WO2021079835A1 - Electric vehicle, control method for same, and control program for same - Google Patents

Electric vehicle, control method for same, and control program for same Download PDF

Info

Publication number
WO2021079835A1
WO2021079835A1 PCT/JP2020/039154 JP2020039154W WO2021079835A1 WO 2021079835 A1 WO2021079835 A1 WO 2021079835A1 JP 2020039154 W JP2020039154 W JP 2020039154W WO 2021079835 A1 WO2021079835 A1 WO 2021079835A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
vehicle body
unit
wheels
wheel
Prior art date
Application number
PCT/JP2020/039154
Other languages
French (fr)
Japanese (ja)
Inventor
浩明 橋本
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Priority to EP20879033.7A priority Critical patent/EP4049646A1/en
Priority to JP2021553405A priority patent/JPWO2021079835A1/ja
Priority to CN202080067456.3A priority patent/CN114466637A/en
Publication of WO2021079835A1 publication Critical patent/WO2021079835A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/04Wheeled walking aids for disabled persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H2003/001Appliances for aiding patients or disabled persons to walk about on steps or stairways
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/04Wheeled walking aids for disabled persons
    • A61H2003/043Wheeled walking aids for disabled persons with a drive mechanism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/04Wheeled walking aids for disabled persons
    • A61H2003/046Wheeled walking aids for disabled persons with braking means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0165Damping, vibration related features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5084Acceleration sensors

Definitions

  • the present disclosure relates to an electric vehicle for assisting the walking of elderly people, physically handicapped persons, inpatients and other persons with walking restrictions, a control method thereof, and a control program thereof.
  • Patent Document 1 discloses a walking assist device capable of allowing the front wheels to ride on a step without performing an operation that imposes a heavy burden on the user.
  • Patent Document 1 a frame, front wheels and rear wheels provided on the frame, a drive unit that generates a driving force that causes the front wheels to float with respect to the rear wheels, and a control that is connected to the drive unit and controls the drive unit.
  • the control unit controls the drive unit to lift the front wheels with respect to the rear wheels.
  • a walking assist device electric vehicle characterized by being able to perform is disclosed.
  • the step detection function and the step overcoming function of the conventional walking assist device are based on the premise that the walking assist device enters from almost the front (almost perpendicular direction) to the step. Therefore, when the right front wheel and the left front wheel of the walking assist device come into contact with the step with a time difference, it is difficult to get over the step.
  • contact with the step, stop operation of the walking assist device by the user, and contact of the walking assist device with an object other than the step It is necessary to identify the difference from the case where.
  • the present disclosure provides an electric vehicle, a control method thereof, and a control program thereof, which can detect contact with a step with high accuracy and realize an operation intended by a user.
  • the drive unit for driving the wheels including at least one of the front wheels and the rear wheels provided on the vehicle body and the drive unit for overcoming the step for causing the wheels to get over the step are performed on the drive unit.
  • the control unit controls the step over based on the control unit
  • the measurement unit that measures at least one of the speed or the acceleration applied to the vehicle body on which the wheel is provided, and the measurement value of the measurement unit. It is characterized by having a judgment unit for making a judgment.
  • the determination unit may determine that the determination unit performs overcoming control of the step when it is estimated that the front wheel has come into contact with the step based on the measured value of the measurement unit.
  • the step overcoming control may include a control for increasing the driving force for driving the wheels of the driving unit.
  • control for overcoming the step may include the control for turning the vehicle body.
  • control for overcoming the step may include a control for increasing the driving force while turning the vehicle body.
  • the front wheels include a left front wheel and a right front wheel that are arranged apart from each other in the width direction of the vehicle body, and the determination unit determines the left front wheel or the right based on the measured values of the measurement unit. It may be estimated which of the front wheels touches the step.
  • the measuring unit may measure at least one of the acceleration in the direction of decelerating the vehicle body or the acceleration in the front-rear direction of the vehicle body and the acceleration in the width direction of the vehicle body.
  • the rear wheels include a left rear wheel and a right rear wheel that are arranged apart from each other in the width direction of the vehicle body, and the measuring unit at least accelerates the left rear wheel in the rotational direction. And the average value of the acceleration in the rotation direction of the right rear wheel or the difference between the acceleration in the rotation direction of the left rear wheel and the acceleration in the rotation direction of the right rear wheel may be calculated.
  • the measuring unit has at least the average value of the acceleration in the rotation direction of the left front wheel and the acceleration in the rotation direction of the right front wheel, or the acceleration in the rotation direction of the left front wheel and the acceleration in the rotation direction of the right front wheel. The difference may be calculated.
  • the measuring unit measures at least one of acceleration in the direction of decelerating the vehicle body and acceleration in the rear direction of the vehicle body and acceleration in the width direction of the vehicle body, and the determination unit. Is the left front wheel or the right front wheel when at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rear direction of the vehicle body measured by the measuring unit becomes equal to or higher than the first threshold value. It may be estimated which of the two contacts the step.
  • the measuring unit measures at least one of acceleration in the direction of decelerating the vehicle body and acceleration in the rear direction of the vehicle body and acceleration in the width direction of the vehicle body, and the determination unit.
  • the determination unit was measured within a predetermined period after at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body measured by the measuring unit became equal to or higher than the first threshold value. It may be estimated whether the left front wheel or the right front wheel comes into contact with the step when the maximum value of the absolute value of the acceleration in the width direction of the vehicle body becomes the second threshold value or more.
  • the measuring unit measures at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rear direction of the vehicle body
  • the determining unit measures the acceleration of the measuring unit.
  • control unit generates a driving force only in the driving unit of the rear wheel located on the same side in the width direction of the vehicle body of the front wheel estimated to have come into contact with the step. May be good.
  • control unit is the driving unit of at least one of the front wheels and the rear wheels located on the opposite side of the front wheels in the width direction of the vehicle body, which is presumed to have come into contact with the step.
  • the driving force may be generated only in the direction.
  • control unit is the one of at least one of the front wheels on the side estimated to have come into contact with the step or the rear wheels located on the same side of the front wheels in the width direction of the vehicle body.
  • a driving force larger than the driving force of the driving unit is applied to the driving unit of at least one of the front wheels and the rear wheels located on the opposite side of the front wheels in the width direction of the vehicle body, which is estimated to have come into contact with the step. It may be generated.
  • control unit is the one of at least one of the front wheels on the side estimated to have come into contact with the step or the rear wheels located on the same side of the front wheels in the width direction of the vehicle body. Increase the driving force of at least one of the front wheels on the side estimated to be in contact with the step or the rear wheels located on the same side in the width direction of the vehicle body with respect to the driving force of the driving unit. You may.
  • control unit is a drive unit of at least one of the front wheels and the rear wheels located on the opposite side of the front wheels in the width direction of the vehicle body, which is presumed to have come into contact with the step.
  • the driving force and the driving force of the driving unit of at least one of the front wheels estimated to have come into contact with the step and the rear wheels located on the same side of the front wheels in the width direction of the vehicle body are defined as the fourth. It may be gradually increased until it reaches a threshold value.
  • the driving force of at least one of the front wheels and the rear wheels located on the opposite side of the front wheels in the width direction of the vehicle body, which is presumed to have come into contact with the step is a driving force. It may be larger than the driving force of the driving unit of at least one of the front wheels and the rear wheels located on the same side of the front wheels in the width direction of the vehicle body, which are presumed to be in contact with the step.
  • control unit determines that both of the front wheels come into contact with the step based on the measured values of the measurement unit, and the front wheels are on both sides in the width direction of the vehicle body.
  • the driving force of the driving unit of at least one of the front wheels or the rear wheels of the rear wheels may be equal.
  • control unit performs the overcoming operation of the step when the maximum value of the absolute value of the acceleration in the width direction of the vehicle body measured by the measurement unit becomes the second threshold value or more.
  • the fifth threshold value of acceleration which is a condition for executing, may be set small.
  • control unit has a sixth absolute value of acceleration, which is a condition for executing the overcoming operation of the step as the speed of the vehicle body measured by the measurement unit increases.
  • the threshold value may be set large.
  • the measuring unit measures at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rear direction of the vehicle body
  • the determining unit measures the acceleration measured by the measuring unit. It may be estimated that the front wheels come into contact with the step when at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body is larger than the seventh threshold value.
  • At least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body measured by the measurement unit is equal to or less than the seventh threshold value. In some cases, it is not necessary to presume that the front wheels have come into contact with the step.
  • the measuring unit measures the frequency spectrum of the vibration of the vehicle body
  • the determining unit measures the front wheel when the representative value of the measured value of the measuring unit is larger than the eighth threshold value. May be presumed to have come into contact with the step.
  • the determination unit does not have to presume that the front wheel has come into contact with the step when the representative value of the value measured by the measurement unit is equal to or less than the eighth threshold value.
  • the electric vehicle according to the present disclosure includes a storage unit that stores the measured values of the measuring unit, and the determination unit may adjust the seventh threshold value based on the measured values stored in the storage unit. Good.
  • the determination unit determines the seventh threshold value in a predetermined period before the control unit controls the front wheels to overcome the steps and then the control unit controls the front wheels to overcome the steps. If a smaller acceleration is detected, the seventh threshold value may be changed to a smaller value.
  • the determination unit has the acceleration measured by the measurement unit when the control unit overcomes the step of the front wheel, which is larger than the seventh threshold value and the seventh threshold value. If the difference from is greater than a predetermined value, the seventh threshold value may be changed to a larger value.
  • the vibration of the vehicle body may include vibration in the front-rear direction of the vehicle body.
  • the electric vehicle according to the present disclosure may be provided with a cushioning member that covers at least a part of the front surface of the vehicle body or both side surfaces in the width direction of the vehicle body.
  • the front wheels may be twin-wheel casters configured to be able to turn.
  • the electric vehicle according to the present disclosure is added to a drive unit that drives wheels including at least one of front wheels and rear wheels, a control unit that controls the drive unit to control stepping over, and a vehicle body provided with the wheels.
  • the control unit includes a measurement unit that measures at least one of speed and acceleration, and a determination unit that determines whether or not the control unit controls overcoming a step based on the measurement value of the measurement unit.
  • the determination unit determines that the front wheels have come into contact with a step based on the measured values of the measurement unit, the determination unit performs control to increase the driving force for driving the wheels of the drive unit or control to turn the vehicle body. It is a feature.
  • the method for controlling an electric vehicle determines whether or not to perform step overcoming control based on a step of measuring at least one of a speed or an acceleration applied to a vehicle body and at least one of the speed or the acceleration. It is characterized by including steps to be performed.
  • the method for controlling an electric vehicle includes a step of determining whether or not a front wheel has come into contact with a step based on at least one of the speed and the acceleration, and when it is estimated that the front wheel has come into contact with the step.
  • the step of overcoming the step may be included.
  • the step overcoming control is at least one of control for increasing the driving force for driving the wheels, control for turning the vehicle body, and control for increasing the driving force while turning the vehicle body. May include.
  • the control program for an electric vehicle determines whether or not the front wheels have come into contact with a step based on a step of measuring at least one of a speed or an acceleration applied to a vehicle body and at least one of the speed or the acceleration. It is characterized by including a step of performing the step and a step of controlling overcoming of the step when it is presumed that the front wheel has come into contact with the step.
  • the step overcoming control is at least one of control for increasing the driving force for driving the wheels, control for turning the vehicle body, and control for increasing the driving force while turning the vehicle body. May include.
  • FIG. 1 is a perspective view showing an electrically assisted walking vehicle according to the first embodiment of the present disclosure.
  • FIG. 2 is a side view showing an electrically assisted walking vehicle according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic view showing a leg detection sensor.
  • FIG. 4 is a schematic view showing a grip sensor.
  • FIG. 5 is a schematic view showing a modified example of the grip sensor.
  • FIG. 6 is a flowchart for explaining an example of the operation of the control unit.
  • FIG. 7 is a graph showing a change in driving force with the passage of time after the front wheels collide with a step.
  • FIG. 8 is a graph showing an example of acceleration and threshold value detected in each case of collision with a step and stop operation.
  • FIG. 9 is a graph showing an example of the acceleration detected when colliding with a soft object and the acceleration detected when colliding with a step.
  • FIG. 10 is a schematic view showing a configuration example in which a cushioning material is provided in front of the vehicle body.
  • FIG. 11 is a plan view showing an example of acceleration applied to the vehicle body when the electrically assisted walking vehicle collides with a step.
  • FIG. 12 is a graph showing the difference in acceleration detected by the front wheels that collide.
  • FIG. 13 is a graph showing an example of acceleration detected in the case of turning approach and straight approach.
  • FIG. 14 is a graph showing an example of a time waveform of acceleration measured at the time of collision with a step.
  • FIG. 15 is a plan view showing a first example of an electrically power assisted walking vehicle approaching a step at an angle.
  • FIG. 16 is a plan view showing a second example of the electrically assisted walking vehicle approaching the step at an angle.
  • FIG. 17 is a plan view showing a second example of the electrically assisted walking vehicle approaching the step at an angle.
  • FIG. 18 is a graph showing an example of control for turning an electric vehicle after detecting contact with a step of one of the front wheels.
  • FIG. 19 is a graph showing an example of control for turning an electric vehicle after detecting contact with a step of one of the front wheels.
  • FIG. 20 is a plan view showing a first example when the front wheels have an angle with respect to the traveling direction of the vehicle body.
  • FIG. 21 is a plan view showing a second example in which the front wheels have an angle with respect to the traveling direction of the vehicle body.
  • FIG. 22 is a plan view showing an example of a collision between an electrically power assisted walking vehicle and a step.
  • FIG. 23 is a plan view showing an example of a collision between the electrically power assisted walking vehicle and the step.
  • FIG. 24 is a perspective view showing an electrically assisted walking vehicle according to a second embodiment of the present disclosure.
  • FIG. 25 is a side view showing an electrically assisted walking vehicle according to a second embodiment of the present disclosure.
  • FIG. 26 is a side view showing the configuration around the rear wheels of the electrically power assisted walking vehicle according to the second embodiment of the present disclosure.
  • FIG. 27 is a cross-sectional view (FIG.
  • FIG. 28 is a cross-sectional perspective view showing a configuration around the rear wheels of the electrically power assisted walking vehicle according to the second embodiment of the present disclosure.
  • FIG. 29 is a schematic view (during normal driving) showing a modified example of the electrically assisted walking vehicle.
  • FIG. 30 is a schematic view (when the front wheels are locked) showing a modified example of the electrically assisted walking vehicle.
  • 31 (a) and 31 (b) are schematic views showing an electrically assisted walking vehicle according to a third embodiment of the present disclosure, respectively.
  • 32 (a) and 32 (b) are schematic views showing an electrically assisted walking vehicle according to a modified example of the third embodiment of the present disclosure, respectively.
  • FIG. 33 is a perspective view showing an electrically assisted walking vehicle according to a fourth embodiment of the present disclosure.
  • FIG. 1 and 2 are diagrams showing an electric walking vehicle (hereinafter, referred to as an electrically assisted walking vehicle) as an example of an electric vehicle.
  • FIG. 1 is a schematic perspective view showing an example of the appearance of the electrically power assisted walking vehicle 10 according to the first embodiment
  • FIG. 2 is a side view of the electrically power assisted walking vehicle 10 of FIG.
  • the electrically power assisted walking vehicle 10 is connected to the frame 11, a pair of front wheels (wheels) 12 and a pair of rear wheels (wheels) 13 provided on the frame 11, and the frame 11. It is provided with a pair of handles (operation unit) 14. Two pairs of rear wheels 13 are arranged apart from each other in the width direction of the vehicle body. Similarly, two pairs of front wheels 12 are arranged apart from each other in the width direction of the vehicle body.
  • the electric vehicle is mainly a four-wheeled vehicle in which two front wheels and two rear wheels are arranged will be described as an example, but this configuration is only an example.
  • the electric vehicle may be a tricycle in which the vehicle body is provided with one front wheel and a pair of (two) rear wheels arranged two apart in the width direction of the vehicle body.
  • three or more front wheels may be arranged apart from each other in the width direction.
  • the front wheel arranged on the rightmost side in the front direction of the vehicle body is called the right front wheel
  • the front wheel arranged on the leftmost side in the front direction of the vehicle body is called the left front wheel.
  • the front wheels include a left front wheel and a right front wheel that are arranged apart from each other in the width direction of the vehicle body.
  • three or more rear wheels may be arranged apart in the width direction.
  • the rear wheel arranged on the rightmost side in the front direction of the vehicle body is called the right rear wheel
  • the rear wheel arranged on the leftmost side in the front direction of the vehicle body is called the left rear wheel. That is, the rear wheels include a left rear wheel and a right rear wheel that are arranged apart from each other in the width direction of the vehicle body.
  • the number of wheels provided in the electric vehicle is not particularly limited. Therefore, the electric vehicle may have a different number of wheels than those described above.
  • each handle 14 is provided with a brake unit 15 for manually stopping the electrically assisted walking vehicle 10.
  • the frame 11 and the structure supported by the frame 11 will be referred to as the “whole body of the electrically assisted walking vehicle 10”.
  • a motor 20 that assists the movement of the corresponding rear wheel 13 is connected to the pair of rear wheels 13.
  • the electrically assisted walking vehicle may be connected to each of the front wheels 12 and may include a motor that assists the movement of each of the front wheels 12.
  • Each front wheel 12 and each rear wheel 13 may be connected to the motor, or only the front wheel 12 may be connected to the motor.
  • a battery 21 and a control unit 16 are attached to the frame 11, respectively.
  • control unit 16 is provided with an acceleration sensor 22a and a speed sensor 22b.
  • handle 14 is provided with an inclination detection sensor 23 and a grip sensor (operating force sensor) 24, respectively.
  • a leg detection sensor 25 for detecting the presence or absence of a user's leg is arranged on the frame 11 at a position below the pair of handles 14.
  • the frame 11 has a pair of left and right pipe frames 31 and a connecting frame 32 that connects the pair of pipe frames 31 in the lateral direction.
  • a pair of front wheels 12 are provided on the front end side of each of the pair of left and right pipe frames 31. That is, two front wheels are arranged apart from each other in the width direction of the vehicle body of the electrically assisted walking vehicle 10. Of the pair of front wheels 12, the one on the R side is called the right front wheel, and the one on the L side is called the right front wheel to distinguish them.
  • Each of the pair of front wheels 12 is rotatable in the front-rear direction and is also rotatably provided around a vertical axis.
  • a pair of rear wheels 13 are provided on the rear end side of each of the pair of left and right pipe frames 31.
  • the pair of rear wheels 13 the one on the R side is called the right rear wheel, and the one on the L side is called the right rear wheel to distinguish them.
  • Each rear wheel 13 is provided so as to be rotatable in the front-rear direction.
  • a brake shoe 33 that can be mechanically contacted is provided on the outer periphery of each rear wheel 13.
  • the brake shoe 33 is connected to the brake lever 34 of the brake unit 15 via a wire 35. Therefore, in response to the user manually operating the brake lever 34, the brake shoe 33 operates to brake the rear wheels 13.
  • the mechanical brake configuration is not limited to this, and any configuration can be used.
  • a fall prevention member 36 is provided from the rear end side of each of the pair of left and right pipe frames 31.
  • the fall prevention member 36 prevents a pair of front wheels 12 of the electrically power assisted walking vehicle 10 from rising from the ground and falling backward.
  • a pair of handles 14 are provided at the upper ends of the pair of left and right pipe frames 31.
  • the pair of handles 14 are each gripped by the user's hand.
  • the pair of handles 14 have a rod-shaped member 41.
  • Each rod-shaped member 41 is provided with a grip portion 42.
  • a brake lever 34 is attached to each of the rod-shaped members 41.
  • the configuration of the handle 14 is not limited to this, and for example, a bar handle extending in the horizontal direction is provided so as to connect a pair of left and right pipe frames 31, and a grip portion 42 is provided as a pair of left and right handles 14 on this bar handle. May be good.
  • any motor such as a servo motor, a stepping motor, an AC motor, or a DC motor can be used as the motor 20.
  • the motor 20 integrally formed with the speed reducer may be used.
  • the motor 20 assists the operation of the rear wheels 13 and drives the rear wheels 13 in the forward direction for traveling.
  • the motor 20 also serves as a driving unit that lifts the front wheels 12 with respect to the rear wheels 13. That is, the driving force of the motor 20 (driving unit) generates a moment in the direction of lifting the front wheels 12.
  • the motor 20 may also have a function as a dynamic brake.
  • the motor 20 further serves as a braking unit for braking the rear wheels 13.
  • the motor 20 brakes the rear wheels 13
  • the motor 20 is operated as a generator, and the brake is applied by the resistance force thereof.
  • the motor 20 serves as a braking unit, it may be used as a reverse brake that drives the motor 20 in the opposite direction.
  • the braking portion that brakes the rear wheel 13 may be a component different from that of the motor 20. Examples of such a braking unit include an electromagnetic brake and a mechanical brake.
  • the left and right motors 20 may be controlled independently by the control unit 16. However, if it is not necessary to make a difference in speed or acceleration between the wheels on the right side of the vehicle body and the wheels on the left side of the vehicle body, the control unit 16 may control the motor 20 integrally on the left and right sides.
  • the motor 20 is connected to each of the rear wheels 13 (left rear wheel, right rear wheel).
  • the configuration in which the same motor is connected to all of the pair of front wheels 12 and the pair of rear wheels 13 is not excluded.
  • the control unit 16 controls the drive unit (for example, the motor 20 described above) of the electrically assisted walking vehicle 10 to control overcoming a step.
  • the step overcoming control refers to the control for allowing the front wheels of the vehicle body to ride on the step.
  • the determination unit 16a determines whether or not to perform step overcoming control based on the measured value of the measurement unit. For example, the determination unit 16a determines that the step overcoming control is performed when the front wheel 12 is estimated to have come into contact with the step based on the measured value of the measurement unit.
  • Examples of the measuring unit include acceleration sensors 22a, 81r to 82l and speed sensors 22b, which will be described later.
  • the measuring unit may measure at least one of acceleration in the direction of decelerating the vehicle body and acceleration in the front-rear direction of the vehicle body and acceleration in the width direction of the vehicle body. This makes it possible to determine whether the left front wheel or the right front wheel is in contact with the step (one-sided contact), or whether the left front wheel and the right front wheel are in contact with the step (both wheels are in contact).
  • control unit 16 and the determination unit 16a are provided in the vicinity of the battery 21.
  • the control unit 16 and the determination unit 16a may include a processor capable of executing various instructions or programs.
  • the control unit 16 and the determination unit 16a execute, for example, a control program of the electrically assisted walking vehicle 10 (electric vehicle).
  • the control unit 16 and the determination unit 16a may include hardware circuits such as ASIC, FPGA, and PLD.
  • the electrically assisted walking vehicle 10 may include a storage unit 16b.
  • the control unit 16 and the determination unit 16a can read and write data to and from the storage unit 16b.
  • control unit 16 and the determination unit 16a Instructions, programs or instructions executed by the control unit 16 and the determination unit 16a, data used for executing the program, and measurement values of various sensors (measurement units) are stored in the storage unit 16b.
  • the control unit 16 and the determination unit 16a may be mounted using a common hardware circuit. Further, the control unit 16 and the determination unit 16a may be implemented by using a common program. Further, the control unit 16 and the determination unit 16a may be implemented by separate hardware circuits or programs.
  • the step overcoming control performed by the drive unit may include control to increase the driving force for driving the wheels of the drive unit. Further, the step overcoming control may include a control for turning the vehicle body. The step overcoming control may include a control for increasing the driving force while turning the vehicle body. Details of the processing executed by the control unit 16 and the determination unit 16a will be described later.
  • the storage unit 16b provides a storage area capable of storing various types of data.
  • the storage unit 16b may be provided in the vicinity of the control unit 16 or may be a part of the control unit 16.
  • the storage unit 16b may be, for example, a volatile memory such as SRAM or DRAM, or a non-volatile memory such as NAND, MRAM, or FRAM. Further, it may be a storage device such as a hard disk or SSD, or an external storage device, and the type of device is not particularly limited. Further, the storage unit 16b may be a combination of a plurality of types of memory devices and storage devices.
  • the acceleration sensor 22a measures the acceleration in the front-rear direction of the vehicle body and the acceleration in the width direction of the vehicle body.
  • the acceleration in the front-rear direction of the vehicle body means the acceleration in the direction FB of FIG.
  • the acceleration in the width direction of the vehicle body means the acceleration in the direction L and the direction R in FIG.
  • the acceleration sensor 22a may measure the acceleration in the direction of decelerating the vehicle body in addition to the acceleration in the front-rear direction of the vehicle body. Further, the acceleration sensor 22a may measure the acceleration in the direction of decelerating the vehicle body instead of the acceleration in the front-rear direction of the vehicle body.
  • the control unit 16 can acquire the acceleration measured by the acceleration sensor 22a.
  • An example of a sensor that measures the acceleration applied to the vehicle body is a MEMS sensor or the like, but any kind of device may be used.
  • a piezoelectric sensor for example, a strain gauge, an operating force sensor (for example, a grip sensor) or the like is used to measure the force applied to the component of either the electrically assisted walking vehicle 10 or the electrically assisted walking vehicle 10, and the estimated value of acceleration is obtained. You may ask.
  • the acceleration sensor may measure the acceleration in the rotation direction of each wheel of the electrically assisted walking vehicle 10.
  • the acceleration sensors 81r to 82l in FIG. 1 measure the acceleration in the rotational direction of each wheel.
  • the acceleration sensor 81r measures the acceleration of the right front wheel (front wheel 12 on the direction R side).
  • the acceleration sensor 81l measures the acceleration of the right front wheel (front wheel 12 on the L side in the direction L).
  • the acceleration sensor 82r measures the acceleration of the right rear wheel (rear wheel 13 on the direction R side).
  • the acceleration sensor 82l measures the acceleration of the right rear wheel (rear wheel 13 on the L side in the direction L).
  • the acceleration sensors 81r to 82l may directly measure the acceleration of each wheel, or may measure the acceleration of the motor 20 and provide an estimated value of the wheel acceleration. Alternatively, the speed of the wheel or the motor 20 may be measured and an estimated value of acceleration may be calculated. Further, the number of revolutions of the wheel or the motor 20 per hour may be measured, the time derivative of the number of revolutions may be calculated, and the estimated value of acceleration may be obtained.
  • the control unit 16 can acquire the acceleration measured by the acceleration sensors 81r to 82l.
  • the speed sensor 22b detects the rotation speed or speed of the rear wheel 13 and transmits a signal of this rotation speed or speed to the control unit 16.
  • the speed sensor 22b can be installed, for example, in the vicinity of the control unit 16.
  • the speed sensor 22b may be built in the pair of rear wheels 13 of the electrically power assisted walking vehicle 10. Alternatively, the speed sensor 22b may be built only inside the pair of front wheels 12, or may be built in all of the pair of front wheels 12 and the pair of rear wheels 13.
  • An example of a speed sensor is a gyro sensor that measures an angular velocity. By using the gyro sensor, it is possible to detect which of the left and right wheels collides with an object such as a step.
  • the speed sensor 22b may calculate the rotation speed or speed of the wheels and the speed of the electrically assisted walking vehicle 10 by using the Hall element built in the motor 20.
  • the rotation speed or speed of the wheels and the speed of the electrically assisted walking vehicle 10 are calculated from the countercurrent force, and each rear wheel is configured.
  • the angular velocity of 13 or each of the front wheels 12 can be detected, it can be configured to calculate the number of rotations or speed of the wheels and the speed of the electrically assisted walking vehicle 10 from this angular velocity.
  • the speed sensor 22b is not limited to being built in the pair of front wheels 12 and the pair of rear wheels 13, and may be attached to any other member such as the frame 11 and the pair of handles 14.
  • the speed may be calculated by integrating the acceleration measured by the acceleration sensor.
  • GPS Global Positioning System
  • the speed may be calculated based on the displacement of the coordinates per time.
  • the speed sensor 22b and the acceleration sensors 81r to 82l may be used to measure the acceleration (negative acceleration) in the direction of decelerating the vehicle body.
  • the traveling direction of the vehicle body is specified based on the measured value of the speed sensor 22b.
  • the direction of the acceleration measured by the acceleration sensors 81r to 82l is specified.
  • the acceleration of the component can be the acceleration in the direction of decelerating the vehicle body.
  • the tilt detection sensor 23 detects the tilt of the electrically assisted walking vehicle 10, for example, whether the electrically assisted walking vehicle 10 is on a flat surface or an inclined surface, and determines a signal relating to the tilt of the electrically assisted walking vehicle 10 in the determination unit 16a. Send to.
  • the determination unit 16a may estimate whether or not the electrically assisted walking vehicle 10 has succeeded in getting over the step based on the measured value of the inclination sensor 23.
  • the tilt detection sensor 23 is provided on the upper part of the electrically assisted walking vehicle 10, for example, inside a pair of handles 14.
  • the tilt detection sensor 23 can be provided at the lower part of the electrically assisted walking vehicle 10, but by arranging the tilt detection sensor 23 at the upper part, the posture of the electrically assisted walking vehicle 10 can be reliably detected as compared with the case where the tilt detection sensor 23 is arranged at the lower part.
  • a gyro sensor may be used as the tilt detection sensor 23. Further, the inclination of the electrically assisted walking vehicle 10 may be detected by using the acceleration sensor.
  • FIG. 3 is a schematic view showing an example of the leg detection sensor 25.
  • the leg detection sensor 25 is provided on the connecting frame 32.
  • Examples of the leg detection sensor 25 include an image sensor, an infrared sensor, and the like.
  • the leg detection sensor 25 can detect the movement of the leg by measuring the distance from the leg of the user of the electrically assisted walking vehicle 10.
  • the leg detection sensor 25 in FIG. 3 faces backwards depending on whether the user's leg is moving, stopped, away, or approaching in the range AR. It is possible to determine whether or not the person is trying to sit on the seat surface 37.
  • 4 and 5 are schematic views for explaining the grip sensor 24.
  • the grip portions 42 of the pair of handles 14 are provided with grip sensors 24 that detect the operating force (grip force) that the user manually pushes or pulls the electrically assisted walking vehicle 10.
  • the grip sensor 24 is regulated by an elastic member (for example, a spring) (for example, a spring) whose movement in one or both of the pushing direction and the pulling direction with respect to the rod-shaped member 41 is not shown, and further includes a potentiometer for detecting the movement. There is.
  • the grip portion 42 can move in the front-rear direction with respect to the rod-shaped member 41, and when it moves in the direction of the arrows (forward direction) in FIGS. 4 and 5, the electrically assisted walking vehicle 10 is moved by the user.
  • the electrically assisted walking vehicle 10 is being pulled by the user, and in either direction. If it has not moved, it can be determined that it is neither of them.
  • the pair of left and right handles 14 are provided with separate grip sensors 24.
  • Each grip sensor 24 independently detects an operating force (grip force) with respect to the handle 14, and transmits the detected operating force to at least one of the control unit 16 and the determination unit 16a. Therefore, at least one of the control unit 16 and the determination unit 16a is gripped by the user only on one of the pair of handles 14 (one-handed holding state), or neither of the pair of handles 14 is gripped (in a one-handed state). It is possible to recognize whether the two-handed state is released) or whether both of the pair of handles 14 are gripped (both-handed state).
  • a strain sensor 38 (for example, a strain gauge) is provided in the grip portion 42 so that the moment applied to the grip portion 42 or the pair of pipe frames 31 can be detected, and this can also be used as the grip sensor 24.
  • the grip portion 42 since the grip portion 42 is fixed to the rod-shaped member 41, the configuration can be simplified.
  • the grip portion 42 may be provided with a proximity sensor for detecting a joystick, a push button, or a user's hand, and this may be used as the grip sensor 24. That is, in order to "determine that the user is trying to advance the electric vehicle through the operation unit (the user is performing the forward operation of the electric vehicle)", the user is a part of the hand or body.
  • a switch means such as a joystick or a push button is included.
  • the electrically assisted walking vehicle 10 (electric vehicle) has a drive unit that drives a wheel including at least one of the front wheels or the rear wheels provided on the vehicle body, and the drive unit that controls the step overcoming of the wheel to get over the step. It is determined whether or not to perform step overcoming control based on the control unit 16 to be performed, the measurement unit that measures at least one of the speed or acceleration applied to the vehicle body on which the wheels are provided, and the measurement value of the measurement unit. It is provided with a determination unit 16a.
  • the control unit of the electrically power assisted walking vehicle 10 controls to increase the driving force for driving the wheels of the drive unit or turns the vehicle body when the determination unit 16a determines that the front wheels have come into contact with the step based on the measured value of the measurement unit. Control may be performed.
  • the electrically assisted walking vehicle 10 can detect a collision (contact) with the step and determine the mode of contact with the step.
  • the electrically power assisted walking vehicle 10 can perform an operation of overcoming a step having an appropriate content at an appropriate timing.
  • control unit 16 transmits a command based on the step overcoming control algorithm to the drive unit and the drive unit operates will be described as an example.
  • the processing assignment in each component may be different.
  • the control unit 16 may transmit a step overcoming control start command to the driving unit, and the driving unit may start an operation based on the step overcoming control algorithm set in itself.
  • the determination unit 16a Based on the measured values (including at least one of the speed and acceleration) of the measuring unit, the determination unit 16a causes the electrically assisted walking vehicle to make contact with the step, stop operation by the user, and collide with an object other than the step. Distinguish. Further, the determination unit 16a can estimate the traveling direction of the electrically assisted walking vehicle with respect to the step (angle of the electrically assisted walking vehicle with respect to the step) based on the measured value.
  • control unit 16 When the control unit 16 detects contact with the step, the control unit 16 performs an operation of overcoming the step according to the traveling direction (angle) of the electrically assisted walking vehicle with respect to the estimated step.
  • the step overcoming operation include turning of the vehicle body, assist by the drive unit connected to the front wheels, and combination of turning of the vehicle body and assist by the drive unit connected to the front wheels.
  • the control method of the electrically assisted walking vehicle includes a step of measuring at least one of the speed and acceleration applied to the vehicle body, a step of determining the presence or absence of a step based on at least one of the speed and acceleration, and the step of determining the presence or absence of a step.
  • the step of executing the step overcoming operation may be included.
  • Control of the electrically assisted walking vehicle may be realized by hardware such as a program, a processor, an electronic circuit, etc. mounted on the electrically assisted walking vehicle, or a combination thereof. Further, the electrically assisted walking vehicle may receive a wireless signal from the outside and be controlled based on the control signal transmitted from the external control device (information processing device).
  • FIG. 6 is a flowchart for explaining an example of the operation of the control unit 16.
  • the control unit 16 determines whether or not the front wheel 12 has collided with the step while the user is operating the electrically assisted walking vehicle 10 forward. In this case, first, the control unit 16 has the left and right pair of handles 14 for a certain period of time or more (for example, 1 second or more) based on the signals detected by the grip sensors 24 provided on the left and right pair of handles 14, respectively. It is determined whether or not the button is pushed by the force of (step S101).
  • the control unit 16 uses the value of the change in the operating force (absolute value) in addition to the value of the operating force (absolute value), so that the handle 14 is pushed by the user's hand with a force equal to or higher than a certain level. It may be determined whether or not it is. In this case, it is possible to determine with higher accuracy whether or not the handle 14 is pushed by the user's hand with a force equal to or higher than a certain level. For example, when the absolute value of the operating force is equal to or less than a predetermined value and the absolute value of the change in the operating force (differential value of the operating force) is equal to or less than the predetermined value, the handle 14 is set to a certain value or more by the user's hand.
  • the handle 14 It may be determined that the handle 14 is not pushed by a force, and in other cases, it may be determined that the handle 14 is pushed by a user's hand with a certain force or more. Further, when the operating force and the change in the operating force are within the elliptical region inscribed in the numerical range of the rectangle separated by each predetermined value, even if it is determined that the handle 14 is not gripped by the user's hand. Good. In this case, the determination can be made with higher accuracy.
  • control unit 16 may brake the rear wheels 13 by using the motor 20 as a dynamic brake.
  • step S101 when the pair of handles 14 are pushed with a certain force or more for a certain period of time or more (YES in step S101), the control unit 16 determines that the user is trying to move the electrically assisted walking vehicle 10 forward. Subsequently, the control unit 16 determines whether or not the front wheel 12 has collided with the step (step S102).
  • the speed sensor 22b detects the rotation speed or speed of the rear wheel 13, and transmits a signal of this rotation speed or speed to the control unit 16.
  • the control unit 16 calculates the speed of the rear wheels 13 based on the transmitted signal, and compares this speed with a predetermined speed (threshold value) V.
  • the control unit 16 If the rear wheels 13 are driving, that is, if the rear wheels 13 are moving at a speed exceeding a predetermined speed V (YES in step S102), the control unit 16 is in a state where the electrically assisted walking vehicle 10 is in a normal state. It is determined that the vehicle is running, and the motor 20 continues to assist the movement of the rear wheels 13.
  • the control unit 16 steps the electrically assisted walking vehicle based on the measured value (including at least one of the speed and the acceleration) of the measuring unit. It is estimated whether the vehicle collided with the vehicle, or whether any other event such as a stop operation by the user or a collision with an object other than the step occurred.
  • control unit 16 determines that the electrically assisted walking vehicle has collided with the step (YES in step S103)
  • the control unit 16 is based on the measured value (including at least one of the speed and the acceleration) of the measuring unit.
  • the traveling direction (angle) of the electrically assisted walking vehicle with respect to the step is estimated (step S104).
  • the step overcoming operation is performed according to the traveling direction (angle) of the electrically assisted walking vehicle with respect to the estimated step (step S105). Examples of the step overcoming operation include turning of the vehicle body, assist by the drive unit connected to the front wheels, and combination of turning of the vehicle body and assist by the drive unit connected to the front wheels.
  • the step climbing motion may include the motion of lifting the front wheel.
  • step S103 Details of the process in which the control unit 16 detects a collision with a step (step S103), the process of estimating the traveling direction of the electrically assisted walking vehicle with respect to the step (step S104), and the operation of overcoming various steps (step S105). Will be described later.
  • steps S103 to S105 the difference in control processing for the left and right components, the detected speed, and the direction of acceleration become important.
  • the difference in control processing related to the left and right components will be described later, and an example of the operation of lifting the front wheels will be described below.
  • the control unit 16 controls the motor 20 (driving unit) to increase or decrease the driving force of the motor 20 according to, for example, the force pushing the handle 14 (the operating force applied to the handle 14). Since the front wheels 12 collide with the step and the electrically assisted walking vehicle 10 cannot move forward, the driving force in the forward direction of the rear wheels 13 causes the electrically assisted walking vehicle 10 to generate a moment in the direction of lifting the front wheels 12. Therefore, the front wheel 12 can be lifted with respect to the rear wheel 13.
  • the control unit 16 determines the time and force at which the handle 14 is pressed as described above. By using it, it is possible to accurately judge that the user is trying to move forward and avoid a judgment that is different from the user's intention. As a result, the user can use the electrically assisted walking vehicle 10 with greater peace of mind. In making this determination, it is also possible to use only the force with which the handle 14 is pressed. For example, when the steering wheel 14 is pushed with a certain force or more, it is determined that the user is trying to move the electrically assisted walking vehicle 10 forward. In this case, the control unit 16 quickly determines that the user is about to move forward, and the user can lift the front wheel 12 without significantly reducing the walking speed.
  • the control unit 16 may use the acceleration of the rear wheels 13 in addition to the speed of the rear wheels 13 when determining whether or not the front wheels 12 have collided with the step. Thereby, it is possible to determine with higher accuracy whether or not the electrically assisted walking vehicle 10 is moving. For example, when the speed of the rear wheels 13 is equal to or less than a predetermined speed V and the acceleration of the rear wheels 13 is equal to or less than a predetermined acceleration, it is determined that the electrically assisted walking vehicle 10 has collided with a step, and in other cases. , It may be determined that the electrically assisted walking vehicle 10 does not collide with the step.
  • the control unit 16 decelerates the electrically assisted walking vehicle 10 (negative acceleration), that is, decelerates the rear wheels 13 (negative acceleration) while the speed of the rear wheels 13 is equal to or less than a predetermined speed V close to 0. ) Is equal to or higher than a predetermined threshold value, the front wheel 12 collides with the step even though the user is trying to move the electrically assisted walking vehicle 10 forward (intentionally to move forward). It may be determined that it has been done. That is, when the speed of the rear wheels 13 becomes a value close to 0 and the deceleration of the rear wheels 13 becomes a certain value or more, it is considered that the front wheels 12 collide with the step and stop suddenly.
  • the electrically assisted walking vehicle 10 does not necessarily have to be provided with the grip sensor 24.
  • the deceleration is a negative acceleration as described above, and the value becomes positive when the electrically assisted walking vehicle 10 is decelerating, and the value when the electrically assisted walking vehicle 10 is accelerating. Becomes negative.
  • the control unit 16 is electrically driven by the user. It may be determined that the front wheels 12 have collided with the step even though the assisted walking vehicle 10 is trying to move forward (intentionally to move forward). Thereby, it is possible to determine with high accuracy whether or not the electrically assisted walking vehicle 10 is moving. Whether or not the pair of handles 14 are pressed with a certain force or more for a certain period of time or more can be determined based on the detection signal from the grip sensor 24 as described above. Instead of the negative acceleration, the acceleration in the rearward direction of the vehicle body may be used to determine the collision with the step of the step 12.
  • the front wheel 12 When the step is relatively low, the front wheel 12 is lifted by the driving force of the rear wheel 13 described above, and the front wheel 12 can ride on the step. If the front wheel 12 is not lifted here, the user subsequently weakens the force for pushing the handle 14. At this time, the moment in the direction of pushing down the front wheel 12 on the electrically assisted walking vehicle 10 (the moment against the lifting of the front wheel 12) is reduced.
  • the control unit 16 maintains the driving force of the rear wheels 13 in the forward direction to a certain level or more to drive the rear wheels 13 forward (see FIG. 7). As a result, the moment in the direction of lifting the front wheel 12 increases, and the front wheel 12 acts to be lifted.
  • the user subsequently pulls the handle 14 backward.
  • the force pulling the steering wheel 14 rearward generates a moment in the direction of lifting the front wheel 12 around the rear wheel 13, and acts to lift the front wheel 12 together with the driving force of the rear wheel 13.
  • the user operates the operating handle 14 to generate a moment in the direction of lifting the front wheels 12 in the electrically assisted wheelie 10 (see arrow M in FIG. 2).
  • the front wheel 12 can be lifted more reliably (the electrically assisted walking vehicle 10 is wheelie).
  • the user may lift the front wheel 12 by stepping on a pedal (not shown) fixed to the rear of the rotation axis of the rear wheel 13.
  • the timing for starting the reduction of the driving force is a predetermined condition when the control unit 16 controls the drive unit in order to lift the front wheel 12 (when the user intends to move the electrically assisted walking vehicle 10 forward). It can be set when the condition (condition for determining that the front wheel 12 has collided with the step) is no longer satisfied.
  • the handle 14 when the handle 14 is no longer pushed by a certain force or more (when the user weakens the force to push the handle 14 or when the handle 14 is pulled backward), or when the rear wheel 13 has a constant speed in the forward direction. It may be when it is rotated by the above.
  • the user pushes the pair of handles 14 with the front wheels 12 lifted with respect to the rear wheels 13.
  • the electrically assisted walking vehicle 10 can be advanced, and the front wheels 12 can overcome the step.
  • the front wheel 12 may be lifted only by increasing the driving force of the motor 20 (driving unit) without the user pulling the handle 14 backward, such as when the step is low.
  • the control unit 16 determines that the front wheel 12 has overcome the step. As described above, the electrically assisted walking vehicle 10 may not be accelerated. In this case, the control unit 16 controls the motor 20 to increase the amount of reduction in the driving force of the rear wheels 13 by the motor 20. Specifically, the amount of decrease in the driving force of the rear wheels 13 in the forward direction is set to a second amount of decrease larger than the above-mentioned first amount of decrease (see the two-dot chain line in FIG. 7). Alternatively, the control unit 16 may set the driving force of the rear wheels 13 in the forward direction to zero.
  • the method is not limited to the above method, and for example, (i) the amount of rotation of the front wheels 12 or the rear wheels 13 ( ii) Output from a strain gauge provided on the electrically assisted pedestrian vehicle 10, (iii) tire pressure of the front wheels 12 or rear wheels 13, (iv) acceleration in the front-rear direction of the electrically assisted pedestrian vehicle 10, (v) steering wheel 14
  • a strain gauge provided on the electrically assisted pedestrian vehicle 10
  • tire pressure of the front wheels 12 or rear wheels 13 tire pressure of the front wheels 12 or rear wheels 13,
  • acceleration in the front-rear direction of the electrically assisted pedestrian vehicle 10 (v) steering wheel 14
  • Step detection Next, the details of the process for detecting the collision of the electrically assisted walking vehicle (electric vehicle) with the step will be described.
  • step detection by a conventional electrically assisted walking vehicle is step detection based on acceleration.
  • the electrically assisted walking vehicle detects the acceleration not only when it collides with a step.
  • the acceleration is detected when the user stops the electrically assisted walking vehicle, and the acceleration is also detected when the electrically assisted walking vehicle collides with an object other than the step.
  • the difference between the acceleration detected when the electrically assisted walking vehicle collides with the step and the acceleration detected when the user stops the electrically assisted walking vehicle is determined. It is necessary to determine.
  • the difference in acceleration detected depending on the type of object with which the electrically power assisted walking vehicle collides must be taken into consideration.
  • FIG. 8 is a graph showing an example of acceleration and threshold value detected in each case of collision with a step and stop operation.
  • the horizontal axis of the graph of FIG. 8 indicates the speed of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle).
  • the vertical axis of the graph in FIG. 8 shows negative acceleration.
  • the negative acceleration means the acceleration (deceleration) in the direction of decelerating the electrically assisted walking vehicle 10 (electric vehicle).
  • FIG. 8 is a blot of the relationship between the velocity measured at the time of a collision with a step and the stop operation by the user and the negative acceleration.
  • the measuring unit may measure at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body.
  • the determination unit 16a determines the front wheel when at least one of the acceleration in the direction of decelerating the vehicle body measured by the measurement unit and the acceleration in the rearward direction of the vehicle body is larger than the threshold value (seventh threshold value).
  • the determination unit 16a states that the front wheels 12 have come into contact with the step when at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body measured by the measurement unit is equal to or less than the threshold value. It does not have to be estimated. Thereby, the contact with the step of the front wheel 12 can be determined.
  • the determination unit 16a is set from the threshold value (seventh threshold value) in a predetermined period before the control unit 16 controls the front wheel 12 to overcome the step and then the control unit 16 controls the front wheel 12 to overcome the step. If a small acceleration is detected, the threshold value (seventh threshold value) may be changed to a smaller value.
  • the acceleration detected before the step overcoming control is performed (that is, when it is determined that the front wheel 12 touches the step) is larger than the threshold value, and the difference between the detected acceleration and the threshold value is predetermined. If it is greater than the value of, the threshold setting may be too small. Therefore, in the determination unit 16a, the acceleration measured by the measurement unit when the control unit 16 overcomes the step of the front wheel 12 is larger than the threshold value (seventh threshold value) and the threshold value (seventh threshold value). ), The threshold value (seventh threshold value) may be changed to a larger value. In this way, the accuracy of step contact detection can be improved by adjusting the threshold value used for determining the contact between the front wheel 12 and the step when the front wheel 12 has successfully overcome the step.
  • the electrically assisted walking vehicle 10 may include a storage unit 16b that stores the measured values of the measurement unit.
  • the determination unit 16a may adjust the threshold value (seventh threshold value) based on the measured value stored in the storage unit 16b.
  • the threshold value seventh threshold value
  • the electrically assisted walking vehicle 10 may include a storage unit 16b that stores the measured values of the measurement unit.
  • the determination unit 16a may adjust the threshold value (seventh threshold value) based on the measured value stored in the storage unit 16b.
  • the threshold value (seventh threshold value) based on the measured value stored in the storage unit 16b.
  • the threshold value used can be increased according to the speed of the electrically power assisted walking vehicle 10. Then, when the measured acceleration is larger than the threshold value, the electrically assisted walking vehicle 10 can execute the step overcoming operation.
  • the control unit 16 sets the threshold value of the absolute value of acceleration, which is a condition for executing the step overcoming operation as the speed of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measuring unit increases. (6th threshold value) may be set large. The broken line in FIG. 8 shows an example of such a threshold value (fourth threshold value). This makes it possible to improve the detection accuracy of the step.
  • T ⁇ ( ⁇ n v ⁇ ⁇ n ) + ⁇ , but the format may be different from these.
  • v is the velocity of the vehicle body
  • ⁇ n and ⁇ n are coefficients (positive real numbers) larger than 0.
  • is an arbitrary coefficient.
  • may be a positive real number, 0 or a negative real number.
  • a different threshold value or a function of the threshold value may be used depending on the direction. For example, when at least one of the materials, structures, and sizes of the front wheels and the rear wheels is different, different coefficients may be used in the detection of the collision with the step of the front wheel and the collision with the step of the rear wheel.
  • FIG. 9 is a graph showing an example of the acceleration detected when the electrically assisted walking vehicle 10 collides with a soft object and the acceleration detected when the electrically assisted walking vehicle 10 collides with a step.
  • the soft object means an object having a repulsive hardness smaller than that of a step.
  • An example of such an object is the human body.
  • the horizontal axis of the graph of FIG. 9 shows the speed of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle).
  • the vertical axis of the graph in FIG. 9 shows negative acceleration (deceleration).
  • FIG. 9 is a blot of the relationship between the speed measured when the electrically power assisted walking vehicle 10 collides with a soft object and when the electrically power assisted walking vehicle 10 collides with a step and the negative acceleration.
  • the speed of the electrically assisted walking vehicle 10 is about the same, the time when the electrically assisted walking vehicle 10 collides with a step is higher than the time when the electrically assisted walking vehicle 10 collides with a soft object. It can be seen that a large acceleration is detected. From this result, it can be seen that the magnitude of the repulsive hardness of the object collided with by the electrically assisted walking vehicle 10 can be estimated from the magnitude of the acceleration detected at the time of collision.
  • the detected acceleration tends to increase as the speed of the electrically assisted walking vehicle 10 increases.
  • the determination unit 16a of the electrically power assisted walking vehicle 10 can determine whether or not to perform the step overcoming operation by comparing the measured acceleration with the threshold value. For example, in the determination unit 16a, when at least one of the acceleration in the direction of decelerating the vehicle body measured by the measurement unit and the acceleration in the rearward direction of the vehicle body is equal to or less than a predetermined threshold value, the front wheels 12 are other than the step. It may be presumed that it has come into contact with an object. In the determination unit 16a, at least one of the acceleration in the direction of decelerating the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit and the acceleration in the rearward direction of the vehicle body is a threshold value (fourth).
  • the drive unit When it is less than or equal to the threshold value), it is not necessary to cause the drive unit to perform the step overcoming operation. As a result, when there is a possibility that the electrically assisted walking vehicle 10 is stopped by the user or the electrically assisted walking vehicle 10 comes into contact with a person, it becomes difficult to perform the step climbing operation, and the safety of the electrically assisted walking vehicle 10 is improved. Can be enhanced.
  • the acceleration in the direction of decelerating the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit or the acceleration in the rearward direction of the vehicle body is larger than the threshold value (fourth threshold value).
  • the drive unit may be made to perform an operation of overcoming a step.
  • the acceleration (deceleration) in the direction of decelerating the electric vehicle or the acceleration in the rear direction of the vehicle body is larger than the threshold value, it can be estimated that the electric vehicle has come into contact with the step.
  • the measuring unit measures at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body
  • the determination unit 16a measures the acceleration in the direction of decelerating the vehicle body measured by the measuring unit or It may be estimated that the front wheels 12 come into contact with the step when at least one of the accelerations in the rearward direction of the vehicle body is larger than a predetermined threshold value (fifth threshold value).
  • a predetermined threshold value a predetermined threshold value
  • control method of the electrically assisted walking vehicle is whether or not to perform step overcoming control based on at least one of the speed and the acceleration applied to the vehicle body and the step of measuring at least one of the speed and the acceleration. It may include a step of determining whether or not. Further, the control method of the electrically assisted walking vehicle (electric vehicle) further includes a step of determining whether or not the front wheel 12 has touched the step based on at least one of speed and acceleration, and a step that the front wheel 12 has touched the step. It may include a step of overcoming a step when it is estimated.
  • the step overcoming control may include at least one of a control for increasing the driving force for driving the wheels, a control for turning the vehicle body, and a control for increasing the driving force while turning the vehicle body.
  • the control program of the electrically assisted walking vehicle whether the front wheels 12 come into contact with the step based on the step of measuring at least one of the speed and the acceleration applied to the vehicle body and at least one of the speed and the acceleration. It may include a step of determining whether or not, and a step of controlling overcoming of the step when it is presumed that the front wheel 12 has come into contact with the step.
  • the step overcoming control may include at least one of a control for increasing the driving force for driving the wheels, a control for turning the vehicle body, and a control for increasing the driving force while turning the vehicle body.
  • the control program may be executed by the control unit 16 or the determination unit 16a, or may be executed by an external controller, server, or the like.
  • the traveling direction of the electrically assisted walking vehicle 10 can be estimated based on, for example, the measured value of the speed sensor 22b.
  • the acceleration used to determine whether or not the electrically power assisted walking vehicle 10 overcomes a step is not limited to negative acceleration (deceleration).
  • the determination unit 16a determines whether or not the control unit 16 is to execute the step overcoming control based on the acceleration applied in the rearward direction of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit. You may. When making a determination based on the acceleration of the electrically assisted walking vehicle 10 in the rearward direction, it is not necessary to specify the traveling direction of the vehicle body.
  • the acceleration in the direction of decelerating the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the determination unit 16a and the measurement unit or the acceleration in the rearward direction of the vehicle body is equal to or less than the fifth threshold value.
  • the determination unit 16a has at least one of the acceleration in the direction of decelerating the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit and the acceleration in the rearward direction of the vehicle body from the fifth threshold value.
  • the control unit 16 may be made to perform step overcoming control.
  • the determination unit 16a of the electrically assisted walking vehicle 10 may determine whether or not the control unit 16 is to be controlled to overcome the step based on the vibration detected by the measurement unit.
  • the determination unit 16a has a step on the control unit 16 when the representative value of the frequency spectrum of the vibration of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit is equal to or less than the sixth threshold value. It is not necessary to perform overcoming control. Further, the determination unit 16a has a step on the control unit 16 when the representative value of the frequency spectrum of the vibration of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit is larger than the sixth threshold value. Overcoming control may be performed. That is, the measuring unit measures the frequency spectrum of the vibration of the vehicle body, and the judgment unit 16a determines when the representative value of the measured (frequency spectrum) value of the measuring unit is larger than the threshold value (eighth threshold value).
  • the determination unit 16a does not have to estimate that the front wheel 12 has touched the step. Good. A specific example of the representative value will be described later.
  • the vibration generated when objects collide with each other depends on the repulsive hardness of the objects.
  • the frequency of vibration generated at the time of collision becomes large. Therefore, when the frequency of the detected vibration is larger than the threshold value, it can be estimated that the electrically assisted walking vehicle 10 (electric vehicle) has collided with the step.
  • the frequency of the detected vibration is equal to or lower than the threshold value, it is estimated that the electrically assisted walking vehicle 10 collides with an object other than the step or the user has stopped the electrically assisted walking vehicle 10. be able to.
  • An example of a collision (or contact) with an object other than a step is a case where any part of the electrically power assisted walking vehicle 10 (electric vehicle) hits another person's foot or luggage.
  • the type of the object is not particularly limited.
  • the representative value of the frequency spectrum may be the frequency of the maximum peak in the frequency spectrum, or may be the load average value of a plurality of peaks in the frequency spectrum. Further, it may be an intermediate frequency in the frequency spectrum or an average frequency. That is, the calculation method of the representative value is not particularly limited.
  • the vibration of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measuring unit may include the vibration of the vehicle body in the front-rear direction.
  • the direction of vibration of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measuring unit of the electrically assisted walking vehicle 10 is not particularly limited.
  • the electrically assisted walking vehicle 10 may include a cushioning member that covers at least a part of the front surface of the vehicle body or both side surfaces in the width direction of the vehicle body. If the frame of the electrically assisted walking vehicle 10 (electric vehicle) collides with a part of the human body that is close to the bone and is relatively hard, such as a shin, a large deceleration may occur and the determination unit 16a may erroneously detect a step. Therefore, by providing the first buffer member on at least a part of the front or both side surfaces in the width direction of the electrically assisted walking vehicle 10 (electric vehicle), it is possible to prevent a large deceleration from being detected at the time of a collision with a human body. it can.
  • FIG. 10 is a schematic view showing a configuration example in which a cushioning material is provided in front of the vehicle body.
  • the pipe frame 31 of the electrically assisted walking vehicle 10 of FIG. 10 projects to the front of the vehicle body.
  • a cushioning member 81 is provided at the tip of a portion of the pipe frame 31 that protrudes forward.
  • Examples of the cushioning member 81 include rubber, urethane foam, foamed resin, various springs, and the like, but the type of cushioning member is not particularly limited.
  • FIG. 10 shows the configuration of the pipe frame 31 and the cushioning member 81 on the left side of the electrically power assisted walking vehicle 10.
  • the pipe frame 31 on the right side of the electrically assisted walking vehicle 10 may be provided with a cushioning member 81 at the tip of a portion protruding forward.
  • the configuration provided in FIG. 10 is only an example. Therefore, the cushioning member may be integrally formed, or may be mounted on the electrically assisted walking vehicle by a method different from that shown in FIG. Further, the cushioning member may be provided on at least a part of both side surfaces in the width direction of the electrically assisted walking vehicle.
  • step detection and step overcoming functions of the conventional walking assist device were based on the premise that the walking assist device entered the step from almost the front (almost in the vertical direction). Therefore, when the walking assist device enters the step at an angle and the right front wheel and the left front wheel come into contact with the step with a time difference, it is difficult to get over the step.
  • step detection when the walking assist device enters at an angle with respect to the step will be described.
  • FIG. 11 is a plan view of the electrically assisted walking vehicle 10 (electric vehicle) when viewed from above.
  • the electrically assisted walking vehicle 10 is moving in the direction of the broken line P of the step 80 (in the upper left direction of FIG. 11). That is, the broken line P indicates the traveling direction of the electrically power assisted walking vehicle 10.
  • the broken line P indicates the direction of the speed vector of the electrically power assisted walking vehicle 10 at a certain time.
  • the broken line S in FIG. 11 is a vertical line of the step 80 and indicates the front (vertical) direction of the step 80.
  • the broken line P indicating the traveling direction of the electrically power assisted walking vehicle 10 forms an angle ⁇ with respect to the perpendicular line S of the step 80. In this way, the electrically assisted walking vehicle 10 may enter at an angle with respect to the vertical direction instead of entering from the vertical direction of the step.
  • the step 80 does not necessarily have to be linear as in the example of FIG.
  • the perpendicular line of the tangent line of the step can be a perpendicular line.
  • the electrically assisted walking vehicle 10 when the electrically assisted walking vehicle 10 approaches the step 80 at an angle, either the front right wheel or the left front wheel collides with the step 80 first.
  • the right front wheel of the electrically assisted walking vehicle 10 collides with the step 80.
  • the arrow a is a vector indicating the acceleration applied to the vehicle body due to the collision with the step 80 of the right front wheel.
  • the arrow l of the electrically power assisted walking vehicle 10 indicates the front-rear direction of the vehicle body, and the arrow w indicates the width direction of the vehicle body.
  • the acceleration vector a has a component in the front-rear direction l of the vehicle body and a component in the width direction w of the vehicle body.
  • FIG. 12 is a graph showing the difference in acceleration detected by the front wheels that collided.
  • the horizontal axis of FIG. 12 shows the acceleration in the front-rear direction of the vehicle body.
  • the vertical axis of FIG. 12 shows the acceleration in the width direction of the vehicle body.
  • the acceleration in the front direction of the vehicle body is a positive value
  • the acceleration in the front direction of the vehicle body is a negative value
  • the acceleration in the width direction of the vehicle body is a positive value
  • the acceleration in the left direction is a negative value.
  • the correspondence between the direction of acceleration and the positive and negative values shown here is an example, and a different correspondence may be used.
  • the graph of FIG. 12 shows that when any of the front wheels collides with a step, not only the acceleration in the front-rear direction of the vehicle body but also the acceleration in the width direction of the vehicle body is generated.
  • the front right wheel collides with a step acceleration in the left direction is detected.
  • the left front wheel collides with a step acceleration in the right direction is detected.
  • the acceleration in the rear direction of the vehicle body tends to be larger than when one of the front wheels collides with the step. I understand.
  • both front wheels collide with a step acceleration in the width direction is also detected.
  • the acceleration in the width direction detected when both front wheels collide with the step is biased to the rightward acceleration because the left front wheel precedes the right front wheel when the measurement is performed. It is presumed that this is because it often collides with a step.
  • the acceleration measured by the measuring unit is either at least the acceleration in the direction of decelerating the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) or the acceleration in the front-rear direction of the vehicle body, and the electric assisted walking vehicle 10 (electric vehicle). It may include the acceleration in the width direction of the vehicle body.
  • the determination unit 16a can estimate which of the left and right wheels has come into contact with the step based on the acceleration in the width direction of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle). That is, the determination unit 16a may estimate which front wheel is presumed to have come into contact with the step based on the measurement value of the measurement unit.
  • the determination unit 16a based on the measured value of the measurement unit, which of the left front wheel and the right front wheel touched the step (one-sided contact), or the left front wheel and the right front wheel touched the step (both wheels contacted). ) Can be determined. This makes it possible to control the vehicle body including the step overcoming operation according to the mode of contact with the step (one-sided contact or two-wheel contact).
  • the determination unit 16a can discriminate between one-sided contact and two-wheel contact based on the acceleration in the vehicle body width direction and the acceleration in the vehicle body front-rear direction. For example, the determination unit 16a can determine that the contact is one-sided when the acceleration in the vehicle body width direction is larger than the threshold value th w.
  • the determination unit 16a can determine that the two wheels are in contact when the acceleration in the vehicle body front-rear direction is larger than the threshold value th fb. Further, when the acceleration in the vehicle body width direction is smaller than the threshold value th w and the acceleration in the vehicle body front-rear direction is larger than the threshold value th fb , it may be determined that the two wheels are in contact.
  • the measuring unit may measure at least one of the acceleration in the direction of decelerating the vehicle body, the acceleration in the rearward direction of the vehicle body, and the acceleration in the width direction of the vehicle body.
  • a predetermined threshold value first threshold value
  • at least one of the acceleration in the direction of decelerating the vehicle body measured by the measurement unit and the acceleration in the rearward direction of the vehicle body is equal to or higher than a predetermined threshold value (first threshold value).
  • either the left front wheel or the right front wheel becomes a step. It may be estimated whether they have come into contact with each other. Thereby, the contact with the step of the left front wheel or the right front wheel can be distinguished and determined.
  • the acceleration in the width direction of the vehicle body used for the determination is at the same time as when the acceleration in the direction of decelerating the vehicle body or the acceleration in the rear direction of the vehicle body becomes equal to or higher than the threshold value (first threshold value). It may be measured or may be measured at different times.
  • the control unit 16 can execute an operation of overcoming a step according to the result of the determination.
  • the control method of the electrically assisted walking vehicle 10 measures at least the first acceleration, which is either the acceleration in the direction of decelerating the vehicle body or the acceleration in the front-rear direction of the vehicle body, and the second acceleration in the width direction of the vehicle body. Steps to be performed, a step to estimate which of the left and right wheels has touched the step based on the measured first acceleration and the second acceleration, and a step corresponding to the wheel estimated to be in contact with the step. It may include a step of performing an overcoming motion.
  • control program of the electrically assisted walking vehicle 10 includes a first acceleration which is at least either an acceleration in the direction of decelerating the vehicle body or an acceleration in the front-rear direction of the vehicle body, and a second acceleration in the width direction of the vehicle body.
  • the step of estimating which of the left and right wheels touched the step based on the measured first acceleration and the second acceleration, and the step of estimating which wheel was in contact with the step, according to the wheel estimated to be in contact with the step. It may include a step of executing a step overcoming operation.
  • the method of measuring the acceleration in a plurality of directions by the acceleration sensor 22a and estimating the wheel in contact with the step has been described here, it does not prevent the use of the speed value measured by the speed sensor 22b.
  • the speed sensor 22b may be used to measure the speed in a plurality of directions, or both the speed measurement and the acceleration measurement may be performed. That is, the determination unit 16a may estimate the front wheels in contact with the step based on at least one of speed and acceleration.
  • the front wheels that come into contact with the step may be only the left front wheel, only the right front wheel, or both the left front wheel and the right front wheel.
  • the graph of FIG. 13 shows the acceleration measured when the electrically assisted walking vehicle 10 collides with a step while turning and the acceleration measured when the electrically assisted walking vehicle 10 collides with a step while traveling straight. There is.
  • the vertical axis of the graph of FIG. 13 shows the acceleration in the width direction of the vehicle body.
  • the horizontal axis of the graph of FIG. 13 indicates the acceleration in the front-rear direction of the vehicle body.
  • the deceleration (negative acceleration) of the rear wheels can be obtained by adding a negative sign to the value obtained by differentiating the rotation speed with respect to time. .. If the right front wheel collides with a step, the deceleration of the right rear wheel tends to be larger than the deceleration of the left rear wheel.
  • the measuring unit may at least accelerate the left rear wheel in the rotational direction and the right rear wheel.
  • the average value with the acceleration in the rotation direction or the difference between the acceleration in the rotation direction of the left rear wheel and the acceleration in the rotation direction of the right rear wheel may be calculated.
  • the measuring unit is at least in the acceleration in the rotation direction of the left front wheel and the rotation direction of the right front wheel.
  • the average value with the acceleration or the difference between the acceleration in the rotation direction of the left front wheel and the acceleration in the rotation direction of the right front wheel may be calculated. Thereby, it is possible to distinguish which of the right front wheel and the left front wheel touches the step.
  • the measuring unit determines the average value of the acceleration in the rotation direction of the left front wheel and the acceleration in the rotation direction of the right front wheel, or the acceleration in the rotation direction of the left rear wheel and the acceleration in the rotation direction of the right rear wheel. The average value may be calculated.
  • the measuring unit determines the difference between the acceleration in the rotation direction of the left front wheel and the acceleration in the rotation direction of the right front wheel, or the acceleration in the rotation direction of the left rear wheel and the acceleration in the rotation direction of the right rear wheel. The difference may be calculated.
  • the second acceleration is larger than the threshold value, it may be estimated that the electrically assisted walking vehicle 10 (electric vehicle) is turning. Also by this method, it is possible to distinguish which of the right front wheel and the left front wheel touches the step.
  • threshold values may be used depending on the value of the first acceleration. For example, a larger threshold can be used as the first acceleration increases.
  • a is the acceleration speed of the vehicle body (first acceleration)
  • ⁇ n and ⁇ n are coefficients (positive real numbers) larger than 0.
  • is an arbitrary coefficient.
  • may be a positive real number, 0 or a negative real number.
  • the graph of FIG. 14 shows an example of the time waveform of the acceleration measured at the time of collision with the step of the electrically power assisted walking vehicle 10.
  • the horizontal axis of FIG. 14 is time, and the vertical axis shows the detected acceleration.
  • the graph of FIG. 14 shows measured values of acceleration in a plurality of operation patterns of the electrically power assisted walking vehicle 10.
  • FIG. 14 shows a waveform 90 measured when the electrically assisted walking vehicle 10 collides with the step from the front, and a waveform measured when each front wheel of the electrically assisted walking vehicle 10 collides with the step before and after the time. 91 and the waveform 92 measured when the user performs the stop operation of the electrically power assisted walking vehicle 10 are shown.
  • the electrically assisted walking vehicle 10 collides with a step at a time of 0.0 seconds, a large impact is applied as compared with other waveforms, and a large acceleration is detected.
  • the waveform 91 since each front wheel collides with the step before and after the time, the impact is dispersed a plurality of times, and the magnitude of the detected acceleration peak is smaller than that of the waveform 90. ing.
  • the electrically assisted walking vehicle 10 does not collide with the step, and the user manually stops the electrically assisted walking vehicle 10. Therefore, the magnitude of the acceleration peak detected in the waveform 92 is even smaller than that of the waveform 91.
  • the threshold value it is necessary to determine the threshold value to be used when detecting the collision with the step in consideration of the acceleration detected in each operation pattern illustrated in FIG. For example, if the threshold value is set based on the peak value of the acceleration (for example, waveform 90) detected when the electrically assisted walking vehicle 10 collides from the front of the step, the threshold value is too large, so that the electrically assisted walking vehicle 10 walks. When each front wheel of the vehicle 10 collides with a step before and after the time (for example, waveform 91), the step may not be detected. On the other hand, if the threshold value is set too small, the step may be erroneously detected when the user manually stops the electrically assisted walking vehicle 10.
  • the threshold value can be used properly according to the conditions. For example, it is estimated whether or not the electrically assisted walking vehicle 10 is turning by the above method, and when it is estimated that the electrically assisted walking vehicle 10 is turning, the electrically assisted walking vehicle 10 is traveling straight. You may use a different threshold or threshold function. That is, in the determination unit 16a, the maximum value of the absolute value of the acceleration in the width direction of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit is equal to or higher than a predetermined threshold value (second threshold value).
  • the threshold value of acceleration (fifth threshold value), which is a condition for executing the step overcoming operation when the step is reached, may be set small.
  • the acceleration in the direction of decelerating the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measuring unit or the acceleration in the rearward direction of the vehicle body can be mentioned.
  • the threshold value may be selected from any of a plurality of fixed values, or may be a function having the speed of the vehicle body as a parameter.
  • the acceleration at time 0.0 second and time 0.6 second is shown. There is a peak of.
  • the acceleration at the first peak (0.0 seconds) is greater than the peak detected later (0.6 seconds).
  • the acceleration detected at the second contact with the step is small. Therefore, when each front wheel of the electrically power assisted walking vehicle 10 collides with a step before and after the time, a different threshold value can be used depending on the number of collisions.
  • the electrically power assisted walking vehicle 10 approaches the step at an angle and the right front wheel and the left front wheel come into contact with the step at different times, if one of the front wheels detects the step and the contact, the step of the other front wheel
  • a threshold value smaller than the threshold value used to detect contact with the first step is used. That is, the measuring unit measures at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body, and the determination unit 16a measures the electrically assisted walking vehicle 10 (electric vehicle) measured by the measuring unit.
  • the left front wheel and the right It may be estimated that the front wheels have come into contact with the step.
  • the peak of the acceleration in the width direction of the vehicle body may be measured later than the peak of the acceleration in the front-rear direction of the vehicle body. Therefore, in the determination unit 16a, the acceleration in the direction of decelerating the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit or the acceleration in the rearward direction of the vehicle body is equal to or higher than the first threshold value.
  • the maximum value of the absolute value of the acceleration in the width direction of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured within a predetermined period becomes the second threshold value or more, either the left or right wheel is turned on. It may be estimated whether or not it touched the step.
  • An example of the predetermined period described above is 10 milliseconds, but a different value may be used.
  • FIG. 15 is a plan view showing a first example of an electrically assisted walking vehicle approaching at an angle with respect to a step.
  • the operation of overcoming the step 80 when the electrically assisted walking vehicle 10 enters the step 80 at an angle will be described.
  • the vector (broken line P) related to the traveling direction of the electrically assisted walking vehicle 10 forms an angle of 0 degrees or more with the perpendicular line (broken line S) of the step 80, the electrically assisted walking vehicle 10 with respect to the step 80. It is assumed that the vehicle is approaching at an angle.
  • the right front wheel of the electrically power assisted walking vehicle 10 is in contact with the step 80.
  • the determination unit 16a has detected a collision with the step on the right front wheel based on the measurement value of the measurement unit.
  • white arrows and driving force d pl of the left rear wheel show the driving force d pr of the right rear wheel.
  • a driving force d pl of the left rear wheel assuming that the driving force d pr of the right rear wheel is set equal among the resultant force of the driving force d pl and driving force d pr, step 80
  • the force in the direction perpendicular to is multiplied by sin (90- ⁇ ). Therefore, as the angle ⁇ becomes larger, it becomes more difficult for the electrically power assisted walking vehicle 10 to get over the step 80. Therefore, the vehicle body of the electrically assisted walking vehicle 10 is turned so that a larger force is applied in the direction perpendicular to the step 80 when the step 80 is overcome.
  • control unit 16 as in the example of FIG. 15, controls the driving unit, can be made larger than the driving force d pr of the right rear wheel driving force d pl of the left rear wheel.
  • a force for turning the vehicle body of the electrically assisted walking vehicle 10 to the right acts, and the step 80 can be overcome at a smaller angle ⁇ .
  • the control unit 16 is based on the driving force of at least one of the front wheels 12 on the side estimated to have come into contact with the step or the rear wheels 13 located on the same side in the width direction of the vehicle body of the front wheels 12.
  • a large driving force may be generated in at least one of the front wheels 12 and the rear wheels 13 located on the opposite side of the front wheels 12 in the width direction of the vehicle body, which is presumed to have come into contact with the step.
  • control unit 16 generates a driving force only in at least one of the front wheels 12 and the rear wheels 13 located on the opposite side of the vehicle body of the front wheels 12 presumed to have come into contact with the step in the width direction. May be good. That is, the driving force of at least one of the front wheels 12 and the rear wheels 13 located on the opposite side of the vehicle body of the front wheels 12 presumed to have come into contact with the step has been presumed to have come into contact with the step. It may be larger than the driving force of at least one of the driving portions of the rear wheels 13 located on the same side in the width direction of the vehicle body of the front wheels 12 and the front wheels 12.
  • the electrically assisted walking vehicle 10 can be made to face the step.
  • the wheel on the side in contact with the step can be estimated by using the method described in the above description of the step detection process.
  • the control unit 16 may generate a driving force only in the driving unit of the rear wheels 13 located on the same side in the width direction of the vehicle body of the front wheels 12 presumed to have come into contact with the step. Further, the control unit 16 has a step higher than the driving force of at least one of the front wheels 12 on the side estimated to have come into contact with the step or the rear wheels 13 located on the same side in the width direction of the vehicle body of the front wheels 12.
  • the driving force of at least one of the front wheels 12 on the side presumed to be in contact with the vehicle or the rear wheels 13 located on the same side in the width direction of the vehicle body may be increased.
  • the electrically assisted walking vehicle 10 can be made to face the step.
  • the step to be overcome is not high, or if the step is slope-shaped, it may be possible to overcome the step without a large driving force. In such a case, it is not necessary to perform the step overcoming control after turning the electrically assisted walking vehicle 10 or to perform the step overcoming control accompanied by the turning of the electrically assisted walking vehicle 10. This simplifies control and allows the user to overcome steps in a shorter period of time.
  • 16 and 17 are plan views showing a second example of the electrically power assisted walking vehicle approaching the step at an angle. 16 and 17 show each step of the operation of the electrically power assisted walking vehicle 10. Hereinafter, the operation of the electrically power assisted walking vehicle 10 will be described with reference to FIGS. 16 and 17.
  • the electrically assisted walking vehicle 10 travels at an angle ⁇ larger than 0 degrees with respect to the step 80 (step S1).
  • the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel are equal.
  • the user is advancing the electrically assisted walking vehicle 10 without any assisting force.
  • step S2 the right front wheel is in contact with the step 80 (step S2).
  • the determination unit 16a detects a collision with the step 80 of the right front wheel based on the measured value of the measurement unit.
  • the control unit 16 controls the drive unit and sets the drive force dpr in the traveling direction of the right rear wheel, which is the wheel on the side estimated to have come into contact with the step 80, to 0.
  • the control unit 16 may control the braking unit and apply the brake to the right rear wheel.
  • the driving force of the left rear wheel which is the wheel on the side estimated not to be in contact with the step 80, is set to d pl > 0. Therefore, the electrically power assisted walking vehicle 10 starts turning (changing direction) to the right.
  • control unit 16 may generate a driving force only in the driving unit of either the front wheel or the rear wheel located on the opposite side in the width direction of the vehicle body from the front wheel that is presumed to have come into contact with the step. ..
  • the vehicle body can be turned in a short time after one of the front wheels comes into contact with the step.
  • the electrically assisted walking vehicle 10 may start the operation of overcoming the step 80 from the time of step S3. That is, if it is estimated that both front wheels have come into contact with the step, the control unit 16 may perform the step overcoming operation. As a result, the electrically assisted walking vehicle 10 can take a more stable posture, so that it is possible to overcome the step 80 without performing complicated control.
  • the control unit 16 determines that the width direction of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle).
  • the driving force of at least one of the front wheels or the rear wheels on both sides of the wheel may be set to be equal.
  • the driving force of the driving unit can be adjusted so that the turning amount of the electrically assisted walking vehicle 10 does not become too large. Since the assist is performed when the front surface of the electrically assisted walking vehicle 10 faces substantially the front of the step 80, there is an advantage that the step 80 can be overcome more reliably.
  • the timing at which the left front wheel and the right front wheel (both front wheels) come into contact with the step does not matter.
  • the left front wheel and the right front wheel may come into contact with the step at almost the same time, or the time when the left front wheel touches the step and the time when the right front wheel touches the step may be around.
  • the method of controlling the driving force after the start of the operation of overcoming the step 80 will be described later.
  • step S4 the electrically assisted walking vehicle 10 is operating over the step 80.
  • step S4 in order to assist overcoming the step 80, the driving force d pr of the right rear wheel, driving force d pl of the driving force of the left rear wheel is larger than the step S3 previously.
  • FIGS. 18 and 19 are graphs showing an example of a wheel control method for the electrically power assisted walking vehicle 10 (electric vehicle).
  • the horizontal axes of FIGS. 18 and 19 indicate the time.
  • the vertical axis of FIGS. 18 and 19 shows the driving force of the wheel.
  • the broken line c1 in FIG. 18 shows the driving force of the driving unit connected to the wheel on the opposite side on the side estimated to have come into contact with the step.
  • the broken line c2 indicates the driving force of the driving unit connected to the wheel on the side estimated not to be in contact with the step.
  • the broken line c1 is the driving unit of the driving unit connected to the right rear wheel.
  • the broken line c2 corresponds to the drive unit of the drive unit connected to the left rear wheel.
  • the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel are set to be equal.
  • the right front wheel of the electrically power assisted walking vehicle 10 comes into contact with the step.
  • the determination unit 16a estimates that the right front wheel has collided with the step based on the measured value of the measurement unit.
  • the control unit 16 determines that the step is detected at time t1, gradually increasing the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel after time t1.
  • the rate of increase per hour of the driving force dpl of the drive unit connected to the wheel on the side estimated to have contacted the step (here, the left rear wheel) is not in contact with the step. It is set to be larger than the rate of increase per hour of the driving force dpr of the driving unit connected to the wheel on the other side (here, the right rear wheel).
  • the driving force d pl Larger left rear wheel of the increase rate per time of the driving force reaches the target value.
  • the target value may or may not be the maximum driving force of the driving unit.
  • the control unit 16 maintains the driving force dpl of the left front wheel after the time t2 at the target value.
  • the driving force d pr of smaller right rear wheel of the increase rate per time of the driving force at the time t2 has not yet reached the target value.
  • the control unit 16 continues to gradually increase the driving force dpr of the right rear wheel even after the time t2.
  • the control unit 16 maintains the driving force dpl of the left front wheel after the time t3 at the target value.
  • control unit 16 electrically assisted walker 10 until it is determined that it has successfully overcome the step, maintaining the driving force d pr of the left front wheel driving force d pl and the right rear wheel to the target value.
  • the control unit 16 can determine, for example, whether or not the electrically assisted walking vehicle 10 has succeeded in overcoming the step based on the measured value of the tilt detection sensor 23. Is not particularly limited. As described in FIG. 7 described above, the control unit 16, if it is determined that the electrically assisted walker 10 has successfully overcome the step, to reduce the driving force d pr of the left front wheel driving force d pl and the right rear wheel Can be done.
  • the relationship of d pl > d pr is established between the time t1 and the time t3, and the driving force of the left front wheel continues to be larger than the driving force of the right rear wheel. Therefore, the vehicle body can be turned to the right while the vehicle body of the electrically assisted walking vehicle 10 is raised on the step. As a result, the orientation (angle ⁇ ) of the vehicle body of the electrically assisted walking vehicle 10 is corrected after the step is overcome, and the user can move on the step in a safer posture.
  • the broken line c3 in FIG. 19 shows the driving force of the driving unit connected to the wheel on the opposite side on the side estimated to have come into contact with the step.
  • the broken line c4 indicates the driving force of the driving unit connected to the wheel on the side estimated not to be in contact with the step.
  • the broken line c3 is the driving unit of the driving unit connected to the right rear wheel.
  • the broken line c4 corresponds to the drive unit of the drive unit connected to the left rear wheel.
  • the control of FIG. 19 will be described by taking the case where the right front wheel comes into contact with the step first as an example.
  • the right front wheel of the electrically power assisted walking vehicle 10 comes into contact with the step.
  • the determination unit 16a estimates that the right front wheel has collided with the step based on the measured value of the measurement unit.
  • the control unit 16 determines that the step is detected at time t1, gradually increasing the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel after time t1.
  • the rate of increase per hour of the driving force dpl of the drive unit connected to the wheel on the side estimated to have touched the step was not touching the step. It is set to be larger than the rate of increase per hour of the driving force dpr of the driving unit connected to the side wheel (here, the right rear wheel).
  • both the driving force d pr of the right rear wheel and the driving force d pl of the left rear wheel reach the target value.
  • the target value may or may not be the maximum driving force of the driving unit. Then, the control unit 16 maintains the driving force d pl of driving force d pr and the left rear wheel of the right rear wheel at the time t3 after the target value.
  • control unit 16 electrically assisted walker 10 until it is determined that it has successfully overcome the step, maintaining the driving force d pr of the left front wheel driving force d pl and the right rear wheel to the target value.
  • the control unit 16 can determine, for example, whether or not the electrically assisted walking vehicle 10 has succeeded in overcoming the step based on the measured value of the tilt detection sensor 23. Is not particularly limited. As described in FIG. 7 described above, the control unit 16, if it is determined that the electrically assisted walker 10 has successfully overcome the step, to reduce the driving force d pr of the left front wheel driving force d pl and the right rear wheel Can be done.
  • the relationship of d pl > d pr is established between the time t1 and the time t3, and the driving force of the left front wheel continues to be larger than the driving force of the right rear wheel. Therefore, the vehicle body can be turned to the right while the vehicle body of the electrically assisted walking vehicle 10 is raised on the step. As a result, the orientation (angle ⁇ ) of the vehicle body of the electrically assisted walking vehicle 10 is corrected after the step is overcome, and the user can move on the step in a safer posture.
  • the control unit 16 has at least one of the front wheels 12 presumed to have come into contact with the step and the front wheels 12 or the rear wheels 13 located on the opposite sides of the vehicle body in the width direction.
  • the driving force of the front wheel 12 and the driving force of at least one of the rear wheels 13 located on the same side of the front wheel 12 in the width direction of the vehicle body, which are presumed to have come into contact with the step, are set as a predetermined threshold. It may be gradually increased until it reaches a value (fourth threshold value or a target value). This makes it possible to prevent the vehicle body from turning excessively.
  • a driving force is also applied to the rear wheels on the side estimated to have collided with the step (the side close to the step) between the time t1 and the time t3. Therefore, it is possible to climb the step by using both rear wheels while turning the vehicle body of the electrically assisted walking vehicle 10.
  • the driving forces of the left and right rear wheels are different in the transition period (time t1 to t3) until the driving forces of both rear wheels reach the target value, and the electric power is smoothly applied.
  • the direction of the vehicle body of the assisted walking vehicle 10 can be corrected.
  • the driving force of both rear wheels may be set equally after detecting that the other front wheel has come into contact with the step.
  • the step can be climbed by a large driving force (for example, the driving force of the above-mentioned target value).
  • the overcoming operation by the control unit 16 is an operation in which the driving unit increases the driving force of the wheels while turning the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle), or the operation of the electrically assisted walking vehicle 10 (electric vehicle). It may include either an operation in which the driving unit increases the driving force of the wheels after turning the vehicle body, or an operation in which the driving unit increases the driving force of the wheels.
  • the step 80 may be entered in a state where the rotation direction of the front wheels 12 and the rotation direction of the rear wheels 13 of the electrically assisted walking vehicle 10 (electric vehicle) are different.
  • the front wheels 12 may face in a direction different from the traveling direction of the vehicle body of the electrically assisted walking vehicle 10.
  • FIG. 20 is a plan view showing a first example when the front wheels have an angle with respect to the traveling direction of the vehicle body.
  • step S10 of FIG. 20 both front wheels 12 (left front wheel and right front wheel) of the electrically power assisted walking vehicle 10 collide with the step 80.
  • Each of the front wheels 12 receives drags F nl and F nr as a reaction of the driving force (d pl + d pr ) of the rear wheels 13 from the step 80.
  • the drag forces F nl and F nr become moments with respect to the rotation center 12r of each front wheel 12, and each front wheel 12 is rotated counterclockwise (counterclockwise).
  • step S11 the side surface of the front wheel 12 is oriented so as to be substantially parallel to the step 80 (step S11).
  • the rotatable direction of the front wheel 12 is substantially parallel to the step 80.
  • the front wheel 12 can not be rotated in the direction of the step 80, the driving force of the rear wheel 13 (d pl, d pr) even if the assist by the electric assist walker 10 is difficult over the bump 80 ..
  • the traveling direction of the vehicle body of the electrically assisted walking vehicle 10 is substantially perpendicular to the step 80, but the problem shown here is that the vector of the traveling direction of the vehicle body of the electrically assisted walking vehicle 10 is It also occurs when the angle ⁇ ( ⁇ > 0 degree) is set with respect to the perpendicular line of the step 80.
  • the wheels of the electrically power assisted walking vehicle in the above example were all equipped with single tires. However, the wheels of the electrically power assisted walking vehicle do not necessarily have to be single tires.
  • the front wheels 12 (right front wheel and left front wheel) of the electrically power assisted walking vehicle 10a of FIG. 21 are twin-wheel casters 12a configured to be rotatable.
  • FIG. 21 is a plan view showing a second example in which the front wheels have an angle with respect to the traveling direction of the vehicle body.
  • twin wheel casters 12a on both front sides of the electrically power assisted walking vehicle 10a collide with the step 80.
  • Each twin-wheel caster 12a receives drag forces F nl and F nr as a reaction of the driving force (d pl + d pr ) of the rear wheels 13 from the step 80.
  • the drag forces F nl and F nr are moments with respect to the rotation center 12r of each twin-wheel caster 12a, and each twin-wheel caster 12a is rotated clockwise (clockwise).
  • the width of the entire wheel of the twin-wheel caster 12a is larger than that of the front wheel 12 of FIG. Therefore, due to the rotation, the contact surface of the casters of the twin-wheel casters 12a becomes substantially parallel to the step 80 (step S21). Therefore, the electrically assisted walking vehicle 10a can overcome the step 80 with the assistance of the driving force (d pl , d pr) of the rear wheels 13.
  • the front wheels of the electrically assisted walking vehicle may be twin-wheel casters configured to be rotatable about the vertical axis. It is not always necessary to use twin wheel casters as the front wheels of the electrically power assisted walking vehicle (electric vehicle). For example, by using tires having a tire width wider than that of the rear wheels as the front wheels, it is possible to reduce the probability that it will be difficult to advance the vehicle body as shown in FIG.
  • Step detection when using twin wheel casters When a twin-wheel caster is used as the front wheel of an electrically assisted walking vehicle (electric vehicle), there is a possibility that the collision between the wheel and the step becomes multi-stage.
  • 22 and 23 are plan views showing an example of a collision between the electrically power assisted walking vehicle 10a and the step. In the following, a multi-step collision with a step will be described with reference to FIGS. 22 and 23.
  • the electrically assisted walking vehicle 10a is approaching the step 80 at an angle ⁇ ( ⁇ > 0 degrees). That is, the vertical line of the step 80 and the traveling direction of the electrically assisted walking vehicle 10a form an angle ⁇ .
  • the twin-wheel casters 12a mounted on the front side of the electrically assisted walking vehicle 10a all have an angle with respect to the traveling direction of the electrically assisted walking vehicle 10a. Further, the directions of the left and right twin wheel casters 12a are different.
  • step S30 when comparing the magnitude of the angle of the electrically power assisted walking vehicle 10a with respect to the traveling direction, the angle of the right twin wheel caster 12a is larger than that of the left twin wheel caster 12a.
  • step S30 one end of the right twin-wheel caster 12a collides with the step 80.
  • the determination unit 16a detects a collision with the step of the twin wheel caster 12a on the right side based on the measured value of the measurement unit.
  • the control unit 16 determines that the electrically assisted walking vehicle 10a needs to turn to the right.
  • the control unit 16 controls the driving unit is set larger than the driving force d pr of the right rear wheel driving force d pl of the left rear wheel. Therefore, in step S30, the electrically power assisted walking vehicle 10a starts turning to the right.
  • the determination unit 16a may detect a collision with the step of the left twin wheel caster 12a based on the measured value of the measurement unit. If the collision is detected, it is determined in the control unit 16 and the progress in the vehicle body changes in direction, it is set smaller than before the difference in driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel Good.
  • the control unit 16 may not change the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel in step S31. Regardless driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel, the motor-assisted walker 10a in step S31, it is assumed to continue the right turn.
  • step S32 the other end of the right twin-wheel caster 12a collides with the step 80.
  • the determination unit 16a may detect a collision with the step of the twin wheel casters 12a on the right side based on the measured value of the measurement unit. If the collision is detected, it is determined in the control unit 16 and the progress in the vehicle body changes in direction, it is set smaller than before the difference in driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel Good.
  • the control unit 16 may not change the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel in the step S32. Regardless driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel, the motor-assisted walker 10a in step S32, it is assumed to continue the right turn.
  • step S33 the other end of the twin wheel casters 12a of the left twin wheels collides with the step 80.
  • the determination unit 16a detects a collision with the step of the twin wheel caster 12a on the right side based on the measured value of the measurement unit.
  • the control unit 16 determines that the front surface of the electrically power assisted walking vehicle 10a faces substantially the front surface of the step 80, so that it is no longer necessary to turn the electrically power assisted walking vehicle 10a to the right.
  • Control unit 16 controls the driving unit, sets a driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel to a value equal.
  • the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel of the above FIG 18, may be set to the target value in FIG. 19.
  • step S33 subsequent power-assisted walker 10a can perform overcome the step 80 by the assist of the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel.
  • the twin-wheel casters 12a collide with the step a plurality of times before and after the time. Therefore, the impact applied to the electrically assisted walking vehicle 10a is dispersed a plurality of times. Therefore, the acceleration detected by the acceleration sensor 22a may be smaller than that in the case where a single-wheel tire is used for the front wheels. Similarly, when a collision is detected using the speed sensor 22b, the change in speed that occurs in one collision may be smaller than that in the case where a single tire is used for the front wheels.
  • the threshold value used to detect a collision with a step is set to a smaller value than when the front wheels are single-wheel tires. Can be set. This makes it possible to detect a step.
  • FIGS. 24 to 30 has different configurations around the rear wheels 13 and the motor 20, and the other configurations are the same as those of the first embodiment described above.
  • FIGS. 24 to 30 the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the motor 20 of the electrically assisted walking vehicle 10 is connected to each rear wheel 13 via a planetary gear mechanism 50.
  • the motor 20 includes a housing 61 fixed to the pipe frame 31, an output shaft support portion 62 housed in the housing 61 and rotatable with respect to the housing 61, and an output shaft. It has an output shaft 63 that is fixed to the support portion 62 and rotates integrally with the output shaft support portion 62.
  • the flange 64 is fixed to the housing 61, and the output shaft 63 projects from the central portion of the housing 61.
  • a bearing 65 is interposed between the housing 61 and the output shaft support portion 62.
  • a magnet 66 is provided on the outer circumference of the output shaft support portion 62.
  • a coil 67 is arranged around the magnet 66, and the coil 67 is fixed to the housing 61. Electric power from the battery 21 is supplied to the coil 67, and the output shaft support portion 62 provided with the magnet 66 rotates.
  • a cap 68 is provided at the center of the housing 61.
  • the rear wheel 13 has a wheel 71, a tire 72 provided on the outer circumference of the wheel 71, and a wheel retainer 73 connected to the wheel 71.
  • the wheel 71 is fixed to a bearing 75 provided around the flange 64 via a holding plate 74.
  • the planetary gear mechanism 50 meshes with the sun gear 51, the internal gear 52 arranged around the sun gear 51, the sun gear 51 and the internal gear 52, and three planets that revolve while rotating when the output shaft 63 rotates. It has a gear 53 and a planetary carrier 54 that rotatably supports the three planetary gears 53 and transmits the revolving motion of the planetary gears 53.
  • the sun gear 51 is connected to the output shaft 63 of the motor 20 and can rotate with the rotation of the output shaft 63. Further, the internal gear 52 is connected to the wheel 71 of the rear wheel 13.
  • the planetary carrier 54 is connected to the flange 64 of the motor 20 and is fixed to the pipe frame 31 via the flange 64 and the housing 61.
  • the assist force from the output shaft 63 of the motor 20 is transmitted from the sun gear 51 connected to the output shaft 63 of the motor 20 to the internal gear 52 via the planetary gear 53, and then connected to the internal gear 52. It is transmitted to the rear wheel 13. As a result, the movement of the rear wheels 13 is assisted by the motor 20. At this time, the pipe frame 31 connected to the planetary carrier 54 does not rotate.
  • the control unit 16 controls the motor 20 to rotate the entire electrically assisted walking vehicle 10 and lift the front wheel 12 to a position higher than the rear wheel 13.
  • the control unit 16 may control to increase the output of the motor 20 according to, for example, an operating force (grip force) applied to the handle 14.
  • the motor 20 is controlled so that the output of the motor 20 is relatively large even if the operating force is the same as in the normal state (that is, the proportional coefficient of the motor output to the operating force is increased).
  • the front wheels 12 can be lifted to a position higher than the rear wheels 13.
  • the motor 20 is connected to the rear wheel 13 via the planetary gear mechanism 50.
  • the front wheel 12 of the electrically assisted walking vehicle 10 collides with the step, the front wheel 12 can be lifted to a position higher than the rear wheel 13 by using the planetary gear mechanism 50. That is, the control unit 16 can make the front wheels 12 wheelie with respect to the rear wheels 13 by the reaction of the planetary gear mechanism 50 by the driving force of the motor 20.
  • the planetary gear mechanism 50 includes a sun gear 51 connected to the output shaft 63 of the motor 20, an internal gear 52 arranged around the sun gear 51, the sun gear 51, and the inside. It has a planetary gear 53 that meshes with the gear 52 and revolves while rotating when the output shaft 63 rotates, and a planet carrier 54 that rotatably supports the planetary gear 53 and transmits the revolving motion of the planetary gear 53.
  • the internal gear 52 is connected to the rear wheel 13, and the planetary carrier 54 is fixed to the pipe frame 31.
  • control unit 16 has described the case where the front wheels 12 are lifted with respect to the rear wheels 13 by using the planetary gear mechanism 50 as an example.
  • control unit 16 is not limited to the planetary gear mechanism 50, and is not limited to the planetary gear mechanism 50.
  • a mechanism having a gear that revolves while rotating may be used.
  • a mechanism including two gears may be used instead of the planetary gear mechanism 50.
  • the first gear 57 is directly connected to the motor 20
  • the second gear 58 is directly connected to the rear wheel 13, and the first gear 57 and the second gear 58 are directly connected.
  • the gears 58 may be meshed with each other.
  • FIG. 29 during normal traveling, the movement of the rear wheels 13 is assisted by the motor 20, and the electrically assisted walking vehicle 10 travels.
  • FIG. 30 for example, when the front wheel 12 collides with the step and the front wheel 12 is locked, the rear wheel 13 is also locked.
  • the motor 20 further rotates in this state, a force is generated that lifts the entire electrically assisted walking vehicle 10.
  • a force that rotates in the direction opposite to the traveling direction of the electrically assisted walking vehicle 10 acts.
  • the front wheels 12 of the electrically assisted walking vehicle 10 can easily get over the step.
  • FIGS. 31 and 32 The third embodiment shown in FIGS. 31 and 32 is different in that the drive unit that generates the driving force for lifting the front wheel 12 is provided separately from the motor 20, and the other configurations are different. It is the same as the first embodiment described above.
  • FIGS. 15 and 16 the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the drive unit that generates the driving force for lifting the front wheel 12 includes an additional motor 46 different from the motor 20.
  • the rotating shaft of the additional motor 46 may be provided coaxially with the rotating shaft of the rear wheel 13 (FIG. 31 (a)), and is provided on a shaft different from the rotating shaft of the rear wheel 13. It may be (Fig. 31 (b)).
  • the drive unit that generates the driving force for lifting the front wheel 12 includes an actuator 47 different from the motor 20.
  • the actuator 47 is connected to the frame 11.
  • the actuator 47 may be a telescopic type that lifts the front wheel 12 with respect to the rear wheel 13 by expanding and contracting (FIG. 32 (a)), and swings the front wheel 12 to the rear wheel 13.
  • it may be a swing type that lifts (FIG. 32 (b)).
  • FIGS. 33 and 34 a fourth embodiment of the present disclosure will be described with reference to FIGS. 33 and 34.
  • the same parts as those of the first embodiment to the third embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 33 is a schematic perspective view showing an example of the appearance of the electrically assisted walking vehicle (electric vehicle) 10 according to the present embodiment.
  • the electrically power assisted walking vehicle 10 includes a frame 11, a pair of front wheels 12 and a pair of rear wheels (wheels) 13 provided on the frame 11, and a pair of handles 14 connected to the frame 11. It has.
  • a motor 20 that assists the movement of the corresponding rear wheel 13 is connected to the pair of rear wheels 13.
  • a battery 21 and a control unit 16 are attached to the frame 11, respectively. Further, the control unit 16 is provided with a tilt detection sensor 23.
  • a pair of handles 14 operated by the user are provided at the upper ends of the pair of left and right pipe frames 31.
  • the pair of handles 14 are connected to each other by a bar handle 17 extending in the horizontal direction.
  • the pair of handles 14 and the bar handles 17 have a substantially U-shape.
  • an arm support portion 27 on which the user's elbow can be placed is attached to the pair of handles 14.
  • the arm support portion 27 is provided with a hole so that each handle 14 can be inserted, and the handle 14 can be attached to the hole.
  • a seat portion 37 on which the user can sit is provided between the pair of left and right pipe frames 31 as needed.
  • the battery 21 supplies electric power to each element of the electrically assisted walking vehicle 10, such as the motor 20 and the control unit 16.
  • the battery 21 is provided below the seat portion 37 located between the pair of pipe frames 31.
  • the speed sensor 22b is provided on each of the pair of rear wheels 13.
  • the speed sensor 22b is not limited to being built in the pair of front wheels 12 and / or the pair of rear wheels 13, and may be attached to any other member such as the frame 11 and the pair of handles 14.
  • the speed sensor 22b may be arranged in the vicinity of the control unit 16.
  • the traveling speed of the electrically assisted walking vehicle 10 is determined based on the rotation speed of the rear wheels 13, but the traveling speed is not limited to this, and the rotation speed of the front wheels 12 or the front wheels 12 and the rear wheels It may be judged based on both rotation speeds of 13.
  • the measuring unit may be provided with an acceleration sensor 22a.
  • the acceleration sensor 22a directly measures the acceleration of the electrically assisted walking vehicle 10 without using the rotational acceleration of the rear wheels 13, and transmits a signal of this acceleration to the control unit 16. Then, the control unit 16 calculates the speed by integrating the acceleration.
  • the measuring unit may be equipped with GPS (Global Positioning System).
  • GPS Global Positioning System
  • the control unit 16 may calculate the speed of the electrically assisted walking vehicle 10 by differentiating the position information from the GPS, and may calculate the acceleration by differentiating the position information from the GPS twice.
  • the tilt detection sensor 23 includes an acceleration sensor having two or more axes.
  • the tilt detection sensor 23 is provided in the vicinity of the control unit 16.
  • the tilt detection sensor 23 may be provided on the upper part of the electrically assisted walking vehicle 10.
  • a gyro sensor may be used to estimate the posture of the electrically power assisted walking vehicle 10.
  • the other configuration of the electrically assisted walking vehicle 10 is the same as that of the electrically assisted walking vehicle 10 (FIGS. 1 and 2) in the first embodiment.
  • the electrically assisted walking vehicle 10 is not provided with a grip sensor, a strain sensor, a proximity sensor, a pressure sensor, or the like that directly detects whether or not the user has grasped the pair of handles 14. .
  • the grip sensor 24 may be provided on the handle 14 as in the electrically assisted walking vehicle 10 (FIGS. 1 and 2) in the first embodiment.

Abstract

Provided is an electric vehicle capable of detecting contact with a step with high accuracy and achieving an operation intended by a user. This electric vehicle comprises: a drive unit that drives a wheel including at least any one among a front wheel and a rear wheel; a control unit that controls the drive unit and performs a control of climbing over a step; a measurement unit that measures at least any one among a velocity or an acceleration applied to a vehicle body provided with the wheel; and a determination unit that determines whether to perform the control of climbing over a step on the basis of the measurement value from the measurement unit.

Description

電動車両、その制御方法、及びその制御プログラムElectric vehicle, its control method, and its control program
 本開示は、高齢者、身体障害者、入院患者その他の歩行に制限がある者の歩行を補助するための電動車両、その制御方法、及びその制御プログラムに関する。 The present disclosure relates to an electric vehicle for assisting the walking of elderly people, physically handicapped persons, inpatients and other persons with walking restrictions, a control method thereof, and a control program thereof.
 従来から、高齢者の外出を補助する歩行車(シルバーカー、手押し車)や身体障害者または入院患者の歩行を補助するために歩行器その他の歩行補助装置が用いられている。例えば、特許文献1には、使用者にとって大きな負担となる操作を行うことなく前輪が段差に乗り上げるようにすることができる歩行補助装置について開示されている。 Conventionally, walkers (silver cars, wheelbarrows) that assist the elderly going out, walkers and other walking assist devices have been used to assist the walking of physically handicapped persons or inpatients. For example, Patent Document 1 discloses a walking assist device capable of allowing the front wheels to ride on a step without performing an operation that imposes a heavy burden on the user.
 特許文献1においては、フレームと、フレームに設けられた前輪及び後輪と、前輪を後輪に対して浮き上がらせる駆動力を発生する駆動部と、駆動部に接続され、駆動部を制御する制御部とを備え、制御部は、使用者が電動車両を前進させようとしているにも関わらず、前輪が段差に衝突したと判断した際、駆動部を制御して前輪を後輪に対して浮き上がらせることを特徴とする歩行補助装置(電動車両)について開示されている。 In Patent Document 1, a frame, front wheels and rear wheels provided on the frame, a drive unit that generates a driving force that causes the front wheels to float with respect to the rear wheels, and a control that is connected to the drive unit and controls the drive unit. When the user determines that the front wheels have collided with a step even though the user is trying to move the electric vehicle forward, the control unit controls the drive unit to lift the front wheels with respect to the rear wheels. A walking assist device (electric vehicle) characterized by being able to perform is disclosed.
特開2018-61819号公報JP-A-2018-61819
 このような従来の歩行補助装置において、段差との接触を検出する精度に制約があり、充分に細かい制御を行っていなかったため、使用者の意図する段差の乗り越え動作を実現できないことがあった。例えば、これまでの歩行補助装置の段差検出機能と段差乗り越え機能は、歩行補助装置が段差に対してほぼ正面(ほぼ垂直な方向)から進入していることが前提となっていた。したがって、歩行補助装置の右前輪と左前輪が時差をもって段差に接触した場合、段差を乗り越えることは難しかった。また、歩行補助装置が段差の乗り越え動作を行う必要性を的確に判断するためには、段差への接触と、使用者による歩行補助装置の停止操作や、歩行補助装置が段差以外の物体と接触した場合などとの違いを識別する必要がある。 In such a conventional walking assist device, there is a limitation in the accuracy of detecting contact with a step, and sufficient fine control is not performed, so that the operation of overcoming the step intended by the user may not be realized. For example, the step detection function and the step overcoming function of the conventional walking assist device are based on the premise that the walking assist device enters from almost the front (almost perpendicular direction) to the step. Therefore, when the right front wheel and the left front wheel of the walking assist device come into contact with the step with a time difference, it is difficult to get over the step. In addition, in order to accurately determine the necessity for the walking assist device to overcome the step, contact with the step, stop operation of the walking assist device by the user, and contact of the walking assist device with an object other than the step. It is necessary to identify the difference from the case where.
 本開示は、段差との接触を高精度に検出し、使用者の意図する動作を実現することが可能な、電動車両、その制御方法、及びその制御プログラムを提供する。 The present disclosure provides an electric vehicle, a control method thereof, and a control program thereof, which can detect contact with a step with high accuracy and realize an operation intended by a user.
 本開示による電動車両は、車体に設けられた前輪または後輪の少なくともいずれか一方を含む車輪を駆動する駆動部と、前記車輪に段差を乗り越えさせる段差の乗り越え制御を前記駆動部に対して行う制御部と、前記車輪が設けられる車体に加わる速度または加速度の少なくともいずれか一方を計測する計測部と、前記計測部の計測値に基づいて前記制御部に段差の乗り越え制御をさせるか否かを判断する判断部とを備えることを特徴とする。 In the electric vehicle according to the present disclosure, the drive unit for driving the wheels including at least one of the front wheels and the rear wheels provided on the vehicle body and the drive unit for overcoming the step for causing the wheels to get over the step are performed on the drive unit. Whether or not to let the control unit control the step over based on the control unit, the measurement unit that measures at least one of the speed or the acceleration applied to the vehicle body on which the wheel is provided, and the measurement value of the measurement unit. It is characterized by having a judgment unit for making a judgment.
 本開示による電動車両において、前記判断部は、前記計測部の計測値に基づいて前記前輪が段差に接触したと推定されるときに前記段差の乗り越え制御を行うと判断してもよい。 In the electric vehicle according to the present disclosure, the determination unit may determine that the determination unit performs overcoming control of the step when it is estimated that the front wheel has come into contact with the step based on the measured value of the measurement unit.
 本開示による電動車両において、前記段差の乗り越え制御は、前記駆動部の前記車輪を駆動する駆動力を増やす制御を含んでいてもよい。 In the electric vehicle according to the present disclosure, the step overcoming control may include a control for increasing the driving force for driving the wheels of the driving unit.
 本開示による電動車両において、前記段差の乗り越え制御は、前記車体を旋回させる制御を含んでいてもよい。 In the electric vehicle according to the present disclosure, the control for overcoming the step may include the control for turning the vehicle body.
 本開示による電動車両において、前記段差の乗り越え制御は、前記車体を旋回させながら駆動力を増やす制御を含んでいてもよい。 In the electric vehicle according to the present disclosure, the control for overcoming the step may include a control for increasing the driving force while turning the vehicle body.
 本開示による電動車両において、前記前輪は、前記車体の幅方向に離れて配置されている左前輪と右前輪とを含み、前記判断部は、前記計測部の計測値に基づいて左前輪または右前輪のいずれが前記段差に接触したかを推定してもよい。 In the electric vehicle according to the present disclosure, the front wheels include a left front wheel and a right front wheel that are arranged apart from each other in the width direction of the vehicle body, and the determination unit determines the left front wheel or the right based on the measured values of the measurement unit. It may be estimated which of the front wheels touches the step.
 本開示による電動車両において、前記計測部は、少なくとも前記車体を減速させる方向への加速度または前記車体の前後方向の加速度のいずれかひとつと前記車体の幅方向の加速度を計測してもよい。 In the electric vehicle according to the present disclosure, the measuring unit may measure at least one of the acceleration in the direction of decelerating the vehicle body or the acceleration in the front-rear direction of the vehicle body and the acceleration in the width direction of the vehicle body.
 本開示による電動車両において、前記後輪は、前記車体の幅方向に離れて配置されている左後輪と右後輪とを含み、前記計測部は、少なくとも前記左後輪の回転方向の加速度と前記右後輪の回転方向の加速度との平均値または前記左後輪の回転方向の加速度と前記右後輪の回転方向の加速度との差を算出してもよい。 In the electric vehicle according to the present disclosure, the rear wheels include a left rear wheel and a right rear wheel that are arranged apart from each other in the width direction of the vehicle body, and the measuring unit at least accelerates the left rear wheel in the rotational direction. And the average value of the acceleration in the rotation direction of the right rear wheel or the difference between the acceleration in the rotation direction of the left rear wheel and the acceleration in the rotation direction of the right rear wheel may be calculated.
 本開示による電動車両において、前記計測部は、少なくとも左前輪の回転方向の加速度と右前輪の回転方向の加速度との平均値または左前輪の回転方向の加速度と右前輪の回転方向の加速度との差を算出してもよい。 In the electric vehicle according to the present disclosure, the measuring unit has at least the average value of the acceleration in the rotation direction of the left front wheel and the acceleration in the rotation direction of the right front wheel, or the acceleration in the rotation direction of the left front wheel and the acceleration in the rotation direction of the right front wheel. The difference may be calculated.
 本開示による電動車両において、前記計測部は、前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方と前記車体の幅方向の加速度を測定し、前記判断部は、前記計測部の計測した前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方が第1しきい値以上となったときに前記左前輪または前記右前輪のいずれが段差に接触したのかを推定してもよい。 In the electric vehicle according to the present disclosure, the measuring unit measures at least one of acceleration in the direction of decelerating the vehicle body and acceleration in the rear direction of the vehicle body and acceleration in the width direction of the vehicle body, and the determination unit. Is the left front wheel or the right front wheel when at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rear direction of the vehicle body measured by the measuring unit becomes equal to or higher than the first threshold value. It may be estimated which of the two contacts the step.
 本開示による電動車両において、前記計測部は、前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方と前記車体の幅方向の加速度を測定し、前記判断部は、前記計測部の計測した前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方が第1しきい値以上となった以後所定の期間内に計測された前記車体の幅方向の加速度の絶対値の最大値が第2しきい値以上となったときに前記左前輪または前記右前輪のいずれが前記段差に接触したのかを推定してもよい。 In the electric vehicle according to the present disclosure, the measuring unit measures at least one of acceleration in the direction of decelerating the vehicle body and acceleration in the rear direction of the vehicle body and acceleration in the width direction of the vehicle body, and the determination unit. Was measured within a predetermined period after at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body measured by the measuring unit became equal to or higher than the first threshold value. It may be estimated whether the left front wheel or the right front wheel comes into contact with the step when the maximum value of the absolute value of the acceleration in the width direction of the vehicle body becomes the second threshold value or more.
 本開示による電動車両において、前記計測部は、前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方を計測し、前記判断部は、前記計測部の計測した前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方が前記第1しきい値より小さい第3しきい値以上となったときに前記左前輪および前記右前輪が段差に接触したと推定してもよい。 In the electric vehicle according to the present disclosure, the measuring unit measures at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rear direction of the vehicle body, and the determining unit measures the acceleration of the measuring unit. The left front wheel and the right front wheel when at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rear direction of the vehicle body becomes equal to or higher than a third threshold value smaller than the first threshold value. May be presumed to have come into contact with the step.
 本開示による電動車両において、前記制御部は、前記段差に接触したと推定された前記前輪の前記車体の幅方向の同じ側に位置する前記後輪の前記駆動部にのみ駆動力を発生させてもよい。 In the electric vehicle according to the present disclosure, the control unit generates a driving force only in the driving unit of the rear wheel located on the same side in the width direction of the vehicle body of the front wheel estimated to have come into contact with the step. May be good.
 本開示による電動車両において、前記制御部は、前記段差に接触したと推定された前記前輪の前記車体の幅方向の反対側に位置する前記前輪または前記後輪の少なくともいずれか一方の前記駆動部にのみ駆動力を発生させてもよい。 In the electric vehicle according to the present disclosure, the control unit is the driving unit of at least one of the front wheels and the rear wheels located on the opposite side of the front wheels in the width direction of the vehicle body, which is presumed to have come into contact with the step. The driving force may be generated only in the direction.
 本開示による電動車両において、前記制御部は、前記段差に接触したと推定された側の前記前輪または前記前輪の前記車体の幅方向の同じ側に位置する前記後輪の少なくともいずれか一方の前記駆動部の駆動力よりも大きな駆動力を前記段差に接触したと推定された前記前輪の前記車体の幅方向の反対側に位置する前記前輪または前記後輪の少なくともいずれか一方の前記駆動部に発生させてもよい。 In the electric vehicle according to the present disclosure, the control unit is the one of at least one of the front wheels on the side estimated to have come into contact with the step or the rear wheels located on the same side of the front wheels in the width direction of the vehicle body. A driving force larger than the driving force of the driving unit is applied to the driving unit of at least one of the front wheels and the rear wheels located on the opposite side of the front wheels in the width direction of the vehicle body, which is estimated to have come into contact with the step. It may be generated.
 本開示による電動車両において、前記制御部は、前記段差に接触したと推定された側の前記前輪または前記前輪の前記車体の幅方向の同じ側に位置する前記後輪の少なくともいずれか一方の前記駆動部の駆動力よりも前記段差に接触したと推定された側の前記前輪または前記車体の幅方向の同じ側に位置する前記後輪の少なくともいずれかの前記駆動部の前記駆動力を大きくしてもよい。 In the electric vehicle according to the present disclosure, the control unit is the one of at least one of the front wheels on the side estimated to have come into contact with the step or the rear wheels located on the same side of the front wheels in the width direction of the vehicle body. Increase the driving force of at least one of the front wheels on the side estimated to be in contact with the step or the rear wheels located on the same side in the width direction of the vehicle body with respect to the driving force of the driving unit. You may.
 本開示による電動車両において、前記制御部は、前記段差に接触したと推定された前記前輪の前記車体の幅方向反対側に位置する前記前輪または前記後輪の少なくともいずれか一方の前記駆動部の駆動力と前記段差に接触したと推定された前記前輪と前記前輪の前記車体の幅方向の同じ側に位置する前記後輪の少なくともいずれか一方の前記駆動部の前記駆動力とを第4しきい値になるまで漸増させてもよい。 In the electric vehicle according to the present disclosure, the control unit is a drive unit of at least one of the front wheels and the rear wheels located on the opposite side of the front wheels in the width direction of the vehicle body, which is presumed to have come into contact with the step. The driving force and the driving force of the driving unit of at least one of the front wheels estimated to have come into contact with the step and the rear wheels located on the same side of the front wheels in the width direction of the vehicle body are defined as the fourth. It may be gradually increased until it reaches a threshold value.
 本開示による電動車両において、前記段差に接触したと推定された前記前輪の前記車体の幅方向反対側に位置する前記前輪または前記後輪の少なくともいずれか一方の前記駆動部の前記駆動力は、前記段差に接触したと推定された前記前輪と前記前輪の前記車体の幅方向の同じ側に位置する前記後輪の少なくともいずれか一方の前記駆動部の前記駆動力よりも大きくしてもよい。 In the electric vehicle according to the present disclosure, the driving force of at least one of the front wheels and the rear wheels located on the opposite side of the front wheels in the width direction of the vehicle body, which is presumed to have come into contact with the step, is a driving force. It may be larger than the driving force of the driving unit of at least one of the front wheels and the rear wheels located on the same side of the front wheels in the width direction of the vehicle body, which are presumed to be in contact with the step.
 本開示による電動車両において、前記制御部は、前記判断部が前記計測部の計測値に基づいて前記前輪の両方が段差に接触したと推定したときに前記車体の幅方向の両側にある前記前輪または前記後輪少なくともいずれかの前記前輪または前記後輪の前記駆動部の駆動力を等しくしてもよい。 In the electric vehicle according to the present disclosure, the control unit determines that both of the front wheels come into contact with the step based on the measured values of the measurement unit, and the front wheels are on both sides in the width direction of the vehicle body. Alternatively, the driving force of the driving unit of at least one of the front wheels or the rear wheels of the rear wheels may be equal.
 本開示による電動車両において、前記制御部は、前記計測部によって測定された前記車体の幅方向の加速度の絶対値の最大値が第2しきい値以上となったときに前記段差の前記乗り越え動作が実行される条件となる加速度の第5しきい値を小さく設定してもよい。 In the electric vehicle according to the present disclosure, the control unit performs the overcoming operation of the step when the maximum value of the absolute value of the acceleration in the width direction of the vehicle body measured by the measurement unit becomes the second threshold value or more. The fifth threshold value of acceleration, which is a condition for executing, may be set small.
 本開示による電動車両において、前記制御部は、前記計測部によって計測された前記車体の速度が大きくなるのにしたがって前記段差の前記乗り越え動作が実行される条件となる加速度の絶対値の第6しきい値を大きく設定してもよい。 In the electric vehicle according to the present disclosure, the control unit has a sixth absolute value of acceleration, which is a condition for executing the overcoming operation of the step as the speed of the vehicle body measured by the measurement unit increases. The threshold value may be set large.
 本開示による電動車両において、計測部は、前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方を計測し、前記判断部は、前記計測部が計測した前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方が第7しきい値より大きいときに前記前輪が段差に接触したと推定してもよい。 In the electric vehicle according to the present disclosure, the measuring unit measures at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rear direction of the vehicle body, and the determining unit measures the acceleration measured by the measuring unit. It may be estimated that the front wheels come into contact with the step when at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body is larger than the seventh threshold value.
 本開示による電動車両において、前記判断部は、前記計測部の計測した前記車体を減速させる方向への加速度または車体の後方方向への加速度の少なくともいずれか一方が前記第7しきい値以下であるときは前記前輪が段差に接触したと推定しなくてもよい。 In the electric vehicle according to the present disclosure, in the determination unit, at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body measured by the measurement unit is equal to or less than the seventh threshold value. In some cases, it is not necessary to presume that the front wheels have come into contact with the step.
 本開示による電動車両において、前記計測部は、前記車体の振動の周波数スペクトルを計測し、前記判断部は、前記計測部の計測した値の代表値が第8しきい値より大きいときに前記前輪が段差に接触したと推定してもよい。 In the electric vehicle according to the present disclosure, the measuring unit measures the frequency spectrum of the vibration of the vehicle body, and the determining unit measures the front wheel when the representative value of the measured value of the measuring unit is larger than the eighth threshold value. May be presumed to have come into contact with the step.
 本開示による電動車両において、前記判断部は、前記計測部の計測した値の代表値が前記第8しきい値以下であるときは前記前輪が段差に接触したと推定しなくてもよい。 In the electric vehicle according to the present disclosure, the determination unit does not have to presume that the front wheel has come into contact with the step when the representative value of the value measured by the measurement unit is equal to or less than the eighth threshold value.
 本開示による電動車両において、前記計測部の計測値を記憶する記憶部を備え、前記判断部は、前記記憶部に記憶された前記計測値に基づいて前記第7しきい値を調整してもよい。 The electric vehicle according to the present disclosure includes a storage unit that stores the measured values of the measuring unit, and the determination unit may adjust the seventh threshold value based on the measured values stored in the storage unit. Good.
 本開示による電動車両において、前記判断部は、前記制御部が前記前輪の段差乗り越えをさせた後に、前記制御部が前記前輪の段差乗り越え制御をさせる以前の所定の期間において前記第7しきい値より小さい加速度を検出していた場合、前記第7しきい値をより小さい値に変更してもよい。 In the electric vehicle according to the present disclosure, the determination unit determines the seventh threshold value in a predetermined period before the control unit controls the front wheels to overcome the steps and then the control unit controls the front wheels to overcome the steps. If a smaller acceleration is detected, the seventh threshold value may be changed to a smaller value.
 本開示による電動車両において、前記判断部は、前記制御部が前記前輪の段差乗り越えをさせたときに前記計測部が計測した前記加速度が前記第7しきい値より大きくかつ前記第7しきい値との差が所定の値より大きい場合、前記第7しきい値をより大きい値に変更してもよい。 In the electric vehicle according to the present disclosure, the determination unit has the acceleration measured by the measurement unit when the control unit overcomes the step of the front wheel, which is larger than the seventh threshold value and the seventh threshold value. If the difference from is greater than a predetermined value, the seventh threshold value may be changed to a larger value.
 本開示による電動車両において、前記車体の振動は前記車体の前後方向の振動を含んでいてもよい。 In the electric vehicle according to the present disclosure, the vibration of the vehicle body may include vibration in the front-rear direction of the vehicle body.
 本開示による電動車両において、前記車体の前方または前記車体の幅方向の両側面の少なくとも一部を覆う緩衝部材を備えていてもよい。 The electric vehicle according to the present disclosure may be provided with a cushioning member that covers at least a part of the front surface of the vehicle body or both side surfaces in the width direction of the vehicle body.
 本開示による電動車両において、前記前輪は旋回可能に構成された双輪キャスターであってもよい。 In the electric vehicle according to the present disclosure, the front wheels may be twin-wheel casters configured to be able to turn.
 本開示による電動車両は、前輪または後輪の少なくともいずれか一方を含む車輪を駆動する駆動部と、前記駆動部を制御し段差の乗り越え制御を行う制御部と、前記車輪が設けられる車体に加わる速度または加速度の少なくともいずれか一方を計測する計測部と、前記計測部の計測値に基づいて前記制御部に段差の乗り越え制御をさせるか否かを判断する判断部とを備え、前記制御部は前記判断部が前記計測部の計測値に基づいて前記前輪が段差に接触したと判断したときに前記駆動部の前記車輪を駆動する駆動力を増やす制御または前記車体を旋回させる制御を行うことを特徴とする。 The electric vehicle according to the present disclosure is added to a drive unit that drives wheels including at least one of front wheels and rear wheels, a control unit that controls the drive unit to control stepping over, and a vehicle body provided with the wheels. The control unit includes a measurement unit that measures at least one of speed and acceleration, and a determination unit that determines whether or not the control unit controls overcoming a step based on the measurement value of the measurement unit. When the determination unit determines that the front wheels have come into contact with a step based on the measured values of the measurement unit, the determination unit performs control to increase the driving force for driving the wheels of the drive unit or control to turn the vehicle body. It is a feature.
 本開示による電動車両の制御方法は、車体に加わる速度または加速度の少なくともいずれか一方を計測するステップと、前記速度または前記加速度の少なくともいずれか一方に基づき段差の乗り越え制御を行うか否かを判断するステップとを含むことを特徴とする。 The method for controlling an electric vehicle according to the present disclosure determines whether or not to perform step overcoming control based on a step of measuring at least one of a speed or an acceleration applied to a vehicle body and at least one of the speed or the acceleration. It is characterized by including steps to be performed.
 本開示による電動車両の制御方法は、前記速度または前記加速度の少なくともいずれか一方に基づき前輪が段差に接触したか否かを判断するステップと、前記前輪が段差に接触したと推定されるときに前記段差の乗り越え制御を行うステップとを含んでいてもよい。 The method for controlling an electric vehicle according to the present disclosure includes a step of determining whether or not a front wheel has come into contact with a step based on at least one of the speed and the acceleration, and when it is estimated that the front wheel has come into contact with the step. The step of overcoming the step may be included.
 本開示による電動車両の制御方法は、前記段差の乗り越え制御は、車輪を駆動する駆動力を増やす制御、前記車体を旋回させる制御、前記車体を旋回させながら前記駆動力を増やす制御の少なくともいずれかを含んでいてもよい。 In the control method of the electric vehicle according to the present disclosure, the step overcoming control is at least one of control for increasing the driving force for driving the wheels, control for turning the vehicle body, and control for increasing the driving force while turning the vehicle body. May include.
 本開示による電動車両の制御プログラムは、車体に加わる速度または加速度の少なくともいずれか一方を計測するステップと、前記速度または前記加速度の少なくともいずれか一方に基づき前輪が段差に接触したか否かを判断するステップと、前記前輪が段差に接触したと推定されるときに前記段差の乗り越え制御を行うステップとを含んでいることを特徴とする。 The control program for an electric vehicle according to the present disclosure determines whether or not the front wheels have come into contact with a step based on a step of measuring at least one of a speed or an acceleration applied to a vehicle body and at least one of the speed or the acceleration. It is characterized by including a step of performing the step and a step of controlling overcoming of the step when it is presumed that the front wheel has come into contact with the step.
 本開示による電動車両の制御プログラムは、前記段差の乗り越え制御は、車輪を駆動する駆動力を増やす制御、前記車体を旋回させる制御、前記車体を旋回させながら前記駆動力を増やす制御の少なくともいずれかを含んでいてもよい。 In the control program of the electric vehicle according to the present disclosure, the step overcoming control is at least one of control for increasing the driving force for driving the wheels, control for turning the vehicle body, and control for increasing the driving force while turning the vehicle body. May include.
 本開示によれば、段差との接触を高精度に検出し、使用者の意図する動作を実現することができる。 According to the present disclosure, it is possible to detect contact with a step with high accuracy and realize the operation intended by the user.
図1は、本開示の第1の実施の形態に係る電動アシスト歩行車を示す斜視図である。FIG. 1 is a perspective view showing an electrically assisted walking vehicle according to the first embodiment of the present disclosure. 図2は、本開示の第1の実施の形態に係る電動アシスト歩行車を示す側面図である。FIG. 2 is a side view showing an electrically assisted walking vehicle according to the first embodiment of the present disclosure. 図3は、脚部検知センサを示す概略図である。FIG. 3 is a schematic view showing a leg detection sensor. 図4は、把持センサを示す概略図である。FIG. 4 is a schematic view showing a grip sensor. 図5は、把持センサの変形例を示す概略図である。FIG. 5 is a schematic view showing a modified example of the grip sensor. 図6は、制御部の動作の一例を説明するためのフローチャートである。FIG. 6 is a flowchart for explaining an example of the operation of the control unit. 図7は、前輪が段差に衝突してからの時間の経過に伴う駆動力の変化を示すグラフである。FIG. 7 is a graph showing a change in driving force with the passage of time after the front wheels collide with a step. 図8は、段差との衝突、停止操作の各ケースにおいて検出される加速度としきい値の例を示したグラフである。FIG. 8 is a graph showing an example of acceleration and threshold value detected in each case of collision with a step and stop operation. 図9は、柔らかい物体と衝突したときに検出される加速度と、段差に衝突したときに検出される加速度の例を示したグラフである。FIG. 9 is a graph showing an example of the acceleration detected when colliding with a soft object and the acceleration detected when colliding with a step. 図10は、車体前方に緩衝材が設けられた構成例を示した概略図である。FIG. 10 is a schematic view showing a configuration example in which a cushioning material is provided in front of the vehicle body. 図11は、電動アシスト歩行車と段差との衝突時に車体にかかる加速度の例を示した平面図である。FIG. 11 is a plan view showing an example of acceleration applied to the vehicle body when the electrically assisted walking vehicle collides with a step. 図12は、衝突した前輪によって検出される加速度の違いを示したグラフである。FIG. 12 is a graph showing the difference in acceleration detected by the front wheels that collide. 図13は、旋回進入と直進進入の場合に検出される加速度の例を示したグラフである。FIG. 13 is a graph showing an example of acceleration detected in the case of turning approach and straight approach. 図14は、段差との衝突時に計測された加速度の時間波形の例を示したグラフである。FIG. 14 is a graph showing an example of a time waveform of acceleration measured at the time of collision with a step. 図15は、段差に対して角度をもって進入している電動アシスト歩行車の第1の例を示した平面図である。FIG. 15 is a plan view showing a first example of an electrically power assisted walking vehicle approaching a step at an angle. 図16は、段差に対して角度をもって進入している電動アシスト歩行車の第2の例を示した平面図である。FIG. 16 is a plan view showing a second example of the electrically assisted walking vehicle approaching the step at an angle. 図17は、段差に対して角度をもって進入している電動アシスト歩行車の第2の例を示した平面図である。FIG. 17 is a plan view showing a second example of the electrically assisted walking vehicle approaching the step at an angle. 図18は、いずれかの前輪の段差との接触を検出してから電動車両を旋回させるための制御の例を示したグラフである。FIG. 18 is a graph showing an example of control for turning an electric vehicle after detecting contact with a step of one of the front wheels. 図19は、いずれかの前輪の段差との接触を検出してから電動車両を旋回させるための制御の例を示したグラフである。FIG. 19 is a graph showing an example of control for turning an electric vehicle after detecting contact with a step of one of the front wheels. 図20は、車体の進行方向に対して前輪が角度を有する場合の第1の例を示した平面図である。FIG. 20 is a plan view showing a first example when the front wheels have an angle with respect to the traveling direction of the vehicle body. 図21は、車体の進行方向に対して前輪が角度を有する場合の第2の例を示した平面図である。FIG. 21 is a plan view showing a second example in which the front wheels have an angle with respect to the traveling direction of the vehicle body. 図22は、電動アシスト歩行車と段差との衝突の例を示した平面図である。FIG. 22 is a plan view showing an example of a collision between an electrically power assisted walking vehicle and a step. 図23は、電動アシスト歩行車と段差との衝突の例を示した平面図である。FIG. 23 is a plan view showing an example of a collision between the electrically power assisted walking vehicle and the step. 図24は、本開示の第2の実施の形態に係る電動アシスト歩行車を示す斜視図である。FIG. 24 is a perspective view showing an electrically assisted walking vehicle according to a second embodiment of the present disclosure. 図25は、本開示の第2の実施の形態に係る電動アシスト歩行車を示す側面図である。FIG. 25 is a side view showing an electrically assisted walking vehicle according to a second embodiment of the present disclosure. 図26は、本開示の第2の実施の形態に係る電動アシスト歩行車の後輪周辺の構成を示す側面図である。FIG. 26 is a side view showing the configuration around the rear wheels of the electrically power assisted walking vehicle according to the second embodiment of the present disclosure. 図27は、本開示の第2の実施の形態に係る電動アシスト歩行車の後輪周辺の構成を示す断面図(図25のXI-XI線断面図)である。FIG. 27 is a cross-sectional view (FIG. XI-XI cross-sectional view of FIG. 25) showing a configuration around the rear wheels of the electrically power assisted walking vehicle according to the second embodiment of the present disclosure. 図28は、本開示の第2の実施の形態に係る電動アシスト歩行車の後輪周辺の構成を示す断面斜視図である。FIG. 28 is a cross-sectional perspective view showing a configuration around the rear wheels of the electrically power assisted walking vehicle according to the second embodiment of the present disclosure. 図29は、電動アシスト歩行車の変形例を示す概略図(通常走行時)である。FIG. 29 is a schematic view (during normal driving) showing a modified example of the electrically assisted walking vehicle. 図30は、電動アシスト歩行車の変形例を示す概略図(前輪ロック時)である。FIG. 30 is a schematic view (when the front wheels are locked) showing a modified example of the electrically assisted walking vehicle. 図31(a)(b)は、それぞれ本開示の第3の実施の形態に係る電動アシスト歩行車を示す概略図である。31 (a) and 31 (b) are schematic views showing an electrically assisted walking vehicle according to a third embodiment of the present disclosure, respectively. 図32(a)(b)は、それぞれ本開示の第3の実施の形態の変形例に係る電動アシスト歩行車を示す概略図である。32 (a) and 32 (b) are schematic views showing an electrically assisted walking vehicle according to a modified example of the third embodiment of the present disclosure, respectively. 図33は、本開示の第4の実施の形態に係る電動アシスト歩行車を示す斜視図である。FIG. 33 is a perspective view showing an electrically assisted walking vehicle according to a fourth embodiment of the present disclosure.
 (第1の実施の形態)
 まず、本開示の第1の実施の形態について、図1~図23を参照しがら説明する。以下では、同一の構成要素には同一の符号を付す。それらの名称および機能は同様であるものとする。同一の符号を付された構成要素については、詳細な説明は繰り返さない。
(First Embodiment)
First, the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 23. In the following, the same components are designated by the same reference numerals. Their names and functions shall be similar. The detailed description of the components with the same reference numerals will not be repeated.
 図1および図2は、電動車両の一例として電動の歩行車(以下、電動アシスト歩行車という。)を示す図である。図1は、第1の実施の形態にかかる電動アシスト歩行車10の外観の一例を示す模式的斜視図であり、図2は図1の電動アシスト歩行車10の側面図である。 1 and 2 are diagrams showing an electric walking vehicle (hereinafter, referred to as an electrically assisted walking vehicle) as an example of an electric vehicle. FIG. 1 is a schematic perspective view showing an example of the appearance of the electrically power assisted walking vehicle 10 according to the first embodiment, and FIG. 2 is a side view of the electrically power assisted walking vehicle 10 of FIG.
 (電動アシスト歩行車の構成)
 図1および図2に示すように、電動アシスト歩行車10は、フレーム11と、フレーム11に設けられた一対の前輪(車輪)12及び一対の後輪(車輪)13と、フレーム11に接続された一対のハンドル(操作部)14とを備えている。一対の後輪13は、車体の幅方向に離れて2つ配置されている。同様に、一対の前輪12は、車体の幅方向に離れて2つ配置されている。以降では、主に電動車両が前輪と後輪がそれぞれ2つずつ配置されている四輪車である場合を例に説明するが、この構成は一例にしかすぎない。例えば、電動車両は、車体にひとつの前輪と、車体の幅方向に離れて2つ配置された一対の(2つの)後輪とが備えられている、三輪車であってもよい。また、3つ以上の前輪が幅方向に離れて配置されていてもよい。車体前方方向について最も右側に配置された前輪を右前輪、車体前方方向について最も左側に配置された前輪を左前輪とそれぞれよぶものとする。すなわち、前輪は、車体の幅方向に離れて配置されている左前輪と右前輪とを含む。さらに、3つ以上の後輪が幅方向に離れて配置されていてもよい。車体前方方向について最も右側に配置された後輪を右後輪、車体前方方向について最も左側に配置された後輪を左後輪とそれぞれよぶものとする。すなわち、後輪は、車体の幅方向に離れて配置されている左後輪と右後輪とを含む。電動車両が備える車輪の数については特に問わない。したがって、電動車両は上述とは異なる数の車輪を備えていてもよい。
(Composition of electrically power assisted walking vehicle)
As shown in FIGS. 1 and 2, the electrically power assisted walking vehicle 10 is connected to the frame 11, a pair of front wheels (wheels) 12 and a pair of rear wheels (wheels) 13 provided on the frame 11, and the frame 11. It is provided with a pair of handles (operation unit) 14. Two pairs of rear wheels 13 are arranged apart from each other in the width direction of the vehicle body. Similarly, two pairs of front wheels 12 are arranged apart from each other in the width direction of the vehicle body. Hereinafter, the case where the electric vehicle is mainly a four-wheeled vehicle in which two front wheels and two rear wheels are arranged will be described as an example, but this configuration is only an example. For example, the electric vehicle may be a tricycle in which the vehicle body is provided with one front wheel and a pair of (two) rear wheels arranged two apart in the width direction of the vehicle body. Further, three or more front wheels may be arranged apart from each other in the width direction. The front wheel arranged on the rightmost side in the front direction of the vehicle body is called the right front wheel, and the front wheel arranged on the leftmost side in the front direction of the vehicle body is called the left front wheel. That is, the front wheels include a left front wheel and a right front wheel that are arranged apart from each other in the width direction of the vehicle body. Further, three or more rear wheels may be arranged apart in the width direction. The rear wheel arranged on the rightmost side in the front direction of the vehicle body is called the right rear wheel, and the rear wheel arranged on the leftmost side in the front direction of the vehicle body is called the left rear wheel. That is, the rear wheels include a left rear wheel and a right rear wheel that are arranged apart from each other in the width direction of the vehicle body. The number of wheels provided in the electric vehicle is not particularly limited. Therefore, the electric vehicle may have a different number of wheels than those described above.
 また、各ハンドル14には、それぞれ電動アシスト歩行車10を手動で停止させるためのブレーキユニット15が設けられている。以降では、フレーム11およびフレーム11によって支持された構造物の「全体を電動アシスト歩行車10の車体とよぶものとする。 Further, each handle 14 is provided with a brake unit 15 for manually stopping the electrically assisted walking vehicle 10. Hereinafter, the frame 11 and the structure supported by the frame 11 will be referred to as the “whole body of the electrically assisted walking vehicle 10”.
 一対の後輪13には、それぞれ対応する後輪13の動きをアシストするモータ20が連結されている。なお、電動アシスト歩行車はそれぞれの前輪12に連結され、それぞれの前輪12の動きをアシストするモータを備えていてもよい。各前輪12と各後輪13がモータに連結されていてもよいし、前輪12のみがモータに連結されていてもよい。フレーム11には、バッテリ21と、制御部16とがそれぞれ取り付けられている。 A motor 20 that assists the movement of the corresponding rear wheel 13 is connected to the pair of rear wheels 13. The electrically assisted walking vehicle may be connected to each of the front wheels 12 and may include a motor that assists the movement of each of the front wheels 12. Each front wheel 12 and each rear wheel 13 may be connected to the motor, or only the front wheel 12 may be connected to the motor. A battery 21 and a control unit 16 are attached to the frame 11, respectively.
 また、制御部16には、加速度センサ22aと、速度センサ22bが設けられている。さらにハンドル14には、傾き検知センサ23と、把持センサ(操作力センサ)24とがそれぞれ設けられている。フレーム11上であって、一対のハンドル14よりも下方の位置には、使用者の脚部の有無を検知する脚部検知センサ25が配置されている。 Further, the control unit 16 is provided with an acceleration sensor 22a and a speed sensor 22b. Further, the handle 14 is provided with an inclination detection sensor 23 and a grip sensor (operating force sensor) 24, respectively. A leg detection sensor 25 for detecting the presence or absence of a user's leg is arranged on the frame 11 at a position below the pair of handles 14.
 次に、電動アシスト歩行車10の各構成要素について更に説明する。 Next, each component of the electrically power assisted walking vehicle 10 will be further described.
 フレーム11は、左右一対のパイプフレーム31と、一対のパイプフレーム31同士を横方向に連結する連結フレーム32とを有している。 The frame 11 has a pair of left and right pipe frames 31 and a connecting frame 32 that connects the pair of pipe frames 31 in the lateral direction.
 左右一対のパイプフレーム31の各々の前端側には、一対の前輪12がそれぞれ設けられている。すなわち、前輪は電動アシスト歩行車10の車体の幅方向に離れて2つ配置されている。一対の前輪12のうち、とくに方向R側にあるものを右前輪、とくに方向L側にあるものを右前輪と呼んで区別するものとする。一対の前輪12は、それぞれ前後方向に回転可能であるとともに、鉛直軸周りにも回動可能に設けられている。 A pair of front wheels 12 are provided on the front end side of each of the pair of left and right pipe frames 31. That is, two front wheels are arranged apart from each other in the width direction of the vehicle body of the electrically assisted walking vehicle 10. Of the pair of front wheels 12, the one on the R side is called the right front wheel, and the one on the L side is called the right front wheel to distinguish them. Each of the pair of front wheels 12 is rotatable in the front-rear direction and is also rotatably provided around a vertical axis.
 また、左右一対のパイプフレーム31の各々の後端側には、一対の後輪13がそれぞれ設けられている。一対の後輪13のうち、とくに方向R側にあるものを右後輪、とくに方向L側にあるものを右後輪と呼んで区別するものとする。各後輪13は、前後方向に回転可能に設けられている。その結果、電動アシスト歩行車10を前進および後退させることが容易であり、また、容易に左右方向に移動または方向転換(旋回)させることができる。 Further, a pair of rear wheels 13 are provided on the rear end side of each of the pair of left and right pipe frames 31. Of the pair of rear wheels 13, the one on the R side is called the right rear wheel, and the one on the L side is called the right rear wheel to distinguish them. Each rear wheel 13 is provided so as to be rotatable in the front-rear direction. As a result, the electrically assisted walking vehicle 10 can be easily moved forward and backward, and can be easily moved or changed direction (turned) in the left-right direction.
 また、各後輪13の外周には、機械的に接触可能なブレーキシュー33が設けられる。
 ブレーキシュー33は、ワイヤー35を介してブレーキユニット15のブレーキレバー34に接続されている。したがって、使用者がブレーキレバー34を手動で操作することに応じて、ブレーキシュー33が作動し、後輪13を制動する。なお、機械的なブレーキの構成については、これに限られず、任意の構成のものを用いることができる。
Further, a brake shoe 33 that can be mechanically contacted is provided on the outer periphery of each rear wheel 13.
The brake shoe 33 is connected to the brake lever 34 of the brake unit 15 via a wire 35. Therefore, in response to the user manually operating the brake lever 34, the brake shoe 33 operates to brake the rear wheels 13. The mechanical brake configuration is not limited to this, and any configuration can be used.
 さらに、左右一対のパイプフレーム31の各々の後端側から転倒防止部材36が設けられる。転倒防止部材36は、電動アシスト歩行車10の一対の前輪12が地面から浮き上がって、後方に転倒することを防止するものである。 Further, a fall prevention member 36 is provided from the rear end side of each of the pair of left and right pipe frames 31. The fall prevention member 36 prevents a pair of front wheels 12 of the electrically power assisted walking vehicle 10 from rising from the ground and falling backward.
 左右一対のパイプフレーム31の上端部には、それぞれ一対のハンドル14が設けられている。一対のハンドル14は、それぞれ使用者の手によって把持される。一対のハンドル14は、棒状部材41を有する。棒状部材41には、それぞれグリップ部42が設けられている。また、棒状部材41には、各々ブレーキレバー34が取り付けられている。なお、ハンドル14の構成については、これに限られず、例えば左右一対のパイプフレーム31をつなぐように水平方向に伸びるバーハンドルを設け、このバーハンドルに左右一対のハンドル14としてグリップ部42を設けてもよい。 A pair of handles 14 are provided at the upper ends of the pair of left and right pipe frames 31. The pair of handles 14 are each gripped by the user's hand. The pair of handles 14 have a rod-shaped member 41. Each rod-shaped member 41 is provided with a grip portion 42. Further, a brake lever 34 is attached to each of the rod-shaped members 41. The configuration of the handle 14 is not limited to this, and for example, a bar handle extending in the horizontal direction is provided so as to connect a pair of left and right pipe frames 31, and a grip portion 42 is provided as a pair of left and right handles 14 on this bar handle. May be good.
 本実施の形態において、モータ20として、サーボモータ、ステッピングモータ、ACモータ、DCモータなど、任意のモータを用いることができる。また、減速機と一体的に形成されたモータ20を用いてもよい。このモータ20は、後輪13の動作をアシストし、走行用に後輪13を前進方向に駆動させる。また本実施の形態において、モータ20は、前輪12を後輪13に対して持ち上げる駆動部としての役割も果たす。すなわち、モータ20(駆動部)の駆動力は、前輪12を持ち上げる方向のモーメントを発生させる。 In the present embodiment, any motor such as a servo motor, a stepping motor, an AC motor, or a DC motor can be used as the motor 20. Further, the motor 20 integrally formed with the speed reducer may be used. The motor 20 assists the operation of the rear wheels 13 and drives the rear wheels 13 in the forward direction for traveling. Further, in the present embodiment, the motor 20 also serves as a driving unit that lifts the front wheels 12 with respect to the rear wheels 13. That is, the driving force of the motor 20 (driving unit) generates a moment in the direction of lifting the front wheels 12.
 さらに、モータ20は、発電ブレーキとしての機能も有していてもよい。この場合、モータ20は、後輪13を制動する制動部としての役割を更に果たす。モータ20が後輪13を制動する場合、モータ20を発電機として動作させ、その抵抗力によってブレーキをかける。なお、モータ20が制動部としての役割を果たす場合、モータ20を逆向きに駆動させる逆転ブレーキとして用いてもよい。後輪13を制動する制動部はモータ20と異なる構成要素であってもよい。このような制動部の例としては、電磁ブレーキや機械的ブレーキなどが挙げられる。 Further, the motor 20 may also have a function as a dynamic brake. In this case, the motor 20 further serves as a braking unit for braking the rear wheels 13. When the motor 20 brakes the rear wheels 13, the motor 20 is operated as a generator, and the brake is applied by the resistance force thereof. When the motor 20 serves as a braking unit, it may be used as a reverse brake that drives the motor 20 in the opposite direction. The braking portion that brakes the rear wheel 13 may be a component different from that of the motor 20. Examples of such a braking unit include an electromagnetic brake and a mechanical brake.
 なお、左右のモータ20は、制御部16によって左右のモータ20がそれぞれ独立して制御されるようになっていてもよい。ただし、車体右側の車輪と車体左側の車輪の速度や加速度に差をつける必要がない場合、制御部16は左右一体でモータ20の制御を行ってもよい。 The left and right motors 20 may be controlled independently by the control unit 16. However, if it is not necessary to make a difference in speed or acceleration between the wheels on the right side of the vehicle body and the wheels on the left side of the vehicle body, the control unit 16 may control the motor 20 integrally on the left and right sides.
 本実施の形態において、モータ20は各後輪13(左後輪、右後輪)にそれぞれ連結されているものとする。ただし、同一のモータが一対の前輪12および一対の後輪13の全てに連結された構成を排除するものではない。 In the present embodiment, it is assumed that the motor 20 is connected to each of the rear wheels 13 (left rear wheel, right rear wheel). However, the configuration in which the same motor is connected to all of the pair of front wheels 12 and the pair of rear wheels 13 is not excluded.
 制御部16は、電動アシスト歩行車10の駆動部(例えば、上述のモータ20)を制御し段差の乗り越え制御を行う。ここで、段差の乗り越え制御とは、車体の前輪を段差の上に乗り上げさせるための制御のことをいう。判断部16aは、計測部の計測値に基づいて段差の乗り越え制御を行うか否かを判断する。例えば、判断部16aは、計測部の計測値に基づいて前輪12が段差に接触したと推定されるときに段差の乗り越え制御を行うと判断する。計測部の例としては、後述の加速度センサ22a、81r~82lおよび速度センサ22bが挙げられる。例えば、計測部は、車体を減速させる方向への加速度または車体の前後方向の加速度の少なくともいずれか一方と車体の幅方向の加速度を計測してもよい。これにより、左前輪または右前輪のいずれが段差に接触した(片側接触した)のか、それとも左前輪および右前輪が段差に接触した(両輪接触した)のかを判別することができるようになる。 The control unit 16 controls the drive unit (for example, the motor 20 described above) of the electrically assisted walking vehicle 10 to control overcoming a step. Here, the step overcoming control refers to the control for allowing the front wheels of the vehicle body to ride on the step. The determination unit 16a determines whether or not to perform step overcoming control based on the measured value of the measurement unit. For example, the determination unit 16a determines that the step overcoming control is performed when the front wheel 12 is estimated to have come into contact with the step based on the measured value of the measurement unit. Examples of the measuring unit include acceleration sensors 22a, 81r to 82l and speed sensors 22b, which will be described later. For example, the measuring unit may measure at least one of acceleration in the direction of decelerating the vehicle body and acceleration in the front-rear direction of the vehicle body and acceleration in the width direction of the vehicle body. This makes it possible to determine whether the left front wheel or the right front wheel is in contact with the step (one-sided contact), or whether the left front wheel and the right front wheel are in contact with the step (both wheels are in contact).
 例えば、制御部16および判断部16aは、バッテリ21の近傍に設けられている。制御部16および判断部16aは、各種の命令またはプログラムを実行可能なプロセッサを備えていてもよい。制御部16および判断部16aは、例えば、電動アシスト歩行車10(電動車両)の制御プログラムを実行する。また、制御部16および判断部16aは、例えばASIC、FPGA、PLDなどのハードウェア回路を備えていてもよい。また、電動アシスト歩行車10は、記憶部16bを備えていてもよい。制御部16および判断部16aは、記憶部16bにデータの読み書きを行うことができる。制御部16および判断部16aが実行する命令、プログラムまたは命令、プログラムの実行に使われるデータ、各種センサ(計測部)の計測値は記憶部16bに保存される。共通のハードウェア回路を用いて制御部16および判断部16aを実装してもよい。また、共通のプログラムを用いて制御部16および判断部16aを実装してもよい。また、制御部16および判断部16aは、別々のハードウェア回路またはプログラムによって実装されていてもよい。 For example, the control unit 16 and the determination unit 16a are provided in the vicinity of the battery 21. The control unit 16 and the determination unit 16a may include a processor capable of executing various instructions or programs. The control unit 16 and the determination unit 16a execute, for example, a control program of the electrically assisted walking vehicle 10 (electric vehicle). Further, the control unit 16 and the determination unit 16a may include hardware circuits such as ASIC, FPGA, and PLD. Further, the electrically assisted walking vehicle 10 may include a storage unit 16b. The control unit 16 and the determination unit 16a can read and write data to and from the storage unit 16b. Instructions, programs or instructions executed by the control unit 16 and the determination unit 16a, data used for executing the program, and measurement values of various sensors (measurement units) are stored in the storage unit 16b. The control unit 16 and the determination unit 16a may be mounted using a common hardware circuit. Further, the control unit 16 and the determination unit 16a may be implemented by using a common program. Further, the control unit 16 and the determination unit 16a may be implemented by separate hardware circuits or programs.
 駆動部によって行われる段差の乗り越え制御は、駆動部の車輪を駆動する駆動力を増やす制御を含んでいてもよい。また、段差の乗り越え制御は、車体を旋回させる制御を含んでいてもよい。段差の乗り越え制御は、車体を旋回させながら駆動力を増やす制御を含んでいてもよい。制御部16および判断部16aが実行する処理の詳細については後述する。 The step overcoming control performed by the drive unit may include control to increase the driving force for driving the wheels of the drive unit. Further, the step overcoming control may include a control for turning the vehicle body. The step overcoming control may include a control for increasing the driving force while turning the vehicle body. Details of the processing executed by the control unit 16 and the determination unit 16a will be described later.
 記憶部16bは、各種のデータを保存可能な記憶領域を提供する。記憶部16bは制御部16の近傍に設けられていてもよいし、制御部16の一部であってもよい。記憶部16bは、例えばSRAM、DRAMなどの揮発性メモリであってもよいし、NAND、MRAM、FRAMなどの不揮発性メモリでもよい。またハードディスク、SSDなどのストレージ装置や、外部の記憶装置であってもよく、デバイスの種類については特に限定しない。また、記憶部16bは複数の種類のメモリデバイスやストレージデバイスの組み合わせであってもよい。 The storage unit 16b provides a storage area capable of storing various types of data. The storage unit 16b may be provided in the vicinity of the control unit 16 or may be a part of the control unit 16. The storage unit 16b may be, for example, a volatile memory such as SRAM or DRAM, or a non-volatile memory such as NAND, MRAM, or FRAM. Further, it may be a storage device such as a hard disk or SSD, or an external storage device, and the type of device is not particularly limited. Further, the storage unit 16b may be a combination of a plurality of types of memory devices and storage devices.
 加速度センサ22aは、車体の前後方向の加速度と、車体の幅方向の加速度を計測する。ここで、車体の前後方向の加速度とは、図1の方向FBにおける加速度のことをいう。また、車体の幅方向の加速度とは、図1の方向Lおよび方向Rにおける加速度のことをいう。後述するように、加速度センサ22aは、車体の前後方向の加速度に加えて、車体を減速させる方向への加速度の計測を行ってもよい。また、加速度センサ22aは、車体の前後方向の加速度に代わり、車体を減速させる方向への加速度の計測を行ってもよい。制御部16は、加速度センサ22aによって計測された加速度を取得することができる。車体に加わる加速度を計測するセンサの例としては、MEMSセンサなどが挙げられるが、どのような種類のデバイスを使ってもよい。 The acceleration sensor 22a measures the acceleration in the front-rear direction of the vehicle body and the acceleration in the width direction of the vehicle body. Here, the acceleration in the front-rear direction of the vehicle body means the acceleration in the direction FB of FIG. Further, the acceleration in the width direction of the vehicle body means the acceleration in the direction L and the direction R in FIG. As will be described later, the acceleration sensor 22a may measure the acceleration in the direction of decelerating the vehicle body in addition to the acceleration in the front-rear direction of the vehicle body. Further, the acceleration sensor 22a may measure the acceleration in the direction of decelerating the vehicle body instead of the acceleration in the front-rear direction of the vehicle body. The control unit 16 can acquire the acceleration measured by the acceleration sensor 22a. An example of a sensor that measures the acceleration applied to the vehicle body is a MEMS sensor or the like, but any kind of device may be used.
 また、圧電センサ、ひずみゲージ、操作力センサ(例えば、グリップセンサ)などを使って電動アシスト歩行車10または電動アシスト歩行車10のいずれかの構成要素にかかる力を計測し、加速度の推定値を求めてもよい。 Further, a piezoelectric sensor, a strain gauge, an operating force sensor (for example, a grip sensor) or the like is used to measure the force applied to the component of either the electrically assisted walking vehicle 10 or the electrically assisted walking vehicle 10, and the estimated value of acceleration is obtained. You may ask.
 なお、加速度センサは電動アシスト歩行車10の各車輪の回転方向の加速度が計測してもよい。例えば、図1の加速度センサ81r~82lは各車輪の回転方向の加速度を計測する。具体的に、加速度センサ81rは右前輪(方向R側の前輪12)の加速度を計測する。加速度センサ81lは右前輪(方向L側の前輪12)の加速度を計測する。加速度センサ82rは右後輪(方向R側の後輪13)の加速度を計測する。加速度センサ82lは右後輪(方向L側の後輪13)の加速度を計測する。 The acceleration sensor may measure the acceleration in the rotation direction of each wheel of the electrically assisted walking vehicle 10. For example, the acceleration sensors 81r to 82l in FIG. 1 measure the acceleration in the rotational direction of each wheel. Specifically, the acceleration sensor 81r measures the acceleration of the right front wheel (front wheel 12 on the direction R side). The acceleration sensor 81l measures the acceleration of the right front wheel (front wheel 12 on the L side in the direction L). The acceleration sensor 82r measures the acceleration of the right rear wheel (rear wheel 13 on the direction R side). The acceleration sensor 82l measures the acceleration of the right rear wheel (rear wheel 13 on the L side in the direction L).
 加速度センサ81r~82lは直接、各車輪の加速度を計測してもよいし、モータ20の加速度を計測し、車輪の加速度の推定値を提供してもよい。また、車輪またはモータ20の速度を計測し、加速度の推定値を計算してもよい。また、車輪またはモータ20の時間当たりの回転数を計測し、回転数の時間微分を計算し、加速度の推定値を求めてもよい。制御部16は、加速度センサ81r~82lによって計測された加速度を取得することができる。 The acceleration sensors 81r to 82l may directly measure the acceleration of each wheel, or may measure the acceleration of the motor 20 and provide an estimated value of the wheel acceleration. Alternatively, the speed of the wheel or the motor 20 may be measured and an estimated value of acceleration may be calculated. Further, the number of revolutions of the wheel or the motor 20 per hour may be measured, the time derivative of the number of revolutions may be calculated, and the estimated value of acceleration may be obtained. The control unit 16 can acquire the acceleration measured by the acceleration sensors 81r to 82l.
 速度センサ22bは、後輪13の回転数または速度を検知し、この回転数または速度の信号を制御部16に対して送信する。速度センサ22bは、例えば、制御部16の近傍に設置することができる。なお、速度センサ22bは、電動アシスト歩行車10の一対の後輪13の内部に内蔵させてもよい。あるいは、速度センサ22bは、一対の前輪12の内部にのみ内蔵させてもよく、一対の前輪12および一対の後輪13の全てに内蔵されていてもよい。速度センサの一例として、角速度を計測するジャイロセンサが挙げられる。ジャイロセンサを用いることにより、左右のいずれの車輪が段差などの物体に衝突したのか検出することができる。 The speed sensor 22b detects the rotation speed or speed of the rear wheel 13 and transmits a signal of this rotation speed or speed to the control unit 16. The speed sensor 22b can be installed, for example, in the vicinity of the control unit 16. The speed sensor 22b may be built in the pair of rear wheels 13 of the electrically power assisted walking vehicle 10. Alternatively, the speed sensor 22b may be built only inside the pair of front wheels 12, or may be built in all of the pair of front wheels 12 and the pair of rear wheels 13. An example of a speed sensor is a gyro sensor that measures an angular velocity. By using the gyro sensor, it is possible to detect which of the left and right wheels collides with an object such as a step.
 モータ20がブラシレスモータである場合は、速度センサ22bは、モータ20に内蔵されたホール素子を用いて車輪の回転数または速度、電動アシスト歩行車10の速度を算出するものであってもよい。 When the motor 20 is a brushless motor, the speed sensor 22b may calculate the rotation speed or speed of the wheels and the speed of the electrically assisted walking vehicle 10 by using the Hall element built in the motor 20.
 なお、モータ20の逆起電力から速度検出を行なうことができる場合には、この逆起電力から車輪の回転数または速度、電動アシスト歩行車10の速度を算出するように構成し、各後輪13または各前輪12の角速度検出を行なうことができる場合は、この角速度から車輪の回転数または速度、電動アシスト歩行車10の速度を算出するように構成することができる。 If the speed can be detected from the countercurrent force of the motor 20, the rotation speed or speed of the wheels and the speed of the electrically assisted walking vehicle 10 are calculated from the countercurrent force, and each rear wheel is configured. When the angular velocity of 13 or each of the front wheels 12 can be detected, it can be configured to calculate the number of rotations or speed of the wheels and the speed of the electrically assisted walking vehicle 10 from this angular velocity.
 また、速度センサ22bは、一対の前輪12および一対の後輪13に内蔵することに限定されず、フレーム11、一対のハンドル14など、その他任意の部材に取り付けてもよい。また、加速度センサで計測された加速度を積分し、速度を計算してもよい。なお、GPS(グローバルポジショニングシステム)が用いられる場合、座標の時間当たりの変位に基づいて、速度を計算してもよい。 Further, the speed sensor 22b is not limited to being built in the pair of front wheels 12 and the pair of rear wheels 13, and may be attached to any other member such as the frame 11 and the pair of handles 14. Alternatively, the speed may be calculated by integrating the acceleration measured by the acceleration sensor. When GPS (Global Positioning System) is used, the speed may be calculated based on the displacement of the coordinates per time.
 速度センサ22bと、加速度センサ81r~82lとを使って車体を減速させる方向への加速度(負の加速度)を計測してもよい。まず、速度センサ22bの計測値に基づき、車体の進行方向を特定する。そして、加速度センサ81r~82lによって計測される加速度の方向を特定する。計測された加速度の方向が、車体の進行方向と反対方向の成分を含む場合、当該成分の加速度を、車体を減速させる方向への加速度とすることができる。 The speed sensor 22b and the acceleration sensors 81r to 82l may be used to measure the acceleration (negative acceleration) in the direction of decelerating the vehicle body. First, the traveling direction of the vehicle body is specified based on the measured value of the speed sensor 22b. Then, the direction of the acceleration measured by the acceleration sensors 81r to 82l is specified. When the direction of the measured acceleration includes a component in the direction opposite to the traveling direction of the vehicle body, the acceleration of the component can be the acceleration in the direction of decelerating the vehicle body.
 傾き検知センサ23は、電動アシスト歩行車10の傾き、例えば電動アシスト歩行車10が平坦面にあるか傾斜面にあるかなどを検知し、この電動アシスト歩行車10の傾きに関する信号を判断部16aに対して送信する。判断部16aは、傾きセンサ23の計測値に基づいて、電動アシスト歩行車10が段差乗り越えに成功したか否かを推定してもよい。傾き検知センサ23は、電動アシスト歩行車10の上部、例えば一対のハンドル14内部に設けられている。傾き検知センサ23は電動アシスト歩行車10の下部に設けることもできるが、上部に配置することで、下部に配置する場合に比べ、電動アシスト歩行車10の姿勢を確実に検知することができる。なお、傾き検知センサ23として、ジャイロセンサを使ってもよい。また、加速度センサを用いて電動アシスト歩行車10の傾きを検知してもよい。 The tilt detection sensor 23 detects the tilt of the electrically assisted walking vehicle 10, for example, whether the electrically assisted walking vehicle 10 is on a flat surface or an inclined surface, and determines a signal relating to the tilt of the electrically assisted walking vehicle 10 in the determination unit 16a. Send to. The determination unit 16a may estimate whether or not the electrically assisted walking vehicle 10 has succeeded in getting over the step based on the measured value of the inclination sensor 23. The tilt detection sensor 23 is provided on the upper part of the electrically assisted walking vehicle 10, for example, inside a pair of handles 14. The tilt detection sensor 23 can be provided at the lower part of the electrically assisted walking vehicle 10, but by arranging the tilt detection sensor 23 at the upper part, the posture of the electrically assisted walking vehicle 10 can be reliably detected as compared with the case where the tilt detection sensor 23 is arranged at the lower part. A gyro sensor may be used as the tilt detection sensor 23. Further, the inclination of the electrically assisted walking vehicle 10 may be detected by using the acceleration sensor.
 図3は、脚部検知センサ25の一例を示す模式図である。図3に示すように、脚部検知センサ25は、連結フレーム32に設けられる。脚部検知センサ25の例としては、画像センサ、赤外線センサなどが挙げられる。脚部検知センサ25は、電動アシスト歩行車10の使用者の脚元からの距離を測定することで、脚の動作を検知することができる。 FIG. 3 is a schematic view showing an example of the leg detection sensor 25. As shown in FIG. 3, the leg detection sensor 25 is provided on the connecting frame 32. Examples of the leg detection sensor 25 include an image sensor, an infrared sensor, and the like. The leg detection sensor 25 can detect the movement of the leg by measuring the distance from the leg of the user of the electrically assisted walking vehicle 10.
 具体的には、図3の脚部検知センサ25は、範囲ARにおいて使用者の脚が動いているのか、それとも、停止しているのか、離れているのか、近づいているのか、後ろ向きになって座面37に座ろうとしているのかを判定することができる。 Specifically, the leg detection sensor 25 in FIG. 3 faces backwards depending on whether the user's leg is moving, stopped, away, or approaching in the range AR. It is possible to determine whether or not the person is trying to sit on the seat surface 37.
 図4および図5は、把持センサ24を説明するための概略図である。 4 and 5 are schematic views for explaining the grip sensor 24.
 一対のハンドル14のグリップ部42には、それぞれ使用者が手で電動アシスト歩行車10を押したり引いたりする操作力(グリップ力)を検知する把持センサ24が設けられている。把持センサ24は棒状部材41に対する、押し方向および引き方向のいずれか一方または両方への移動を図示しない弾性部材(例えばバネ)によって規制されており、さらにその移動を検知するためのポテンショメータを備えている。 The grip portions 42 of the pair of handles 14 are provided with grip sensors 24 that detect the operating force (grip force) that the user manually pushes or pulls the electrically assisted walking vehicle 10. The grip sensor 24 is regulated by an elastic member (for example, a spring) (for example, a spring) whose movement in one or both of the pushing direction and the pulling direction with respect to the rod-shaped member 41 is not shown, and further includes a potentiometer for detecting the movement. There is.
 上述したように、グリップ部42は、棒状部材41に対して前後方向に移動が可能であり、図4および図5の矢印方向(前方向)に移動した場合、使用者によって電動アシスト歩行車10が押されていると判定でき、図4および図5の矢印の反対方向(後方向)に移動した場合は、使用者によって電動アシスト歩行車10が引っ張られていると判定でき、いずれの方向にも移動していない場合は、そのいずれでも無いと判定できる。 As described above, the grip portion 42 can move in the front-rear direction with respect to the rod-shaped member 41, and when it moves in the direction of the arrows (forward direction) in FIGS. 4 and 5, the electrically assisted walking vehicle 10 is moved by the user. When it can be determined that is pressed and the vehicle moves in the opposite direction (rear direction) of the arrows in FIGS. 4 and 5, it can be determined that the electrically power assisted walking vehicle 10 is being pulled by the user, and in either direction. If it has not moved, it can be determined that it is neither of them.
 その結果、使用者が電動アシスト歩行車10を前方に移動させようとしているのか、使用者が電動アシスト歩行車10を後方に移動させようとしているのか、使用者に電動アシスト歩行車10の状態を変化させる意図がないのかを認識することができる。 As a result, whether the user is trying to move the electrically assisted walking vehicle 10 forward or the user is trying to move the electrically assisted walking vehicle 10 backward, the user is informed of the state of the electrically assisted walking vehicle 10. It is possible to recognize whether there is an intention to change it.
 左右一対のハンドル14には、それぞれ別個の把持センサ24が設けられている。各把持センサ24は、それぞれ独立してハンドル14に対する操作力(グリップ力)を検知するとともに、検知した操作力を制御部16または判断部16aの少なくともいずれかに対して送信する。このため、制御部16または判断部16aの少なくともいずれかは、使用者によって一対のハンドル14の一方のみが把持されている(片手持ち状態)か、一対のハンドル14の両方とも把持されていない(両手放し状態)か、あるいは、一対のハンドル14の両方が把持されている(両手持ち状態)かの認識を行うことができる。 The pair of left and right handles 14 are provided with separate grip sensors 24. Each grip sensor 24 independently detects an operating force (grip force) with respect to the handle 14, and transmits the detected operating force to at least one of the control unit 16 and the determination unit 16a. Therefore, at least one of the control unit 16 and the determination unit 16a is gripped by the user only on one of the pair of handles 14 (one-handed holding state), or neither of the pair of handles 14 is gripped (in a one-handed state). It is possible to recognize whether the two-handed state is released) or whether both of the pair of handles 14 are gripped (both-handed state).
 なお、図5に示すように、グリップ部42に、グリップ部42または一対のパイプフレーム31にかかるモーメントが検知できるように、ひずみセンサ38(例えばひずみゲージ)を設け、これを把持センサ24としてもよい。この場合、グリップ部42は、棒状部材41に対して固定されることになるため、構成をより簡易にすることができる。また、グリップ部42へ、ジョイスティック、押しボタンまたは使用者の手を検出する近接センサを設け、これを把持センサ24としてもよい。すなわち、「操作部を介して使用者が電動車両を前進させようとしている(使用者が電動車両の前進操作を行っている)と判断する」ことには、使用者が手や身体の一部で操作部を押したり引いたりすることにより、操作部に付与された使用者の操作力を検出する場合のほか、使用者の操作をジョイスティックや押しボタンなどのスイッチ手段によって検出する場合を含む。 As shown in FIG. 5, a strain sensor 38 (for example, a strain gauge) is provided in the grip portion 42 so that the moment applied to the grip portion 42 or the pair of pipe frames 31 can be detected, and this can also be used as the grip sensor 24. Good. In this case, since the grip portion 42 is fixed to the rod-shaped member 41, the configuration can be simplified. Further, the grip portion 42 may be provided with a proximity sensor for detecting a joystick, a push button, or a user's hand, and this may be used as the grip sensor 24. That is, in order to "determine that the user is trying to advance the electric vehicle through the operation unit (the user is performing the forward operation of the electric vehicle)", the user is a part of the hand or body. In addition to the case where the user's operating force applied to the operation unit is detected by pushing or pulling the operation unit with, the case where the user's operation is detected by a switch means such as a joystick or a push button is included.
(電動アシスト歩行車の概要)
 電動アシスト歩行車10(電動車両)は、車体に設けられた前輪または後輪の少なくともいずれかを含む車輪を駆動する駆動部と、前記車輪に段差を乗り越えさせる段差の乗り越え制御を前記駆動部に対して行う制御部16と、車輪が設けられる車体に加わる速度または加速度の少なくともいずれか一方を計測する計測部と、計測部の計測値に基づいて段差の乗り越え制御を行うか否かを判断する判断部16aとを備えている。電動アシスト歩行車10の制御部は、判断部16aが計測部の計測値に基づいて前輪が段差に接触したと判断したときに駆動部の車輪を駆動する駆動力を増やす制御または車体を旋回させる制御を行ってもよい。これにより、電動アシスト歩行車10は、段差への衝突(接触)を検出し、なおかつ段差との接触の態様を判定することができる。また、電動アシスト歩行車10は、適切なタイミングにおいて、適切な内容の段差乗り越え動作を行うことができる。
(Overview of electrically power assisted walking vehicle)
The electrically assisted walking vehicle 10 (electric vehicle) has a drive unit that drives a wheel including at least one of the front wheels or the rear wheels provided on the vehicle body, and the drive unit that controls the step overcoming of the wheel to get over the step. It is determined whether or not to perform step overcoming control based on the control unit 16 to be performed, the measurement unit that measures at least one of the speed or acceleration applied to the vehicle body on which the wheels are provided, and the measurement value of the measurement unit. It is provided with a determination unit 16a. The control unit of the electrically power assisted walking vehicle 10 controls to increase the driving force for driving the wheels of the drive unit or turns the vehicle body when the determination unit 16a determines that the front wheels have come into contact with the step based on the measured value of the measurement unit. Control may be performed. As a result, the electrically assisted walking vehicle 10 can detect a collision (contact) with the step and determine the mode of contact with the step. In addition, the electrically power assisted walking vehicle 10 can perform an operation of overcoming a step having an appropriate content at an appropriate timing.
 なお、以下では、制御部16が段差乗り越え制御のアルゴリズムに基づく指令を駆動部に送信し、駆動部が動作する場合を例に説明をする。ただし、各構成要素における処理の割り当ては、これとは異なっていてもよい。例えば、制御部16が段差乗り越え制御の開始指令を駆動部に送信し、駆動部は、自身に設定されている段差乗り越え制御アルゴリズムに基づく動作を開始してもよい。 In the following, a case where the control unit 16 transmits a command based on the step overcoming control algorithm to the drive unit and the drive unit operates will be described as an example. However, the processing assignment in each component may be different. For example, the control unit 16 may transmit a step overcoming control start command to the driving unit, and the driving unit may start an operation based on the step overcoming control algorithm set in itself.
 判断部16aは、計測部の(速度または加速度の少なくともいずれかを含む)計測値に基づいて、電動アシスト歩行車が段差との接触と、使用者による停止操作、段差以外の物体との衝突を区別する。また、判断部16aは、当該計測値に基づいて段差に対する電動アシスト歩行車の進行方向(段差に対する電動アシスト歩行車の角度)を推定することができる。 Based on the measured values (including at least one of the speed and acceleration) of the measuring unit, the determination unit 16a causes the electrically assisted walking vehicle to make contact with the step, stop operation by the user, and collide with an object other than the step. Distinguish. Further, the determination unit 16a can estimate the traveling direction of the electrically assisted walking vehicle with respect to the step (angle of the electrically assisted walking vehicle with respect to the step) based on the measured value.
 制御部16は、段差との接触を検出したら、推定した段差に対する電動アシスト歩行車の進行方向(角度)に応じた段差の乗り越え動作を行う。段差の乗り越え動作の例としては、車体の旋回、前輪に連結された駆動部によるアシスト、車体の旋回と前輪に連結された駆動部によるアシストの組み合わせが挙げられる。 When the control unit 16 detects contact with the step, the control unit 16 performs an operation of overcoming the step according to the traveling direction (angle) of the electrically assisted walking vehicle with respect to the estimated step. Examples of the step overcoming operation include turning of the vehicle body, assist by the drive unit connected to the front wheels, and combination of turning of the vehicle body and assist by the drive unit connected to the front wheels.
 なお、電動アシスト歩行車(電動車両)の制御方法は、車体に加わる速度または加速度の少なくともいずれかを計測するステップと、速度または加速度の少なくともいずれかに基づき、段差の有無を判定するステップと、段差があると判定された場合には、段差の乗り越え動作を実行するステップとを含んでいてもよい。 The control method of the electrically assisted walking vehicle (electric vehicle) includes a step of measuring at least one of the speed and acceleration applied to the vehicle body, a step of determining the presence or absence of a step based on at least one of the speed and acceleration, and the step of determining the presence or absence of a step. When it is determined that there is a step, the step of executing the step overcoming operation may be included.
 電動アシスト歩行車(電動車両)の制御は、電動アシスト歩行車に搭載されたプログラム、プロセッサや電子回路などのハードウェアまたはこれらの組み合わせによって実現されていてもよい。また、電動アシスト歩行車は外部からの無線信号を受信し、外部の制御装置(情報処理装置)から送信された制御信号に基づいて制御されてもよい。 Control of the electrically assisted walking vehicle (electric vehicle) may be realized by hardware such as a program, a processor, an electronic circuit, etc. mounted on the electrically assisted walking vehicle, or a combination thereof. Further, the electrically assisted walking vehicle may receive a wireless signal from the outside and be controlled based on the control signal transmitted from the external control device (information processing device).
 (本実施の形態の作用)
 次に、上述の構成を備えた本実施の形態の作用について説明する。図6は、制御部16の動作の一例を説明するためのフローチャートである。
(Action of the present embodiment)
Next, the operation of the present embodiment having the above-described configuration will be described. FIG. 6 is a flowchart for explaining an example of the operation of the control unit 16.
 はじめに、制御部16は、使用者が電動アシスト歩行車10を前進操作中に、前輪12が段差に衝突したか否かを判断する。この場合、まず制御部16は、左右一対のハンドル14にそれぞれ設けられた把持センサ24からで検知される信号に基づいて、左右一対のハンドル14が、一定時間以上(例えば1秒以上)一定以上の力で押されているか否かを判断する(ステップS101)。 First, the control unit 16 determines whether or not the front wheel 12 has collided with the step while the user is operating the electrically assisted walking vehicle 10 forward. In this case, first, the control unit 16 has the left and right pair of handles 14 for a certain period of time or more (for example, 1 second or more) based on the signals detected by the grip sensors 24 provided on the left and right pair of handles 14, respectively. It is determined whether or not the button is pushed by the force of (step S101).
 なお、制御部16は、操作力の値(絶対値)に加え、操作力の変化の値(絶対値)を合わせて用いることにより、ハンドル14が使用者の手によって一定以上の力で押されているか否かを判定してもよい。この場合、ハンドル14が使用者の手によって一定以上の力で押されているか否かをより高い精度で判定することができる。例えば、操作力の絶対値が所定値以下であり、かつ操作力の変化(操作力の微分値)の絶対値が所定値以下である場合に、当該ハンドル14が使用者の手によって一定以上の力で押されていないと判定し、それ以外の場合に、当該ハンドル14が使用者の手によって一定以上の力で押されていると判定してもよい。また、操作力および操作力の変化が、各所定値で区切られた長方形の数値範囲に内接する楕円領域内にある場合、当該ハンドル14が使用者の手によって把持されていないと判定してもよい。この場合、さらに高い精度での判定を行うことができる。 The control unit 16 uses the value of the change in the operating force (absolute value) in addition to the value of the operating force (absolute value), so that the handle 14 is pushed by the user's hand with a force equal to or higher than a certain level. It may be determined whether or not it is. In this case, it is possible to determine with higher accuracy whether or not the handle 14 is pushed by the user's hand with a force equal to or higher than a certain level. For example, when the absolute value of the operating force is equal to or less than a predetermined value and the absolute value of the change in the operating force (differential value of the operating force) is equal to or less than the predetermined value, the handle 14 is set to a certain value or more by the user's hand. It may be determined that the handle 14 is not pushed by a force, and in other cases, it may be determined that the handle 14 is pushed by a user's hand with a certain force or more. Further, when the operating force and the change in the operating force are within the elliptical region inscribed in the numerical range of the rectangle separated by each predetermined value, even if it is determined that the handle 14 is not gripped by the user's hand. Good. In this case, the determination can be made with higher accuracy.
 ここで、一対のハンドル14が一定以上の力で押されていない場合(ステップS101のNo)、使用者が電動アシスト歩行車10を前進させようとしていないと判断し、以下の制御を行わない。この場合、制御部16は、モータ20を発電ブレーキとして用いることにより後輪13を制動してもよい。 Here, when the pair of handles 14 are not pushed by a certain force or more (No in step S101), it is determined that the user is not trying to move the electrically assisted walking vehicle 10 forward, and the following control is not performed. In this case, the control unit 16 may brake the rear wheels 13 by using the motor 20 as a dynamic brake.
 一方、一対のハンドル14が一定時間以上一定以上の力で押されている場合(ステップS101のYES)、制御部16は、使用者が電動アシスト歩行車10を前進させようとしていると判断する。続いて制御部16は、前輪12が段差に衝突したか否かを判定する(ステップS102)。 On the other hand, when the pair of handles 14 are pushed with a certain force or more for a certain period of time or more (YES in step S101), the control unit 16 determines that the user is trying to move the electrically assisted walking vehicle 10 forward. Subsequently, the control unit 16 determines whether or not the front wheel 12 has collided with the step (step S102).
 具体的には、速度センサ22bが後輪13の回転数または速度を検知し、この回転数または速度の信号を制御部16に対して送信する。制御部16は、この送信された信号に基づき後輪13の速度を算出し、この速度と予め定められた所定の速度(しきい値)Vとを比較する。 Specifically, the speed sensor 22b detects the rotation speed or speed of the rear wheel 13, and transmits a signal of this rotation speed or speed to the control unit 16. The control unit 16 calculates the speed of the rear wheels 13 based on the transmitted signal, and compares this speed with a predetermined speed (threshold value) V.
 仮に後輪13が駆動している場合、すなわち後輪13が所定の速度Vを上回る速度で動いている場合(ステップS102のYES)、制御部16は、電動アシスト歩行車10が通常の状態で走行していると判断し、モータ20によって後輪13の動きをアシストし続ける。 If the rear wheels 13 are driving, that is, if the rear wheels 13 are moving at a speed exceeding a predetermined speed V (YES in step S102), the control unit 16 is in a state where the electrically assisted walking vehicle 10 is in a normal state. It is determined that the vehicle is running, and the motor 20 continues to assist the movement of the rear wheels 13.
 一方、後輪13の回転が停止し、速度が0である(電動アシスト歩行車10の移動が停止している)場合、または予め定められた所定の速度V以下で動いている(電動アシスト歩行車10の走行速度が一定以下である)場合(ステップS102のNO)、制御部16は、計測部の(速度または加速度の少なくともいずれかを含む)計測値に基づいて、電動アシスト歩行車が段差と衝突したのか、それとも使用者による停止操作、段差以外の物体との衝突などその他のイベントのいずれかが発生したのかを推定する。 On the other hand, when the rotation of the rear wheel 13 is stopped and the speed is 0 (the movement of the electrically assisted walking vehicle 10 is stopped), or the vehicle is moving at a predetermined speed V or less (electrically assisted walking). When the traveling speed of the vehicle 10 is below a certain level (NO in step S102), the control unit 16 steps the electrically assisted walking vehicle based on the measured value (including at least one of the speed and the acceleration) of the measuring unit. It is estimated whether the vehicle collided with the vehicle, or whether any other event such as a stop operation by the user or a collision with an object other than the step occurred.
 また、制御部16は、電動アシスト歩行車が段差と衝突したと判定した場合(ステップS103のYES)、制御部16は、計測部の(速度または加速度の少なくともいずれかを含む)計測値に基づいて段差に対する電動アシスト歩行車の進行方向(角度)を推定する(ステップS104)。そして、推定した段差に対する電動アシスト歩行車の進行方向(角度)に応じた段差の乗り越え動作を行う(ステップS105)。段差の乗り越え動作の例としては、車体の旋回、前輪に連結された駆動部によるアシスト、車体の旋回と前輪に連結された駆動部によるアシストの組み合わせが挙げられる。段差の乗り越え動作は、前輪を持ち上げる動作を含んでいてもよい。 Further, when the control unit 16 determines that the electrically assisted walking vehicle has collided with the step (YES in step S103), the control unit 16 is based on the measured value (including at least one of the speed and the acceleration) of the measuring unit. The traveling direction (angle) of the electrically assisted walking vehicle with respect to the step is estimated (step S104). Then, the step overcoming operation is performed according to the traveling direction (angle) of the electrically assisted walking vehicle with respect to the estimated step (step S105). Examples of the step overcoming operation include turning of the vehicle body, assist by the drive unit connected to the front wheels, and combination of turning of the vehicle body and assist by the drive unit connected to the front wheels. The step climbing motion may include the motion of lifting the front wheel.
 なお、制御部16が段差との衝突を検出する処理(ステップS103)、段差に対する電動アシスト歩行車の進行方向を推定する処理(ステップS104)、および各種の段差の乗り越え動作(ステップS105)の詳細については後述する。後述するように、ステップS103~ステップS105においては左右の構成要素に対する制御処理の違い、検出される速度および加速度の方向が重要となってくる。左右の構成要素に係る制御処理の違いについては後述し、以下ではまず、前輪を持ち上げる動作の例について述べる。 Details of the process in which the control unit 16 detects a collision with a step (step S103), the process of estimating the traveling direction of the electrically assisted walking vehicle with respect to the step (step S104), and the operation of overcoming various steps (step S105). Will be described later. As will be described later, in steps S103 to S105, the difference in control processing for the left and right components, the detected speed, and the direction of acceleration become important. The difference in control processing related to the left and right components will be described later, and an example of the operation of lifting the front wheels will be described below.
 前輪を持ち上げる動作を行う場合、制御部16は、モータ20(駆動部)を制御して、例えばハンドル14を押す力(ハンドル14に加わる操作力)に応じてモータ20の駆動力を増減させる。前輪12が段差に衝突しており、電動アシスト歩行車10が前進できないため、後輪13の前進方向の駆動力は電動アシスト歩行車10に前輪12を持ち上げる方向のモーメントを発生させる。このため、前輪12を後輪13に対して持ち上げることが可能となる。 When performing the operation of lifting the front wheels, the control unit 16 controls the motor 20 (driving unit) to increase or decrease the driving force of the motor 20 according to, for example, the force pushing the handle 14 (the operating force applied to the handle 14). Since the front wheels 12 collide with the step and the electrically assisted walking vehicle 10 cannot move forward, the driving force in the forward direction of the rear wheels 13 causes the electrically assisted walking vehicle 10 to generate a moment in the direction of lifting the front wheels 12. Therefore, the front wheel 12 can be lifted with respect to the rear wheel 13.
 制御部16は、使用者が電動アシスト歩行車10を前進させようとしている(前進操作を意図している)と判断する際、上記のように、ハンドル14が押されている時間と力とを用いることにより、使用者が前進しようとしていることを的確に判断し、使用者の意図と異なる判断を避けることができる。これにより、使用者は電動アシスト歩行車10をより安心して使用できる。この判断の際、ハンドル14が押されている力のみを用いることもできる。例えば、ハンドル14が一定以上の力で押された場合、使用者が電動アシスト歩行車10を前進させようとしていると判断する。この場合、制御部16は、使用者が前進しようとしていることを早く判断し、使用者は歩行速度を大きく下げることなく前輪12を持ち上げることができる。 When the control unit 16 determines that the user intends to move the electrically assisted walking vehicle 10 forward (intentionally to move forward), the control unit 16 determines the time and force at which the handle 14 is pressed as described above. By using it, it is possible to accurately judge that the user is trying to move forward and avoid a judgment that is different from the user's intention. As a result, the user can use the electrically assisted walking vehicle 10 with greater peace of mind. In making this determination, it is also possible to use only the force with which the handle 14 is pressed. For example, when the steering wheel 14 is pushed with a certain force or more, it is determined that the user is trying to move the electrically assisted walking vehicle 10 forward. In this case, the control unit 16 quickly determines that the user is about to move forward, and the user can lift the front wheel 12 without significantly reducing the walking speed.
 なお、制御部16は、前輪12が段差に衝突したか否かを判断する際、後輪13の速度に加え、後輪13の加速度を合わせて用いてもよい。これにより、電動アシスト歩行車10が移動しているか否かをより高い精度で判定することができる。例えば、後輪13の速度が所定の速度V以下であり、かつ後輪13の加速度が所定の加速度以下である場合、電動アシスト歩行車10が段差に衝突したと判定し、それ以外の場合に、電動アシスト歩行車10が段差に衝突していないと判定してもよい。 The control unit 16 may use the acceleration of the rear wheels 13 in addition to the speed of the rear wheels 13 when determining whether or not the front wheels 12 have collided with the step. Thereby, it is possible to determine with higher accuracy whether or not the electrically assisted walking vehicle 10 is moving. For example, when the speed of the rear wheels 13 is equal to or less than a predetermined speed V and the acceleration of the rear wheels 13 is equal to or less than a predetermined acceleration, it is determined that the electrically assisted walking vehicle 10 has collided with a step, and in other cases. , It may be determined that the electrically assisted walking vehicle 10 does not collide with the step.
 あるいは、制御部16は、後輪13の速度が0に近い所定の速度V以下であり、かつ電動アシスト歩行車10の減速度(負の加速度)、すなわち後輪13の減速度(負の加速度)が所定のしきい値(しきい値)以上である場合、使用者が電動アシスト歩行車10を前進させようとしている(前進操作を意図している)にも関わらず前輪12が段差に衝突した、と判定してもよい。すなわち、後輪13の速度が0に近い値となるとともに後輪13の減速度が一定値以上となった場合、前輪12が段差に衝突して急停止したと考えられる。この場合、必ずしも把持センサ24からの情報を用いなくても、前輪12が段差に衝突したと判断することができる。このため、電動アシスト歩行車10は必ず把持センサ24を備えていなくてもよい。なお、減速度は、上述したように負の加速度であり、電動アシスト歩行車10が減速している場合にはその値が正となり、電動アシスト歩行車10が加速している場合にはその値が負となる。 Alternatively, the control unit 16 decelerates the electrically assisted walking vehicle 10 (negative acceleration), that is, decelerates the rear wheels 13 (negative acceleration) while the speed of the rear wheels 13 is equal to or less than a predetermined speed V close to 0. ) Is equal to or higher than a predetermined threshold value, the front wheel 12 collides with the step even though the user is trying to move the electrically assisted walking vehicle 10 forward (intentionally to move forward). It may be determined that it has been done. That is, when the speed of the rear wheels 13 becomes a value close to 0 and the deceleration of the rear wheels 13 becomes a certain value or more, it is considered that the front wheels 12 collide with the step and stop suddenly. In this case, it can be determined that the front wheel 12 has collided with the step without necessarily using the information from the grip sensor 24. Therefore, the electrically assisted walking vehicle 10 does not necessarily have to be provided with the grip sensor 24. The deceleration is a negative acceleration as described above, and the value becomes positive when the electrically assisted walking vehicle 10 is decelerating, and the value when the electrically assisted walking vehicle 10 is accelerating. Becomes negative.
 また、制御部16は、一対のハンドル14が一定時間以上一定以上の力で押され、かつ後輪13の減速度(負の加速度)が所定のしきい値以上である場合、使用者が電動アシスト歩行車10を前進させようとしている(前進操作を意図している)にも関わらず前輪12が段差に衝突した、と判定してもよい。これにより、電動アシスト歩行車10が移動しているか否かを高い精度で判定することができる。なお、一対のハンドル14が一定時間以上一定以上の力で押されているか否かは、上述のように、把持センサ24からの検知信号に基づいて判断することができる。なお、負の加速度の代わりに、車体の後方方向への加速度を使って段差12の段差との衝突を判定してもよい。 Further, when the pair of handles 14 are pushed by a certain force or more for a certain period of time or more and the deceleration (negative acceleration) of the rear wheels 13 is equal to or more than a predetermined threshold value, the control unit 16 is electrically driven by the user. It may be determined that the front wheels 12 have collided with the step even though the assisted walking vehicle 10 is trying to move forward (intentionally to move forward). Thereby, it is possible to determine with high accuracy whether or not the electrically assisted walking vehicle 10 is moving. Whether or not the pair of handles 14 are pressed with a certain force or more for a certain period of time or more can be determined based on the detection signal from the grip sensor 24 as described above. Instead of the negative acceleration, the acceleration in the rearward direction of the vehicle body may be used to determine the collision with the step of the step 12.
 段差が比較的に低い場合、上述の後輪13の駆動力によって前輪12が持ち上がり、前輪12は段差に乗り上げることができる。ここで前輪12が持ち上がらない場合、続いて使用者は、ハンドル14を押す力を弱める。この際、電動アシスト歩行車10に前輪12を押し下げる方向のモーメント(前輪12の持ち上がりに対抗するモーメント)が減少する。制御部16は、後輪13の前進方向の駆動力を一定以上維持して後輪13を前方に駆動させる(図7参照)。これにより、前輪12を持ち上げる方向のモーメントが増大し、前輪12を持ち上げるように作用する。 When the step is relatively low, the front wheel 12 is lifted by the driving force of the rear wheel 13 described above, and the front wheel 12 can ride on the step. If the front wheel 12 is not lifted here, the user subsequently weakens the force for pushing the handle 14. At this time, the moment in the direction of pushing down the front wheel 12 on the electrically assisted walking vehicle 10 (the moment against the lifting of the front wheel 12) is reduced. The control unit 16 maintains the driving force of the rear wheels 13 in the forward direction to a certain level or more to drive the rear wheels 13 forward (see FIG. 7). As a result, the moment in the direction of lifting the front wheel 12 increases, and the front wheel 12 acts to be lifted.
 これでも前輪12が持ち上がらない場合、続いて、使用者は、ハンドル14を後方に引く操作を行う。このとき、ハンドル14を後方に引く力が、後輪13を軸として前輪12を持ち上げる方向のモーメントを発生させ、後輪13の駆動力と合わせて、前輪12を持ち上げるように作用する。このように、モータ20からの操作力に加え、使用者が操作ハンドル14を操作することにより、電動アシスト歩行車10に前輪12を持ち上げる方向のモーメントを発生させ(図2の矢印M参照)、前輪12をより確実に持ち上げる(電動アシスト歩行車10をウィリーさせる)ことができる。なお、使用者がハンドル14を後方に引く操作に代えて、使用者が、後輪13の回転軸の後方に固定された図示しないペダルを踏むことにより、前輪12を持ち上げるようにしてもよい。 If the front wheel 12 still does not lift, the user subsequently pulls the handle 14 backward. At this time, the force pulling the steering wheel 14 rearward generates a moment in the direction of lifting the front wheel 12 around the rear wheel 13, and acts to lift the front wheel 12 together with the driving force of the rear wheel 13. In this way, in addition to the operating force from the motor 20, the user operates the operating handle 14 to generate a moment in the direction of lifting the front wheels 12 in the electrically assisted wheelie 10 (see arrow M in FIG. 2). The front wheel 12 can be lifted more reliably (the electrically assisted walking vehicle 10 is wheelie). Instead of the operation of pulling the steering wheel 14 rearward, the user may lift the front wheel 12 by stepping on a pedal (not shown) fixed to the rear of the rotation axis of the rear wheel 13.
 このとき、前輪12が後輪13に対して持ち上がることに伴い、前輪12と段差との間に隙間が発生する。後輪13が前進方向に駆動しているため、この隙間を埋めるように電動アシスト歩行車10が前進し、前輪12を段差の上段に接触させることができる。これにより、前輪12はスムーズに段差の上に乗り上げることができる。 At this time, as the front wheel 12 is lifted with respect to the rear wheel 13, a gap is generated between the front wheel 12 and the step. Since the rear wheels 13 are driven in the forward direction, the electrically assisted walking vehicle 10 moves forward so as to fill this gap, and the front wheels 12 can be brought into contact with the upper stage of the step. As a result, the front wheel 12 can smoothly ride on the step.
 制御部16は、前輪12を持ち上がらせた後、後輪13の前進方向の駆動力を第1の減少量で徐々に低減させる。この場合、前輪12が段差を乗り越えた後に後輪13が加速しすぎないため、前輪12が段差をスムーズに乗り越えることができる。駆動力の低減を開始するタイミングは、制御部16が前輪12を持ち上がらせるために駆動部を制御するときの所定の条件(使用者が電動アシスト歩行車10の前進操作を意図しているときに前輪12が段差に衝突したと判定される条件)を満たさなくなったときに設定することができる。例えば、ハンドル14が一定以上の力で押されなくなったとき(使用者がハンドル14を押す力を弱めたとき、またはハンドル14を後方に引いたとき)、または後輪13が前進方向に一定速度以上で回転したときとしてもよい。 After the front wheels 12 are lifted, the control unit 16 gradually reduces the driving force in the forward direction of the rear wheels 13 by the first reduction amount. In this case, since the rear wheels 13 do not accelerate too much after the front wheels 12 have overcome the step, the front wheels 12 can smoothly overcome the step. The timing for starting the reduction of the driving force is a predetermined condition when the control unit 16 controls the drive unit in order to lift the front wheel 12 (when the user intends to move the electrically assisted walking vehicle 10 forward). It can be set when the condition (condition for determining that the front wheel 12 has collided with the step) is no longer satisfied. For example, when the handle 14 is no longer pushed by a certain force or more (when the user weakens the force to push the handle 14 or when the handle 14 is pulled backward), or when the rear wheel 13 has a constant speed in the forward direction. It may be when it is rotated by the above.
 その後、使用者は、前輪12を後輪13に対して持ち上がらせた状態で、一対のハンドル14を押す。これにより、電動アシスト歩行車10を前進させ、前輪12は段差を乗り越えることができる。 After that, the user pushes the pair of handles 14 with the front wheels 12 lifted with respect to the rear wheels 13. As a result, the electrically assisted walking vehicle 10 can be advanced, and the front wheels 12 can overcome the step.
 このように、使用者がハンドル14を後方に引っ張る操作を行うことにより、後輪13周りのモーメントを生じさせることができるので、モータ20の駆動力とあわせて、前輪12を容易に持ち上げることができる。このため、使用者は電動アシスト歩行車10を持ち上げることなく、前輪12が段差を容易に乗り越えることができる。なお、上述したように、段差が低い場合など、使用者によるハンドル14を後方に引く操作を伴わずに、モータ20(駆動部)の駆動力の増加のみによって前輪12を持ち上げてもよい。 In this way, when the user pulls the handle 14 backward, a moment around the rear wheel 13 can be generated, so that the front wheel 12 can be easily lifted together with the driving force of the motor 20. it can. Therefore, the user can easily get over the step by the front wheel 12 without lifting the electrically assisted walking vehicle 10. As described above, the front wheel 12 may be lifted only by increasing the driving force of the motor 20 (driving unit) without the user pulling the handle 14 backward, such as when the step is low.
 前輪12が段差を乗り越えた後もモータ20の出力が増加したままであると、電動アシスト歩行車10が加速しすぎるおそれがある。このため、前輪12を後輪13に対して持ち上げた後、以下の条件(1)~(3)のいずれかを満たした場合、制御部16は、前輪12が段差を乗り越えたと判断し、これ以上電動アシスト歩行車10が加速しないようにしてもよい。この場合、制御部16は、モータ20を制御して、モータ20による後輪13の駆動力の減少量をより大きくする。具体的には、後輪13の前進方向への駆動力の減少量を、上述した第1の減少量よりも大きい第2の減少量とする(図7の二点鎖線参照)。あるいは、制御部16は、後輪13の前進方向の駆動力をゼロにしてもよい。 If the output of the motor 20 continues to increase even after the front wheels 12 have overcome the step, the electrically assisted walking vehicle 10 may accelerate too much. Therefore, if any of the following conditions (1) to (3) is satisfied after the front wheel 12 is lifted with respect to the rear wheel 13, the control unit 16 determines that the front wheel 12 has overcome the step. As described above, the electrically assisted walking vehicle 10 may not be accelerated. In this case, the control unit 16 controls the motor 20 to increase the amount of reduction in the driving force of the rear wheels 13 by the motor 20. Specifically, the amount of decrease in the driving force of the rear wheels 13 in the forward direction is set to a second amount of decrease larger than the above-mentioned first amount of decrease (see the two-dot chain line in FIG. 7). Alternatively, the control unit 16 may set the driving force of the rear wheels 13 in the forward direction to zero.
 (1)傾き検知センサ23によって検知された電動アシスト歩行車10の傾斜角度が、一定の値以上となった場合(前輪12が段差を上ると電動アシスト歩行車10が傾くため)。 (1) When the inclination angle of the electrically assisted walking vehicle 10 detected by the inclination detection sensor 23 exceeds a certain value (because the electrically assisted walking vehicle 10 tilts when the front wheel 12 climbs a step).
 (2)速度センサ22bによって検知された後輪13の回転速度が、所定の条件を満たした場合。例えば、後輪13の回転速度が一定値以上となった場合(前輪12が段差を越えた瞬間に後輪13の速度が上昇するため。また、後輪13が空回りした場合には後輪13の回転速度が上昇するため)。 (2) When the rotational speed of the rear wheel 13 detected by the speed sensor 22b satisfies a predetermined condition. For example, when the rotation speed of the rear wheels 13 exceeds a certain value (because the speed of the rear wheels 13 increases at the moment when the front wheels 12 cross the step. Also, when the rear wheels 13 idle, the rear wheels 13 Because the rotation speed of is increased).
 (3)脚部検知センサ25によって検知された使用者と電動アシスト歩行車10との距離が、一定の値以上となった場合(前輪12が段差を越えた瞬間に後輪13の速度が上昇し、電動アシスト歩行車10が使用者から離れるため)。 (3) When the distance between the user and the electrically assisted walking vehicle 10 detected by the leg detection sensor 25 exceeds a certain value (the speed of the rear wheels 13 increases at the moment when the front wheels 12 cross the step). However, because the electrically assisted walking vehicle 10 is separated from the user).
 なお、使用者が電動車両を前進させようとしている(前進操作を意図している)と判断する際は、上記手法に限らず、例えば、(i)前輪12または後輪13の回転量、(ii)電動アシスト歩行車10に設けられたひずみゲージからの出力、(iii)前輪12または後輪13のタイヤの空気圧、(iv)電動アシスト歩行車10の前後方向の加速度、(v)ハンドル14などに設けられた圧力センサからの出力、(vi)ハンドル14などに設けられた筋電センサからの出力、および(vii)使用者の足の動きなどから選択される要素の1つまたは複数を考慮してもよい。 When it is determined that the user intends to move the electric vehicle forward (intentionally to move forward), the method is not limited to the above method, and for example, (i) the amount of rotation of the front wheels 12 or the rear wheels 13 ( ii) Output from a strain gauge provided on the electrically assisted pedestrian vehicle 10, (iii) tire pressure of the front wheels 12 or rear wheels 13, (iv) acceleration in the front-rear direction of the electrically assisted pedestrian vehicle 10, (v) steering wheel 14 One or more of the elements selected from the output from the pressure sensor provided in (vi), the output from the myoelectric sensor provided in the handle 14, etc., and (vi) the movement of the user's foot. You may consider it.
(段差検出)
 次に、電動アシスト歩行車(電動車両)が段差との衝突を検出する処理の詳細について説明する。
(Step detection)
Next, the details of the process for detecting the collision of the electrically assisted walking vehicle (electric vehicle) with the step will be described.
 従来の電動アシスト歩行車(電動車両)による段差の検出の例として、加速度に基づく段差検出が挙げられる。しかし、電動アシスト歩行車が加速度を検出するのは、段差との衝突時に限られない。例えば、使用者が電動アシスト歩行車の停止操作を行った場合にも加速度が検出されるし、電動アシスト歩行車が段差以外の物体と衝突したときにも加速度が検出される。段差の検出精度を上げるためには、電動アシスト歩行車が段差に衝突したときに検出される加速度と、使用者が電動アシスト歩行車の停止操作を行ったときに検出される加速度との違いを判別する必要がある。同様に、電動アシスト歩行車が衝突する物体の種類によって検出される加速度の違いも考慮しなくてはならない。 An example of step detection by a conventional electrically assisted walking vehicle (electric vehicle) is step detection based on acceleration. However, the electrically assisted walking vehicle detects the acceleration not only when it collides with a step. For example, the acceleration is detected when the user stops the electrically assisted walking vehicle, and the acceleration is also detected when the electrically assisted walking vehicle collides with an object other than the step. In order to improve the detection accuracy of the step, the difference between the acceleration detected when the electrically assisted walking vehicle collides with the step and the acceleration detected when the user stops the electrically assisted walking vehicle is determined. It is necessary to determine. Similarly, the difference in acceleration detected depending on the type of object with which the electrically power assisted walking vehicle collides must be taken into consideration.
 図8は、段差との衝突、停止操作の各ケースにおいて検出される加速度としきい値の例を示したグラフである。図8のグラフの横軸は電動アシスト歩行車10(電動車両)の車体の速度を示している。また、図8のグラフの縦軸は負の加速度を示している。負の加速度とは、電動アシスト歩行車10(電動車両)を減速させる方向の加速度(減速度)のことをいう。 FIG. 8 is a graph showing an example of acceleration and threshold value detected in each case of collision with a step and stop operation. The horizontal axis of the graph of FIG. 8 indicates the speed of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle). The vertical axis of the graph in FIG. 8 shows negative acceleration. The negative acceleration means the acceleration (deceleration) in the direction of decelerating the electrically assisted walking vehicle 10 (electric vehicle).
 図8には、段差との衝突時および使用者による停止操作時に計測される速度と負の加速度との関係がブロットされている。図8を参照すると、段差との衝突時には、電動アシスト歩行車10に衝撃が加わるため、使用者による停止操作時に比べて大きい加速度が検出されている。すなわち、計測部は、車体を減速させる方向への加速度または車体の後方方向への加速度の少なくともいずれか一方を計測すればよい。この場合、判断部16aは、計測部の計測した車体を減速させる方向への加速度または車体の後方方向への加速度の少なくともいずれか一方がしきい値(第7しきい値)より大きいときに前輪12が段差に接触したと推定してもよい。また、判断部16aは、計測部の計測した車体を減速させる方向への加速度または車体の後方方向への加速度の少なくともいずれか一方がしきい値以下であるときは前輪12が段差に接触したと推定しなくてもよい。これにより、前輪12の段差との接触を判定することができる。 FIG. 8 is a blot of the relationship between the velocity measured at the time of a collision with a step and the stop operation by the user and the negative acceleration. Referring to FIG. 8, since an impact is applied to the electrically power assisted walking vehicle 10 at the time of a collision with a step, a larger acceleration is detected as compared with the stopping operation by the user. That is, the measuring unit may measure at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body. In this case, the determination unit 16a determines the front wheel when at least one of the acceleration in the direction of decelerating the vehicle body measured by the measurement unit and the acceleration in the rearward direction of the vehicle body is larger than the threshold value (seventh threshold value). It may be estimated that 12 has come into contact with the step. Further, the determination unit 16a states that the front wheels 12 have come into contact with the step when at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body measured by the measurement unit is equal to or less than the threshold value. It does not have to be estimated. Thereby, the contact with the step of the front wheel 12 can be determined.
 例えば、段差乗り越え制御が行われる前(すなわち、前輪12が段差に接触したときと判断したとき)の一定期間中にしきい値より小さい加速度を検出していた場合、しきい値の設定値が大きすぎるために前輪12が実際には段差に接触していたにもかかわらず、段差に接触したと判断されなかった可能性がある。そこで、判断部16aは、制御部16が前輪12の段差乗り越えをさせた後に、制御部16が前輪12の段差乗り越え制御をさせる以前の所定の期間においてしきい値(第7しきい値)より小さい加速度を検出していた場合、しきい値(第7しきい値)をより小さい値に変更してもよい。また、段差乗り越え制御が行われる前(すなわち、前輪12が段差に接触したときと判断したとき)に検出された加速度がしきい値より大きく、なおかつ検出された加速度としきい値との差が所定の値より大きい場合、しきい値の設定値が小さすぎる可能性がある。そこで、判断部16aは、制御部16が前輪12の段差乗り越えをさせたときに計測部が計測した加速度がしきい値(第7しきい値)より大きくかつしきい値(第7しきい値)との差が所定の値より大きい場合、しきい値(第7しきい値)をより大きい値に変更してもよい。このように、前輪12の段差乗り越え成功時に、前輪12と段差との接触の判定に使うしきい値を調整することにより、段差接触検出の精度を改善できる。 For example, if an acceleration smaller than the threshold value is detected during a certain period of time before the step overcoming control is performed (that is, when it is determined that the front wheel 12 touches the step), the set value of the threshold value is large. It is possible that the front wheel 12 was not actually in contact with the step because it was too much, but it was not determined that the front wheel 12 was in contact with the step. Therefore, the determination unit 16a is set from the threshold value (seventh threshold value) in a predetermined period before the control unit 16 controls the front wheel 12 to overcome the step and then the control unit 16 controls the front wheel 12 to overcome the step. If a small acceleration is detected, the threshold value (seventh threshold value) may be changed to a smaller value. Further, the acceleration detected before the step overcoming control is performed (that is, when it is determined that the front wheel 12 touches the step) is larger than the threshold value, and the difference between the detected acceleration and the threshold value is predetermined. If it is greater than the value of, the threshold setting may be too small. Therefore, in the determination unit 16a, the acceleration measured by the measurement unit when the control unit 16 overcomes the step of the front wheel 12 is larger than the threshold value (seventh threshold value) and the threshold value (seventh threshold value). ), The threshold value (seventh threshold value) may be changed to a larger value. In this way, the accuracy of step contact detection can be improved by adjusting the threshold value used for determining the contact between the front wheel 12 and the step when the front wheel 12 has successfully overcome the step.
 上述のように、電動アシスト歩行車10は、計測部の計測値を記憶する記憶部16bを備えていてもよい。この場合、判断部16aは、記憶部16bに記憶された計測値に基づいてしきい値(第7しきい値)を調整してもよい。記憶部16bに記憶された過去の複数回における段差乗り越え制御時における計測値を使うことにより、より高精度にしきい値を調整することが可能となる。また、第7しきい値に限らず、本明細書に記載したその他のしきい値を記憶部16bに記憶された計測値に基づいて調整してもよい。 As described above, the electrically assisted walking vehicle 10 may include a storage unit 16b that stores the measured values of the measurement unit. In this case, the determination unit 16a may adjust the threshold value (seventh threshold value) based on the measured value stored in the storage unit 16b. By using the measured values stored in the storage unit 16b at the time of step overcoming control in the past multiple times, it is possible to adjust the threshold value with higher accuracy. Further, not limited to the seventh threshold value, other threshold values described in the present specification may be adjusted based on the measured values stored in the storage unit 16b.
 図8を参照すると、段差との衝突時も、使用者による停止操作時も、電動アシスト歩行車10の速度が大きくなるのにしたがって、大きな加速度が検出される傾向にあることがわかる。なお、各ケースに計測される速度と車体の後方方向への加速度をグラフにプロットすると、図8と同様の関係が成り立つ。 With reference to FIG. 8, it can be seen that a large acceleration tends to be detected as the speed of the electrically power assisted walking vehicle 10 increases, both when colliding with a step and when the user stops the vehicle. When the speed measured in each case and the acceleration in the rearward direction of the vehicle body are plotted on a graph, the same relationship as in FIG. 8 is established.
 常に同じしきい値を使って段差との衝突を検出するのではなく、電動アシスト歩行車10の速度に応じて使用するしきい値を大きくすることができる。そして、電動アシスト歩行車10は計測された加速度がしきい値より大きいときに、段差の乗り越え動作を実行することができる。制御部16は、計測部によって計測された電動アシスト歩行車10(電動車両)の車体の速度が大きくなるのにしたがって、段差の乗り越え動作が実行される条件となる加速度の絶対値のしきい値(第6しきい値)を大きく設定してもよい。図8の破線は、このようなしきい値(第4しきい値)の一例を示している。これにより、段差の検出精度を改善することが可能となる。 Rather than always using the same threshold value to detect a collision with a step, the threshold value used can be increased according to the speed of the electrically power assisted walking vehicle 10. Then, when the measured acceleration is larger than the threshold value, the electrically assisted walking vehicle 10 can execute the step overcoming operation. The control unit 16 sets the threshold value of the absolute value of acceleration, which is a condition for executing the step overcoming operation as the speed of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measuring unit increases. (6th threshold value) may be set large. The broken line in FIG. 8 shows an example of such a threshold value (fourth threshold value). This makes it possible to improve the detection accuracy of the step.
 なお、しきい値の関数の例としては、T=Σ(αv^β)+γが挙げられるが、これらとは異なる形式であってもよい。ここで、vは車体の速度、αおよびβは、0より大きい係数(正の実数)である。γは、任意の係数である。γは、正の実数であってもよいし、0または負の実数であってもよい。なお、電動アシスト歩行車10の側面によって構造や使用されている材料が異なっている場合には、方向によって異なるしきい値またはしきい値の関数を用いてもよい。例えば、前輪と後輪の材料、構造、大きさの少なくともいずれかが異なっている場合、前輪の段差との衝突の検出と、後輪の段差との衝突において、異なる係数を用いてもよい。 An example of the threshold value function is T = Σ (α n v ^ β n ) + γ, but the format may be different from these. Here, v is the velocity of the vehicle body, and α n and β n are coefficients (positive real numbers) larger than 0. γ is an arbitrary coefficient. γ may be a positive real number, 0 or a negative real number. When the structure and the materials used differ depending on the side surface of the electrically power assisted walking vehicle 10, a different threshold value or a function of the threshold value may be used depending on the direction. For example, when at least one of the materials, structures, and sizes of the front wheels and the rear wheels is different, different coefficients may be used in the detection of the collision with the step of the front wheel and the collision with the step of the rear wheel.
 図9は、電動アシスト歩行車10が柔らかい物体と衝突したときに検出される加速度と、段差に衝突したときに検出される加速度の例を示したグラフである。ここで、柔らかい物体とは、段差より反発硬さの小さい物体のことをいう。このような物体の例として、人体が挙げられる。図9のグラフの横軸は電動アシスト歩行車10(電動車両)の車体の速度を示している。また、図9のグラフの縦軸は負の加速度(減速度)を示している。 FIG. 9 is a graph showing an example of the acceleration detected when the electrically assisted walking vehicle 10 collides with a soft object and the acceleration detected when the electrically assisted walking vehicle 10 collides with a step. Here, the soft object means an object having a repulsive hardness smaller than that of a step. An example of such an object is the human body. The horizontal axis of the graph of FIG. 9 shows the speed of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle). The vertical axis of the graph in FIG. 9 shows negative acceleration (deceleration).
 図9には、電動アシスト歩行車10が柔らかい物体と衝突したときと、電動アシスト歩行車10が段差に衝突したときに計測される速度と負の加速度との関係がブロットされている。図9を参照すると、電動アシスト歩行車10の速度が同程度である場合、電動アシスト歩行車10が段差に衝突したときの方が、電動アシスト歩行車10が柔らかい物体と衝突したときに比べて大きい加速度が検出されていることがわかる。この結果より、衝突時に検出される加速度の大きさによって、電動アシスト歩行車10が衝突した物体の反発硬さの大きさが推定可能であることがわかる。例えば、検出された加速度をしきい値と比較することにより、段差との衝突と人体との衝突を区別することができる。図9のグラフでは、負の加速度(車体を減速させる方向への加速度)が示されているが、負の加速度の代わりに、車体の後方方向への加速度を使ってグラフを作成しても、同様の関係が成り立つ。 FIG. 9 is a blot of the relationship between the speed measured when the electrically power assisted walking vehicle 10 collides with a soft object and when the electrically power assisted walking vehicle 10 collides with a step and the negative acceleration. Referring to FIG. 9, when the speed of the electrically assisted walking vehicle 10 is about the same, the time when the electrically assisted walking vehicle 10 collides with a step is higher than the time when the electrically assisted walking vehicle 10 collides with a soft object. It can be seen that a large acceleration is detected. From this result, it can be seen that the magnitude of the repulsive hardness of the object collided with by the electrically assisted walking vehicle 10 can be estimated from the magnitude of the acceleration detected at the time of collision. For example, by comparing the detected acceleration with the threshold value, it is possible to distinguish between a collision with a step and a collision with the human body. In the graph of FIG. 9, negative acceleration (acceleration in the direction of decelerating the vehicle body) is shown, but even if the graph is created using the acceleration in the rear direction of the vehicle body instead of the negative acceleration, A similar relationship holds.
  なお、図9の例においても、電動アシスト歩行車10の速度が大きくなるのにしたがって、検出される加速度が大きくなる傾向がある。 Also in the example of FIG. 9, the detected acceleration tends to increase as the speed of the electrically assisted walking vehicle 10 increases.
 電動アシスト歩行車10の判断部16aは、計測された加速度をしきい値と比較することによって、段差の乗り越え動作を行うか否かを判断することができる。例えば、判断部16aは、計測部の計測した車体を減速させる方向への加速度または車体の後方方向への加速度の少なくともいずれか一方が所定のしきい値以下であるときは前輪12が段差以外のものに接触したと推定してもよい。判断部16aは、計測部によって計測された電動アシスト歩行車10(電動車両)の車体を減速させる方向への加速度または車体の後方方向への加速度の少なくともいずれか一方がしきい値(第4しきい値)以下であるときには、駆動部に段差の乗り越え動作を行わせなくてもよい。これにより、電動アシスト歩行車10が使用者によって停止、または電動アシスト歩行車10が人に接触した可能性がある場合に、段差乗り越え動作が実行されにくくなり、電動アシスト歩行車10の安全性を高めることができる。 The determination unit 16a of the electrically power assisted walking vehicle 10 can determine whether or not to perform the step overcoming operation by comparing the measured acceleration with the threshold value. For example, in the determination unit 16a, when at least one of the acceleration in the direction of decelerating the vehicle body measured by the measurement unit and the acceleration in the rearward direction of the vehicle body is equal to or less than a predetermined threshold value, the front wheels 12 are other than the step. It may be presumed that it has come into contact with an object. In the determination unit 16a, at least one of the acceleration in the direction of decelerating the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit and the acceleration in the rearward direction of the vehicle body is a threshold value (fourth). When it is less than or equal to the threshold value), it is not necessary to cause the drive unit to perform the step overcoming operation. As a result, when there is a possibility that the electrically assisted walking vehicle 10 is stopped by the user or the electrically assisted walking vehicle 10 comes into contact with a person, it becomes difficult to perform the step climbing operation, and the safety of the electrically assisted walking vehicle 10 is improved. Can be enhanced.
 判断部16aは、計測部によって計測された電動アシスト歩行車10(電動車両)の車体を減速させる方向への加速度または車体の後方方向への加速度がしきい値(第4しきい値)より大きいときに、駆動部に段差の乗り越え動作を行わせてもよい。一般に、電動車両を減速させる方向への加速度(減速度)または車体の後方方向への加速度がしきい値より大きいときには、電動車両が段差に接触したと推定することができる。例えば、計測部は、車体を減速させる方向への加速度または車体の後方方向への加速度の少なくともいずれか一方を計測し、判断部16aは、計測部が計測した車体を減速させる方向への加速度または車体の後方方向への加速度の少なくともいずれか一方が所定のしきい値(第5しきい値)より大きいときに前輪12が段差に接触したと推定してもよい。これにより、判断部16aは段差への衝突であると判断した場合のみ、駆動部に段差の乗り越え動作を実行させることができる。 In the determination unit 16a, the acceleration in the direction of decelerating the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit or the acceleration in the rearward direction of the vehicle body is larger than the threshold value (fourth threshold value). Occasionally, the drive unit may be made to perform an operation of overcoming a step. Generally, when the acceleration (deceleration) in the direction of decelerating the electric vehicle or the acceleration in the rear direction of the vehicle body is larger than the threshold value, it can be estimated that the electric vehicle has come into contact with the step. For example, the measuring unit measures at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body, and the determination unit 16a measures the acceleration in the direction of decelerating the vehicle body measured by the measuring unit or It may be estimated that the front wheels 12 come into contact with the step when at least one of the accelerations in the rearward direction of the vehicle body is larger than a predetermined threshold value (fifth threshold value). As a result, the determination unit 16a can cause the drive unit to execute the operation of overcoming the step only when it is determined that the collision occurs with the step.
 また、電動アシスト歩行車(電動車両)の制御方法は、車体に加わる速度または加速度の少なくともいずれか一方を計測するステップと、速度または加速度の少なくともいずれか一方に基づき段差の乗り越え制御を行うか否かを判断するステップとを含んでいてもよい。また、電動アシスト歩行車(電動車両)の制御方法は、さらに速度または加速度の少なくともいずれか一方に基づき前輪12が段差に接触したか否かを判断するステップと、前輪12が段差に接触したと推定されるときに段差の乗り越え制御を行うステップとを含んでいてもよい。なお、段差の乗り越え制御は、車輪を駆動する駆動力を増やす制御、車体を旋回させる制御、車体を旋回させながら駆動力を増やす制御の少なくともいずれかを含んでいてもよい。 Further, the control method of the electrically assisted walking vehicle (electric vehicle) is whether or not to perform step overcoming control based on at least one of the speed and the acceleration applied to the vehicle body and the step of measuring at least one of the speed and the acceleration. It may include a step of determining whether or not. Further, the control method of the electrically assisted walking vehicle (electric vehicle) further includes a step of determining whether or not the front wheel 12 has touched the step based on at least one of speed and acceleration, and a step that the front wheel 12 has touched the step. It may include a step of overcoming a step when it is estimated. The step overcoming control may include at least one of a control for increasing the driving force for driving the wheels, a control for turning the vehicle body, and a control for increasing the driving force while turning the vehicle body.
 また、電動アシスト歩行車(電動車両)の制御プログラム は、車体に加わる速度または加速度の少なくともいずれか一方を計測するステップと、速度または加速度の少なくともいずれか一方に基づき前輪12が段差に接触したか否かを判断するステップと、前輪12が段差に接触したと推定されるときに段差の乗り越え制御を行うステップとを含んでいてもよい。なお、段差の乗り越え制御は、車輪を駆動する駆動力を増やす制御、車体を旋回させる制御、車体を旋回させながら駆動力を増やす制御の少なくともいずれかを含んでいてもよい。制御プログラムは、制御部16または判断部16aによって実行されてもよいし、外部のコントローラやサーバなどによって実行されてもよい。 Further, in the control program of the electrically assisted walking vehicle (electric vehicle), whether the front wheels 12 come into contact with the step based on the step of measuring at least one of the speed and the acceleration applied to the vehicle body and at least one of the speed and the acceleration. It may include a step of determining whether or not, and a step of controlling overcoming of the step when it is presumed that the front wheel 12 has come into contact with the step. The step overcoming control may include at least one of a control for increasing the driving force for driving the wheels, a control for turning the vehicle body, and a control for increasing the driving force while turning the vehicle body. The control program may be executed by the control unit 16 or the determination unit 16a, or may be executed by an external controller, server, or the like.
 なお、電動アシスト歩行車10(電動車両)を減速させる方向の加速度である負の加速度(減速度)を求めるためには、電動アシスト歩行車10の進行方向を特定する必要がある。電動アシスト歩行車10の進行方向は、例えば速度センサ22bの計測値に基づいて推定することができる。 In order to obtain the negative acceleration (deceleration), which is the acceleration in the direction of decelerating the electrically assisted walking vehicle 10 (electric vehicle), it is necessary to specify the traveling direction of the electrically assisted walking vehicle 10. The traveling direction of the electrically assisted walking vehicle 10 can be estimated based on, for example, the measured value of the speed sensor 22b.
 なお、電動アシスト歩行車10が段差の乗り越えを行うのか否かを判定するのに使われる加速度は負の加速度(減速度)に限られない。例えば、判断部16aは、計測部によって計測された電動アシスト歩行車10(電動車両)の車体の後方方向に加わる加速度に基づき、制御部16に段差の乗り越え制御を実行させるか否かを判定してもよい。電動アシスト歩行車10の車体の後方方向への加速度に基づいて判定を行う場合、車体の進行方向を特定しなくてもよい。 The acceleration used to determine whether or not the electrically power assisted walking vehicle 10 overcomes a step is not limited to negative acceleration (deceleration). For example, the determination unit 16a determines whether or not the control unit 16 is to execute the step overcoming control based on the acceleration applied in the rearward direction of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit. You may. When making a determination based on the acceleration of the electrically assisted walking vehicle 10 in the rearward direction, it is not necessary to specify the traveling direction of the vehicle body.
 例えば、判断部16a、計測部によって計測された電動アシスト歩行車10(電動車両)の車体を減速させる方向への加速度または車体の後方方向への加速度の少なくともいずれかが第5しきい値以下であるときに、制御部16に段差の乗り越え制御を行わせなくてもよい。そして、判断部16aは、計測部によって計測された電動アシスト歩行車10(電動車両)の車体を減速させる方向への加速度または車体の後方方向への加速度の少なくともいずれかが第5しきい値より大きいときに、制御部16に段差の乗り越え制御を行わせてもよい。 For example, at least one of the acceleration in the direction of decelerating the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the determination unit 16a and the measurement unit or the acceleration in the rearward direction of the vehicle body is equal to or less than the fifth threshold value. At some point, it is not necessary for the control unit 16 to perform step overcoming control. Then, the determination unit 16a has at least one of the acceleration in the direction of decelerating the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit and the acceleration in the rearward direction of the vehicle body from the fifth threshold value. When it is large, the control unit 16 may be made to perform step overcoming control.
 また、電動アシスト歩行車10(電動車両)の判断部16aは、計測部によって検出された振動に基づいて、制御部16に段差の乗り越え制御をさせるのか否かを判断してもよい。 Further, the determination unit 16a of the electrically assisted walking vehicle 10 (electric vehicle) may determine whether or not the control unit 16 is to be controlled to overcome the step based on the vibration detected by the measurement unit.
 判断部16aは、計測部によって計測された電動アシスト歩行車10(電動車両)の車体の振動の、周波数スペクトルの代表値が第6しきい値以下であったときに、制御部16に段差の乗り越え制御を行わせなくてもよい。また、判断部16aは、計測部によって計測された電動アシスト歩行車10(電動車両)の車体の振動の、周波数スペクトルの代表値が第6しきい値より大きいときに、制御部16に段差の乗り越え制御を行わせてもよい。すなわち、計測部は、車体の振動の周波数スペクトルを計測し、判断部16aは、計測部の計測した(周波数スペクトルの)値の代表値がしきい値(第8しきい値)より大きいときに前輪12が段差に接触したと推定してもよい。また、判断部16aは、計測部の計測した(周波数スペクトルの)値の代表値がしきい値(第8しきい値)以下であるときは前輪12が段差に接触したと推定しなくてもよい。なお、代表値の具体例については、後述する。 The determination unit 16a has a step on the control unit 16 when the representative value of the frequency spectrum of the vibration of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit is equal to or less than the sixth threshold value. It is not necessary to perform overcoming control. Further, the determination unit 16a has a step on the control unit 16 when the representative value of the frequency spectrum of the vibration of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit is larger than the sixth threshold value. Overcoming control may be performed. That is, the measuring unit measures the frequency spectrum of the vibration of the vehicle body, and the judgment unit 16a determines when the representative value of the measured (frequency spectrum) value of the measuring unit is larger than the threshold value (eighth threshold value). It may be estimated that the front wheel 12 has come into contact with the step. Further, when the representative value of the value (of the frequency spectrum) measured by the measurement unit is equal to or less than the threshold value (eighth threshold value), the determination unit 16a does not have to estimate that the front wheel 12 has touched the step. Good. A specific example of the representative value will be described later.
 一般に、物体どうしの衝突時に発生する振動は、物体の反発硬さに依存することが知られている。物体の反発硬さが大きい場合、衝突時に発生する振動の周波数は大きくなる。したがって、検出された振動の周波数がしきい値より大きい場合は、電動アシスト歩行車10(電動車両)が段差に衝突したと推定することができる。また、検出された振動の周波数がしきい値以下である場合には、電動アシスト歩行車10が段差以外の物体と衝突したか、使用者が電動アシスト歩行車10の停止操作を行ったと推定することができる。段差以外の物体との衝突(または接触)の例としては、電動アシスト歩行車10(電動車両)のいずれかの部位が他の人の足または荷物に当たる場合などが挙げられる。ただし、物体の種類については特に問わない。 It is generally known that the vibration generated when objects collide with each other depends on the repulsive hardness of the objects. When the repulsive hardness of an object is large, the frequency of vibration generated at the time of collision becomes large. Therefore, when the frequency of the detected vibration is larger than the threshold value, it can be estimated that the electrically assisted walking vehicle 10 (electric vehicle) has collided with the step. When the frequency of the detected vibration is equal to or lower than the threshold value, it is estimated that the electrically assisted walking vehicle 10 collides with an object other than the step or the user has stopped the electrically assisted walking vehicle 10. be able to. An example of a collision (or contact) with an object other than a step is a case where any part of the electrically power assisted walking vehicle 10 (electric vehicle) hits another person's foot or luggage. However, the type of the object is not particularly limited.
 周波数スペクトルの代表値は、周波数スペクトルにおける最大のピークの周波数であってもよいし、周波数スペクトルにおける複数のピークの荷重平均値であってもよい。また、周波数スペクトルにおける中間周波数であってもよいし、平均周波数であってもよい。すなわち、代表値の計算方法については特に問わない。 The representative value of the frequency spectrum may be the frequency of the maximum peak in the frequency spectrum, or may be the load average value of a plurality of peaks in the frequency spectrum. Further, it may be an intermediate frequency in the frequency spectrum or an average frequency. That is, the calculation method of the representative value is not particularly limited.
 電動アシスト歩行車10の前方側が段差などの物体に衝突した場合、車体の前後方向に力が加わる。このため、計測部によって計測される電動アシスト歩行車10(電動車両)の車体の振動は、車体の前後方向の振動を含んでいてもよい。なお、電動アシスト歩行車10の計測部が計測する電動アシスト歩行車10(電動車両)の車体の振動の方向については特に限定しない。 When the front side of the electrically power assisted walking vehicle 10 collides with an object such as a step, a force is applied in the front-rear direction of the vehicle body. Therefore, the vibration of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measuring unit may include the vibration of the vehicle body in the front-rear direction. The direction of vibration of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measuring unit of the electrically assisted walking vehicle 10 is not particularly limited.
 電動アシスト歩行車10(電動車両)は、車体の前方または車体の幅方向の両側面の少なくとも一部を覆う緩衝部材を備えていてもよい。電動アシスト歩行車10(電動車両)のフレームがすねなど、骨に近く比較的硬い人体の部位と衝突すると、大きな減速度が発生し、判断部16aが段差を誤検出してしまうおそれがある。そこで、電動アシスト歩行車10(電動車両)の前方または幅方向の両側面の少なくとも一部に第1緩衝部材を設けることにより、人体との衝突時に大きな減速度が検出されるのを防ぐことができる。 The electrically assisted walking vehicle 10 (electric vehicle) may include a cushioning member that covers at least a part of the front surface of the vehicle body or both side surfaces in the width direction of the vehicle body. If the frame of the electrically assisted walking vehicle 10 (electric vehicle) collides with a part of the human body that is close to the bone and is relatively hard, such as a shin, a large deceleration may occur and the determination unit 16a may erroneously detect a step. Therefore, by providing the first buffer member on at least a part of the front or both side surfaces in the width direction of the electrically assisted walking vehicle 10 (electric vehicle), it is possible to prevent a large deceleration from being detected at the time of a collision with a human body. it can.
 図10は、車体前方に緩衝材が設けられた構成例を示した概略図である。図10の電動アシスト歩行車10のパイプフレーム31は車体の前方に突出している。そして、パイプフレーム31の前方に突出した部分の先端には、緩衝部材81が設けられている。なお、緩衝部材81の例としては、ゴム、ウレタンフォーム、発泡した樹脂、各種のばねなどがあるが、緩衝部材の種類については特に限定しない。ここで、図10は、電動アシスト歩行車10の左側のパイプフレーム31と緩衝部材81の構成を示している。電動アシスト歩行車10の右側のパイプフレーム31も左側と同様、前方に突出した部分の先端に緩衝部材81を備えていてもよい。なお、図10に設けられた構成は一例にしか過ぎない。したがって、緩衝部材は一体的に形成されていてもよいし、図10とは異なる方法で電動アシスト歩行車に装着されていてもよい。また、緩衝部材が、電動アシスト歩行車の幅方向の両側面の少なくとも一部に設けられていてもよい。 FIG. 10 is a schematic view showing a configuration example in which a cushioning material is provided in front of the vehicle body. The pipe frame 31 of the electrically assisted walking vehicle 10 of FIG. 10 projects to the front of the vehicle body. A cushioning member 81 is provided at the tip of a portion of the pipe frame 31 that protrudes forward. Examples of the cushioning member 81 include rubber, urethane foam, foamed resin, various springs, and the like, but the type of cushioning member is not particularly limited. Here, FIG. 10 shows the configuration of the pipe frame 31 and the cushioning member 81 on the left side of the electrically power assisted walking vehicle 10. Similar to the left side, the pipe frame 31 on the right side of the electrically assisted walking vehicle 10 may be provided with a cushioning member 81 at the tip of a portion protruding forward. The configuration provided in FIG. 10 is only an example. Therefore, the cushioning member may be integrally formed, or may be mounted on the electrically assisted walking vehicle by a method different from that shown in FIG. Further, the cushioning member may be provided on at least a part of both side surfaces in the width direction of the electrically assisted walking vehicle.
 従来の歩行補助装置の段差検出、段差乗り越え機能は、歩行補助装置が段差に対してほぼ正面(ほぼ垂直方向)から進入していることが前提となっていた。したがって、歩行補助装置が段差に対して角度をもって進入し、右前輪と左前輪が時差をもって段差に接触した場合、段差を乗り越えることは難しかった。以下では、歩行補助装置が段差に対して角度をもって進入した場合における段差検出について説明する。 The step detection and step overcoming functions of the conventional walking assist device were based on the premise that the walking assist device entered the step from almost the front (almost in the vertical direction). Therefore, when the walking assist device enters the step at an angle and the right front wheel and the left front wheel come into contact with the step with a time difference, it is difficult to get over the step. In the following, step detection when the walking assist device enters at an angle with respect to the step will be described.
 図11は、電動アシスト歩行車10(電動車両)を上方から視たときの平面図である。図11の平面図では、電動アシスト歩行車10が段差80の破線Pの方向(図11の左上方向)に移動している。すなわち、破線Pは電動アシスト歩行車10の進行方向を示している。図11を参照すると、破線Pの先には段差80があるため、電動アシスト歩行車10が段差80のある方向に進入していることがわかる。なお、電動アシスト歩行車10が旋回中である場合、電動アシスト歩行車10の進行方向は時刻によって変動する。したがって、破線Pはある時刻における電動アシスト歩行車10の速度ベクトルの方向を示したものであるともいえる。 FIG. 11 is a plan view of the electrically assisted walking vehicle 10 (electric vehicle) when viewed from above. In the plan view of FIG. 11, the electrically assisted walking vehicle 10 is moving in the direction of the broken line P of the step 80 (in the upper left direction of FIG. 11). That is, the broken line P indicates the traveling direction of the electrically power assisted walking vehicle 10. With reference to FIG. 11, since there is a step 80 at the end of the broken line P, it can be seen that the electrically assisted walking vehicle 10 is approaching in the direction of the step 80. When the electrically assisted walking vehicle 10 is turning, the traveling direction of the electrically assisted walking vehicle 10 changes depending on the time. Therefore, it can be said that the broken line P indicates the direction of the speed vector of the electrically power assisted walking vehicle 10 at a certain time.
 図11の破線Sは、段差80の垂線であり、段差80の正面(垂直)方向を示している。一方、電動アシスト歩行車10の進行方向を示す破線Pは、段差80の垂線Sに対して角度θをなしている。このように、電動アシスト歩行車10が段差の垂直方向から進入するのではなく、垂直方向に対して角度をもって進入することがある。なお、段差80は図11の例ように、必ず直線状ではなくてもよい。例えば、段差が曲面状である場合、段差の接線の垂線を垂線とすることができる。 The broken line S in FIG. 11 is a vertical line of the step 80 and indicates the front (vertical) direction of the step 80. On the other hand, the broken line P indicating the traveling direction of the electrically power assisted walking vehicle 10 forms an angle θ with respect to the perpendicular line S of the step 80. In this way, the electrically assisted walking vehicle 10 may enter at an angle with respect to the vertical direction instead of entering from the vertical direction of the step. The step 80 does not necessarily have to be linear as in the example of FIG. For example, when the step is curved, the perpendicular line of the tangent line of the step can be a perpendicular line.
 図11のように、電動アシスト歩行車10が段差80に対して角度をもって進入する場合、右前輪と左前輪のいずれかの前輪が先に段差80と衝突する。図11の例では、電動アシスト歩行車10の右前輪が段差80と衝突していることがわかる。矢印aは、右前輪の段差80との衝突によって車体にかかる加速度を示したベクトルである。なお、電動アシスト歩行車10の矢印lは車体の前後方向、矢印wは車体の幅方向をそれぞれ示している。図11を参照すると、加速度のベクトルaは、車体の前後方向lの成分と、車体の幅方向wの成分とを有することがわかる。 As shown in FIG. 11, when the electrically assisted walking vehicle 10 approaches the step 80 at an angle, either the front right wheel or the left front wheel collides with the step 80 first. In the example of FIG. 11, it can be seen that the right front wheel of the electrically assisted walking vehicle 10 collides with the step 80. The arrow a is a vector indicating the acceleration applied to the vehicle body due to the collision with the step 80 of the right front wheel. The arrow l of the electrically power assisted walking vehicle 10 indicates the front-rear direction of the vehicle body, and the arrow w indicates the width direction of the vehicle body. With reference to FIG. 11, it can be seen that the acceleration vector a has a component in the front-rear direction l of the vehicle body and a component in the width direction w of the vehicle body.
 次に、電動アシスト歩行車10によって検出される車体の前後方向の加速度および車体の幅方向の加速度の例について説明する。 Next, an example of the acceleration in the front-rear direction of the vehicle body and the acceleration in the width direction of the vehicle body detected by the electrically assisted walking vehicle 10 will be described.
 図12は、衝突した前輪によって検出される加速度の違いを示したグラフである。図12の横軸は、車体の前後方向の加速度を示している。一方、図12の縦軸は、車体の幅方向の加速度を示している。図12の例において、車体の前後方向の加速度については、車体の前方方向の加速度を正値、車体の前方方向の加速度を負値としている。また、車体の幅方向の加速度については、右方向の加速度を正値、左方向の加速度を負値としている。ここに示した加速度の方向と正値、負値の対応関係は例であり、これとは異なった対応関係が使われてもよい。 FIG. 12 is a graph showing the difference in acceleration detected by the front wheels that collided. The horizontal axis of FIG. 12 shows the acceleration in the front-rear direction of the vehicle body. On the other hand, the vertical axis of FIG. 12 shows the acceleration in the width direction of the vehicle body. In the example of FIG. 12, regarding the acceleration in the front-rear direction of the vehicle body, the acceleration in the front direction of the vehicle body is a positive value, and the acceleration in the front direction of the vehicle body is a negative value. Regarding the acceleration in the width direction of the vehicle body, the acceleration in the right direction is a positive value and the acceleration in the left direction is a negative value. The correspondence between the direction of acceleration and the positive and negative values shown here is an example, and a different correspondence may be used.
 図12のグラフは、いずれかの前輪が段差と衝突した場合、車体の前後方向の加速度だけでなく、車体の幅方向の加速度が発生することを示している。右前輪が段差に衝突した場合、左方向の加速度が検出されている。一方、左前輪が段差に衝突した場合、右方向の加速度が検出されている。図12のグラフにおける、両方の前輪が段差と衝突した場合に計測された加速度を参照すると、いずれかの前輪が段差と衝突した場合と比べて車体の後方方向の加速度が大きくなる傾向にあることがわかる。また、両方の前輪が段差と衝突した場合に、幅方向の加速度も検出されている。なお、図12のグラフにおいて、両方の前輪が段差と衝突した場合に検出された幅方向の加速度が右向きの加速度に偏っているのは、計測を行った際に左前輪が右前輪より先に段差に衝突している場合が多いためであると推測される。 The graph of FIG. 12 shows that when any of the front wheels collides with a step, not only the acceleration in the front-rear direction of the vehicle body but also the acceleration in the width direction of the vehicle body is generated. When the front right wheel collides with a step, acceleration in the left direction is detected. On the other hand, when the left front wheel collides with a step, acceleration in the right direction is detected. Looking at the acceleration measured when both front wheels collide with the step in the graph of FIG. 12, the acceleration in the rear direction of the vehicle body tends to be larger than when one of the front wheels collides with the step. I understand. In addition, when both front wheels collide with a step, acceleration in the width direction is also detected. In the graph of FIG. 12, the acceleration in the width direction detected when both front wheels collide with the step is biased to the rightward acceleration because the left front wheel precedes the right front wheel when the measurement is performed. It is presumed that this is because it often collides with a step.
 図12の結果をみると、検出された幅方向の加速度の向きに基づいて、右前輪と左前輪のいずれが段差に衝突したのかを推定できることがわかる。すなわち、計測部によって計測される加速度は、電動アシスト歩行車10(電動車両)の少なくとも車体を減速させる方向への加速度または車体の前後方向の加速度のいずれかと、電動アシスト歩行車10(電動車両)の車体の幅方向の加速度とを含んでいてもよい。そして、判断部16aは、電動アシスト歩行車10(電動車両)の車体の幅方向の加速度に基づいて、左右いずれの車輪が段差に接触したのかを推定することができる。すなわち、判断部16aは、計測部の計測値に基づいて段差に接触したと推定される前輪がいずれであるかを推定してもよい。 Looking at the results in FIG. 12, it can be seen that it is possible to estimate which of the right front wheel and the left front wheel collided with the step based on the detected direction of acceleration in the width direction. That is, the acceleration measured by the measuring unit is either at least the acceleration in the direction of decelerating the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) or the acceleration in the front-rear direction of the vehicle body, and the electric assisted walking vehicle 10 (electric vehicle). It may include the acceleration in the width direction of the vehicle body. Then, the determination unit 16a can estimate which of the left and right wheels has come into contact with the step based on the acceleration in the width direction of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle). That is, the determination unit 16a may estimate which front wheel is presumed to have come into contact with the step based on the measurement value of the measurement unit.
 また、判断部16aは、計測部の計測値に基づいて、左前輪または右前輪のいずれが段差に接触した(片側接触した)のか、それとも左前輪および右前輪が段差に接触した(両輪接触した)のかを判別することができる。これにより、段差との接触の態様(片側接触または両輪接触)に応じて段差乗り越え動作を含む車体の制御を行うことが可能となる。例えば、判断部16aは、車体幅方向の加速度と、車体前後方向の加速度に基づいて、片側接触と両輪接触の判別を行うことができる。例えば、判断部16aは、車体幅方向の加速度がしきい値thより大きいときに、片側接触と判定することができる。また、判断部16aは、車体前後方向の加速度がしきい値thfbより大きいときに、両輪接触と判定することができる。さらに、車体幅方向の加速度がしきい値thより小さく、なおかつ、車体前後方向の加速度がしきい値thfbより大きいときに、両輪接触と判定してもよい。
Further, in the determination unit 16a, based on the measured value of the measurement unit, which of the left front wheel and the right front wheel touched the step (one-sided contact), or the left front wheel and the right front wheel touched the step (both wheels contacted). ) Can be determined. This makes it possible to control the vehicle body including the step overcoming operation according to the mode of contact with the step (one-sided contact or two-wheel contact). For example, the determination unit 16a can discriminate between one-sided contact and two-wheel contact based on the acceleration in the vehicle body width direction and the acceleration in the vehicle body front-rear direction. For example, the determination unit 16a can determine that the contact is one-sided when the acceleration in the vehicle body width direction is larger than the threshold value th w. Further, the determination unit 16a can determine that the two wheels are in contact when the acceleration in the vehicle body front-rear direction is larger than the threshold value th fb. Further, when the acceleration in the vehicle body width direction is smaller than the threshold value th w and the acceleration in the vehicle body front-rear direction is larger than the threshold value th fb , it may be determined that the two wheels are in contact.
 計測部は、車体を減速させる方向への加速度または車体の後方方向への加速度または車体の幅方向の加速度の少なくともいずれか一方を測定してもよい。判断部16aは、計測部の計測した車体を減速させる方向への加速度または車体の後方方向への加速度の少なくともいずれか一方が所定のしきい値(第1しきい値)以上となったときに左前輪または右前輪のいずれが段差に接触したのかを推定する。また、判断部16aは、計測部の計測した車体を減速させる方向への加速度または車体の後方方向への加速度の少なくともいずれか一方が所定のしきい値(第1しきい値)以上となった以後所定の期間内に計測された車体の幅方向の加速度の絶対値の最大値が所定のしきい値(第2しきい値)以上となったときに左前輪または右前輪のいずれが段差に接触したのかを推定してもよい。これにより、左前輪または右前輪の段差との接触を区別して判定することができる。 The measuring unit may measure at least one of the acceleration in the direction of decelerating the vehicle body, the acceleration in the rearward direction of the vehicle body, and the acceleration in the width direction of the vehicle body. When at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body measured by the measurement unit becomes equal to or higher than a predetermined threshold value (first threshold value). Estimate whether the left front wheel or the right front wheel touches the step. Further, in the determination unit 16a, at least one of the acceleration in the direction of decelerating the vehicle body measured by the measurement unit and the acceleration in the rearward direction of the vehicle body is equal to or higher than a predetermined threshold value (first threshold value). After that, when the maximum value of the absolute value of the acceleration in the width direction of the vehicle body measured within a predetermined period becomes equal to or higher than the predetermined threshold value (second threshold value), either the left front wheel or the right front wheel becomes a step. It may be estimated whether they have come into contact with each other. Thereby, the contact with the step of the left front wheel or the right front wheel can be distinguished and determined.
 なお、判定に使われる車体の幅方向の加速度は、車体を減速させる方向への加速度または車体の後方方向への加速度がしきい値(第1しきい値)以上となったときと同時刻に計測されたものであってもよいし、異なる時刻に計測されたものであってもよい。制御部16は、判定の結果に応じた段差の乗り越え動作を実行することができる。 The acceleration in the width direction of the vehicle body used for the determination is at the same time as when the acceleration in the direction of decelerating the vehicle body or the acceleration in the rear direction of the vehicle body becomes equal to or higher than the threshold value (first threshold value). It may be measured or may be measured at different times. The control unit 16 can execute an operation of overcoming a step according to the result of the determination.
 電動アシスト歩行車10(電動車両)の制御方法は、少なくとも車体を減速させる方向への加速度または車体の前後方向の加速度のいずれかである第1加速度と、車体の幅方向の第2加速度を計測するステップと、計測された第1加速度と第2加速度とに基づき、左右いずれの車輪が段差に接触したのかを推定するステップと、段差に接触していると推定された車輪に応じた段差の乗り越え動作を実行するステップとを含んでいてもよい。 The control method of the electrically assisted walking vehicle 10 (electric vehicle) measures at least the first acceleration, which is either the acceleration in the direction of decelerating the vehicle body or the acceleration in the front-rear direction of the vehicle body, and the second acceleration in the width direction of the vehicle body. Steps to be performed, a step to estimate which of the left and right wheels has touched the step based on the measured first acceleration and the second acceleration, and a step corresponding to the wheel estimated to be in contact with the step. It may include a step of performing an overcoming motion.
 また、電動アシスト歩行車10(電動車両)の制御プログラムは、少なくとも車体を減速させる方向への加速度または車体の前後方向の加速度のいずれかである第1加速度と、車体の幅方向の第2加速度を計測するステップと、計測された第1加速度と第2加速度とに基づき、左右いずれの車輪が段差に接触したのかを推定するステップと、段差に接触していると推定された車輪に応じた段差の乗り越え動作を実行させるステップとを含んでいてもよい。 Further, the control program of the electrically assisted walking vehicle 10 (electric vehicle) includes a first acceleration which is at least either an acceleration in the direction of decelerating the vehicle body or an acceleration in the front-rear direction of the vehicle body, and a second acceleration in the width direction of the vehicle body. The step of estimating which of the left and right wheels touched the step based on the measured first acceleration and the second acceleration, and the step of estimating which wheel was in contact with the step, according to the wheel estimated to be in contact with the step. It may include a step of executing a step overcoming operation.
 なお、ここでは加速度センサ22aによって複数方向の加速度を計測し、段差に接触した車輪を推定する方法について説明したが、速度センサ22bによって計測された速度の値を用いることを妨げるものではない。例えば、所定の期間内における速度の減少量がしきい値以上である場合に、段差との接触があったと推定することができる。また、速度センサ22bを使って複数の方向の速度を計測してもよいし、速度の計測と加速度の計測の両方を行ってもよい。すなわち、判断部16aは、速度または加速度の少なくともいずれかに基づいて段差に接触した前輪を推定してもよい。段差に接触する前輪は、左前輪のみ、右前輪のみ、または左前輪と右前輪の両方の場合がある。 Although the method of measuring the acceleration in a plurality of directions by the acceleration sensor 22a and estimating the wheel in contact with the step has been described here, it does not prevent the use of the speed value measured by the speed sensor 22b. For example, when the amount of decrease in speed within a predetermined period is equal to or greater than the threshold value, it can be estimated that there is contact with the step. Further, the speed sensor 22b may be used to measure the speed in a plurality of directions, or both the speed measurement and the acceleration measurement may be performed. That is, the determination unit 16a may estimate the front wheels in contact with the step based on at least one of speed and acceleration. The front wheels that come into contact with the step may be only the left front wheel, only the right front wheel, or both the left front wheel and the right front wheel.
 図13のグラフは、電動アシスト歩行車10が旋回しながら段差に衝突した場合に計測される加速度と、電動アシスト歩行車10が直進しながら段差に衝突した場合に計測される加速度とを示している。図13のグラフの縦軸は、車体の幅方向の加速度を示している。一方、図13のグラフの横軸は、車体の前後方向の加速度を示している。 The graph of FIG. 13 shows the acceleration measured when the electrically assisted walking vehicle 10 collides with a step while turning and the acceleration measured when the electrically assisted walking vehicle 10 collides with a step while traveling straight. There is. The vertical axis of the graph of FIG. 13 shows the acceleration in the width direction of the vehicle body. On the other hand, the horizontal axis of the graph of FIG. 13 indicates the acceleration in the front-rear direction of the vehicle body.
 図13のグラフを参照すると、車体の前後方向の加速度および車体の幅方向の加速度のみを参照すると、電動アシスト歩行車10が直進しながら段差に衝突したのか、あるいは電動アシスト歩行車10が旋回しながら段差に衝突したのかは必ずしも明確ではない。 With reference to the graph of FIG. 13, referring only to the acceleration in the front-rear direction of the vehicle body and the acceleration in the width direction of the vehicle body, it may be that the electrically assisted walking vehicle 10 collides with a step while traveling straight, or the electrically assisted walking vehicle 10 turns. However, it is not always clear whether it collided with a step.
 そこで、車輪の回転に関する情報を併せて使って前者の場合と後者の場合との判別を行うことができる。例えば、速度センサ22bが後輪の回転速度を計測している場合、回転速度を時間で微分した値に負の符号をつけたものを後輪の減速度(負の加速度)とすることができる。もし右前輪が段差に衝突した場合、右後輪の減速度は、左後輪の減速度に比べて大きくなる傾向にある。そこで、車体の前後方向の加速度および車体の幅方向の加速度だけでなく、右後輪の減速度および左後輪の減速度も使って、電動アシスト歩行車10が直進しながら段差に衝突したのか、あるいは電動アシスト歩行車10が旋回しながら段差に衝突したのかを推定することができる。 Therefore, it is possible to distinguish between the former case and the latter case by also using the information on the rotation of the wheels. For example, when the speed sensor 22b measures the rotation speed of the rear wheels, the deceleration (negative acceleration) of the rear wheels can be obtained by adding a negative sign to the value obtained by differentiating the rotation speed with respect to time. .. If the right front wheel collides with a step, the deceleration of the right rear wheel tends to be larger than the deceleration of the left rear wheel. Therefore, did the electrically power assisted walking vehicle 10 collide with the step while traveling straight by using not only the acceleration in the front-rear direction of the vehicle body and the acceleration in the width direction of the vehicle body but also the deceleration of the right rear wheel and the deceleration of the left rear wheel? Alternatively, it can be estimated whether the electrically assisted walking vehicle 10 collided with the step while turning.
 例えば、後輪13が、車体の幅方向に離れて配置されている左後輪と右後輪とを含んでいる場合、計測部は、少なくとも左後輪の回転方向の加速度と右後輪の回転方向の加速度との平均値または左後輪の回転方向の加速度と右後輪の回転方向の加速度との差を算出してもよい。また、前輪12が、車体の幅方向に離れて配置されている左後輪と右後輪とを含んでいる場合、計測部は、少なくとも左前輪の回転方向の加速度と右前輪の回転方向の加速度との平均値または左前輪の回転方向の加速度と右前輪の回転方向の加速度との差を算出してもよい。これにより、右前輪と左前輪のいずれが段差に接触したのかを区別して判定することができる。 For example, when the rear wheel 13 includes a left rear wheel and a right rear wheel that are arranged apart from each other in the width direction of the vehicle body, the measuring unit may at least accelerate the left rear wheel in the rotational direction and the right rear wheel. The average value with the acceleration in the rotation direction or the difference between the acceleration in the rotation direction of the left rear wheel and the acceleration in the rotation direction of the right rear wheel may be calculated. Further, when the front wheels 12 include the left rear wheel and the right rear wheel that are arranged apart from each other in the width direction of the vehicle body, the measuring unit is at least in the acceleration in the rotation direction of the left front wheel and the rotation direction of the right front wheel. The average value with the acceleration or the difference between the acceleration in the rotation direction of the left front wheel and the acceleration in the rotation direction of the right front wheel may be calculated. Thereby, it is possible to distinguish which of the right front wheel and the left front wheel touches the step.
 計測部は、第1加速度として、左前輪の回転方向の加速度と右前輪の回転方向の加速度との平均値、または、左後輪の回転方向の加速度と右後輪の回転方向の加速度との平均値を算出してもよい。また、計測部は、第2加速度として、左前輪の回転方向の加速度と右前輪の回転方向の加速度との差または、左後輪の回転方向の加速度と右後輪の回転方向の加速度との差を計算してもよい。この場合、第2加速度がしきい値より大きい場合、電動アシスト歩行車10(電動車両)が旋回していると推定してもよい。この方法によっても、右前輪と左前輪のいずれが段差に接触したのかを区別して判定することができる。 As the first acceleration, the measuring unit determines the average value of the acceleration in the rotation direction of the left front wheel and the acceleration in the rotation direction of the right front wheel, or the acceleration in the rotation direction of the left rear wheel and the acceleration in the rotation direction of the right rear wheel. The average value may be calculated. Further, as the second acceleration, the measuring unit determines the difference between the acceleration in the rotation direction of the left front wheel and the acceleration in the rotation direction of the right front wheel, or the acceleration in the rotation direction of the left rear wheel and the acceleration in the rotation direction of the right rear wheel. The difference may be calculated. In this case, if the second acceleration is larger than the threshold value, it may be estimated that the electrically assisted walking vehicle 10 (electric vehicle) is turning. Also by this method, it is possible to distinguish which of the right front wheel and the left front wheel touches the step.
 ここで、第1加速度の値に応じて、異なる値のしきい値を用いてもよい。例えば、第1加速度が大きくなるのにしたがって、大きいしきい値を使うことができる。しきい値の関数の例としては、T=Σ(αa^β)+γが挙げられるが、これらとは異なる定義のしきい値を使ってもよい。ここで、aは車体の加速速(第1加速度)、αおよびβは、0より大きい係数(正の実数)である。γは、任意の係数である。γは、正の実数であってもよいし、0または負の実数であってもよい。 Here, different threshold values may be used depending on the value of the first acceleration. For example, a larger threshold can be used as the first acceleration increases. Examples of the threshold function include T = Σ (α n a ^ β n ) + γ, but thresholds with different definitions may be used. Here, a is the acceleration speed of the vehicle body (first acceleration), and α n and β n are coefficients (positive real numbers) larger than 0. γ is an arbitrary coefficient. γ may be a positive real number, 0 or a negative real number.
 図14のグラフは、電動アシスト歩行車10の段差との衝突時に計測された加速度の時間波形の例を示している。図14の横軸は時刻であり、縦軸は検出される加速度を示している。図14のグラフには、電動アシスト歩行車10の複数の動作パターンにおける加速度の計測値が示されている。図14には、電動アシスト歩行車10が段差の正面から衝突した場合に計測された波形90と、電動アシスト歩行車10の各前輪が時間を前後して段差と衝突した場合に計測された波形91と、使用者によって電動アシスト歩行車10の停止操作が行われた場合に計測された波形92とが示されている。 The graph of FIG. 14 shows an example of the time waveform of the acceleration measured at the time of collision with the step of the electrically power assisted walking vehicle 10. The horizontal axis of FIG. 14 is time, and the vertical axis shows the detected acceleration. The graph of FIG. 14 shows measured values of acceleration in a plurality of operation patterns of the electrically power assisted walking vehicle 10. FIG. 14 shows a waveform 90 measured when the electrically assisted walking vehicle 10 collides with the step from the front, and a waveform measured when each front wheel of the electrically assisted walking vehicle 10 collides with the step before and after the time. 91 and the waveform 92 measured when the user performs the stop operation of the electrically power assisted walking vehicle 10 are shown.
 波形90では、時刻0.0秒に電動アシスト歩行車10が段差と衝突し、他の波形と比べて大きな衝撃が加わっており、大きな加速度が検出されている。一方、波形91では、各前輪が時間を前後して段差と衝突しているため、衝撃が複数回に分散しており、検出されている加速度のピークの大きさが波形90に比べて小さくなっている。波形92では、電動アシスト歩行車10が段差と衝突せず、使用者が手動で電動アシスト歩行車10を停止させている。したがって、波形92において検出されている加速度のピークの大きさは波形91よりさらに小さくなっている。 In the waveform 90, the electrically assisted walking vehicle 10 collides with a step at a time of 0.0 seconds, a large impact is applied as compared with other waveforms, and a large acceleration is detected. On the other hand, in the waveform 91, since each front wheel collides with the step before and after the time, the impact is dispersed a plurality of times, and the magnitude of the detected acceleration peak is smaller than that of the waveform 90. ing. In the waveform 92, the electrically assisted walking vehicle 10 does not collide with the step, and the user manually stops the electrically assisted walking vehicle 10. Therefore, the magnitude of the acceleration peak detected in the waveform 92 is even smaller than that of the waveform 91.
 図14で例示した、各動作パターンで検出される加速度を考慮して、段差との衝突を検出するときに使うしきい値を決める必要がある。例えば、電動アシスト歩行車10が段差の正面から衝突したときに検出される加速度(例えば、波形90)のピーク値に基づいてしきい値を設定すると、しきい値が大きすぎるため、電動アシスト歩行車10の各前輪が時間を前後して段差と衝突した場合(例えば、波形91)に、段差の検出ができなくなるおそれがある。一方、しきい値を小さく設定しすぎると、使用者が手動で電動アシスト歩行車10を停止させたときに段差を誤検出するおそれがある。 It is necessary to determine the threshold value to be used when detecting the collision with the step in consideration of the acceleration detected in each operation pattern illustrated in FIG. For example, if the threshold value is set based on the peak value of the acceleration (for example, waveform 90) detected when the electrically assisted walking vehicle 10 collides from the front of the step, the threshold value is too large, so that the electrically assisted walking vehicle 10 walks. When each front wheel of the vehicle 10 collides with a step before and after the time (for example, waveform 91), the step may not be detected. On the other hand, if the threshold value is set too small, the step may be erroneously detected when the user manually stops the electrically assisted walking vehicle 10.
 そこで、電動アシスト歩行車10による段差の検出精度を高めるために、条件に応じてしきい値を使い分けることができる。例えば、上述の方法によって電動アシスト歩行車10が旋回しているか否かを推定し、電動アシスト歩行車10が旋回していると推定された場合には、電動アシスト歩行車10が直進している場合とは異なるしきい値またはしきい値の関数を使ってもよい。すなわち、判断部16aは、計測部によって測定された電動アシスト歩行車10(電動車両)の車体の幅方向の加速度の絶対値の最大値が所定のしきい値(第2しきい値)以上となったときに段差の乗り越え動作が実行される条件となる加速度のしきい値(第5しきい値)を小さく設定してもよい。ここで、加速度の例としては、計測部によって計測された電動アシスト歩行車10(電動車両)の車体を減速させる方向への加速度または車体の後方方向への加速度が挙げられる。ただし、その他の加速度に基づいて段差の乗り越え動作の実行可否を判定してもよい。また、しきい値は、複数の固定値のいずれかから選択されるものであってもよいし、車体の速度をパラメータとする関数であってもよい。 Therefore, in order to improve the detection accuracy of the step by the electrically assisted walking vehicle 10, the threshold value can be used properly according to the conditions. For example, it is estimated whether or not the electrically assisted walking vehicle 10 is turning by the above method, and when it is estimated that the electrically assisted walking vehicle 10 is turning, the electrically assisted walking vehicle 10 is traveling straight. You may use a different threshold or threshold function. That is, in the determination unit 16a, the maximum value of the absolute value of the acceleration in the width direction of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit is equal to or higher than a predetermined threshold value (second threshold value). The threshold value of acceleration (fifth threshold value), which is a condition for executing the step overcoming operation when the step is reached, may be set small. Here, as an example of the acceleration, the acceleration in the direction of decelerating the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measuring unit or the acceleration in the rearward direction of the vehicle body can be mentioned. However, it may be determined whether or not the step overcoming operation can be executed based on other accelerations. Further, the threshold value may be selected from any of a plurality of fixed values, or may be a function having the speed of the vehicle body as a parameter.
 電動アシスト歩行車10の各前輪が時間を前後して段差と衝突した場合に計測される加速度を示した、図14の波形91を参照すると、時刻0.0秒、時刻0.6秒において加速度のピークが存在している。後(時刻0.6秒)に検出されたピークより、最初(時刻0.0秒)に検出されたピークにおける加速度の方が大きい。各ピークでは、異なる側の前輪が段差と接触していると推定される。電動アシスト歩行車10の運動エネルギーは初回の段差との接触によって減少したため、二回目の段差との接触において検出される加速度は小さくなっていると考えられる。そこで、電動アシスト歩行車10の各前輪が時間を前後して段差と衝突する場合には、衝突の回数によって異なるしきい値を使うことができる。 With reference to the waveform 91 of FIG. 14, which shows the acceleration measured when each front wheel of the electrically power assisted walking vehicle 10 collides with a step before and after the time, the acceleration at time 0.0 second and time 0.6 second is shown. There is a peak of. The acceleration at the first peak (0.0 seconds) is greater than the peak detected later (0.6 seconds). At each peak, it is estimated that the front wheels on different sides are in contact with the step. Since the kinetic energy of the electrically assisted walking vehicle 10 is reduced by the contact with the first step, it is considered that the acceleration detected at the second contact with the step is small. Therefore, when each front wheel of the electrically power assisted walking vehicle 10 collides with a step before and after the time, a different threshold value can be used depending on the number of collisions.
 例えば、電動アシスト歩行車10が段差に対して角度をもって進入し、右前輪と左前輪が異なる時刻において段差と接触する場合において、いずれかの前輪が段差と接触を検出したら、他方の前輪の段差との接触を検出するのに用いるしきい値として、初回の段差との接触の検出に使われたしきい値より小さいしきい値を使う。すなわち、計測部は、車体を減速させる方向への加速度または車体の後方方向への加速度の少なくともいずれか一方を計測し,判断部16aは、計測部によって計測された電動アシスト歩行車10(電動車両)の車体を減速させる方向への加速度または車体の後方方向への加速度の少なくともいずれか一方が第1しきい値より小さいしきい値(第3しきい値)以上なったときに左前輪および右前輪が段差に接触したと推定してもよい。 For example, when the electrically power assisted walking vehicle 10 approaches the step at an angle and the right front wheel and the left front wheel come into contact with the step at different times, if one of the front wheels detects the step and the contact, the step of the other front wheel As the threshold value used to detect contact with, a threshold value smaller than the threshold value used to detect contact with the first step is used. That is, the measuring unit measures at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body, and the determination unit 16a measures the electrically assisted walking vehicle 10 (electric vehicle) measured by the measuring unit. ) When at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body exceeds a threshold value smaller than the first threshold value (third threshold value), the left front wheel and the right It may be estimated that the front wheels have come into contact with the step.
 これにより、過度に小さいしきい値を使うことによって、電動アシスト歩行車10の手動停止時など、段差との衝突以外の場面で段差の誤検知が発生するのを防ぐことができる。 As a result, by using an excessively small threshold value, it is possible to prevent erroneous detection of a step in a scene other than a collision with a step, such as when the electrically assisted walking vehicle 10 is manually stopped.
 なお、電動アシスト歩行車10が段差に衝突した場合、車体の前後方向の加速度のピークより、車体の幅方向の加速度のピークが遅れて計測される場合がある。このため、判断部16aは、計測部によって計測された電動アシスト歩行車10(電動車両)の車体を減速させる方向への加速度または車体の後方方向への加速度が第1しきい値以上となった以後、所定の期間内に計測された電動アシスト歩行車10(電動車両)の車体の幅方向の加速度の絶対値の最大値が第2しきい値以上となったときに、左右いずれの車輪が段差に接触したのかを推定してもよい。上述の所定の期間の例としては、10ミリ秒があるが、これとは異なる値を使ってもよい。 When the electrically power assisted walking vehicle 10 collides with a step, the peak of the acceleration in the width direction of the vehicle body may be measured later than the peak of the acceleration in the front-rear direction of the vehicle body. Therefore, in the determination unit 16a, the acceleration in the direction of decelerating the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured by the measurement unit or the acceleration in the rearward direction of the vehicle body is equal to or higher than the first threshold value. After that, when the maximum value of the absolute value of the acceleration in the width direction of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle) measured within a predetermined period becomes the second threshold value or more, either the left or right wheel is turned on. It may be estimated whether or not it touched the step. An example of the predetermined period described above is 10 milliseconds, but a different value may be used.
(段差の乗り越え動作)
 次に、電動アシスト歩行車(電動車両)による段差の乗り越え動作について説明する。
(Overcoming steps)
Next, the operation of overcoming a step by the electrically assisted walking vehicle (electric vehicle) will be described.
 図15は、段差に対して角度をもって進入している電動アシスト歩行車の第1の例を示した平面図である。以下では、図15を参照しながら、電動アシスト歩行車10が段差80に対して角度をもって進入した場合における段差80の乗り越え動作について説明する。電動アシスト歩行車10の進行方向に係るベクトル(破線P)が段差80の垂線(破線S)との間に0度以上の角度をなしているとき、電動アシスト歩行車10が段差80に対して角度をもって進入しているというものとする。図15では、電動アシスト歩行車10の右前輪が段差80と接触している。計測部の計測値に基づき、判断部16aは右前輪の段差との衝突を検出しているものとする。 FIG. 15 is a plan view showing a first example of an electrically assisted walking vehicle approaching at an angle with respect to a step. In the following, with reference to FIG. 15, the operation of overcoming the step 80 when the electrically assisted walking vehicle 10 enters the step 80 at an angle will be described. When the vector (broken line P) related to the traveling direction of the electrically assisted walking vehicle 10 forms an angle of 0 degrees or more with the perpendicular line (broken line S) of the step 80, the electrically assisted walking vehicle 10 with respect to the step 80. It is assumed that the vehicle is approaching at an angle. In FIG. 15, the right front wheel of the electrically power assisted walking vehicle 10 is in contact with the step 80. It is assumed that the determination unit 16a has detected a collision with the step on the right front wheel based on the measurement value of the measurement unit.
 図15において、白抜きの矢印はそれぞれ左後輪の駆動力dplと、右後輪の駆動力dprを示している。図15の例において、左後輪の駆動力dplと、右後輪の駆動力dprが等しく設定されていると仮定すると、駆動力dplと駆動力dprの合力のうち、段差80と垂直な方向の力はsin(90-θ)倍される。したがって、角度θが大きくなるほど、電動アシスト歩行車10が段差80を乗り越えるのは難しくなる。そこで、電動アシスト歩行車10の車体を旋回させ、段差80の乗り越え動作時に段差80と垂直な方向へより大きな力が加わるようにする。 15, white arrows and driving force d pl of the left rear wheel, respectively, show the driving force d pr of the right rear wheel. In the example of FIG. 15, a driving force d pl of the left rear wheel, assuming that the driving force d pr of the right rear wheel is set equal among the resultant force of the driving force d pl and driving force d pr, step 80 The force in the direction perpendicular to is multiplied by sin (90-θ). Therefore, as the angle θ becomes larger, it becomes more difficult for the electrically power assisted walking vehicle 10 to get over the step 80. Therefore, the vehicle body of the electrically assisted walking vehicle 10 is turned so that a larger force is applied in the direction perpendicular to the step 80 when the step 80 is overcome.
 例えば、図15の例のように制御部16は、駆動部を制御し、左後輪の駆動力dplを右後輪の駆動力dprより大きくすることができる。これにより、電動アシスト歩行車10の車体を右方向に旋回させる力が働き、より小さい角度θで段差80の乗り越えが行えるようになる。このように、制御部16は、段差に接触したと推定された側の前輪12または前輪12の車体の幅方向の同じ側に位置する後輪13の少なくともいずれか一方の駆動部の駆動力よりも大きな駆動力を段差に接触したと推定された前輪12の車体の幅方向の反対側に位置する前輪12または後輪13の少なくともいずれか一方の駆動部に発生させてもよい。 For example, the control unit 16 as in the example of FIG. 15, controls the driving unit, can be made larger than the driving force d pr of the right rear wheel driving force d pl of the left rear wheel. As a result, a force for turning the vehicle body of the electrically assisted walking vehicle 10 to the right acts, and the step 80 can be overcome at a smaller angle θ. As described above, the control unit 16 is based on the driving force of at least one of the front wheels 12 on the side estimated to have come into contact with the step or the rear wheels 13 located on the same side in the width direction of the vehicle body of the front wheels 12. A large driving force may be generated in at least one of the front wheels 12 and the rear wheels 13 located on the opposite side of the front wheels 12 in the width direction of the vehicle body, which is presumed to have come into contact with the step.
 また、制御部16は、段差に接触したと推定された前輪12の車体の幅方向の反対側に位置する前輪12または後輪13の少なくともいずれか一方の駆動部にのみ駆動力を発生させてもよい。すなわち、段差に接触したと推定された前輪12の車体の幅方向反対側に位置する前輪12または後輪13の少なくともいずれか一方の駆動部の駆動力は、段差に接触したと推定された前輪12と前輪12の車体の幅方向の同じ側に位置する後輪13の少なくともいずれか一方の駆動部の駆動力よりも大きくてもよい。これにより、左前輪または右前輪のいずれかが段差に接触した後、電動アシスト歩行車10を段差に正対させることができる。なお、段差に接触した側の車輪については、上述の段差の検出処理の説明で述べた方法を使って推定することができる。 Further, the control unit 16 generates a driving force only in at least one of the front wheels 12 and the rear wheels 13 located on the opposite side of the vehicle body of the front wheels 12 presumed to have come into contact with the step in the width direction. May be good. That is, the driving force of at least one of the front wheels 12 and the rear wheels 13 located on the opposite side of the vehicle body of the front wheels 12 presumed to have come into contact with the step has been presumed to have come into contact with the step. It may be larger than the driving force of at least one of the driving portions of the rear wheels 13 located on the same side in the width direction of the vehicle body of the front wheels 12 and the front wheels 12. As a result, after either the left front wheel or the right front wheel comes into contact with the step, the electrically assisted walking vehicle 10 can be made to face the step. The wheel on the side in contact with the step can be estimated by using the method described in the above description of the step detection process.
 なお、電動アシスト歩行車10が段差80に対して角度をもって進入しているとき、必ず電動アシスト歩行車10の車体を旋回させる駆動力を発生させなくてもよい。例えば、制御部16は、段差に接触したと推定された前輪12の車体の幅方向の同じ側に位置する後輪13の駆動部にのみ駆動力を発生させてもよい。また、制御部16は、段差に接触したと推定された側の前輪12または前輪12の車体の幅方向の同じ側に位置する後輪13の少なくともいずれか一方の駆動部の駆動力よりも段差に接触したと推定された側の前輪12または車体の幅方向の同じ側に位置する後輪13の少なくともいずれかの駆動部の駆動力を大きくしてもよい。これらの方法によっても、左前輪または右前輪のいずれかが段差に接触した後、電動アシスト歩行車10を段差に正対させることができる。例えば、乗り越えるべき段差が高くない場合や、段差が斜路状(スロープ状)となっている場合には、大きな駆動力がなくても段差の乗り越えを行える場合がある。このような場合には、電動アシスト歩行車10を旋回させてから段差乗り越え制御を行ったり、電動アシスト歩行車10の旋回を伴う段差乗り越え制御を行ったりしなくてもよい。これにより、制御が単純化されるため、使用者はより短期間で段差を乗り越えることが可能となる。 When the electrically assisted walking vehicle 10 is approaching the step 80 at an angle, it is not always necessary to generate a driving force for turning the vehicle body of the electrically assisted walking vehicle 10. For example, the control unit 16 may generate a driving force only in the driving unit of the rear wheels 13 located on the same side in the width direction of the vehicle body of the front wheels 12 presumed to have come into contact with the step. Further, the control unit 16 has a step higher than the driving force of at least one of the front wheels 12 on the side estimated to have come into contact with the step or the rear wheels 13 located on the same side in the width direction of the vehicle body of the front wheels 12. The driving force of at least one of the front wheels 12 on the side presumed to be in contact with the vehicle or the rear wheels 13 located on the same side in the width direction of the vehicle body may be increased. Also by these methods, after either the left front wheel or the right front wheel comes into contact with the step, the electrically assisted walking vehicle 10 can be made to face the step. For example, if the step to be overcome is not high, or if the step is slope-shaped, it may be possible to overcome the step without a large driving force. In such a case, it is not necessary to perform the step overcoming control after turning the electrically assisted walking vehicle 10 or to perform the step overcoming control accompanied by the turning of the electrically assisted walking vehicle 10. This simplifies control and allows the user to overcome steps in a shorter period of time.
 図16、図17は、段差に対して角度をもって進入している電動アシスト歩行車の第2の例を示した平面図である。図16、図17は、電動アシスト歩行車10の動作の各ステップを示している。以下では、図16、図17を参照しながら電動アシスト歩行車10の動作を説明する。 16 and 17 are plan views showing a second example of the electrically power assisted walking vehicle approaching the step at an angle. 16 and 17 show each step of the operation of the electrically power assisted walking vehicle 10. Hereinafter, the operation of the electrically power assisted walking vehicle 10 will be described with reference to FIGS. 16 and 17.
 最初に電動アシスト歩行車10は、段差80に対して0度より大きい角度θをもって進行している(ステップS1)。ステップS1の時点において、左後輪の駆動力dplと右後輪の駆動力dprは等しいものとする。この場合、dpl>0、dpr>0であってもよいし、dpl=dpr=0であってもよい。dpl=dpr=0である場合、使用者はアシスト力なしで電動アシスト歩行車10を前進させている。 First, the electrically assisted walking vehicle 10 travels at an angle θ larger than 0 degrees with respect to the step 80 (step S1). At the time of the step S1, the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel are equal. In this case, d pl > 0, d pr > 0, or d pl = d pr = 0. When d pl = d pr = 0, the user is advancing the electrically assisted walking vehicle 10 without any assisting force.
 ステップS1より電動アシスト歩行車10が前進した結果、右前輪が段差80に接触している(ステップS2)。判断部16aは、計測部の計測値に基づき、右前輪の段差80との衝突を検出する。そして、制御部16は、駆動部を制御し、段差80と接触したと推定された側の車輪である、右後輪の進行方向への駆動力dprを0に設定する。また、制御部16は、制動部を制御し、右後輪にブレーキをかけてもよい。このとき、段差80と接触していないと推定された側の車輪である、左後輪の駆動力はdpl>0に設定されている。したがって、電動アシスト歩行車10は右方向への旋回(方向転換)を開始する。 As a result of the electrically assisted walking vehicle 10 advancing from step S1, the right front wheel is in contact with the step 80 (step S2). The determination unit 16a detects a collision with the step 80 of the right front wheel based on the measured value of the measurement unit. Then, the control unit 16 controls the drive unit and sets the drive force dpr in the traveling direction of the right rear wheel, which is the wheel on the side estimated to have come into contact with the step 80, to 0. Further, the control unit 16 may control the braking unit and apply the brake to the right rear wheel. At this time, the driving force of the left rear wheel, which is the wheel on the side estimated not to be in contact with the step 80, is set to d pl > 0. Therefore, the electrically power assisted walking vehicle 10 starts turning (changing direction) to the right.
 このように、制御部16は、段差に接触したと推定された方の前輪と車体の幅方向反対側に位置する前輪または後輪のいずれかの駆動部にのみ駆動力を発生させてもよい。これにより、いずれかの前輪が段差に接触した後、短時間で車体を旋回させることができる。 In this way, the control unit 16 may generate a driving force only in the driving unit of either the front wheel or the rear wheel located on the opposite side in the width direction of the vehicle body from the front wheel that is presumed to have come into contact with the step. .. As a result, the vehicle body can be turned in a short time after one of the front wheels comes into contact with the step.
 電動アシスト歩行車10の右方向への旋回の結果、他方の前輪12である左前輪が段差80に接触する(ステップS3)。このとき、電動アシスト歩行車10は段差80のほぼ正面を向く。すなわち、上述の角度θはほぼ0度に等しくなる。角度θが小さいほど、電動アシスト歩行車10は小さい駆動力で段差80を乗り越えることができる。したがって、電動アシスト歩行車10はステップS3の時点より、段差80の乗り越え動作を開始してもよい。すなわち、制御部16は、両方の前輪が段差に接触したと推定したら、段差の乗り越え動作を行ってもよい。これにより、電動アシスト歩行車10はより安定した姿勢をとることができるため、複雑な制御を行わずに、段差80の乗り越えを実現することが可能となる。 As a result of turning the electrically assisted walking vehicle 10 to the right, the left front wheel, which is the other front wheel 12, comes into contact with the step 80 (step S3). At this time, the electrically assisted walking vehicle 10 faces substantially the front of the step 80. That is, the above-mentioned angle θ becomes almost equal to 0 degrees. The smaller the angle θ, the smaller the driving force of the electrically power assisted walking vehicle 10 can overcome the step 80. Therefore, the electrically assisted walking vehicle 10 may start the operation of overcoming the step 80 from the time of step S3. That is, if it is estimated that both front wheels have come into contact with the step, the control unit 16 may perform the step overcoming operation. As a result, the electrically assisted walking vehicle 10 can take a more stable posture, so that it is possible to overcome the step 80 without performing complicated control.
 例えば、制御部16は、判断部16aが計測部の計測値に基づいて前輪12の両方が段差に接触したと推定したときにされたら、電動アシスト歩行車10(電動車両)の車体の幅方向の両側にある前輪または後輪の少なくともいずれかの駆動部の駆動力を等しく設定してもよい。これにより、電動アシスト歩行車10の旋回量が大きくなりすぎないよう、駆動部の駆動力を調整することができる。電動アシスト歩行車10の前面が段差80のほぼ正面を向いた段階でアシストを行うため、段差80の乗り越えがより確実に行われるメリットがある。 For example, if the control unit 16 estimates that both the front wheels 12 have come into contact with the step based on the measured values of the measurement unit, the control unit 16 determines that the width direction of the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle). The driving force of at least one of the front wheels or the rear wheels on both sides of the wheel may be set to be equal. As a result, the driving force of the driving unit can be adjusted so that the turning amount of the electrically assisted walking vehicle 10 does not become too large. Since the assist is performed when the front surface of the electrically assisted walking vehicle 10 faces substantially the front of the step 80, there is an advantage that the step 80 can be overcome more reliably.
 なお、左前輪と右前輪(両方の前輪)が段差に接触するタイミングについては特に問わない。例えば、左前輪と右前輪がほぼ同時に段差と接触してもよいし、左前輪が段差に接触する時刻と右前輪が段差に接触する時刻が前後していてもよい。なお、段差80の乗り越え動作の開始後における駆動力の制御方法については後述する。 The timing at which the left front wheel and the right front wheel (both front wheels) come into contact with the step does not matter. For example, the left front wheel and the right front wheel may come into contact with the step at almost the same time, or the time when the left front wheel touches the step and the time when the right front wheel touches the step may be around. The method of controlling the driving force after the start of the operation of overcoming the step 80 will be described later.
 そしてステップS4において、電動アシスト歩行車10は段差80の乗り越え動作を行っている。ステップS4では、段差80の乗り越えをアシストするために、右後輪の駆動力dprと、左後輪の駆動力dplの駆動力がステップS3以前より大きくなっている。 Then, in step S4, the electrically assisted walking vehicle 10 is operating over the step 80. In step S4, in order to assist overcoming the step 80, the driving force d pr of the right rear wheel, driving force d pl of the driving force of the left rear wheel is larger than the step S3 previously.
 次に、電動アシスト歩行車10が段差に対して角度をもって進入したときにおける車輪の制御方法の例について説明する。図18、図19は、電動アシスト歩行車10(電動車両)の車輪の制御方法の例を示したグラフである。図18、図19の横軸は時刻を示している。一方、図18、図19の縦軸は、車輪の駆動力を示している。 Next, an example of a wheel control method when the electrically power assisted walking vehicle 10 enters at an angle with respect to a step will be described. 18 and 19 are graphs showing an example of a wheel control method for the electrically power assisted walking vehicle 10 (electric vehicle). The horizontal axes of FIGS. 18 and 19 indicate the time. On the other hand, the vertical axis of FIGS. 18 and 19 shows the driving force of the wheel.
 図18の破線c1は、段差に接触したと推定された側の反対側の車輪に連結された駆動部の駆動力を示している。一方、破線c2は、段差に接触していないと推定された側の車輪に連結された駆動部の駆動力を示している。例えば、図1、図2に示した構成の電動アシスト歩行車10が使われ、先に右前輪が段差に接触した場合を仮定すると、破線c1は右後輪に連結された駆動部の駆動部に対応する。一方、破線c2は左後輪に連結された駆動部の駆動部に対応する。以下では、先に右前輪が段差に接触した場合を例にとり、図18の制御を説明する。 The broken line c1 in FIG. 18 shows the driving force of the driving unit connected to the wheel on the opposite side on the side estimated to have come into contact with the step. On the other hand, the broken line c2 indicates the driving force of the driving unit connected to the wheel on the side estimated not to be in contact with the step. For example, assuming that the electrically power assisted walking vehicle 10 having the configurations shown in FIGS. 1 and 2 is used and the right front wheel first contacts the step, the broken line c1 is the driving unit of the driving unit connected to the right rear wheel. Corresponds to. On the other hand, the broken line c2 corresponds to the drive unit of the drive unit connected to the left rear wheel. In the following, the control of FIG. 18 will be described by taking the case where the right front wheel comes into contact with the step as an example.
 時刻t1以前における電動アシスト歩行車10は前進しており、左後輪の駆動力dplと右後輪の駆動力dprが等しく設定されている。なお、図18の例では、時刻t1以前においてdpl>0、dpr>0となっているが、dpl=0、dpr=0であってもよい。 Electrically assisted walker 10 at time t1 earlier is advanced, the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel are set to be equal. In the example of FIG. 18, d pl > 0 and d pr > 0 before the time t1, but d pl = 0 and d pr = 0 may be used.
 そして、時刻t1において、電動アシスト歩行車10の右前輪は段差に接触する。判断部16aは計測部の計測値に基づき、右前輪が段差に衝突したと推定する。そして、制御部16は、時刻t1に段差が検出されたと判定し、時刻t1以降に左後輪の駆動力dplと右後輪の駆動力dprを漸増させる。ここで、段差に接触したと推定された側の車輪(ここでは、左後輪)に連結された駆動部の駆動力dplの時間当たりの増加率が、段差に接触していないと推定された側の車輪(ここでは、右後輪)に連結された駆動部の駆動力dprの時間当たりの増加率より大きく設定されている。 Then, at time t1, the right front wheel of the electrically power assisted walking vehicle 10 comes into contact with the step. The determination unit 16a estimates that the right front wheel has collided with the step based on the measured value of the measurement unit. Then, the control unit 16 determines that the step is detected at time t1, gradually increasing the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel after time t1. Here, it is estimated that the rate of increase per hour of the driving force dpl of the drive unit connected to the wheel on the side estimated to have contacted the step (here, the left rear wheel) is not in contact with the step. It is set to be larger than the rate of increase per hour of the driving force dpr of the driving unit connected to the wheel on the other side (here, the right rear wheel).
 そして、時刻t2において、駆動力の時間当たりの増加率のより大きい左後輪の駆動力dplが目標値に達する。ここで、目標値は駆動部の最大の駆動力であってもよいし、最大の駆動力でなくてもよい。制御部16は、時刻t2以後における左前輪の駆動力dplを目標値に維持する。一方、時刻t2において駆動力の時間当たりの増加率のより小さい右後輪の駆動力dprはまだ目標値に達していない。制御部16は、引き続き時刻t2以降も右後輪の駆動力dprを漸増させる。 Then, at time t2, the driving force d pl Larger left rear wheel of the increase rate per time of the driving force reaches the target value. Here, the target value may or may not be the maximum driving force of the driving unit. The control unit 16 maintains the driving force dpl of the left front wheel after the time t2 at the target value. On the other hand, the driving force d pr of smaller right rear wheel of the increase rate per time of the driving force at the time t2 has not yet reached the target value. The control unit 16 continues to gradually increase the driving force dpr of the right rear wheel even after the time t2.
 時刻t3において、駆動力の時間当たりの増加率の小さい右後輪の駆動力dprも目標値に達する。そして、制御部16は、時刻t3以後における左前輪の駆動力dplを目標値に維持する。 At time t3, the driving force d pr small right rear wheel of the rate of increase per unit time of the driving force also reaches the target value. Then, the control unit 16 maintains the driving force dpl of the left front wheel after the time t3 at the target value.
 例えば、制御部16は、電動アシスト歩行車10が段差の乗り越えに成功したと判定するまで、左前輪の駆動力dplと右後輪の駆動力dprを目標値に維持する。制御部16は、例えば、傾き検知センサ23の計測値に基づいて電動アシスト歩行車10が段差の乗り越えに成功したか否かを判定することができるが、段差の乗り越えの成功可否の判定方法については特に問わない。上述の図7で説明したように、制御部16は、電動アシスト歩行車10が段差の乗り越えに成功したと判定したら、左前輪の駆動力dplおよび右後輪の駆動力dprを減らすことができる。 For example, the control unit 16, electrically assisted walker 10 until it is determined that it has successfully overcome the step, maintaining the driving force d pr of the left front wheel driving force d pl and the right rear wheel to the target value. The control unit 16 can determine, for example, whether or not the electrically assisted walking vehicle 10 has succeeded in overcoming the step based on the measured value of the tilt detection sensor 23. Is not particularly limited. As described in FIG. 7 described above, the control unit 16, if it is determined that the electrically assisted walker 10 has successfully overcome the step, to reduce the driving force d pr of the left front wheel driving force d pl and the right rear wheel Can be done.
 図18を参照すると、時刻t1と時刻t3の間において、dpl>dprの関係が成立しており、左前輪の駆動力が右後輪の駆動力より大きい状態が継続している。したがって、電動アシスト歩行車10の車体を段差に上らせながら、車体を右方向に旋回させることができる。これにより、段差の乗り越え後に、電動アシスト歩行車10の車体の向き(角度θ)が補正され、使用者はより安全な姿勢で段差の上を進むことが可能となる。 Referring to FIG. 18, the relationship of d pl > d pr is established between the time t1 and the time t3, and the driving force of the left front wheel continues to be larger than the driving force of the right rear wheel. Therefore, the vehicle body can be turned to the right while the vehicle body of the electrically assisted walking vehicle 10 is raised on the step. As a result, the orientation (angle θ) of the vehicle body of the electrically assisted walking vehicle 10 is corrected after the step is overcome, and the user can move on the step in a safer posture.
 図19の破線c3は、段差に接触したと推定された側の反対側の車輪に連結された駆動部の駆動力を示している。一方、破線c4は、段差に接触していないと推定された側の車輪に連結された駆動部の駆動力を示している。例えば、図1、図2に示した構成の電動アシスト歩行車10が使われ、先に右前輪が段差に接触した場合を仮定すると、破線c3は右後輪に連結された駆動部の駆動部に対応する。一方、破線c4は左後輪に連結された駆動部の駆動部に対応する。以下では、先に右前輪が段差に接触した場合を例にとり、図19の制御を説明する。 The broken line c3 in FIG. 19 shows the driving force of the driving unit connected to the wheel on the opposite side on the side estimated to have come into contact with the step. On the other hand, the broken line c4 indicates the driving force of the driving unit connected to the wheel on the side estimated not to be in contact with the step. For example, assuming that the electrically power assisted walking vehicle 10 having the configurations shown in FIGS. 1 and 2 is used and the right front wheel first contacts the step, the broken line c3 is the driving unit of the driving unit connected to the right rear wheel. Corresponds to. On the other hand, the broken line c4 corresponds to the drive unit of the drive unit connected to the left rear wheel. In the following, the control of FIG. 19 will be described by taking the case where the right front wheel comes into contact with the step first as an example.
 そして、時刻t1において、電動アシスト歩行車10の右前輪は段差に接触する。判断部16aは計測部の計測値に基づき、右前輪が段差に衝突したと推定する。そして、制御部16は、時刻t1に段差が検出されたと判定し、時刻t1以降に左後輪の駆動力dplと右後輪の駆動力dprを漸増させる。ここでも、段差に接触したと推定された側の車輪(ここでは、左後輪)に連結された駆動部の駆動力dplの時間当たりの増加率を段差に接触していないと推定された側の車輪(ここでは、右後輪)に連結された駆動部の駆動力dprの時間当たりの増加率より大きく設定されている。 Then, at time t1, the right front wheel of the electrically power assisted walking vehicle 10 comes into contact with the step. The determination unit 16a estimates that the right front wheel has collided with the step based on the measured value of the measurement unit. Then, the control unit 16 determines that the step is detected at time t1, gradually increasing the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel after time t1. Again, it was estimated that the rate of increase per hour of the driving force dpl of the drive unit connected to the wheel on the side estimated to have touched the step (here, the left rear wheel) was not touching the step. It is set to be larger than the rate of increase per hour of the driving force dpr of the driving unit connected to the side wheel (here, the right rear wheel).
 右後輪の駆動力dprの時間当たりの増加率は一定値に設定されているのに対し、左後輪の駆動力dplの時間当たりの増加率は時間の経過にしたがって減少している。したがって、時刻t1以降における破線c4の傾斜がなだらかになっている。 Increase rate per time of the driving force d pr of the right rear wheel whereas is set to a constant value, an increase rate per driving force d pl of time of the left rear wheel is decreased with time .. Therefore, the slope of the broken line c4 after the time t1 is gentle.
 時刻t3において、右後輪の駆動力dprと左後輪の駆動力dplの駆動力のいずれもが目標値に達する。目標値は駆動部の最大の駆動力であってもよいし、最大の駆動力でなくてもよい。そして、制御部16は、時刻t3以後における右後輪の駆動力dprと左後輪の駆動力dplを目標値に維持する。 At time t3, both the driving force d pr of the right rear wheel and the driving force d pl of the left rear wheel reach the target value. The target value may or may not be the maximum driving force of the driving unit. Then, the control unit 16 maintains the driving force d pl of driving force d pr and the left rear wheel of the right rear wheel at the time t3 after the target value.
 例えば、制御部16は、電動アシスト歩行車10が段差の乗り越えに成功したと判定するまで、左前輪の駆動力dplと右後輪の駆動力dprを目標値に維持する。制御部16は、例えば、傾き検知センサ23の計測値に基づいて電動アシスト歩行車10が段差の乗り越えに成功したか否かを判定することができるが、段差の乗り越えの成功可否の判定方法については特に問わない。上述の図7で説明したように、制御部16は、電動アシスト歩行車10が段差の乗り越えに成功したと判定したら、左前輪の駆動力dplおよび右後輪の駆動力dprを減らすことができる。 For example, the control unit 16, electrically assisted walker 10 until it is determined that it has successfully overcome the step, maintaining the driving force d pr of the left front wheel driving force d pl and the right rear wheel to the target value. The control unit 16 can determine, for example, whether or not the electrically assisted walking vehicle 10 has succeeded in overcoming the step based on the measured value of the tilt detection sensor 23. Is not particularly limited. As described in FIG. 7 described above, the control unit 16, if it is determined that the electrically assisted walker 10 has successfully overcome the step, to reduce the driving force d pr of the left front wheel driving force d pl and the right rear wheel Can be done.
 図19を参照すると、時刻t1と時刻t3の間において、dpl>dprの関係が成立しており、左前輪の駆動力が右後輪の駆動力より大きい状態が継続している。したがって、電動アシスト歩行車10の車体を段差に上らせながら、車体を右方向に旋回させることができる。これにより、段差の乗り越え後に、電動アシスト歩行車10の車体の向き(角度θ)が補正され、使用者はより安全な姿勢で段差の上を進むことが可能となる。 Referring to FIG. 19, the relationship of d pl > d pr is established between the time t1 and the time t3, and the driving force of the left front wheel continues to be larger than the driving force of the right rear wheel. Therefore, the vehicle body can be turned to the right while the vehicle body of the electrically assisted walking vehicle 10 is raised on the step. As a result, the orientation (angle θ) of the vehicle body of the electrically assisted walking vehicle 10 is corrected after the step is overcome, and the user can move on the step in a safer posture.
 図18、図19の制御方法で例示したように、制御部16は、段差に接触したと推定された前輪12と車体の幅方向反対側に位置する前輪12または後輪13の少なくともいずれか一方の駆動部の駆動力と段差に接触したと推定された前輪12と前輪12の車体の幅方向の同じ側に位置する後輪13の少なくともいずれかの駆動部の駆動力とを所定のしきい値(第4しきい値、または、目標値)になるまで漸増させてもよい。これにより、車体が過度に旋回することを防ぐことができる。 As illustrated in the control methods of FIGS. 18 and 19, the control unit 16 has at least one of the front wheels 12 presumed to have come into contact with the step and the front wheels 12 or the rear wheels 13 located on the opposite sides of the vehicle body in the width direction. The driving force of the front wheel 12 and the driving force of at least one of the rear wheels 13 located on the same side of the front wheel 12 in the width direction of the vehicle body, which are presumed to have come into contact with the step, are set as a predetermined threshold. It may be gradually increased until it reaches a value (fourth threshold value or a target value). This makes it possible to prevent the vehicle body from turning excessively.
 また、図18、図19の方法では、時刻t1と時刻t3の間において、段差に衝突したと推定された側(段差に近い側)の後輪にも駆動力が加えられている。このため、電動アシスト歩行車10の車体の旋回をさせながら、両方の後輪を使って段差を上ることができる。図18、図19の方法では、両方の後輪の駆動力が目標値に達するまでの過渡期(時刻t1~t3)において左右の後輪の駆動力に差がつけられており、滑らかに電動アシスト歩行車10の車体の方向を補正することができる。 Further, in the methods of FIGS. 18 and 19, a driving force is also applied to the rear wheels on the side estimated to have collided with the step (the side close to the step) between the time t1 and the time t3. Therefore, it is possible to climb the step by using both rear wheels while turning the vehicle body of the electrically assisted walking vehicle 10. In the methods of FIGS. 18 and 19, the driving forces of the left and right rear wheels are different in the transition period (time t1 to t3) until the driving forces of both rear wheels reach the target value, and the electric power is smoothly applied. The direction of the vehicle body of the assisted walking vehicle 10 can be corrected.
 なお、図18、図19の方法において、他方の前輪が段差に接触したことを検出してから、両方の後輪の駆動力を等しく設定してもよい。これにより、左前輪と右前輪が段差に接触した段階で、大きな駆動力(例えば、上述の目標値の駆動力)によって段差を上ることができる。 Note that, in the methods of FIGS. 18 and 19, the driving force of both rear wheels may be set equally after detecting that the other front wheel has come into contact with the step. As a result, when the left front wheel and the right front wheel come into contact with the step, the step can be climbed by a large driving force (for example, the driving force of the above-mentioned target value).
 上述のように、制御部16による乗り越え動作は、電動アシスト歩行車10(電動車両)の車体を旋回させながら駆動部が車輪の駆動力を増やす動作または、電動アシスト歩行車10(電動車両)の車体を旋回させてから駆動部が車輪の駆動力を増やす動作または、駆動部が車輪の駆動力を増やす動作のいずれかを含んでいてもよい。 As described above, the overcoming operation by the control unit 16 is an operation in which the driving unit increases the driving force of the wheels while turning the vehicle body of the electrically assisted walking vehicle 10 (electric vehicle), or the operation of the electrically assisted walking vehicle 10 (electric vehicle). It may include either an operation in which the driving unit increases the driving force of the wheels after turning the vehicle body, or an operation in which the driving unit increases the driving force of the wheels.
(双輪キャスターの使用)
 図20の平面図に示したように、電動アシスト歩行車10(電動車両)の前輪12の回転方向と後輪13の回転方向が異なっている状態で段差80に進入する場合がある。例えば、電動アシスト歩行車10が移動中に方向転換(旋回)すると、前輪12が電動アシスト歩行車10の車体の進行方向と異なる方向に向くことがある。
(Use of twin wheel casters)
As shown in the plan view of FIG. 20, the step 80 may be entered in a state where the rotation direction of the front wheels 12 and the rotation direction of the rear wheels 13 of the electrically assisted walking vehicle 10 (electric vehicle) are different. For example, when the electrically assisted walking vehicle 10 changes direction (turns) while moving, the front wheels 12 may face in a direction different from the traveling direction of the vehicle body of the electrically assisted walking vehicle 10.
 図20は、車体の進行方向に対して前輪が角度を有する場合の第1の例を示した平面図である。図20のステップS10では、電動アシスト歩行車10の両方の前輪12(左前輪および右前輪)が段差80に衝突している。それぞれの前輪12は、段差80から後輪13の駆動力(dpl+dpr)の反作用として抗力Fnl、Fnrを受ける。抗力Fnl、Fnrはそれぞれの前輪12の回転中心12rに対するモーメントとなり、それぞれの前輪12を反時計周り(左回り)に回転させる。 FIG. 20 is a plan view showing a first example when the front wheels have an angle with respect to the traveling direction of the vehicle body. In step S10 of FIG. 20, both front wheels 12 (left front wheel and right front wheel) of the electrically power assisted walking vehicle 10 collide with the step 80. Each of the front wheels 12 receives drags F nl and F nr as a reaction of the driving force (d pl + d pr ) of the rear wheels 13 from the step 80. The drag forces F nl and F nr become moments with respect to the rotation center 12r of each front wheel 12, and each front wheel 12 is rotated counterclockwise (counterclockwise).
 回転により、前輪12は側面が段差80とほぼ平行な向きとなってしまう(ステップS11)。ステップS11において、前輪12の回転可能な方向は段差80とほぼ平行な方向となっている。前輪12は段差80の方向に回転することができないため、後輪13の駆動力(dpl、dpr)によるアシストを行っても、電動アシスト歩行車10が段差80を乗り越えるのは困難である。 Due to the rotation, the side surface of the front wheel 12 is oriented so as to be substantially parallel to the step 80 (step S11). In step S11, the rotatable direction of the front wheel 12 is substantially parallel to the step 80. The front wheel 12 can not be rotated in the direction of the step 80, the driving force of the rear wheel 13 (d pl, d pr) even if the assist by the electric assist walker 10 is difficult over the bump 80 ..
 なお、図20の例において、電動アシスト歩行車10の車体の進行方向は段差80とほぼ垂直となっているが、ここで示した問題は、電動アシスト歩行車10の車体の進行方向のベクトルが段差80の垂線に対して角度θ(θ>0度)を有する場合においても発生する。 In the example of FIG. 20, the traveling direction of the vehicle body of the electrically assisted walking vehicle 10 is substantially perpendicular to the step 80, but the problem shown here is that the vector of the traveling direction of the vehicle body of the electrically assisted walking vehicle 10 is It also occurs when the angle θ (θ> 0 degree) is set with respect to the perpendicular line of the step 80.
 上述の例における電動アシスト歩行車の車輪はいずれも単輪のタイヤを備えていた。ただし、電動アシスト歩行車の車輪は必ず単輪のタイヤでなくてもよい。例えば、図21の電動アシスト歩行車10aの前輪12(右前輪と左前輪)は旋回可能に構成された双輪キャスター12aである。 The wheels of the electrically power assisted walking vehicle in the above example were all equipped with single tires. However, the wheels of the electrically power assisted walking vehicle do not necessarily have to be single tires. For example, the front wheels 12 (right front wheel and left front wheel) of the electrically power assisted walking vehicle 10a of FIG. 21 are twin-wheel casters 12a configured to be rotatable.
 図21は、車体の進行方向に対して前輪が角度を有する場合の第2の例を示した平面図である。図21のステップS20では、電動アシスト歩行車10aの前方両側にある双輪キャスター12aが段差80に衝突している。それぞれの双輪キャスター12aは、段差80から後輪13の駆動力(dpl+dpr)の反作用として抗力Fnl、Fnrを受ける。抗力Fnl、Fnrはそれぞれの双輪キャスター12aの回転中心12rに対するモーメントとなり、それぞれの双輪キャスター12aを時計周り(右周り)に回転させる。 FIG. 21 is a plan view showing a second example in which the front wheels have an angle with respect to the traveling direction of the vehicle body. In step S20 of FIG. 21, twin wheel casters 12a on both front sides of the electrically power assisted walking vehicle 10a collide with the step 80. Each twin-wheel caster 12a receives drag forces F nl and F nr as a reaction of the driving force (d pl + d pr ) of the rear wheels 13 from the step 80. The drag forces F nl and F nr are moments with respect to the rotation center 12r of each twin-wheel caster 12a, and each twin-wheel caster 12a is rotated clockwise (clockwise).
 双輪キャスター12aは、車輪全体の幅が図20の前輪12より大きい。このため、回転により、双輪キャスター12aはキャスターの接触面が段差80とほぼ平行となる(ステップS21)。このため、電動アシスト歩行車10aは後輪13の駆動力(dpl、dpr)によるアシストで段差80を乗り越えることができる。 The width of the entire wheel of the twin-wheel caster 12a is larger than that of the front wheel 12 of FIG. Therefore, due to the rotation, the contact surface of the casters of the twin-wheel casters 12a becomes substantially parallel to the step 80 (step S21). Therefore, the electrically assisted walking vehicle 10a can overcome the step 80 with the assistance of the driving force (d pl , d pr) of the rear wheels 13.
 図21の例に示したように、電動アシスト歩行車(電動車両)の前輪は鉛直軸について回転可能に構成された、双輪キャスターであってもよい。なお、電動アシスト歩行車(電動車両)の前輪として、必ず双輪キャスターを使わなくてもよい。例えば、前輪として、後輪よりもタイヤ幅の大きいタイヤを使い、図20のように車体を前進させるのが困難な状態となる確率を下げることができる。 As shown in the example of FIG. 21, the front wheels of the electrically assisted walking vehicle (electric vehicle) may be twin-wheel casters configured to be rotatable about the vertical axis. It is not always necessary to use twin wheel casters as the front wheels of the electrically power assisted walking vehicle (electric vehicle). For example, by using tires having a tire width wider than that of the rear wheels as the front wheels, it is possible to reduce the probability that it will be difficult to advance the vehicle body as shown in FIG.
(双輪キャスターを使った場合における段差検出)
 電動アシスト歩行車(電動車両)の前輪として、双輪キャスターを使った場合、車輪と段差との衝突が多段階となる可能性がある。図22、図23は、電動アシスト歩行車10aと段差との間の衝突の例を示した平面図である。以下では、図22、図23を参照しながら、段差との多段階の衝突について説明する。
(Step detection when using twin wheel casters)
When a twin-wheel caster is used as the front wheel of an electrically assisted walking vehicle (electric vehicle), there is a possibility that the collision between the wheel and the step becomes multi-stage. 22 and 23 are plan views showing an example of a collision between the electrically power assisted walking vehicle 10a and the step. In the following, a multi-step collision with a step will be described with reference to FIGS. 22 and 23.
 図22、図23の例において、電動アシスト歩行車10aは段差80に対して角度θ(θ>0度)をもって進入している。すなわち、段差80の垂線と、電動アシスト歩行車10aの進行方向は角度θをなしている。電動アシスト歩行車10aの前方側に装着された双輪キャスター12aは、いずれも電動アシスト歩行車10aの進行方向に対して角度を有する。また、左右の双輪キャスター12aの向きが異なっている。 In the examples of FIGS. 22 and 23, the electrically assisted walking vehicle 10a is approaching the step 80 at an angle θ (θ> 0 degrees). That is, the vertical line of the step 80 and the traveling direction of the electrically assisted walking vehicle 10a form an angle θ. The twin-wheel casters 12a mounted on the front side of the electrically assisted walking vehicle 10a all have an angle with respect to the traveling direction of the electrically assisted walking vehicle 10a. Further, the directions of the left and right twin wheel casters 12a are different.
 ステップS30を参照すると、電動アシスト歩行車10aの進行方向に対する角度の大きさを比べると、左側の双輪キャスター12aより、右側の双輪キャスター12aの角度の方が大きくなっている。まず、ステップS30において、右側の双輪キャスター12aの一端が段差80と衝突している。判断部16aは、計測部の計測値に基づいて、右側の双輪キャスター12aの段差との衝突を検出する。これにより、制御部16は、電動アシスト歩行車10aの右方向への旋回が必要であると判断する。そして、制御部16は、駆動部を制御し、左後輪の駆動力dplを右後輪の駆動力dprより大きく設定する。このため、ステップS30において、電動アシスト歩行車10aは右旋回を開始する。 With reference to step S30, when comparing the magnitude of the angle of the electrically power assisted walking vehicle 10a with respect to the traveling direction, the angle of the right twin wheel caster 12a is larger than that of the left twin wheel caster 12a. First, in step S30, one end of the right twin-wheel caster 12a collides with the step 80. The determination unit 16a detects a collision with the step of the twin wheel caster 12a on the right side based on the measured value of the measurement unit. As a result, the control unit 16 determines that the electrically assisted walking vehicle 10a needs to turn to the right. Then, the control unit 16 controls the driving unit is set larger than the driving force d pr of the right rear wheel driving force d pl of the left rear wheel. Therefore, in step S30, the electrically power assisted walking vehicle 10a starts turning to the right.
 次のステップS31において、左側の双輪キャスター12aの一端が段差80と衝突する。判断部16aは、計測部の計測値に基づいて、左側の双輪キャスター12aの段差との衝突を検出してもよい。当該衝突が検出された場合、制御部16は車体の方向転換が進んだと判断し、左後輪の駆動力dplと右後輪の駆動力dprの差を以前より小さく設定してもよい。また、制御部16はステップS31において左後輪の駆動力dplと右後輪の駆動力dprを変更しなくてもよい。左後輪の駆動力dplと右後輪の駆動力dprに関わらず、電動アシスト歩行車10aはステップS31において、右旋回を継続するものとする。 In the next step S31, one end of the left twin wheel caster 12a collides with the step 80. The determination unit 16a may detect a collision with the step of the left twin wheel caster 12a based on the measured value of the measurement unit. If the collision is detected, it is determined in the control unit 16 and the progress in the vehicle body changes in direction, it is set smaller than before the difference in driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel Good. The control unit 16 may not change the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel in step S31. Regardless driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel, the motor-assisted walker 10a in step S31, it is assumed to continue the right turn.
 そして、ステップS32において、右側の双輪キャスター12aの他端が段差80と衝突する。判断部16aは、計測部の計測値に基づいて、右側の双輪キャスター12aの段差との衝突を検出してもよい。当該衝突が検出された場合、制御部16は車体の方向転換が進んだと判断し、左後輪の駆動力dplと右後輪の駆動力dprの差を以前より小さく設定してもよい。また、制御部16はステップS32において左後輪の駆動力dplと右後輪の駆動力dprを変更しなくてもよい。左後輪の駆動力dplと右後輪の駆動力dprに関わらず、電動アシスト歩行車10aはステップS32において、右旋回を継続するものとする。 Then, in step S32, the other end of the right twin-wheel caster 12a collides with the step 80. The determination unit 16a may detect a collision with the step of the twin wheel casters 12a on the right side based on the measured value of the measurement unit. If the collision is detected, it is determined in the control unit 16 and the progress in the vehicle body changes in direction, it is set smaller than before the difference in driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel Good. The control unit 16 may not change the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel in the step S32. Regardless driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel, the motor-assisted walker 10a in step S32, it is assumed to continue the right turn.
 最後に、ステップS33において、左側の双輪の双輪キャスター12aの他端が段差80と衝突する。判断部16aは、計測部の計測値に基づいて、右側の双輪キャスター12aの段差との衝突を検出する。これにより、制御部16は、電動アシスト歩行車10aの前面が段差80のほぼ正面を向いているため、電動アシスト歩行車10aの右方向への旋回が不要になったと判断する。制御部16は、駆動部を制御し、左後輪の駆動力dplと右後輪の駆動力dprを等しい値に設定する。ここで、左後輪の駆動力dplと右後輪の駆動力dprは上述の図18、図19の目標値に設定されていてもよい。 Finally, in step S33, the other end of the twin wheel casters 12a of the left twin wheels collides with the step 80. The determination unit 16a detects a collision with the step of the twin wheel caster 12a on the right side based on the measured value of the measurement unit. As a result, the control unit 16 determines that the front surface of the electrically power assisted walking vehicle 10a faces substantially the front surface of the step 80, so that it is no longer necessary to turn the electrically power assisted walking vehicle 10a to the right. Control unit 16 controls the driving unit, sets a driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel to a value equal. Here, the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel of the above FIG 18, may be set to the target value in FIG. 19.
 ステップS33以降において、電動アシスト歩行車10aは左後輪の駆動力dplと右後輪の駆動力dprのアシストによって段差80の乗り越えを行うことができる。 In step S33 subsequent power-assisted walker 10a can perform overcome the step 80 by the assist of the driving force d pr of the driving force d pl and the right rear wheel of the left rear wheel.
 上述の図22、図23の例では、双輪キャスター12aが時間を前後し、段差と複数回衝突している。したがって、電動アシスト歩行車10aにかかる衝撃が複数回に分散する。このため、加速度センサ22aが検出する加速度は、前輪に単輪のタイヤが使われている場合と比べて小さくなる可能性がある。同様に、速度センサ22bを用いた衝突の検出を行う場合、一回の衝突で発生する速度の変化は、前輪に単輪のタイヤが使われている場合と比べて小さくなる可能性がある。したがって、電動アシスト歩行車(電動車両)の前輪に双輪キャスターが使われた場合、段差との衝突の検出に使うしきい値の値を、前輪が単輪のタイヤの場合と比べて小さい値に設定することができる。これにより、段差の検出を行うことができるようになる。 In the above-mentioned examples of FIGS. 22 and 23, the twin-wheel casters 12a collide with the step a plurality of times before and after the time. Therefore, the impact applied to the electrically assisted walking vehicle 10a is dispersed a plurality of times. Therefore, the acceleration detected by the acceleration sensor 22a may be smaller than that in the case where a single-wheel tire is used for the front wheels. Similarly, when a collision is detected using the speed sensor 22b, the change in speed that occurs in one collision may be smaller than that in the case where a single tire is used for the front wheels. Therefore, when twin-wheel casters are used for the front wheels of an electrically power-assisted walking vehicle (electric vehicle), the threshold value used to detect a collision with a step is set to a smaller value than when the front wheels are single-wheel tires. Can be set. This makes it possible to detect a step.
 (第2の実施の形態)
 次に、本開示の第2の実施の形態について説明する。図24~図30に示す第2の実施の形態は、後輪13およびモータ20周辺の構成が異なるものであり、他の構成は上述した第1の実施の形態と同様である。図24~図30において、第1の実施の形態と同一部分には同一の符号を付して詳細な説明は省略する。
(Second Embodiment)
Next, a second embodiment of the present disclosure will be described. The second embodiment shown in FIGS. 24 to 30 has different configurations around the rear wheels 13 and the motor 20, and the other configurations are the same as those of the first embodiment described above. In FIGS. 24 to 30, the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図24~図28に示す構成において、電動アシスト歩行車10のモータ20は、遊星歯車機構50を介して各後輪13に連結されている。 In the configurations shown in FIGS. 24 to 28, the motor 20 of the electrically assisted walking vehicle 10 is connected to each rear wheel 13 via a planetary gear mechanism 50.
 図26~図28に示すように、モータ20は、パイプフレーム31に固定されたハウジング61と、ハウジング61内に収容され、ハウジング61に対して回動自在な出力軸支持部62と、出力軸支持部62に固定され、出力軸支持部62と一体となって回動する出力軸63とを有している。このうちハウジング61にはフランジ64が固定され、ハウジング61の中央部からは出力軸63が突出している。ハウジング61と出力軸支持部62との間には、ベアリング65が介在されている。また、出力軸支持部62の外周には磁石66が設けられている。さらに、磁石66の周囲にはコイル67が配置されており、コイル67は、ハウジング61に固定されている。コイル67には、バッテリ21からの電力が供給され、磁石66が設けられた出力軸支持部62が回転するようになっている。なお、ハウジング61の中央部にはキャップ68が設けられている。 As shown in FIGS. 26 to 28, the motor 20 includes a housing 61 fixed to the pipe frame 31, an output shaft support portion 62 housed in the housing 61 and rotatable with respect to the housing 61, and an output shaft. It has an output shaft 63 that is fixed to the support portion 62 and rotates integrally with the output shaft support portion 62. Of these, the flange 64 is fixed to the housing 61, and the output shaft 63 projects from the central portion of the housing 61. A bearing 65 is interposed between the housing 61 and the output shaft support portion 62. Further, a magnet 66 is provided on the outer circumference of the output shaft support portion 62. Further, a coil 67 is arranged around the magnet 66, and the coil 67 is fixed to the housing 61. Electric power from the battery 21 is supplied to the coil 67, and the output shaft support portion 62 provided with the magnet 66 rotates. A cap 68 is provided at the center of the housing 61.
 後輪13は、ホイール71と、ホイール71の外周に設けられたタイヤ72と、ホイール71に連結されたホイール押さえ73とを有している。ホイール71は、押さえプレート74を介して、フランジ64の周囲に設けられたベアリング75に固定されている。 The rear wheel 13 has a wheel 71, a tire 72 provided on the outer circumference of the wheel 71, and a wheel retainer 73 connected to the wheel 71. The wheel 71 is fixed to a bearing 75 provided around the flange 64 via a holding plate 74.
 遊星歯車機構50は、太陽歯車51と、太陽歯車51の周囲に配置された内歯車52と、太陽歯車51および内歯車52に噛み合い、出力軸63が回転したとき自転しつつ公転する3つの遊星歯車53と、3つの遊星歯車53を回転可能に支持し、遊星歯車53の公転運動が伝達される遊星キャリヤ54とを有している。 The planetary gear mechanism 50 meshes with the sun gear 51, the internal gear 52 arranged around the sun gear 51, the sun gear 51 and the internal gear 52, and three planets that revolve while rotating when the output shaft 63 rotates. It has a gear 53 and a planetary carrier 54 that rotatably supports the three planetary gears 53 and transmits the revolving motion of the planetary gears 53.
 このうち太陽歯車51は、モータ20の出力軸63に連結されており、出力軸63の回動に伴って回動可能となっている。また、内歯車52は、後輪13のホイール71に連結されている。遊星キャリヤ54は、モータ20のフランジ64に連結されており、フランジ64およびハウジング61を介してパイプフレーム31に固定されている。 Of these, the sun gear 51 is connected to the output shaft 63 of the motor 20 and can rotate with the rotation of the output shaft 63. Further, the internal gear 52 is connected to the wheel 71 of the rear wheel 13. The planetary carrier 54 is connected to the flange 64 of the motor 20 and is fixed to the pipe frame 31 via the flange 64 and the housing 61.
 続いて、本実施の形態において、モータ20を制御して前輪12を後輪13に対して持ち上がらせる(ウィリーさせる)際の作用について説明する。 Subsequently, in the present embodiment, the action of controlling the motor 20 to lift (wheelie) the front wheels 12 with respect to the rear wheels 13 will be described.
 まず、前輪12が段差に衝突せず、電動アシスト歩行車10が通常の状態で移動している場合を想定する。この場合、モータ20の出力軸63からのアシスト力は、モータ20の出力軸63に連結された太陽歯車51から、遊星歯車53を介して内歯車52に伝達され、次いで内歯車52に連結された後輪13に伝達される。これにより、モータ20によって後輪13の動きがアシストされる。このとき、遊星キャリヤ54に連結されたパイプフレーム31が回転することはない。 First, it is assumed that the front wheels 12 do not collide with the step and the electrically assisted walking vehicle 10 is moving in a normal state. In this case, the assist force from the output shaft 63 of the motor 20 is transmitted from the sun gear 51 connected to the output shaft 63 of the motor 20 to the internal gear 52 via the planetary gear 53, and then connected to the internal gear 52. It is transmitted to the rear wheel 13. As a result, the movement of the rear wheels 13 is assisted by the motor 20. At this time, the pipe frame 31 connected to the planetary carrier 54 does not rotate.
 ここで、太陽歯車51、内歯車52の歯数をそれぞれZa、Zc(Za<Zc)とし、太陽歯車51、内歯車52、遊星キャリヤ54の角速度をそれぞれWa、Wc、Wxとすると、以下の式(1)が成り立つ。
 Zc(Wc-Wx)=-Za(Wa-Wx)・・・式(1)
Here, assuming that the number of teeth of the sun gear 51 and the internal gear 52 is Za and Zc (Za <Zc), respectively, and the angular velocities of the sun gear 51, the internal gear 52, and the planet carrier 54 are Wa, Wc, and Wx, respectively, the following Equation (1) holds.
Zc (Wc-Wx) =-Za (Wa-Wx) ... Equation (1)
 電動アシスト歩行車10が通常状態で移動している場合、遊星キャリヤ54が固定されているので、Wxは0となる。したがって、以下の式(2)が成り立つ。
 Wc=(-Za/Zc)Wa・・・式(2)
 すなわち、モータ20の出力軸63からの回転数は、-Za/Zc倍に減速されて伝達される。
When the electrically assisted walking vehicle 10 is moving in the normal state, the planet carrier 54 is fixed, so Wx becomes 0. Therefore, the following equation (2) holds.
Wc = (-Za / Zc) Wa ... Equation (2)
That is, the rotation speed of the motor 20 from the output shaft 63 is decelerated to −Za / Zc times and transmitted.
 一方、電動アシスト歩行車10の前輪12が段差に衝突した場合、前輪12がロックされるため、後輪13も回らなくなる。このとき、後輪13に連結された遊星歯車機構50の内歯車52もロックされる。一方、モータ20の出力軸63に連結された太陽歯車51には、出力軸63からの回転力が伝達される。この回転力は、太陽歯車51から遊星歯車53を介して遊星キャリヤ54に伝達され、遊星キャリヤ54に連結されたパイプフレーム31に対して矢印M(図25参照)の方向(電動アシスト歩行車10の進行方向と反対の方向)に回転力が働く。 On the other hand, when the front wheel 12 of the electrically assisted walking vehicle 10 collides with a step, the front wheel 12 is locked and the rear wheel 13 also does not rotate. At this time, the internal gear 52 of the planetary gear mechanism 50 connected to the rear wheel 13 is also locked. On the other hand, the rotational force from the output shaft 63 is transmitted to the sun gear 51 connected to the output shaft 63 of the motor 20. This rotational force is transmitted from the sun gear 51 to the planetary carrier 54 via the planetary gear 53, and is in the direction of arrow M (see FIG. 25) with respect to the pipe frame 31 connected to the planetary carrier 54 (electrically assisted walking vehicle 10). A rotational force acts in the direction opposite to the direction of travel.
 したがって、前輪12が段差に衝突した際、制御部16がモータ20を制御することにより、電動アシスト歩行車10全体を回転させ、前輪12を後輪13より高い位置に持ち上げることが可能となる。この場合、制御部16が、例えばハンドル14に加わる操作力(グリップ力)に応じて、モータ20の出力を増加するよう制御してもよい。具体的には、通常時と比較して、同じ操作力であってもモータ20の出力が相対的に大きくなるようにモータ20を制御する(すなわち操作力に対するモータ出力の比例係数を大きくする)ことにより、前輪12を後輪13より高い位置に持ち上げることができる。 Therefore, when the front wheel 12 collides with the step, the control unit 16 controls the motor 20 to rotate the entire electrically assisted walking vehicle 10 and lift the front wheel 12 to a position higher than the rear wheel 13. In this case, the control unit 16 may control to increase the output of the motor 20 according to, for example, an operating force (grip force) applied to the handle 14. Specifically, the motor 20 is controlled so that the output of the motor 20 is relatively large even if the operating force is the same as in the normal state (that is, the proportional coefficient of the motor output to the operating force is increased). As a result, the front wheels 12 can be lifted to a position higher than the rear wheels 13.
 このように、電動アシスト歩行車10の前輪12が段差に衝突した場合、内歯車52が固定されるので、上記式(1)においてWcは0となる。したがって、以下の式(3)が成り立つ。
 Wx={Za/(Zc+Za)}Wa・・・式(3)
 すなわち、モータ20の出力軸63からの回転数は、Za/(Zc+Za)倍に減速され、遊星キャリヤ54に連結されている電動アシスト歩行車10全体が、進行方向逆向き(前輪12が浮く側)の回転力を受けることになる。
In this way, when the front wheel 12 of the electrically assisted walking vehicle 10 collides with the step, the internal gear 52 is fixed, so that Wc becomes 0 in the above equation (1). Therefore, the following equation (3) holds.
Wx = {Za / (Zc + Za)} Wa ... Equation (3)
That is, the rotation speed of the motor 20 from the output shaft 63 is decelerated by Za / (Zc + Za) times, and the entire electrically assisted walking vehicle 10 connected to the planetary carrier 54 is in the opposite direction of travel (the side where the front wheels 12 float). ) Will be received.
 以上のように、本実施の形態によれば、モータ20は、後輪13に対して遊星歯車機構50を介して連結されている。これにより、電動アシスト歩行車10の前輪12が段差に衝突した際、遊星歯車機構50を用いて前輪12を後輪13より高い位置に持ち上げることができる。すなわち制御部16は、モータ20の駆動力により、遊星歯車機構50の反作用によって前輪12を後輪13に対してウィリーさせることができる。 As described above, according to the present embodiment, the motor 20 is connected to the rear wheel 13 via the planetary gear mechanism 50. As a result, when the front wheel 12 of the electrically assisted walking vehicle 10 collides with the step, the front wheel 12 can be lifted to a position higher than the rear wheel 13 by using the planetary gear mechanism 50. That is, the control unit 16 can make the front wheels 12 wheelie with respect to the rear wheels 13 by the reaction of the planetary gear mechanism 50 by the driving force of the motor 20.
 また、本実施の形態によれば、遊星歯車機構50は、モータ20の出力軸63に連結された太陽歯車51と、太陽歯車51の周囲に配置された内歯車52と、太陽歯車51および内歯車52に噛み合い、出力軸63が回転したとき自転しつつ公転する遊星歯車53と、遊星歯車53を回転可能に支持し、遊星歯車53の公転運動が伝達される遊星キャリヤ54とを有し、内歯車52が後輪13に連結され、遊星キャリヤ54がパイプフレーム31に固定されている。これにより、前輪12が段差に衝突したとき、モータ20の出力軸63からの回転力が、太陽歯車51から遊星歯車53を介して遊星キャリヤ54に伝達され、遊星キャリヤ54に連結されたパイプフレーム31に対して回転力を働かせることができる。これにより、電動アシスト歩行車10全体を回転させ、前輪12を後輪13に対して持ち上げることができる。 Further, according to the present embodiment, the planetary gear mechanism 50 includes a sun gear 51 connected to the output shaft 63 of the motor 20, an internal gear 52 arranged around the sun gear 51, the sun gear 51, and the inside. It has a planetary gear 53 that meshes with the gear 52 and revolves while rotating when the output shaft 63 rotates, and a planet carrier 54 that rotatably supports the planetary gear 53 and transmits the revolving motion of the planetary gear 53. The internal gear 52 is connected to the rear wheel 13, and the planetary carrier 54 is fixed to the pipe frame 31. As a result, when the front wheels 12 collide with the step, the rotational force from the output shaft 63 of the motor 20 is transmitted from the sun gear 51 to the planetary carrier 54 via the planetary gear 53, and the pipe frame connected to the planetary carrier 54. A rotational force can be exerted on 31. As a result, the entire electrically assisted walking vehicle 10 can be rotated, and the front wheels 12 can be lifted with respect to the rear wheels 13.
 本実施の形態において、制御部16は、遊星歯車機構50を用いて前輪12を後輪13に対して持ち上げる場合を例にとって説明したが、遊星歯車機構50に限らず、偏心型減速機等、自転しつつ公転する歯車を有する機構を用いてもよい。 In the present embodiment, the control unit 16 has described the case where the front wheels 12 are lifted with respect to the rear wheels 13 by using the planetary gear mechanism 50 as an example. However, the control unit 16 is not limited to the planetary gear mechanism 50, and is not limited to the planetary gear mechanism 50. A mechanism having a gear that revolves while rotating may be used.
 あるいは、遊星歯車機構50に代えて、2枚の歯車を含む機構を用いてもよい。具体的には、図29および図30に示すように、モータ20に第1の歯車57を直結させ、後輪13に第2の歯車58を直結させ、これら第1の歯車57と第2の歯車58とを互いに噛み合わせもよい。図29に示すように、通常走行時には、モータ20によって後輪13の動きがアシストされ、電動アシスト歩行車10が走行する。一方、図30に示すように、例えば前輪12が段差に衝突し、前輪12がロックされた時には、後輪13もロックされる。この状態でモータ20が更に回転すると、電動アシスト歩行車10の全体が持ち上げられるような力が発生する。このとき、電動アシスト歩行車10の進行方向と反対の方向に回転する力が働く。これにより、電動アシスト歩行車10の前輪12が段差を容易に乗り越えることができる。 Alternatively, instead of the planetary gear mechanism 50, a mechanism including two gears may be used. Specifically, as shown in FIGS. 29 and 30, the first gear 57 is directly connected to the motor 20, the second gear 58 is directly connected to the rear wheel 13, and the first gear 57 and the second gear 58 are directly connected. The gears 58 may be meshed with each other. As shown in FIG. 29, during normal traveling, the movement of the rear wheels 13 is assisted by the motor 20, and the electrically assisted walking vehicle 10 travels. On the other hand, as shown in FIG. 30, for example, when the front wheel 12 collides with the step and the front wheel 12 is locked, the rear wheel 13 is also locked. When the motor 20 further rotates in this state, a force is generated that lifts the entire electrically assisted walking vehicle 10. At this time, a force that rotates in the direction opposite to the traveling direction of the electrically assisted walking vehicle 10 acts. As a result, the front wheels 12 of the electrically assisted walking vehicle 10 can easily get over the step.
 (第3の実施の形態)
 次に、本開示の第3の実施の形態について説明する。図31および図32に示す第3の実施の形態は、前輪12を持ち上げる駆動力を発生する駆動部が、モータ20とは別体に設けられている点が異なるものであり、他の構成は上述した第1の実施の形態と同様である。図15および図16において、第1の実施の形態と同一部分には同一の符号を付して詳細な説明は省略する。
(Third Embodiment)
Next, a third embodiment of the present disclosure will be described. The third embodiment shown in FIGS. 31 and 32 is different in that the drive unit that generates the driving force for lifting the front wheel 12 is provided separately from the motor 20, and the other configurations are different. It is the same as the first embodiment described above. In FIGS. 15 and 16, the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図31(a)(b)において、前輪12を持ち上げる駆動力を発生する駆動部は、モータ20とは異なる追加のモータ46を備えている。この場合、追加のモータ46の回転軸は、後輪13の回転軸と同軸上に設けられていても良く(図31(a))、後輪13の回転軸と異なる軸上に設けられていてもよい(図31(b))。 In FIGS. 31 (a) and 31 (b), the drive unit that generates the driving force for lifting the front wheel 12 includes an additional motor 46 different from the motor 20. In this case, the rotating shaft of the additional motor 46 may be provided coaxially with the rotating shaft of the rear wheel 13 (FIG. 31 (a)), and is provided on a shaft different from the rotating shaft of the rear wheel 13. It may be (Fig. 31 (b)).
 図32(a)(b)において、前輪12を持ち上げる駆動力を発生する駆動部は、モータ20とは異なるアクチュエータ47を備えている。アクチュエータ47は、フレーム11に対して連結されている。この場合、アクチュエータ47は、伸縮することにより前輪12を後輪13に対して持ち上げる伸縮型のものであっても良く(図32(a))、揺動することにより前輪12を後輪13に対して持ち上げる揺動型のものであってもよい(図32(b))。 In FIGS. 32 (a) and 32 (b), the drive unit that generates the driving force for lifting the front wheel 12 includes an actuator 47 different from the motor 20. The actuator 47 is connected to the frame 11. In this case, the actuator 47 may be a telescopic type that lifts the front wheel 12 with respect to the rear wheel 13 by expanding and contracting (FIG. 32 (a)), and swings the front wheel 12 to the rear wheel 13. On the other hand, it may be a swing type that lifts (FIG. 32 (b)).
 なお、図31および図32において、必ずしもモータ20が設けられていなくてもよい。 Note that the motor 20 does not necessarily have to be provided in FIGS. 31 and 32.
 (第4の実施の形態)
 次に、図33および図34を用いて、本開示の第4の実施の形態について説明する。図33および図34において、第1の実施の形態ないし第3の実施の形態と同一部分には同一の符号を付して詳細な説明は省略する。
(Fourth Embodiment)
Next, a fourth embodiment of the present disclosure will be described with reference to FIGS. 33 and 34. In FIGS. 33 and 34, the same parts as those of the first embodiment to the third embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図33は、本実施の形態による電動アシスト歩行車(電動車両)10の外観の一例を示す模式的斜視図である。 FIG. 33 is a schematic perspective view showing an example of the appearance of the electrically assisted walking vehicle (electric vehicle) 10 according to the present embodiment.
 (電動アシスト歩行車の構成)
 図33に示すように、電動アシスト歩行車10は、フレーム11と、フレーム11に設けられた一対の前輪12及び一対の後輪(車輪)13と、フレーム11に接続された一対のハンドル14とを備えている。
(Composition of electrically power assisted walking vehicle)
As shown in FIG. 33, the electrically power assisted walking vehicle 10 includes a frame 11, a pair of front wheels 12 and a pair of rear wheels (wheels) 13 provided on the frame 11, and a pair of handles 14 connected to the frame 11. It has.
 一対の後輪13には、それぞれ対応する後輪13の動きをアシストするモータ20が連結されている。フレーム11には、バッテリ21と、制御部16とがそれぞれ取り付けられている。また、制御部16には、傾き検知センサ23が設けられている。 A motor 20 that assists the movement of the corresponding rear wheel 13 is connected to the pair of rear wheels 13. A battery 21 and a control unit 16 are attached to the frame 11, respectively. Further, the control unit 16 is provided with a tilt detection sensor 23.
 本実施の形態において、左右一対のパイプフレーム31の上端部には、使用者によって操作される一対のハンドル14が設けられている。一対のハンドル14は、水平方向に伸びるバーハンドル17によって互いに連結されている。また一対のハンドル14とバーハンドル17とは、略U字形状をなしている。さらに一対のハンドル14には、使用者の肘を載せることが可能な腕支持部27が取り付けられている。腕支持部27には、各ハンドル14を挿入可能なように穴部が設けられ、この穴部にハンドル14を取付け可能になっている。 In the present embodiment, a pair of handles 14 operated by the user are provided at the upper ends of the pair of left and right pipe frames 31. The pair of handles 14 are connected to each other by a bar handle 17 extending in the horizontal direction. Further, the pair of handles 14 and the bar handles 17 have a substantially U-shape. Further, an arm support portion 27 on which the user's elbow can be placed is attached to the pair of handles 14. The arm support portion 27 is provided with a hole so that each handle 14 can be inserted, and the handle 14 can be attached to the hole.
 左右一対のパイプフレーム31の間には、必要に応じて使用者が着座することが可能なシート部37が設けられている。 A seat portion 37 on which the user can sit is provided between the pair of left and right pipe frames 31 as needed.
 バッテリ21は、モータ20や制御部16等、電動アシスト歩行車10の各要素に電力を供給するものである。このバッテリ21は、一対のパイプフレーム31間に位置するシート部37の下方に設けられている。 The battery 21 supplies electric power to each element of the electrically assisted walking vehicle 10, such as the motor 20 and the control unit 16. The battery 21 is provided below the seat portion 37 located between the pair of pipe frames 31.
 また、速度センサ(計測部に係る構成要素の一例)22bは、一対の後輪13にそれぞれ設けられている。なお、速度センサ22bは、一対の前輪12および/または一対の後輪13に内蔵することに限定されず、フレーム11、一対のハンドル14など、その他任意の部材に取り付けてもよい。あるいは、速度センサ22bは、制御部16の近傍に配設されていてもよい。なお、本実施の形態において、電動アシスト歩行車10の走行速度は、後輪13の回転速度に基づいて判断されるが、これに限らず、前輪12の回転速度、あるいは、前輪12および後輪13の両方の回転速度に基づいて判断されてもよい。 Further, the speed sensor (an example of the component related to the measuring unit) 22b is provided on each of the pair of rear wheels 13. The speed sensor 22b is not limited to being built in the pair of front wheels 12 and / or the pair of rear wheels 13, and may be attached to any other member such as the frame 11 and the pair of handles 14. Alternatively, the speed sensor 22b may be arranged in the vicinity of the control unit 16. In the present embodiment, the traveling speed of the electrically assisted walking vehicle 10 is determined based on the rotation speed of the rear wheels 13, but the traveling speed is not limited to this, and the rotation speed of the front wheels 12 or the front wheels 12 and the rear wheels It may be judged based on both rotation speeds of 13.
 計測部は加速度センサ22aを備えていてもよい。この場合、加速度センサ22aは、後輪13の回転加速度を用いることなく、電動アシスト歩行車10の加速度を直接計測し、この加速度の信号を制御部16に対して送信する。そして、制御部16は、加速度を積分することで速度を算出する。 The measuring unit may be provided with an acceleration sensor 22a. In this case, the acceleration sensor 22a directly measures the acceleration of the electrically assisted walking vehicle 10 without using the rotational acceleration of the rear wheels 13, and transmits a signal of this acceleration to the control unit 16. Then, the control unit 16 calculates the speed by integrating the acceleration.
 また、計測部はGPS(グローバルポジショニングシステム)を備えていてもよい。この場合、GPSは、後輪13の回転加速度を用いることなく、電動アシスト歩行車10の位置を検知する。そして、制御部16は、GPSからの位置情報を微分することで電動アシスト歩行車10の速度を算出し、GPSからの位置情報を2回微分することで加速度を算出してもよい。 Further, the measuring unit may be equipped with GPS (Global Positioning System). In this case, GPS detects the position of the electrically power assisted walking vehicle 10 without using the rotational acceleration of the rear wheels 13. Then, the control unit 16 may calculate the speed of the electrically assisted walking vehicle 10 by differentiating the position information from the GPS, and may calculate the acceleration by differentiating the position information from the GPS twice.
 傾き検知センサ23は、2軸以上の加速度センサを備える。傾き検知センサ23は、制御部16の近傍に設けられている。あるいは、傾き検知センサ23は、電動アシスト歩行車10の上部に設けられていてもよい。なお、傾き検知センサ23として加速度センサを用いる代わりに、ジャイロセンサを用いて電動アシスト歩行車10の姿勢を推定するようにしてもよい。 The tilt detection sensor 23 includes an acceleration sensor having two or more axes. The tilt detection sensor 23 is provided in the vicinity of the control unit 16. Alternatively, the tilt detection sensor 23 may be provided on the upper part of the electrically assisted walking vehicle 10. Instead of using an acceleration sensor as the tilt detection sensor 23, a gyro sensor may be used to estimate the posture of the electrically power assisted walking vehicle 10.
 なお、電動アシスト歩行車10のその他の構成は、第1の実施の形態における電動アシスト歩行車10(図1および図2)と同様である。 The other configuration of the electrically assisted walking vehicle 10 is the same as that of the electrically assisted walking vehicle 10 (FIGS. 1 and 2) in the first embodiment.
 また、本実施の形態において、電動アシスト歩行車10には、使用者が一対のハンドル14を把持したか否かを直接検出するグリップセンサ、ひずみセンサ、近接センサまたは圧力センサなどが設けられていない。しかしながら、これに限らず、本実施の形態においても、第1の実施の形態における電動アシスト歩行車10(図1および図2)と同様、ハンドル14に把持センサ24が設けられていてもよい。 Further, in the present embodiment, the electrically assisted walking vehicle 10 is not provided with a grip sensor, a strain sensor, a proximity sensor, a pressure sensor, or the like that directly detects whether or not the user has grasped the pair of handles 14. .. However, not limited to this, also in the present embodiment, the grip sensor 24 may be provided on the handle 14 as in the electrically assisted walking vehicle 10 (FIGS. 1 and 2) in the first embodiment.
 以上本開示の各実施の形態及び各変形例を説明したが、各実施の形態及び各変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。各実施の形態及び各変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。各実施の形態及び各変形例は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although each embodiment and each modification of the present disclosure have been described above, each embodiment and each modification are presented as examples, and the scope of the invention is not intended to be limited. Each embodiment and each modification can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. Each embodiment and each modification are included in the scope and gist of the invention, as well as in the invention described in the claims and the equivalent scope thereof.
 10、10a 電動アシスト歩行車
 11     フレーム
 12     前輪
 13     後輪
 14     ハンドル
 15     ブレーキユニット
 16     制御部
 20     モータ
 21     バッテリ
 22a    加速度センサ
 22b    速度センサ
 23     傾き検知センサ
 24     把持センサ
 25     脚部検知センサ
 31     パイプフレーム
10, 10a Electric assisted walking vehicle 11 frame 12 Front wheel 13 Rear wheel 14 Handle 15 Brake unit 16 Control unit 20 Motor 21 Battery 22a Accelerometer 22b Speed sensor 23 Tilt detection sensor 24 Grip sensor 25 Leg detection sensor 31 Pipe frame

Claims (37)

  1.  車体に設けられた前輪または後輪の少なくともいずれか一方を含む車輪を駆動する駆動部と、
     前記車輪に段差を乗り越えさせる段差の乗り越え制御を前記駆動部に対して行う制御部と、
     前記車輪が設けられる車体に加わる速度または加速度の少なくともいずれか一方を計測する計測部と、
     前記計測部の計測値に基づいて前記制御部に段差の乗り越え制御をさせるか否かを判断する判断部とを備える
     電動車両。
    A drive unit that drives wheels including at least one of the front wheels and rear wheels provided on the vehicle body.
    A control unit that controls the driving unit to overcome the step by causing the wheel to overcome the step.
    A measuring unit that measures at least one of the speed and acceleration applied to the vehicle body on which the wheels are provided.
    An electric vehicle including a determination unit that determines whether or not the control unit controls overcoming a step based on the measured value of the measurement unit.
  2.  前記判断部は、前記計測部の計測値に基づいて前記前輪が段差に接触したと判断したときに前記制御部に前記段差の乗り越え制御をさせるものである、
     請求項1に記載の電動車両。
    The determination unit causes the control unit to control overcoming the step when it is determined that the front wheel has come into contact with the step based on the measured value of the measurement unit.
    The electric vehicle according to claim 1.
  3.  前記段差の乗り越え制御は、前記駆動部の前記車輪を駆動する駆動力を増やす制御を含む、
     請求項1または2に記載の電動車両。
    The step overcoming control includes a control for increasing a driving force for driving the wheel of the driving unit.
    The electric vehicle according to claim 1 or 2.
  4.  前記段差の乗り越え制御は、前記車体を旋回させる制御を含む、
     請求項1ないし3のいずれか一項に記載の電動車両。
    The step overcoming control includes a control for turning the vehicle body.
    The electric vehicle according to any one of claims 1 to 3.
  5.  前記段差の乗り越え制御は、前記車体を旋回させながら駆動力を増やす制御を含む、
     請求項1ないし4のいずれか一項に記載の電動車両。
    The step overcoming control includes a control for increasing a driving force while turning the vehicle body.
    The electric vehicle according to any one of claims 1 to 4.
  6.  前記前輪は、前記車体の幅方向に離れて配置されている左前輪と右前輪とを含み、
     前記判断部は、前記計測部の計測値に基づいて左前輪または右前輪のいずれが前記段差に接触したかを判断する、
     請求項2に記載の電動車両。
    The front wheels include a left front wheel and a right front wheel that are arranged apart from each other in the width direction of the vehicle body.
    The determination unit determines whether the left front wheel or the right front wheel has come into contact with the step based on the measured value of the measurement unit.
    The electric vehicle according to claim 2.
  7.  前記計測部は、少なくとも前記車体を減速させる方向への加速度または前記車体の前後方向の加速度のいずれかひとつと前記車体の幅方向の加速度を計測する、
     請求項6に記載の電動車両。
    The measuring unit measures at least one of the acceleration in the direction of decelerating the vehicle body or the acceleration in the front-rear direction of the vehicle body and the acceleration in the width direction of the vehicle body.
    The electric vehicle according to claim 6.
  8.  前記後輪は、前記車体の幅方向に離れて配置されている左後輪と右後輪とを含み、
     前記計測部は、少なくとも前記左後輪の回転方向の加速度と前記右後輪の回転方向の加速度との平均値または前記左後輪の回転方向の加速度と前記右後輪の回転方向の加速度との差を算出する、
     請求項7に記載の電動車両。
    The rear wheels include a left rear wheel and a right rear wheel that are arranged apart from each other in the width direction of the vehicle body.
    The measuring unit has at least an average value of the acceleration in the rotation direction of the left rear wheel and the acceleration in the rotation direction of the right rear wheel, or the acceleration in the rotation direction of the left rear wheel and the acceleration in the rotation direction of the right rear wheel. Calculate the difference between
    The electric vehicle according to claim 7.
  9.  前記計測部は、少なくとも前記左前輪の回転方向の加速度と前記右前輪の回転方向の加速度との平均値または前記左前輪の回転方向の加速度と前記右前輪の回転方向の加速度との差を算出する
     請求項7または8に記載の電動車両。
    The measuring unit calculates at least the average value of the acceleration in the rotation direction of the left front wheel and the acceleration in the rotation direction of the right front wheel or the difference between the acceleration in the rotation direction of the left front wheel and the acceleration in the rotation direction of the right front wheel. The electric vehicle according to claim 7 or 8.
  10.  前記計測部は、前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方と前記車体の幅方向の加速度を測定し、
     前記判断部は、前記計測部の計測した前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方が第1しきい値以上となったときに前記左前輪または前記右前輪のいずれが段差に接触したのかを推定する
     請求項6ないし9のいずれか一項に記載の電動車両。
    The measuring unit measures at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body and the acceleration in the width direction of the vehicle body.
    The determination unit determines the left front wheel or the left front wheel when at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rear direction of the vehicle body measured by the measurement unit becomes equal to or higher than the first threshold value. The electric vehicle according to any one of claims 6 to 9, which estimates which of the right front wheels has come into contact with the step.
  11.  前記計測部は、前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方と前記車体の幅方向の加速度を測定し、
     前記判断部は、前記計測部の計測した前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方が第1しきい値以上となった以後所定の期間内に計測された前記車体の幅方向の加速度の絶対値の最大値が第2しきい値以上となったときに前記左前輪または前記右前輪のいずれが前記段差に接触したのかを推定する
     請求項6ないし10のいずれか一項に記載の電動車両。
    The measuring unit measures at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body and the acceleration in the width direction of the vehicle body.
    The determination unit is within a predetermined period after at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body measured by the measurement unit reaches the first threshold value or more. Claim 6 for estimating whether the left front wheel or the right front wheel comes into contact with the step when the maximum value of the measured absolute value of the acceleration in the width direction of the vehicle body becomes equal to or higher than the second threshold value. The electric vehicle according to any one of 10 to 10.
  12.  前記計測部は、前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方を計測し、
     前記判断部は、前記計測部の計測した前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方が前記第1しきい値より小さい第3しきい値以上となったときに前記左前輪および前記右前輪が段差に接触したと推定する、
     請求項10または11に記載の電動車両。
    The measuring unit measures at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body.
    In the determination unit, at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rear direction of the vehicle body measured by the measurement unit is equal to or greater than the third threshold value smaller than the first threshold value. It is presumed that the left front wheel and the right front wheel touched the step at the time.
    The electric vehicle according to claim 10 or 11.
  13.  前記制御部は、前記段差に接触したと推定された前記前輪の前記車体の幅方向の同じ側に位置する前記後輪の前記駆動部にのみ駆動力を発生させる、
     請求項6ないし12のいずれか一項に記載の電動車両。
    The control unit generates a driving force only in the driving unit of the rear wheel located on the same side in the width direction of the vehicle body of the front wheel estimated to have come into contact with the step.
    The electric vehicle according to any one of claims 6 to 12.
  14.  前記制御部は、前記段差に接触したと推定された前記前輪の前記車体の幅方向の反対側に位置する前記前輪または前記後輪の少なくともいずれか一方の前記駆動部にのみ駆動力を発生させる、
     請求項6ないし13のいずれか一項に記載の電動車両。
    The control unit generates a driving force only in at least one of the front wheels and the rear wheels located on the opposite side of the front wheels in the width direction of the vehicle body, which is presumed to have come into contact with the step. ,
    The electric vehicle according to any one of claims 6 to 13.
  15.  前記制御部は、前記段差に接触したと推定された側の前記前輪または前記前輪の前記車体の幅方向の同じ側に位置する前記後輪の少なくともいずれか一方の前記駆動部の駆動力よりも大きな駆動力を前記段差に接触したと推定された前記前輪の前記車体の幅方向の反対側に位置する前記前輪または前記後輪の少なくともいずれか一方の前記駆動部に発生させる、
     請求項6ないし14のいずれか一項に記載の電動車両。
    The control unit is more than the driving force of at least one of the front wheels on the side estimated to be in contact with the step or the rear wheels located on the same side of the front wheels in the width direction of the vehicle body. A large driving force is generated in at least one of the front wheels and the rear wheels located on the opposite side of the front wheels in the width direction of the vehicle body, which is presumed to have come into contact with the step.
    The electric vehicle according to any one of claims 6 to 14.
  16.  前記制御部は、前記段差に接触したと推定された側の前記前輪または前記前輪の前記車体の幅方向の同じ側に位置する前記後輪の少なくともいずれか一方の前記駆動部の駆動力よりも前記段差に接触したと推定された側の前記前輪または前記車体の幅方向の同じ側に位置する前記後輪の少なくともいずれかの前記駆動部の前記駆動力を大きくする
     請求項6ないし15のいずれか一項に記載の電動車両。
    The control unit is more than the driving force of at least one of the front wheels on the side estimated to be in contact with the step or the rear wheels located on the same side of the front wheels in the width direction of the vehicle body. Any of claims 6 to 15 for increasing the driving force of at least one of the front wheels on the side estimated to have come into contact with the step or the rear wheels located on the same side in the width direction of the vehicle body. The electric vehicle described in the first paragraph.
  17.  前記制御部は、前記段差に接触したと推定された前記前輪の前記車体の幅方向反対側に位置する前記前輪または前記後輪の少なくともいずれか一方の前記駆動部の駆動力と前記段差に接触したと推定された前記前輪と前記前輪の前記車体の幅方向の同じ側に位置する前記後輪の少なくともいずれか一方の前記駆動部の前記駆動力とを第4しきい値になるまで漸増させる、
     請求項6ないし16のいずれか一項に記載の電動車両。
    The control unit contacts the step with the driving force of at least one of the front wheel and the rear wheel located on the opposite side of the front wheel in the width direction of the vehicle body, which is presumed to have contacted the step. The driving force of at least one of the front wheels and the rear wheels located on the same side of the front wheels in the width direction of the vehicle body is gradually increased until the fourth threshold value is reached. ,
    The electric vehicle according to any one of claims 6 to 16.
  18.  前記段差に接触したと推定された前記前輪の前記車体の幅方向反対側に位置する前記前輪または前記後輪の少なくともいずれか一方の前記駆動部の前記駆動力は、前記段差に接触したと推定された前記前輪と前記前輪の前記車体の幅方向の同じ側に位置する前記後輪の少なくともいずれか一方の前記駆動部の前記駆動力よりも大きい、
     請求項17に記載の電動車両。
    It is presumed that the driving force of at least one of the front wheels and the rear wheels located on the opposite side of the front wheels in the width direction of the vehicle body, which is estimated to have come into contact with the step, has come into contact with the step. It is larger than the driving force of the driving unit of at least one of the front wheels and the rear wheels located on the same side of the front wheels in the width direction of the vehicle body.
    The electric vehicle according to claim 17.
  19.  前記制御部は、前記判断部が前記計測部の計測値に基づいて前記前輪の両方が段差に接触したと推定したときに前記車体の幅方向の両側にある前記前輪または前記後輪の少なくともいずれかの前記駆動部の駆動力を等しくする、
     請求項1ないし18のいずれか一項に記載の電動車両。
    The control unit estimates that both of the front wheels come into contact with the step based on the measured values of the measurement unit, and at least one of the front wheels or the rear wheels on both sides in the width direction of the vehicle body. Make the driving force of the driving unit equal.
    The electric vehicle according to any one of claims 1 to 18.
  20.  前記制御部は、前記計測部によって測定された前記車体の幅方向の加速度の絶対値の最大値が第2しきい値以上となったときに前記段差の前記乗り越え動作が実行される条件となる加速度の第5しきい値を小さく設定する
     請求項1ないし19のいずれか一項に記載の電動車両。
    The control unit is a condition for executing the overcoming operation of the step when the maximum value of the absolute value of the acceleration in the width direction of the vehicle body measured by the measurement unit becomes the second threshold value or more. The electric vehicle according to any one of claims 1 to 19, wherein the fifth threshold value of acceleration is set small.
  21.  前記制御部は、前記計測部によって計測された前記車体の速度が大きくなるのにしたがって前記段差の前記乗り越え動作が実行される条件となる加速度の絶対値の第6しきい値を大きく設定する
     請求項1ないし20のいずれか一項に記載の電動車両。
    The control unit sets a large sixth threshold value of the absolute value of acceleration, which is a condition for executing the overcoming operation of the step as the speed of the vehicle body measured by the measuring unit increases. The electric vehicle according to any one of items 1 to 20.
  22.  前記計測部は、前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方を計測し、
     前記判断部は、前記計測部の計測した前記車体を減速させる方向への加速度または前記車体の後方方向への加速度の少なくともいずれか一方が第7しきい値より大きいときに前記前輪が段差に接触したと推定する、
     請求項2に記載の電動車両。
    The measuring unit measures at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body.
    In the determination unit, the front wheels come into contact with the step when at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body measured by the measurement unit is larger than the seventh threshold value. I presume that
    The electric vehicle according to claim 2.
  23.  前記判断部は、前記計測部の計測した前記車体を減速させる方向への加速度または車体の後方方向への加速度の少なくともいずれか一方が前記第7しきい値以下であるときは前記前輪が段差に接触したと推定しない、
     請求項22に記載の電動車両。
    When at least one of the acceleration in the direction of decelerating the vehicle body and the acceleration in the rearward direction of the vehicle body measured by the measuring unit is equal to or less than the seventh threshold value, the front wheel becomes a step. Do not presume contact,
    The electric vehicle according to claim 22.
  24.  前記計測部の計測値を記憶する記憶部を備え、
     前記判断部は、前記記憶部に記憶された前記計測値に基づいて前記第7しきい値を調整する、
     請求項22または23に記載の電動車両。
    A storage unit for storing the measured values of the measurement unit is provided.
    The determination unit adjusts the seventh threshold value based on the measured value stored in the storage unit.
    The electric vehicle according to claim 22 or 23.
  25.  前記判断部は、前記制御部が前記前輪の段差乗り越えをさせた後に、前記制御部が前記前輪の段差乗り越え制御をさせる以前の所定の期間において前記第7しきい値より小さい加速度を検出していた場合、前記第7しきい値をより小さい値に変更する、
     請求項24に記載の電動車両。
    The determination unit detects an acceleration smaller than the seventh threshold value in a predetermined period before the control unit controls the front wheels to overcome the steps after the control unit overcomes the steps of the front wheels. If so, change the 7th threshold to a smaller value.
    The electric vehicle according to claim 24.
  26.  前記判断部は、前記制御部が前記前輪の段差乗り越えをさせたときに前記計測部が計測した前記加速度が前記第7しきい値より大きくかつ前記第7しきい値との差が所定の値より大きい場合、前記第7しきい値をより大きい値に変更する、
     請求項24または25に記載の電動車両。
    In the determination unit, the acceleration measured by the measurement unit when the control unit overcomes the step of the front wheel is larger than the seventh threshold value and the difference from the seventh threshold value is a predetermined value. If it is larger, the seventh threshold value is changed to a larger value.
    The electric vehicle according to claim 24 or 25.
  27.  前記計測部は、前記車体の振動の周波数スペクトルを計測し、
     前記判断部は、前記計測部の計測した値の代表値が第8しきい値より大きいときに前記前輪が段差に接触したと推定する、
     請求項2に記載の電動車両。
    The measuring unit measures the frequency spectrum of the vibration of the vehicle body and measures the frequency spectrum of the vibration of the vehicle body.
    The determination unit estimates that the front wheel has come into contact with the step when the representative value of the value measured by the measurement unit is larger than the eighth threshold value.
    The electric vehicle according to claim 2.
  28.  前記判断部は、前記計測部の計測した値の代表値が所定の前記第8しきい値以下であるときは前記前輪が段差に接触したと推定しない、
     請求項27に記載の電動車両。
    The determination unit does not presume that the front wheel has come into contact with the step when the representative value of the value measured by the measurement unit is equal to or less than the predetermined eighth threshold value.
    The electric vehicle according to claim 27.
  29.  前記車体の振動は前記車体の前後方向の振動を含む
     請求項27または28に記載の電動車両。
    The electric vehicle according to claim 27 or 28, wherein the vibration of the vehicle body includes vibration in the front-rear direction of the vehicle body.
  30.  前記車体の前方または前記車体の幅方向の両側面の少なくとも一部を覆う緩衝部材を備えた
     請求項1ないし29のいずれか一項に記載の電動車両。
    The electric vehicle according to any one of claims 1 to 29, comprising a cushioning member that covers at least a part of the front surface of the vehicle body or both side surfaces in the width direction of the vehicle body.
  31.  前記前輪は旋回可能に構成された双輪キャスターである
     請求項1ないし30のいずれか一項に記載の電動車両。
    The electric vehicle according to any one of claims 1 to 30, wherein the front wheels are twin-wheel casters configured to be rotatable.
  32.  前輪または後輪の少なくともいずれか一方を含む車輪を駆動する駆動部と、
     前記駆動部を制御し段差の乗り越え制御を行う制御部と、
     前記車輪が設けられる車体に加わる速度または加速度の少なくともいずれか一方を計測する計測部と、
     前記計測部の計測値に基づいて前記制御部に段差の乗り越え制御をさせるか否かを判断する判断部とを備え、
     前記制御部は前記判断部が前記計測部の計測値に基づいて前記前輪が段差に接触したと判断したときに前記駆動部の前記車輪を駆動する駆動力を増やす制御または前記車体を旋回させる制御を行う、
     電動車両。
    A drive unit that drives the wheels, including at least one of the front and rear wheels,
    A control unit that controls the drive unit and controls overcoming a step,
    A measuring unit that measures at least one of the speed and acceleration applied to the vehicle body on which the wheels are provided.
    The control unit is provided with a determination unit for determining whether or not to control stepping over the step based on the measured value of the measurement unit.
    The control unit controls to increase the driving force for driving the wheels of the driving unit or to turn the vehicle body when the determining unit determines that the front wheels have come into contact with the step based on the measured values of the measuring unit. I do,
    Electric vehicle.
  33.  車体に加わる速度または加速度の少なくともいずれか一方を計測するステップと、
     前記速度または前記加速度の少なくともいずれか一方に基づき段差の乗り越え制御を行うか否かを判断するステップとを含む
     電動車両の制御方法。
    A step to measure at least one of the speed or acceleration applied to the vehicle body,
    A method for controlling an electric vehicle, which includes a step of determining whether or not to control stepping over a step based on at least one of the speed and the acceleration.
  34.  前記速度または前記加速度の少なくともいずれか一方に基づき前輪が段差に接触したか否かを判断するステップと、
     前記前輪が段差に接触したと推定されるときに前記段差の乗り越え制御を行うステップとを含む
     請求項33に記載の電動車両の制御方法。
    A step of determining whether or not the front wheels have come into contact with a step based on at least one of the speed and the acceleration.
    The control method for an electric vehicle according to claim 33, which includes a step of controlling overcoming of the step when it is presumed that the front wheel has come into contact with the step.
  35.  前記段差の乗り越え制御は、車輪を駆動する駆動力を増やす制御、前記車体を旋回させる制御、前記車体を旋回させながら前記駆動力を増やす制御の少なくともいずれかを含む
     請求項33または34に記載の電動車両の制御方法。
    33 or 34, wherein the step overcoming control includes at least one of a control for increasing the driving force for driving the wheels, a control for turning the vehicle body, and a control for increasing the driving force while turning the vehicle body. How to control an electric vehicle.
  36.  車体に加わる速度または加速度の少なくともいずれか一方を計測するステップと、
     前記速度または前記加速度の少なくともいずれか一方に基づき前輪が段差に接触したか否かを判断するステップと、
     前記前輪が段差に接触したと推定されるときに前記段差の乗り越え制御を行うステップとを含む
     電動車両の制御プログラム。
    A step to measure at least one of the speed or acceleration applied to the vehicle body,
    A step of determining whether or not the front wheels have come into contact with a step based on at least one of the speed and the acceleration.
    A control program for an electric vehicle including a step of controlling overcoming of the step when it is presumed that the front wheel has come into contact with the step.
  37.  前記段差の乗り越え制御は、車輪を駆動する駆動力を増やす制御、前記車体を旋回させる制御、前記車体を旋回させながら前記駆動力を増やす制御の少なくともいずれかを含む
     請求項36に記載の電動車両の制御プログラム。
    The electric vehicle according to claim 36, wherein the step overcoming control includes at least one of a control for increasing the driving force for driving the wheels, a control for turning the vehicle body, and a control for increasing the driving force while turning the vehicle body. Control program.
PCT/JP2020/039154 2019-10-24 2020-10-16 Electric vehicle, control method for same, and control program for same WO2021079835A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20879033.7A EP4049646A1 (en) 2019-10-24 2020-10-16 Electric vehicle, control method for same, and control program for same
JP2021553405A JPWO2021079835A1 (en) 2019-10-24 2020-10-16
CN202080067456.3A CN114466637A (en) 2019-10-24 2020-10-16 Electric vehicle, method for controlling electric vehicle, and program for controlling electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019193820 2019-10-24
JP2019-193820 2019-10-24

Publications (1)

Publication Number Publication Date
WO2021079835A1 true WO2021079835A1 (en) 2021-04-29

Family

ID=75619406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039154 WO2021079835A1 (en) 2019-10-24 2020-10-16 Electric vehicle, control method for same, and control program for same

Country Status (4)

Country Link
EP (1) EP4049646A1 (en)
JP (1) JPWO2021079835A1 (en)
CN (1) CN114466637A (en)
WO (1) WO2021079835A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD940601S1 (en) * 2020-08-28 2022-01-11 Qingfeng Li Rollator
TWI833644B (en) 2023-05-09 2024-02-21 緯創資通股份有限公司 Electric assistive device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095135A (en) * 2008-10-16 2010-04-30 Toyota Motor Corp Wheel vibration extraction device and road surface state estimation device
JP2018061819A (en) 2016-02-15 2018-04-19 ナブテスコ株式会社 Electric vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095135A (en) * 2008-10-16 2010-04-30 Toyota Motor Corp Wheel vibration extraction device and road surface state estimation device
JP2018061819A (en) 2016-02-15 2018-04-19 ナブテスコ株式会社 Electric vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD940601S1 (en) * 2020-08-28 2022-01-11 Qingfeng Li Rollator
TWI833644B (en) 2023-05-09 2024-02-21 緯創資通股份有限公司 Electric assistive device

Also Published As

Publication number Publication date
EP4049646A1 (en) 2022-08-31
CN114466637A (en) 2022-05-10
JPWO2021079835A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
JP6901276B2 (en) Electric vehicle
JP6199380B2 (en) Electric walking assist device, control program for electric walking assist device, and control method for electric walking assist device
JP6812189B2 (en) Electric vehicle and its control method
US9186992B2 (en) Walking assistance moving vehicle
EP2666453B1 (en) Walking frame
JP7118607B2 (en) Electric walker, control method for electric walker, and computer program
JP6055020B2 (en) Walking assistance vehicle
JP6794099B2 (en) Power-assisted vehicles, control methods, and programs
JP6059279B2 (en) Program for controlling walking assistance vehicles and walking assistance vehicles
WO2021079835A1 (en) Electric vehicle, control method for same, and control program for same
JP2022094589A (en) Electrically-driven walking assisting vehicle
EP2783962B1 (en) Inverted pendulum type vehicle
JP2008114831A (en) Yaw moment control system of vehicle
JP6482349B2 (en) Walking assistance device, method for controlling walking assistance device, and program for causing computer to control walking assistance device
CN105667695B (en) A kind of electronic multiwheel vehicle and its control method
JP2021065468A (en) Electric vehicle, and control method and control program of electric vehicle
JP7083593B2 (en) Braking method for electric vehicles and electric vehicles
JP7261321B2 (en) electric control vehicle
JP2010247741A (en) Coaxial motorcycle
JP5960304B1 (en) Walking assistance vehicle
JP7321055B2 (en) electric vehicle
JP6665533B2 (en) Inverted motorcycle
JP2021101968A (en) Electric control vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020879033

Country of ref document: EP

Effective date: 20220524