を加算して求めている。 The speed position information receiving unit 50 acquires the speed and position of the train. The speed and position of the train are usually calculated by a speed position calculation device or a monitor device on the vehicle, and can be obtained from the device. The speed of the train is calculated based on information such as a speed generator (not shown) provided in the train. For example, the position of the train is set to about the kilometer of the station when the station is stopped, the travel distance is calculated based on information such as a speed generator (not shown), and the travel distance is added to the kilometer. ing.
 なお、運転支援装置201を車上の装置と接続せず、単独で動作させる場合、GNSS(Global Navigation Satellite System)情報に基づいて列車の速度と位置を算出する機能を、速度位置情報受信部50に持たせてもよい。 When the driving support device 201 is operated independently without being connected to the device on the vehicle, the speed position information receiving unit 50 has a function of calculating the speed and position of the train based on GNSS (Global Navigation Satellite System) information. You may have it in.
 また、運転支援装置201は、専用のハードウェア装置のほか、一般的なコンピュータ装置等によっても構成することができる。一般的なコンピュータ装置を用いた場合、上記各部の処理機能は、このコンピュータ装置に備わるCPU、表示装置、記憶装置、この記憶装置に格納されCPUにより実行される制御プログラム、および入出力インタフェースによる機能として実現される。 Further, the driving support device 201 can be configured by a general computer device or the like in addition to the dedicated hardware device. When a general computer device is used, the processing functions of the above parts are the functions of the CPU, display device, storage device, the control program stored in the storage device and executed by the CPU, and the input / output interface provided in the computer device. Is realized as.
 運転支援装置201は、列車ダイヤ情報受信部40および速度位置情報受信部50を有しており、運転曲線作成装置100は、時々刻々変化する列車の速度と位置および時刻に応じて、省エネ運転曲線を車上でリアルタイムに作成する。また、運転支援情報作成部60と運転支援情報表示部70を有しており、運転士が省エネ運転曲線に従って運転できるように、運転支援情報、すなわち、目標速度や、列車速度を目標速度に近づけるための目標運転操作を運転士に提示する。運転士は、提示された運転支援情報に基づいて力行ハンドル510やブレーキハンドル520を操作することにより上記省エネ運転曲線に従った運転を行うことができる。 The operation support device 201 has a train timetable information receiving unit 40 and a speed position information receiving unit 50, and the operation curve creating device 100 has an energy-saving operation curve according to the speed, position, and time of the train, which changes from moment to moment. Is created in real time on the car. Further, it has a driving support information creating unit 60 and a driving support information display unit 70, and brings the driving support information, that is, the target speed and the train speed closer to the target speed so that the driver can drive according to the energy-saving driving curve. Present the target driving operation for the driver. The driver can drive according to the energy-saving driving curve by operating the power running handle 510 and the brake handle 520 based on the presented driving support information.
 このように、第2実施形態によれば、運転曲線作成装置100を備えた運転支援装置201を用いることで、時々刻々変化する列車の速度と位置に応じて、省エネ運転曲線を車上でリアルタイムに作成でき、当該省エネ運転曲線に従った運転、すなわち、列車ダイヤを遵守しつつ消費電力量を低減できる運転を運転士の運転操作により実現することができる。 As described above, according to the second embodiment, by using the driving support device 201 provided with the driving curve creating device 100, the energy-saving driving curve is generated in real time on the vehicle according to the speed and position of the train which changes from moment to moment. It is possible to realize the operation according to the energy-saving operation curve, that is, the operation that can reduce the power consumption while observing the train schedule by the operation operation of the driver.
(第3実施形態)
 次に、第3実施形態について、図7を参照して説明する。図7は、第3実施形態に係る運転制御装置202の構成例を示すブロック図である。第3実施形態は、運転曲線作成装置100を備える運転制御装置202を車上に設置し、運転曲線作成装置100の作成した省エネ運転曲線に従った自動運転を行うものである。
(Third Embodiment)
Next, the third embodiment will be described with reference to FIG. 7. FIG. 7 is a block diagram showing a configuration example of the operation control device 202 according to the third embodiment. In the third embodiment, the driving control device 202 including the driving curve creating device 100 is installed on the vehicle, and automatic driving is performed according to the energy-saving driving curve created by the driving curve creating device 100.
 運転制御装置202は、上記の運転曲線作成装置100に加え、運転制御情報作成部80、自動制御部90、列車ダイヤ情報受信部40、速度位置情報受信部50を備える。
 運転曲線作成装置100の構成と動作は、第1実施形態と同様であり、列車ダイヤ情報受信部40、および速度位置情報受信部50の構成と動作は、第2実施形態と同様である。本実施形態は、第2実施形態の運転支援装置201に対し、運転支援情報作成部60および運転支援情報表示部70の代わりに、運転制御情報作成部80および自動制御部90を設けたものである。以下において、第1実施形態および第2実施形態と共通する部分については、その説明を省略する。
The operation control device 202 includes an operation control information creation unit 80, an automatic control unit 90, a train schedule information reception unit 40, and a speed position information reception unit 50 in addition to the operation curve creation device 100 described above.
The configuration and operation of the operation curve creating device 100 are the same as those of the first embodiment, and the configuration and operation of the train schedule information receiving unit 40 and the speed position information receiving unit 50 are the same as those of the second embodiment. In this embodiment, the driving support device 201 of the second embodiment is provided with a driving control information creating unit 80 and an automatic control unit 90 instead of the driving support information creating unit 60 and the driving support information display unit 70. is there. In the following, the description of the parts common to the first embodiment and the second embodiment will be omitted.
 運転制御情報作成部80は、運転曲線作成装置100が作成した運転曲線と、列車の速度および位置に基づいて、運転制御情報を作成する。運転制御情報は、駆動制動制御装置500への制御指令である。例えば、現在の列車位置に対応する運転曲線上の速度を目標速度とし、列車の速度を目標速度に近づけるための目標制御指令(力行ノッチ、惰行、ブレーキノッチ指令)を決定する。決定した制御指令を運転制御情報として自動制御部90に出力する。 The operation control information creation unit 80 creates operation control information based on the operation curve created by the operation curve creation device 100 and the speed and position of the train. The operation control information is a control command to the drive braking control device 500. For example, the speed on the operation curve corresponding to the current train position is set as the target speed, and the target control command (powering notch, coasting, brake notch command) for bringing the train speed closer to the target speed is determined. The determined control command is output to the automatic control unit 90 as operation control information.
 自動制御部90は、運転制御情報作成部80で作成した運転制御情報、すなわち制御指令を駆動制動制御装置500に出力し、列車の自動運転を行う。駆動制動制御装置500は、自動制御部90からの制御指令に従い、列車の力行およびブレーキ動作を制御する。 The automatic control unit 90 outputs the operation control information created by the operation control information creation unit 80, that is, the control command to the drive braking control device 500, and automatically operates the train. The drive braking control device 500 controls the power running and braking operation of the train in accordance with a control command from the automatic control unit 90.
 運転制御装置202は、専用のハードウェア装置のほか、一般的なコンピュータ装置等によっても構成することができる。一般的なコンピュータ装置を用いた場合、上記各部の処理機能は、このコンピュータ装置に備わるCPU、記憶装置、この記憶装置に格納されCPUにより実行される制御プログラム、および入出力インタフェースによる機能として実現される。 The operation control device 202 can be configured not only by a dedicated hardware device but also by a general computer device or the like. When a general computer device is used, the processing functions of the above parts are realized as functions by the CPU provided in the computer device, the storage device, the control program stored in the storage device and executed by the CPU, and the input / output interface. To.
 運転制御装置202は、列車ダイヤ情報受信部40および速度位置情報受信部50を有しており、運転曲線作成装置100は、時々刻々変化する列車の速度と位置および時刻に応じて、省エネ運転曲線を車上でリアルタイムに作成する。また、運転制御情報作成部80および自動制御部90を有しており、省エネ運転曲線に従った自動運転を行うための制御指令である運転制御情報を作成し、直接、駆動制動制御装置500に出力する。駆動制動制御装置500は、制御指令に従って列車の力行およびブレーキ動作を制御することで、省エネ運転、すなわち列車ダイヤを遵守しつつ消費電力量を低減できる運転を、自動で行うことができる。 The operation control device 202 has a train timetable information receiving unit 40 and a speed position information receiving unit 50, and the operation curve creating device 100 has an energy-saving operation curve according to the speed, position, and time of the train, which changes from moment to moment. Is created in real time on the car. Further, it has an operation control information creation unit 80 and an automatic control unit 90, and creates operation control information which is a control command for performing automatic operation according to an energy-saving operation curve, and directly transmits the drive braking control device 500 to the drive braking control device 500. Output. The drive braking control device 500 can automatically perform energy-saving operation, that is, operation that can reduce power consumption while observing the train schedule, by controlling the power running and braking operation of the train in accordance with the control command.
 このように、第3実施形態によれば、運転曲線作成装置100を備えた運転制御装置202を用いることで、時々刻々変化する列車の速度と位置に応じて、省エネ運転曲線を車上でリアルタイムに作成でき、当該運転曲線に従った自動運転を行うことができる。このため、運転士による操作の遅れや操作ミスの影響が小さくなり、省エネ運転、すなわち、列車ダイヤを遵守しつつ消費電力量を低減できる運転を、より確実に実現できる。 As described above, according to the third embodiment, by using the operation control device 202 provided with the operation curve creation device 100, the energy-saving operation curve is generated in real time on the vehicle according to the speed and position of the train which changes from moment to moment. It can be created in, and automatic operation can be performed according to the operation curve. Therefore, the influence of operation delays and operation mistakes by the driver is reduced, and energy-saving operation, that is, operation that can reduce power consumption while observing the train schedule can be realized more reliably.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
 例えば、惰行に関するパラメータは、惰行による速度低下量に限定されず、ほかに、惰行による走行距離や、惰行開始地点等であってもよい。 For example, the parameters related to coasting are not limited to the amount of speed reduction due to coasting, and may also be the mileage due to coasting, the coasting start point, and the like.

Claims (7)

  1.  列車の走行範囲と目標走行時間を設定する走行条件設定部と、
     前記走行範囲における前記列車の走行シミュレーションを実行して運転曲線を作成する走行シミュレーション実行部と、
     前記走行範囲について前記走行シミュレーションの結果から得た前記列車の走行時間に応じて、前記走行シミュレーション実行時の惰行に関するパラメータを調整するパラメータ調整部と、を備え、
     前記パラメータ調整部は、前記走行シミュレーションの結果から得た列車の走行時間が前記目標走行時間に近くなるように前記パラメータを調整するとともに、前記パラメータを、前記走行シミュレーションにおける前記列車の位置に対する速度に応じて調整する、運転曲線作成装置。
    A running condition setting unit that sets the running range and target running time of the train,
    A running simulation execution unit that executes a running simulation of the train in the running range to create a running curve, and a running simulation execution unit.
    A parameter adjusting unit for adjusting parameters related to coasting during execution of the traveling simulation according to the traveling time of the train obtained from the results of the traveling simulation for the traveling range is provided.
    The parameter adjusting unit adjusts the parameter so that the running time of the train obtained from the result of the running simulation is close to the target running time, and sets the parameter to the speed with respect to the position of the train in the running simulation. A driving curve creation device that adjusts accordingly.
  2.  前記パラメータは、前記走行範囲における惰行を付加する区間での惰行による速度低下量である、請求項1に記載の運転曲線作成装置。 The operation curve creating device according to claim 1, wherein the parameter is a speed reduction amount due to coasting in a section to which coasting is added in the traveling range.
  3.  前記パラメータ調整部は、前記走行シミュレーションにおける前記列車の位置に対する速度の所定の累乗に比例するように前記パラメータを調整する、請求項2に記載の運転曲線作成装置。 The operation curve creating device according to claim 2, wherein the parameter adjusting unit adjusts the parameters so as to be proportional to a predetermined power of the speed with respect to the position of the train in the traveling simulation.
  4.  前記パラメータ調整部は、前記走行シミュレーションにおける前記列車の位置に対する速度の3乗または4乗に比例するように前記パラメータを調整する、請求項3に記載の運転曲線作成装置。 The operation curve creating device according to claim 3, wherein the parameter adjusting unit adjusts the parameters so as to be proportional to the cube or fourth power of the speed with respect to the position of the train in the traveling simulation.
  5.  請求項1に記載の運転曲線作成装置と、
     前記運転曲線と、現在の列車の速度と位置に基づいて、目標運転操作の情報を含む運転支援情報を作成する運転支援情報作成部と、
     前記運転支援情報を提示する提示部と、
     を備える運転支援装置。
    The operation curve creating device according to claim 1 and
    A driving support information creation unit that creates driving support information including information on a target driving operation based on the driving curve and the speed and position of the current train.
    The presentation unit that presents the driving support information and
    A driving support device equipped with.
  6.  請求項1に記載の運転曲線作成装置と、
     前記運転曲線と、現在の列車の速度と位置に基づいて、前記列車への制御指令を含む運転制御情報を作成する運転制御情報作成部と、
     前記運転制御情報に基づいて、前記列車の走行の自動制御を行う自動制御部と、
     を備える運転制御装置。
    The operation curve creating device according to claim 1 and
    An operation control information creation unit that creates operation control information including a control command to the train based on the operation curve and the speed and position of the current train.
    An automatic control unit that automatically controls the running of the train based on the operation control information,
    An operation control device equipped with.
  7.  列車の走行範囲と目標走行時間を設定する走行条件設定工程と、
     前記走行範囲における前記列車の走行シミュレーションを実行して運転曲線を作成する走行シミュレーション実行工程と、
     前記走行範囲について前記走行シミュレーションの結果から得た前記列車の走行時間に応じて、前記走行シミュレーション実行時の惰行に関するパラメータを調整するパラメータ調整工程と、を備え、
     前記パラメータ調整工程は、前記走行シミュレーションの結果から得た列車の走行時間が前記目標走行時間に近くなるように前記パラメータを調整するとともに、前記パラメータを、前記走行シミュレーションにおける前記列車の位置に対する速度に応じて調整する、運転曲線作成方法。
    The running condition setting process that sets the running range and target running time of the train,
    A running simulation execution process for creating a running curve by executing a running simulation of the train in the running range, and
    A parameter adjusting step for adjusting parameters related to coasting during execution of the traveling simulation according to the traveling time of the train obtained from the results of the traveling simulation for the traveling range is provided.
    In the parameter adjusting step, the parameter is adjusted so that the running time of the train obtained from the result of the running simulation is close to the target running time, and the parameter is set to the speed with respect to the position of the train in the running simulation. How to create a driving curve that adjusts accordingly.
PCT/JP2020/039991 2019-10-25 2020-10-23 Speed profile creation device, operation assistance device, operation control device and speed profile creation method WO2021080012A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019193934A JP7443021B2 (en) 2019-10-25 2019-10-25 Driving curve creation device, driving support device, driving control device, and driving curve creation method
JP2019-193934 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021080012A1 true WO2021080012A1 (en) 2021-04-29

Family

ID=75620151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039991 WO2021080012A1 (en) 2019-10-25 2020-10-23 Speed profile creation device, operation assistance device, operation control device and speed profile creation method

Country Status (2)

Country Link
JP (1) JP7443021B2 (en)
WO (1) WO2021080012A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015123892A (en) * 2013-12-26 2015-07-06 株式会社東芝 Operation curve creation device, operation assistance device, operation control device, and operation curve creation method
JP2019142292A (en) * 2018-02-16 2019-08-29 株式会社東芝 Operation curve generation device, operation assistance device, and operation control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015123892A (en) * 2013-12-26 2015-07-06 株式会社東芝 Operation curve creation device, operation assistance device, operation control device, and operation curve creation method
JP2019142292A (en) * 2018-02-16 2019-08-29 株式会社東芝 Operation curve generation device, operation assistance device, and operation control device

Also Published As

Publication number Publication date
JP7443021B2 (en) 2024-03-05
JP2021066360A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
US8660723B2 (en) Method for determining run-curves for vehicles in real-time subject to dynamic travel time and speed limit constraint
US9286737B2 (en) Method of determining an eco-driving indicator for the travel of a vehicle
CN111527019B (en) Operation curve creation device, operation assistance device, and operation control device
CN104507780A (en) Method and device for operating a vehicle
JP6563757B2 (en) Travel pattern creation device, automatic train operation system with travel pattern creation device and automatic train operation device, and drive support system with travel pattern creation device and operation support device
CN103786719A (en) Control method for hybrid vehicle
CN113415288A (en) Sectional type longitudinal vehicle speed planning method, device, equipment and storage medium
WO2014097418A1 (en) Travel plan creation device, driving assistance device, and driving control device
CN108778862B (en) Method for providing brake selection advice to train driver and train driver advisory system
JP5395398B2 (en) Train control device
JP2008278645A (en) Automatic train operation device and simulation device of automatic train operation
WO2021080012A1 (en) Speed profile creation device, operation assistance device, operation control device and speed profile creation method
EP3656600B1 (en) Driving operation determination table data creation unit, train operation assistance system, and train operation assistance method
KR102081405B1 (en) Energy saving automatic driving system for railway vehicle
JP2008005585A (en) Vehicle control system
WO2018139012A1 (en) Running control device, running control method, and running control system
KR102081404B1 (en) Energy saving driving advisory system for railway vehicle
JP7413177B2 (en) Driving curve creation device, driving support device, and driving control device
JPH0479705A (en) Preparation of train operating system
Morais et al. Heuristic-based Speed Profile Generation for Multi-Train Simulator
KR102512650B1 (en) Energy-Efficient Automatic Train Operation Method
US11897341B2 (en) Method and system for controlling motion of an electric vehicle (EV)
WO2024053566A1 (en) Information processing device, information processing method, and program
US20240149889A1 (en) System
JP7168388B2 (en) Railway vehicle controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879186

Country of ref document: EP

Kind code of ref document: A1